WO2018216899A1 - Military microgrid system - Google Patents

Military microgrid system Download PDF

Info

Publication number
WO2018216899A1
WO2018216899A1 PCT/KR2018/004087 KR2018004087W WO2018216899A1 WO 2018216899 A1 WO2018216899 A1 WO 2018216899A1 KR 2018004087 W KR2018004087 W KR 2018004087W WO 2018216899 A1 WO2018216899 A1 WO 2018216899A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
power
microgrid
bus
generator
Prior art date
Application number
PCT/KR2018/004087
Other languages
French (fr)
Korean (ko)
Inventor
정남성
김성철
Original Assignee
주식회사 럭스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 럭스코 filed Critical 주식회사 럭스코
Publication of WO2018216899A1 publication Critical patent/WO2018216899A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Definitions

  • the present invention relates to a military microgrid system.
  • Microgrid refers to a local power system that includes a distributed power supply. In order to solve the problems of the existing wide area power system, for example, large power failure, research on such microgrids is actively conducted.
  • Microgrids are also being actively researched in military power systems.
  • Military power systems should operate reliably in the event of a power grid failure in case of emergency.
  • the military power system is not fixed in a certain place, and since it is often required to move like a field, it must be able to operate independently from the large-scale power grid. In response to these demands, many researches are being conducted to apply microgrids to military power systems.
  • the conventional military microgrid system was a simple form of a single microgrid system including a diesel generator.
  • the diesel generators produced all the power in AC power and supplied it to the AC bus, and the loads were powered by the AC bus.
  • Diesel generators have the advantage that they can be generated at any time if they have fuel.
  • the failure frequency is relatively higher than that of other generators, the conventional single microgrid system has a possibility of total system down due to the failure of the diesel generator. .
  • the present invention provides a military microgrid system comprising a plurality of microgrid module, and a central control unit.
  • each microgrid module In the military microgrid system, each microgrid module, a plurality of converters for converting the power supplied from the generator to the DC bus, a DC bank for buffering the voltage fluctuation of the DC bus using at least one capacitive element,
  • An energy storage device including at least one battery and supplying power to or receiving power from the DC bus, and converting the power formed on the DC bus to AC power or outputting AC power from an external source. It may include a plurality of DC / AC inverter to supply to the bus.
  • the first DC / AC inverter and the second DC / AC inverter of the plurality of DC / AC inverters are connected to different microgrid modules, and the entire microgrid module is connected to the AC ring bus structure. Can be.
  • the central controller may control the operation of the fuel-type generator in the generator according to the state-of-charge (SOC) of the battery included in the energy storage device.
  • SOC state-of-charge
  • the microgrid module may include a switch located between the DC / AC inverter and the output terminal.
  • the central controller detects a failed microgrid module among the plurality of microgrid modules and transmits a failure signal to the remaining microgrid modules (normal module). Can be blocked.
  • the faulty module is a master module
  • at least one DC / AC inverter of the plurality of DC / AC inverters may be operated under voltage control in one of the normal modules.
  • the central controller designates a normal module located in the middle as a master module and transmits a designated signal to the corresponding normal module, thereby providing a plurality of DC / AC inverters in the normal module. At least one of the DC / AC inverter can be operated by voltage control.
  • the central control unit by checking the SOC of the battery included in each microgrid module to check the entire battery SOC, and can operate one or more of the fuel consumption generator if the total battery SOC is below a predetermined lower limit.
  • the central controller may compare the SOCs of the batteries included in each microgrid module to determine the SOC imbalance. If the SOC imbalance is more than a predetermined value, the central controller may control the microgrid modules to move the battery power.
  • the number of operation of the fuel small sized generator can be determined according to the amount of power generation of the photovoltaic generator connected to the micro grid module, where the number of fuel small sized generators that are operated according to the number of operation of the fuel small sized generator If is less than the number of converters corresponding to the fuel consumption type generator, the converter can be controlled in parallel.
  • the military power system has the effect of reducing fuel consumption and increasing the stability of the power system.
  • FIG. 1 is a block diagram of a military microgrid system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a microgrid module according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a first control example according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a second control example according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a third control example according to an embodiment of the present invention.
  • FIG. 6 is a block diagram of a military microgrid system according to another embodiment of the present invention.
  • FIG. 7 is a configuration diagram of a microgrid module according to another embodiment of the present invention.
  • FIG. 1 is a block diagram of a military microgrid system according to an embodiment of the present invention.
  • a military microgrid system 100 (hereinafter referred to as a “system”) includes a plurality of microgrid modules 110a, 110b, 110c, and 110d, a plurality of generators 10, and a central controller 120; It may include an MCS (Main Control System).
  • MCS Main Control System
  • the plurality of generators 10 is a device for producing electric power, and may be a fuel consumption type generator or a renewable energy generator.
  • the fuel consumption type generator is a device that consumes fuel and generates power, such as a diesel generator, a gas generator, a fuel cell generator, and the like.
  • Fuel is typically fossil fuels, but may be other types of fuels, such as hydrogen, such as fuel cell generators.
  • Renewable energy generator is a power generation device that does not consume fuel
  • a solar generator is typical, for example, a wind power generator, a geothermal generator, a small hydro power generator may correspond to this.
  • the microgrid modules 110a, 110b, 110c, and 110d may be connected to the plurality of generators 10 and may receive and process power generated from the plurality of generators 10.
  • the central control unit 120 is a device for managing and controlling the entire system 100.
  • the central control unit 120 includes a human machine interface (HMI) device, and can recognize a user's input and output information to the user.
  • the central control unit 120 may automatically output a control signal according to an operation of an algorithm or a circuit stored therein, but according to an exemplary embodiment, the central control unit 120 may output a control signal according to a user input.
  • the central control unit 120 may stop the operation of the generator 10 when the energy stored in the system 100 is sufficient.
  • a stop control signal may be an internal algorithm or a circuit of the central control unit 120. It may be output by the operation of or may be output by the input signal of the user.
  • Each of the microgrid modules 110a, 110b, 110c, and 110d may constitute a single microgrid system.
  • the microgrid modules 110a, 110b, 110c, and 110d may be connected to at least one generator-which corresponds to a distributed power source, to form an independent microgrid system.
  • the microgrid modules 110a, 110b, 110c, and 110d may be connected to each other to allow the system 100 to be a multi-microgrid system.
  • the system 100 may continuously generate power through the remaining microgrid modules 110a, 110b, 110c, and 110d even if a specific microgrid module 110a, 110b, 110c, or 110d fails through a multi-microgrid system. .
  • the microgrid modules 110a, 110b, 110c, and 110d include a plurality of converters 112a, ..., 112n, a DC bank 114, an energy storage device 116, and a plurality of DC / AC inverters 118a, 118b. And the like.
  • the plurality of converters 112a,..., 112n may convert the power supplied from the generator 10 and transfer the converted power to the DC bus (DCB).
  • DC bus may mean a group of power lines and their accessories that the DC voltage is formed.
  • the converters 112a, ..., 112n may be AC / DC converters.
  • the AC / DC converter may transmit power generated by the generator 10 to the DC bus DCB as a unidirectional converter.
  • the converters 112a,..., 112n may be DC / DC converters.
  • the DC / DC converter may transmit power generated by the generator 10 as a unidirectional converter to the DC bus DCB.
  • the DC bank 114 includes at least one capacitive element, for example, a capacitor, and can use this capacitive element to buffer the voltage variation of the DC bus.
  • the DC bank 114 may include a plurality of capacitors, and may absorb a ripple voltage formed on the DC bus DCB while at least one of the plurality of capacitors is connected to the DC bus DCB.
  • the energy storage device 116 may include at least one battery and supply power to or receive power from the DC bus DCB.
  • the energy storage device 116 may store the power of the difference when the power generated by the generator 10 is larger than the power used by the load. On the contrary, when the power generated by the generator 10 is less than the power used by the load, the energy storage device 116 may output the power of the difference to the DC bus DCB.
  • the microgrid modules 110a, 110b, 110c, and 110d may reduce the fuel consumption of the generator 10, in particular, the fuel consumption generator using the energy storage device 116.
  • the microgrid modules 110a, 110b, 110c, and 110d may stop the operation of the generator 10, in particular, the fuel consumption generator, when the amount of power stored in the energy storage device 116 is sufficient to reduce fuel consumption. Can be reduced.
  • the microgrid modules 110a, 110b, 110c, and 110d When the microgrid modules 110a, 110b, 110c, and 110d are located in the main chamber-when the fuel is sufficient-the generator 10 may be operated to store power in the energy storage device 116. And, when the microgrid module (110a, 110b, 110c, 110d) is placed in the field-when the fuel is not enough-the generator 10-in particular, by supplying the power stored in the energy storage device 116 to the load Fuel consumption of generators can be reduced.
  • the DC / AC inverters 118a and 118b may convert the power formed on the DC bus DCB into AC power and output the AC power, or may convert the AC power supplied from the outside to the DC bus DCB.
  • the DC / AC inverters 118a and 118b may be bidirectional converters. Accordingly, the DC / AC inverters 118a and 118b can supply AC power to the outside, and can also receive AC power from the outside and transfer them to the inside.
  • the microgrid modules 110a, 110b, 110c, and 110d may include a plurality of DC / AC inverters 118a and 118b. Each of the DC / AC inverters 118a and 118b may be connected to different microgrid modules. have.
  • the first DC / AC inverter 118a of the first micro lead module 110a is connected to the second micro lead module 110b
  • the second DC / AC inverter 118b is the fourth micro lead module 110d. It can be connected with.
  • the first DC / AC inverter 118a of the second micro lead module 110b is connected to the first micro lead module 110a
  • the second DC / AC inverter 118b is connected to the third micro lead module 110c. Can be.
  • the first DC / AC inverter 118a of the third micro lead module 110c is connected to the second micro lead module 110b, and the second DC / AC inverter 118b is connected to the fourth micro lead module 110d.
  • the first DC / AC inverter 118a of the fourth micro lead module 110d is connected to the first micro lead module 110a, and the second DC / AC inverter 118b is connected to the third micro lead module 110c.
  • the first DC / AC inverter 118a and the second DC / AC inverter 118b of the plurality of DC / AC inverters 118a and 118b included in each of the microgrid modules 110a, 110b, 110c, and 110d are mutually different. While being connected to other microgrid modules, the entire microgrid modules 110a, 110b, 110c, and 110d may be connected in an AC ring bus (ACB) structure.
  • ACB AC ring bus
  • AC ring bus AC ring bus
  • the other microgrid module can still be connected and continue to generate power.
  • the second micro lead module 110b is broken, the first micro lead module 110a, the fourth micro lead module 110d, and the third micro lead module 110c are still connected and continue to generate power. Can be.
  • one microgrid module can act as a master module and the other microgrid module can act as a slave module.
  • At least one DC / AC inverter 118a or 118b of the master module may be operated under voltage control.
  • the remaining DC / AC inverters 118a and 118b may be operated by current control. If the DC / AC inverters 118a and 118b operated by voltage control fail, the other DC / AC inverters 118a and 118b may be operated under voltage control in place of the failure.
  • FIG. 2 is a block diagram of a microgrid module according to an embodiment of the present invention.
  • the microgrid module 210 includes a plurality of converters 212a, 212b, and 212c, a DC bank 214, an energy storage device 216, and a plurality of DC / AC inverters 218a and 218b, and power.
  • the controller 220 may include a power management system (PMS).
  • PMS power management system
  • the plurality of converters 212a, 212b, and 212c may be connected to the generator through the input terminals TI1, TI2, and TI3.
  • the plurality of converters 212a, 212b, and 212c may convert the power generated by the generator and transfer the generated power to the DC bus DCB.
  • the converters 212a and 212b may be power factor correction (PFC) devices.
  • PFC power factor correction
  • the power factor of the generator can be controlled while converting AC power to DC power.
  • Converters 212a and 212b may be parallel controlled.
  • the first converter 212a and the second converter 212b may be connected to one generator and controlled in parallel with each other.
  • the lifetime of each converter 212a and 212b can be increased by sharing the power throughput.
  • the voltage ripple of the DC bus DCB may be reduced.
  • the converters 212a and 212b may have inputs shared through a switch (first switch SW1). For example, an input of the first converter 212a and an input of the second converter 212b may be connected through the first switch SW1. When the first switch SW1 is turned on, the first converter 212a is turned on. ) And the second converter 212b are parallel controlled and when the first switch SW1 is turned off, the first converter 212a and the second converter 212b may operate independently of each other.
  • the converter 212c may be a DC / DC converter in which MPPT (Maximum Power Point Tracking) is operated.
  • MPPT Maximum Power Point Tracking
  • the converter 212c When the converter 212c is connected to the photovoltaic generator, the converter 212c may be an MPPT type DC / DC converter which finds the maximum power point of the photovoltaic generator and operates the photovoltaic generator at the maximum power point.
  • the DC bank 214 may be configured as a capacitor.
  • the energy storage device 216 may include at least one battery 232, an input / output terminal TB4, and a bidirectional DC / DC converter 234.
  • the battery 232 may be connected to the bidirectional DC / DC converter 234 through the input / output terminal TB4.
  • the bidirectional DC / DC converter 234 may supply power stored in the battery 232 to the DC bus DCB while being connected to the DC bus DCB.
  • the bidirectional DC / DC converter 234 may use the power formed in the DC bus DCB as the charging power of the battery 232.
  • the bidirectional DC / DC converter 234 may determine the state-of-charge (SOC) of the battery 232.
  • SOC state-of-charge
  • the SOC of the battery 232 may be determined by summing the input and output currents or may be determined through the voltage of the battery 232.
  • the bidirectional DC / DC converter 234 may transmit the identified SOC to the power control device 220.
  • the power controller 220 may control the operation of the generator according to the SOC of the battery 232. For example, when the SOC of the battery 232 exceeds the upper limit (eg, 80%), the generator may be stopped. Conversely, if the SOC of the battery 232 is below the lower limit (eg, 30%), the generator can be restarted.
  • the upper limit eg, 80%
  • the lower limit eg. 30%
  • the DC / AC inverters 218a and 218b may be bidirectional converters.
  • the DC / AC inverters 218a and 218b may convert power of the DC bus DCB and transfer the converted power to the AC ring bus ACB.
  • the DC / AC inverters 218a and 218b may convert the power of the AC ring bus ACB and transfer the converted power to the DC bus DCB.
  • Outputs of the plurality of DC / AC inverters 218a and 218b may be interconnected.
  • an output of the first DC / AC inverter 218a and an output of the second DC / AC inverter 218b may be connected to each other.
  • the DC / AC inverters 218a and 218b may be connected to the AC ring bus ACB or the load through the output terminals TO1, TO2, TO3, and TO4.
  • the breaker CB1 may be located between the output terminals TO3 and TO4 connected to the load and the DC / AC inverters 218a and 218b.
  • the breaker CB1 may cut a line connected to the load when an overcurrent flows to the load or a problem occurs in the load.
  • Switches SW2, SW3, SW4, and SW5 may be located between the DC / AC inverters 218a and 218b and the output terminals TO1, TO2, TO3, and TO4. According to the connection of the switches SW2, SW3, SW4, and SW5, the DC / AC inverters 218a and 218b may be connected with other microgrid modules through the AC ring bus (ACB), or with other microgrid modules. It may be blocked.
  • ACB AC ring bus
  • Components 212a, 212b, 212c, 216, 218a, and 218b of the microgrid module 210 may be connected to the power control device 220 through the control lines D1 and D2. There may be two or more control lines D1 and D2. Each control line D1, D2 may be used for different purposes-for example, a transmission line, a receiving line, or may be used for redundancy.
  • FIG. 3 is a flowchart of a first control example according to an embodiment of the present invention.
  • the central control apparatus may monitor a plurality of microgrid modules and detect a failed microgrid module (fault module) among the plurality of microgrid modules (S300).
  • the central controller may detect whether a failure occurs in each microgrid module from a power control device included in each microgrid module. Alternatively, the central controller may determine a failure of the power controller, which transmits a polling signal to each power controller, in which a reply to the polling signal is incorrect.
  • the central control unit may detect a fault module and transmit a fault signal to the remaining microgrid module (normal module).
  • the normal module may block the connection to the faulty module by blocking the switch connected to the faulty module (S302).
  • the microgrid module may include a switch located between the DC / AC inverter and the output terminal, and the normal module may block the connection with the failure module by blocking the switch connected to the failure module.
  • the central controller determines whether the faulty module is the master module (S304), and if the faulty module is the master module (YES in S304), the microcontroller module of one of the normal modules may be changed and designated as the master module (S306).
  • At least one DC / AC inverter of the plurality of DC / AC inverters may be changed to voltage control in the microgrid module designated as the master module.
  • the central controller designates a normal module located in the middle as a master module, and transmits a designated signal to the corresponding normal module.
  • At least one DC / AC inverter can be operated under voltage control.
  • the system may have an AC bus structure in which the second micro lead module is connected in the order of the third micro lead module-> the fourth micro lead module-> the first micro lead module.
  • the central controller may designate a fourth micro lead module located in the center of the AC bus structure connected in series as the master module.
  • FIG. 4 is a flowchart of a second control example according to an embodiment of the present invention.
  • the central controller may check the SOC for each battery from the power controller included in each microgrid module (S400).
  • the central controller may identify the entire battery SOC using the SOC for each battery (S402). For example, when the capacity of the battery is the same, when the SOC of the first battery is 70% and the SOC of the second battery is 30%, the central controller can check the total battery SOC as 50%.
  • the total battery SOC can be calculated by dividing the available battery capacity (the remaining capacity) by the total battery capacity.
  • the central controller compares the entire battery SOC with a preset lower limit value (S404), and when the total battery SOC is smaller than the lower limit value (YES in S404), one or more of the fuel consumption generators may be operated (S406).
  • the central controller may charge a battery of the module by operating a generator connected to the microgrid module having the lowest SOC of the battery to which it belongs. If necessary, the central control unit can then run the generator connected to the microgrid module with the low SOC of the battery, and set the operation sequence of the generator according to the SOC of the battery to which it belongs.
  • the central controller compares the SOC of the batteries contained in each microgrid module and compares the SOC imbalance. It may be determined (S408).
  • the central controller may control each microgrid module to allow the battery power to move with each other (S410).
  • the central controller may transmit a control signal to the power controller, so that the energy storage device discharges power to the DC bus and outputs the discharged power to the AC ring bus in the microgrid module having a high battery SOC.
  • the central control unit transmits a control signal to the power control unit so that the AC / DC converter receives power from the AC ring bus and delivers the power to the DC bus in the microgrid module having a low battery SOC.
  • the battery may be charged with the generated power.
  • FIG. 5 is a flowchart of a third control example according to an embodiment of the present invention.
  • the power control device may check the power generation amount of the solar generator connected to the microgrid module (S500).
  • the power control apparatus may determine the number of operations of the fuel consumption type generator, for example, the diesel generator, according to the amount of power generated by the solar power generator (S502).
  • the power control device when the power control device operates only a part of the fuel consumption generator (eg, a diesel generator) (YES in S504), the power control device is a converter connected to the fuel consumption generator, for example, a PFC. The device can be controlled in parallel.
  • the fuel consumption generator e.g, a diesel generator
  • a plurality of converters share an input and a generator by connecting a switch connecting the inputs of the plurality of converters ( S506).
  • the power controller may allow a plurality of converters (eg, PFC devices) to control the power of the generator supplied through the shared input in parallel (S508).
  • a plurality of converters eg, PFC devices
  • the microgrid module may include the same number of converters as the number of fuel small generators, and the power control device may include the number of fuel small generators operated according to the number of operation of the fuel small generators.
  • the converters can be controlled in parallel.
  • FIG. 6 is a block diagram of a military microgrid system according to another embodiment of the present invention.
  • the system 600 includes a plurality of microgrid modules 610a, 610b, and 610c, a load connection module 630, a plurality of generators 10, a rod 20, and a central controller 620. It may include.
  • the plurality of generators 10 is a device for producing electric power, and may be a fuel consumption type generator or a renewable energy generator.
  • the microgrid modules 610a, 610b, and 610c may be connected to the plurality of generators 10 and may receive and process power generated from the plurality of generators 10.
  • the central controller 620 is a device that manages and controls the entire system 600.
  • the central control unit 620 may include a human machine interface (HMI) device, and may recognize a user's input and output information to the user.
  • the central controller 620 may automatically output a control signal according to an operation of an algorithm or a circuit stored therein, but according to an exemplary embodiment, the central controller 620 may output a control signal according to a user input.
  • the central controller 620 may stop the operation of the generator 10 when the energy stored in the system 600 is sufficient.
  • Such a stop control signal may be an internal algorithm or a circuit of the central controller 620. It may be output by the operation of or may be output by the input signal of the user.
  • Each of the microgrid modules 610a, 610b, and 610c may constitute a single microgrid system.
  • the microgrid modules 610a, 610b, and 610c may be connected to at least one generator, which corresponds to a distributed power supply, to form an independent microgrid system.
  • the microgrid modules 610a, 610b, and 610c may be connected to each other to allow the system 600 to be a multi-microgrid system.
  • the system 600 may continuously generate power through the remaining microgrid modules 610a, 610b, and 610c even if a specific microgrid module 610a, 610b, or 610c fails through a multi-microgrid system.
  • the microgrid modules 610a, 610b, and 610c may include a plurality of converters 612a,..., 612n, a DC bank 614, an energy storage device 616, a DC power processor 618, and the like.
  • the plurality of converters 612a,..., 612n may convert the power supplied from the generator 10 and transmit the converted power to the internal DC bus DCBa.
  • the internal DC bus DCBa may refer to a group of power lines and their accessories in which a DC voltage is formed.
  • the converters 612a, ..., 612n may be AC / DC converters.
  • the AC / DC converter may transfer power generated by the generator 10 to the internal DC bus DCBa as a unidirectional converter.
  • the converters 612a,..., 612n may be DC / DC converters.
  • the DC / DC converter may transmit power generated by the generator 10 to the internal DC bus DCBa as a unidirectional converter.
  • the DC bank 614 includes at least one capacitive element, for example, a capacitor, and may use this capacitive element to buffer the voltage variation of the DC bus.
  • the DC bank 614 may include a plurality of capacitors, and may absorb a ripple voltage formed on the internal DC bus DCBa while at least one of the plurality of capacitors is connected to the internal DC bus DCBa.
  • the energy storage device 616 may include at least one battery and supply power to the internal DC bus DCBa or may receive power from the internal DC bus DCBa.
  • the energy storage device 616 may store the power of the difference when the power generated by the generator 10 is larger than the power used by the load. On the contrary, when the power generated by the generator 10 is less than the power used by the load, the energy storage device 616 may output the power of the difference to the internal DC bus DCBa.
  • the microgrid modules 610a, 610b, and 610c may reduce the fuel consumption of the generator 10, in particular, the fuel consumption generator using the energy storage device 616.
  • the microgrid modules 610a, 610b, and 610c may reduce the fuel consumption by stopping the operation of the generator 10, in particular, the fuel consumption generator, when the amount of power stored in the energy storage device 616 is sufficient. have.
  • the generator 10 may be operated to store power in the energy storage device 616.
  • the microgrid modules 610a, 610b, and 610c are placed in the field-when the fuel is not sufficient-by supplying the power stored in the energy storage device 616 to the load to the generator 10-in particular, fuel station Model generators can reduce fuel consumption.
  • the DC power processor 618 may output power formed on the internal DC bus DCBa to the external DC bus DCBb or supply power formed on the external DC bus DCBb to the internal DC bus DCBb.
  • the DC power processing unit 618 is connected to at least two or more microgrid modules through at least two external DC buses (DCBb) such that the entire microgrid modules 610a, 610b, and 610c are connected in a DC ring bus structure. Can be.
  • DCBb external DC buses
  • the DC power processor 618 may include at least two switches SWa and SWb, and may be connected to different microgrid modules using the at least two switches SWa and SWb.
  • the switches SWa and SWb may perform a function of electrically connecting the internal DC bus DCBa and the internal DC bus of another microgrid module.
  • the first switch SWa of the first micro lead module 610a may be connected to the second micro lead module 610b, and the second switch SWb may be connected to the third micro lead module 610c.
  • the first switch SWa of the second micro lead module 610b may be connected to the first micro lead module 610a, and the second switch SWb may be connected to the third micro lead module 610c.
  • the first switch SWa of the third micro lead module 610c may be connected to the first micro lead module 610a, and the second switch SWb may be connected to the second micro lead module 610b.
  • the entire microgrid modules 610a, 610b, and 610c may be connected in a DC ring bus structure.
  • the other microgrid module can continue to be developed while still being connected.
  • the second micro lead module 610b is broken, the first micro lead module 610a and the third micro lead module 610c may continue to generate power while being connected.
  • one microgrid module can act as a master module and the other microgrid module can act as a slave module.
  • At least one converter 612a, ..., 612n of the master module may be operated under voltage control, or the DC power processor 618 may be operated under voltage control.
  • the DC power processor 618 when the DC power processor 618 is composed of switches SWa and SWb, at least one converter 612a, ..., 612n of the master module may operate under voltage control.
  • the DC power processor 618 when the DC power processor 618 includes at least two DC / DC converters, at least one DC / DC converter of the at least two DC / DC converters may operate under voltage control.
  • FIG. 7 is a configuration diagram of a microgrid module according to another embodiment of the present invention.
  • the microgrid module 710 includes a plurality of converters 712a, 712b, and 712c, a DC bank 714, an energy storage device 716, a DC power processor 718, and a power control device 720. And the like.
  • the plurality of converters 712a, 712b, and 712c may be connected to the generator through the input terminals TI1, TI2, and TI3.
  • the plurality of converters 712a, 712b, and 712c may convert the power generated by the generator and transfer the generated power to the internal DC bus DCBa.
  • the converters 712a and 712b may be power factor correction (PFC) devices.
  • PFC power factor correction
  • Converters 712a and 712b may be parallel controlled.
  • the first converter 712a and the second converter 712b may be connected in parallel with one generator.
  • the lifetime of each converter 712a or 712b can be increased by sharing the power throughput.
  • the voltage ripple of the internal DC bus DCBa may be reduced.
  • the converters 712a and 712b may have inputs shared via the switch SW.
  • an input of the first converter 712a and an input of the second converter 712b may be connected through a switch SW.
  • the switch SW When the switch SW is turned on, the first converter 712a and the second converter 712a may be connected to each other.
  • the converter 712b When the converter 712b is parallel controlled and the switch SW is turned off, the first converter 712a and the second converter 712b may operate independently of each other.
  • the converter 712c may be a DC / DC converter in which MPPT (Maximum Power Point Tracking) is operated.
  • MPPT Maximum Power Point Tracking
  • the converter 712c When the converter 712c is connected to the photovoltaic generator, the converter 712c may be an MPPT type DC / DC converter that finds the maximum power point of the photovoltaic generator and operates the photovoltaic generator at the maximum power point.
  • DC bank 714 may be configured as a capacitor.
  • the energy storage device 716 may include at least one battery 732, an input / output terminal TB4, and a bidirectional DC / DC converter 734.
  • the battery 732 may be connected to the bidirectional DC / DC converter 734 through the input / output terminal TB4.
  • the bidirectional DC / DC converter 734 may be connected to the internal DC bus DCBa and supply power stored in the battery 732 to the internal DC bus DCBa. In addition, the bidirectional DC / DC converter 734 may use the power formed in the internal DC bus DCBa as the charging power of the battery 732.
  • the bidirectional DC / DC converter 734 may determine the state-of-charge (SOC) of the battery 732.
  • SOC state-of-charge
  • the SOC of the battery 732 may be determined by summing the input and output currents or may be determined through the voltage of the battery 732.
  • the bidirectional DC / DC converter 734 may transmit the identified SOC to the power controller 720.
  • the power controller 720 may control the operation of the generator according to the SOC of the battery 732. For example, when the SOC of the battery 732 exceeds the upper limit (eg, 80%), the generator may be stopped. Conversely, if the SOC of the battery 732 is below the lower limit (eg, 30%), the generator can be restarted.
  • the upper limit eg, 80%
  • the lower limit e.g. 30%
  • the DC power processor 718 may include a plurality of switches SWa and SWb.
  • the internal DC bus DCBa may be connected to the external DC bus DCBb.
  • the external DC bus connected to the switch may be cut off.
  • the switch connected to the microgrid module may be turned off.
  • the components 712a, 712b, 712c, 716, and 718 of the microgrid module 710 may be connected to the power control device 720 through the control lines D1 and D2. There may be two or more control lines D1 and D2. Each control line D1, D2 may be used for different purposes-for example, a transmission line, a receiving line, or may be used for redundancy.
  • control method described with reference to FIGS. 3 to 5 may be applied to a system according to another exemplary embodiment.
  • the DC power processing unit changes the structure of the ring bus instead of the plurality of DC / AC inverters, and in the configuration of performing voltage control in the master module. There can be.
  • the DC ring bus is used instead of the AC ring bus in the control method of FIG. 4.
  • the military power system has an effect of reducing fuel consumption and increasing the stability of the power system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The present invention provides a military microgrid system including a plurality of microgrid modules and a central control unit. In the military microgrid system, each of the microgrid modules may comprise: a plurality of converters for converting power supplied from a power generator so as to deliver same to a DC bus; a DC bank for buffering, with at least one capacitive element, fluctuations in voltage in the DC bus; an energy storage device which includes at least one battery and supplies power to the DC bus or is supplied with power from the DC bus; and a plurality of DC/AC inverters which convert the power formed in the DC bus to AC power so as to output or convert AC power supplied from the outside so as to supply same to the DC bus, wherein a first DC/AC inverter and a second DC/AC inverter among the plurality of DC/AC inverters may be connected with different microgrid modules and all the microgrid modules may be connected in an AC ring bus structure.

Description

군용 마이크로그리드 시스템Military microgrid system
본 발명은 군용 마이크로그리드 시스템에 관한 것이다.The present invention relates to a military microgrid system.
마이크로그리드란 분산전원을 포함하는 국소적인 전력시스템을 의미한다. 기존의 광역적 전력시스템이 가지는 문제, 예를 들면, 대정전과 같은 문제를 해결하기 위해 이러한 마이크로그리드에 대한 연구가 활발히 진행되고 있다.Microgrid refers to a local power system that includes a distributed power supply. In order to solve the problems of the existing wide area power system, for example, large power failure, research on such microgrids is actively conducted.
마이크로그리드는 군용 전력시스템에서도 활발한 연구가 진행되고 있다. 군용 전력시스템은 유사시 전력망이 파괴된 상황에서도 안정적으로 작동되어야 한다. 그리고, 군용 전력시스템은 일정한 장소에 고정되지 않고 야전과 같이 이동이 필요한 경우가 많기 때문에 대규모 전력망과 분리되어 독립적으로 작동될 수 있어야 한다. 이러한 요구에 따라, 군용 전력시스템에 마이크로그리드를 적용시키고자 하는 연구들이 많이 진행되고 있다.Microgrids are also being actively researched in military power systems. Military power systems should operate reliably in the event of a power grid failure in case of emergency. In addition, the military power system is not fixed in a certain place, and since it is often required to move like a field, it must be able to operate independently from the large-scale power grid. In response to these demands, many researches are being conducted to apply microgrids to military power systems.
한편, 종래의 군용 마이크로그리드 시스템은 디젤발전기를 포함하는 단순한 형태의 싱글 마이크로그리드 시스템이었다. 싱글 마이크로그리드 시스템에서는 디젤발전기가 모든 전력을 AC전력으로 생산하여 AC버스로 공급하였으며, 부하들은 이러한 AC버스를 통해 전력을 공급받아 작동되었다.On the other hand, the conventional military microgrid system was a simple form of a single microgrid system including a diesel generator. In a single microgrid system, the diesel generators produced all the power in AC power and supplied it to the AC bus, and the loads were powered by the AC bus.
그런데, 이러한 싱글 마이크로그리드 시스템에서는 디젤발전기가 발전량 전체를 담당하기 때문에 연료소모가 크다는 문제가 있었다. 군부대의 연료는 디젤발전기뿐만 아니라 각종 이동수단의 연료로도 사용되기 때문에 디젤발전기에서 너무 많은 연료를 소모하게 되면 다른 이동수단의 기동성을 약화시키게 되는 문제가 있었다.However, in such a single microgrid system, there is a problem that fuel consumption is large because the diesel generator is in charge of the power generation. Since the fuel of the military unit is used not only for the diesel generator but also for the fuel of various vehicles, if too much fuel is consumed in the diesel generator, there is a problem of weakening the mobility of other vehicles.
또한, 이러한 싱글 마이크로그리드 시스템에서는 디젤발전기가 고장나거나 AC버스에 이상이 발생하면 전체 시스템이 작동되지 않는 치명적인 문제가 있었다. 디젤발전기는 연료만 있으면 언제든지 발전이 가능하다는 장점이 있지만 다른 발전기에 비해 상대적으로 고장빈도가 높기 때문에 종래의 싱글 마이크로그리드 시스템에서는 디젤발전기의 고장에 의한 전체 시스템 다운의 가능성이 상시적으로 존재하고 있었다.In addition, in such a single microgrid system, if the diesel generator breaks down or the AC bus fails, the entire system does not operate. Diesel generators have the advantage that they can be generated at any time if they have fuel. However, since the failure frequency is relatively higher than that of other generators, the conventional single microgrid system has a possibility of total system down due to the failure of the diesel generator. .
이러한 배경에서, 본 발명의 목적은, 군용 전력시스템에서 연료소모를 줄이고, 전력시스템의 안정도를 높이는 기술을 제공하는 것이다.In this context, it is an object of the present invention to provide a technique for reducing fuel consumption and increasing the stability of a power system in a military power system.
전술한 목적을 달성하기 위하여, 일 측면에서, 본 발명은, 복수의 마이크로그리드모듈, 및 중앙제어장치를 포함하는 군용 마이크로그리드 시스템을 제공한다. In order to achieve the above object, in one aspect, the present invention provides a military microgrid system comprising a plurality of microgrid module, and a central control unit.
이러한 군용 마이크로그리드 시스템에서, 각각의 마이크로그리드모듈은, 발전기로부터 공급되는 전력을 변환하여 DC버스로 전달하는 복수의 컨버터, 적어도 하나의 용량성소자를 이용하여 DC버스의 전압변동을 완충시키는 DC뱅크, 적어도 하나의 배터리를 포함하고 DC버스로 전력을 공급하거나 DC버스로부터 전력을 공급받는 에너지저장장치, 및 DC버스에 형성되는 전력을 AC전력으로 변환하여 출력하거나 외부에서 공급되는 AC전력을 변환하여 DC버스로 공급하는 복수의 DC/AC인버터를 포함할 수 있다.In the military microgrid system, each microgrid module, a plurality of converters for converting the power supplied from the generator to the DC bus, a DC bank for buffering the voltage fluctuation of the DC bus using at least one capacitive element, An energy storage device including at least one battery and supplying power to or receiving power from the DC bus, and converting the power formed on the DC bus to AC power or outputting AC power from an external source. It may include a plurality of DC / AC inverter to supply to the bus.
그리고, 이러한 군용 마이크로그리드 시스템에서, 복수의 DC/AC인버터 중 제1DC/AC인버터와 제2DC/AC인버터는 서로 다른 마이크로그리드모듈과 연결되면서 전체 마이크로그리드모듈이 AC링(ring)버스 구조로 연결될 수 있다.In the military microgrid system, the first DC / AC inverter and the second DC / AC inverter of the plurality of DC / AC inverters are connected to different microgrid modules, and the entire microgrid module is connected to the AC ring bus structure. Can be.
그리고, 이러한 군용 마이크로그리드 시스템에서, 중앙제어장치는 에너지저장장치에 포함된 배터리의 SOC(State-of-Charge)에 따라 발전기 중 연료소모형발전기의 가동을 제어할 수 있다.In addition, in the military microgrid system, the central controller may control the operation of the fuel-type generator in the generator according to the state-of-charge (SOC) of the battery included in the energy storage device.
마이크로그리드모듈은, DC/AC인버터와 출력단자 사이에 위치하는 스위치를 포함할 수 있다. 그리고, 중앙제어장치는, 복수의 마이크로그리드모듈 중 고장난 마이크로그리드모듈(고장모듈)을 감지한 후 나머지 마이크로그리드모듈(정상모듈)로 고장신호를 전송하고, 정상모듈은 고장모듈과 연결되는 스위치를 차단시킬 수 있다. 그리고, 고장모듈이 마스터모듈인 경우, 정상모듈 중 하나에서 복수의 DC/AC인버터 중 적어도 하나의 DC/AC인버터가 전압제어로 작동될 수 있다.The microgrid module may include a switch located between the DC / AC inverter and the output terminal. The central controller detects a failed microgrid module among the plurality of microgrid modules and transmits a failure signal to the remaining microgrid modules (normal module). Can be blocked. When the faulty module is a master module, at least one DC / AC inverter of the plurality of DC / AC inverters may be operated under voltage control in one of the normal modules.
그리고, 중앙제어장치는, 고장모듈에 의해 해제된 AC링버스 구조에서, 중간에 위치하는 정상모듈을 마스터모듈로 지정하고 지정신호를 해당 정상모듈로 전송하여 해당 정상모듈에서 복수의 DC/AC인버터 중 적어도 하나의 DC/AC인버터가 전압제어로 작동되도록 할 수 있다.In addition, in the AC ring bus structure released by the faulty module, the central controller designates a normal module located in the middle as a master module and transmits a designated signal to the corresponding normal module, thereby providing a plurality of DC / AC inverters in the normal module. At least one of the DC / AC inverter can be operated by voltage control.
한편, 중앙제어장치는, 각 마이크로그리드모듈에 포함된 배터리의 SOC를 확인하여 전체 배터리 SOC를 확인하고, 전체 배터리 SOC가 미리 설정된 하한값이하이면 연료소모형발전기 중 하나 이상을 가동시킬 수 있다.On the other hand, the central control unit, by checking the SOC of the battery included in each microgrid module to check the entire battery SOC, and can operate one or more of the fuel consumption generator if the total battery SOC is below a predetermined lower limit.
그리고, 중앙제어장치는, 각 마이크로그리드모듈에 포함된 배터리의 SOC를 비교하여 SOC 불균형도를 판단하고 SOC 불균형도가 일정값 이상이면 각 마이크로그리드모듈을 제어하여 배터리전력이 이동되도록 할 수 있다.The central controller may compare the SOCs of the batteries included in each microgrid module to determine the SOC imbalance. If the SOC imbalance is more than a predetermined value, the central controller may control the microgrid modules to move the battery power.
한편, 마이크로그리드모듈에 연결된 태양광발전기의 발전량에 따라 연료소모형발전기의 가동 개수가 결정될 수 있는데, 여기서, 마이크로그리드모듈은, 연료소모형발전기의 가동 개수에 따라 가동되는 연료소모형발전기의 개수가 연료소모형발전기에 대응되는 컨버터의 개수보다 작을 경우, 컨버터를 병렬제어할 수 있다. On the other hand, the number of operation of the fuel small sized generator can be determined according to the amount of power generation of the photovoltaic generator connected to the micro grid module, where the number of fuel small sized generators that are operated according to the number of operation of the fuel small sized generator If is less than the number of converters corresponding to the fuel consumption type generator, the converter can be controlled in parallel.
이상에서 설명한 바와 같이 본 발명에 의하면, 군용 전력시스템에서 연료소모를 줄이고 전력시스템의 안정도를 높일 수 있는 효과가 있다.As described above, according to the present invention, the military power system has the effect of reducing fuel consumption and increasing the stability of the power system.
도 1은 본 발명의 일 실시예에 따른 군용 마이크로그리드 시스템의 구성도이다.1 is a block diagram of a military microgrid system according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 마이크로그리드모듈의 구성도이다.2 is a block diagram of a microgrid module according to an embodiment of the present invention.
도 3은 본 발명이 일 실시예에 따른 제1제어 예시의 흐름도이다.3 is a flowchart of a first control example according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 제2제어 예시의 흐름도이다.4 is a flowchart of a second control example according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 제3제어 예시의 흐름도이다.5 is a flowchart of a third control example according to an embodiment of the present invention.
도 6은 본 발명의 다른 실시예에 따른 군용 마이크로그리드 시스템의 구성도이다.6 is a block diagram of a military microgrid system according to another embodiment of the present invention.
도 7은 본 발명의 다른 실시예에 따른 마이크로그리드모듈의 구성도이다.7 is a configuration diagram of a microgrid module according to another embodiment of the present invention.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the component of this invention, terms, such as 1st, 2nd, A, B, (a), (b), can be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected to or connected to that other component, but there may be another configuration between each component. It is to be understood that the elements may be "connected", "coupled" or "connected".
도 1은 본 발명의 일 실시예에 따른 군용 마이크로그리드 시스템의 구성도이다.1 is a block diagram of a military microgrid system according to an embodiment of the present invention.
도 1을 참조하면, 군용 마이크로그리드 시스템(100; 이하 '시스템'이라 함)은 복수의 마이크로그리드모듈(110a, 110b, 110c, 110d), 복수의 발전기(10), 및 중앙제어장치(120; MCS(Main Control System))를 포함할 수 있다.Referring to FIG. 1, a military microgrid system 100 (hereinafter referred to as a “system”) includes a plurality of microgrid modules 110a, 110b, 110c, and 110d, a plurality of generators 10, and a central controller 120; It may include an MCS (Main Control System).
복수의 발전기(10)는 전력을 생산하는 장치로서, 연료소모형발전기와 재생에너지발전기 등일 수 있다.The plurality of generators 10 is a device for producing electric power, and may be a fuel consumption type generator or a renewable energy generator.
연료소모형발전기는 연료를 소모하여 발전하는 장치로서, 디젤발전기, 가스발전기, 연료전지발전기 등이 이에 해당될 수 있다. 연료는 화석연료가 대표적이지만, 연료전지발전기와 같이 다른 형태의 연료-예를 들어, 수소-일 수 있다.The fuel consumption type generator is a device that consumes fuel and generates power, such as a diesel generator, a gas generator, a fuel cell generator, and the like. Fuel is typically fossil fuels, but may be other types of fuels, such as hydrogen, such as fuel cell generators.
재생에너지발전기는 연료를 소모하지 않는 발전 장치로서, 태양광발전기가 대표적이며, 다른 예로서는 풍력발전기, 지열발전기, 소수력발전기 등이 이에 해당될 수 있다.Renewable energy generator is a power generation device that does not consume fuel, and a solar generator is typical, for example, a wind power generator, a geothermal generator, a small hydro power generator may correspond to this.
마이크로그리드모듈(110a, 110b, 110c, 110d)은 이러한 복수의 발전기(10)와 연결되어 있으면서, 복수의 발전기(10)로부터 발전된 전력을 공급받아 처리할 수 있다.The microgrid modules 110a, 110b, 110c, and 110d may be connected to the plurality of generators 10 and may receive and process power generated from the plurality of generators 10.
중앙제어장치(120)는 시스템(100) 전체를 관리하고 제어하는 장치이다. 중앙제어장치(120)는 HMI(Human Machine Interface)장치를 포함하고 있으면서, 사용자의 입력을 인식할 수 있고, 사용자에게 정보를 출력시킬 수 있다. 중앙제어장치(120)는 내부에 저장된 알고리즘이나 회로의 작동에 따라 자동적으로 제어신호를 출력할 수 있으나 실시예에 따라서는 사용자의 입력에 따라 제어신호를 출력할 수 있다. 예를 들어, 중앙제어장치(120)는 시스템(100)에 저장된 에너지가 충분할 때, 발전기(10)의 작동을 정지시킬 수 있는데, 이러한 정지제어신호는 중앙제어장치(120)의 내부 알고리즘 혹은 회로의 작동에 의해 출력될 수도 있고, 사용자의 입력 신호에 의해 출력될 수도 있다.The central control unit 120 is a device for managing and controlling the entire system 100. The central control unit 120 includes a human machine interface (HMI) device, and can recognize a user's input and output information to the user. The central control unit 120 may automatically output a control signal according to an operation of an algorithm or a circuit stored therein, but according to an exemplary embodiment, the central control unit 120 may output a control signal according to a user input. For example, the central control unit 120 may stop the operation of the generator 10 when the energy stored in the system 100 is sufficient. Such a stop control signal may be an internal algorithm or a circuit of the central control unit 120. It may be output by the operation of or may be output by the input signal of the user.
마이크로그리드모듈(110a, 110b, 110c, 110d) 각각은 싱글 마이크로그리드 시스템을 구성할 수 있다. 마이크로그리드모듈(110a, 110b, 110c, 110d)은 적어도 하나의 발전기-분산전원에 해당됨-와 연결되면서 각각 독립적인 마이크로그리드 시스템을 구성할 수 있다.Each of the microgrid modules 110a, 110b, 110c, and 110d may constitute a single microgrid system. The microgrid modules 110a, 110b, 110c, and 110d may be connected to at least one generator-which corresponds to a distributed power source, to form an independent microgrid system.
마이크로그리드모듈(110a, 110b, 110c, 110d)은 서로 연결되면서 시스템(100)이 멀티 마이크로그리드 시스템이 되도록 할 수 있다. 시스템(100)은 멀티 마이크로그리드 시스템을 통해 특정 마이크로그리드모듈(110a, 110b, 110c, 110d)이 고장나더라도 나머지 마이크로그리드모듈(110a, 110b, 110c, 110d)을 통해 지속적으로 전력을 생산할 수 있다.The microgrid modules 110a, 110b, 110c, and 110d may be connected to each other to allow the system 100 to be a multi-microgrid system. The system 100 may continuously generate power through the remaining microgrid modules 110a, 110b, 110c, and 110d even if a specific microgrid module 110a, 110b, 110c, or 110d fails through a multi-microgrid system. .
마이크로그리드모듈(110a, 110b, 110c, 110d)은 복수의 컨버터(112a, ..., 112n), DC뱅크(114), 에너지저장장치(116), 복수의 DC/AC인버터(118a, 118b) 등을 포함할 수 있다.The microgrid modules 110a, 110b, 110c, and 110d include a plurality of converters 112a, ..., 112n, a DC bank 114, an energy storage device 116, and a plurality of DC / AC inverters 118a, 118b. And the like.
복수의 컨버터(112a, ..., 112n)는 발전기(10)로부터 공급되는 전력을 변환하여 DC버스(DCB: DC Bus)로 전달할 수 있다. 여기서, DC버스(DCB)는 직류전압이 형성되는 전력선 및 그 부속장치의 그룹을 의미할 수 있다.The plurality of converters 112a,..., 112n may convert the power supplied from the generator 10 and transfer the converted power to the DC bus (DCB). Here, the DC bus (DCB) may mean a group of power lines and their accessories that the DC voltage is formed.
발전기(10)가 AC전력을 생산하는 경우, 컨버터(112a, ..., 112n)는 AC/DC컨버터일 수 있다. 이때, AC/DC컨버터는 단방향 컨버터로서 발전기(10)에서 발전되는 전력을 DC버스(DCB)로 전달할 수 있다.When the generator 10 produces AC power, the converters 112a, ..., 112n may be AC / DC converters. In this case, the AC / DC converter may transmit power generated by the generator 10 to the DC bus DCB as a unidirectional converter.
발전기(10)가 DC전력을 생산하는 경우-예를 들어, 발전기(10)가 태양광발전기이거나 연료전지발전기인 경우-, 컨버터(112a, ..., 112n)는 DC/DC컨버터일 수 있다. 이때, DC/DC컨버터는 단방향 컨버터로서 발전기(10)에서 발전되는 전력을 DC버스(DCB)로 전달할 수 있다.When the generator 10 produces DC power—for example, when the generator 10 is a photovoltaic generator or a fuel cell generator—the converters 112a,..., 112n may be DC / DC converters. . In this case, the DC / DC converter may transmit power generated by the generator 10 as a unidirectional converter to the DC bus DCB.
DC뱅크(114)는 적어도 하나의 용량성소자-예를 들어, 캐패시터-를 포함하고 있으면서, 이러한 용량성소자를 이용하여 DC버스의 전압변동을 완충시킬 수 있다. DC뱅크(114)는 일 예로서, 복수의 캐패시터로 구성되고, 복수의 캐패시터 중 적어도 하나가 DC버스(DCB)에 연결되면서 DC버스(DCB)에 형성되는 리플전압을 흡수할 수 있다.The DC bank 114 includes at least one capacitive element, for example, a capacitor, and can use this capacitive element to buffer the voltage variation of the DC bus. As an example, the DC bank 114 may include a plurality of capacitors, and may absorb a ripple voltage formed on the DC bus DCB while at least one of the plurality of capacitors is connected to the DC bus DCB.
에너지저장장치(116)는 적어도 하나의 배터리를 포함하면서 DC버스(DCB)로 전력을 공급하거나 DC버스(DCB)로부터 전력을 공급받을 수 있다.The energy storage device 116 may include at least one battery and supply power to or receive power from the DC bus DCB.
에너지저장장치(116)는 발전기(10)에서 발전한 전력이 부하에서 사용하는 전력보다 많은 경우, 그 차이의 전력을 저장할 수 있다. 이와 반대로 에너지저장장치(116)는 발전기(10)에서 발전한 전력이 부하에서 사용하는 전력보다 적은 경우, 그 차이의 전력을 DC버스(DCB)로 출력시킬 수 있다.The energy storage device 116 may store the power of the difference when the power generated by the generator 10 is larger than the power used by the load. On the contrary, when the power generated by the generator 10 is less than the power used by the load, the energy storage device 116 may output the power of the difference to the DC bus DCB.
마이크로그리드모듈(110a, 110b, 110c, 110d)은 에너지저장장치(116)를 이용하여 발전기(10)-특히, 연료소모형발전기-의 연료 소모를 줄일 수 있다. 예를 들어, 마이크로그리드모듈(110a, 110b, 110c, 110d)은 에너지저장장치(116)에 저장된 전력량이 충분한 경우, 발전기(10)-특히, 연료소모형발전기-의 작동을 중지시켜 연료 소모를 줄일 수 있다.The microgrid modules 110a, 110b, 110c, and 110d may reduce the fuel consumption of the generator 10, in particular, the fuel consumption generator using the energy storage device 116. For example, the microgrid modules 110a, 110b, 110c, and 110d may stop the operation of the generator 10, in particular, the fuel consumption generator, when the amount of power stored in the energy storage device 116 is sufficient to reduce fuel consumption. Can be reduced.
마이크로그리드모듈(110a, 110b, 110c, 110d)이 본진에 위치하는 경우-연료가 충분한 경우-, 발전기(10)가 작동되어 에너지저장장치(116)에 전력을 저장할 수 있다. 그리고, 마이크로그리드모듈(110a, 110b, 110c, 110d)은 야전에 배치될 때-연료가 충분하지 않을 때-, 에너지저장장치(116)에 저장된 전력을 부하로 공급함으로써 발전기(10)-특히, 연료소모형발전기-의 연료 소모를 줄일 수 있다.When the microgrid modules 110a, 110b, 110c, and 110d are located in the main chamber-when the fuel is sufficient-the generator 10 may be operated to store power in the energy storage device 116. And, when the microgrid module (110a, 110b, 110c, 110d) is placed in the field-when the fuel is not enough-the generator 10-in particular, by supplying the power stored in the energy storage device 116 to the load Fuel consumption of generators can be reduced.
DC/AC인버터(118a, 118b)는 DC버스(DCB)에 형성되는 전력을 AC전력으로 변환하여 출력하거나 외부에서 공급되는 AC전력을 변환하여 DC버스(DCB)로 공급할 수 있다. DC/AC인버터(118a, 118b)는 양방향 컨버터일 수 있다. 이에 따라, DC/AC인버터(118a, 118b)는 외부로 AC전력을 공급할 수 있고, 또한 외부로부터 AC전력을 공급받아 내부로 전달할 수 있다.The DC / AC inverters 118a and 118b may convert the power formed on the DC bus DCB into AC power and output the AC power, or may convert the AC power supplied from the outside to the DC bus DCB. The DC / AC inverters 118a and 118b may be bidirectional converters. Accordingly, the DC / AC inverters 118a and 118b can supply AC power to the outside, and can also receive AC power from the outside and transfer them to the inside.
마이크로그리드모듈(110a, 110b, 110c, 110d)은 복수의 DC/AC인버터(118a, 118b)를 포함할 수 있는데, 각각의 DC/AC인버터(118a, 118b)는 서로 다른 마이크로그리드모듈과 연결될 수 있다. 예를 들어, 제1마이크로그리드모듈(110a)의 제1DC/AC인버터(118a)는 제2마이크로그리드모듈(110b)과 연결되고 제2DC/AC인버터(118b)는 제4마이크로그리드모듈(110d)과 연결될 수 있다. 그리고, 제2마이크로그리드모듈(110b)의 제1DC/AC인버터(118a)는 제1마이크로그리드모듈(110a)과 연결되고 제2DC/AC인버터(118b)는 제3마이크로그리드모듈(110c)과 연결될 수 있다. 그리고, 제3마이크로그리드모듈(110c)의 제1DC/AC인버터(118a)는 제2마이크로그리드모듈(110b)과 연결되고 제2DC/AC인버터(118b)는 제4마이크로그리드모듈(110d)과 연결될 수 있다. 그리고, 제4마이크로그리드모듈(110d)의 제1DC/AC인버터(118a)는 제1마이크로그리드모듈(110a)과 연결되고 제2DC/AC인버터(118b)는 제3마이크로그리드모듈(110c)과 연결될 수 있다.The microgrid modules 110a, 110b, 110c, and 110d may include a plurality of DC / AC inverters 118a and 118b. Each of the DC / AC inverters 118a and 118b may be connected to different microgrid modules. have. For example, the first DC / AC inverter 118a of the first micro lead module 110a is connected to the second micro lead module 110b, and the second DC / AC inverter 118b is the fourth micro lead module 110d. It can be connected with. In addition, the first DC / AC inverter 118a of the second micro lead module 110b is connected to the first micro lead module 110a, and the second DC / AC inverter 118b is connected to the third micro lead module 110c. Can be. The first DC / AC inverter 118a of the third micro lead module 110c is connected to the second micro lead module 110b, and the second DC / AC inverter 118b is connected to the fourth micro lead module 110d. Can be. The first DC / AC inverter 118a of the fourth micro lead module 110d is connected to the first micro lead module 110a, and the second DC / AC inverter 118b is connected to the third micro lead module 110c. Can be.
이와 같이, 각 마이크로그리드모듈(110a, 110b, 110c, 110d)에 포함된 복수의 DC/AC인버터(118a, 118b) 중 제1DC/AC인버터(118a)와 제2DC/AC인버터(118b)는 서로 다른 마이크로그리드모듈과 연결되면서 전체 마이크로그리드모듈(110a, 110b, 110c, 110d)이 AC링(ring)버스(ACB) 구조로 연결될 수 있다.As such, the first DC / AC inverter 118a and the second DC / AC inverter 118b of the plurality of DC / AC inverters 118a and 118b included in each of the microgrid modules 110a, 110b, 110c, and 110d are mutually different. While being connected to other microgrid modules, the entire microgrid modules 110a, 110b, 110c, and 110d may be connected in an AC ring bus (ACB) structure.
이러한 AC링버스(ACB) 구조에서 하나의 마이크로그리드모듈이 고장나더라도 나머지 마이크로그리드모듈은 여전히 연결되어 있으면서 발전을 지속할 수 있다. 예를 들어, 제2마이크로그리드모듈(110b)이 고장난 경우, 제1마이크로그리드모듈(110a), 제4마이크로그리드(110d) 및 제3마이크로그리드모듈(110c)은 여전히 연결되어 있으면서 발전을 지속할 수 있다.In this AC ring bus (ACB) structure, even if one microgrid module fails, the other microgrid module can still be connected and continue to generate power. For example, when the second micro lead module 110b is broken, the first micro lead module 110a, the fourth micro lead module 110d, and the third micro lead module 110c are still connected and continue to generate power. Can be.
AC링버스(ACB) 구조에서 하나의 마이크로그리드모듈은 마스터모듈로 작동하고 나머지 마이크로그리드모듈은 슬레이브모듈로 작동할 수 있다.In the AC ring bus (ACB) architecture, one microgrid module can act as a master module and the other microgrid module can act as a slave module.
마이크로그리드모듈이 마스터모듈로 작동할 때, 마스터모듈의 적어도 하나의 DC/AC인버터(118a, 118b)는 전압제어로 작동될 수 있다. 그리고, 나머지 DC/AC인버터(118a, 118b)는 전류제어로 작동될 수 있다. 만약, 전압제어로 작동되는 DC/AC인버터(118a, 118b)가 고장나는 경우, 다른 한 DC/AC인버터(118a, 118b)가 고장난 것을 대체하여 전압제어로 작동될 수 있다.When the microgrid module operates as a master module, at least one DC / AC inverter 118a or 118b of the master module may be operated under voltage control. The remaining DC / AC inverters 118a and 118b may be operated by current control. If the DC / AC inverters 118a and 118b operated by voltage control fail, the other DC / AC inverters 118a and 118b may be operated under voltage control in place of the failure.
도 2는 본 발명의 일 실시예에 따른 마이크로그리드모듈의 구성도이다.2 is a block diagram of a microgrid module according to an embodiment of the present invention.
도 2를 참조하면, 마이크로그리드모듈(210)은 복수의 컨버터(212a, 212b, 212c), DC뱅크(214), 에너지저장장치(216) 및 복수의 DC/AC인버터(218a, 218b), 전력제어장치(220; PMS(Power Management System)) 등을 포함할 수 있다.2, the microgrid module 210 includes a plurality of converters 212a, 212b, and 212c, a DC bank 214, an energy storage device 216, and a plurality of DC / AC inverters 218a and 218b, and power. The controller 220 may include a power management system (PMS).
복수의 컨버터(212a, 212b, 212c)는 입력터미널(TI1, TI2, TI3)을 통해 발전기와 연결될 수 있다. 복수의 컨버터(212a, 212b, 212c)는 발전기에서 발전된 전력을 변환하여 DC버스(DCB)로 전달할 수 있다.The plurality of converters 212a, 212b, and 212c may be connected to the generator through the input terminals TI1, TI2, and TI3. The plurality of converters 212a, 212b, and 212c may convert the power generated by the generator and transfer the generated power to the DC bus DCB.
발전기가 AC전력을 발전하는 장치일 경우, 컨버터(212a, 212b)는 PFC(Power Factor Correction)장치일 수 있다. PFC형태의 컨버터(212a, 212b)의 경우, AC전력을 DC전력으로 변환함과 동시에 발전기의 역률도 제어할 수 있다.When the generator is a device for generating AC power, the converters 212a and 212b may be power factor correction (PFC) devices. In the case of the PFC type converters 212a and 212b, the power factor of the generator can be controlled while converting AC power to DC power.
컨버터(212a, 212b)는 병렬제어될 수 있다. 예를 들어, 제1컨버터(212a)와 제2컨버터(212b)는 하나의 발전기와 연결되면서 서로 병렬제어될 수 있다. 제1컨버터(212a)와 제2컨버터(212b)가 서로 병렬제어되는 경우, 전력 처리량을 분담함으로써 각 컨버터(212a, 212b)의 수명을 증가시킬 수 있다. 그리고, 제1컨버터(212a)와 제2컨버터(212b)가 병렬제어에 있어서 인터리브드(interleaved) 방식으로 작동되는 경우, DC버스(DCB)의 전압리플을 줄일 수도 있다. Converters 212a and 212b may be parallel controlled. For example, the first converter 212a and the second converter 212b may be connected to one generator and controlled in parallel with each other. When the first converter 212a and the second converter 212b are parallel controlled with each other, the lifetime of each converter 212a and 212b can be increased by sharing the power throughput. In addition, when the first converter 212a and the second converter 212b are operated in an interleaved manner in parallel control, the voltage ripple of the DC bus DCB may be reduced.
컨버터(212a, 212b)는 입력이 스위치(제1스위치(SW1))를 통해 공유될 수 있다. 예를 들어, 제1컨버터(212a)의 입력과 제2컨버터(212b)의 입력은 제1스위치(SW1)를 통해 연결될 수 있는데, 제1스위치(SW1)가 턴온되는 경우, 제1컨버터(212a)와 제2컨버터(212b)는 병렬제어되고 제1스위치(SW1)가 턴오프되는 경우, 제1컨버터(212a)와 제2컨버터(212b)는 서로 독립적으로 작동할 수 있다.The converters 212a and 212b may have inputs shared through a switch (first switch SW1). For example, an input of the first converter 212a and an input of the second converter 212b may be connected through the first switch SW1. When the first switch SW1 is turned on, the first converter 212a is turned on. ) And the second converter 212b are parallel controlled and when the first switch SW1 is turned off, the first converter 212a and the second converter 212b may operate independently of each other.
컨버터(212c)는 MPPT(Maximum Power Point Tracking)가 작동되는 DC/DC컨버터일 수 있다.The converter 212c may be a DC / DC converter in which MPPT (Maximum Power Point Tracking) is operated.
컨버터(212c)가 태양광발전기와 연결되는 경우, 컨버터(212c)는 태양광발전기의 최대 전력점을 찾아내면서 최대 전력점에서 태양광발전기가 작동되도록 하는 MPPT형 DC/DC컨버터일 수 있다.When the converter 212c is connected to the photovoltaic generator, the converter 212c may be an MPPT type DC / DC converter which finds the maximum power point of the photovoltaic generator and operates the photovoltaic generator at the maximum power point.
DC뱅크(214)는 캐패시터로 구성될 수 있다.The DC bank 214 may be configured as a capacitor.
에너지저장장치(216)는 적어도 하나의 배터리(232), 입출력단자(TB4) 및 양방향DC/DC컨버터(234) 등을 포함할 수 있다.The energy storage device 216 may include at least one battery 232, an input / output terminal TB4, and a bidirectional DC / DC converter 234.
배터리(232)는 입출력단자(TB4)를 통해 양방향DC/DC컨버터(234)와 연결될 수 있다.The battery 232 may be connected to the bidirectional DC / DC converter 234 through the input / output terminal TB4.
양방향DC/DC컨버터(234)는 DC버스(DCB)와 연결되어 있으면서 배터리(232)에 저장된 전력을 DC버스(DCB)로 공급할 수 있다. 그리고, 양방향DC/DC컨버터(234)는 DC버스(DCB)에 형성되는 전력을 배터리(232) 충전전력으로 사용할 수 있다.The bidirectional DC / DC converter 234 may supply power stored in the battery 232 to the DC bus DCB while being connected to the DC bus DCB. The bidirectional DC / DC converter 234 may use the power formed in the DC bus DCB as the charging power of the battery 232.
양방향DC/DC컨버터(234)는 배터리(232)의 SOC(State-of-Charge)를 파악할 수 있다. 배터리(232)의 SOC는 입출력되는 전류를 합산하는 방식으로 파악되거나 배터리(232)의 전압을 통해 파악될 수 있다.The bidirectional DC / DC converter 234 may determine the state-of-charge (SOC) of the battery 232. The SOC of the battery 232 may be determined by summing the input and output currents or may be determined through the voltage of the battery 232.
양방향DC/DC컨버터(234)는 파악된 SOC를 전력제어장치(220)로 전송할 수 있다.The bidirectional DC / DC converter 234 may transmit the identified SOC to the power control device 220.
전력제어장치(220)는 배터리(232)의 SOC에 따라 발전기의 가동을 제어할 수 있다. 예를 들어, 배터리(232)의 SOC가 상한값(예, 80%)를 넘어서는 경우, 발전기의 가동이 중지될 수 있다. 반대로, 배터리(232)의 SOC가 하한값(예, 30%) 이하가 되는 경우, 발전기가 재가동될 수 있다.The power controller 220 may control the operation of the generator according to the SOC of the battery 232. For example, when the SOC of the battery 232 exceeds the upper limit (eg, 80%), the generator may be stopped. Conversely, if the SOC of the battery 232 is below the lower limit (eg, 30%), the generator can be restarted.
DC/AC인버터(218a, 218b)는 양방향 컨버터일 수 있다.The DC / AC inverters 218a and 218b may be bidirectional converters.
DC/AC인버터(218a, 218b)는 DC버스(DCB)의 전력을 변환하여 AC링버스(ACB)로 전달할 수 있다. 반대로, DC/AC인버터(218a, 218b)는 AC링버스(ACB)의 전력을 변환하여 DC버스(DCB)로 전달할 수 있다.The DC / AC inverters 218a and 218b may convert power of the DC bus DCB and transfer the converted power to the AC ring bus ACB. On the contrary, the DC / AC inverters 218a and 218b may convert the power of the AC ring bus ACB and transfer the converted power to the DC bus DCB.
복수의 DC/AC인버터(218a, 218b)의 출력부는 상호 연결될 수 있다. 예를 들어, 제1DC/AC인버터(218a)의 출력과 제2DC/AC인버터(218b)의 출력은 서로 연결되어 있을 수 있다.Outputs of the plurality of DC / AC inverters 218a and 218b may be interconnected. For example, an output of the first DC / AC inverter 218a and an output of the second DC / AC inverter 218b may be connected to each other.
DC/AC인버터(218a, 218b)는 출력단자(TO1, TO2, TO3, TO4)를 통해 AC링버스(ACB)와 연결되거나 부하와 연결될 수도 있다.The DC / AC inverters 218a and 218b may be connected to the AC ring bus ACB or the load through the output terminals TO1, TO2, TO3, and TO4.
부하와 연결되는 출력단자(TO3, TO4)와 DC/AC인버터(218a, 218b) 사이에는 차단기(CB1)가 위치할 수 있다. 차단기(CB1)는 부하로 과전류가 흐르거나 부하에 문제가 발생하는 경우 부하로 연결되는 회선을 차단할 수 있다.The breaker CB1 may be located between the output terminals TO3 and TO4 connected to the load and the DC / AC inverters 218a and 218b. The breaker CB1 may cut a line connected to the load when an overcurrent flows to the load or a problem occurs in the load.
DC/AC인버터(218a, 218b)와 출력단자(TO1, TO2, TO3, TO4) 사이에는 스위치(SW2, SW3, SW4, SW5)가 위치할 수 있다. 이러한 스위치(SW2, SW3, SW4, SW5)의 연결에 따라 DC/AC인버터(218a, 218b)가 AC링버스(ACB)를 통해 다른 마이크로그리드모듈과 연결될 수도 있고, 다른 마이크로그리드모듈과의 연결이 차단될 수도 있다.Switches SW2, SW3, SW4, and SW5 may be located between the DC / AC inverters 218a and 218b and the output terminals TO1, TO2, TO3, and TO4. According to the connection of the switches SW2, SW3, SW4, and SW5, the DC / AC inverters 218a and 218b may be connected with other microgrid modules through the AC ring bus (ACB), or with other microgrid modules. It may be blocked.
마이크로그리드모듈(210)의 구성 요소들(212a, 212b, 212c, 216, 218a, 218b)은 전력제어장치(220)와 제어라인(D1, D2)을 통해 연결될 수 있다. 제어라인(D1, D2)은 두 개 이상일 수 있다. 각각의 제어라인(D1, D2)은 서로 다른 용도-예를 들어, 전송라인, 수신라인-로 사용될 수도 있고, 이중화로 사용될 수도 있다. Components 212a, 212b, 212c, 216, 218a, and 218b of the microgrid module 210 may be connected to the power control device 220 through the control lines D1 and D2. There may be two or more control lines D1 and D2. Each control line D1, D2 may be used for different purposes-for example, a transmission line, a receiving line, or may be used for redundancy.
도 3은 본 발명이 일 실시예에 따른 제1제어 예시의 흐름도이다.3 is a flowchart of a first control example according to an embodiment of the present invention.
도 3을 참조하면, 중앙제어장치는 복수의 마이크로그리드모듈을 감시하고 있으면서, 복수의 마이크로그리드모듈 중 고장난 마이크로그리드모듈(고장모듈)을 감지할 수 있다(S300).Referring to FIG. 3, the central control apparatus may monitor a plurality of microgrid modules and detect a failed microgrid module (fault module) among the plurality of microgrid modules (S300).
중앙제어장치는 각각의 마이크로그리드모듈에 포함된 전력제어장치로부터 각각의 마이크로그리드모듈에 고장이 발생했는지를 감지할 수 있다. 혹은 중앙제어장치는 각각의 전력제어장치로 폴링신호를 전송한 후 폴링신호에 대한 회신이 정확하지 않은 전력제어장치를 고장으로 판단할 수 있다.The central controller may detect whether a failure occurs in each microgrid module from a power control device included in each microgrid module. Alternatively, the central controller may determine a failure of the power controller, which transmits a polling signal to each power controller, in which a reply to the polling signal is incorrect.
중앙제어장치는 고장모듈을 감지한 후 나머지 마이크로그리드모듈(정상모듈)로 고장신호를 전송할 수 있다.The central control unit may detect a fault module and transmit a fault signal to the remaining microgrid module (normal module).
그리고, 정상모듈은 고장모듈과 연결되는 스위치를 차단시켜서 고장모듈과의 연결을 차단할 수 있다(S302). 마이크로그리드모듈은 DC/AC인버터와 출력단자 사이에 위치하는 스위치를 포함할 수 있는데, 정상모듈은 이러한 스위치 중에 고장모듈과 연결된 스위치를 차단하여 고장모듈과의 연결을 차단할 수 있다.In addition, the normal module may block the connection to the faulty module by blocking the switch connected to the faulty module (S302). The microgrid module may include a switch located between the DC / AC inverter and the output terminal, and the normal module may block the connection with the failure module by blocking the switch connected to the failure module.
중앙제어장치는 고장모듈이 마스터모듈인지 판단하고(S304), 고장모듈이 마스터모듈인 경우(S304에서 YES), 정상모듈 중 하나의 마이크로그리드모듈을 마스터모듈로 변경하여 지정할 수 있다(S306).The central controller determines whether the faulty module is the master module (S304), and if the faulty module is the master module (YES in S304), the microcontroller module of one of the normal modules may be changed and designated as the master module (S306).
그리고, 마스터모듈로 변경 지정된 마이크로그리드모듈에서 복수의 DC/AC인버터 중 적어도 하나의 DC/AC인버터는 전압제어로 변경하여 작동될 수 있다(S308).In operation S308, at least one DC / AC inverter of the plurality of DC / AC inverters may be changed to voltage control in the microgrid module designated as the master module.
마이크로그리드모듈 내에서 복수의 DC/AC인버터가 출력을 공유하는 경우, 마스터모듈로 변경 지정된 마이크로그리드모듈에서 복수의 DC/AC인버터 중 하나의 DC/AC인버터만 전압제어로 변경하여 작동되고 나머지는 계속해서 전류제어를 수행할 수 있다.When multiple DC / AC inverters share outputs in the microgrid module, change to master module. Only one DC / AC inverter of the multiple DC / AC inverters is changed to voltage control in the designated microgrid module, and the rest is operated. The current control can be performed continuously.
한편, 중앙제어장치는 고장모듈에 의해 해제된 AC링버스 구조에서, 중간에 위치하는 정상모듈을 마스터모듈로 지정하고 지정신호를 해당 정상모듈로 전송하여 해당 정상모듈에서 복수의 DC/AC인버터 중 적어도 하나의 DC/AC인버터가 전압제어로 작동되도록 할 수 있다.On the other hand, in the AC ring bus structure released by the faulty module, the central controller designates a normal module located in the middle as a master module, and transmits a designated signal to the corresponding normal module. At least one DC / AC inverter can be operated under voltage control.
예를 들어, 제1마이크로그리드모듈 -> 제2마이크로그리드모듈 -> 제3마이크로그리드모듈 -> 제4마이크로그리드모듈 -> 제1마이크로그리드모듈의 순서로 AC링버스 구조가 형성되어 있는 상태에서, 제2마이크로그리드모듈에 고장이 발생하는 경우, 시스템은 제3마이크로그리드모듈 -> 제4마이크로그리드모듈 -> 제1마이크로그리드모듈의 순서로 일렬 연결되는 AC버스 구조가 될 수 있다. 이때, 중앙제어장치는 일렬 연결된 AC버스 구조에서 중앙에 위치하는 제4마이크로그리드모듈을 마스터모듈로 지정할 수 있다.For example, in the state where the AC ring bus structure is formed in the order of the first micro lead module-> second micro lead module-> third micro lead module-> fourth micro lead module-> first micro lead module. When a failure occurs in the second micro lead module, the system may have an AC bus structure in which the second micro lead module is connected in the order of the third micro lead module-> the fourth micro lead module-> the first micro lead module. In this case, the central controller may designate a fourth micro lead module located in the center of the AC bus structure connected in series as the master module.
도 4는 본 발명의 일 실시예에 따른 제2제어 예시의 흐름도이다.4 is a flowchart of a second control example according to an embodiment of the present invention.
도 4를 참조하면, 중앙제어장치는 각각의 마이크로그리드모듈에 포함된 전력제어장치로부터 각각의 배터리에 대한 SOC를 확인할 수 있다(S400).Referring to FIG. 4, the central controller may check the SOC for each battery from the power controller included in each microgrid module (S400).
그리고, 중앙제어장치는 각각의 배터리에 대한 SOC를 이용하여 전체 배터리 SOC를 확인할 수 있다(S402). 예를 들어, 배터리의 용량이 동일하다고 할 때, 제1배터리의 SOC가 70%이고, 제2배터리의 SOC가 30%일 때, 중앙제어장치는 전체 배터리 SOC를 50%로 확인할 수 있다. 전체 배터리 SOC는 가용한 배터리 용량(잔량)을 전체 배터리 용량으로 나누는 방식으로 계산될 수 있다.In addition, the central controller may identify the entire battery SOC using the SOC for each battery (S402). For example, when the capacity of the battery is the same, when the SOC of the first battery is 70% and the SOC of the second battery is 30%, the central controller can check the total battery SOC as 50%. The total battery SOC can be calculated by dividing the available battery capacity (the remaining capacity) by the total battery capacity.
중앙제어장치는 전체 배터리 SOC를 미리 설정된 하한값과 비교하고(S404), 전체 배터리 SOC가 하한값보다 작은 경우(S404에서 YES), 연료소모형발전기 중 하나 이상을 가동시킬 수 있다(S406).The central controller compares the entire battery SOC with a preset lower limit value (S404), and when the total battery SOC is smaller than the lower limit value (YES in S404), one or more of the fuel consumption generators may be operated (S406).
이때, 중앙제어장치는 소속된 배터리의 SOC가 가장 낮은 마이크로그리드모듈에 연결된 발전기를 가동시켜 해당 모듈의 배터리를 충전시킬 수 있다. 필요에 따라 중앙제어장치는 그 다음으로 배터리의 SOC가 낮은 마이크로그리드모듈에 연결된 발전기를 가동시키는 방식으로 소속된 배터리의 SOC에 따라 발전기의 가동 순서를 정해 가동시킬 수 있다.In this case, the central controller may charge a battery of the module by operating a generator connected to the microgrid module having the lowest SOC of the battery to which it belongs. If necessary, the central control unit can then run the generator connected to the microgrid module with the low SOC of the battery, and set the operation sequence of the generator according to the SOC of the battery to which it belongs.
전체 배터리 SOC가 하한값 이상이거나(S404에서 NO), 발전기의 가동을 통해 전체 배터리 SOC를 증가시킨 후(S406 이후), 중앙제어장치는 각 마이크로그리드모듈에 포함된 배터리의 SOC를 비교하여 SOC 불균형도를 판단할 수 있다(S408).After the total battery SOC is above the lower limit (NO in S404) or after increasing the total battery SOC through the operation of the generator (since S406), the central controller compares the SOC of the batteries contained in each microgrid module and compares the SOC imbalance. It may be determined (S408).
그리고, 중앙제어장치는 SOC 불균형도가 일정값 이상인 경우(S408), 각 마이크로그리드모듈을 제어하여 배터리전력이 상호 이동되도록 할 수 있다(S410).In addition, when the SOC imbalance is greater than or equal to a predetermined value (S408), the central controller may control each microgrid module to allow the battery power to move with each other (S410).
예를 들어, 중앙제어장치는 전력제어장치로 제어신호를 송신하여, 배터리 SOC가 높은 마이크로그리드모듈에서 에너지저장장치가 DC버스로 전력을 방전시키고 방전된 전력이 AC링버스로 출력되도록 할 수 있다. 그리고, 중앙제어장치는 전력제어장치로 제어신호를 송신하여, 배터리 SOC가 낮은 마이크로그리드모듈에서 AC/DC컨버터가 AC링버스로부터 전력을 공급받아 DC버스로 전달하게 하고 에너지저장장치는 DC버스에 형성된 전력으로 배터리를 충전하도록 할 수 있다.For example, the central controller may transmit a control signal to the power controller, so that the energy storage device discharges power to the DC bus and outputs the discharged power to the AC ring bus in the microgrid module having a high battery SOC. . In addition, the central control unit transmits a control signal to the power control unit so that the AC / DC converter receives power from the AC ring bus and delivers the power to the DC bus in the microgrid module having a low battery SOC. The battery may be charged with the generated power.
도 5는 본 발명의 일 실시예에 따른 제3제어 예시의 흐름도이다.5 is a flowchart of a third control example according to an embodiment of the present invention.
도 5를 참조하면, 전력제어장치는 마이크로그리드모듈에 연결된 태양광발전기의 발전량을 확인할 수 있다(S500).Referring to FIG. 5, the power control device may check the power generation amount of the solar generator connected to the microgrid module (S500).
그리고, 전력제어장치는 태양광발전기의 발전량에 따라 연료소모형발전기-예를 들어, 디젤발전기-의 가동 개수를 결정할 수 있다(S502).In addition, the power control apparatus may determine the number of operations of the fuel consumption type generator, for example, the diesel generator, according to the amount of power generated by the solar power generator (S502).
이러한 결정에 따라, 전력제어장치가 연료소모형발전기-예를 들어, 디젤발전기-의 일부만 가동하는 경우(S504에서 YES), 전력제어장치는 연료소모형발전기와 연결되는 컨버터-예를 들어, PFC장치-를 병렬제어할 수 있다.According to this determination, when the power control device operates only a part of the fuel consumption generator (eg, a diesel generator) (YES in S504), the power control device is a converter connected to the fuel consumption generator, for example, a PFC. The device can be controlled in parallel.
예를 들어, 전력제어장치는 연료소모형발전기의 일부만 가동하는 경우(S504에서 YES), 복수의 컨버터의 입력을 연결시켜주는 스위치를 연결시켜 복수의 컨버터가 입력 및 발전기를 공유할 수 있도록 한다(S506).For example, when the power control device operates only a part of the fuel consumption type generator (YES in S504), a plurality of converters share an input and a generator by connecting a switch connecting the inputs of the plurality of converters ( S506).
그리고, 전력제어장치는 공유된 입력을 통해 공급되는 발전기의 전력을 복수의 컨버터-예를 들어, PFC 장치-가 병렬제어하도록 할 수 있다(S508).In addition, the power controller may allow a plurality of converters (eg, PFC devices) to control the power of the generator supplied through the shared input in parallel (S508).
실시예에 따라, 마이크로그리드모듈은 연료소모형발전기의 개수와 동일한 개수의 컨버터를 포함할 수 있는데, 전력제어장치는 연료소모형발전기의 가동 개수에 따라 가동되는 연료소모형발전기의 개수가 연료소모형발전기에 대응되는 컨버터의 개수보다 작을 경우, 컨버터를 병렬제어할 수 있다.According to an embodiment, the microgrid module may include the same number of converters as the number of fuel small generators, and the power control device may include the number of fuel small generators operated according to the number of operation of the fuel small generators. When the number of converters corresponding to the model generator is smaller than that, the converters can be controlled in parallel.
도 6은 본 발명의 다른 실시예에 따른 군용 마이크로그리드 시스템의 구성도이다.6 is a block diagram of a military microgrid system according to another embodiment of the present invention.
도 6을 참조하면, 시스템(600)은 복수의 마이크로그리드모듈(610a, 610b, 610c), 부하연결모듈(630), 복수의 발전기(10), 로드(20), 및 중앙제어장치(620)를 포함할 수 있다.Referring to FIG. 6, the system 600 includes a plurality of microgrid modules 610a, 610b, and 610c, a load connection module 630, a plurality of generators 10, a rod 20, and a central controller 620. It may include.
복수의 발전기(10)는 전력을 생산하는 장치로서, 연료소모형발전기와 재생에너지발전기 등일 수 있다.The plurality of generators 10 is a device for producing electric power, and may be a fuel consumption type generator or a renewable energy generator.
마이크로그리드모듈(610a, 610b, 610c)은 이러한 복수의 발전기(10)와 연결되어 있으면서, 복수의 발전기(10)로부터 발전된 전력을 공급받아 처리할 수 있다.The microgrid modules 610a, 610b, and 610c may be connected to the plurality of generators 10 and may receive and process power generated from the plurality of generators 10.
중앙제어장치(620)는 시스템(600) 전체를 관리하고 제어하는 장치이다. 중앙제어장치(620)는 HMI(Human Machine Interface)장치를 포함하고 있으면서, 사용자의 입력을 인식할 수 있고, 사용자에게 정보를 출력시킬 수 있다. 중앙제어장치(620)는 내부에 저장된 알고리즘이나 회로의 작동에 따라 자동적으로 제어신호를 출력할 수 있으나 실시예에 따라서는 사용자의 입력에 따라 제어신호를 출력할 수 있다. 예를 들어, 중앙제어장치(620)는 시스템(600)에 저장된 에너지가 충분할 때, 발전기(10)의 작동을 정지시킬 수 있는데, 이러한 정지제어신호는 중앙제어장치(620)의 내부 알고리즘 혹은 회로의 작동에 의해 출력될 수도 있고, 사용자의 입력 신호에 의해 출력될 수도 있다.The central controller 620 is a device that manages and controls the entire system 600. The central control unit 620 may include a human machine interface (HMI) device, and may recognize a user's input and output information to the user. The central controller 620 may automatically output a control signal according to an operation of an algorithm or a circuit stored therein, but according to an exemplary embodiment, the central controller 620 may output a control signal according to a user input. For example, the central controller 620 may stop the operation of the generator 10 when the energy stored in the system 600 is sufficient. Such a stop control signal may be an internal algorithm or a circuit of the central controller 620. It may be output by the operation of or may be output by the input signal of the user.
마이크로그리드모듈(610a, 610b, 610c) 각각은 싱글 마이크로그리드 시스템을 구성할 수 있다. 마이크로그리드모듈(610a, 610b, 610c)은 적어도 하나의 발전기-분산전원에 해당됨-와 연결되면서 각각 독립적인 마이크로그리드 시스템을 구성할 수 있다.Each of the microgrid modules 610a, 610b, and 610c may constitute a single microgrid system. The microgrid modules 610a, 610b, and 610c may be connected to at least one generator, which corresponds to a distributed power supply, to form an independent microgrid system.
마이크로그리드모듈(610a, 610b, 610c)은 서로 연결되면서 시스템(600)이 멀티 마이크로그리드 시스템이 되도록 할 수 있다. 시스템(600)은 멀티 마이크로그리드 시스템을 통해 특정 마이크로그리드모듈(610a, 610b, 610c)이 고장나더라도 나머지 마이크로그리드모듈(610a, 610b, 610c)을 통해 지속적으로 전력을 생산할 수 있다.The microgrid modules 610a, 610b, and 610c may be connected to each other to allow the system 600 to be a multi-microgrid system. The system 600 may continuously generate power through the remaining microgrid modules 610a, 610b, and 610c even if a specific microgrid module 610a, 610b, or 610c fails through a multi-microgrid system.
마이크로그리드모듈(610a, 610b, 610c)은 복수의 컨버터(612a, ..., 612n), DC뱅크(614), 에너지저장장치(616), DC전력처리부(618) 등을 포함할 수 있다.The microgrid modules 610a, 610b, and 610c may include a plurality of converters 612a,..., 612n, a DC bank 614, an energy storage device 616, a DC power processor 618, and the like.
복수의 컨버터(612a, ..., 612n)는 발전기(10)로부터 공급되는 전력을 변환하여 내부 DC버스(DCBa)로 전달할 수 있다. 여기서, 내부 DC버스(DCBa)는 직류전압이 형성되는 전력선 및 그 부속장치의 그룹을 의미할 수 있다.The plurality of converters 612a,..., 612n may convert the power supplied from the generator 10 and transmit the converted power to the internal DC bus DCBa. Here, the internal DC bus DCBa may refer to a group of power lines and their accessories in which a DC voltage is formed.
발전기(10)가 AC전력을 생산하는 경우, 컨버터(612a, ..., 612n)는 AC/DC컨버터일 수 있다. 이때, AC/DC컨버터는 단방향 컨버터로서 발전기(10)에서 발전되는 전력을 내부 DC버스(DCBa)로 전달할 수 있다.When the generator 10 produces AC power, the converters 612a, ..., 612n may be AC / DC converters. In this case, the AC / DC converter may transfer power generated by the generator 10 to the internal DC bus DCBa as a unidirectional converter.
발전기(10)가 DC전력을 생산하는 경우-예를 들어, 발전기(10)가 태양광발전기이거나 연료전지발전기인 경우-, 컨버터(612a, ..., 612n)는 DC/DC컨버터일 수 있다. 이때, DC/DC컨버터는 단방향 컨버터로서 발전기(10)에서 발전되는 전력을 내부 DC버스(DCBa)로 전달할 수 있다.When the generator 10 produces DC power—for example, when the generator 10 is a photovoltaic or fuel cell generator—the converters 612a,..., 612n may be DC / DC converters. . In this case, the DC / DC converter may transmit power generated by the generator 10 to the internal DC bus DCBa as a unidirectional converter.
DC뱅크(614)는 적어도 하나의 용량성소자-예를 들어, 캐패시터-를 포함하고 있으면서, 이러한 용량성소자를 이용하여 DC버스의 전압변동을 완충시킬 수 있다. DC뱅크(614)는 일 예로서, 복수의 캐패시터로 구성되고, 복수의 캐패시터 중 적어도 하나가 내부 DC버스(DCBa)에 연결되면서 내부 DC버스(DCBa)에 형성되는 리플전압을 흡수할 수 있다.The DC bank 614 includes at least one capacitive element, for example, a capacitor, and may use this capacitive element to buffer the voltage variation of the DC bus. As an example, the DC bank 614 may include a plurality of capacitors, and may absorb a ripple voltage formed on the internal DC bus DCBa while at least one of the plurality of capacitors is connected to the internal DC bus DCBa.
에너지저장장치(616)는 적어도 하나의 배터리를 포함하면서 내부 DC버스(DCBa)로 전력을 공급하거나 내부 DC버스(DCBa)로부터 전력을 공급받을 수 있다.The energy storage device 616 may include at least one battery and supply power to the internal DC bus DCBa or may receive power from the internal DC bus DCBa.
에너지저장장치(616)는 발전기(10)에서 발전한 전력이 부하에서 사용하는 전력보다 많은 경우, 그 차이의 전력을 저장할 수 있다. 이와 반대로 에너지저장장치(616)는 발전기(10)에서 발전한 전력이 부하에서 사용하는 전력보다 적은 경우, 그 차이의 전력을 내부 DC버스(DCBa)로 출력시킬 수 있다.The energy storage device 616 may store the power of the difference when the power generated by the generator 10 is larger than the power used by the load. On the contrary, when the power generated by the generator 10 is less than the power used by the load, the energy storage device 616 may output the power of the difference to the internal DC bus DCBa.
마이크로그리드모듈(610a, 610b, 610c)은 에너지저장장치(616)를 이용하여 발전기(10)-특히, 연료소모형발전기-의 연료 소모를 줄일 수 있다. 예를 들어, 마이크로그리드모듈(610a, 610b, 610c)은 에너지저장장치(616)에 저장된 전력량이 충분한 경우, 발전기(10)-특히, 연료소모형발전기-의 작동을 중지시켜 연료 소모를 줄일 수 있다.The microgrid modules 610a, 610b, and 610c may reduce the fuel consumption of the generator 10, in particular, the fuel consumption generator using the energy storage device 616. For example, the microgrid modules 610a, 610b, and 610c may reduce the fuel consumption by stopping the operation of the generator 10, in particular, the fuel consumption generator, when the amount of power stored in the energy storage device 616 is sufficient. have.
마이크로그리드모듈(610a, 610b, 610c)이 본진에 위치하는 경우-연료가 충분한 경우-, 발전기(10)가 작동되어 에너지저장장치(616)에 전력을 저장할 수 있다. 그리고, 마이크로그리드모듈(610a, 610b, 610c)은 야전에 배치될 때-연료가 충분하지 않을 때-, 에너지저장장치(616)에 저장된 전력을 부하로 공급함으로써 발전기(10)-특히, 연료소모형발전기-의 연료 소모를 줄일 수 있다.When the microgrid modules 610a, 610b, and 610c are located in the main chamber, when the fuel is sufficient, the generator 10 may be operated to store power in the energy storage device 616. In addition, the microgrid modules 610a, 610b, and 610c are placed in the field-when the fuel is not sufficient-by supplying the power stored in the energy storage device 616 to the load to the generator 10-in particular, fuel station Model generators can reduce fuel consumption.
DC전력처리부(618)는 내부 DC버스(DCBa)에 형성되는 전력을 외부 DC버스(DCBb)로 출력하거나 외부 DC버스(DCBb)에 형성되는 전력을 내부 DC버스(DCBb)로 공급할 수 있다.The DC power processor 618 may output power formed on the internal DC bus DCBa to the external DC bus DCBb or supply power formed on the external DC bus DCBb to the internal DC bus DCBb.
DC전력처리부(618)는 적어도 둘 이상의 외부 DC버스(DCBb)를 통해 적어도 둘 이상의 마이크로그리드모듈과 연결되면서 전체 마이크로그리드모듈(610a, 610b, 610c)이 DC링(ring)버스 구조로 연결되도록 할 수 있다.The DC power processing unit 618 is connected to at least two or more microgrid modules through at least two external DC buses (DCBb) such that the entire microgrid modules 610a, 610b, and 610c are connected in a DC ring bus structure. Can be.
DC전력처리부(618)는 적어도 둘 이상의 스위치(SWa, SWb)를 포함하고 있으면서, 이러한 적어도 둘 이상의 스위치(SWa, SWb)를 이용하여 서로 다른 마이크로그리드모듈과 연결될 수 있다. 여기서, 스위치(SWa, SWb)는 내부 DC버스(DCBa)와 다른 마이크로그리드모듈의 내부 DC버스를 전기적으로 연결시키는 기능을 수행할 수 있다.The DC power processor 618 may include at least two switches SWa and SWb, and may be connected to different microgrid modules using the at least two switches SWa and SWb. Here, the switches SWa and SWb may perform a function of electrically connecting the internal DC bus DCBa and the internal DC bus of another microgrid module.
예를 들어, 제1마이크로그리드모듈(610a)의 제1스위치(SWa)는 제2마이크로그리드모듈(610b)과 연결되고 제2스위치(SWb)는 제3마이크로그리드모듈(610c)과 연결될 수 있다. 그리고, 제2마이크로그리드모듈(610b)의 제1스위치(SWa)는 제1마이크로그리드모듈(610a)과 연결되고 제2스위치(SWb)는 제3마이크로그리드모듈(610c)과 연결될 수 있다. 그리고, 제3마이크로그리드모듈(610c)의 제1스위치(SWa)는 제1마이크로그리드모듈(610a)과 연결되고 제2스위치(SWb)는 제2마이크로그리드모듈(610b)과 연결될 수 있다.For example, the first switch SWa of the first micro lead module 610a may be connected to the second micro lead module 610b, and the second switch SWb may be connected to the third micro lead module 610c. . The first switch SWa of the second micro lead module 610b may be connected to the first micro lead module 610a, and the second switch SWb may be connected to the third micro lead module 610c. The first switch SWa of the third micro lead module 610c may be connected to the first micro lead module 610a, and the second switch SWb may be connected to the second micro lead module 610b.
이와 같이 DC전력처리부(618)가 적어도 둘 이상의 서로 다른 마이크로그리드모듈과 연결되면서 전체 마이크로그리드모듈(610a, 610b, 610c)이 DC링(ring)버스 구조로 연결될 수 있다.As such, while the DC power processor 618 is connected to at least two different microgrid modules, the entire microgrid modules 610a, 610b, and 610c may be connected in a DC ring bus structure.
이러한 DC링버스 구조에서 하나의 마이크로그리드모듈이 고장나더라도 나머지 마이크로그리드모듈은 여전히 연결되어 있으면서 발전을 지속할 수 있다. 예를 들어, 제2마이크로그리드모듈(610b)이 고장난 경우, 제1마이크로그리드모듈(610a), 및 제3마이크로그리드모듈(610c)은 여전히 연결되어 있으면서 발전을 지속할 수 있다.In this DC ring bus structure, even if one microgrid module fails, the other microgrid module can continue to be developed while still being connected. For example, when the second micro lead module 610b is broken, the first micro lead module 610a and the third micro lead module 610c may continue to generate power while being connected.
DC링버스 구조에서 하나의 마이크로그리드모듈은 마스터모듈로 작동하고 나머지 마이크로그리드모듈은 슬레이브모듈로 작동할 수 있다.In a DC ringbus structure, one microgrid module can act as a master module and the other microgrid module can act as a slave module.
마이크로그리드모듈이 마스터모듈로 작동할 때, 마스터모듈의 적어도 하나의 컨버터(612a, …, 612n)가 전압제어로 작동되거나 DC전력처리부(618)가 전압제어로 작동될 수 있다.When the microgrid module operates as the master module, at least one converter 612a, ..., 612n of the master module may be operated under voltage control, or the DC power processor 618 may be operated under voltage control.
예를 들어, DC전력처리부(618)가 스위치(SWa, SWb)로 구성되는 경우, 마스터모듈의 적어도 하나의 컨버터(612a, …, 612n)는 전압제어로 작동할 수 있다. 다른 예로서, DC전력처리부(618)가 적어도 둘 이상의 DC/DC컨버터를 포함하는 경우, 적어도 둘 이상의 DC/DC컨버터 중 적어도 하나의 DC/DC컨버터는 전압제어로 작동할 수 있다.For example, when the DC power processor 618 is composed of switches SWa and SWb, at least one converter 612a, ..., 612n of the master module may operate under voltage control. As another example, when the DC power processor 618 includes at least two DC / DC converters, at least one DC / DC converter of the at least two DC / DC converters may operate under voltage control.
도 7은 본 발명의 다른 실시예에 따른 마이크로그리드모듈의 구성도이다.7 is a configuration diagram of a microgrid module according to another embodiment of the present invention.
도 7을 참조하면, 마이크로그리드모듈(710)은 복수의 컨버터(712a, 712b, 712c), DC뱅크(714), 에너지저장장치(716) 및 DC전력처리부(718), 전력제어장치(720) 등을 포함할 수 있다.Referring to FIG. 7, the microgrid module 710 includes a plurality of converters 712a, 712b, and 712c, a DC bank 714, an energy storage device 716, a DC power processor 718, and a power control device 720. And the like.
복수의 컨버터(712a, 712b, 712c)는 입력터미널(TI1, TI2, TI3)을 통해 발전기와 연결될 수 있다. 복수의 컨버터(712a, 712b, 712c)는 발전기에서 발전된 전력을 변환하여 내부 DC버스(DCBa)로 전달할 수 있다.The plurality of converters 712a, 712b, and 712c may be connected to the generator through the input terminals TI1, TI2, and TI3. The plurality of converters 712a, 712b, and 712c may convert the power generated by the generator and transfer the generated power to the internal DC bus DCBa.
발전기가 AC전력을 발전하는 장치일 경우, 컨버터(712a, 712b)는 PFC(Power Factor Correction)장치일 수 있다. PFC형태의 컨버터(712a, 212b)의 경우, AC전력을 DC전력으로 변환함과 동시에 발전기의 역률도 제어할 수 있다.When the generator is a device for generating AC power, the converters 712a and 712b may be power factor correction (PFC) devices. In the case of the PFC type converters 712a and 212b, it is possible to control the power factor of the generator while converting AC power to DC power.
컨버터(712a, 712b)는 병렬제어될 수 있다. 예를 들어, 제1컨버터(712a)와 제2컨버터(712b)는 하나의 발전기와 연결되면서 서로 병렬제어될 수 있다. 제1컨버터(712a)와 제2컨버터(712b)가 서로 병렬제어되는 경우, 전력 처리량을 분담함으로써 각 컨버터(712a, 712b)의 수명을 증가시킬 수 있다. 그리고, 제1컨버터(712a)와 제2컨버터(712b)가 병렬제어에 있어서 인터리브드(interleaved) 방식으로 작동되는 경우, 내부 DC버스(DCBa)의 전압리플을 줄일 수도 있다. Converters 712a and 712b may be parallel controlled. For example, the first converter 712a and the second converter 712b may be connected in parallel with one generator. When the first converter 712a and the second converter 712b are parallel controlled with each other, the lifetime of each converter 712a or 712b can be increased by sharing the power throughput. When the first converter 712a and the second converter 712b are operated in an interleaved manner in parallel control, the voltage ripple of the internal DC bus DCBa may be reduced.
컨버터(712a, 712b)는 입력이 스위치(SW)를 통해 공유될 수 있다. 예를 들어, 제1컨버터(712a)의 입력과 제2컨버터(712b)의 입력은 스위치(SW)를 통해 연결될 수 있는데, 스위치(SW)가 턴온되는 경우, 제1컨버터(712a)와 제2컨버터(712b)는 병렬제어되고 스위치(SW)가 턴오프되는 경우, 제1컨버터(712a)와 제2컨버터(712b)는 서로 독립적으로 작동할 수 있다.The converters 712a and 712b may have inputs shared via the switch SW. For example, an input of the first converter 712a and an input of the second converter 712b may be connected through a switch SW. When the switch SW is turned on, the first converter 712a and the second converter 712a may be connected to each other. When the converter 712b is parallel controlled and the switch SW is turned off, the first converter 712a and the second converter 712b may operate independently of each other.
컨버터(712c)는 MPPT(Maximum Power Point Tracking)가 작동되는 DC/DC컨버터일 수 있다.The converter 712c may be a DC / DC converter in which MPPT (Maximum Power Point Tracking) is operated.
컨버터(712c)가 태양광발전기와 연결되는 경우, 컨버터(712c)는 태양광발전기의 최대 전력점을 찾아내면서 최대 전력점에서 태양광발전기가 작동되도록 하는 MPPT형 DC/DC컨버터일 수 있다.When the converter 712c is connected to the photovoltaic generator, the converter 712c may be an MPPT type DC / DC converter that finds the maximum power point of the photovoltaic generator and operates the photovoltaic generator at the maximum power point.
DC뱅크(714)는 캐패시터로 구성될 수 있다.DC bank 714 may be configured as a capacitor.
에너지저장장치(716)는 적어도 하나의 배터리(732), 입출력단자(TB4) 및 양방향DC/DC컨버터(734) 등을 포함할 수 있다.The energy storage device 716 may include at least one battery 732, an input / output terminal TB4, and a bidirectional DC / DC converter 734.
배터리(732)는 입출력단자(TB4)를 통해 양방향DC/DC컨버터(734)와 연결될 수 있다.The battery 732 may be connected to the bidirectional DC / DC converter 734 through the input / output terminal TB4.
양방향DC/DC컨버터(734)는 내부 DC버스(DCBa)와 연결되어 있으면서 배터리(732)에 저장된 전력을 내부 DC버스(DCBa)로 공급할 수 있다. 그리고, 양방향DC/DC컨버터(734)는 내부 DC버스(DCBa)에 형성되는 전력을 배터리(732) 충전전력으로 사용할 수 있다.The bidirectional DC / DC converter 734 may be connected to the internal DC bus DCBa and supply power stored in the battery 732 to the internal DC bus DCBa. In addition, the bidirectional DC / DC converter 734 may use the power formed in the internal DC bus DCBa as the charging power of the battery 732.
양방향DC/DC컨버터(734)는 배터리(732)의 SOC(State-of-Charge)를 파악할 수 있다. 배터리(732)의 SOC는 입출력되는 전류를 합산하는 방식으로 파악되거나 배터리(732)의 전압을 통해 파악될 수 있다.The bidirectional DC / DC converter 734 may determine the state-of-charge (SOC) of the battery 732. The SOC of the battery 732 may be determined by summing the input and output currents or may be determined through the voltage of the battery 732.
양방향DC/DC컨버터(734)는 파악된 SOC를 전력제어장치(720)로 전송할 수 있다.The bidirectional DC / DC converter 734 may transmit the identified SOC to the power controller 720.
전력제어장치(720)는 배터리(732)의 SOC에 따라 발전기의 가동을 제어할 수 있다. 예를 들어, 배터리(732)의 SOC가 상한값(예, 80%)를 넘어서는 경우, 발전기의 가동이 중지될 수 있다. 반대로, 배터리(732)의 SOC가 하한값(예, 30%) 이하가 되는 경우, 발전기가 재가동될 수 있다.The power controller 720 may control the operation of the generator according to the SOC of the battery 732. For example, when the SOC of the battery 732 exceeds the upper limit (eg, 80%), the generator may be stopped. Conversely, if the SOC of the battery 732 is below the lower limit (eg, 30%), the generator can be restarted.
DC전력처리부(718)는 복수의 스위치(SWa, SWb)를 포함할 수 있다.The DC power processor 718 may include a plurality of switches SWa and SWb.
복수의 스위치(SWa, SWb)가 턴온되면, 내부 DC버스(DCBa)는 외부 DC버스(DCBb)와 연결될 수 있다.When the plurality of switches SWa and SWb are turned on, the internal DC bus DCBa may be connected to the external DC bus DCBb.
복수의 스위치(SWa, SWb) 중 하나의 스위치가 턴오프되면 해당 스위치와 연결된 외부 DC버스는 차단될 수 있다.When one of the switches SWa and SWb is turned off, the external DC bus connected to the switch may be cut off.
특정 마이크로그리드모듈이 고장난 경우, 해당 마이크로그리드모듈과 연결된 스위치는 턴오프될 수 있다.If a particular microgrid module fails, the switch connected to the microgrid module may be turned off.
마이크로그리드모듈(710)의 구성 요소들(712a, 712b, 712c, 716, 718)은 전력제어장치(720)와 제어라인(D1, D2)을 통해 연결될 수 있다. 제어라인(D1, D2)은 두 개 이상일 수 있다. 각각의 제어라인(D1, D2)은 서로 다른 용도-예를 들어, 전송라인, 수신라인-로 사용될 수도 있고, 이중화로 사용될 수도 있다.The components 712a, 712b, 712c, 716, and 718 of the microgrid module 710 may be connected to the power control device 720 through the control lines D1 and D2. There may be two or more control lines D1 and D2. Each control line D1, D2 may be used for different purposes-for example, a transmission line, a receiving line, or may be used for redundancy.
도 3 내지 도 5를 참조하여 설명한 제어 방법은 다른 실시예에 따른 시스템에도 적용될 수 있다.The control method described with reference to FIGS. 3 to 5 may be applied to a system according to another exemplary embodiment.
다만, 도 3의 제어 방법에서, 복수의 DC/AC인버터 대신 DC전력처리부가 링버스의 구조를 변경하는 기능을 수행하는 점에서 차이가 있을 수 있고, 마스터모듈에서 전압제어를 수행하는 구성에서 차이가 있을 수 있다. 그리고, 도 4의 제어 방법에서 AC링버스가 아닌 DC링버스가 사용되는 것에서 차이가 있을 수 있다.However, in the control method of FIG. 3, there may be a difference in that the DC power processing unit changes the structure of the ring bus instead of the plurality of DC / AC inverters, and in the configuration of performing voltage control in the master module. There can be. In addition, there may be a difference in that the DC ring bus is used instead of the AC ring bus in the control method of FIG. 4.
이상에서 본 발명의 일 실시예에 대해 설명하였는데, 이러한 실시예에 의하면, 군용 전력시스템에서 연료소모를 줄이고 전력시스템의 안정도를 높일 수 있는 효과가 있다.As described above, an embodiment of the present invention has been described. According to this embodiment, the military power system has an effect of reducing fuel consumption and increasing the stability of the power system.
이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재될 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥 상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.The terms "comprise", "comprise" or "having" described above mean that a corresponding component may be included unless specifically stated otherwise, and thus does not exclude other components. It should be construed that it may further include other components. All terms, including technical and scientific terms, have the same meanings as commonly understood by one of ordinary skill in the art unless otherwise defined. Terms commonly used, such as terms defined in a dictionary, should be interpreted to coincide with the contextual meaning of the related art, and shall not be construed in an ideal or excessively formal sense unless explicitly defined in the present invention.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2017년 05월 22일 한국에 출원한 특허출원번호 제 10-2017-0062933 호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. This patent application claims priority under Patent Application No. 10-2017-0062933, filed in South Korea on May 22, 2017, pursuant to Section 119 (a) (35 USC § 119 (a)). All content is incorporated by reference in this patent application. In addition, if this patent application claims priority for the same reason for countries other than the United States, all its contents are incorporated into this patent application by reference.

Claims (7)

  1. 발전기로부터 공급되는 전력을 변환하여 DC버스로 전달하는 복수의 컨버터,A plurality of converters to convert the power supplied from the generator and transfer to the DC bus,
    적어도 하나의 용량성소자를 이용하여 상기 DC버스의 전압변동을 완충시키는 DC뱅크,DC bank for buffering the voltage fluctuation of the DC bus using at least one capacitive element,
    적어도 하나의 배터리를 포함하고 상기 DC버스로 전력을 공급하거나 상기 DC버스로부터 전력을 공급받는 에너지저장장치, 및An energy storage device including at least one battery and supplying power to or supplying power from the DC bus, and
    상기 DC버스에 형성되는 전력을 AC전력으로 변환하여 출력하거나 외부에서 공급되는 AC전력을 변환하여 상기 DC버스로 공급하는 복수의 DC/AC인버터를 포함하는 복수의 마이크로그리드모듈을 포함하고,And a plurality of microgrid modules including a plurality of DC / AC inverters for converting and outputting power formed on the DC bus into AC power or converting AC power supplied from the outside to the DC bus.
    상기 복수의 DC/AC인버터 중 제1DC/AC인버터와 제2DC/AC인버터는 서로 다른 마이크로그리드모듈과 연결되면서 전체 마이크로그리드모듈이 AC링(ring)버스 구조로 연결되며,Among the plurality of DC / AC inverters, the first DC / AC inverter and the second DC / AC inverter are connected to different microgrid modules, and the entire microgrid module is connected in an AC ring bus structure.
    상기 에너지저장장치에 포함된 상기 배터리의 SOC(State-of-Charge)에 따라 상기 발전기 중 연료소모형발전기의 가동을 제어하는 중앙제어장치를 더 포함하는 군용 마이크로그리드 시스템.And a central control unit for controlling the operation of a fuel-type generator among the generators according to a state-of-charge of the battery included in the energy storage device.
  2. 제1항에 있어서,The method of claim 1,
    상기 마이크로그리드모듈은,The microgrid module,
    상기 DC/AC인버터와 출력단자 사이에 위치하는 스위치를 포함하고,It includes a switch located between the DC / AC inverter and the output terminal,
    상기 중앙제어장치는,The central control unit,
    상기 복수의 마이크로그리드모듈 중 고장난 마이크로그리드모듈(고장모듈)을 감지한 후 나머지 마이크로그리드모듈(정상모듈)로 고장신호를 전송하고,Detects a faulty microgrid module (fault module) among the plurality of microgrid modules, and transmits a fault signal to the remaining microgrid module (normal module),
    상기 정상모듈은 상기 고장모듈과 연결되는 스위치를 차단시키며,The normal module cuts off the switch connected to the faulty module,
    상기 고장모듈이 마스터모듈인 경우, 상기 정상모듈 중 하나에서 상기 복수의 DC/AC인버터 중 적어도 하나의 DC/AC인버터가 전압제어로 작동되는 군용 마이크로그리드 시스템.If the fault module is a master module, at least one DC / AC inverter of the plurality of DC / AC inverters in one of the normal modules is operated by voltage control.
  3. 제2항에 있어서,The method of claim 2,
    상기 중앙제어장치는,The central control unit,
    상기 고장모듈에 의해 해제된 AC링버스 구조에서, 중간에 위치하는 정상모듈을 마스터모듈로 지정하고 지정신호를 해당 정상모듈로 전송하여 해당 정상모듈에서 상기 복수의 DC/AC인버터 중 적어도 하나의 DC/AC인버터가 전압제어로 작동되도록 하는 군용 마이크로그리드시스템.In the AC ring bus structure released by the fault module, a normal module located in the middle is designated as a master module, and a designated signal is transmitted to the normal module to transmit at least one DC of the plurality of DC / AC inverters in the normal module. Military microgrid system that allows the AC / AC inverter to operate under voltage control.
  4. 제1항에 있어서,The method of claim 1,
    상기 중앙제어장치는,The central control unit,
    각 마이크로그리드모듈에 포함된 상기 배터리의 SOC를 확인하여 전체 배터리 SOC를 확인하고, 전체 배터리 SOC가 미리 설정된 하한값이하이면 상기 연료소모형발전기 중 하나 이상을 가동시키는 군용 마이크로그리드시스템.A military micro-grid system that checks the SOC of the battery included in each microgrid module and checks the total battery SOC, and operates one or more of the fuel consumption generators when the total battery SOC is less than or equal to a preset lower limit.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 중앙제어장치는,The central control unit,
    각 마이크로그리드모듈에 포함된 상기 배터리의 SOC를 비교하여 SOC 불균형도를 판단하고 상기 SOC 불균형도가 일정값 이상이면 각 마이크로그리드모듈을 제어하여 배터리전력이 이동되도록 하는 군용 마이크로그리드시스템.A military microgrid system for comparing the SOC of the battery included in each microgrid module to determine the SOC imbalance and if the SOC imbalance is more than a predetermined value, control the microgrid module to move the battery power.
  6. 제1항에 있어서,The method of claim 1,
    상기 마이크로그리드모듈에 연결된 태양광발전기의 발전량에 따라 상기 연료소모형발전기의 가동 개수가 결정되고,According to the amount of power generation of the photovoltaic generator connected to the micro grid module, the number of operation of the fuel-type generator is determined,
    상기 마이크로그리드모듈은,The microgrid module,
    상기 연료소모형발전기의 가동 개수에 따라 가동되는 상기 연료소모형발전기의 개수가 상기 연료소모형발전기에 대응되는 상기 컨버터의 개수보다 작을 경우, 상기 컨버터를 병렬제어하는 군용 마이크로그리드시스템.A military microgrid system for controlling the converters in parallel when the number of the fuel consumption generators that is operated according to the number of operation of the fuel consumption generators is smaller than the number of the converters corresponding to the fuel consumption generators.
  7. 발전기로부터 공급되는 전력을 변환하여 내부 DC버스로 전달하는 복수의 컨버터,A plurality of converters to convert the power supplied from the generator and transfer to the internal DC bus,
    적어도 하나의 용량성소자를 이용하여 상기 내부 DC버스의 전압변동을 완충시키는 DC뱅크,DC bank for buffering the voltage variation of the internal DC bus using at least one capacitive element,
    적어도 하나의 배터리를 포함하고 상기 내부 DC버스로 전력을 공급하거나 상기 내부 DC버스로부터 전력을 공급받는 에너지저장장치, 및An energy storage device including at least one battery and receiving power from or supplying power to the internal DC bus, and
    상기 내부 DC버스에 형성되는 전력을 외부 DC버스로 출력하거나 상기 외부 DC버스에 형성되는 전력을 상기 내부 DC버스로 공급하는 DC전력처리부를 포함하는 복수의 마이크로그리드모듈을 포함하고,It includes a plurality of micro-grid module including a DC power processing unit for outputting the power formed on the internal DC bus to the external DC bus or the power formed on the external DC bus to the internal DC bus,
    상기 DC전력처리부는 적어도 둘 이상의 상기 외부 DC버스를 통해 적어도 둘 이상의 마이크로그리드모듈과 연결되면서 전체 마이크로그리드모듈이 DC링(ring)버스 구조로 연결되며,The DC power processor is connected to at least two or more microgrid modules through at least two external DC bus, the entire microgrid module is connected to the DC ring bus structure,
    상기 에너지저장장치에 포함된 상기 배터리의 SOC(State-of-Charge)에 따라 상기 발전기 중 연료소모형발전기의 가동을 제어하는 중앙제어장치를 더 포함하는 군용 마이크로그리드 시스템.And a central control unit for controlling the operation of a fuel-type generator among the generators according to a state-of-charge of the battery included in the energy storage device.
PCT/KR2018/004087 2017-05-22 2018-04-06 Military microgrid system WO2018216899A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170062933A KR20180127771A (en) 2017-05-22 2017-05-22 Military microgrid system
KR10-2017-0062933 2017-05-22

Publications (1)

Publication Number Publication Date
WO2018216899A1 true WO2018216899A1 (en) 2018-11-29

Family

ID=64396776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004087 WO2018216899A1 (en) 2017-05-22 2018-04-06 Military microgrid system

Country Status (2)

Country Link
KR (1) KR20180127771A (en)
WO (1) WO2018216899A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4084253A3 (en) * 2021-04-29 2023-02-22 Bloom Energy Corporation Microgrid with automatic load sharing control during off-grid standalone operation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102194001B1 (en) * 2018-12-26 2021-01-06 주식회사 이엘티 Microgrid system considering load environment and the Methods of operation
KR102234560B1 (en) * 2019-12-20 2021-03-31 (주)아이비티 The Connection System of Distributing type Load and Gathering type Load using Low Voltage Direct Circuit and The Operating Method thereof
KR20230092595A (en) 2021-12-17 2023-06-26 우석대학교 산학협력단 Power supply system having military, mobility and non-noise characteristic

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120134875A (en) * 2011-06-03 2012-12-12 (주)인텍에프에이 Grid connected power conversion system
US20130015703A1 (en) * 2011-07-16 2013-01-17 Rouse Gregory C Microgrid
JP2015056942A (en) * 2013-09-11 2015-03-23 シャープ株式会社 Hybrid power generation system
KR101690742B1 (en) * 2015-08-20 2016-12-28 인천대학교 산학협력단 System and method for controlling multi-frequency of multiple microgrids based on back-to-back converter
KR101726346B1 (en) * 2015-10-05 2017-04-26 연세대학교 산학협력단 Inverter Based Inertia Free Stand Alone Microgrid System Using and Method for operating control the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120134875A (en) * 2011-06-03 2012-12-12 (주)인텍에프에이 Grid connected power conversion system
US20130015703A1 (en) * 2011-07-16 2013-01-17 Rouse Gregory C Microgrid
JP2015056942A (en) * 2013-09-11 2015-03-23 シャープ株式会社 Hybrid power generation system
KR101690742B1 (en) * 2015-08-20 2016-12-28 인천대학교 산학협력단 System and method for controlling multi-frequency of multiple microgrids based on back-to-back converter
KR101726346B1 (en) * 2015-10-05 2017-04-26 연세대학교 산학협력단 Inverter Based Inertia Free Stand Alone Microgrid System Using and Method for operating control the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4084253A3 (en) * 2021-04-29 2023-02-22 Bloom Energy Corporation Microgrid with automatic load sharing control during off-grid standalone operation

Also Published As

Publication number Publication date
KR20180127771A (en) 2018-11-30

Similar Documents

Publication Publication Date Title
WO2018216899A1 (en) Military microgrid system
WO2012043919A1 (en) Power conversion system for energy storage system and controlling method of the same
USRE40528E1 (en) Voltage fluctuation compensating apparatus
WO2015060487A1 (en) Electric power supply system having active power control device
EP2614571A1 (en) Energy storage system and controlling method of the same
WO2019031686A1 (en) Energy storage system
WO2018016735A1 (en) Battery system
WO2017116087A2 (en) Battery managing device and battery energy storing system
WO2018117530A1 (en) Pcs for ess and pcs operating method
CN104471820A (en) Distributed power system and operation method
WO2018212404A1 (en) Hybrid energy storage system
WO2018230831A1 (en) Energy storage system
WO2021085759A1 (en) Static transfer switch, and ups module to which static transfer switch is applied
WO2018105875A1 (en) Power conversion apparatus and uninterruptible power supply comprising same
US10855197B2 (en) Power supply system
WO2015102398A1 (en) System and method for storing energy for wind generator
US20020041504A1 (en) Converter system having converter modules connected by a DC intermediate circuit, and method for operating such a system
EP3989392A1 (en) Power device terminal backup switch unit of an ups
WO2022196846A1 (en) Energy storage system hierarchical management system
WO2018135716A1 (en) Energy storage device and energy storage system including same
WO2020122605A1 (en) Micro-grid system with un-interruptible power supply
WO2022103183A1 (en) Direct current distribution-based charging/discharging system for battery activation
WO2022114464A1 (en) Direct current/direct current converter and control method thereof
WO2023113169A1 (en) Energy storage system and method for controlling grounding structure of energy storage system
WO2019245155A1 (en) Stand-alone microgrid operating system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806388

Country of ref document: EP

Kind code of ref document: A1