WO2018219365A1 - 一种催化剂及合成气直接转化制低碳烯烃的方法 - Google Patents

一种催化剂及合成气直接转化制低碳烯烃的方法 Download PDF

Info

Publication number
WO2018219365A1
WO2018219365A1 PCT/CN2018/098379 CN2018098379W WO2018219365A1 WO 2018219365 A1 WO2018219365 A1 WO 2018219365A1 CN 2018098379 W CN2018098379 W CN 2018098379W WO 2018219365 A1 WO2018219365 A1 WO 2018219365A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
molecular sieve
reaction
selectivity
component
Prior art date
Application number
PCT/CN2018/098379
Other languages
English (en)
French (fr)
Inventor
潘秀莲
焦峰
包信和
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to EP18810439.2A priority Critical patent/EP3632557A4/en
Priority to JP2019566832A priority patent/JP6892156B2/ja
Priority to RU2019141832A priority patent/RU2736729C1/ru
Priority to US16/618,751 priority patent/US11084026B2/en
Publication of WO2018219365A1 publication Critical patent/WO2018219365A1/zh
Priority to ZA2019/08492A priority patent/ZA201908492B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7015CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/83Aluminophosphates (APO compounds)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the synthesis gas to produce low carbon olefins, in particular to a catalyst and a method for directly converting synthesis gas into low carbon olefins.
  • the lower olefin refers to an olefin having a carbon number of 4 or less.
  • Low-carbon olefins represented by ethylene and propylene are very important basic organic chemical raw materials. With the rapid growth of China's economy, the market for low-carbon olefins has been in short supply for a long time. At present, the production of low-carbon olefins mainly uses petrochemical routes for cracking light hydrocarbons (ethane, naphtha, light diesel oil). Due to the increasing shortage of global petroleum resources and long-term high crude oil prices, the development of low-carbon olefins industry relies solely on oil.
  • the tube cracking furnace process using light hydrocarbons as raw materials will encounter increasingly large raw material problems, and the low carbon olefin production process and raw materials must be diversified.
  • the use of syngas to produce olefins can broaden the source of raw materials and produce syngas from crude oil, natural gas, coal and renewable materials, providing an alternative to steam cracking technology based on high-cost raw materials such as naphtha.
  • the direct synthesis of low-carbon olefins by one-step synthesis gas is a process in which carbon monoxide and hydrogen are directly reacted by a Fischer-Tropsch synthesis reaction to produce a low-carbon olefin having a carbon number of 4 or less. The process does not need to be carried out like an indirect process. Syngas is further prepared from methanol or dimethyl ether to simplify the process and greatly reduce investment.
  • a high activity (CO conversion 90%) and selectivity (low carbon olefin selectivity 66%) can be obtained at a reaction pressure of 1.0 to 5.0 MPa and a reaction temperature of 300 to 400 ° C in a synthesis gas.
  • the Fe/activated carbon catalyst prepared by using the vacuum impregnation method to prepare manganese, copper, zinc silicon, potassium and the like as an auxiliary agent for the synthesis of low-carbon olefins in the synthesis gas, in the absence of raw material gas circulation Under the conditions, the CO conversion rate is 96%, and the selectivity of the low-carbon olefin in the hydrocarbon is 68%.
  • the present invention provides a process for the direct conversion of a catalyst and syngas to a lower olefin.
  • a catalyst which is a composite catalyst A+B, which is compounded by a mechanical mixing method between a catalyst component A and a catalyst component B.
  • the active component of the catalyst component A is an active metal oxide
  • the catalyst B is a multi-stage.
  • One or two kinds of molecular sieves of one or more kinds of CHA and AEI structures with pores of Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , CeO 2 , MgO, Ga 2 O 3 , and the molecular sieve loading in B is 4 %-45% wt;
  • the active metal oxide is one of MnO, MnCr 2 O 4 , MnAl 2 O 4 , MnZrO 4 , ZnO, ZnCr 2 O 4 , ZnAl 2 O 4 , CoAl 2 O 4 , FeAl 2 O 4 Species or more.
  • the catalyst B has one or more kinds of multi-stage pores of Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , CeO 2 , MgO, and Ga 2 O 3 as a carrier, and has a specific surface area of 30-250 m 2 /g.
  • the content is 0.25-0.80 ml/g; according to the specific surface area, the mesopores account for 30-75%, and the macropores account for 25-70%; the molecular sieves are used as active components, and are dispersed around the carrier by in-situ growth or physical mixing.
  • the catalyst component A is preferably one or more of MnO, MnCr 2 O 4 , MnAl 2 O 4 , MnZrO 4 , ZnAl 2 O 4 , CoAl 2 O 4 , FeAl 2 O 4 ;
  • the distance between the geometric centers of the active metal oxide of the catalyst component A and the particles of the component B is between 50 nm and 20 mm, preferably between 300 nm and 5 mm, more preferably between 1 ⁇ m and 2.5 mm;
  • the weight ratio between the active ingredient in the catalyst component A and the catalyst component B is in the range of from 0.1 to 20 times, preferably from 0.3 to 5.
  • the catalyst, the active metal oxide is composed of crystal grains having a size of 5-30 nm, and a large amount of oxygen vacancies exist in a distance ranging from the surface of the crystal grain to the inner diameter of the crystal grain of 0.3 nm, wherein the molar amount of oxygen atoms accounts for theoretical chemistry.
  • the stoichiometric oxygen content is 80% or less, preferably 80%-10%, more preferably 60-10%, most preferably 50-10%; surface oxygen vacancies are defined as: 100% - oxygen atom molar amount of theoretical chemistry
  • the percent oxygen vacancy concentration is preferably from 20 to 90%, more preferably from 40 to 90%, and most preferably from 50 to 90%.
  • the catalyst A is further added with a dispersing agent, one or two of Al 2 O 3 , SiO 2 , Cr 2 O 3 , ZrO 2 , and TiO 2 , and the active metal oxide is dispersed.
  • a dispersing agent one or two of Al 2 O 3 , SiO 2 , Cr 2 O 3 , ZrO 2 , and TiO 2
  • the content of the dispersant in the catalyst A is from 0.05 to 90% by weight, and the balance is an active metal oxide.
  • a method for directly converting a synthesis gas into a low-carbon olefin which uses a synthesis gas as a reaction raw material, and performs a conversion reaction on a fixed bed or a moving bed, using the above catalyst;
  • the syngas has a pressure of 0.5 to 10 MPa, a reaction temperature of 300 to 600 ° C, a space velocity of 300 to 10000 h -1 , and a ratio of synthesis gas H 2 /CO for the reaction of 0.2 to 3.5.
  • the bifunctional composite catalyst is used for one-step direct conversion of synthesis gas to low-carbon olefins, wherein the selectivity of ethylene and propylene is 40-60%, and the selectivity of low-carbon olefins including ethylene, propylene and butene can be It reaches 50-90% while the by-product methane selectivity is lower than 15%.
  • MTO methanol-based low-carbon olefin technology
  • the preparation process of the composite catalyst in the patent is mild and simple; and the reaction process has high product yield and selectivity, and the selectivity of the C2-C4 low-carbon olefin can reach 50-90%, especially after the conversion rate is increased. It can maintain a high olefin ratio, while the by-product methane selectivity is low ( ⁇ 15%), and the catalyst has a long service life of >700 hours, which has a good application prospect.
  • the above suspension was heated, and then taken out by washing and filtered to obtain a nano-ZnO material having a large amount of surface oxygen holes.
  • the mass ratio of catalyst to etchant is 1:3.
  • the mass ratio of oleic acid to urotropine is 1:1, there is no solvent, the mass ratio of oleic acid-5wt% hydrazine hydrate is 95:5, no solvent; specific processing conditions include etchant, temperature, treatment time and atmosphere The types are shown in Table 1 below.
  • the product obtained above is subjected to centrifugation or filtration, washed with deionized water, dried or dried and reduced in an atmosphere, and the atmosphere is an inert gas or a mixture of an inert gas and a reducing atmosphere, and the inert gases are N 2 , He and Ar.
  • One or more of the reducing atmospheres are one or more of H 2 and CO, and the volume ratio of the inert gas to the reducing gas in the dry reducing mixture is 100/10 to 0/100, dry and
  • the temperature of the reduction treatment was 350 degrees Celsius and the time was 4 hours. That is, a ZnO material rich in oxygen vacancies on the surface is obtained.
  • Table 1 The specific samples and their preparation conditions are shown in Table 1 below.
  • the surface oxygen vacancy is defined as (1 - the molar amount of oxygen atoms accounts for the theoretical stoichiometric oxygen molar content).
  • the surface oxygen vacancies are in a range from a surface of the crystal grain to a depth of 0.3 nm in the inner direction of the crystal grain, and the molar amount of the oxygen atom accounts for a percentage of the theoretical stoichiometric oxygen content;
  • the MnO material having a polar surface is synthesized by etching: the preparation process is the same as (1) in the above (1) corresponding to the product of 0.480 g (12 mmol) of NaOH and (3), except that The precursor of Zn is replaced by a corresponding precursor of Mn, which may be one of manganese nitrate, manganese chloride, and manganese acetate, here manganese nitrate.
  • the etching process is the same as that of the products of (2) in the above (1), ZnO 3, ZnO 5, and ZnO 8 , and a catalyst having a large amount of surface oxygen vacancies is synthesized; surface oxygen vacancies are 67%, 29%, and 27%;
  • (C) etching method to synthesize a CeO2 material having a polar surface: the preparation process is the same as (1) in the above (1) corresponding to the product of 0.480 g (12 mmol) of NaOH and (3), except that The precursor of Zn is replaced by the corresponding precursor of Ce, which may be one of cerium nitrate, cerium chloride or cerium acetate, here cerium nitrate.
  • the etching process is the same as that of the products of (2) (2) in the preparation of ZnO 3, ZnO 5, and ZnO 8 to synthesize a catalyst having a large amount of surface oxygen vacancies; surface oxygen vacancies are 56%, 33%, 21%;
  • Zinc nitrate, aluminum nitrate, chromium nitrate, manganese nitrate, zirconium nitrate are used as precursors, and urea is mixed with water at room temperature in the mixture; the mixture is aged, then taken out, washed, filtered and dried, and the obtained solid is in an air atmosphere.
  • the lower firing is performed to obtain a spinel oxide grown in the (110) crystal plane direction.
  • the sample is also subjected to an etching process to synthesize a catalyst having a large amount of surface oxygen vacancies; the etching treatment and the post-treatment process are as described in (2) and (3) above, and the sample has a large specific surface area and a large surface defect. It can be applied to catalytic synthesis gas conversion.
  • the preparation process is the same as (2) in (4) above, except that Zn is used.
  • the precursor is replaced by a corresponding precursor of Fe or Co, which may be one of ferric nitrate, ferric chloride, ferric citrate or one of cobalt nitrate, cobalt chloride and cobalt acetate, here ferric nitrate , cobalt nitrate.
  • the etching process is the same as that of the preparation of the products ZnO 3 and ZnO 5 in (2) above, synthesizing a catalyst having a large amount of surface oxygen vacancies; surface oxygen vacancies 77%, 51%;
  • the Cr 2 O 3 , Al 2 O 3 or ZrO 2 dispersed active metal oxide is prepared by a precipitation deposition method using Cr 2 O 3 , Al 2 O 3 or ZrO 2 as a carrier.
  • the commercial Cr 2 O 3 , Al 2 O 3 or ZrO 2 carrier is pre-dispersed in the bottom liquid, and then zinc nitrate is used as a raw material, and the sodium hydroxide precipitation agent is mixed and precipitated at room temperature.
  • the molar concentration of 0.067M Zn 2+, Zn 2+ and the mole fraction of the precipitating agent is 1: 8; then aged for 24 hours at 160 °C, to obtain Cr 2 O 3, Al 2 O 3 or ZrO 2
  • the ZnO oxide dispersed as a carrier (the content of the dispersant in the catalyst A was 0.1 wt%, 10 wt%, and 90 wt%, respectively).
  • the etching process is the same as the preparation of the products ZnO 3, ZnO 5, and ZnO 8 in (2) above, and a catalyst having a large amount of surface oxygen vacancies is synthesized; the surface oxygen vacancies are 65%, 30%, 25%;
  • the process is as described in 3) above (a);
  • the corresponding product from top to bottom is defined as dispersed oxide 1-3;
  • Cr 2 O 3 , Al 2 O 3 or ZrO 2 can be obtained as a carrier-dispersed MnO oxide (the content of the dispersant in the catalyst A is 5 wt%, 30 wt%, 60 wt%, respectively), and the surface oxygen vacancy 62%, 27%, 28%; the corresponding product from top to bottom is defined as the dispersed oxide 4-6.
  • the CHA and or AEI topology has an eight-membered ring aperture, a three-dimensional channel containing a cha cage.
  • the water bath was quenched to room temperature, and the mixture was repeatedly washed by centrifugation so that the pH of the supernatant was 7 at the end of the washing, and the precipitate was dried at 110 ° C for 17 hours, and then calcined in air at 600 ° C for 3 hours to obtain a supported silicon phosphorus aluminum inorganic solid acid.
  • the skeleton element composition of the molecular sieve having the CHA and AEI topology may be Si-O, Si-Al-O, Si-Al-PO, Al-PO, Ga-PO, Ga-Si-Al-O, Zn- One or more of Al-PO, Mg-Al-PO, and Co-Al-PO;
  • the O element of some skeletons is connected to H, and the corresponding products are defined as 1-7 in turn;
  • the ratio is divided into 16, the remaining conditions are equal to 1, and the molecular sieve loading becomes 1%.
  • the comparative example is divided into 17, the remaining conditions are equal to 1, and the molecular sieve loading becomes 70%.
  • the required proportion of the catalyst A and the catalyst B are added to the vessel, and the separation is achieved by one or more of the pressing force, the impact force, the cutting force, the friction force, and the like generated by the high-speed movement of the materials and/or the container.
  • the mechanical energy, thermal energy and chemical energy are converted by the modulation temperature and the carrier gas atmosphere to further adjust the interaction between different components.
  • a mixing temperature of 20-100 ° C can be set, which can be carried out in an atmosphere or directly in air.
  • the atmosphere is: a) nitrogen and/or inert gas, b) a mixture of hydrogen and nitrogen and/or inert gas.
  • the volume of hydrogen in the mixed gas is 5 to 50%
  • c) a mixture of CO and nitrogen and/or an inert gas wherein the volume of CO in the mixed gas is 5 to 20%
  • a mixture of inert gases wherein the volume of O 2 in the mixed gas is 5-20%
  • the inert gas is one or more of helium, argon, and helium.
  • Ball Milling Using the abrasive and the catalyst to tumbling at high speed in the grinding tank, the catalyst is strongly impacted and crushed to achieve the function of dispersing and mixing the catalysts A and B.
  • the abrasive material can be stainless steel, agate, quartz. Size range: 5mm-15mm).
  • the ratio of the catalyst to the catalyst (mass ratio range: 20-100:1) can adjust the particle size and relative distance of the catalyst.
  • Shaker mixing method premixing catalysts A and B and charging them into a container; mixing the catalysts A and B by controlling the reciprocating oscillation or circumferential oscillation of the shaker; by adjusting the oscillation speed (range: 1-70 rpm / And time (range: 5min-120min), achieve uniform mixing and adjust its relative distance.
  • a fixed bed reaction is exemplified, but the catalyst is also suitable for use in a moving bed reactor.
  • the device is equipped with a gas mass flow meter and an online product analysis chromatograph (the exhaust gas of the reactor is directly connected to the chromatographic quantitative valve for periodic real-time sampling analysis).
  • Catalyst component A was ZnO 9, and component B was a fraction of 1.
  • component A is metal ZnCo + 1 , ZnCo molar ratio is 1:1, ZnCo is equal to 1:1 mass ratio, and the remaining parameters and mixing process are the same as catalyst C;
  • the catalyst used in Comparative Example 4 is surface oxygen-free hole TiO2+ fraction 1, and the remaining parameters and mixing process are the same as catalyst C;
  • the molecular sieve used in the catalyst used in Comparative Example 5 was commercially available from Nankai University Catalyst Factory, SAPO-34, without carrier dispersion.
  • the distance between the metal oxide and the molecular sieve in the catalyst used in Comparative Example 7 was 10 mm, and the other parameters and the mixing process were the same as the catalyst C.
  • the metal oxide was located in the pores of the molecular sieve, and the two were in close contact with each other, and the other parameters were the same as the catalyst C.
  • Comparative Examples 7 and 8 indicate that the distance between component A and component B is also important for product selectivity.
  • the molecular SAPO-34 used has no carrier loading. At a conversion rate of 17, the olefin selectivity is 80%, but the space velocity is reduced. The rate is increased to 35%, the selectivity of the olefin is 69%, and the selectivity of the alkane is 20%, the olefin ratio is reduced to 3.5, and in the examples, the catalyst C, J
  • the structure of the molecular sieve including the topological structure of CHA & AEI and its acid strength and acid amount, as well as the distance matching between the metal oxide and the molecular sieve are essential, directly affecting the conversion of carbon monoxide and the choice of propylene butene. Sex.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种催化剂及合成气直接转化制低碳烯烃的方法,其以合成气为反应原料,在固定床或移动床上进行转化反应,催化剂为复合催化剂A+B,由催化剂A和催化剂B以机械混合方式复合在一起,催化剂A的活性成份为活性金属氧化物,催化剂B为氧化物负载的分子筛,载体为多级孔Al 2O 3、SiO 2、TiO 2、ZrO 2、CeO 2、MgO、Ga 2O 3中一种或两种以上,分子筛为CHA、AEI结构中的一种或两种,其中分子筛的载量是4%-45%wt;催化剂A中的活性成份与催化剂B之间的重量比在0.1-20倍范围之间,优选为0.3-5。反应过程具有很高的低碳烯烃选择性,低碳烯烃包括乙烯、丙烯和丁烯的选择性之和可以达到50-90%,同时副产物甲烷选择性低于15%,同时具有很好的应用前景。

Description

一种催化剂及合成气直接转化制低碳烯烃的方法 技术领域
本发明属于合成气制备低碳烯烃,具体涉及一种催化剂及合成气直接转化制低碳烯烃的方法。
背景技术
低碳烯烃是指碳原子数小于或等于4的烯烃。以乙烯、丙烯为代表的低碳烯烃是非常重要的基本有机化工原料,随着我国经济的快速增长,长期以来,低碳烯烃市场供不应求。目前,低碳烯烃的生产主要采用轻烃(乙烷、石脑油、轻柴油)裂解的石油化工路线,由于全球石油资源的日渐缺乏和原油价格长期高位运行,发展低碳烯烃工业仅仅依靠石油轻烃为原料的管式裂解炉工艺会遇到越来越大的原料难题,低碳烯烃生产工艺和原料必须多元化。选用合成气制取烯烃工艺可拓宽原材料来源,将以原油、天然气、煤炭和可再生材料为原料生产合成气,为基于高成本原料如石脑油的蒸汽裂解技术方面提供替代方案。合成气一步法直接制取低碳烯烃就是一氧化碳和氢在催化剂作用下,通过费托合成反应直接制得碳原子数小于或等于4的低碳烯烃的过程,该工艺无需像间接法工艺那样从合成气经甲醇或二甲醚,进一步制备烯烃,简化工艺流程,大大减少投资。
合成气通过费托合成直接制取低碳烯烃,已成为费托合成催化剂开发的研究热点之一。中科院大连化学物理研究所公开的专利CN1083415A中,用MgO等IIA族碱金属氧化物或高硅沸石分子筛(或磷铝沸石)担载的铁-锰催化剂体系,以强碱K或Cs离子作助剂,在合成气制低碳烯烃反应压力为1.0~5.0MPa,反应温度300~400℃下,可获得较高的活性(CO转化率90%)和选择性(低碳烯烃选择性66%)。北京化工大学所申报的专利ZL03109585.2中,采用真空浸渍法制备锰、铜、锌硅、钾等为助剂的Fe/活性炭催化剂用于合成气制低碳烯烃反应,在无原料气循环的条件下,CO转化率96%,低碳烯烃在碳氢化合物中的选择性68%。2012年,荷兰Utrecht大学de Jong教授团队采用SiC,碳纳米纤维等惰性载体负载的Fe以及Na、S等助剂修饰的Fe催化剂,取得了很好进展获得了61%的低碳烯烃选择性,但是转化率升高时,选择性降低。2016年,上海高等研究院孙予罕研究院及钟良枢研究员报道了一种择优暴露[101]及[020]锰助碳化钴基催化剂,实现了31.8%的CO转化率下,60.8%的低碳烯烃选择性,且甲烷选择性5%。上述报道中催化剂是采用铁及钴基催化剂为活性组分,反应遵循金属表面的链增长反应机理,产物低碳烯烃选择性低。
最近中国科学院大连化学物理研究所包信和院士和潘秀莲研究员报道了氧化铝负载的ZnCr2O4氧化物与多级孔SAPO-34分子筛复合双功能催化剂(Jiao et al.,Science 351(2016)1065-1068),实现了CO转化率17%时,低碳烯烃80%的选择性,其中低碳烷烃选择性为14,烯烃与烷烃的比例(烯烷比)达到5.7。当转化率升高到35%,烯烃的选择性为69%,而烷烃的 选择性为20%,烯烷比降为3.5。如何实现高转化率的同时稳定烯烷比仍然是这一领域的一大难点。
发明内容
针对上述问题,本发明提供了一种催化剂及合成气直接转化制低碳烯烃的方法。
本发明的技术方案为:
一种催化剂,所述催化剂为复合催化剂A+B,由催化剂组份A和催化剂组份B以机械混合方式复合在一起,催化剂组份A的活性成份为活性金属氧化物,催化剂B为多级孔Al 2O 3、SiO 2、TiO 2、ZrO 2、CeO 2、MgO、Ga 2O 3一种或两种以上负载CHA与AEI结构的分子筛一种或两种,B中分子筛载量是4%-45%wt;活性金属氧化物为MnO、MnCr 2O 4、MnAl 2O 4,MnZrO 4、ZnO、ZnCr 2O 4、ZnAl 2O 4、CoAl 2O 4、FeAl 2O 4中的一种或二种以上。
所述催化剂B中多级孔Al 2O 3、SiO 2、TiO 2、ZrO 2、CeO 2、MgO、Ga 2O 3一种或两种以上作为载体,比表面积是30-250m2/g,孔容为0.25~0.80ml/g;按照比表面积计算,介孔占30-75%,大孔占25-70%;分子筛作为活性组分,通过原位生长或物理混合的方式分散在载体周围。
所述催化剂组分A优选为MnO、MnCr 2O 4、MnAl 2O 4,MnZrO 4、ZnAl 2O 4、CoAl 2O 4、FeAl 2O 4中的一种或二种以上;
所述催化剂组份A的活性金属氧化物和组份B的颗粒的几何中心之间间距介于50nm-20mm之间,优选为300nm-5mm,更优选为1μm-2.5mm;
所述催化剂组份A中的活性成份与催化剂组份B之间的重量比在0.1-20倍范围之间,优选为0.3-5。
所述催化剂,活性金属氧化物由大小为5-30nm的晶粒构成,从晶粒表面至晶粒内部方向深度为0.3nm的距离范围内,存在大量氧空位,其中氧原子摩尔量占理论化学计量比氧摩尔含量的80%以下,优选为80%-10%,更优选为60-10%,最优选为50-10%;表面氧空位定义为:100%-氧原子摩尔量占理论化学计量比氧摩尔量的百分数,对应的氧空位浓度优选为20-90%,更优选为40-90%,最优选为50-90%。
所述的催化剂,所述催化剂A中还添加有分散剂,分散剂为Al 2O 3、SiO 2、Cr 2O 3、ZrO 2、TiO 2中的一种或二种,活性金属氧化物分散于分散剂中,分散剂于催化剂A中的含量在0.05-90wt%,其余为活性金属氧化物。
一种合成气直接转化制低碳烯烃的方法,其以合成气为反应原料,在固定床或移动床上进行转化反应,采用上述催化剂;
合成气的压力为0.5-10MPa,反应温度为300-600℃,空速为300-10000h -1,所述反应用合成气H2/CO比例为0.2-3.5。
所述的双功能复合催化剂用于合成气一步法直接转化制低碳烯烃,其中乙烯与丙烯选择性之和达到40-60%,低碳烯烃包括乙烯、丙烯和丁烯的选择性之和可以达到50-90%,同时副产物甲烷选择性低于15%。
本发明具有如下优点:
1.本技术与传统的甲醇制低碳烯烃技术(简称为MTO)不同,实现了一步直接将合成气转化制低碳烯烃。
2.由于多级孔载体分散分子筛,有利于中间体及产物传质,大大减少了加氢等副反应的影响,可以维持高低碳烯烃选择性的同时提高转化率。
3.专利中的复合催化剂的制备过程简单条件温和;且反应过程具有很高的产品收率和选择性,C2-C4低碳烯烃的选择性可以达到50-90%,特别提高转化率后仍然能维持高的烯烷比,同时副产物甲烷选择性低(<15%),而且催化剂寿命长,>700小时,具有很好的应用前景。
具体实施方式
下面通过实施例对本发明做进一步阐述,但是本发明的权利要求范围不受这些实施例的限制。同时,实施例只是给出了实现此目的的部分条件,但并不意味着必须满足这些条件才可以达到此目的。
实施例1
一、催化剂A的制备
(一)、刻蚀法合成具有极性表面的ZnO材料:
(1)分别称取4份、每份0.446g(1.5mmol)Zn(NO3)2·6H2O于4个容器中,再分别称取0.300g(7.5mmol)、0.480g(12mmol)、0.720g(18mmol)、1.200g(30mmol)NaOH依次加入上述4个容器中,再各量取30ml去离子水加入到4个容器中,搅拌0.5h以上使溶液混合均匀。升温至温度为160℃,反应时间为20h,沉淀分解成氧化锌;自然冷却至室温。反应液离心分离收集离心分离后的沉淀物,用去离子水洗涤2次获得ZnO氧化物;
取其中0.480g(12mmol)NaOH用量的产物进行下述处理:
(2)采用油酸、乌洛托品、乙二胺、氨水、水合肼等刻蚀剂,在常温下与ZnO氧化物超声混匀,ZnO氧化物浸泡于刻蚀剂溶液中,刻蚀剂与氧化锌形成络合或直接还原反应;
将上述悬浮物加热,然后取出洗涤过滤,得到具有大量表面氧空穴的纳米ZnO材料。
表1中:催化剂与刻蚀剂的质量比为1:3。油酸与乌洛托品的质量比为1:1,没有溶剂,油酸-5wt%水合肼的质量比为95:5,没有溶剂;具体处理条件包括刻蚀剂、温度、处理时间和气氛种类如下表1所示。
(3)、干燥或干燥和还原:
上述获得的产物经过离心或者过滤,用去离子水清洗以后,在气氛中进行干燥或干燥和还原处理,气氛为惰性气体或者惰性气体与还原性气氛混合气,惰性气体为N 2、He和Ar中的一种或二种以上,还原性气氛为H 2、CO的一种或二种以上,干燥还原混合气中惰性气体 与还原性气体的体积比为100/10~0/100,干燥和还原处理的温度为350摄氏度,时间为4h。即得到表面富含氧空位的ZnO材料。具体样品及其制备条件如下表1。其中表面氧空位定义为(1-氧原子摩尔量占理论化学计量比氧摩尔含量)。
表1 ZnO材料的制备及其参数性能
Figure PCTCN2018098379-appb-000001
所述表面氧空位为从晶粒表面至晶粒内部方向深度为0.3nm的距离范围内,氧原子摩尔量占理论化学计量比氧摩尔含量的百分数;
作为对比例,未经第(2)步刻蚀的表面无氧空位的ZnO 9,以及将Zn完全还原的金属Zn 10;
(二)、刻蚀法合成具有极性表面的MnO材料:制备过程同上述(一)中的(1)对应于0.480g(12mmol)NaOH用量的产物和(3)所述,不同之处在于将Zn的前驱体换成了Mn的对应的前驱体,可为硝酸锰、氯化锰、醋酸锰中的一种,在此为硝酸锰。
刻蚀处理过程同上述(一)中(2)的产物ZnO 3、ZnO 5、ZnO 8制备过程所述,合成 具有大量表面氧空位的催化剂;表面氧空位67%、29%、27%;
对应产物定义为MnO 1-3;
(三)、刻蚀法合成具有极性表面的CeO2材料:制备过程同上述(一)中的(1)对应于0.480g(12mmol)NaOH用量的产物和(3)所述,不同之处在于将Zn的前驱体换成了Ce的对应的前驱体,可为硝酸铈、氯化铈、醋酸铈中的一种,在此为硝酸铈。
刻蚀处理过程同上述(一)中(2)的产物ZnO 3、ZnO 5、ZnO 8制备过程所述,合成具有大量表面氧空位的催化剂;表面氧空位56%、33%、21%;
对应产物定义为CeO 1-3;
(四)、合成具有高比表面积、高表面能的纳米ZnCr 2O 4、ZnAl 2O 4、MnCr 2O 4、MnAl 2O 4,MnZrO 4尖晶石:
采用硝酸锌、硝酸铝、硝酸铬、硝酸锰、硝酸锆为前驱体,与尿素在室温下于水中相互混合;将上述混合液陈化,然后取出洗涤、过滤和干燥,所得的固体在空气气氛下焙烧,获得沿(110)晶面方向生长的尖晶石氧化物。样品也经过刻蚀法处理,合成具有大量表面氧空位的催化剂;刻蚀处理和后处理过程同上述(一)中(2)和(3)所述,该样品具有大比表面积、表面缺陷多,可应用于催化合成气转化。
具体样品及其制备条件如下表2。同样,表面氧空位定义为(1-氧原子摩尔量占理论化学计量比氧摩尔含量)。
表2 尖晶石材料的制备及其性能参数
Figure PCTCN2018098379-appb-000002
(五)、合成具有高比表面积、高表面能的纳米FeAl 2O 4、CoAl 2O 4尖晶石:制备过程同上述(四)中的(2)所述,不同之处在于将Zn的前驱体换成了Fe或Co的对应的前驱体,可为硝酸铁、氯化铁、柠檬酸铁中的一种或者硝酸钴、氯化钴、醋酸钴中的一种,在此为硝酸铁、硝酸钴。
刻蚀处理过程同上述(一)中(2)的产物ZnO 3、ZnO 5制备过程所述,合成具有大量表面氧空位的催化剂;表面氧空位77%、51%、;
对应产物定义为尖晶石6、尖晶石7;
(六)、Cr 2O 3、Al 2O 3或ZrO 2分散的活性金属氧化物
以Cr 2O 3、Al 2O 3或ZrO 2为载体,沉淀沉积法制备Cr 2O 3、Al 2O 3或ZrO 2分散的活性金属氧化物。以分散ZnO氧化物的制备为例,将商业Cr 2O 3、Al 2O 3或ZrO 2载体预先分散于底液中,然后采用硝酸锌为原料,与氢氧化钠沉淀剂在室温下混合沉淀,Zn 2+的摩尔浓度为0.067M,Zn 2+与沉淀剂的摩尔份数比为1:8;然后在160℃下陈化24小时,获得Cr 2O 3、Al 2O 3或ZrO 2为载体分散的ZnO氧化物(分散剂于催化剂A中的含量依次为0.1wt%、10wt%、90wt%)。
刻蚀过程同上述(一)中(2)的产物ZnO 3、ZnO 5、ZnO 8制备过程所述,合成具有大量表面氧空位的催化剂;表面氧空位65%、30%、25%;后处理过程同上述(一)中3)所述;
从上到下对应产物定义为分散氧化物1-3;
以同样的方法,可以获得Cr 2O 3、Al 2O 3或ZrO 2为载体分散的MnO氧化物(分散剂于催化剂A中的含量依次为5wt%、30wt%、60wt%),表面氧空位62%、27%、28%;从上到下对应产物定义为分散氧化物4-6。
二、催化剂B(CHA与AEI拓扑结构的分子筛)的制备:
所述CHA与或AEI拓扑结构具有八元环孔口,三维孔道,含有cha笼。
1)具体制备过程为:
按氧化物SiO 2:Al 2O 3:H 3PO 4:R:H 2O=1.6:16:32:55:150(质量比)称取原料:硅溶胶30%(质量浓度);AlOOH;磷酸;TEA(R);去离子水,室温混合后加入模板剂0.5倍摩尔量的助剂HF,再加入载体氧化物粉末,在30℃下搅拌老化,2h后转移到水热釜中,200℃下晶化24h。水浴骤冷到室温,反复离心洗涤使得洗涤结束时上清液pH是7,沉淀物于110℃下烘干17h后,在600℃空气中焙烧3h得到负载的硅磷铝无机固体酸。
所述具有CHA与AEI拓扑结构的分子筛的骨架元素组成可以是Si-O、Si-Al-O、Si-Al-P-O、Al-P-O、Ga-P-O、Ga-Si-Al-O、Zn-Al-P-O、Mg-Al-P-O、Co-Al-P-O中的一种或二种以上;
部分骨架的O元素上连接H,对应产物依次定义为分1-7;
表3 具有CHA或AEI拓扑结构的分子筛的制备及其性能参数
Figure PCTCN2018098379-appb-000003
2)其他元素组成的分子筛
Figure PCTCN2018098379-appb-000004
Figure PCTCN2018098379-appb-000005
对比例分16,其余条件同分1,分子筛载量变为1%
对比例分17,其余条件同分1,分子筛载量变为70%
三、催化剂的制备
将所需比例的催化剂A和催化剂B加入容器中,利用这些物料和/或容器的高速运动产生的挤压力、撞击力、裁剪力、摩擦力等中的一种或两种以上作用实现分离、破碎、混匀等目的,通过调变温度与载气气氛实现机械能、热能与化学能的转换,进一步调节不同组分间的相互作用。
机械混合过程中,可以设置混合温度20-100℃,可以在气氛中或者直接在空气中进行,气氛为:a)氮气和/或惰性气体,b)氢气与氮气和/或惰性气体的混合气,其中氢气于混合气中的体积为5~50%,c)CO与氮气和/或惰性气体的混合气,其中CO于混合气中的体积为5~20%,d)O 2与氮气和/或惰性气体的混合气,其中O 2于混合气中的体积为5-20%,所述惰性气体为氦气、氩气、氖气中的一种或两种以上。
机械搅拌:在搅拌槽中,采用搅拌棒将催化剂A和B进行混合,通过控制搅拌时间(5min-120min)和速率(30-300转/min),可以调节催化剂A和B的混合程度和相对距离。
球磨:利用磨料与催化剂在研磨罐内高速翻滚,对催化剂产生强烈冲击、碾压,达到分散、混合催化剂A和B的作用。通过控制磨料(材质可以是不锈钢、玛瑙、石英。尺寸范围:5mm-15mm)。与催化剂的比例(质量比范围:20-100:1),可以调节催化剂的粒度及相对距离。
摇床混合法:将催化剂A和B预混合,并装入容器中;通过控制摇床的往复振荡或圆周振荡,实现催化剂A和B的混合;通过调节振荡速度(范围:1-70转/分)和时间(范围:5min-120min),实现均匀混合并调节其相对距离。
机械研磨法:将催化剂A和B预混合,并装入容器中;在一定的压力(范围:5公斤-20公斤)下,通过研具与混合的催化剂进行相对运动(速率范围:30-300转/min),达到调节催化剂粒度、相对距离和实现均匀混合的作用。
具体的催化剂制备及其参数特征如表6所示。
表6 催化剂的制备及其参数特征
Figure PCTCN2018098379-appb-000006
Figure PCTCN2018098379-appb-000007
Figure PCTCN2018098379-appb-000008
催化反应实例
以固定床反应为例,但是催化剂也适用于移动床反应器。该装置配备气体质量流量计、 在线产物分析色谱(反应器的尾气直接与色谱的定量阀连接,进行周期实时采样分析)。
将上述本发明的催化剂2g,置于固定床反应器中,使用Ar置换反应器中的空气,然后再在H2气氛中升温至300℃,切换合成气(H 2/CO摩尔比=0.2-3.5),合成气的压力为0.5-10MPa,升温至反应温度300-600℃,调节反应原料气的空速至500-10000ml/g/h。产物由在线色谱检测分析。
改变温度、压力和空速和合成气中H 2/CO的摩尔比,可以改变反应性能。低碳烯烃(乙烯、丙烯、丁烯选择性之和可以达到50-90%;由于催化剂金属复合物表面加氢活性不高,避免了甲烷的大量生成,甲烷选择性低。表7列出了催化剂的具体应用及其效果数据。
表7 催化剂的具体应用及其效果数据
Figure PCTCN2018098379-appb-000009
Figure PCTCN2018098379-appb-000010
对比例1催化剂组份A为ZnO 9,组份B为分1。
对比例2中催化剂组份A为Zn 10,组份B为分1
对比例3采用的催化剂中组份A为金属ZnCo+分1,ZnCo摩尔比1:1,ZnCo与分1质量比1:1,其余参数及混合过程等均同催化剂C;
对比例4采用的催化剂为表面无氧空穴TiO2+分1,其余参数及混合过程等均同催化剂C;
对比例5采用的催化剂中分子筛为购自南开大学催化剂厂的商品SAPO-34,没有载体分散。
对比例6采用的催化剂中分子筛为购自南开大学催化剂厂的商品ZSM-5,全微孔结构,Si/Al=30,没有载体分散。
对比例5和6的反应结果表明,CHA或AEI的拓扑结构及其是否有载体分散对产物选择性的调变至关重要。
对比例7采用的催化剂中金属氧化物与分子筛之间的距离为10mm,其余参数及混合过程等均同催化剂C。
对比例8采用的催化剂中金属氧化物位于分子筛孔道内,两者密切接触,其余参数等均同催化剂C。
对比例7和8的结果表明,组份A和组份B之间的距离对产物选择性也很重要。
文献(Jiao et al.,Science 351(2016)1065-1068)对比技术中,所使用的分子SAPO-34没有载体负载,在转化率17时,烯烃选择性能达到80%,但降低空速当转化率升高到35%,烯烃的选择性为69%,而烷烃的选择性为20%,烯烷比降为3.5,与而实施例中催化剂C,J
对比例9,10的催化剂,其余条件同C,仅仅分子筛分别换成了分16,分17
对比例9可见,分子筛载量太低,导致,甲烷偏高,且烯烃选择性也偏低。
对比例10可见,分子筛载量过高,导致,加氢严重,烯烃选择性偏低。特别空速降低,转化率提高后,相比催化剂C,烯烷比下降及其显著。
由上表可以看出分子筛的结构,包括CHA&AEI的拓扑结构及其酸强度和酸量,以及金属氧化物和分子筛之间的距离匹配至关重要,直接影响一氧化碳的转化率和丙烯丁烯的选择性。

Claims (7)

  1. 一种催化剂,其特征在于:所述催化剂为复合催化剂A+B,由催化剂组份A和催化剂组份B以机械混合方式复合在一起:催化剂组份A的活性成份为活性金属氧化物;催化剂B为负载型分子筛,载体为多级孔Al 2O 3、SiO 2、TiO 2、ZrO 2、CeO 2、MgO、Ga 2O 3一种或两种以上,分子筛为CHA与AEI结构中的一种或两种,分子筛载量是4%-45%wt;活性金属氧化物为MnO、MnCr 2O 4、MnAl 2O 4,MnZrO 4、ZnO、ZnCr 2O 4、ZnAl 2O 4、CoAl 2O 4、FeAl 2O 4中的一种或二种以上。
  2. 按照权利要求1所述的催化剂,其特征在于:所述催化剂组份B中多级孔Al 2O 3、SiO 2、TiO 2、ZrO 2、CeO 2、MgO、Ga 2O 3一种或两种以上作为载体,比表面积是30-250m2/g,孔容为0.25~0.80ml/g;按照比表面积计算,介孔占30-75%,大孔占25-70%;分子筛作为活性组分,通过原位生长或物理混合的方式分散在载体周围。
  3. 按照权利要求1所述的催化剂,其特征在于,组分A优选为MnO、MnCr 2O 4、MnAl 2O 4,MnZrO 4、ZnAl 2O 4、CoAl 2O 4、FeAl 2O 4中的一种或二种以上;
  4. 按照权利要求1所述的催化剂,其特征在于:催化剂组份A中的活性成份与催化剂组份B之间的重量比在0.1-20倍范围之间,优选为0.3-5。
  5. 按照权利要求1或4所述的催化剂,其特征在于:活性金属氧化物由大小为5-30nm的晶粒构成,从晶粒表面至晶粒内部方向深度为0.3nm的距离范围内,存在大量氧空位,其中氧原子摩尔量占理论化学计量比氧摩尔含量的80%以下,优选为80%-10%,更优选为60-10%,最优选为50-10%;表面氧空位定义为:100%-氧原子摩尔量占理论化学计量比氧摩尔量的百分数,对应的氧空位浓度优选为20-90%,更优选为40-90%,最优选为50-90%。
  6. 按照权利要求1所述的催化剂,其特征在于:所述催化剂A中还添加有分散剂,分散剂为Al 2O 3、SiO 2、Cr 2O 3、ZrO 2、TiO 2中的一种或二种,活性金属氧化物分散于分散剂中,分散剂于催化剂A中的含量在0.05-90wt%,其余为活性金属氧化物。
  7. 一种合成气直接转化制低碳烯烃的方法,其特征在于:其以合成气为反应原料,在固定床或移动床上进行转化反应,所采用的催化剂为权利要求1-7任一所述的催化剂;
    合成气的压力为0.5-10MPa,反应温度为300-600℃,空速为300-10000h -1,所述反应用合成气H2/CO比例为0.2-3.5。
PCT/CN2018/098379 2017-06-02 2018-08-02 一种催化剂及合成气直接转化制低碳烯烃的方法 WO2018219365A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18810439.2A EP3632557A4 (en) 2017-06-02 2018-08-02 CATALYST AND PROCESS FOR THE DIRECT CONVERSION OF SYNTHETIC GAS FOR THE PREPARATION OF LIGHT OLEFINS
JP2019566832A JP6892156B2 (ja) 2017-06-02 2018-08-02 合成ガスの直接転化に基づく低炭素オレフィンの調製方法
RU2019141832A RU2736729C1 (ru) 2017-06-02 2018-08-02 Катализатор и способ прямой конверсии синтез-газа для получения малоуглеродистых олефинов
US16/618,751 US11084026B2 (en) 2017-06-02 2018-08-02 Catalyst and method for preparing light olefins by direct conversion of syngas
ZA2019/08492A ZA201908492B (en) 2017-06-02 2019-12-19 Catalyst, and method for direct conversion of syngas to prepare light olefins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710408018.9A CN108970600B (zh) 2017-06-02 2017-06-02 一种催化剂及合成气直接转化制低碳烯烃的方法
CN201710408018.9 2017-06-02

Publications (1)

Publication Number Publication Date
WO2018219365A1 true WO2018219365A1 (zh) 2018-12-06

Family

ID=64456337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098379 WO2018219365A1 (zh) 2017-06-02 2018-08-02 一种催化剂及合成气直接转化制低碳烯烃的方法

Country Status (7)

Country Link
US (1) US11084026B2 (zh)
EP (1) EP3632557A4 (zh)
JP (1) JP6892156B2 (zh)
CN (1) CN108970600B (zh)
RU (1) RU2736729C1 (zh)
WO (1) WO2018219365A1 (zh)
ZA (1) ZA201908492B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112206811A (zh) * 2019-07-11 2021-01-12 中国石油天然气股份有限公司 一种甲醇转化制丙烯催化剂及其制备方法和应用
RU2778293C1 (ru) * 2018-12-21 2022-08-17 Далянь Инститьют Оф Кемикал Физикс, Чайниз Экэдеми Оф Сайенсиз Каталитический высокоселективный способ получения олефинов с низким числом атомов углерода с применением легированного гетероатомами молекулярного сита и синтез-газа

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109701628A (zh) * 2017-10-26 2019-05-03 中国石油化工股份有限公司 含磷铝分子筛的复合催化剂及其在合成气一步法制烯烃的应用
EP3900829A4 (en) * 2018-12-21 2022-03-09 Dalian Institute of Chemical Physics, Chinese Academy of Sciences PROCESS FOR THE PRODUCTION OF LOW-CARBON OLEFINS WITH HIGH SELECTIVITY FROM SYNTHESIS GAS CATALYSED BY A HETEROATOME-DOPED MOLECULAR SIEVE
CN111346672B (zh) * 2018-12-21 2023-07-04 中国科学院大连化学物理研究所 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
CN111346665B (zh) * 2018-12-21 2022-10-18 中国科学院大连化学物理研究所 一种mor基双功能催化剂及合成气直接转化制乙烯的方法
CN111346666B (zh) * 2018-12-21 2023-02-03 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制高芳烃含量的液体燃料的方法
CA3125122A1 (en) * 2018-12-28 2020-07-02 Dow Global Technologies Llc Catalysts comprising a zirconia and gallium oxide component for production of c2 to c4 olefins
CN112108181A (zh) * 2019-06-21 2020-12-22 中国科学院大连化学物理研究所 一种合成气直接转化制低碳烯烃的催化剂及其制备方法
CN110590488B (zh) * 2019-09-30 2022-03-22 洛阳师范学院 利用复合储氢材料对一氧化碳加氢制备低碳烯烃的方法
CN114436750A (zh) * 2020-10-20 2022-05-06 中国石油化工股份有限公司 一种合成气直接制烯烃反应***的预处理方法
CN115703074B (zh) * 2021-08-06 2024-05-17 中国科学院大连化学物理研究所 一种含MnGaOx的双功能催化剂及其在一氧化碳高温加氢制低碳烯烃中的应用
CN118201707A (zh) * 2021-11-09 2024-06-14 国立研究开发法人科学技术振兴机构 催化剂组合物、催化活性促进方法、催化剂组合物的制造方法及使用催化剂组合物的氨合成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1083415A (zh) 1992-09-03 1994-03-09 中国科学院大连化学物理研究所 合成气制低碳烯烃含铁锰催化剂及合成反应
WO2015084575A2 (en) * 2013-12-06 2015-06-11 Exxonmobil Chemical Patents Inc. Production of c2+ olefins
CN106311317A (zh) * 2015-07-02 2017-01-11 中国科学院大连化学物理研究所 一种催化剂及由合成气一步法直接制备低碳烯烃的方法
CN106345514A (zh) * 2016-07-29 2017-01-25 厦门大学 一种合成气一步转化制低碳烯烃的催化剂及其制备方法
JP2017087204A (ja) * 2015-11-11 2017-05-25 日揮触媒化成株式会社 残油分解活性流動接触分解用触媒及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3228270A1 (de) * 1982-07-29 1984-02-02 Degussa Ag, 6000 Frankfurt Katalysator fuer die herstellung von kohlenwasserstoffen und das verfahren zu dessen herstellung
KR100293531B1 (ko) * 1998-12-24 2001-10-26 윤덕용 이산화탄소로부터탄화수소생성을위한혼성촉매
CN1242845C (zh) 2003-04-15 2006-02-22 北京化工大学 用于合成气制乙烯、丙烯、丁烯反应的铁/活性炭催化剂
US7678955B2 (en) * 2005-10-13 2010-03-16 Exxonmobil Chemical Patents Inc Porous composite materials having micro and meso/macroporosity
US20070244000A1 (en) * 2006-04-13 2007-10-18 Michel Molinier Producing olefin product from syngas
CN101745403B (zh) * 2008-12-18 2012-09-12 中国石油化工股份有限公司 一种由合成气制备甲醇、二甲醚和低碳烯烃的方法
US20110201860A1 (en) * 2010-02-18 2011-08-18 Muhammad Naseem Akhtar Process for conversion of alkanes to aromatics
CN102234212B (zh) * 2010-04-20 2014-02-05 中国石油化工股份有限公司 合成气直接转化为低碳烯烃的方法
MX341832B (es) * 2010-05-10 2016-09-02 Casale Sa Proceso para la produccion de olefinas ligeras a partir de gas de sintesis.
CN103864556A (zh) * 2012-12-13 2014-06-18 中国科学院大连化学物理研究所 一种合成气经低碳烷烃制低碳烯烃的方法
CN103331171B (zh) * 2013-07-08 2015-02-18 华东理工大学 一种用于合成气制取低碳烯烃的催化剂的制备方法及应用
PT3166912T (pt) * 2014-07-11 2021-02-16 Dow Global Technologies Llc Conversão de monóxido de carbono, dióxido de carbono ou uma combinação dos mesmos sobre um catalisador híbrido

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1083415A (zh) 1992-09-03 1994-03-09 中国科学院大连化学物理研究所 合成气制低碳烯烃含铁锰催化剂及合成反应
WO2015084575A2 (en) * 2013-12-06 2015-06-11 Exxonmobil Chemical Patents Inc. Production of c2+ olefins
CN106311317A (zh) * 2015-07-02 2017-01-11 中国科学院大连化学物理研究所 一种催化剂及由合成气一步法直接制备低碳烯烃的方法
JP2017087204A (ja) * 2015-11-11 2017-05-25 日揮触媒化成株式会社 残油分解活性流動接触分解用触媒及びその製造方法
CN106345514A (zh) * 2016-07-29 2017-01-25 厦门大学 一种合成气一步转化制低碳烯烃的催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIAO ET AL., SCIENCE, vol. 351, 2016, pages 1065 - 1068
See also references of EP3632557A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2778293C1 (ru) * 2018-12-21 2022-08-17 Далянь Инститьют Оф Кемикал Физикс, Чайниз Экэдеми Оф Сайенсиз Каталитический высокоселективный способ получения олефинов с низким числом атомов углерода с применением легированного гетероатомами молекулярного сита и синтез-газа
CN112206811A (zh) * 2019-07-11 2021-01-12 中国石油天然气股份有限公司 一种甲醇转化制丙烯催化剂及其制备方法和应用
CN112206811B (zh) * 2019-07-11 2023-06-30 中国石油天然气股份有限公司 一种甲醇转化制丙烯催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN108970600B (zh) 2021-01-19
EP3632557A4 (en) 2021-01-20
RU2736729C1 (ru) 2020-11-19
JP2020526375A (ja) 2020-08-31
US11084026B2 (en) 2021-08-10
JP6892156B2 (ja) 2021-06-23
ZA201908492B (en) 2022-10-26
CN108970600A (zh) 2018-12-11
US20210002184A1 (en) 2021-01-07
EP3632557A1 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
WO2018219365A1 (zh) 一种催化剂及合成气直接转化制低碳烯烃的方法
JP6778821B2 (ja) 触媒及び合成ガスの直接変換による低級オレフィンの製造方法
CN107661774B (zh) 一种催化剂及合成气直接转化制低碳烯烃的方法
AU2019211888B2 (en) Catalyst and method for directly converting synthesis gas into low-carbon olefin
WO2019144952A1 (zh) 一种负载催化剂及合成气直接转化制低碳烯烃的方法
CN108568313B (zh) 一种催化剂及一氧化碳加氢直接转化制低碳烯烃的方法
CN111346672B (zh) 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
CN109745965B (zh) 一种含CeZr氧化物的催化剂及一氧化碳加氢直接转化制低碳烯烃的方法
CN107774302B (zh) 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法
WO2020125487A1 (zh) 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
CN108940355B (zh) 一种碱修饰的催化剂及一氧化碳加氢反应制乙烯的方法
WO2019144951A1 (zh) 一种催化剂及合成气直接转化制乙烯的方法
WO2018214471A1 (zh) 一种双功能催化剂及一氧化碳加氢制乙烯的方法
WO2018219364A1 (zh) 一种催化剂及合成气直接转化制液体燃料联产低碳烯烃的方法
WO2018161670A1 (zh) 一种催化剂及合成气直接转化制乙烯的方法
WO2019144953A1 (zh) 一种有机碱修饰的复合催化剂及一氧化碳加氢制乙烯的方法
CN111346669B (zh) 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
WO2019144955A1 (zh) 一种含lf型b酸催化剂及合成气直接转化制乙烯的方法
CN112973659B (zh) 一种含sapo-17分子筛的双功能催化剂及在合成气制低碳烯烃反应中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019566832

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019141832

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2018810439

Country of ref document: EP

Effective date: 20200102