WO2018216655A1 - Compressor driving device, control unit using same, compressor unit, and cooler - Google Patents

Compressor driving device, control unit using same, compressor unit, and cooler Download PDF

Info

Publication number
WO2018216655A1
WO2018216655A1 PCT/JP2018/019494 JP2018019494W WO2018216655A1 WO 2018216655 A1 WO2018216655 A1 WO 2018216655A1 JP 2018019494 W JP2018019494 W JP 2018019494W WO 2018216655 A1 WO2018216655 A1 WO 2018216655A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
circuit
power supply
control
electromagnetic switch
Prior art date
Application number
PCT/JP2018/019494
Other languages
French (fr)
Japanese (ja)
Inventor
義勝 井上
充浩 福田
西村 誠一
成臣 徳永
Original Assignee
パナソニック アプライアンシズ リフリジレーション デヴァイシズ シンガポール
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック アプライアンシズ リフリジレーション デヴァイシズ シンガポール, パナソニックIpマネジメント株式会社 filed Critical パナソニック アプライアンシズ リフリジレーション デヴァイシズ シンガポール
Priority to CN201880034611.4A priority Critical patent/CN110679051B/en
Publication of WO2018216655A1 publication Critical patent/WO2018216655A1/en
Priority to PH12019502399A priority patent/PH12019502399A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters

Definitions

  • the present invention relates to a compressor driving device, a control unit using the compressor, a compressor unit, and various cooling devices such as a refrigerator and an air conditioner.
  • this type of compressor driving device is driven using AC as a power source.
  • an overvoltage may be applied to the constituent circuit of the compressor driving device. Therefore, a protection device that protects an inverter circuit such as a component circuit from an overvoltage is known (for example, see Patent Document 1).
  • FIG. 5 shows a conventional inverter described in Patent Document 1.
  • the inverter circuit protection device drives a motor 43 through an inverter circuit 42 by a three-phase AC power supply 40.
  • An electromagnetic switch 41 is provided between the three-phase AC power supply 40 and the inverter circuit 42 as a protection device that protects the inverter circuit 42 from overvoltage.
  • the inverter circuit 42 includes a rectifying unit 44 that rectifies three-phase alternating current into direct current, a resistor 45 that smoothes direct current, a smoothing capacitor 46, an inverter unit 47 that converts direct current into three-phase alternating current, And a control circuit 48 for controlling the inverter unit 47.
  • the control circuit 48 detects the overvoltage of the three-phase AC power supply 40 by the voltage dividing resistors 50 and 51 provided in the inverter circuit 42. When the control circuit 48 detects an overvoltage, the control circuit 48 opens the electromagnetic switch 41 to shut off the inverter circuit 42 and the AC power supply 40. This prevents an overvoltage from being applied to the inverter circuit 42.
  • the electromagnetic switch 41 is provided between the three-phase AC power supply 40 and the inverter circuit 42. For this reason, when the overvoltage state occurs due to the voltage fluctuation of the power source, the entire inverter circuit 42 (smoothing capacitor 46, inverter unit 47, control circuit 48, etc.) and the motor 43 are disconnected from the AC power source 40. End up.
  • the electromagnetic switch 41 mechanically cuts off the power supply, the opening operation is slightly delayed (several tens of milliseconds) with respect to the opening signal from the control circuit 48. Therefore, an overvoltage is applied to the inverter circuit 42 during this operation delay. Even if the application of the overvoltage associated with the delay in the opening operation of the electromagnetic switch 41 is in units of several tens of msec, if this is repeated, the electronic components constituting the inverter circuit 42 are damaged. When this damage is accumulated, there is a problem that the reliability and life of the inverter circuit are lowered.
  • the durability of the electronic components constituting the inverter circuit 42 is reduced, and the reliability and life of the inverter circuit are reduced.
  • the present invention has been made in view of the above points, and a compressor driving device and a control unit using the same that can reduce the application of overvoltage to the constituent circuits and at the same time determine the cause of the stoppage of the compressor.
  • the purpose is to provide a compressor unit and a cooling device.
  • the present invention provides a compressor driving device comprising: a compressor driving circuit that drives a compressor; a compressor driving power circuit that supplies power to the compressor driving circuit from an AC power source; A control circuit for controlling a compressor drive circuit, a control power circuit for supplying power from the AC power source to the control circuit, and when an overvoltage occurs in the AC power source, the AC power source and the control power circuit And an electromagnetic switch that cuts off the electrical connection between the AC power supply and the compressor driving power supply circuit without cutting off the electrical connection therebetween.
  • the present invention can provide a compressor drive device that can reduce the application of overvoltage to the constituent circuits and at the same time determine the cause of the compressor stop, and a control unit, compressor unit, and cooling device using the compressor drive device. .
  • a compressor driving device includes a compressor driving circuit that drives a compressor, a compressor driving power supply circuit that supplies power to the compressor driving circuit from an AC power supply, and the compressor driving circuit.
  • a control circuit for controlling, a control power circuit for supplying power to the control circuit from the AC power source, and an electrical connection between the AC power source and the control power circuit when an overvoltage occurs in the AC power source.
  • the electromagnetic switch which interrupts
  • the control circuit can determine the cause of the compressor stop.
  • the electromagnetic switch in the first invention, when the compressor is not driven, the electromagnetic switch is opened and the AC power source and the compressor drive power circuit are connected.
  • the electrical connection between them may be interrupted.
  • the electromagnetic switch is already open even if the AC power supply is in an overvoltage state when the compressor is not driven. For this reason, it is not necessary to open the electromagnetic switch every time an overvoltage state occurs while the compressor is stopped. Thereby, it is possible to greatly reduce the application of overvoltage to the constituent circuits such as the compressor driving power supply circuit due to the delay in opening the electromagnetic switch. Therefore, it is possible to reduce damage caused by application of overvoltage to elements constituting the compressor driving power supply circuit and the like, and to improve the reliability and life of the compressor driving device and a device such as a refrigerator using the compressor driving device. Further, since the driving of the electromagnetic switch can be stopped while the compressor is stopped, power consumption for driving the electromagnetic switch can be suppressed, and energy saving can be improved.
  • the control power circuit includes a rectifier diode for half-wave rectification, and the electromagnetic switch is connected to the AC power source.
  • a contact that opens and closes one of the pair of wirings, and the rectifier diode may be connected to the one wiring.
  • the compressor drive power supply circuit has a smoothing capacitor, and when the compressor is not driven, every predetermined timing.
  • the electromagnetic switch may be closed for a predetermined time.
  • the electric charge can be maintained in the smoothing capacitor of the power circuit for driving the compressor connected to the downstream side of the electromagnetic switch. Therefore, when the electromagnetic switch when the compressor is stopped is open, it is possible to prevent the charge of the smoothing capacitor of the compressor driving power supply circuit from being discharged to near zero. Therefore, it is possible to prevent a large inrush current from flowing through the electromagnetic switch when the electromagnetic switch is closed for driving the compressor. Thereby, damage to the electromagnetic switch due to a large inrush current can be greatly reduced, and the reliability and life of the compressor driving device can be further improved.
  • a current flows from the positive side terminal of the compressor driving power source circuit to the positive side terminal of the control power source circuit.
  • a discharge diode may be further provided. This makes it possible to quickly reduce the residual charge of the smoothing capacitor of the compressor drive power supply circuit when the AC power supply is turned off. Therefore, it is possible to prevent problems due to residual charges and improve the safety of the compressor driving device.
  • a control unit includes the compressor driving device according to any one of the first to fifth aspects of the invention, and a control box that houses the compressor driving device.
  • the compressor drive device is protected by the control box, and can be prevented from being damaged even if it receives external force. This facilitates handling of the compressor driving device and allows the compressor driving device to be used as it is attached to a component such as a compressor, thereby improving the convenience of the compressor driving device.
  • a compressor unit according to a seventh aspect of the present invention is integrally configured by the control unit of the sixth aspect of the invention and the compressor. This makes it possible to provide a compressor unit with a compressor drive control circuit that can be easily mounted on various cooling devices.
  • a cooling device includes the compressor driving device according to any one of the first to fifth aspects, the control unit according to the sixth aspect, or the compressor unit according to the seventh aspect. This makes it unnecessary for the manufacturer of the cooling device to design a complicated compressor drive circuit, and can easily provide the cooling device.
  • FIG. 1 is a block diagram showing a circuit configuration of a compressor driving apparatus according to Embodiment 1 of the present invention.
  • 1 is an AC power source.
  • Reference numeral 2 denotes a compressor driving device connected to the AC power source 1 via a connector 3.
  • Reference numeral 4 denotes a compressor motor driven by the compressor driving device 2.
  • the side closer to the AC power source 1 may be referred to as the upstream side, and the side far from the AC power source 1 may be referred to as the downstream side.
  • the compressor driving device 2 is configured by integrally providing circuit elements described below on a single printed board. The configuration will be described below.
  • the circuit elements are electrically connected to each other by wiring on the substrate.
  • Reference numeral 6 denotes a circuit for supplying electric power from the AC power supply 1 to the compressor drive circuit 9, which is a compressor drive power supply circuit provided further downstream of the electromagnetic switch 7.
  • Reference numeral 9 denotes a circuit for driving the compressor, which is a compressor driving circuit that drives the motor 4 for driving the compressor by supplying power from the power circuit 8 for driving the compressor.
  • the electromagnetic switch 7 connects the wiring between the AC power source 1 and the compressor driving power circuit 8 by closing, and disconnects (cuts off) the connection by opening.
  • the electromagnetic switch 7 disconnects the electrical connection between the AC power supply 1 and the compressor drive power supply circuit 8.
  • the overvoltage is, for example, a voltage that is equal to or higher than the rated voltage of the compressor driving device 2 and that may cause the components of the compressor driving device 2 to break down.
  • Reference numeral 10 denotes a circuit for supplying power from the AC power supply 1 to the control circuit 11, which is a control power circuit provided separately from the compressor driving power circuit 8 on the downstream side of the noise filter 6.
  • Reference numeral 11 denotes a control circuit that operates by power supply from the control power supply circuit 10.
  • the control circuit 11 controls the drive of the compressor drive circuit 9.
  • the control circuit 11 detects an overvoltage of the AC power supply 1
  • the control circuit 11 opens the electromagnetic switch 7 and inputs current from the AC power supply 1 to the compressor drive power supply circuit 8, the compressor drive circuit 9 and the electric motor 4 ( Power supply).
  • the control circuit 11 controls to open the electromagnetic switch 7.
  • the control circuit 11 closes the electromagnetic switch 7 every predetermined time interval (predetermined timing), and then repeats the operation of opening the electromagnetic switch 7 after a predetermined time has elapsed. To control.
  • the control circuit 11 does not perform control to close the electromagnetic switch 7.
  • the above “when it is not necessary to operate the compressor” refers to a time when a predetermined condition is satisfied for the compressor.
  • the cooling device equipped with the compressor driving device 2 is a refrigerator
  • the temperature of the storage room of the refrigerator reaches a predetermined temperature and no further cooling is required.
  • the electric motor 4 of the compressor is not driven and is stopped.
  • the control power supply circuit 10 is branched from the wiring on the upstream side of the electromagnetic switch 7 (that is, the AC power supply 1 side of the electromagnetic switch 7).
  • the electromagnetic switch 7 controls power supply to the compressor drive power supply circuit 8 without controlling power supply to the control power supply circuit 10.
  • the electromagnetic switch 7 is provided as a contact which opens and closes only one wiring (one side line) of a pair of lines (wiring) connected to the AC power source 1.
  • the compressor drive power supply circuit 8 has a full-wave rectifier circuit 12 and a smoothing capacitor 13.
  • the full-wave rectifier circuit 12 rectifies an alternating current supplied via the noise filter 6 into a direct current.
  • the smoothing capacitor 13 smoothes the direct current that has been full-wave rectified by the full-wave rectifier circuit 12.
  • the compressor drive circuit 9 is constituted by a switching circuit made of a semiconductor element.
  • control power supply circuit 10 includes a half-wave rectifier circuit unit 16, a voltage divider circuit unit 17, a first power supply unit 19, a second power supply unit 21, and a third power supply unit 22.
  • the half-wave rectifier circuit unit 16 includes a rectifier diode 14 and a capacitor 15 for half-wave rectification.
  • the voltage dividing circuit unit 17 detects an overvoltage.
  • the first power supply unit 19 drives the microcomputer 18 that controls the control circuit 11.
  • the second power supply unit 21 drives the drive control unit 20 of the compressor drive circuit 9.
  • the third power supply unit 22 drives the electromagnetic switch 7.
  • the compressor drive circuit 9 and the drive control unit 20 are integrally composed of semiconductor elements such as an IPM (intelligent power module) 25.
  • the rectifier diode 14 of the half-wave rectifier circuit unit 16 is connected to a one-side line provided with the electromagnetic switch 7.
  • the rectifier diode 14 is provided in parallel to the electromagnetic switch 7 and the full-wave rectifier circuit 12 of the compressor drive power supply circuit 8.
  • a discharge diode is connected between the compressor driving power supply circuit 8 and the control power supply circuit 10 so that current flows only from the + side terminal of the compressor driving power supply circuit 8 to the + side terminal of the control power supply circuit 10. 23 is connected.
  • the electromagnetic switch 7 Normally, the electromagnetic switch 7 is closed. Thus, power is supplied from the AC power source 1 to the compressor driving power supply circuit 8, the compressor driving circuit 9, the electric motor 4, the control power supply circuit 10, and the control circuit 11.
  • the driving of the electric motor 4 is controlled by a compressor driving circuit 9 based on a signal from the control circuit 11.
  • the control circuit 11 detects the overvoltage via the voltage dividing circuit unit 17 of the control power supply circuit 10.
  • the control circuit 11 drives the electromagnetic switch 7 via the third power supply unit 22 and opens the electromagnetic switch 7 to shut off the AC power supply 1 from the compressor drive power supply circuit 8.
  • the control power supply circuit 10 is branched from a line on the upstream side of the electromagnetic switch 7 (the AC power supply 1 side of the electromagnetic switch 7). For this reason, the electromagnetic switch 7 stops supplying power to the circuit elements on the compressor drive power circuit 8 side of the electromagnetic switch 7 and the motor 4 of the compressor. Therefore, the power supply to the circuit element closer to the control power circuit 10 than the electromagnetic switch 7 is not cut off. Therefore, the control circuit 11 continues to be energized even after the electromagnetic switch 7 is opened. Therefore, when the compressor is stopped due to an overvoltage, for example, the control circuit 11 can determine that the stop of the compressor is a stop due to an overvoltage, display it, and the convenience is greatly improved.
  • the withstand voltage rating of the control power supply circuit 10, the rectifier diode 14 and the capacitor 15 and the overvoltage value of the AC power supply 1 are sufficiently higher.
  • the smoothing capacitor 13 has a higher current consumption value and a much larger capacitance than the capacitor 15. For this reason, when the capacitor 15 has a high withstand voltage rating, the size of the capacitor 15 becomes large, leading to an increase in cost.
  • the capacitor 15 has a relatively small current consumption of a circuit element downstream thereof and a small capacitance. For this reason, it is relatively easy to select a capacitor 15 having a high withstand voltage rating.
  • the electromagnetic switch 7 is opened to disconnect the connection between the compressor drive power supply circuit 8 and the AC power supply 1. is doing. For example, when the compressor driving device 2 is used for a refrigerator and the refrigerator compartment is sufficiently low in temperature, there is no need to drive the compressor, and the motor 4 of the compressor is stopped. At this time, the control power supply circuit 10 controls the electromagnetic switch 7 to open, so that the connection between the motor 4 and the AC power supply 1 is cut off.
  • the electromagnetic switch 7 is already open, so that the circuit element on the downstream side of the electromagnetic switch 7 It is possible to prevent an overvoltage from being applied. Therefore, the electromagnetic switch 7 does not have to be opened every time an overvoltage state occurs while the compressor is stopped.
  • the drive of the electromagnetic switch 7 can be stopped while the compressor is stopped. For this reason, the power consumption for driving the electromagnetic switch 7 can be suppressed, and the energy saving performance can also be improved.
  • the smoothing capacitor 13 of the compressor driving power supply circuit 8 is slowly discharged, and the charge of the smoothing capacitor 13 is zero or Near zero.
  • the charge of the smoothing capacitor 13 becomes close to zero, when the open electromagnetic switch 7 is closed, a large inrush current flows through the electromagnetic switch 7, and there is a concern that the electromagnetic switch 7 may be seriously damaged.
  • the electromagnetic switch 7 is closed for a predetermined time (for example, 1 sec) and then opened at predetermined time intervals (for example, 20 minutes) while the compressor is stopped.
  • a predetermined time for example, 1 sec
  • predetermined time intervals for example, 20 minutes
  • the charge of the smoothing capacitor 13 is not discharged to near zero while the compressor is stopped. Therefore, it is possible to prevent a large inrush current from flowing through the electromagnetic switch 7 when the electromagnetic switch 7 is closed to drive the compressor. Thereby, the damage of the electromagnetic switch 7 by a large inrush current can also be reduced greatly, and the reliability and lifetime of the compressor drive device 2 can be greatly improved from this point.
  • time interval and closing time which close the electromagnetic switch 7 during a compressor stop are predetermined, it is not restricted to predetermined. These may be set in any manner as long as the time interval and time allow a predetermined amount of charge to be accumulated and maintained in the smoothing capacitor 13.
  • the compressor driving device 2 branches the line on the compressor driving power supply circuit 8 side and the line on the control power supply circuit 10 side.
  • the control power circuit 10 is composed of a half-wave rectifier circuit.
  • the electromagnetic switch 7 is a contact that opens and closes only one line of the AC power supply 1. Further, the half-wave rectifier diode 14 of the control power circuit 10 is connected to one side line of the AC power source 1 to which the electromagnetic switch 7 is connected.
  • the AC power supply 1 is supplied to the compressor driving power supply circuit 8 and the like via the control power supply circuit 10. It is possible to prevent power from being supplied from the power source. That is, even if the compressor drive power supply circuit 8 and the control power supply circuit 10 are separated from each other, power is supplied to the compressor drive power supply circuit 8 and the like via the control power supply circuit 10. Can be prevented.
  • the compressor drive power supply circuit 8 and the control power supply circuit 10 can be provided at low cost as a non-insulated circuit configuration.
  • the circuit portion for driving the compressor (that is, the compressor driving power circuit 8, the compressor driving circuit 9, the control power circuit 10, the control circuit 11, and the electromagnetic switch 7) can be easily formed on a single printed board. Can also be summarized.
  • the compressor drive device 2 of the present embodiment has the discharge diode 23 arranged so that current flows only from the + side terminal of the compressor drive power supply circuit 8 to the + side terminal of the control power supply circuit 10. Yes.
  • the residual charge of the smoothing capacitor 13 of the compressor drive power supply circuit 8 can be quickly reduced via the control power supply circuit 10. Therefore, the safety of the compressor drive device 2 can be improved.
  • FIG. 2 is a schematic explanatory diagram of the compressor unit 28 in which the compressor driving device 2 according to the first embodiment is mounted.
  • the compressor unit 28 includes a compressor 24.
  • a mounting leg (not shown) of the control unit 27 is attached to a bracket (not shown) welded to the outer shell of the compressor 24.
  • the compressor unit 28 is configured by integrating the compressor 24 and the control unit 27.
  • the control unit 27 includes a control box 26, and the compressor driving device 2 is incorporated in the control box 26.
  • the above-mentioned integration means that the compressor 24 and the control unit 27 (that is, the compressor driving device 2) are arranged together.
  • the compressor unit 28 is integrally configured by the compressor 24 and the control unit 27.
  • a versatile compressor unit 28 with a compressor control circuit can be obtained. That is, it can be provided as a compressor unit 28 that can be easily mounted on various cooling devices.
  • FIG. 3 is an explanatory diagram of a refrigerator equipped with the compressor unit 28 according to the second embodiment.
  • the refrigerator according to the third embodiment includes a refrigerator main body 29.
  • a main body control unit 30 is provided on the back surface of the refrigerator main body 29, and a compressor unit 28 is provided in the lower machine room of the refrigerator main body 29.
  • the microcomputer 18 of the control circuit 11 (FIG. 1) in the compressor driving device 2 of the compressor unit 28 is connected to the main body control unit 30 of the refrigerator main body 29 via a lead wire 31.
  • the refrigerator configured as described above is simply configured by retrofitting a control unit 27 (that is, the compressor driving device 2) to the refrigerator main body 29 and connecting the control circuit 11 to the main body control unit 30. Therefore, a refrigerator manufacturer does not need to design a complicated compressor drive circuit such as a compressor drive control circuit (for example, an inverter control circuit), and easily manufactures a refrigerator with an inverter drive control type compressor drive device. can do.
  • a compressor drive control circuit for example, an inverter control circuit
  • FIG. 4 is an explanatory diagram showing another refrigerator in which the compressor driving device 2 according to Embodiment 1 is directly mounted.
  • the refrigerator according to the fourth embodiment includes a refrigerator main body 29.
  • the compressor driving device 2 is provided on the upper back of the refrigerator main body 29 as a single printed board.
  • the compressor driving device 2 is provided in the vicinity of the main body control unit 30 and is connected to the main body control unit 30 by a lead wire 31.
  • the compressor 24 is installed in the lower part of the refrigerator main body 29, and the compressor 24 is connected to the compressor drive device 2 via the lead wire 31.
  • the refrigerator according to the fourth embodiment has the same effect as the refrigerator according to the third embodiment. Further, the refrigerator according to Embodiment 4 can be expected to have the following effects.
  • the compressor driving device 2 is directly attached to the refrigerator main body 29 in the vicinity of the main body control unit 30.
  • the compressor driving device 2 may be attached to the refrigerator main body 29 in the form of the control unit 27 according to the second embodiment.
  • the installation location of the compressor driving device 2 in the refrigerator main body 29 is not limited to the vicinity of the main body control unit 30.
  • the refrigerator is described as one of the cooling devices, but the cooling device is not limited to this.
  • the cooling device may be an air conditioner, a vending machine, a showcase, a commercial refrigerator, etc., and any cooling device equipped with a compressor can achieve the same effect. It is done.
  • the present invention reduces the application of overvoltage to the constituent circuits of the compressor drive device, and can determine the cause of the compressor stop, and the control unit using the compressor drive device, A compressor unit and a cooling device can be provided. Therefore, it can be widely used as a compressor driving device for a refrigerator, an air conditioner, a vending machine, and other cooling devices equipped with a compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

This compressor driving device 2 is provided with: a compressor driving circuit 9 that drives a compressor; a compressor-driving power supply circuit 8 that supplies power to the compressor driving circuit from an alternating current power source 1; a control circuit 11 that controls the compressor driving circuit; a controlling power supply circuit 10 that supplies power to the control circuit from the alternating current power source; and an electromagnetic switch 7 which, when over-voltage is generated in the alternating current power source, does not disconnect an electrical connection between the alternating current power source and the controlling power supply circuit, but disconnects an electrical connection between the alternating current power source and the compressor-driving power supply circuit.

Description

圧縮機駆動装置およびそれを用いた制御ユニット、圧縮機ユニット、冷却機器Compressor drive unit and control unit, compressor unit, and cooling device using the same
 本発明は、圧縮機駆動装置およびそれを用いた制御ユニット、圧縮機ユニット、並びに、冷蔵庫およびエアコン等の各種冷却機器に関するものである。 The present invention relates to a compressor driving device, a control unit using the compressor, a compressor unit, and various cooling devices such as a refrigerator and an air conditioner.
 一般的に、この種の圧縮機駆動装置は、交流を電源として駆動される。この交流電源の電圧が変動すると、過電圧が圧縮機駆動装置の構成回路に印加される場合がある。よって、過電圧から構成回路等のインバータ回路を保護する保護装置が知られている(例えば、特許文献1参照)。 Generally, this type of compressor driving device is driven using AC as a power source. When the voltage of the AC power supply fluctuates, an overvoltage may be applied to the constituent circuit of the compressor driving device. Therefore, a protection device that protects an inverter circuit such as a component circuit from an overvoltage is known (for example, see Patent Document 1).
 図5は、特許文献1に記載された従来のインバータを示す。このインバータ回路の保護装置は、三相交流電源40によりインバータ回路42を介して電動機43を駆動する。この三相交流電源40とインバータ回路42との間に、過電圧からインバータ回路42を保護する保護装置として、電磁開閉器41が設けられている。 FIG. 5 shows a conventional inverter described in Patent Document 1. The inverter circuit protection device drives a motor 43 through an inverter circuit 42 by a three-phase AC power supply 40. An electromagnetic switch 41 is provided between the three-phase AC power supply 40 and the inverter circuit 42 as a protection device that protects the inverter circuit 42 from overvoltage.
 上記インバータ回路42は、三相交流を直流に整流する整流部44と、直流電流を平滑させる抵抗45と、平滑用コンデンサ46と、直流電流を三相交流電流に変換するインバータ部47と、このインバータ部47を制御する制御回路48とから構成されている。 The inverter circuit 42 includes a rectifying unit 44 that rectifies three-phase alternating current into direct current, a resistor 45 that smoothes direct current, a smoothing capacitor 46, an inverter unit 47 that converts direct current into three-phase alternating current, And a control circuit 48 for controlling the inverter unit 47.
 制御回路48は、インバータ回路42に設けた分圧抵抗50、51によって三相交流電源40の過電圧を検出しています。そして、制御回路48は、過電圧を検出すると、電磁開閉器41を開いて、インバータ回路42と交流電源40との間を遮断している。これにより、インバータ回路42に過電圧が印加されるのを防止している。 The control circuit 48 detects the overvoltage of the three-phase AC power supply 40 by the voltage dividing resistors 50 and 51 provided in the inverter circuit 42. When the control circuit 48 detects an overvoltage, the control circuit 48 opens the electromagnetic switch 41 to shut off the inverter circuit 42 and the AC power supply 40. This prevents an overvoltage from being applied to the inverter circuit 42.
 この構成によれば、交流電源の電圧が変動しても、インバータ回路42に過電圧が印加されるのを防止できる。よって、インバータ回路42を構成する電子部品、例えば平滑用コンデンサ46およびインバータ部47を構成する素子等の損傷を防止できる。このため、インバータ回路42の信頼性を高められる。 According to this configuration, it is possible to prevent an overvoltage from being applied to the inverter circuit 42 even if the voltage of the AC power supply fluctuates. Therefore, it is possible to prevent damage to electronic components constituting the inverter circuit 42, for example, elements constituting the smoothing capacitor 46 and the inverter unit 47. For this reason, the reliability of the inverter circuit 42 can be improved.
特開昭60-190121号公報JP 60-190121 A
 上記従来の構成では、電磁開閉器41が三相交流電源40とインバータ回路42との間に設けられている。このため、電源の電圧変動で過電圧状態となったときに、インバータ回路42の全体(平滑用コンデンサ46、インバータ部47、および制御回路48等)、および、電動機43が交流電源40から遮断されてしまう。 In the conventional configuration, the electromagnetic switch 41 is provided between the three-phase AC power supply 40 and the inverter circuit 42. For this reason, when the overvoltage state occurs due to the voltage fluctuation of the power source, the entire inverter circuit 42 (smoothing capacitor 46, inverter unit 47, control circuit 48, etc.) and the motor 43 are disconnected from the AC power source 40. End up.
 また、電動機43の停止時には、インバータ回路42の全体が動作停止状態となる。よって、電動機43の停止原因を特定できない、という課題があった。 Further, when the motor 43 is stopped, the entire inverter circuit 42 is stopped. Therefore, there has been a problem that the cause of the stop of the electric motor 43 cannot be specified.
 一方、電磁開閉器41は、機械的に電源を遮断するので、制御回路48からの開信号に対して、その開動作は若干(数十msec程度)遅れる。したがって、この動作遅れの間に過電圧がインバータ回路42に印加されることになる。この電磁開閉器41の開動作遅れに伴う過電圧の印加は、それが数十msec単位のものであっても、これが繰り返されると、インバータ回路42を構成する電子部品にダメージを与える。このダメージが蓄積されていくと、インバータ回路の信頼性や寿命を低下させるという課題もあった。 On the other hand, since the electromagnetic switch 41 mechanically cuts off the power supply, the opening operation is slightly delayed (several tens of milliseconds) with respect to the opening signal from the control circuit 48. Therefore, an overvoltage is applied to the inverter circuit 42 during this operation delay. Even if the application of the overvoltage associated with the delay in the opening operation of the electromagnetic switch 41 is in units of several tens of msec, if this is repeated, the electronic components constituting the inverter circuit 42 are damaged. When this damage is accumulated, there is a problem that the reliability and life of the inverter circuit are lowered.
 つまり、電磁開閉器41の開閉回数が多くなるほど、数十msec単位で印加される過電圧の累積影響は大きなものとなる。インバータ回路42を構成する電子部品の耐久性が低下し、インバータ回路の信頼性と寿命を低下させてしまう。 That is, the greater the number of times the electromagnetic switch 41 is opened and closed, the greater the cumulative effect of overvoltage applied in units of several tens of msec. The durability of the electronic components constituting the inverter circuit 42 is reduced, and the reliability and life of the inverter circuit are reduced.
 よって、電圧変動が多発する国および地域でインバータ回路が使用される場合、インバータ回路に対する電圧変動の影響が大きい。 Therefore, when inverter circuits are used in countries and regions where voltage fluctuations frequently occur, the influence of voltage fluctuations on the inverter circuits is large.
 このインバータ回路を搭載する機器が、例えば、冷蔵庫出る場合、年中連続的に通電されて使用される。この場合、過電圧によって電磁開閉器41が開閉する機会が多くなるので、その影響は更に大きなものとなる。よって、機器の信頼性と製品寿命に大きな影響を与えることになる。 ¡When equipment equipped with this inverter circuit comes out of a refrigerator, for example, it is energized continuously throughout the year. In this case, since the electromagnetic switch 41 has more opportunities to open and close due to overvoltage, the influence becomes even greater. Therefore, the reliability of the device and the product life are greatly affected.
 本発明は、このような点に鑑みてなしたもので、構成回路への過電圧の印加を低減すると同時に、圧縮機の停止の原因を判定可能にする圧縮機駆動装置およびそれを用いた制御ユニット、圧縮機ユニット、冷却機器の提供を目的としたものである。 The present invention has been made in view of the above points, and a compressor driving device and a control unit using the same that can reduce the application of overvoltage to the constituent circuits and at the same time determine the cause of the stoppage of the compressor. The purpose is to provide a compressor unit and a cooling device.
 本発明は、上記目的を達成するため、圧縮機駆動装置は、圧縮機を駆動する圧縮機駆動回路と、交流電源から前記圧縮機駆動回路に電力を供給する圧縮機駆動用電源回路と、前記圧縮機駆動回路を制御する制御回路と、前記交流電源から前記制御回路に電力を供給する制御用電源回路と、前記交流電源において過電圧が発生した場合、前記交流電源と前記制御用電源回路との間の電気的接続を遮断せずに、前記交流電源と前記圧縮機駆動用電源回路との間の電気的接続を遮断する電磁開閉器と、を備えている。 In order to achieve the above object, the present invention provides a compressor driving device comprising: a compressor driving circuit that drives a compressor; a compressor driving power circuit that supplies power to the compressor driving circuit from an AC power source; A control circuit for controlling a compressor drive circuit, a control power circuit for supplying power from the AC power source to the control circuit, and when an overvoltage occurs in the AC power source, the AC power source and the control power circuit And an electromagnetic switch that cuts off the electrical connection between the AC power supply and the compressor driving power supply circuit without cutting off the electrical connection therebetween.
 本発明は、構成回路への過電圧の印加を低減すると同時に、圧縮機の停止の原因を判定可能にする圧縮機駆動装置およびそれを用いた制御ユニット、圧縮機ユニット、冷却機器とすることができる。 INDUSTRIAL APPLICABILITY The present invention can provide a compressor drive device that can reduce the application of overvoltage to the constituent circuits and at the same time determine the cause of the compressor stop, and a control unit, compressor unit, and cooling device using the compressor drive device. .
本発明の実施の形態1に係る圧縮機駆動装置の回路構成を示すブロック図The block diagram which shows the circuit structure of the compressor drive device which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る圧縮機ユニットの概略説明図Schematic explanatory drawing of the compressor unit which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷蔵庫の説明図Explanatory drawing of the refrigerator which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る冷蔵庫の説明図Explanatory drawing of the refrigerator which concerns on Embodiment 4 of this invention. 従来の圧縮機駆動装置の回路図Circuit diagram of conventional compressor drive
 第1の発明に係る圧縮機駆動装置は、圧縮機を駆動する圧縮機駆動回路と、交流電源から前記圧縮機駆動回路に電力を供給する圧縮機駆動用電源回路と、前記圧縮機駆動回路を制御する制御回路と、前記交流電源から前記制御回路に電力を供給する制御用電源回路と、前記交流電源において過電圧が発生した場合、前記交流電源と前記制御用電源回路との間の電気的接続を遮断せずに、前記交流電源と前記圧縮機駆動用電源回路との間の電気的接続を遮断する電磁開閉器と、を備えている。 これにより、交流電源の電圧が変動して過電圧状態となったとき、電磁開閉器が動作して圧縮機駆動用電源回路への電力供給を遮断する。これにより、圧縮機駆動用電源回路等の構成回路への過電圧の印加を防止することができる。また、このとき、制御用電源回路側への電力供給は継続され、制御回路の動作が維持される。よって、制御回路は圧縮機の停止の原因を判定することができる。 A compressor driving device according to a first aspect of the present invention includes a compressor driving circuit that drives a compressor, a compressor driving power supply circuit that supplies power to the compressor driving circuit from an AC power supply, and the compressor driving circuit. A control circuit for controlling, a control power circuit for supplying power to the control circuit from the AC power source, and an electrical connection between the AC power source and the control power circuit when an overvoltage occurs in the AC power source The electromagnetic switch which interrupts | blocks the electrical connection between the said AC power supply and the said compressor drive power supply circuit, without interrupting | blocking is provided. This allows the electromagnetic switch to operate and shut off the power supply to the compressor drive power supply circuit when the AC power supply voltage fluctuates and becomes overvoltage. Thereby, it is possible to prevent application of an overvoltage to a constituent circuit such as a compressor driving power supply circuit. At this time, the power supply to the control power supply circuit side is continued, and the operation of the control circuit is maintained. Therefore, the control circuit can determine the cause of the compressor stop.
 第2の発明に係る圧縮機駆動装置では、第1の発明において、前記圧縮機が駆動していない場合、前記電磁開閉器は、開いて、前記交流電源と前記圧縮機駆動用電源回路との間の電気的接続を遮断してもよい。 In the compressor drive device according to the second invention, in the first invention, when the compressor is not driven, the electromagnetic switch is opened and the AC power source and the compressor drive power circuit are connected. The electrical connection between them may be interrupted.
 これにより、圧縮機を駆動していない時に交流電源が過電圧状態となっても、電磁開閉器は既に開いている。このため圧縮機の停止中に生じる過電圧状態のたびに、電磁開閉器を開く必要がない。これにより、電磁開閉器の開放遅れに伴う圧縮機駆動用電源回路等の構成回路への過電圧の印加を大きく低減することができる。よって、圧縮機駆動用電源回路等を構成する素子の過電圧の印加によるダメージを低減して、圧縮機駆動装置、およびこれを用いる冷蔵庫等の機器の信頼性および寿命を向上させることができる。また、圧縮機の停止中は電磁開閉器の駆動を停止できるので、電磁開閉器を駆動するための電力消費を抑制することができ、省エネ性を向上させることもできる。 Therefore, the electromagnetic switch is already open even if the AC power supply is in an overvoltage state when the compressor is not driven. For this reason, it is not necessary to open the electromagnetic switch every time an overvoltage state occurs while the compressor is stopped. Thereby, it is possible to greatly reduce the application of overvoltage to the constituent circuits such as the compressor driving power supply circuit due to the delay in opening the electromagnetic switch. Therefore, it is possible to reduce damage caused by application of overvoltage to elements constituting the compressor driving power supply circuit and the like, and to improve the reliability and life of the compressor driving device and a device such as a refrigerator using the compressor driving device. Further, since the driving of the electromagnetic switch can be stopped while the compressor is stopped, power consumption for driving the electromagnetic switch can be suppressed, and energy saving can be improved.
 第3の発明に係る圧縮機駆動装置では、第1または第2の発明において、前記制御用電源回路は、半波整流用の整流ダイオードを有し、前記電磁開閉器は、前記交流電源に接続される一対の配線のうちの一方の配線を開閉する接点であり、前記整流ダイオードは、前記一方の配線に接続されていてもよい。 In the compressor driving device according to a third aspect of the present invention, in the first or second aspect, the control power circuit includes a rectifier diode for half-wave rectification, and the electromagnetic switch is connected to the AC power source. A contact that opens and closes one of the pair of wirings, and the rectifier diode may be connected to the one wiring.
 これにより、電磁開閉器を開いて圧縮機駆動用電源回路等を交流電源から遮断した際、制御用電源回路を経由して圧縮機駆動用電源回路等へ電力が供給されることを防止することができる。つまり、圧縮機駆動用電源回路と制御用電源回路を分離して、非絶縁型の回路構成としていても、制御用電源回路を経由して圧縮機駆動用電源回路等へ電力が供給されることを防止することができる。したがって、圧縮機駆動用電源回路と制御用電源回路とを非絶縁型の回路構成とした圧縮機駆動装置を安価に提供することができる。 This prevents power from being supplied to the compressor drive power circuit via the control power circuit when the electromagnetic switch is opened and the compressor drive power circuit is disconnected from the AC power supply. Can do. In other words, power is supplied to the compressor drive power supply circuit and the like via the control power supply circuit even if the compressor drive power supply circuit and the control power supply circuit are separated and have a non-insulated circuit configuration. Can be prevented. Therefore, a compressor driving device having a non-insulated circuit configuration of the compressor driving power supply circuit and the control power supply circuit can be provided at low cost.
 第4の発明に係る圧縮機駆動装置では、第2または第3の発明において、前記圧縮機駆動用電源回路は、平滑用コンデンサを有し、前記圧縮機が駆動していない場合、所定タイミングごとに前記電磁開閉器を所定時間だけ閉じてもよい。 これにより、電磁開閉器の下流側に接続されている圧縮機駆動用電源回路の平滑用コンデンサにおいて電荷を維持することができる。したがって、圧縮機停止中の電磁開閉器が開いている時に、圧縮機駆動用電源回路の平滑用コンデンサの電荷が放電してゼロ近くになることを防止することができる。よって、圧縮機駆動のために電磁開閉器を閉じたとき、電磁開閉器に大きな突入電流が流れるのを防止できる。これにより、大きな突入電流による電磁開閉器のダメージも大きく低減することができ、圧縮機駆動装置の信頼性と寿命を更に大きく向上させることができる。 In the compressor drive device according to a fourth aspect of the present invention, in the second or third aspect of the invention, the compressor drive power supply circuit has a smoothing capacitor, and when the compressor is not driven, every predetermined timing. The electromagnetic switch may be closed for a predetermined time. Thereby, the electric charge can be maintained in the smoothing capacitor of the power circuit for driving the compressor connected to the downstream side of the electromagnetic switch. Therefore, when the electromagnetic switch when the compressor is stopped is open, it is possible to prevent the charge of the smoothing capacitor of the compressor driving power supply circuit from being discharged to near zero. Therefore, it is possible to prevent a large inrush current from flowing through the electromagnetic switch when the electromagnetic switch is closed for driving the compressor. Thereby, damage to the electromagnetic switch due to a large inrush current can be greatly reduced, and the reliability and life of the compressor driving device can be further improved.
 第5の発明に係る圧縮機駆動装置は、第1から第4のいずれかの発明において、前記圧縮機駆動用電源回路の+側端子から前記制御用電源回路の+側端子に電流が流れるように配置された放電ダイオードをさらに備えていてもよい。 これにより、交流電源をオフした際の圧縮機駆動用電源回路の平滑用コンデンサの残留電荷を素早く低下させることができる。したがって、残留電荷による不具合を防ぎ、圧縮機駆動装置の安全性を向上させることができる。 According to a fifth aspect of the present invention, in the compressor driving device according to any one of the first to fourth aspects, a current flows from the positive side terminal of the compressor driving power source circuit to the positive side terminal of the control power source circuit. A discharge diode may be further provided. This makes it possible to quickly reduce the residual charge of the smoothing capacitor of the compressor drive power supply circuit when the AC power supply is turned off. Therefore, it is possible to prevent problems due to residual charges and improve the safety of the compressor driving device.
 第6の発明係る制御ユニットは、第1~5のいずれかの発明の前記圧縮機駆動装置と、前記圧縮機駆動装置を収容する制御ボックスと、を備えている。 これにより、圧縮機駆動装置は制御ボックスにより保護され、外力等を受けても損傷することが防止できる。これにより、圧縮機駆動装置の取り扱いが容易になるとともに、圧縮機駆動装置を圧縮機等の部品にそのまま取り付けて使用することができ、圧縮機駆動装置の利便性が向上する。 A control unit according to a sixth aspect of the invention includes the compressor driving device according to any one of the first to fifth aspects of the invention, and a control box that houses the compressor driving device. Thus, the compressor drive device is protected by the control box, and can be prevented from being damaged even if it receives external force. This facilitates handling of the compressor driving device and allows the compressor driving device to be used as it is attached to a component such as a compressor, thereby improving the convenience of the compressor driving device.
 第7の発明に係る圧縮機ユニットは、第6発明の前記制御ユニットと前記圧縮機とにより一体的に構成されている。 これにより、各種冷却機器に簡便に搭載可能な圧縮機駆動制御回路付きの圧縮機ユニットを提供することができる。 A compressor unit according to a seventh aspect of the present invention is integrally configured by the control unit of the sixth aspect of the invention and the compressor. This makes it possible to provide a compressor unit with a compressor drive control circuit that can be easily mounted on various cooling devices.
 第8の発明に係る冷却機器は、第1~5のいずれかの発明の前記圧縮機駆動装置、第6発明の前記制御ユニット、または、第7発明の前記圧縮機ユニットを備えている。 これにより、冷却機器の製造メーカは、複雑な圧縮機駆動回路を設計する必要がなくなり、簡単に冷却機器を提供することができる。 A cooling device according to an eighth aspect of the invention includes the compressor driving device according to any one of the first to fifth aspects, the control unit according to the sixth aspect, or the compressor unit according to the seventh aspect. This makes it unnecessary for the manufacturer of the cooling device to design a complicated compressor drive circuit, and can easily provide the cooling device.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.
 (実施の形態1)
 図1は、本発明の実施の形態1に係る圧縮機駆動装置の回路構成を示すブロック図である。
(Embodiment 1)
FIG. 1 is a block diagram showing a circuit configuration of a compressor driving apparatus according to Embodiment 1 of the present invention.
 図1において、1は、交流電源である。2は、交流電源1にコネクタ3を介して接続される圧縮機駆動装置である。4は、圧縮機駆動装置2によって駆動される圧縮機の電動機である。なお、以下では、交流電源1に近い側を上流側と称し、交流電源1から遠い側を下流側と称することがある。 In FIG. 1, 1 is an AC power source. Reference numeral 2 denotes a compressor driving device connected to the AC power source 1 via a connector 3. Reference numeral 4 denotes a compressor motor driven by the compressor driving device 2. In the following, the side closer to the AC power source 1 may be referred to as the upstream side, and the side far from the AC power source 1 may be referred to as the downstream side.
 圧縮機駆動装置2は、この実施の形態では、一枚のプリント基板上に以下に述べる回路要素を一体的に設けて構成されている。以下、その構成を説明する。なお、回路要素は基板上において配線により互いに電気的に接続されている。 In this embodiment, the compressor driving device 2 is configured by integrally providing circuit elements described below on a single printed board. The configuration will be described below. The circuit elements are electrically connected to each other by wiring on the substrate.
 6は、コネクタ3の下流側に設けられたノイズフィルターである。7は、交流電源1において過電圧が発生した場合、交流電源1と圧縮機駆動用電源回路8との間の電気的接続を遮断する開閉器であって、ノイズフィルター6の下流側に設けられた過電圧保護用の電磁開閉器である。8は、交流電源1から圧縮機駆動回路9に電力を供給する回路であって、電磁開閉器7の更に下流側に設けた圧縮機駆動用電源回路である。9は、圧縮機を駆動する回路であって、圧縮機駆動用電源回路8からの電力供給によって圧縮機駆動用の電動機4を駆動する圧縮機駆動回路である。 6 is a noise filter provided on the downstream side of the connector 3. 7 is a switch that cuts off the electrical connection between the AC power supply 1 and the compressor drive power supply circuit 8 when an overvoltage occurs in the AC power supply 1, and is provided on the downstream side of the noise filter 6. This is an electromagnetic switch for overvoltage protection. Reference numeral 8 denotes a circuit for supplying electric power from the AC power supply 1 to the compressor drive circuit 9, which is a compressor drive power supply circuit provided further downstream of the electromagnetic switch 7. Reference numeral 9 denotes a circuit for driving the compressor, which is a compressor driving circuit that drives the motor 4 for driving the compressor by supplying power from the power circuit 8 for driving the compressor.
 なお、電磁開閉器7は、閉じることにより交流電源1と圧縮機駆動用電源回路8との間の配線を接続し、開くことにより接続を切断(遮断)する。電磁開閉器7は、過電圧が印加されると、交流電源1と圧縮機駆動用電源回路8との間の電気的接続をを切断する。この過電圧とは、例えば、圧縮機駆動装置2の定格電圧以上であって、圧縮機駆動装置2の構成部品が破壊に至る可能性のある電圧をいう。 Note that the electromagnetic switch 7 connects the wiring between the AC power source 1 and the compressor driving power circuit 8 by closing, and disconnects (cuts off) the connection by opening. When an overvoltage is applied, the electromagnetic switch 7 disconnects the electrical connection between the AC power supply 1 and the compressor drive power supply circuit 8. The overvoltage is, for example, a voltage that is equal to or higher than the rated voltage of the compressor driving device 2 and that may cause the components of the compressor driving device 2 to break down.
 また、10は、交流電源1から制御回路11に電力を供給する回路であって、ノイズフィルター6の下流側において圧縮機駆動用電源回路8とは別に分離して設けた制御用電源回路である。11は、制御用電源回路10からの電源供給によって動作する制御回路である。 Reference numeral 10 denotes a circuit for supplying power from the AC power supply 1 to the control circuit 11, which is a control power circuit provided separately from the compressor driving power circuit 8 on the downstream side of the noise filter 6. . Reference numeral 11 denotes a control circuit that operates by power supply from the control power supply circuit 10.
 制御回路11は、圧縮機駆動回路9の駆動を制御する。また、制御回路11は、交流電源1の過電圧を検知すると、電磁開閉器7を開いて、交流電源1から圧縮機駆動用電源回路8、圧縮機駆動回路9および電動機4への電流の入力(電力の供給)を遮断する。 The control circuit 11 controls the drive of the compressor drive circuit 9. When the control circuit 11 detects an overvoltage of the AC power supply 1, the control circuit 11 opens the electromagnetic switch 7 and inputs current from the AC power supply 1 to the compressor drive power supply circuit 8, the compressor drive circuit 9 and the electric motor 4 ( Power supply).
 さらに、圧縮機を運転する必要のないときなど、圧縮機が駆動していない場合には、制御回路11は、電磁開閉器7を開くように制御する。そして、圧縮機が駆動していない場合、制御回路11は、一定時間間隔(所定タイミング)ごとに電磁開閉器7を閉じ、その後、所定時間が経過すると、電磁開閉器7を開く動作を繰り返すように制御する。但し、過電圧により電磁開閉器7が開いている場合には、制御回路11は、電磁開閉器7を閉じる制御を行わない。 Further, when the compressor is not driven, such as when it is not necessary to operate the compressor, the control circuit 11 controls to open the electromagnetic switch 7. When the compressor is not driven, the control circuit 11 closes the electromagnetic switch 7 every predetermined time interval (predetermined timing), and then repeats the operation of opening the electromagnetic switch 7 after a predetermined time has elapsed. To control. However, when the electromagnetic switch 7 is open due to overvoltage, the control circuit 11 does not perform control to close the electromagnetic switch 7.
 なお、上記「圧縮機を運転する必要のないとき」とは、圧縮機について所定の条件が具備されているときである。例えば、このときは、圧縮機駆動装置2を搭載した冷却機器が冷蔵庫である場合、冷蔵庫の貯蔵室の温度が所定温度に達していてそれ以上冷却する必要がないような場合をいう。この場合、圧縮機の電動機4は、駆動せず、停止している。 In addition, the above “when it is not necessary to operate the compressor” refers to a time when a predetermined condition is satisfied for the compressor. For example, in this case, when the cooling device equipped with the compressor driving device 2 is a refrigerator, the temperature of the storage room of the refrigerator reaches a predetermined temperature and no further cooling is required. In this case, the electric motor 4 of the compressor is not driven and is stopped.
 ここで、制御用電源回路10は、電磁開閉器7の上流側(つまり、電磁開閉器7よりも交流電源1側)の配線から分岐して設けている。これにより、電磁開閉器7の開閉に関係なく常時、制御用電源回路10に交流電源1から電力が供給されている。換言すると、電磁開閉器7は、制御用電源回路10への電力供給を制御することなく、圧縮機駆動用電源回路8への電力供給を制御する。そして、電磁開閉器7は、交流電源1に接続される一対のライン(配線)のうちの一方の配線(片側ライン)のみを開閉する接点として設けられている。 Here, the control power supply circuit 10 is branched from the wiring on the upstream side of the electromagnetic switch 7 (that is, the AC power supply 1 side of the electromagnetic switch 7). Thus, power is always supplied from the AC power source 1 to the control power circuit 10 regardless of whether the electromagnetic switch 7 is opened or closed. In other words, the electromagnetic switch 7 controls power supply to the compressor drive power supply circuit 8 without controlling power supply to the control power supply circuit 10. And the electromagnetic switch 7 is provided as a contact which opens and closes only one wiring (one side line) of a pair of lines (wiring) connected to the AC power source 1.
 また、圧縮機駆動用電源回路8は、全波整流回路12および平滑用コンデンサ13を有している。全波整流回路12は、ノイズフィルター6を介して供給される交流電流を直流に整流する。平滑用コンデンサ13は、全波整流回路12により全波整流された直流を平滑化する。また、圧縮機駆動回路9は、半導体素子からなるスイッチィング回路等によって構成されている。 The compressor drive power supply circuit 8 has a full-wave rectifier circuit 12 and a smoothing capacitor 13. The full-wave rectifier circuit 12 rectifies an alternating current supplied via the noise filter 6 into a direct current. The smoothing capacitor 13 smoothes the direct current that has been full-wave rectified by the full-wave rectifier circuit 12. The compressor drive circuit 9 is constituted by a switching circuit made of a semiconductor element.
 さらに、制御用電源回路10は、半波整流回路部16、分圧回路部17、第一電源部19、第二電源部21、第三電源部22を備えている。半波整流回路部16は、半波整流用の整流ダイオード14およびコンデンサ15からなる。分圧回路部17は、過電圧を検出する。第一電源部19は、制御回路11の制御を司るマイクロコンピュータ18を駆動する。第二電源部21は、圧縮機駆動回路9の駆動制御部20を駆動する。第三電源部22は、電磁開閉器7を駆動する。 Furthermore, the control power supply circuit 10 includes a half-wave rectifier circuit unit 16, a voltage divider circuit unit 17, a first power supply unit 19, a second power supply unit 21, and a third power supply unit 22. The half-wave rectifier circuit unit 16 includes a rectifier diode 14 and a capacitor 15 for half-wave rectification. The voltage dividing circuit unit 17 detects an overvoltage. The first power supply unit 19 drives the microcomputer 18 that controls the control circuit 11. The second power supply unit 21 drives the drive control unit 20 of the compressor drive circuit 9. The third power supply unit 22 drives the electromagnetic switch 7.
 尚、圧縮機駆動回路9および駆動制御部20は、一体的に、IPM(インテリジェント・パワー・モジュール)25等の半導体素子から構成されている。 The compressor drive circuit 9 and the drive control unit 20 are integrally composed of semiconductor elements such as an IPM (intelligent power module) 25.
 半波整流回路部16の整流ダイオード14は、電磁開閉器7が設けられた片側ラインに接続されている。また、整流ダイオード14は、電磁開閉器7および圧縮機駆動用電源回路8の全波整流回路12に対して並列に設けられている。 The rectifier diode 14 of the half-wave rectifier circuit unit 16 is connected to a one-side line provided with the electromagnetic switch 7. The rectifier diode 14 is provided in parallel to the electromagnetic switch 7 and the full-wave rectifier circuit 12 of the compressor drive power supply circuit 8.
 さらに、圧縮機駆動用電源回路8の+側端子から制御用電源回路10の+側端子にだけ電流が流れるように、圧縮機駆動用電源回路8と制御用電源回路10との間に放電ダイオード23が接続されている。 Further, a discharge diode is connected between the compressor driving power supply circuit 8 and the control power supply circuit 10 so that current flows only from the + side terminal of the compressor driving power supply circuit 8 to the + side terminal of the control power supply circuit 10. 23 is connected.
 以上のように構成された圧縮機駆動装置2について、次にその動作、作用を説明する。 Next, the operation and action of the compressor drive device 2 configured as described above will be described.
 通常、電磁開閉器7は閉じている。これにより、圧縮機駆動用電源回路8、圧縮機駆動回路9、電動機4、制御用電源回路10および制御回路11に交流電源1から電力が供給されている。 Normally, the electromagnetic switch 7 is closed. Thus, power is supplied from the AC power source 1 to the compressor driving power supply circuit 8, the compressor driving circuit 9, the electric motor 4, the control power supply circuit 10, and the control circuit 11.
 そして、電動機4は、制御回路11からの信号に基づき圧縮機駆動回路9によって駆動が制御されている。 The driving of the electric motor 4 is controlled by a compressor driving circuit 9 based on a signal from the control circuit 11.
 この状態で交流電源1の電圧が変動して過電圧状態になると、制御回路11は制御用電源回路10の分圧回路部17を介して過電圧を検出する。そして、制御回路11は、第三電源部22を介して電磁開閉器7を駆動し、電磁開閉器7を開いて交流電源1を圧縮機駆動用電源回路8から遮断する。これにより、圧縮機駆動用電源回路8、圧縮機駆動回路9、電動機4への過電圧の印加が防止され、過電圧の印加による各回路の素子等の損傷が防止される。 In this state, when the voltage of the AC power supply 1 fluctuates and becomes an overvoltage state, the control circuit 11 detects the overvoltage via the voltage dividing circuit unit 17 of the control power supply circuit 10. The control circuit 11 drives the electromagnetic switch 7 via the third power supply unit 22 and opens the electromagnetic switch 7 to shut off the AC power supply 1 from the compressor drive power supply circuit 8. As a result, application of overvoltage to the compressor drive power supply circuit 8, the compressor drive circuit 9, and the electric motor 4 is prevented, and damage to elements of each circuit due to application of overvoltage is prevented.
 この時、制御用電源回路10は、電磁開閉器7の上流側(電磁開閉器7よりも交流電源1側)のラインから分岐している。このため、電磁開閉器7が電力供給を停止するのは、電磁開閉器7よりも圧縮機駆動用電源回路8側の回路要素、および、圧縮機の電動機4である。よって、電磁開閉器7よりも制御用電源回路10側の回路要素への電力供給は遮断されない。したがって、制御回路11は、電磁開閉器7が開いた後も通電され続けている。よって、過電圧によって圧縮機が停止した時、例えば、制御回路11は圧縮機の停止が過電圧による停止であることを判定し、それを表示等することができ、利便性が大きく向上する。 At this time, the control power supply circuit 10 is branched from a line on the upstream side of the electromagnetic switch 7 (the AC power supply 1 side of the electromagnetic switch 7). For this reason, the electromagnetic switch 7 stops supplying power to the circuit elements on the compressor drive power circuit 8 side of the electromagnetic switch 7 and the motor 4 of the compressor. Therefore, the power supply to the circuit element closer to the control power circuit 10 than the electromagnetic switch 7 is not cut off. Therefore, the control circuit 11 continues to be energized even after the electromagnetic switch 7 is opened. Therefore, when the compressor is stopped due to an overvoltage, for example, the control circuit 11 can determine that the stop of the compressor is a stop due to an overvoltage, display it, and the convenience is greatly improved.
 尚、制御用電源回路10、整流ダイオード14およびコンデンサ15の耐電圧定格、交流電源1の過電圧値よりも充分高い。平滑用コンデンサ13は、コンデンサ15よりも消費電流値が高く、その静電容量もはるかに大きい。このため、コンデンサ15を耐電圧定格の高いものにすることは、そのサイズは大型のものとなり、コストアップにもつながる。ただし、コンデンサ15は、その下流にある回路要素の消費電流が比較的少なく、静電容量も小さい。このため、コンデンサ15に耐電圧定格を高いものに選定することは、比較的容易である。 It should be noted that the withstand voltage rating of the control power supply circuit 10, the rectifier diode 14 and the capacitor 15 and the overvoltage value of the AC power supply 1 are sufficiently higher. The smoothing capacitor 13 has a higher current consumption value and a much larger capacitance than the capacitor 15. For this reason, when the capacitor 15 has a high withstand voltage rating, the size of the capacitor 15 becomes large, leading to an increase in cost. However, the capacitor 15 has a relatively small current consumption of a circuit element downstream thereof and a small capacitance. For this reason, it is relatively easy to select a capacitor 15 having a high withstand voltage rating.
 また、本実施の形態の圧縮機駆動装置2では、圧縮機の電動機4を駆動していない時、電磁開閉器7を開いて、圧縮機駆動用電源回路8と交流電源1との接続を遮断している。例えば、圧縮機駆動装置2を冷蔵庫に使用していて、冷蔵室が十分に低温であると、圧縮機を駆動する必要がなく、圧縮機の電動機4は停止している。この時には、制御用電源回路10は電磁開閉器7を開くように制御するため、電動機4と交流電源1との接続が遮断される。 Further, in the compressor drive device 2 of the present embodiment, when the motor 4 of the compressor is not driven, the electromagnetic switch 7 is opened to disconnect the connection between the compressor drive power supply circuit 8 and the AC power supply 1. is doing. For example, when the compressor driving device 2 is used for a refrigerator and the refrigerator compartment is sufficiently low in temperature, there is no need to drive the compressor, and the motor 4 of the compressor is stopped. At this time, the control power supply circuit 10 controls the electromagnetic switch 7 to open, so that the connection between the motor 4 and the AC power supply 1 is cut off.
 これにより、圧縮機を駆動していない時に、交流電源1の電圧が変動して過電圧状態となっても、電磁開閉器7は既に開いているため、電磁開閉器7よりも下流側の回路要素に過電圧が印加されることを防止できる。したがって、圧縮機の停止中、過電圧状態のたびに電磁開閉器7が開かなくてもよい。 Accordingly, even when the compressor is not driven, even if the voltage of the AC power supply 1 fluctuates and becomes an overvoltage state, the electromagnetic switch 7 is already open, so that the circuit element on the downstream side of the electromagnetic switch 7 It is possible to prevent an overvoltage from being applied. Therefore, the electromagnetic switch 7 does not have to be opened every time an overvoltage state occurs while the compressor is stopped.
 これにより、電磁開閉器7の開放遅れに伴う圧縮機駆動用電源回路8等の回路要素への過電圧の印加を、大きく低減することができる。 Thereby, application of overvoltage to circuit elements such as the compressor drive power supply circuit 8 accompanying the opening delay of the electromagnetic switch 7 can be greatly reduced.
 よって、圧縮機駆動装置2における圧縮機駆動用電源回路8等を構成する素子の過電圧の印加によるダメージの蓄積を低減することができる。このため、圧縮機駆動装置2、およびこれを用いている冷蔵庫等の機器の信頼性と寿命を大きく向上させることができる。 Therefore, it is possible to reduce the accumulation of damage due to the application of overvoltage to the elements constituting the compressor driving power supply circuit 8 and the like in the compressor driving device 2. For this reason, the reliability and lifetime of the compressor drive device 2 and a device such as a refrigerator using the compressor drive device 2 can be greatly improved.
 また、圧縮機停止中は電磁開閉器7の駆動を停止できる。このため、電磁開閉器7の駆動用の電力消費を抑制することができ、省エネ性を向上させることもできる。 Also, the drive of the electromagnetic switch 7 can be stopped while the compressor is stopped. For this reason, the power consumption for driving the electromagnetic switch 7 can be suppressed, and the energy saving performance can also be improved.
 ここで、圧縮機を運転する必要がなく、電磁開閉器7を開いている場合、圧縮機駆動用電源回路8の平滑用コンデンサ13がゆっくりと放電して、平滑用コンデンサ13の電荷がゼロ又はゼロ近くになる。そして、平滑用コンデンサ13の電荷がゼロ近くになると、開いている電磁開閉器7を閉じたとき、電磁開閉器7に大きな突入電流が流れ、電磁開閉器7に大きなダメージを与えることが懸念される。 Here, when it is not necessary to operate the compressor and the electromagnetic switch 7 is opened, the smoothing capacitor 13 of the compressor driving power supply circuit 8 is slowly discharged, and the charge of the smoothing capacitor 13 is zero or Near zero. When the charge of the smoothing capacitor 13 becomes close to zero, when the open electromagnetic switch 7 is closed, a large inrush current flows through the electromagnetic switch 7, and there is a concern that the electromagnetic switch 7 may be seriously damaged. The
 しかしながら、この実施の形態の圧縮機駆動装置2では、圧縮機停止中は所定時間間隔(たとえば20分)ごとに電磁開閉器7を所定時間(たとえば1sec)だけ閉じ、その後開く。この電磁開閉器7の開閉を繰り返すことにより、電磁開閉器7の下流側に接続されている平滑用コンデンサ13の電荷は所定量以上に維持することができる。 However, in the compressor driving device 2 of this embodiment, the electromagnetic switch 7 is closed for a predetermined time (for example, 1 sec) and then opened at predetermined time intervals (for example, 20 minutes) while the compressor is stopped. By repeating the opening and closing of the electromagnetic switch 7, the charge of the smoothing capacitor 13 connected to the downstream side of the electromagnetic switch 7 can be maintained at a predetermined amount or more.
 すなわち、圧縮機停止中に平滑用コンデンサ13の電荷が放電してゼロ近くにならない。よって、圧縮機駆動のために電磁開閉器7を閉じたとき、電磁開閉器7に大きな突入電流が流れることを防止できる。これにより、大きな突入電流による電磁開閉器7のダメージも大きく低減することができ、この点から更に圧縮機駆動装置2の信頼性と寿命を大きく向上させることができる。 That is, the charge of the smoothing capacitor 13 is not discharged to near zero while the compressor is stopped. Therefore, it is possible to prevent a large inrush current from flowing through the electromagnetic switch 7 when the electromagnetic switch 7 is closed to drive the compressor. Thereby, the damage of the electromagnetic switch 7 by a large inrush current can also be reduced greatly, and the reliability and lifetime of the compressor drive device 2 can be greatly improved from this point.
 なお、圧縮機停止中に電磁開閉器7を閉じる時間間隔および閉じている時間は、所定としているが、所定に限られるものではない。これらは、平滑用コンデンサ13に所定量の電荷が蓄積維持される時間間隔および時間であれば、どのように設定してもよい。 In addition, although the time interval and closing time which close the electromagnetic switch 7 during a compressor stop are predetermined, it is not restricted to predetermined. These may be set in any manner as long as the time interval and time allow a predetermined amount of charge to be accumulated and maintained in the smoothing capacitor 13.
 また、圧縮機駆動装置2は、圧縮機駆動用電源回路8側のラインと制御用電源回路10側のラインとを分岐している。制御用電源回路10は、半波整流回路で構成されている。また、電磁開閉器7は、交流電源1の片側ラインのみを開閉する接点としいる。さらに、制御用電源回路10の半波整流の整流ダイオード14は電磁開閉器7が接続されている交流電源1の片側ラインに接続している。 Further, the compressor driving device 2 branches the line on the compressor driving power supply circuit 8 side and the line on the control power supply circuit 10 side. The control power circuit 10 is composed of a half-wave rectifier circuit. The electromagnetic switch 7 is a contact that opens and closes only one line of the AC power supply 1. Further, the half-wave rectifier diode 14 of the control power circuit 10 is connected to one side line of the AC power source 1 to which the electromagnetic switch 7 is connected.
 これにより、電磁開閉器7を開いて、圧縮機駆動用電源回路8等を交流電源1から遮断した際に、制御用電源回路10を経由して圧縮機駆動用電源回路8等へ交流電源1から電力が供給されるのを防止することができる。つまり、圧縮機駆動用電源回路8と制御用電源回路10とを分離した非絶縁型の回路構成としていても、制御用電源回路10を経由して圧縮機駆動用電源回路8等へ電力が供給されるのを防止することができる。 Thus, when the electromagnetic switch 7 is opened and the compressor driving power supply circuit 8 and the like are disconnected from the AC power supply 1, the AC power supply 1 is supplied to the compressor driving power supply circuit 8 and the like via the control power supply circuit 10. It is possible to prevent power from being supplied from the power source. That is, even if the compressor drive power supply circuit 8 and the control power supply circuit 10 are separated from each other, power is supplied to the compressor drive power supply circuit 8 and the like via the control power supply circuit 10. Can be prevented.
 したがって、圧縮機駆動用電源回路8と制御用電源回路10とを、非絶縁型の回路構成として安価に提供することができる。 Therefore, the compressor drive power supply circuit 8 and the control power supply circuit 10 can be provided at low cost as a non-insulated circuit configuration.
 また、圧縮機を駆動する回路部分(すなわち、圧縮機駆動用電源回路8、圧縮機駆動回路9、制御用電源回路10、制御回路11及び電磁開閉器7)を一枚のプリント基板上に容易にまとめることもできる。 In addition, the circuit portion for driving the compressor (that is, the compressor driving power circuit 8, the compressor driving circuit 9, the control power circuit 10, the control circuit 11, and the electromagnetic switch 7) can be easily formed on a single printed board. Can also be summarized.
 さらに、本実施の形態の圧縮機駆動装置2は、圧縮機駆動用電源回路8の+側端子から制御用電源回路10の+側端子にだけ電流が流れるように、放電ダイオード23を配置している。 Furthermore, the compressor drive device 2 of the present embodiment has the discharge diode 23 arranged so that current flows only from the + side terminal of the compressor drive power supply circuit 8 to the + side terminal of the control power supply circuit 10. Yes.
 これにより、メンテナンス等のため交流電源1をオフした際、圧縮機駆動用電源回路8の平滑用コンデンサ13の残留電荷を、制御用電源回路10を介して素早く低下させることができる。したがって、圧縮機駆動装置2の安全性を向上させることもできる。 Thus, when the AC power supply 1 is turned off for maintenance or the like, the residual charge of the smoothing capacitor 13 of the compressor drive power supply circuit 8 can be quickly reduced via the control power supply circuit 10. Therefore, the safety of the compressor drive device 2 can be improved.
 (実施の形態2)
 図2は、実施の形態1に係る圧縮機駆動装置2を搭載した圧縮機ユニット28の概略説明図である。
(Embodiment 2)
FIG. 2 is a schematic explanatory diagram of the compressor unit 28 in which the compressor driving device 2 according to the first embodiment is mounted.
 この実施の形態2に係る圧縮機ユニット28は、圧縮機24を備えている。圧縮機24の外郭に溶接されたブラケット(図示せず)には、制御ユニット27の取付脚(図示せず)が取り付けられている。これにより、圧縮機ユニット28は、圧縮機24と制御ユニット27とが一体化されて構成されている。この制御ユニット27は制御ボックス26を備えており、制御ボックス26内に圧縮機駆動装置2が組み込まれている。 The compressor unit 28 according to the second embodiment includes a compressor 24. A mounting leg (not shown) of the control unit 27 is attached to a bracket (not shown) welded to the outer shell of the compressor 24. Thus, the compressor unit 28 is configured by integrating the compressor 24 and the control unit 27. The control unit 27 includes a control box 26, and the compressor driving device 2 is incorporated in the control box 26.
 ここで、上記一体化とは、圧縮機24と制御ユニット27(つまり、圧縮機駆動装置2)とが、一つにまとまって配置されていることを意味する。これにより、圧縮機ユニット28は、圧縮機24と制御ユニット27とにより一体的に構成されている。 Here, the above-mentioned integration means that the compressor 24 and the control unit 27 (that is, the compressor driving device 2) are arranged together. Thereby, the compressor unit 28 is integrally configured by the compressor 24 and the control unit 27.
 上記構成によれば、圧縮機制御回路付きの汎用性のある圧縮機ユニット28とすることができる。つまり、各種冷却機器に簡便に搭載可能な圧縮機ユニット28として提供することができる。 According to the above configuration, a versatile compressor unit 28 with a compressor control circuit can be obtained. That is, it can be provided as a compressor unit 28 that can be easily mounted on various cooling devices.
 また、圧縮機ユニット28は、圧縮機駆動装置2を備えている。これにより、圧縮機ユニット28において、圧縮機駆動用電源回路8等の圧縮機駆動装置2の構成回路への過電圧の印加を低減すると同時に、圧縮機の停止の原因を判定することができる。 (実施の形態3)
 図3は、上記実施の形態2に係る圧縮機ユニット28を搭載した冷蔵庫の説明図である。図3に示すように、実施の形態3に係る冷蔵庫は冷蔵庫本体29を備えている。冷蔵庫本体29の背面に本体制御部30が設けられ、冷蔵庫本体29の下部機械室に圧縮機ユニット28が設けられている。そして、圧縮機ユニット28の圧縮機駆動装置2における制御回路11(図1)のマイクロコンピュータ18は、冷蔵庫本体29の本体制御部30にリード線31を介して接続されている。
Further, the compressor unit 28 includes the compressor driving device 2. Thereby, in the compressor unit 28, it is possible to reduce the application of overvoltage to the constituent circuits of the compressor driving device 2 such as the compressor driving power supply circuit 8 and to determine the cause of the compressor stop. (Embodiment 3)
FIG. 3 is an explanatory diagram of a refrigerator equipped with the compressor unit 28 according to the second embodiment. As shown in FIG. 3, the refrigerator according to the third embodiment includes a refrigerator main body 29. A main body control unit 30 is provided on the back surface of the refrigerator main body 29, and a compressor unit 28 is provided in the lower machine room of the refrigerator main body 29. The microcomputer 18 of the control circuit 11 (FIG. 1) in the compressor driving device 2 of the compressor unit 28 is connected to the main body control unit 30 of the refrigerator main body 29 via a lead wire 31.
 このように構成した冷蔵庫は、冷蔵庫本体29に制御ユニット27(つまり圧縮機駆動装置2)を後付けして、その制御回路11を本体制御部30に接続することにより簡単に構成される。したがって、冷蔵庫の製造メーカは、圧縮機駆動制御回路(例えばインバータ制御回路)のような複雑な圧縮機駆動回路を設計する必要がなく、簡単にインバータ駆動制御型圧縮機駆動装置付きの冷蔵庫を製造することができる。 The refrigerator configured as described above is simply configured by retrofitting a control unit 27 (that is, the compressor driving device 2) to the refrigerator main body 29 and connecting the control circuit 11 to the main body control unit 30. Therefore, a refrigerator manufacturer does not need to design a complicated compressor drive circuit such as a compressor drive control circuit (for example, an inverter control circuit), and easily manufactures a refrigerator with an inverter drive control type compressor drive device. can do.
 (実施の形態4)
 図4は、実施の形態1に係る圧縮機駆動装置2を直接的に搭載した他の冷蔵庫を示す説明図である。
(Embodiment 4)
FIG. 4 is an explanatory diagram showing another refrigerator in which the compressor driving device 2 according to Embodiment 1 is directly mounted.
 図4に示すように、実施の形態4に係る冷蔵庫は冷蔵庫本体29を備えている。圧縮機駆動装置2を、一枚のプリント基板のままとして、冷蔵庫本体29の背面上部に設けている。圧縮機駆動装置2は、本体制御部30の近傍に設けられ、リード線31によって本体制御部30と接続されている。そして、冷蔵庫本体29の下部には圧縮機24が設置されており、圧縮機24は圧縮機駆動装置2にリード線31を介して接続されている。 この構成によれば、実施の形態4に係る冷蔵庫は、実施の形態3に係る冷蔵庫と同様の効果を有している。また、実施の形態4に係る冷蔵庫は、さらに次のような効果も期待できる。 As shown in FIG. 4, the refrigerator according to the fourth embodiment includes a refrigerator main body 29. The compressor driving device 2 is provided on the upper back of the refrigerator main body 29 as a single printed board. The compressor driving device 2 is provided in the vicinity of the main body control unit 30 and is connected to the main body control unit 30 by a lead wire 31. And the compressor 24 is installed in the lower part of the refrigerator main body 29, and the compressor 24 is connected to the compressor drive device 2 via the lead wire 31. As shown in FIG. According to this configuration, the refrigerator according to the fourth embodiment has the same effect as the refrigerator according to the third embodiment. Further, the refrigerator according to Embodiment 4 can be expected to have the following effects.
 すなわち、例えば洪水等によって浸水発生の頻度が多い地域または国(例えば熱帯地域の国)等で冷蔵庫が使われる場合、圧縮機駆動装置2への水の浸入を低減することができる。圧縮機駆動装置2が、水により故障を防止することができる。加えて、どのような地域で冷蔵庫が使用されるとしても、圧縮機駆動装置2に対する圧縮機24からの熱影響を低減することもでき、圧縮機駆動装置2の信頼性低下を防止することもできる。 That is, when a refrigerator is used in a region or country where the frequency of inundation is high due to, for example, a flood (for example, a country in a tropical region), water intrusion into the compressor drive device 2 can be reduced. The compressor drive device 2 can prevent failure due to water. In addition, no matter where the refrigerator is used, it is possible to reduce the thermal influence from the compressor 24 on the compressor driving device 2 and to prevent the reliability of the compressor driving device 2 from being lowered. it can.
 なお、本実施の形態4では、圧縮機駆動装置2を本体制御部30の近傍の冷蔵庫本体29に直接取り付けた。ただし、圧縮機駆動装置2を実施の形態2に係る制御ユニット27の形にして、冷蔵庫本体29に取り付けるようにしてもよい。また、冷蔵庫本体29における圧縮機駆動装置2の取り付け場所は、本体制御部30の近傍に限らない。 In the fourth embodiment, the compressor driving device 2 is directly attached to the refrigerator main body 29 in the vicinity of the main body control unit 30. However, the compressor driving device 2 may be attached to the refrigerator main body 29 in the form of the control unit 27 according to the second embodiment. Further, the installation location of the compressor driving device 2 in the refrigerator main body 29 is not limited to the vicinity of the main body control unit 30.
 また、上記実施の形態3、4では、冷蔵庫を冷却機器の一つとして説明したが、冷却機器はこれに限定されない。例えば、冷却機器は、エアーコンディショナー、自動販売機、ショーケース、業務用冷蔵庫等であってもよく、圧縮機を搭載した冷却機器であれば、どのようなものであっても同様の効果が得られる。 In the third and fourth embodiments, the refrigerator is described as one of the cooling devices, but the cooling device is not limited to this. For example, the cooling device may be an air conditioner, a vending machine, a showcase, a commercial refrigerator, etc., and any cooling device equipped with a compressor can achieve the same effect. It is done.
 以上、本発明に係る圧縮機駆動装置、およびそれを用いた制御ユニット、圧縮機ユニット、冷却機器について、上記実施の形態を用いて説明したが、本発明は、これに限定されるものではない。つまり、今回開示した実施の形態はすべての点で例示であって制限的なものではなく、本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれるものである。 The compressor driving device according to the present invention and the control unit, the compressor unit, and the cooling device using the compressor driving device have been described using the above embodiment, but the present invention is not limited thereto. . That is, the embodiments disclosed herein are illustrative and non-restrictive in every respect, and the scope of the present invention is indicated by the scope of claims, and is within the meaning and scope equivalent to the scope of claims. All changes are included.
 以上のように、本発明は、圧縮機駆動装置の構成回路への過電圧の印加を低減するとともに、圧縮機の停止の原因を判定することができる圧縮機駆動装置およびそれを用いた制御ユニット、圧縮機ユニット、冷却機器を提供することができる。したがって、冷蔵庫、エアーコンディショナー、自動販売機、その他圧縮機を搭載する冷却機器の圧縮機駆動装置として幅広く使用することができる。 As described above, the present invention reduces the application of overvoltage to the constituent circuits of the compressor drive device, and can determine the cause of the compressor stop, and the control unit using the compressor drive device, A compressor unit and a cooling device can be provided. Therefore, it can be widely used as a compressor driving device for a refrigerator, an air conditioner, a vending machine, and other cooling devices equipped with a compressor.
 1 交流電源
 2 圧縮機駆動装置
 3 コネクタ
 4 電動機
 6 ノイズフィルター
 7 電磁開閉器
 8 圧縮機駆動用電源回路
 9 圧縮機駆動回路
 10 制御用電源回路
 11 制御回路
 12 全波整流回路
 13 平滑用コンデンサ
 14 整流ダイオード
 15 コンデンサ
 16 半波整流回路部
 17 分圧回路部
 18 マイクロコンピュータ
 19 第一電源部
 20 駆動制御部
 21 第二電源部
 22 第三電源部
 23 放電ダイオード
 24 圧縮機
 25 IPM
 26 制御ボックス
 27 制御ユニット
 28 圧縮機ユニット
 29 冷蔵庫本体
 30 本体制御部
 31 リード線
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Compressor drive device 3 Connector 4 Electric motor 6 Noise filter 7 Electromagnetic switch 8 Compressor drive power supply circuit 9 Compressor drive circuit 10 Control power supply circuit 11 Control circuit 12 Full wave rectification circuit 13 Smoothing capacitor 14 Rectification Diode 15 Capacitor 16 Half-wave rectifier circuit unit 17 Voltage divider circuit unit 18 Microcomputer 19 First power supply unit 20 Drive control unit 21 Second power supply unit 22 Third power supply unit 23 Discharge diode 24 Compressor 25 IPM
26 Control Box 27 Control Unit 28 Compressor Unit 29 Refrigerator Main Body 30 Main Body Control Unit 31 Lead Wire

Claims (8)

  1. 圧縮機を駆動する圧縮機駆動回路と、
     交流電源から前記圧縮機駆動回路に電力を供給する圧縮機駆動用電源回路と、
     前記圧縮機駆動回路を制御する制御回路と、
     前記交流電源から前記制御回路に電力を供給する制御用電源回路と、
     
     前記交流電源において過電圧が発生した場合、前記交流電源と前記制御用電源回路との間の電気的接続を遮断せずに、前記交流電源と前記圧縮機駆動用電源回路との間の電気的接続を遮断する電磁開閉器と、を備えている、圧縮機駆動装置。
    A compressor driving circuit for driving the compressor;
    A compressor drive power supply circuit for supplying power to the compressor drive circuit from an AC power supply;
    A control circuit for controlling the compressor drive circuit;
    A control power supply circuit for supplying power to the control circuit from the AC power supply;

    When an overvoltage occurs in the AC power supply, the electrical connection between the AC power supply and the compressor driving power supply circuit is cut off without interrupting the electrical connection between the AC power supply and the control power supply circuit. An electromagnetic switch for interrupting the compressor.
  2. 前記圧縮機が駆動していない場合、前記電磁開閉器は、開いて、前記交流電源と前記圧縮機駆動用電源回路との間の電気的接続を遮断する、請求項1に記載の圧縮機駆動装置。 2. The compressor drive according to claim 1, wherein when the compressor is not driven, the electromagnetic switch is opened to cut off an electrical connection between the AC power supply and the compressor drive power supply circuit. apparatus.
  3. 前記制御用電源回路は、半波整流用の整流ダイオードを有し、
     前記電磁開閉器は、前記交流電源に接続される一対の配線のうちの一方の配線を開閉する接点であり、
    前記整流ダイオードは、前記一方の配線に接続されている、請求項1または2に記載の圧縮機駆動装置。
    The control power circuit has a rectifier diode for half-wave rectification,
    The electromagnetic switch is a contact that opens and closes one of a pair of wires connected to the AC power source,
    The compressor driving apparatus according to claim 1, wherein the rectifier diode is connected to the one wiring.
  4. 前記圧縮機駆動用電源回路は、平滑用コンデンサを有し、
     前記圧縮機が駆動していない場合、所定タイミングごとに前記電磁開閉器を所定時間だけ閉じる、請求項2または3に記載の圧縮機駆動装置。
    The compressor driving power supply circuit has a smoothing capacitor,
    4. The compressor driving device according to claim 2, wherein when the compressor is not driven, the electromagnetic switch is closed for a predetermined time every predetermined timing.
  5.  前記圧縮機駆動用電源回路の+側端子から前記制御用電源回路の+側端子に電流が流れるように配置された放電ダイオードをさらに備えている、請求項1~4のいずれか一項に記載の圧縮機駆動装置。 The discharge diode according to any one of claims 1 to 4, further comprising a discharge diode arranged so that a current flows from a positive side terminal of the compressor driving power source circuit to a positive side terminal of the control power source circuit. Compressor drive unit.
  6.  請求項1~5のいずれか一項に記載の前記圧縮機駆動装置と、
     前記圧縮機駆動装置を収容する制御ボックスと、を備えている、制御ユニット。
    The compressor driving device according to any one of claims 1 to 5,
    And a control box for accommodating the compressor driving device.
  7.  請求項6に記載の前記制御ユニットと前記圧縮機とにより一体的に構成されている、圧縮機ユニット。 A compressor unit that is configured integrally with the control unit according to claim 6 and the compressor.
  8.  請求項1~5のいずれか一項に記載の前記圧縮機駆動装置、請求項6に記載の前記制御ユニット、または、請求項7に記載の前記圧縮機ユニットを備えている、冷却機器。 A cooling device comprising the compressor driving device according to any one of claims 1 to 5, the control unit according to claim 6, or the compressor unit according to claim 7.
PCT/JP2018/019494 2017-05-25 2018-05-21 Compressor driving device, control unit using same, compressor unit, and cooler WO2018216655A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880034611.4A CN110679051B (en) 2017-05-25 2018-05-21 Compressor driving device, control unit using the same, compressor unit, and cooler
PH12019502399A PH12019502399A1 (en) 2017-05-25 2019-10-23 Compressor driving device, control unit including the same, compressor unit, and cooler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-103965 2017-05-25
JP2017103965 2017-05-25

Publications (1)

Publication Number Publication Date
WO2018216655A1 true WO2018216655A1 (en) 2018-11-29

Family

ID=64395661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019494 WO2018216655A1 (en) 2017-05-25 2018-05-21 Compressor driving device, control unit using same, compressor unit, and cooler

Country Status (3)

Country Link
CN (1) CN110679051B (en)
PH (1) PH12019502399A1 (en)
WO (1) WO2018216655A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0879963A (en) * 1994-09-06 1996-03-22 Daikin Ind Ltd Fault diagnostic device in power conversion control device
JP2001241732A (en) * 2000-02-29 2001-09-07 Matsushita Electric Ind Co Ltd Controller for multi-type air conditioner
JP2014023392A (en) * 2012-07-23 2014-02-03 Daikin Ind Ltd Power-supply device
JP2015096009A (en) * 2013-11-14 2015-05-18 ローム株式会社 Ac/dc converter, its protection circuit, power-supply circuit, power-supply adapter, and electronic apparatus
WO2016194197A1 (en) * 2015-06-04 2016-12-08 三菱電機株式会社 Power conversion device
JP2018057178A (en) * 2016-09-29 2018-04-05 日立工機株式会社 Electrical apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4043481B2 (en) * 2004-06-25 2008-02-06 三洋電機株式会社 Inverter device
CN102918758B (en) * 2010-05-28 2015-03-18 三菱电机株式会社 Power conversion device
CN102343782A (en) * 2011-07-15 2012-02-08 重庆松芝汽车空调有限公司 Electric automobile air conditioning direct current high-voltage circuit with pre-charging function
CN102269464B (en) * 2011-08-22 2014-01-29 四川长虹电器股份有限公司 Delayed protection method for air conditioner
JP5454596B2 (en) * 2012-02-08 2014-03-26 ダイキン工業株式会社 Power control device
CN105515415A (en) * 2015-12-25 2016-04-20 美的集团武汉制冷设备有限公司 Power conversion circuit, power conversion method and air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0879963A (en) * 1994-09-06 1996-03-22 Daikin Ind Ltd Fault diagnostic device in power conversion control device
JP2001241732A (en) * 2000-02-29 2001-09-07 Matsushita Electric Ind Co Ltd Controller for multi-type air conditioner
JP2014023392A (en) * 2012-07-23 2014-02-03 Daikin Ind Ltd Power-supply device
JP2015096009A (en) * 2013-11-14 2015-05-18 ローム株式会社 Ac/dc converter, its protection circuit, power-supply circuit, power-supply adapter, and electronic apparatus
WO2016194197A1 (en) * 2015-06-04 2016-12-08 三菱電機株式会社 Power conversion device
JP2018057178A (en) * 2016-09-29 2018-04-05 日立工機株式会社 Electrical apparatus

Also Published As

Publication number Publication date
CN110679051B (en) 2023-06-09
CN110679051A (en) 2020-01-10
PH12019502399A1 (en) 2020-12-07

Similar Documents

Publication Publication Date Title
US10250047B2 (en) Battery disconnect unit
EP3779298B1 (en) Air conditioner
CN102804538B (en) Power supply protection circuit and motor drive device provided with same
JP2016070519A (en) Outdoor machine and air conditioning device
EP3730857B1 (en) Air conditioner
JP4318662B2 (en) Protection circuit, power supply
KR200448796Y1 (en) Automatic Supplying Normal and Emergency Power Supply of Separate Household
WO2018216655A1 (en) Compressor driving device, control unit using same, compressor unit, and cooler
JP2004112929A (en) Ac-dc converter
JP2018518006A (en) Power distribution system for connection to AC voltage network
US20240128917A1 (en) Motor drive device and outdoor unit of air-conditioning apparatus, which includes the same
JP6567930B2 (en) Air conditioner
JP6121290B2 (en) Refrigeration equipment
WO2010102364A1 (en) Control system for single-phase induction motor and control method for single-phase induction motor
CN205356174U (en) Car generator rectifier
JP6466023B2 (en) Air conditioner
JP2012251702A (en) Ventilator
JP2012228009A (en) Inverter controller
JP2005096881A (en) Elevator safety circuit
JP7511753B2 (en) Motor drive device and outdoor unit of air conditioner having the same
KR20180088174A (en) Power supply apparatus and air conditioner including the same
US20240175617A1 (en) Power converter and refrigeration cycle apparatus
KR101380743B1 (en) Power supply for preventing a power element from being broken due to a short circuit
JP2021045028A (en) Changeover circuit
KR20010060558A (en) Controll circuit for balance of airconditioner-electric source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806752

Country of ref document: EP

Kind code of ref document: A1