TW201903433A - Position detection device and position detection system - Google Patents

Position detection device and position detection system Download PDF

Info

Publication number
TW201903433A
TW201903433A TW107118930A TW107118930A TW201903433A TW 201903433 A TW201903433 A TW 201903433A TW 107118930 A TW107118930 A TW 107118930A TW 107118930 A TW107118930 A TW 107118930A TW 201903433 A TW201903433 A TW 201903433A
Authority
TW
Taiwan
Prior art keywords
gnss
vehicle
information
unit
ground
Prior art date
Application number
TW107118930A
Other languages
Chinese (zh)
Other versions
TWI775864B (en
Inventor
浅野晃
Original Assignee
日商京三製作所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商京三製作所股份有限公司 filed Critical 日商京三製作所股份有限公司
Publication of TW201903433A publication Critical patent/TW201903433A/en
Application granted granted Critical
Publication of TWI775864B publication Critical patent/TWI775864B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/50Determining position whereby the position solution is constrained to lie upon a particular curve or surface, e.g. for locomotives on railway tracks

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Provided is a technique for using GNSS to detect the position of a train with high precision and accuracy. An on-board device (20) performs GNSS verification when calculating the position of a train on the basis of GNSS information of a first GNSS unit (15) and a second GNSS unit (16), and performs an absolute position sensing process in which GNSS speed information is used when the verification is successful. When a vehicle (10) is positioned within a prescribed range from an above-ground device (60), the on-board device (20) acquires GNSS error information from the above-ground device (60) and reflects said information against the position information detected by the first GNSS unit (15) and the second GNSS unit (16).

Description

位置檢測裝置及位置檢測系統Position detection device and position detection system

本發明係有關於一種根據GNSS訊號檢測列車(車輛)之行駛位置之位置檢測裝置及位置檢測系統。The invention relates to a position detection device and a position detection system for detecting a running position of a train (vehicle) according to a GNSS signal.

作為把握列車之行駛位置之技術例如有如下技術:利用從測速發電機(以下,稱為“TG”,Tachoenerator)獲得之訊號,加總列車行駛之距離來檢測列車之行駛位置。而且,也有使用了GNSS(Global Navigation Satellite System,全球衛星導航系統)之技術。在使用了GNSS之技術中例如有如下技術:利用設置於列車之GNSS接收裝置獲得來自GNSS衛星的電波,檢測出列車的當前位置等等,控制列車速度(參照專利文獻1)。As a technique for grasping the running position of a train, for example, there is a technique of detecting a running position of a train by using a signal obtained from a speed measuring generator (hereinafter, referred to as "TG", Tachoenerator) and adding up the distance traveled by the train. In addition, there are technologies using GNSS (Global Navigation Satellite System). Among the technologies that use GNSS, for example, there are technologies that use a GNSS receiver installed on a train to obtain radio waves from a GNSS satellite, detect the current position of the train, and control the speed of the train (see Patent Document 1).

[先前技術文獻][Previous Technical Literature]

[專利文獻][Patent Literature]

[專利文獻1]日本特許公開2016-194497號公報[Patent Document 1] Japanese Patent Publication No. 2016-194497

[發明所欲解決之問題][Problems to be solved by the invention]

但是,於專利文獻1公開之技術中存在如下問題:在使用運行用之數據檢測出彎道或隧道等特徵性位置時,修正行駛位置,但若離開了這樣的特徵性位置,則行駛位置之檢測精度因誤差的累積而下降。However, the technology disclosed in Patent Document 1 has a problem in that when a characteristic position such as a curve or a tunnel is detected using the data for operation, the driving position is corrected. However, if such a characteristic position is left, the driving position is reduced. Detection accuracy decreases due to the accumulation of errors.

本發明係鑒於以上那樣的狀況而完成者,提供解決上記問題之技術。The present invention has been made in view of the circumstances described above, and provides a technique for solving the problems described above.

[解決問題之手段][Means for solving problems]

本發明係一種位置檢測裝置,其具備:第一GNSS天線及第二GNSS天線,其於一個車輛之前後方向隔開規定距離而設置,接收來自GNSS衛星之GNSS訊號;第一GNSS接收部,其與前述第一GNSS天線連接;第二GNSS接收部,其與前述第二GNSS天線連接;位置計算部,其基於前述第一GNSS接收部及前述第二GNSS接收部接收到的前述GNSS訊號計算前述車輛之位置;及誤差資訊獲得部,其從地上側的設備獲得GNSS誤差資訊;前述位置計算部在距離前述地上側的設備在一定之區域內的情況下,反映前述GNSS誤差資訊地計算前述車輛之位置。The invention relates to a position detection device, which includes a first GNSS antenna and a second GNSS antenna, which are arranged at a predetermined distance from a vehicle in the front-rear direction and receive a GNSS signal from a GNSS satellite; and a first GNSS receiving unit, which Connected to the first GNSS antenna; a second GNSS receiving unit connected to the second GNSS antenna; a position calculation unit that calculates the foregoing based on the GNSS signals received by the first GNSS receiving unit and the second GNSS receiving unit The position of the vehicle; and an error information acquisition unit that obtains GNSS error information from the equipment on the ground; the position calculation unit calculates the aforementioned vehicle by reflecting the GNSS error information in a case where it is within a certain distance from the equipment on the ground Its location.

另外,也可以具備:前述車輛行駛之路線之資料庫;及檢定部,其檢定是否處於能夠執行基於前述資料庫和前述GNSS訊號進行的前述車輛之位置的計算處理之狀態;在前述檢定部判斷為處於能夠執行前述車輛之位置的確定處理之狀態的情況下,前述位置計算部執行基於前述GNSS訊號的前述車輛之位置的計算處理,在判斷為不處於能夠執行前述車輛之位置的計算處理之狀態的情況下,前述位置計算部基於測速發電機執行前述車輛之位置的確定處理。In addition, it may include: a database of the route traveled by the vehicle; and a verification unit that verifies whether it is in a state capable of performing calculation processing of the position of the vehicle based on the database and the GNSS signal; judged by the verification unit In a state where the determination process of the position of the vehicle can be performed, the position calculation unit executes the calculation process of the position of the vehicle based on the GNSS signal, and determines that it is not in the calculation process of the position of the vehicle. In the case of the state, the position calculation unit executes the determination process of the position of the vehicle based on the speed measuring generator.

另外,也可以在前述位置計算部執行基於前述GNSS訊號的前述車輛之位置的計算處理的情況下,將前述第一GNSS接收部計算的速度向量和前述第二GNSS接收部計算的速度向量之變化的特徵點,與前述資料庫進行比較,計算前述車輛之位置。In addition, when the position calculation unit performs the calculation process of the position of the vehicle based on the GNSS signal, the speed vector calculated by the first GNSS receiver and the speed vector calculated by the second GNSS receiver may be changed. Compare the characteristic points of the vehicle with the aforementioned database and calculate the position of the aforementioned vehicle.

本發明係藉由搭載於車輛的車上裝置和設置於地上側的地上裝置計算前述車輛之位置之位置檢測系統,前述車上裝置具備:第一GNSS天線及第二GNSS天線,其於一個車輛之前後方向隔開規定距離而設置,接收來自GNSS衛星之GNSS訊號;第一GNSS接收部,其與前述第一GNSS天線連接;第二GNSS接收部,其與前述第二GNSS天線連接;位置計算部,其基於前述第一GNSS接收部及前述第二GNSS接收部接收到的前述GNSS訊號計算前述車輛之位置;誤差資訊獲得部,其從地上側的設備獲得GNSS誤差資訊;及車上側通訊部,其與前述地上裝置進行通訊;前述地上裝置具備:第三GNSS天線,其從前述GNSS衛星接收GNSS訊號;第三GNSS接收部,其與前述第三GNSS天線連接;地上側控制部,其保持前述第三GNSS天線的位置資訊,根據前述第三GNSS天線的位置資訊和基於由前述第三GNSS天線接收到的GNSS訊號計算的位置資訊,計算前述GNSS誤差資訊;及地上側通訊部,其將前述GNSS誤差資訊向前述車上裝置發送;前述車上裝置的前述位置計算部在計算前述車輛之位置時反映前述GNSS誤差資訊。The present invention is a position detection system for calculating the position of the vehicle by an on-vehicle device mounted on the vehicle and an above-ground device installed on the ground. The on-vehicle device includes: a first GNSS antenna and a second GNSS antenna, which are on one vehicle. The front and rear directions are arranged at a predetermined distance and receive GNSS signals from GNSS satellites; a first GNSS receiving unit is connected to the first GNSS antenna; a second GNSS receiving unit is connected to the second GNSS antenna; position calculation Based on the GNSS signals received by the first GNSS receiving unit and the second GNSS receiving unit; calculating the position of the vehicle; an error information obtaining unit that obtains GNSS error information from the equipment on the ground side; and a communication unit on the vehicle side Which communicates with the above-ground device; the above-ground device includes: a third GNSS antenna that receives a GNSS signal from the GNSS satellite; a third GNSS receiving section that is connected to the third GNSS antenna; and an above-ground control section that holds The position information of the third GNSS antenna is based on the position information of the third GNSS antenna and based on the GN received by the third GNSS antenna. The position information calculated by the SS signal calculates the aforementioned GNSS error information; and the above-ground communication section sends the aforementioned GNSS error information to the aforementioned vehicle device; the aforementioned position calculation section of the aforementioned vehicle device reflects the aforementioned when calculating the position of the aforementioned vehicle GNSS error information.

本發明係藉由搭載於車輛的車上裝置、和設置於地上側的地上裝置及指令中心計算前述車輛之位置之位置檢測系統,前述車上裝置具備:第一GNSS天線及第二GNSS天線,其於一個車輛之前後方向隔開規定距離而設置,接收來自GNSS衛星之GNSS訊號;第一GNSS接收部,其與前述第一GNSS天線連接;第二GNSS接收部,其與前述第二GNSS天線連接;位置計算部,其將基於前述第一GNSS接收部及前述第二GNSS接收部的前述GNSS訊號之位置資訊向前述指令中心通知,而且根據前述位置資訊計算前述車輛之位置;誤差資訊獲得部,其從前述指令中心獲得前述車輛之前述位置之修正資訊;及車上側通訊部,其與前述地上裝置及前述指令中心進行通訊;前述地上裝置具備:第三GNSS天線,其從前述GNSS衛星接收GNSS訊號;第三GNSS接收部,其與前述第三GNSS天線連接;地上側控制部,其保持前述第三GNSS天線的位置資訊,根據前述第三GNSS天線的位置資訊和基於由前述第三GNSS天線接收到的GNSS訊號計算的位置資訊,計算前述GNSS誤差資訊,將前述GNSS誤差資訊向前述指令中心通知;及地上側通訊部,其與前述車上裝置和前述指令中心進行通訊;前述指令中心,其與前述車上裝置和前述地上裝置進行通訊,根據從前述車上裝置獲得的基於前述第一GNSS接收部及前述第二GNSS接收部的前述GNSS訊號之前述位置資訊、以及從前述地上裝置獲得的前述GNSS誤差資訊,修正前述車輛之位置資訊,根據修正後之位置資訊,進行前述車輛之運行管理。The present invention is a position detection system for calculating the position of the vehicle by an on-vehicle device mounted on the vehicle, and an above-ground device and a command center provided on the ground. The on-vehicle device includes a first GNSS antenna and a second GNSS antenna. It is arranged at a predetermined distance in the front and rear direction of a vehicle and receives GNSS signals from GNSS satellites; a first GNSS receiving unit is connected to the aforementioned first GNSS antenna; a second GNSS receiving unit is connected to the aforementioned second GNSS antenna Connection; a position calculation unit that notifies the command center of the position information of the GNSS signal based on the first GNSS receiving unit and the second GNSS receiving unit, and calculates the position of the vehicle based on the position information; the error information obtaining unit , Which obtains the correction information of the aforementioned position of the vehicle from the aforementioned command center; and the on-board communication section, which communicates with the aforementioned ground device and the aforementioned command center; the above-ground device is provided with: a third GNSS antenna, which receives from the aforementioned GNSS satellite GNSS signal; the third GNSS receiving unit, which is connected to the aforementioned third GNSS antenna; the above-ground control unit, its protection The position information of the third GNSS antenna is held, and the GNSS error information is calculated based on the position information of the third GNSS antenna and the position information calculated based on the GNSS signal received by the third GNSS antenna. The instruction center notification; and the above-ground communication unit, which communicates with the on-vehicle device and the above-mentioned instruction center; the above-mentioned instruction center, which communicates with the on-vehicle device and the above-ground device, The position information of the GNSS signal of the first GNSS receiving section and the GNSS signal of the second GNSS receiving section, and the GNSS error information obtained from the above-ground device, correct the position information of the vehicle, and perform the foregoing vehicle based on the corrected position information. Operation management.

[發明之效果][Effect of Invention]

根據本發明,能夠實現利用GNSS精度更高地檢測列車(車輛)的位置之技術。According to the present invention, a technology for detecting the position of a train (vehicle) using GNSS with higher accuracy can be realized.

接著,參照圖式具體地說明用於實施本發明的形態(以下,簡稱為“實施方式”)。Next, the form (hereinafter, abbreviated as "embodiment") for implementing this invention is demonstrated concretely with reference to drawings.

第1圖係表示本實施方式涉及之列車運行系統1的概要之圖。第2圖係列車運行系統1之方塊圖。在第1圖中,表示向圖示右方向行進之車輛10的前頭進入了月臺88的狀態。FIG. 1 is a diagram showing an outline of a train operating system 1 according to the present embodiment. Fig. 2 is a block diagram of the series vehicle running system 1. FIG. 1 shows a state where the front of the vehicle 10 traveling to the right in the figure has entered the platform 88.

如第1圖所示,對於列車運行系統1,作為車輛側的裝置而在前頭的車輛10中具備第一GNSS部15、第二GNSS部16及車上裝置20,作為地上側的裝置而在車站的月臺88中具備地上裝置60及第三GNSS部61。進而,對於列車運行系統1,作為地上側的裝置而具備控制車輛10和車上裝置20並統括進行運行管理的指令中心70。As shown in FIG. 1, the train operation system 1 includes a first GNSS unit 15, a second GNSS unit 16, and an on-board device 20 as a vehicle-side device. The front vehicle 10 is provided as an above-ground device. The platform 88 of the station includes an above-ground device 60 and a third GNSS unit 61. Furthermore, the train operation system 1 includes, as an above-ground device, an instruction center 70 that controls the vehicle 10 and the on-board device 20 and performs overall operation management.

在本實施方式中,使用車輛側的第一GNSS部15、第二GNSS部16和地上側的第三GNSS部61,來提高在車站(月臺88)附近地域處的車輛位置的計算精度。In this embodiment, the first GNSS unit 15, the second GNSS unit 16 on the vehicle side, and the third GNSS unit 61 on the ground side are used to improve the calculation accuracy of the vehicle position in the area near the station (platform 88).

若列車進入了規定的通訊區域,則地上裝置60向車上裝置20發送第三GNSS部61所獲得的GNSS資訊。已知第三GNSS部61的第三GNSS接收部61a的絕對位置,例如,向車上裝置20通知已獲得的GNSS資訊與絕對值之差(以下,稱為“GNSS誤差”。)。在存在於月臺88附近之車輛10(第一GNSS部15、第二GNSS部16)中,根據來自與第三GNSS部61相同的GNSS衛星98之GNSS資訊,計算位置資訊。When the train enters a predetermined communication area, the above-ground device 60 sends the GNSS information obtained by the third GNSS unit 61 to the on-board device 20. The absolute position of the third GNSS receiving unit 61 a of the third GNSS unit 61 is known, and for example, the on-board device 20 is notified of the difference between the obtained GNSS information and the absolute value (hereinafter referred to as “GNSS error”). In the vehicle 10 (the first GNSS unit 15 and the second GNSS unit 16) existing near the platform 88, position information is calculated based on GNSS information from the same GNSS satellite 98 as the third GNSS unit 61.

另外,也可以車輛10的車上裝置20將基於第一GNSS部15及第二GNSS部16之位置資訊向地上側的指令中心70發送,地上裝置60將第三GNSS部61的GNSS誤差資訊向地上側的指令中心70發送。在這種情況下,指令中心70能夠準確地進行車輛10的位置修正,能夠根據該列車位置(車輛10的修正後的位置)進行連動控制和訊號控制。Alternatively, the on-board device 20 of the vehicle 10 may send the position information based on the first GNSS unit 15 and the second GNSS unit 16 to the command center 70 above the ground, and the above-ground device 60 may send the GNSS error information of the third GNSS unit 61 to The command center 70 on the ground side sends it. In this case, the command center 70 can accurately correct the position of the vehicle 10, and can perform interlocking control and signal control based on the train position (the corrected position of the vehicle 10).

計算出的位置資訊包含由第三GNSS部61計算出的GNSS誤差的可能性較高。於是,在車上裝置20中,在根據第一GNSS部15及第二GNSS部16的GNSS資訊計算位置資訊的情況下,獲得由第三GNSS部61計算出的GNSS誤差作為GNSS誤差資訊並反映,進行排除GNSS誤差之處理。尚且,也可以如上述般,在指令中心70從車輛10和地上裝置60獲得位置資訊的情況下,指令中心70進行排除GNSS誤差之處理。以下,主要對由車輛10和地上裝置60進行GNSS誤差的排除處理之事例進行說明。It is highly possible that the calculated position information includes a GNSS error calculated by the third GNSS unit 61. Then, in the on-board device 20, when the position information is calculated based on the GNSS information of the first GNSS section 15 and the second GNSS section 16, the GNSS error calculated by the third GNSS section 61 is obtained and reflected as the GNSS error information. , To eliminate GNSS errors. In addition, as described above, when the command center 70 obtains position information from the vehicle 10 and the ground device 60, the command center 70 may perform a process of excluding GNSS errors. In the following, an example in which the GNSS error elimination processing is performed by the vehicle 10 and the ground device 60 will be described.

在車輛10側的構成中,第一GNSS部15具備第一GNSS天線15a及第一GNSS接收部15b。第二GNSS部16具備第二GNSS天線16a和第二GNSS接收部16b。In the configuration on the vehicle 10 side, the first GNSS unit 15 includes a first GNSS antenna 15a and a first GNSS receiver 15b. The second GNSS unit 16 includes a second GNSS antenna 16 a and a second GNSS receiving unit 16 b.

第一GNSS天線15a設置於車輛10的上部前端附近。第二GNSS天線16a設置於車輛10的上部後端附近。第一GNSS天線15a和第二GNSS天線16a間隔規定的距離(以下,稱為“設置距離a”)而設置。例如,在車輛10之長度為20m的情況下,設置距離a為17m左右。The first GNSS antenna 15 a is provided near the upper front end of the vehicle 10. The second GNSS antenna 16 a is provided near the upper rear end of the vehicle 10. The first GNSS antenna 15a and the second GNSS antenna 16a are provided at a predetermined distance (hereinafter, referred to as a "setting distance a"). For example, when the length of the vehicle 10 is 20 m, the installation distance a is about 17 m.

第一GNSS接收部15b根據第一GNSS天線15a接收到的GNSS訊號計算第一GNSS天線15a的位置資訊,而且計算第一GNSS天線15a的位置處之速度向量,將各計算結果輸出至車上裝置20。The first GNSS receiver 15b calculates the position information of the first GNSS antenna 15a based on the GNSS signal received by the first GNSS antenna 15a, and calculates the velocity vector at the position of the first GNSS antenna 15a, and outputs each calculation result to the on-board device 20.

第二GNSS接收部16b根據第二GNSS天線16a接收到的GNSS訊號計算第二GNSS天線16a的位置資訊,而且計算第二GNSS天線16a的位置處之速度向量,將各計算結果輸出至車上裝置20。The second GNSS receiver 16b calculates the position information of the second GNSS antenna 16a based on the GNSS signal received by the second GNSS antenna 16a, and calculates the velocity vector at the position of the second GNSS antenna 16a, and outputs each calculation result to the on-board device 20.

車上裝置20在檢測到速度向量的特徵點時,與預備的系統固有的資訊比較,確定車輛10的位置。另外,車上裝置20在從地上裝置60獲得了第三GNSS部61的位置資訊的情況下,將該位置資訊反映於第一GNSS部15及第二GNSS部16的計算結果,修正位置資訊。When the on-vehicle device 20 detects a feature point of the speed vector, it compares the information unique to the prepared system and determines the position of the vehicle 10. In addition, when the on-vehicle device 20 obtains the position information of the third GNSS unit 61 from the above-ground device 60, the position information is reflected on the calculation results of the first GNSS unit 15 and the second GNSS unit 16 to correct the position information.

在此,參照第3圖~第5圖,對基於GNSS訊號的行駛位置檢測之原理及位置資訊的修正處理進行說明。在本實施方式中,如上述之車上裝置20在檢測到速度向量發生變化的規定的特徵點時,與預備的系統固有的資訊(運行用數據部31的資訊)比較,在判斷為與被認為的特徵點一致的情況下,判斷為“位於資料庫中所記錄的位置”。在此,所謂特徵點例如是軌道99轉彎時的起點或終點等。此外,於特徵點的檢測處理之前,執行是否處於執行基於GNSS訊號之位置資訊的計算處理亦可的狀態之GNSS檢定。另外,於車站(月臺88)等那樣的需要精度高的位置資訊之區域,根據地上側的位置資訊及其地點的GNSS資訊,修正GNSS誤差。Here, the principle of the driving position detection based on the GNSS signal and the correction processing of the position information will be described with reference to FIGS. 3 to 5. In the present embodiment, when the on-vehicle device 20 detects a predetermined feature point where the speed vector changes, it compares it with the information unique to the system (information of the operating data unit 31), and determines whether it is If the characteristic points considered are the same, it is judged as "located in the position recorded in the database". Here, the characteristic point is, for example, a start point or an end point when the track 99 turns. In addition, before the feature point detection processing, a GNSS test is performed to determine whether or not the calculation processing of the position information based on the GNSS signal is possible. In areas such as stations (platforms 88) that require high-precision location information, GNSS errors are corrected based on the location information above the ground and the GNSS information of the location.

<基本技術>< Basic Technology >

1.GNSS檢定 GNSS檢定係為了提高GNSS資訊的可靠性而進行者。僅於GNSS檢定合格時,基於該GNSS資訊之位置資訊被用於車輛10之位置確定。於GNSS檢定中,使用車輛10的2台GNSS接收機(第一GNSS接收部15b、第二GNSS接收部16b)。1. GNSS verification GNSS verification is performed to improve the reliability of GNSS information. Only when the GNSS test passes, the position information based on the GNSS information is used for the position determination of the vehicle 10. For the GNSS verification, two GNSS receivers (the first GNSS receiver 15b and the second GNSS receiver 16b) of the vehicle 10 are used.

如上述,第一GNSS天線15a和第二GNSS天線16a以無關聯的設置距離a而設置。具體而言,於車輛10之前後端(例如前頭的車輛10的前頭側和連結側這2個場所)設置第一GNSS天線15a和第二GNSS天線16a。此時,不僅設置距離a,也構築由車輛10的頂棚形成的電波環境之非關聯環境。即,對第一及第二GNSS天線15a、16a,構築不同的衰減環境。藉此,2個GNSS接收機(第一及第二GNSS接收部15b、16b)構成為不會因相同的衰減的影響而輸出錯誤資訊。As described above, the first GNSS antenna 15a and the second GNSS antenna 16a are installed at an unrelated installation distance a. Specifically, a first GNSS antenna 15 a and a second GNSS antenna 16 a are provided at the front and rear ends of the vehicle 10 (for example, two places: the front side and the connection side of the vehicle 10 in front). At this time, not only the distance a is provided, but also an unrelated environment of the radio wave environment formed by the ceiling of the vehicle 10 is constructed. That is, the first and second GNSS antennas 15a and 16a have different attenuation environments. Accordingly, the two GNSS receivers (the first and second GNSS receivers 15b and 16b) are configured so as not to output error information due to the influence of the same attenuation.

於GNSS檢定的邏輯中,將來自GNSS衛星98的資訊與系統固有的資訊比較,僅在檢定合格時使用GNSS資訊。In the logic of the GNSS test, the information from the GNSS satellite 98 is compared with the system-specific information, and the GNSS information is used only when the test passes.

2.基於使用了GNSS資訊之速度資訊的行駛距離加總進行之位置檢測 基於GNSS資訊之速度資訊的加總進行之位置檢測,係藉由在絕對位置確定之後,對速度資訊進行積分來計算行駛距離而進行者。2. Position detection based on driving distance summation based on speed information using GNSS information Position detection based on summation of speed information based on GNSS information is calculated by integrating speed information after the absolute position is determined Distance.

於GNSS檢定邏輯中,使用第3圖中(a)之“軌跡”檢定、第3圖中(b)之“位置”檢定、第3圖中(c)之“方位(Dp)”檢定。僅在檢定合格的情況使用基於GNSS資訊之速度資訊。在檢定不合格的情況,使用來自TG32(參照第5圖)等其他速度檢測手段的速度資訊。尚且,於檢定時,參照運行用數據部31,與所記錄的數據比較。In the GNSS verification logic, the "trajectory" check in (a) of Figure 3, the "position" check in (b) of Figure 3, and the "position (Dp)" check in (c) of Figure 3 are used. Speed information based on GNSS information is used only if the test passes. If the test fails, the speed information from other speed detection methods such as TG32 (see Figure 5) is used. In addition, at the check time, the operation data section 31 is referred to and compared with the recorded data.

所謂“軌跡”檢定,係判斷是否正在預定的行駛路徑行駛。所謂“位置”檢定,係判斷根據GNSS訊號得到的第一及第二GNSS天線15a、16a之間隔(後述第4圖的“實測距離D”)是否與實際的設置距離a一致。所謂“方位”檢定,係判斷是否與預定的方位(軌道方位)一致。The so-called "track" test is to determine whether or not the vehicle is traveling on a predetermined driving route. The so-called "position" verification is to determine whether the distance between the first and second GNSS antennas 15a and 16a ("measured distance D" in Fig. 4 described later) obtained from the GNSS signal is consistent with the actual installation distance a. The so-called "bearing" test is to determine whether it is consistent with a predetermined bearing (orbital bearing).

3.使用了GNSS的速度資訊之絕對位置檢測 在使用了GNSS的速度資訊之絕對位置檢測中,利用由2台GNSS接收機(第一GNSS接收部15b、第二GNSS接收部16b)計算的速度向量於軌道99的彎道處隨時變化之現象。若該軌道的彎道處的速度向量的變化滿足以下所示的條件(a)~(c),則針對GNSS的故障、接收機的故障、衰減的影響的、不能識別變化的概率極低。 (a)在彎道起點前,利用TG等預先確定彎道的起點即將到來。 (b)從彎道起點前到彎道終點後,GNSS檢定合格。 (c)於路線資料庫(運行用數據部31)登記有絕對位置檢測資訊。3. Absolute position detection using GNSS speed information In absolute position detection using GNSS speed information, the speed calculated by two GNSS receivers (the first GNSS receiver 15b and the second GNSS receiver 16b) is used. The phenomenon that the vector changes at any time in the curve of the track 99. If the change in the velocity vector at the curve of the track satisfies the conditions (a) to (c) shown below, the probability that the change cannot be recognized for the effects of GNSS failure, receiver failure, and attenuation is extremely low. (A) Before the starting point of the curve, use TG to determine in advance that the starting point of the curve is coming. (B) From before the start of the curve to after the end of the curve, the GNSS test passes. (C) The absolute position detection information is registered in the route database (operation data section 31).

(1)基於軌道的曲率進行之位置檢測 參照第4圖說明基於軌道99的曲率之位置檢測處理。在此,使用曲率半徑R代替曲率。對於從2台GNSS接收機(第一GNSS接收部15b、第二GNSS接收部16b)得到的速度向量V(V1、V2),若車輛10從直線99a進入了彎道99b,則角度θ對應於軌道99(彎道99b)的曲率半徑R發生變化。在此,將第一GNSS天線15a的速度向量V1與第二GNSS天線16a的速度向量V2所成之角設為角度θ。(1) Position detection based on the curvature of the track The position detection processing based on the curvature of the track 99 will be described with reference to FIG. 4. Here, the curvature radius R is used instead of the curvature. For the velocity vector V (V1, V2) obtained from two GNSS receivers (the first GNSS receiver 15b and the second GNSS receiver 16b), if the vehicle 10 enters the curve 99b from the straight line 99a, the angle θ corresponds to The radius of curvature R of the track 99 (curve 99b) changes. Here, an angle formed by the velocity vector V1 of the first GNSS antenna 15a and the velocity vector V2 of the second GNSS antenna 16a is set as an angle θ.

根據該角度θ用下面的公式計算軌道99(彎道99b)的曲率半徑R,與登記於路線資料庫(運行用數據部31)中的軌道99的曲率(曲率半徑)進行比較,藉此確定彎道位置(起點C1和終點C2),在終點C2、即在變為θ=0度的地點檢測出絕對位置。 Sin(θ/2)=(D/2)/R R=(D/2)/Sin(θ/2) D:根據GNSS訊號計算的第一GNSS天線15a與第二GNSS天線16a之間的實測距離。Based on this angle θ, the curvature radius R of the track 99 (curve 99b) is calculated by the following formula, and compared with the curvature (curvature radius) of the track 99 registered in the course database (operation data section 31), thereby determining The curve position (starting point C1 and ending point C2) is detected at the ending point C2, that is, at the point where θ = 0 degrees. Sin (θ / 2) = (D / 2) / RR = (D / 2) / Sin (θ / 2) D: The measured distance between the first GNSS antenna 15a and the second GNSS antenna 16a calculated based on the GNSS signal .

(2)基於軌道的彎道行駛距離進行之位置檢測 在上述的基於軌道99的曲率(曲率半徑R)進行位置檢測的情況下,當曲率大時角度θ的絕對值變小,所以有時因誤差而不能確定彎道位置。因此,在曲率比規定大的情況下,進行基於軌道99的彎道行駛距離LR之位置檢測。即,計算從軌道99變為彎道99b的起點C1到終點C2之彎道行駛距離LR,與登記於路線資料庫(運行用數據部31)中的彎道99b之距離進行比較,藉此確定彎道位置,在彎道終點、即在變為θ=0度的地點檢測出絕對位置。(2) Position detection based on the travel distance of the curve of the track In the case of position detection based on the curvature (curvature radius R) of the track 99 described above, when the curvature is large, the absolute value of the angle θ becomes small. The error cannot determine the position of the curve. Therefore, when the curvature is larger than a predetermined value, the position detection based on the curve travel distance LR of the track 99 is performed. That is, the curve travel distance LR from the start point C1 to the end point C2 from the track 99 to the curve 99b is calculated and compared with the distance of the curve 99b registered in the route database (operation data section 31), thereby determining At the curve position, the absolute position is detected at the end point of the curve, that is, at a point where θ = 0 degrees.

(3)基於軌道的彎道變化點進行之位置檢測 如第5圖所示,對於從第一GNSS天線15a、第二GNSS天線16a得到的速度向量差,在軌道99從右彎道99d向左彎道99e變化、從左彎道向右彎道變化的情況下,若取速度向量V1與V2之差,則符號(正負)逆轉。於該軌道的彎道變化點C3之前後,GNSS檢定合格,滿足上述條件(a)和(b),從而確定彎道變化點C3,在彎道變化點C3檢測出絕對位置。(3) Position detection based on the curve change point of the track As shown in Figure 5, the speed vector difference obtained from the first GNSS antenna 15a and the second GNSS antenna 16a is from the right curve 99d to the left on the track 99 When the curve 99e changes and the curve changes from the left to the right, if the difference between the velocity vectors V1 and V2 is taken, the sign (positive and negative) is reversed. Before and after the curve change point C3 of the track, the GNSS test is qualified and the above conditions (a) and (b) are satisfied, thereby determining the curve change point C3, and the absolute position is detected at the curve change point C3.

(4)在系統中的適用 此外,配合於適用路線區域來選擇組合上述(1)~(3)之位置檢測方式。(4) Application in the system In addition, according to the applicable route area, a combination of the position detection methods (1) to (3) above is selected.

4.使用了地上側的GNSS資訊之位置修正 於車站(月臺88)等那樣的需要精度高的位置資訊之區域,根據地上側的位置資訊及其地點的GNSS資訊,修正GNSS誤差。第6圖係說明GNSS誤差修正的概念之圖。4. Location correction using above-ground GNSS information In areas such as stations (platforms 88) that require high-precision location information, GNSS errors are corrected based on above-ground location information and GNSS information of the location. Fig. 6 is a diagram illustrating the concept of GNSS error correction.

在第三GNSS接收部61a中,記錄有第三GNSS天線61b的測量完的固定位置資訊P3(X3_0,Y3_0)。位置資訊P3為固定值,例如用經度緯度表示。第三GNSS接收部61a計算基於GNSS衛星98得到的位置資訊P3_G(X3_g,Y3_g)與固定位置資訊P3(X3_0,Y3_0)之差即GNSS誤差資訊ΔP3(Δx,Δy)。 ΔP3(Δx,Δy) =(X3_g,Y3_g)-(X3_0,Y3_0) =(X3_g-X3_0,Y3_g-Y3_0) 第三GNSS接收部61a將該GNSS誤差ΔP3(Δx,Δy)作為GNSS誤差資訊向車上裝置20發送。The third GNSS receiving unit 61a stores the measured fixed position information P3 (X3_0, Y3_0) of the third GNSS antenna 61b. The position information P3 is a fixed value, for example, it is expressed by longitude and latitude. The third GNSS receiving unit 61a calculates the difference between the position information P3_G (X3_g, Y3_g) obtained from the GNSS satellite 98 and the fixed position information P3 (X3_0, Y3_0), that is, the GNSS error information ΔP3 (Δx, Δy). ΔP3 (Δx, Δy) = (X3_g, Y3_g)-(X3_0, Y3_0) = (X3_g-X3_0, Y3_g-Y3_0) The third GNSS receiver 61a sends the GNSS error ΔP3 (Δx, Δy) to the vehicle as GNSS error information Send on device 20.

在車上裝置20中,將GNSS誤差ΔP3(Δx,Δy)反映於第一GNSS部15及第二GNSS部16之GNSS資訊P1_G(X1_g,Y1_g)、P2_G(X2_g,Y2_g)中,計算修正後GNSS資訊P1_0(X1_0,Y1_0)、P2_G(X2_0,Y2_0)。 P1_0(X1_0,Y1_0)=(X1_g-Δx,Y1_g-Δy) P2_0(X2_0,Y2_0)=(X2_g-Δx,Y2_g-Δy)In the on-board device 20, the GNSS errors ΔP3 (Δx, Δy) are reflected in the GNSS information P1_G (X1_g, Y1_g), P2_G (X2_g, Y2_g) of the first GNSS section 15 and the second GNSS section 16, and the correction is calculated. GNSS information P1_0 (X1_0, Y1_0), P2_G (X2_0, Y2_0). P1_0 (X1_0, Y1_0) = (X1_g-Δx, Y1_g-Δy) P2_0 (X2_0, Y2_0) = (X2_g-Δx, Y2_g-Δy)

在此,使適用GNSS誤差資訊時的車輛10(車上裝置20)與地上裝置60之間的距離在使用相同的GNSS衛星98的充分近的範圍內,藉此能夠實質性地消除第一GNSS部15及第二GNSS部16的測量誤差,能夠提高使用第一GNSS部15及第二GNSS部16計算出的車輛10的列車位置之精度。Here, the distance between the vehicle 10 (on-vehicle device 20) and the ground device 60 when the GNSS error information is applied is within a sufficiently close range using the same GNSS satellite 98, thereby substantially eliminating the first GNSS The measurement errors of the unit 15 and the second GNSS unit 16 can improve the accuracy of the train position of the vehicle 10 calculated using the first GNSS unit 15 and the second GNSS unit 16.

<具體的技術> 參照第2圖說明用於執行上述的絕對位置檢測處理及GNSS誤差修正處理的構成。<Specific Technique> A configuration for executing the above-mentioned absolute position detection processing and GNSS error correction processing will be described with reference to FIG. 2.

地上裝置60具備地上側運行控制部62和地上通訊部63。地上側運行控制部62保持第三GNSS天線61b的設置位置之位置資訊,而且獲得第三GNSS部61接收到的GNSS訊號,計算設置位置之位置資訊與根據GNSS訊號計算出的位置資訊之差(GNSS誤差資訊),經由地上通訊部63向車上裝置20發送。地上通訊部63與車上裝置20(車上通訊部33)進行通訊。The above-ground device 60 includes an above-ground operation control unit 62 and an above-ground communication unit 63. The above-ground operation control section 62 holds the position information of the setting position of the third GNSS antenna 61b, and obtains the GNSS signal received by the third GNSS section 61, and calculates the difference between the position information of the setting position and the position information calculated from the GNSS signal ( GNSS error information) is transmitted to the onboard device 20 via the ground communication unit 63. The ground communication unit 63 communicates with the on-board device 20 (on-vehicle communication unit 33).

車上裝置20設置於設置有第一GNSS部15及第二GNSS部16的車輛10,控制列車(車輛10)之運行。具體而言,車上裝置20控制列車速度,或推定列車位置,或推定列車朝向,藉此把握列車(車輛10)之運行狀態,執行適當的列車運行。另外,車上裝置20與地上裝置60進行通訊,直接或間接地進行線路封閉等處理。The on-board device 20 is installed in a vehicle 10 provided with a first GNSS unit 15 and a second GNSS unit 16 and controls the operation of a train (vehicle 10). Specifically, the on-board device 20 controls the speed of the train, estimates the position of the train, or estimates the direction of the train, thereby grasping the running state of the train (vehicle 10) and performing appropriate train operations. In addition, the on-vehicle device 20 communicates with the above-ground device 60 and directly or indirectly performs processing such as line closure.

車上裝置20具備車上側運行控制部30、列車狀態確定部40、運行用數據部31、TG32、車上通訊部33和行駛履歷部34。The on-board device 20 includes an on-vehicle operation control unit 30, a train state determination unit 40, an operation data unit 31, a TG 32, an on-board communication unit 33, and a travel history unit 34.

運行用數據部31記錄有列車(車輛10)運行的路線的資訊(運行資訊)。作為運行資訊,包括列車(車輛10)行駛的路徑資訊、地點資訊、各地點處的列車行進方向的方位Dp、彎道資訊(起點、終點、曲率半徑)及每個速度限制區間的限制速度資訊等。The operation data unit 31 records information (operation information) of a route on which the train (vehicle 10) operates. As the running information, it includes the route information, location information of the train (vehicle 10), the position Dp of the direction of travel of the train at each point, curve information (starting point, ending point, radius of curvature), and speed limit information of each speed limit section Wait.

行駛履歷部34記錄車輛10之行駛履歷。TG32係以前一直使用的根據車輪之旋轉測量速度的速度測量裝置。車上通訊部33藉由無線與地上裝置60的地上通訊部63及其他外部裝置(例如運行指揮部等)發送接收資訊。The travel history unit 34 records a travel history of the vehicle 10. The TG32 is a speed measuring device that has been used to measure the speed based on the rotation of the wheels. The on-board communication unit 33 sends and receives information via the above-ground communication unit 63 of the wireless and above-ground device 60 and other external devices (such as the operation command).

車上側運行控制部30使用列車狀態確定部40、TG32和運行用數據部31進行列車運行控制。所謂列車運行控制,例如,確定列車(車輛10)之位置,或計算速度,並將計算結果等顯示於規定的顯示裝置。對於速度的顯示,既可以顯示任意一者的速度,也可以顯示兩者的速度。The on-vehicle operation control unit 30 uses the train state determination unit 40, the TG 32, and the operation data unit 31 to perform train operation control. The so-called train operation control determines, for example, the position of a train (vehicle 10), or calculates the speed, and displays the calculation results and the like on a predetermined display device. For the speed display, the speed of either one or both can be displayed.

列車狀態確定部40具備列車位置計算部42、列車方位計算部44、GNSS檢定部46和確定位置檢測部48。The train state determination unit 40 includes a train position calculation unit 42, a train azimuth calculation unit 44, a GNSS verification unit 46, and a specified position detection unit 48.

列車位置計算部42從第一GNSS部15及第二GNSS部16獲得它們各自檢測出的位置資訊。而且,列車位置計算部42根據從第一及第二GNSS部15、16輸出的位置資訊,計算第一GNSS天線15a、第二GNSS天線16a間的實測距離D。The train position calculation unit 42 obtains the position information detected by each of the first GNSS unit 15 and the second GNSS unit 16. The train position calculation unit 42 calculates the measured distance D between the first GNSS antenna 15 a and the second GNSS antenna 16 a based on the position information output from the first and second GNSS units 15 and 16.

列車方位計算部44根據列車位置計算部42獲得的位置資訊,計算車輛10的行進方向(方位)。將計算出的行進方向(方位)輸出至確定位置檢測部48。The train azimuth calculation unit 44 calculates the traveling direction (azimuth) of the vehicle 10 based on the position information obtained by the train position calculation unit 42. The calculated traveling direction (azimuth) is output to the specified position detection unit 48.

GNSS檢定部46進行上述的GNSS檢定處理。即,GNSS檢定部46進行由第3圖中(a)之“軌跡”檢定、第3圖中(b)之“位置”檢定、第3圖中(c)之“方位”檢定所示的處理。此時,GNSS檢定部46參照運行用數據部31。The GNSS verification unit 46 performs the GNSS verification process described above. That is, the GNSS verification unit 46 performs the processing shown by the "trajectory" verification in Fig. 3 (a), the "position" verification in (b) in Fig. 3, and the "azimuth" verification in (c) in Fig. 3 . At this time, the GNSS verification unit 46 refers to the operation data unit 31.

確定位置檢測部48在GNSS檢定判斷為合格的情況下,進行上述的使用了GNSS的速度資訊之絕對位置檢測處理。若進行了絕對位置檢測處理,則用於車上側運行控制部30等進行的列車(車輛10)的各種控制之位置資訊被更新為檢測出的位置資訊。即,例如,在絕對位置檢測處理被執行前的行駛狀態的把握中使用了TG32,從而即使因車輪的空轉或滑行等產生了誤差的情況下,該誤差也被適當地消除。此外,在產生的誤差為規定以上地大的情況下,車上側運行控制部30判斷為有列車(車輛10)的車輪等發生異常之虞或存在運行用數據部31的數據的錯誤等,向駕駛者發出警告,或者也可以經由車上通訊部33向運行指揮部等通知。When the definite position detection unit 48 determines that the GNSS test is qualified, the absolute position detection process using the GNSS speed information is performed. When the absolute position detection process is performed, the position information used for various controls of the train (vehicle 10) performed by the on-vehicle operation control unit 30 and the like is updated to the detected position information. That is, for example, the TG32 is used for grasping the running state before the absolute position detection process is performed, so that even if an error occurs due to idling or coasting of the wheel, the error is appropriately eliminated. In addition, if the generated error is larger than a predetermined amount, the on-vehicle operation control unit 30 determines that there is a risk of abnormality in the wheels or the like of the train (vehicle 10) or an error in the data of the operation data unit 31, etc. The driver issues a warning, or may notify the operation command and the like via the on-board communication unit 33.

關於絕對位置檢測處理,確定位置檢測部48選擇性地使用(1)基於軌道的曲率進行之位置檢測、(2)基於軌道的彎道行駛距離進行之位置檢測、(3)基於軌道的彎道變化點進行之位置檢測、這3種位置檢測方法。也可以根據需要組合這些位置檢測方法。Regarding the absolute position detection processing, the determination position detection unit 48 selectively uses (1) position detection based on the curvature of the track, (2) position detection based on the travel distance of the curve on the track, and (3) curve based on the track Position detection by changing points, these three position detection methods. You can also combine these position detection methods as needed.

另外,確定位置檢測部48在車輛10距離地上裝置60位於規定距離內的情況下,從地上裝置60獲得GNSS誤差資訊,並反映於第一GNSS部15及第二GNSS部16檢測出的位置資訊中。In addition, when the position detection unit 48 determines that the vehicle 10 is located within a predetermined distance from the above-ground device 60, the GNSS error information is obtained from the above-ground device 60 and reflected in the position information detected by the first GNSS unit 15 and the second GNSS unit 16. in.

參照第7圖之流程圖,總結說明基於以上構成之處理。 在車上裝置20中,列車狀態確定部40的列車位置計算部42根據第一GNSS部15及第二GNSS部16接收到的GNSS訊號,計算位置資訊(S10)。繼而,GNSS檢定部46進行GNSS檢定,判斷是否處於能夠使用GNSS資訊的狀況(S12)。With reference to the flowchart of FIG. 7, the processing based on the above configuration will be summarized and explained. In the on-board device 20, the train position calculation unit 42 of the train state determination unit 40 calculates position information based on the GNSS signals received by the first GNSS unit 15 and the second GNSS unit 16 (S10). Next, the GNSS verification unit 46 performs a GNSS verification to determine whether or not the GNSS information can be used (S12).

在GNSS檢定為不合格的情況下(S14的“否”),車上側運行控制部30進行使用了TG32之列車位置計算處理,進行基於此之運行控制(S16)。在GNSS檢定合格的情況下(S14的“是”),車上側運行控制部30判斷是否位於與地上裝置60有通訊從而使用地上裝置60(第三GNSS部61)之GNSS資訊的區域(S18)。在非使用地上裝置60(第三GNSS部61)之GNSS資訊的區域的情況下(S18的“否”),即不使用GNSS誤差資訊的區域的情況下,車上裝置20進行使用了車上GNSS數據(第一GNSS部15、第二GNSS部16之GNSS資訊)的列車位置計算,進行基於此的運行控制(S20)。When the GNSS test is unsatisfactory (NO in S14), the on-vehicle operation control unit 30 performs a train position calculation process using TG32, and performs operation control based on this (S16). In the case where the GNSS test passes (Yes in S14), the on-vehicle operation control unit 30 determines whether it is located in an area that communicates with the ground device 60 and uses the GNSS information of the ground device 60 (third GNSS unit 61) (S18). . In a case where the GNSS information of the above-ground device 60 (the third GNSS unit 61) is not used (No in S18), that is, in the case where the GNSS error information is not used, the on-vehicle device 20 uses the vehicle The GNSS data (the GNSS information of the first GNSS unit 15 and the second GNSS unit 16) is used to calculate the train position and perform operation control based on this (S20).

在係使用地上裝置60(第三GNSS部61)之GNSS資訊的區域內的情況下(S18的“是”),車上裝置20從地上裝置60獲得GNSS誤差資訊(S22),使GNSS誤差資訊反映於車上GNSS數據(第一GNSS部15、第二GNSS部16之GNSS資訊)(S24),計算修正後的列車位置,進行使用了該列車位置的運行控制(S26)。In a case where the GNSS information of the above-ground device 60 (the third GNSS unit 61) is used (Yes in S18), the on-board device 20 obtains the GNSS error information from the above-ground device 60 (S22) to make the GNSS error information Reflected in the vehicle GNSS data (GNSS information of the first GNSS unit 15 and the second GNSS unit 16) (S24), the corrected train position is calculated, and operation control using the train position is performed (S26).

以上,根據本實施方式,在車輛10中,能夠基於從第一及第二GNSS接收部15b、16b輸出的資訊,高精度且穩定地決定列車(車輛10)的絕對位置,該第一及第二GNSS接收部15b、16b與前後隔開規定的設置距離a而設置的第一及第二GNSS天線15a、16a連接。特別是,在列車即將進入車站那樣的情況下,例如,在訊號的切換或道口的動作中,為了迅速且安全地進行這些動作,而要求精度高的列車位置檢測。更具體而言,需要在恰當的時刻進行軌道的閉鎖區間的設定/解除。在這樣的情況,使月臺88的地上裝置60的第三GNSS部61的GNSS誤差資訊反映於由車輛10的第一GNSS部15、第二GNSS部16得到的位置資訊中,能夠排除位置資訊的誤差,能夠迅速安全地進行使用了該位置資訊的運行控制。As described above, according to the present embodiment, in the vehicle 10, the absolute position of the train (vehicle 10) can be determined with high accuracy and stability based on information output from the first and second GNSS receivers 15b and 16b. The two GNSS receivers 15b and 16b are connected to the first and second GNSS antennas 15a and 16a which are arranged at a predetermined installation distance a from front to back. In particular, in a case where a train is about to enter a station, for example, when a signal is switched or a crossing operation is performed, high-accuracy train position detection is required in order to perform these operations quickly and safely. More specifically, it is necessary to set / unlock the track blocking section at an appropriate timing. In such a case, the GNSS error information of the third GNSS section 61 of the ground device 60 of the platform 88 is reflected in the position information obtained by the first GNSS section 15 and the second GNSS section 16 of the vehicle 10, and the position information can be excluded. Error, the operation control using the position information can be performed quickly and safely.

以上,基於實施方式說明瞭本發明。該實施方式係示例,本領域的技術人員應該理解這些各構成要素的組合能夠存在各種變形例,而且,這樣的變形例仍屬於本發明之範圍。The present invention has been described based on the embodiments. This embodiment is an example, and those skilled in the art should understand that there can be various modifications of the combination of these constituent elements, and such modifications still belong to the scope of the present invention.

1‧‧‧列車運行系統(位置檢測系統)1‧‧‧ Train operation system (position detection system)

10‧‧‧車輛10‧‧‧ Vehicle

15‧‧‧第一GNSS部15‧‧‧First GNSS Division

15a‧‧‧第一GNSS天線15a‧‧‧The first GNSS antenna

15b‧‧‧第一GNSS接收部15b‧‧‧First GNSS receiver

16‧‧‧第二GNSS部16‧‧‧Second GNSS Division

16a‧‧‧第二GNSS天線16a‧‧‧Second GNSS Antenna

16b‧‧‧第二GNSS接收部16b‧‧‧Second GNSS receiver

20‧‧‧車上裝置(位置檢測裝置)20‧‧‧Car device (position detection device)

30‧‧‧車上側運行控制部30‧‧‧ On-board operation control unit

31‧‧‧運行用數據部31‧‧‧operation data department

32‧‧‧TG32‧‧‧TG

33‧‧‧車上通訊部33‧‧‧Car Communication Department

34‧‧‧行駛履歷部34‧‧‧Driving History Department

40‧‧‧列車狀態確定部40‧‧‧Train status determination department

42‧‧‧列車位置計算部42‧‧‧Train position calculation department

44‧‧‧列車方位計算部44‧‧‧ Train bearing calculation department

46‧‧‧GNSS檢定部46‧‧‧GNSS Verification Department

48‧‧‧確定位置檢測部48‧‧‧Determined position detection section

60‧‧‧地上裝置60‧‧‧ Aboveground device

61‧‧‧第三GNSS部61‧‧‧Third GNSS Division

61a‧‧‧第三GNSS接收部61a‧‧‧Third GNSS Receiving Department

61b‧‧‧第三GNSS天線61b‧‧‧Third GNSS antenna

62‧‧‧地上側運行控制部62‧‧‧ground operation control unit

63‧‧‧地上通訊部63‧‧‧ Ground Communications Department

70‧‧‧指令中心70‧‧‧Command Center

88‧‧‧月臺88‧‧‧platform

99‧‧‧軌道99‧‧‧ track

第1圖係表示本實施方式涉及之具備基於GNSS訊號之行駛位置檢測機能之列車的構成之功能方塊圖。 第2圖係說明本實施方式涉及之執行基於GNSS訊號之行駛位置檢測機能時的檢定處理原理之圖。 第3圖係說明本實施方式涉及之基於GNSS訊號之行駛位置檢測機能之圖。 第4圖係說明本實施方式涉及之基於GNSS訊號之行駛位置檢測機能之圖。 第5圖係表示本實施方式涉及之搭載於前頭車輛之車上裝置的構成之功能方塊圖。 第6圖係說明本實施方式涉及之GNSS誤差修正的概念之圖。 第7圖係本實施方式涉及之基於GNSS訊號之位置計算處理之流程圖。FIG. 1 is a functional block diagram showing a configuration of a train having a driving position detection function based on a GNSS signal according to this embodiment. FIG. 2 is a diagram for explaining the principle of the verification processing when the driving position detection function based on the GNSS signal according to this embodiment is executed. FIG. 3 is a diagram illustrating a driving position detection function based on a GNSS signal according to this embodiment. FIG. 4 is a diagram illustrating a driving position detection function based on a GNSS signal according to this embodiment. FIG. 5 is a functional block diagram showing a configuration of an on-vehicle device mounted on a preceding vehicle according to this embodiment. FIG. 6 is a diagram illustrating the concept of GNSS error correction according to the present embodiment. FIG. 7 is a flowchart of a position calculation process based on a GNSS signal according to this embodiment.

Claims (5)

一種位置檢測裝置,其特徵為,包括: 第一GNSS天線及第二GNSS天線,於一個車輛之前後方向隔開規定距離而設置,接收來自GNSS衛星之GNSS訊號; 第一GNSS接收部,與前述第一GNSS天線連接; 第二GNSS接收部,與前述第二GNSS天線連接; 位置計算部,基於前述第一GNSS接收部及前述第二GNSS接收部所接收到的前述GNSS訊號計算前述車輛之位置;及 誤差資訊獲得部,從地上側的設備獲得GNSS誤差資訊; 前述位置計算部在距離前述地上側的設備在一定之區域內的情況下,反映前述GNSS誤差資訊地計算前述車輛之位置。A position detection device, comprising: a first GNSS antenna and a second GNSS antenna, which are arranged at a predetermined distance in a front-back direction of a vehicle and receive a GNSS signal from a GNSS satellite; a first GNSS receiving unit and the foregoing A first GNSS antenna connection; a second GNSS receiver connected to the second GNSS antenna; a position calculation unit that calculates the position of the vehicle based on the GNSS signals received by the first GNSS receiver and the second GNSS receiver And an error information obtaining unit that obtains GNSS error information from the equipment above the ground; the position calculation unit calculates the position of the vehicle by reflecting the GNSS error information in a case where it is within a certain area from the equipment above the ground. 如申請專利範圍第1項所述之位置檢測裝置,其中,更包括: 前述車輛行駛之路線之資料庫;及 檢定部,檢定是否處於能夠執行基於前述資料庫和前述GNSS訊號進行的前述車輛之位置的計算處理之狀態; 在前述檢定部判斷為處於能夠執行前述車輛之位置的確定處理之狀態的情況下,前述位置計算部執行基於前述GNSS訊號的前述車輛之位置的計算處理,在判斷為不處於能夠執行前述車輛之位置的計算處理之狀態的情況下,前述位置計算部基於測速發電機執行前述車輛之位置的確定處理。The position detection device according to item 1 of the scope of the patent application, further comprising: a database of the route of the aforementioned vehicle; and a verification section that verifies whether it is in a position capable of executing the aforementioned vehicle based on the aforementioned database and the aforementioned GNSS signal Status of position calculation processing; In the case where the verification section determines that it is capable of performing the determination processing of the position of the vehicle, the position calculation section executes the calculation processing of the position of the vehicle based on the GNSS signal, and determines that When the calculation process of the position of the vehicle is not performed, the position calculation unit executes the determination process of the position of the vehicle based on the speed measuring generator. 如申請專利範圍第2項所述之位置檢測裝置,其中, 在前述位置計算部執行基於前述GNSS訊號的前述車輛之位置的計算處理的情況下,將前述第一GNSS接收部計算的速度向量和前述第二GNSS接收部計算的速度向量之變化的特徵點,與前述資料庫進行比較,計算前述車輛之位置。The position detection device according to item 2 of the scope of patent application, wherein, when the position calculation unit performs the calculation process of the position of the vehicle based on the GNSS signal, the speed vector calculated by the first GNSS receiving unit is summed with The characteristic points of changes in the speed vector calculated by the second GNSS receiving unit are compared with the database to calculate the position of the vehicle. 一種位置檢測系統,係藉由搭載於車輛的車上裝置和設置於地上側的地上裝置計算前述車輛之位置的位置檢測系統,其特徵為, 前述車上裝置包括: 第一GNSS天線及第二GNSS天線,於一個車輛之前後方向隔開規定距離而設置,接收來自GNSS衛星之GNSS訊號; 第一GNSS接收部,與前述第一GNSS天線連接; 第二GNSS接收部,與前述第二GNSS天線連接; 位置計算部,基於前述第一GNSS接收部及前述第二GNSS接收部接收到的前述GNSS訊號計算前述車輛之位置; 誤差資訊獲得部,從地上側的設備獲得GNSS誤差資訊;及 車上側通訊部,與前述地上裝置進行通訊; 前述地上裝置具備: 第三GNSS天線,從前述GNSS衛星接收GNSS訊號; 第三GNSS接收部,與前述第三GNSS天線連接; 地上側控制部,保持前述第三GNSS天線的位置資訊,根據前述第三GNSS天線的位置資訊和基於由前述第三GNSS天線接收到的GNSS訊號計算的位置資訊,計算前述GNSS誤差資訊;及 地上側通訊部,將前述GNSS誤差資訊向前述車上裝置發送; 前述車上裝置的前述位置計算部在計算前述車輛之位置時反映前述GNSS誤差資訊。A position detection system is a position detection system that calculates the position of the vehicle by an on-vehicle device mounted on the vehicle and an above-ground device installed on the ground, characterized in that the on-vehicle device includes: a first GNSS antenna and a second The GNSS antenna is arranged at a predetermined distance in the front and rear directions of a vehicle and receives GNSS signals from a GNSS satellite. The first GNSS receiver is connected to the first GNSS antenna. The second GNSS receiver is connected to the second GNSS antenna. Connection; a position calculation unit that calculates the position of the vehicle based on the GNSS signals received by the first GNSS receiving unit and the second GNSS receiving unit; an error information obtaining unit that obtains GNSS error information from the equipment on the ground side; and the vehicle upper side The communication unit communicates with the above-mentioned ground device; the above-mentioned ground device includes: a third GNSS antenna to receive a GNSS signal from the GNSS satellite; a third GNSS receiver connected to the third GNSS antenna; and an above-ground control unit to maintain the first The position information of the three GNSS antennas is based on the position information of the third GNSS antenna and based on the third GNSS antenna. The position information calculated by the GNSS signal received by the line to calculate the aforementioned GNSS error information; and the above-ground communication unit sends the aforementioned GNSS error information to the aforementioned vehicle device; the aforementioned position calculation section of the aforementioned vehicle device is calculating the position of the aforementioned vehicle It reflects the aforementioned GNSS error information. 一種位置檢測系統,係藉由搭載於車輛的車上裝置、和設置於地上側的地上裝置及指令中心計算前述車輛之位置的位置檢測系統, 前述車上裝置具備: 第一GNSS天線及第二GNSS天線,於一個車輛之前後方向隔開規定距離而設置,接收來自GNSS衛星之GNSS訊號; 第一GNSS接收部,與前述第一GNSS天線連接; 第二GNSS接收部,與前述第二GNSS天線連接; 位置計算部,將基於前述第一GNSS接收部及前述第二GNSS接收部的前述GNSS訊號之位置資訊向前述指令中心通知,而且根據前述位置資訊計算前述車輛之位置; 誤差資訊獲得部,從前述指令中心獲得前述車輛之前述位置之修正資訊;及 車上側通訊部,與前述地上裝置及前述指令中心進行通訊; 前述地上裝置具備: 第三GNSS天線,從前述GNSS衛星接收GNSS訊號; 第三GNSS接收部,與前述第三GNSS天線連接; 地上側控制部,保持前述第三GNSS天線的位置資訊,根據前述第三GNSS天線的位置資訊和基於由前述第三GNSS天線接收到的GNSS訊號計算的位置資訊,計算前述GNSS誤差資訊,將前述GNSS誤差資訊向前述指令中心通知;及 地上側通訊部,與前述車上裝置和前述指令中心進行通訊; 前述指令中心,與前述車上裝置和前述地上裝置進行通訊,根據從前述車上裝置獲得的基於前述第一GNSS接收部及前述第二GNSS接收部的前述GNSS訊號之前述位置資訊、以及從前述地上裝置獲得的前述GNSS誤差資訊,修正前述車輛之位置資訊,根據修正後之位置資訊,進行前述車輛之運行管理。A position detection system is a position detection system for calculating the position of the vehicle by an on-vehicle device mounted on the vehicle, and an above-ground device and an instruction center provided on the ground. The on-vehicle device includes: a first GNSS antenna and a second The GNSS antenna is arranged at a predetermined distance in the front and rear directions of a vehicle and receives GNSS signals from a GNSS satellite. The first GNSS receiver is connected to the first GNSS antenna. The second GNSS receiver is connected to the second GNSS antenna. Connection; a position calculation unit that notifies the command center of position information based on the GNSS signal of the first GNSS receiving unit and the second GNSS receiving unit, and calculates the position of the vehicle based on the position information; an error information obtaining unit, Obtain the correction information of the aforementioned position of the vehicle from the aforementioned command center; and the communication section on the side of the vehicle to communicate with the aforementioned ground device and the aforementioned command center; the above-ground device is provided with: a third GNSS antenna for receiving GNSS signals from the aforementioned GNSS satellite; Three GNSS receivers connected to the aforementioned third GNSS antenna; the above-ground control unit, The position information of the third GNSS antenna is held, and the GNSS error information is calculated based on the position information of the third GNSS antenna and the position information calculated based on the GNSS signal received by the third GNSS antenna. Instruction center notification; and the ground-side communication unit to communicate with the vehicle-mounted device and the instruction center; the instruction center communicates with the vehicle-mounted device and the ground-based device, and based on the first The position information of the GNSS signal of the GNSS receiving section and the second GNSS receiving section, and the GNSS error information obtained from the above-ground device, correct the position information of the vehicle, and perform the operation of the vehicle based on the corrected position information. management.
TW107118930A 2017-06-01 2018-06-01 position detection system TWI775864B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017108891A JP6534701B2 (en) 2017-06-01 2017-06-01 Position detection system
JP2017-108891 2017-06-01

Publications (2)

Publication Number Publication Date
TW201903433A true TW201903433A (en) 2019-01-16
TWI775864B TWI775864B (en) 2022-09-01

Family

ID=64455795

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107118930A TWI775864B (en) 2017-06-01 2018-06-01 position detection system

Country Status (4)

Country Link
JP (1) JP6534701B2 (en)
CN (1) CN110914710B (en)
TW (1) TWI775864B (en)
WO (1) WO2018221541A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI760261B (en) * 2021-07-14 2022-04-01 交通部臺灣鐵路管理局 Train speed monitoring system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112578420B (en) * 2020-12-22 2022-08-30 卡斯柯信号有限公司 Locomotive running state detection method based on satellite positioning

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3753833B2 (en) * 1997-03-27 2006-03-08 アジア航測株式会社 Road linear automatic surveying equipment
JP3816018B2 (en) * 2002-03-28 2006-08-30 財団法人鉄道総合技術研究所 Train own vehicle position detection method and train own vehicle position detection system
JP4426874B2 (en) * 2004-03-02 2010-03-03 三菱電機株式会社 Operation server for train position detection management and in-vehicle equipment for train position detection management
JP2007284013A (en) * 2006-04-20 2007-11-01 Mitsubishi Electric Corp Vehicle position measuring device and vehicle position measuring method
CN101357644B (en) * 2008-09-08 2010-12-15 北京交通大学 Locomotive wheel diameter automatic calibration system and method based on satellite positioning
JP4926213B2 (en) * 2009-07-15 2012-05-09 株式会社京三製作所 Train control device
US10267892B2 (en) * 2010-10-04 2019-04-23 Qualcomm Incorporated Locating a device using a reference point to align location information
CN103625507B (en) * 2012-08-24 2016-02-24 河南蓝信科技股份有限公司 High Speed Railway Trains is followed the trail of close to method for early warning and system thereof
DE102013205486A1 (en) * 2013-03-27 2014-10-02 Deere & Company Arrangement and method for position detection with a hand-held device
DE102014208541A1 (en) * 2014-05-07 2015-11-12 Continental Teves Ag & Co. Ohg Determination of redundant absolute positions with driving dynamics sensors
JP6279425B2 (en) * 2014-08-05 2018-02-14 公益財団法人鉄道総合技術研究所 Program and data generation device
JP5973024B1 (en) * 2015-04-02 2016-08-17 株式会社京三製作所 Position detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI760261B (en) * 2021-07-14 2022-04-01 交通部臺灣鐵路管理局 Train speed monitoring system

Also Published As

Publication number Publication date
JP6534701B2 (en) 2019-06-26
CN110914710B (en) 2023-06-27
WO2018221541A1 (en) 2018-12-06
TWI775864B (en) 2022-09-01
JP2018205048A (en) 2018-12-27
CN110914710A (en) 2020-03-24

Similar Documents

Publication Publication Date Title
US9921065B2 (en) Unit and method for improving positioning accuracy
US6751535B2 (en) Travel controlling apparatus of unmanned vehicle
US10928205B2 (en) In-vehicle device and vehicle
JP5973024B1 (en) Position detection device
US11465646B2 (en) Vehicle traveling control apparatus
JP3075889B2 (en) Navigation device
JP2010234979A (en) Position detecting device and position detecting method in operation security system for railroad vehicle
JP2000329839A (en) Gps device with monitoring means
US8401787B2 (en) Method of determining drive lane using steering wheel model
US7860649B2 (en) Vehicle position detecting system and method
JP2008196906A (en) Vehicle position detection system, on-board equipment and vehicle position detection method
JP2007284013A (en) Vehicle position measuring device and vehicle position measuring method
TWI775864B (en) position detection system
US11383725B2 (en) Detecting vehicle environment sensor errors
JPH04138317A (en) Navigation apparatus utilizing communication between vehicles
JP3267080B2 (en) Hybrid navigation system
JP6511767B2 (en) Reverse run judging device
JP5398500B2 (en) Train control device
JP2008249614A (en) Onboard navigation device, navigation system, and computer program
JP6173714B2 (en) In-vehicle device, position correction method thereof, and position correction program
JPH10103984A (en) Apparatus for computing position of vehicle
KR102679159B1 (en) Error correction system of main GPS module through additional installation of auxiliary GPS module
KR20240060955A (en) Error detection system of main GPS module through additional installation of auxiliary GPS module
KR20130057114A (en) Dead-reckoning system using education and the method thereof
JPH0758198B2 (en) Navigation device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent