WO2018216076A1 - Board working machine - Google Patents

Board working machine Download PDF

Info

Publication number
WO2018216076A1
WO2018216076A1 PCT/JP2017/019050 JP2017019050W WO2018216076A1 WO 2018216076 A1 WO2018216076 A1 WO 2018216076A1 JP 2017019050 W JP2017019050 W JP 2017019050W WO 2018216076 A1 WO2018216076 A1 WO 2018216076A1
Authority
WO
WIPO (PCT)
Prior art keywords
jet nozzle
molten solder
substrate
lead
jet
Prior art date
Application number
PCT/JP2017/019050
Other languages
French (fr)
Japanese (ja)
Inventor
石川 信幸
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2017/019050 priority Critical patent/WO2018216076A1/en
Priority to JP2019519819A priority patent/JP6732122B2/en
Publication of WO2018216076A1 publication Critical patent/WO2018216076A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/08Soldering by means of dipping in molten solder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • the present invention relates to a substrate working machine that applies molten solder to leads of lead components inserted into a substrate.
  • Patent Document 1 there is a technique of applying molten solder to leads of lead components inserted into a substrate (for example, Patent Document 1).
  • molten solder is sprayed from the nozzle of the molten solder tank toward the lead inserted into the through hole of the substrate, so that the molten solder is applied to the lead. Solder to the board.
  • this soldering device adjusts the liquid level of the molten solder bath.
  • the soldering apparatus includes an arm that conveys the substrate to the molten solder bath. This arm is provided with a continuity sensor. When adjusting the height of the liquid level, the arm moves above the nozzle and descends to a position corresponding to the height of the liquid level set by the user.
  • the continuity sensor contacts the liquid level of the molten solder jetted from the nozzle of the molten solder tank and detects that the liquid level has reached a predetermined height.
  • the soldering device adjusts the height of the liquid level of the solder tank based on the detection information of the continuity sensor.
  • the operation when the molten solder is pulled away from the substrate or the lead is important for the soldering quality.
  • the quality of soldering referred to here is, for example, the degree of solder rise and the presence or absence of bubbles in the solder.
  • the quality of the soldering is deteriorated. For this reason, how to separate the molten solder from the substrate and the leads to improve the soldering quality is a problem.
  • an object of the present application is to provide an on-board working machine that can improve the soldering quality by changing the operation when the molten solder is pulled away from the board or the lead.
  • the present application is directed to a substrate holding device that holds a substrate having a penetrating portion and a lead component in which a lead is inserted into the penetrating portion, and the molten solder is jetted from a jet nozzle to be inserted into the penetrating portion.
  • an operation changing unit that changes the operation of the jet nozzle in the coating operation.
  • the operation changing unit includes a moving distance of the jet nozzle, a moving direction of the jet nozzle, and a moving speed of the jet nozzle. And changing the state of the molten solder applied to the leads by changing at least one of the operating conditions of movement acceleration of the jet nozzle It discloses a work machine.
  • the operation changing unit changes at least one of the four operating conditions such as the moving distance of the jet nozzle.
  • substrate or a lead can be changed, and the quality of soldering can be improved.
  • molten solder is applied collectively to two leads, and is a schematic view showing a state of an application operation as viewed from the upper surface of the circuit substrate. It is the schematic of the pattern which makes it approach again after separating a jet nozzle once, and pulling away molten solder after that. It is the schematic of the pattern which accelerates when separating a jet nozzle from a circuit base material, and pulls away molten solder. It is the schematic of the pattern which moves a jet nozzle in steps.
  • FIG. 1 shows a component mounter 10 according to this embodiment.
  • the component mounter 10 is a device for performing a component mounting operation on the circuit substrate 12.
  • the component mounting machine 10 includes an apparatus main body 20, a substrate conveyance holding device 22, a component mounting device 24, a mark camera 26, a parts camera 28, a component supply device 30, a loose component supply device 32, and a soldering device 36 (see FIG. 3). And a control device 38 (see FIG. 4).
  • Examples of the circuit base material 12 include a circuit board and a three-dimensional base material. Examples of the circuit board include a printed wiring board and a printed circuit board.
  • the apparatus main body 20 includes a frame portion 40 and a beam portion 42 that is overlaid on the frame portion 40.
  • the substrate conveyance holding device 22 is disposed in the center of the frame portion 40 in the front-rear direction, and includes a conveyance device 50 and a clamp device 52.
  • the transport device 50 is a device that transports the circuit substrate 12.
  • the clamp device 52 is a device that holds the circuit substrate 12. Thereby, the substrate conveyance holding device 22 conveys the circuit substrate 12 and holds the circuit substrate 12 at a predetermined work position. In the following description, the conveyance direction of the circuit substrate 12 shown in FIG.
  • X direction 1 is referred to as an X direction
  • a horizontal direction perpendicular to the X direction is referred to as a Y direction
  • a direction perpendicular to the X direction and the Y direction is referred to as Z direction.
  • Z direction a direction perpendicular to the X direction and the Y direction.
  • Z direction a direction perpendicular to the X direction and the Y direction.
  • Z direction This will be described as a direction.
  • the width direction of the component mounter 10 is the X direction.
  • the front-rear direction of the component mounter 10 is the Y direction.
  • the component mounting device 24 is disposed in the beam portion 42 and includes two work heads 60 and 62 and a work head moving device 64. As shown in FIG. 2, suction nozzles 66 are provided on the lower end surfaces of the work heads 60 and 62. Each of the work heads 60 and 62 sucks and holds the component by the suction nozzle 66. Further, the work head moving device 64 has an X direction moving device 68, a Y direction moving device 70, and a Z direction moving device 72. Then, the two working heads 60 and 62 are integrally moved to arbitrary positions on the frame portion 40 by the X-direction moving device 68 and the Y-direction moving device 70.
  • the work heads 60 and 62 are detachably attached to the sliders 74 and 76, respectively.
  • the Z-direction moving device 72 moves the sliders 74 and 76 individually in the vertical direction. That is, the work heads 60 and 62 are individually moved in the vertical direction by the Z-direction moving device 72.
  • the mark camera 26 is attached to the slider 74 while facing downward, and is moved together with the work head 60 in the X direction, the Y direction, and the Z direction. As a result, the mark camera 26 images an arbitrary position on the frame unit 40. As shown in FIG. 1, the parts camera 28 is disposed between the base material conveyance holding device 22 and the component supply device 30 on the frame portion 40 so as to face upward. Thereby, the parts camera 28 images the parts sucked and held by the suction nozzles 66 of the work heads 60 and 62.
  • the component supply device 30 is disposed at one end (front side) of the frame portion 40 in the front-rear direction.
  • the component supply device 30 includes, for example, a tray-type component supply device 78 and a feeder-type component supply device 80 (see FIG. 4).
  • the tray-type component supply device 78 is a device that supplies components placed on the tray.
  • the feeder-type component supply device 80 is a device that supplies components by a tape feeder or a stick feeder (not shown).
  • the bulk component supply device 32 is disposed at the end portion on the other side (rear side) of the frame portion 40 in the front-rear direction.
  • the separated component supply device 32 is a device for aligning a plurality of components scattered in a separated state and supplying the components in an aligned state. That is, it is an apparatus that aligns a plurality of components in an arbitrary posture into a predetermined posture and supplies the components in a predetermined posture.
  • Examples of components supplied by the component supply device 30 and the bulk component supply device 32 include electronic circuit components, power module components, and the like.
  • electronic circuit parts there are parts having leads (radial parts and axial parts), parts having no leads, and the like.
  • the soldering device 36 is disposed below the transfer device 50, and includes a jet device 100 and a jet device moving device 102 as shown in FIG.
  • the jet device 100 includes a soldering iron 106, a jet nozzle 108, and a nozzle cover 110.
  • the solder rod 106 has a generally rectangular parallelepiped shape, and molten solder is stored therein.
  • the jet nozzle 108 is erected on the upper surface of the soldering iron 106. Then, by the operation of a pump (not shown), the molten solder is pumped up from the soldering iron 106, and the molten solder jets upward from the upper end portion of the jet nozzle 108.
  • the nozzle cover 110 is generally cylindrical and is disposed on the upper surface of the soldering iron 106 so as to surround the jet nozzle 108. Then, the molten solder jetted from the upper end portion of the jet nozzle 108 passes between the outer peripheral surface of the jet nozzle 108 and the inner peripheral surface of the nozzle cover 110 and returns to the inside of the solder rod 106.
  • the jet device moving device 102 includes a slider 112, an X direction moving device 114, a Y direction moving device 116, and a Z direction moving device 118.
  • the slider 112 is generally plate-shaped.
  • a jet device 100 is disposed on the upper surface of the slider 112.
  • the X-direction moving device 114 moves the slider 112 in the conveyance direction of the circuit base material 12 by the conveyance device 50, that is, in the X direction.
  • the Y direction moving device 116 moves the slider 112 in the Y direction.
  • the Z-direction moving device 118 moves the slider 112 in the Z direction, that is, the up-down direction. Accordingly, the jet device 100 moves to an arbitrary position below the transport device 50 by the operation of the jet device moving device 102.
  • the control device 38 includes a controller 152, a plurality of drive circuits 154, an image processing device 156, and a storage device 157.
  • the plurality of drive circuits 154 include the transport device 50, the clamp device 52, the work heads 60 and 62, the work head moving device 64, the tray-type component supply device 78, the feeder-type component supply device 80, the bulk component supply device 32, the jet flow. It is connected to the apparatus 100, the jet apparatus moving apparatus 102, and the display operation part 159 mentioned later.
  • the controller 152 includes a CPU, a ROM, a RAM, and the like, mainly a computer, and is connected to a plurality of drive circuits 154.
  • the controller 152 is also connected to the image processing device 156.
  • the image processing device 156 processes image data obtained by the mark camera 26 and the part camera 28.
  • the controller 152 acquires various information from the image data of the mark camera 26 and the part camera 28.
  • the storage device 157 includes, for example, a hard disk and a memory.
  • the controller 152 of the present embodiment reads the control data D1 stored in the storage device 157 and executes a component mounting operation on the circuit substrate 12.
  • the control data D1 for example, data such as the type of circuit base 12 to be produced, the type of parts to be mounted, the mounting position of the parts on the circuit base 12 and the like are set.
  • data of a plurality of types of patterns are stored as operation patterns of the jet nozzle 108 in a molten solder application operation described later.
  • the controller 152 changes the operation of the jet nozzle 108 in the coating operation according to the type of pattern.
  • the component mounter 10 includes a display operation unit 159 as shown in FIG.
  • the display operation unit 159 is disposed on the rear end surface of the bulk component supply device 32.
  • the display operation unit 159 is, for example, a touch panel, and includes a liquid crystal panel, a light source such as an LED that emits light from the back side of the liquid crystal panel, a contact sensing film bonded to the surface of the liquid crystal panel, and the like.
  • the user can select the pattern type for changing the operation of the jet nozzle 108 by operating the display operation unit 159. For example, the user can confirm the degree of solder rise of the circuit base material 12 that has been mounted by the component mounter 10 and can change the pattern as necessary.
  • the controller 152 may be configured to accept only whether or not to change the operation (pattern) of the jet nozzle 108 instead of accepting selection from the user as to which of the patterns is to be executed. In this case, for example, when the display operation unit 159 receives an operation for changing the pattern being executed, the controller 152 may change the pattern in accordance with a preset order. Thereby, the user can change the operation of the jet nozzle 108 only by giving an instruction to change the pattern.
  • the component mounter 10 of the present embodiment performs a component mounting operation on the circuit substrate 12 held by the substrate conveyance holding device 22 with the above-described configuration.
  • the component mounter 10 can mount various components on the circuit base 12, but in the following description, a component having a lead (hereinafter may be abbreviated as “lead component”). The case where it mounts
  • the transport device 50 carries the circuit base material 12 into the component mounter 10 from, for example, a device upstream of the production line based on the control of the controller 152.
  • the conveyance device 50 conveys the circuit substrate 12 to the work position.
  • the clamp device 52 holds the circuit substrate 12 at this working position.
  • the mark camera 26 moves above the circuit base 12 based on the control of the controller 152 and images the circuit base 12. Thereby, the information regarding the holding position etc. of the circuit base material 12 is obtained. Further, the component supply device 30 or the bulk component supply device 32 supplies lead components at a predetermined supply position. Then, one of the work heads 60 and 62 moves above the lead component supply position, and the lead component is held by the suction nozzle 66.
  • FIG. 5 shows a state in which the lead 144 of the lead component 140 sucked and held by the suction nozzle 66 is inserted into the through hole 148 of the circuit substrate 12.
  • FIG. 5 shows a state where the molten solder 150 is jetted from the jet nozzle 108 toward the lead 144 inserted in the through hole 148.
  • the lead component 140 includes, for example, a component main body 142 and two leads 144 extending from the bottom surface 142A of the component main body 142.
  • the lead component 140 is suction-held by the suction nozzle 66 on the upper surface 142B of the component main body 142 opposite to the bottom surface 142A to which the lead 144 is attached.
  • FIG. 5 shows a state in which the lead component 140 is viewed from the side, and only one of the two leads 144 and the two through holes 148 is illustrated.
  • a case where the molten solder 150 is applied to only one lead 144 will be described as an example.
  • the case where the molten solder 150 is applied to the plurality of leads 144 will be described later.
  • the work heads 60 and 62 move to above the parts camera 28 while holding the lead component 140 after the lead component 140 is sucked by the suction nozzle 66 at the supply position.
  • the parts camera 28 images the lead component 140 held by the suction nozzle 66. Thereby, information on the holding position of the lead component 140 and the like is obtained.
  • the work heads 60 and 62 holding the lead component 140 move above the circuit substrate 12.
  • the controller 152 corrects an error in the holding position of the circuit base 12, an error in the holding position of the lead component 140, and the like while the work heads 60 and 62 are moving.
  • the lead 144 of the lead component 140 sucked and held by the suction nozzle 66 is inserted into the through hole 148 formed in the circuit substrate 12.
  • the insertion amount of the lead 144 is set in the control data D1 for each type of the lead component 140. Specifically, for example, in the lead component 140 in which the lead 144 is inserted into the through-hole 148 until the bottom surface 142A of the component main body 142 comes into contact with the base material top surface 12A of the circuit base material 12, the insertion amount is large. In addition, in the lead component 140 in which the lead 144 is inserted into the through hole 148 so that the bottom surface 142A of the component main body 142 and the substrate top surface 12A of the circuit substrate 12 are maintained apart, the insertion amount is small. . As described above, the insertion amount of the lead 144 is set in the control data D1 for each type of the lead component 140.
  • the lead 144 is inserted into the through-hole 148 so that the bottom surface 142A of the component main body 142 and the substrate top surface 12A of the circuit substrate 12 are maintained apart from each other will be described. To do. In this case, the lead 144 is inserted into the through hole 148 in a state where the component main body 142 of the lead component 140 is lifted from the circuit substrate 12.
  • the jet device 100 When the working heads 60 and 62 described above move above the circuit base 12 and insert the leads 144 into the through holes 148 of the circuit base 12, the jet device 100 is located below the circuit base 12 (through holes 148). Has moved to.
  • the jet device 100 is disposed below the circuit base 12, causes the molten solder 150 to jet from the jet nozzle 108 toward the base lower surface 12 ⁇ / b> B of the circuit base 12, and is inserted into the lead 144.
  • a molten solder 150 is applied to the substrate.
  • the controller 152 of the present embodiment operates the jet nozzle 108 in the coating operation in accordance with the pattern data selected by the user among the plurality of patterns set in the control data D1. Change the contents. An example of each pattern will be described below.
  • FIG. 6 shows a pattern in which the jet nozzle 108 and the lead 144 are separated from each other at the central portion of the molten solder 150 and the molten solder 150 is separated.
  • a direction X direction or the like
  • the lead 144 of the lead component 140 sucked and held by the suction nozzle 66 is inserted into the through hole 148 formed in the circuit substrate 12.
  • the jet device 100 located below the through-hole 148 is directed toward the circuit substrate 12 along the Z direction. Moving upward, the jet nozzle 108 of the jet device 100 is brought close to the tip of the lead 144 inserted into the through hole 148.
  • the approach speed along the Z direction of the jet nozzle 108 at this time that is, the moving speed for raising the jet apparatus 100 (jet nozzle 108) is set in the pattern data of the control data D1.
  • the movement acceleration of the jet nozzle 108 may be set in the control data D1.
  • the jet device 100 starts jetting the molten solder 150 from the tip of the jet nozzle 108 when the jet device 100 moves below the circuit substrate 12, for example. For this reason, when the jet device 100 is raised by a predetermined distance, the molten solder 150 jetted from the tip of the jet nozzle 108 is applied to the tip of the lead 144.
  • the ascending moving direction for example, the Z direction
  • the moving distance for moving in the Z direction are set in the pattern data of the control data D1.
  • the jet device 100 stops when it rises to a predetermined height, for example, and maintains its height (position in the Z direction) and stops. At the raised position, the molten solder 150 is jetted from the suction nozzle 66 toward the lead 144, and the molten solder 150 is applied to the leading end portion of the lead 144 and the through hole 148 of the circuit substrate 12.
  • FIG. 7 schematically shows the state of the application work as seen from the substrate upper surface 12A of the circuit substrate 12.
  • the center portion of the molten solder 150 jetted from the jet nozzle 108 (see FIG. 6) is aligned with the position of the lead 144. It has become.
  • the diameter L1 of the molten molten solder 150 shown in FIG. 7 is, for example, 6 mm to 10 mm.
  • the controller 152 moves the jet nozzle 108 in a direction away from the circuit substrate 12 with the position of the lead 144 aligned with the central portion (see S2 in FIG. 6). For example, the controller 152 lowers the jet nozzle 108 along the Z direction without changing the positions in the X direction and the Y direction (S2).
  • the molten solder 150 when the molten solder 150 is pulled away from the circuit substrate 12 or the lead 144, the central portion of the molten solder 150 jetted from the jet nozzle 108, that is, the apex portion of the molten solder 150 jetted from the jet nozzle 108.
  • the molten solder 150 can be pulled away from the lead 144 and the circuit substrate 12.
  • the molten solder 150 jetted from the tip of the jet nozzle 108 moves upward and then falls scattered around (in the X direction and the Y direction) to lower the jet nozzle 108. It flows between the outer peripheral surface and the inner peripheral surface of the nozzle cover 110 and returns to the inside of the soldering iron 106 (see FIG. 3). Therefore, in the central portion (vertex portion) of the molten solder 150 in a plan view shown in FIG. 7, the molten solder 150 jetted upward from the jet nozzle 108 rises to the highest position in the Z direction. Moreover, since the moving direction of the molten solder 150 turns from the upper side to the lower side in the central portion, the convection speed of the molten solder 150 is likely to be slow.
  • the molten solder 150 scattered and descending moves in the X direction and the Y direction, and moves in a direction away from the circuit substrate 12 (downward in the Z direction) according to gravity acceleration or the like. .
  • the molten solder 150 jetted from the jet nozzle 108 is likely to increase the speed of convection as it moves away from the center in the X direction or the Y direction.
  • the convection velocity is likely to be higher in the end portions in the X direction and the Y direction than in the central portion (upper end portion in the Z direction).
  • the central portion is closer to the tip of the jet nozzle 108, that is, the opening of the jet nozzle 108, compared to the molten solder 150 scattered and descending around. For this reason, the temperature of the molten solder 150 is high in the central portion, and is likely to decrease as it is scattered around and away from the center. In other words, there is a high possibility that the temperature of the molten solder 150 that is scattered and scattered around the periphery, that is, the molten solder 150 at the end portion in the X direction or the Y direction, becomes low.
  • the controller 152 of this embodiment can improve the soldering quality by changing the positional relationship among the jet nozzle 108, the molten solder 150, and the lead 144.
  • the soldering quality refers to, for example, the degree of solder rising and the presence or absence of bubbles in the molten solder 150 after soldering. For example, it is whether or not the shape of the molten solder 150 after soldering is a taper shape downward from the substrate lower surface 12B of the circuit substrate 12 (see FIG. 9). Alternatively, it is whether or not the molten solder 150 is sufficiently filled in the through hole 148. Further, whether or not bubbles are generated in the molten solder 150 filled in the through holes 148 is determined.
  • the quality of such soldering varies depending on the type of molten solder 150, room temperature, humidity, and the like, but also varies greatly depending on the operation when the molten solder 150 is pulled away from the lead 144 and the circuit substrate 12 during the coating operation. To do. Therefore, the controller 152 of the present embodiment can switch the plurality of patterns, change the operation when separating them, and improve the soldering quality.
  • the time for stopping the jet device 100 at the position where the jet device 100 is raised is set in the pattern data of the control data D1.
  • the controller 152 measures, for example, the time from reaching the ascending position until the jet nozzle 108 is separated from the circuit substrate 12, that is, the time for applying the molten solder 150 to the lead 144, and is set in the pattern data. After a lapse of time, the jet nozzle 108 (jet device 100) starts to descend. Therefore, the controller 152 can also improve the quality of soldering by changing the stop time at the raised position. Note that the controller 152 may immediately lower the jet nozzle 108 without stopping it at the raised position.
  • the controller 152 continues the jet of the molten solder 150 from the jet nozzle 108 even when the jet device 100 is lowered in S2 of FIG. Thereby, the molten solder 150 and the lead 144 that are jetted are separated at the above-described central portion, and the application of the molten solder 150 to the lead 144 is completed.
  • the moving speed for lowering the jet device 100 (jet nozzle 108) is set in the pattern data of the control data D1. Further, instead of the downward movement speed or in addition to the movement speed, the movement acceleration of the jet nozzle 108 may be set in the control data D1.
  • the controller 152 of the present embodiment maintains the suction holding of the lead component 140 by the suction nozzle 66 even after the operation of applying the molten solder 150 to the lead 144 is finished.
  • the controller 152 releases the holding of the lead component 140 by the suction nozzle 66.
  • the controller 152 may release the suction holding of the lead component 140 by the suction nozzle 66 after inserting the lead 144 into the through hole 148, that is, before applying the molten solder 150.
  • the controller 152 may change the timing of releasing the suction of the lead component 140 according to the required mounting accuracy of the lead component 140, for example. Therefore, the controller 152 can improve the soldering quality also by changing the state of the suction holding.
  • the lead component 140 is mounted on the circuit substrate 12 in a state where the component main body 142 is lifted from the circuit substrate 12.
  • the mounted lead component 140 is soldered to the circuit substrate 12.
  • the lead 144 and the circuit base 12 are electrically connected to each other. A circuit is formed.
  • FIG. 10 shows a pattern in which the jet nozzle 108 and the lead 144 are separated from each other at the end portion of the molten solder 150 and the molten solder 150 is pulled away.
  • the jet device 100 located below the through-hole 148 moves upward toward the circuit substrate 12 along the Z direction and is inserted into the through-hole 148.
  • the jet nozzle 108 of the jet device 100 is brought close to the tip of the lead 144.
  • the jet device 100 is raised by a predetermined distance, the molten solder 150 jetted from the tip of the jet nozzle 108 is applied to the tip of the lead 144.
  • FIG. 8 schematically shows the state of the application work as viewed from the substrate upper surface 12 ⁇ / b> A of the circuit substrate 12. As shown in FIG. 8, in this pattern, when the circuit substrate 12 is viewed in plan, first, the central portion of the molten solder 150 that is jetted from the jet nozzle 108 is aligned with the position of the lead 144. .
  • the controller 152 moves the jet nozzle 108 in a direction away from the circuit base material 12 with the position of the lead 144 aligned with the end portion (S6 in FIG. 10). For example, the controller 152 lowers the jet nozzle 108 along the Z direction without changing the positions in the X direction and the Y direction (S6).
  • the molten solder 150 when the molten solder 150 is pulled away from the circuit substrate 12 or the lead 144, the molten solder 150 can be pulled away from the lead 144 or the like at the end portion of the molten solder 150 jetted from the jet nozzle 108. That is, the molten solder 150 can be pulled away from the lead 144 or the like at a portion that moves (drops) in a direction away from the circuit substrate 12 after being jetted from the jet nozzle 108 toward the circuit substrate 12. As described above, the end portion has a high convection speed of the molten solder 150, and the temperature of the molten solder 150 is likely to be low. In this way, by changing the position to be separated and changing the state of the molten solder 150, improvement in soldering quality can be expected.
  • the controller 152 continues the jet of the molten solder 150 from the jet nozzle 108 even when the jet device 100 is lowered in S6. Thereby, the molten solder 150 and the lead 144 are separated from each other at the end portion described above, and the application of the molten solder 150 to the lead 144 is completed.
  • the lead component 140 is mounted on the circuit substrate 12 in a state where the component main body 142 is lifted from the circuit substrate 12.
  • the soldering quality is changed.
  • the desired quality cannot be obtained with the pattern separated at the center portion described above
  • the user can obtain the desired quality by changing the pattern to be separated at the end portion.
  • the desired quality cannot be obtained with the pattern separated at the end portion
  • the user can obtain the desired quality by changing to the pattern separated at the center portion.
  • the user can select the type of pattern for changing the operation of the jet nozzle 108 by operating the display operation unit 159. It was verified that this pattern is likely to improve the soldering quality among various patterns that change the operating conditions such as the moving distance, moving direction, moving speed, and moving acceleration of the jet nozzle 108. It is a pattern. In this case, the user can improve the soldering quality by changing the operating condition simply by selecting one of a plurality of verified highly reliable patterns. Further, the user need not verify the contents of the operating conditions. Note that the above-described pattern is not limited to a pattern verified by a manufacturer or the like, and may be a pattern with a track record of improving soldering quality in use by a user, for example.
  • the soldering device 36 is in the X and Y directions (plane direction) parallel to the plane of the circuit substrate 12 and the Z direction (orthogonal direction) orthogonal to the plane of the circuit substrate 12.
  • the jet nozzle 108 (jet device 100) is configured to be movable. According to this, for example, by restricting the moving direction of the jet nozzle 108 that is the target of changing the operating condition to two directions of X, Y direction (plane direction) and Z direction (orthogonal direction), the operating condition It is possible to simplify the control contents for changing the processing load of the controller 152 in the application work.
  • FIG. 11 shows a case where the molten solder 150 is applied to the two leads 144 together.
  • FIG. 12 schematically shows the state of the application work when the molten solder 150 is applied to the two leads 144 and viewed from the substrate upper surface 12 ⁇ / b> A of the circuit substrate 12.
  • the width of the jet nozzle 108 in the X direction that is, the diameter L1 (see FIG. 12) of the jetted molten solder 150 is compared with the pitch L2 (see FIG. 12) of the two leads 144. Is large enough.
  • the central portion of the molten solder 150 that is jetted from the jet nozzle 108 is aligned with the positions of the two leads 144. Can do.
  • the molten solder 150 can be pulled away from the two leads 144 at the central portion of the molten solder 150 jetted from the jet nozzle 108.
  • FIG. 13 schematically shows the state of the application work when the molten solder 150 is applied to the two leads 144 and viewed from the upper surface 12 ⁇ / b> A of the circuit substrate 12.
  • the end portion of the molten solder 150 jetted from the jet nozzle 108 is set to the position of the two leads 144 at the raised position.
  • the jet nozzle 108 is the other edge part from the position which match
  • FIG. 14 shows a pattern in which the jet nozzle 108 is once separated and then approached again, and then the molten solder 150 is pulled away.
  • the jet device 100 located below the through-hole 148 moves upward toward the circuit substrate 12 along the Z direction and is inserted into the through-hole 148.
  • the jet nozzle 108 of the jet device 100 is brought close to the tip of the lead 144.
  • the jet device 100 is raised by a predetermined distance, the molten solder 150 jetted from the tip of the jet nozzle 108 is applied to the tip of the lead 144.
  • the jet device 100 rises to a height close to the tip of the lead 144 and then descends by a predetermined distance (S11). For example, the jet device 100 moves downward by a predetermined distance along the Z direction while fixing the positions in the X direction and the Y direction. For example, when the jet device 100 is lowered by a predetermined distance, the molten solder 150 jetted from the jet nozzle 108 reaches the tip of the lead 144. That is, the molten solder 150 is applied to the lead 144 even at the position where the predetermined distance is set to a short distance and lowered in S11.
  • the molten solder 150 jetted from the jet nozzle 108 does not have to reach the tip of the lead 144. That is, the molten solder 150 and the lead 144 may be separated as S12 descends. In this case, the molten solder 150 once separated is applied to the same lead 144 again.
  • the lowered jet device 100 is raised again toward the circuit substrate 12 (S12).
  • the molten solder 150 jetted from the tip of the jet nozzle 108 is applied to the tip of the lead 144.
  • the jet device 100 moves upward by a predetermined distance along the Z direction while fixing the positions in the X direction and the Y direction.
  • the predetermined distance in S12 is, for example, the same distance as S11. That is, the jet flow device 100 is raised at S12 by the distance lowered at S11.
  • the jet device 100 may be lifted at S12 by a short moving distance compared to the moving distance lowered at S11. In this case, the jet device 100 that has been lifted in S12 has a lower position than the position that has been lifted in S11.
  • the controller 152 raises the jet device 100 again in S12, and then moves the jet device 100 (jet nozzle 108) in a direction away from the circuit substrate 12 (S13). For example, the controller 152 lowers the jet nozzle 108 along the Z direction without changing the positions in the X direction and the Y direction (S13).
  • the controller 152 continues the jet of the molten solder 150 from the jet nozzle 108 even when the jet device 100 is lowered in S13. Thereby, the molten solder 150 and the lead 144 are separated from each other at the above-described central portion, and the application of the molten solder 150 to the lead 144 is completed.
  • the controller 152 executes the descending of S11 and the ascending of S12 once, but may be performed a plurality of times. That is, the jet nozzle 108 may be moved up and down a plurality of times. Thereby, the further improvement of the solder rising condition, etc. can be expected. Further, the controller 152 may control the jet device 100 (soldering device 36) so that the molten solder 150 and the lead 144 are separated at the end portion in the above-described rising pattern. The controller 152 may change the moving speed and moving acceleration of the jet device 100 (jet nozzle 108) in each of S10 to S13 described above to different speeds.
  • FIG. 15 shows a pattern in which the jet nozzle 108 is accelerated when being separated from the circuit substrate 12 and the molten solder 150 is separated from the leads 144 and the like.
  • the jet device 100 located below the through-hole 148 moves upward toward the circuit substrate 12 along the Z direction and is inserted into the through-hole 148.
  • the jet nozzle 108 of the jet device 100 is brought close to the tip of the lead 144.
  • the jet device 100 is raised by a predetermined distance, the molten solder 150 jetted from the tip of the jet nozzle 108 is applied to the tip of the lead 144.
  • the jet device 100 maintains its height (position in the Z direction) after rising to a predetermined height.
  • the jet device 100 starts moving in a direction away from the circuit substrate 12.
  • the jet device 100 descends along the Z direction while fixing the positions in the X direction and the Y direction.
  • the controller 152 slowly lowers the jet nozzle 108 (jet device 100) at the initial stage of lowering (S16).
  • the controller 152 lowers the jet nozzle 108 at a slow speed (S16), and then increases the speed at which the jet nozzle 108 descends. That is, the controller 152 increases the movement speed in the later period (S17) as compared to the movement speed in the initial stage (S16) in the descent.
  • the jet device 100 descends and the upper end of the molten solder 150 to be jetted approaches the tip (lower end) of the lead 144, the jet device 100 increases the descending speed. Accordingly, when the upper end (vertex) of the molten solder 150 and the tip of the lead 144 are separated, they can be quickly separated. As a result, as shown in FIG. 9, the shape of the molten solder 150 applied to the lead 144 is tapered from the lower surface 12B of the substrate toward the lower side, that is, a shape standing upright from the lower surface 12B of the substrate. it can. Therefore, improvement in soldering quality can be expected.
  • controller 152 continues the jet of the molten solder 150 from the jet nozzle 108 also when lowering the jet apparatus 100 in S17. Thereby, the molten solder 150 and the lead 144 are separated from each other, and the application of the molten solder 150 to the lead 144 is completed.
  • the controller 152 may change the movement acceleration instead of the movement speed of the jet nozzle 108 or in addition to the movement speed. For example, the controller 152 may increase the movement acceleration in S17 compared to the movement acceleration in S16. Moreover, the controller 152 may make the moving speed of S17 slower than the moving speed of S16. That is, the movement speed in the latter period may be made slower than the initial movement speed of the descent. Thereby, the upper end of the molten solder 150 and the tip of the lead 144 can be slowly separated. As a result, improvement in soldering quality can be expected by changing the operation of the jet nozzle 108. Further, the controller 152 shifts from S16 to S17 and accelerates by one step, but may accelerate by a plurality of steps. Further, the controller 152 may control the jet device 100 so that the molten solder 150 and the lead 144 are separated at the end portion shown in FIG.
  • FIG. 16 shows a pattern in which the jet nozzle 108 is moved stepwise.
  • the jet device 100 located below the through-hole 148 moves upward toward the circuit substrate 12 along the Z direction and is inserted into the through-hole 148.
  • the jet nozzle 108 of the jet device 100 is brought close to the tip of the lead 144.
  • the jet device 100 is raised by a predetermined distance, the molten solder 150 jetted from the tip of the jet nozzle 108 is applied to the tip of the lead 144.
  • the jet device 100 moves up to a predetermined height, and then moves by a predetermined distance along the X direction while maintaining the height (position in the Z direction) (S20). Furthermore, after moving in the X direction, the jet device 100 descends along the Z direction by a predetermined distance (S20).
  • the controller 152 causes the jet device 100 to repeatedly execute the movement in the X direction and the movement in the Z direction. As shown in FIG. 16, the jet device 100 moves away from the circuit substrate 12 while descending stepwise.
  • the single movement in each of the X direction and the Z direction is executed within a range where the molten solder 150 and the lead 144 are not separated.
  • the one-time movement distance in the X direction is set, for example, as a distance between the center and the end of the jetted molten solder 150 in a plan view shown in FIG. 7, that is, a distance obtained by dividing a half (radius) of the diameter L1. it can.
  • the jet nozzle 108 moves by changing the position where the lead 144 and the molten solder 150 are in contact from the center of the molten solder 150 toward the end in a plurality of stages.
  • the one-time movement distance in the Z direction is, for example, between the position of the upper end where the jet apparatus 100 is raised in S19 and the position where the jet apparatus 100 is lowered until the lead 144 and the molten solder 150 are separated.
  • a distance obtained by dividing the distance can be set.
  • the jet nozzle 108 moves in a plurality of stages from the position where the molten solder 150 is applied to the lead 144 to the position where the lead 144 and the molten solder 150 are separated.
  • the controller 152 separates the molten solder 150 and the lead 144 while moving the jet nozzle 108 (jet device 100) stepwise.
  • the controller 152 moves the jet nozzle 108 in the X direction (plane direction) parallel to the plane of the circuit substrate 12 and the Z direction (orthogonal direction) orthogonal to the plane of the circuit substrate 12.
  • the jet device 100 is controlled so as to alternately repeat the movement of the jet nozzle 108 in the direction away from the circuit substrate 12 (downward). According to this, when the molten solder 150 is pulled away from the circuit substrate 12 or the lead 144, the jet nozzle 108 can be moved stepwise in a direction away from the circuit substrate 12. As a result, improvement in soldering quality can be expected by changing the operation at the time of separating the lead 144 and the molten solder 150.
  • the controller 152 of the control apparatus 38 has the application part 160, the operation
  • the application unit 160 is a functional unit for performing an application operation of applying the molten solder 150 to the lead 144 inserted into the through hole 148 by the jet device 100.
  • the operation changing unit 162 is a functional unit for changing the operation of the jet nozzle 108 in the application operation of the application unit 160.
  • the receiving unit 164 is a functional unit for receiving which pattern data of the plurality of patterns of data (control data D1) for changing the operation of the jet nozzle 108 is to be executed by the operation changing unit 162.
  • the component mounting machine 10 is an example of a substrate working machine.
  • the through hole 148 is an example of a through part.
  • the circuit base 12 is an example of a substrate.
  • the substrate conveyance holding device 22 is an example of a substrate holding device.
  • the soldering device 36 is an example of a jet device.
  • the controller 152 (application unit 160) of the control device 38 causes the molten solder 150 to jet from the jet nozzle 108 of the jet device 100 to the lead 144 inserted into the through hole 148 (through portion) of the circuit base 12 (substrate). Apply.
  • the controller 152 (operation change unit 162) changes the operation of the jet nozzle 108 in the application work by the application unit 160.
  • the operation changing unit 162 changes at least one of the four operating conditions of the moving distance, moving direction, moving speed, and moving acceleration of the jet nozzle 108. Thereby, the operation
  • the component mounting apparatus 10 that includes the component mounting device 24 and mounts the lead component 140 on the circuit base 12 by the work heads 60 and 62 is employed as the substrate working machine of the present application.
  • the substrate working machine of the present application may have a configuration in which, for example, the molten solder 150 is simply applied without performing the mounting operation of the lead component 140.
  • the substrate working machine may be configured to carry in the circuit base material 12 on which the lead component 140 has already been mounted and to perform only the soldering.
  • the substrate work machine may not include the component mounting device 24 and the component supply device 30.
  • the control data D1 data for changing at least one of the operating conditions of the moving distance, moving direction, moving speed, and moving acceleration of the jet nozzle 108 is set in a plurality of patterns.
  • the control data D1 may have a configuration having only one pattern to be changed.
  • control data D1 does not have to have data of a preset pattern.
  • the control device 38 may be configured such that the control data D1 can be changed by the user.
  • the user does not select the pattern but directly changes the control data D1, that is, by changing the length of the moving distance of the jet nozzle 108, the magnitude of the moving speed, and the like. It becomes possible to change the operation.
  • the controller 152 moves the jet nozzle 108 in a plane direction (X direction, Y direction) parallel to the plane of the circuit substrate 12 and an orthogonal direction (Z direction) orthogonal to the plane, but this is not limitative. Absent.
  • the controller 152 may move the jet nozzle 108 in an oblique direction that forms a predetermined angle with respect to the plane of the circuit substrate 12. Also in this case, the operation of pulling the molten solder 150 away from the lead 144 is changed, and improvement in soldering quality can be expected.
  • the lead component 140 is mounted on the circuit substrate 12 with the component body 142 floating from the circuit substrate 12, but the component body 142 is in contact with the circuit substrate 12. The lead component 140 may be attached to the circuit substrate 12.
  • the through-hole 148 was employ
  • the penetration part should just penetrate the circuit base material 12 in the up-down direction, and a notch etc. may be sufficient as it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Molten Solder (AREA)

Abstract

The present invention provides a board working machine, which can change an operation when separating molten solder from a board or a lead and which can improve soldering quality. According to the present invention, a control device has: a coating part for performing coating work for coating molten solder onto a lead inserted into a penetration part by means of a jetting device; and an operation changing part for changing the operation of a jetting nozzle in the coating work. The operation changing part changes at least one operation condition among operation conditions including the movement distance, the movement direction, the movement speed, and the movement acceleration of the jetting nozzle, and changes the state of the molten solder coated onto the lead.

Description

対基板作業機Board work machine
 本発明は、基板に挿入されたリード部品のリードに溶融はんだを塗布する対基板作業機に関するものである。 The present invention relates to a substrate working machine that applies molten solder to leads of lead components inserted into a substrate.
 従来、基板に挿入されたリード部品のリードに溶融はんだを塗布する技術がある(例えば、特許文献1など)。特許文献1に記載されたはんだ付け装置では、基板の貫通孔に挿入されたリードに向かって、溶融はんだ槽のノズルから溶融はんだを噴流させることで、リードに溶融はんだを塗布し、リード部品を基板にはんだ付けする。 Conventionally, there is a technique of applying molten solder to leads of lead components inserted into a substrate (for example, Patent Document 1). In the soldering apparatus described in Patent Document 1, molten solder is sprayed from the nozzle of the molten solder tank toward the lead inserted into the through hole of the substrate, so that the molten solder is applied to the lead. Solder to the board.
 また、このはんだ付け装置は、溶融はんだ槽の液面の高さを調整する。はんだ付け装置は、基板を溶融はんだ槽まで搬送するアームを備える。このアームには導通センサが設けられている。液面の高さを調整する場合、アームは、ノズルの上方に移動し、ユーザによって設定された液面の高さに対応した位置まで下降する。導通センサは、溶融はんだ槽のノズルから噴流される溶融はんだの液面に接触し液面が所定の高さに到達したことを検出する。はんだ付け装置は、導通センサの検出情報に基づいて、はんだ槽の液面の高さを調整する。 Also, this soldering device adjusts the liquid level of the molten solder bath. The soldering apparatus includes an arm that conveys the substrate to the molten solder bath. This arm is provided with a continuity sensor. When adjusting the height of the liquid level, the arm moves above the nozzle and descends to a position corresponding to the height of the liquid level set by the user. The continuity sensor contacts the liquid level of the molten solder jetted from the nozzle of the molten solder tank and detects that the liquid level has reached a predetermined height. The soldering device adjusts the height of the liquid level of the solder tank based on the detection information of the continuity sensor.
国際公開第2010/131752号International Publication No. 2010/131752
 ところで、上記したような噴流させた溶融はんだを基板の一部に接触させてはんだ付けする、いわゆるポイントフローはんだ付けでは、基板やリードから溶融はんだを引き離す際の作動がはんだ付けの品質にとって重要となる。ここで言うはんだ付けの品質とは、例えば、はんだの上がり具合や、はんだ内の気泡の有無などである。換言すれば、溶融はんだを基板やリードから引き離す際の作動が適切でない場合、はんだ付けの品質の低下に繋がる。このため、基板やリードからいかに溶融はんだを引き離し、はんだ付けの品質を向上させるかが課題となる。 By the way, in the so-called point flow soldering, in which the molten solder jetted as described above is brought into contact with a part of the substrate and soldered, the operation when the molten solder is pulled away from the substrate or the lead is important for the soldering quality. Become. The quality of soldering referred to here is, for example, the degree of solder rise and the presence or absence of bubbles in the solder. In other words, if the operation at the time of separating the molten solder from the substrate or the lead is not appropriate, the quality of the soldering is deteriorated. For this reason, how to separate the molten solder from the substrate and the leads to improve the soldering quality is a problem.
 そこで、本願は、基板やリードから溶融はんだを引き離す際の作動を変更し、はんだ付けの品質を向上できる対基板作業機を提供することを目的とする。 Therefore, an object of the present application is to provide an on-board working machine that can improve the soldering quality by changing the operation when the molten solder is pulled away from the board or the lead.
 本願は、貫通部を形成された基板を保持する基板保持装置と、前記貫通部にリードを挿入されたリード部品に対し、噴流ノズルから溶融はんだを噴流させ、前記貫通部に挿入された前記リードに前記溶融はんだを塗布する噴流装置と、制御装置と、を備え、前記制御装置は、前記貫通部に挿入された前記リードに、前記噴流装置によって前記溶融はんだを塗布する塗布作業を実行する塗布部と、前記塗布作業における前記噴流ノズルの作動を変更する作動変更部と、を有し、前記作動変更部は、前記噴流ノズルの移動距離、前記噴流ノズルの移動方向、前記噴流ノズルの移動速度、及び前記噴流ノズルの移動加速度の作動条件のうち、少なくとも1つの作動条件を変更し、前記リードに塗布される前記溶融はんだの状態を変更する、対基板作業機を開示する。 The present application is directed to a substrate holding device that holds a substrate having a penetrating portion and a lead component in which a lead is inserted into the penetrating portion, and the molten solder is jetted from a jet nozzle to be inserted into the penetrating portion. A jet device for applying the molten solder to the lead, and a control device, the control device performing an application operation for applying the molten solder to the lead inserted into the through-hole by the jet device. And an operation changing unit that changes the operation of the jet nozzle in the coating operation. The operation changing unit includes a moving distance of the jet nozzle, a moving direction of the jet nozzle, and a moving speed of the jet nozzle. And changing the state of the molten solder applied to the leads by changing at least one of the operating conditions of movement acceleration of the jet nozzle It discloses a work machine.
 本願の対基板作業機によれば、作動変更部は、噴流ノズルの移動距離等の4つの作動条件のうち、少なくとも1つの作動条件を変更する。これにより、基板やリードから溶融はんだを引き離す際の作動を変更でき、はんだ付けの品質を向上できる。 According to the substrate working machine of the present application, the operation changing unit changes at least one of the four operating conditions such as the moving distance of the jet nozzle. Thereby, the operation | movement at the time of pulling away molten solder from a board | substrate or a lead can be changed, and the quality of soldering can be improved.
実施形態の部品実装機を示す斜視図である。It is a perspective view which shows the component mounting machine of embodiment. 部品装着装置を示す斜視図である。It is a perspective view which shows a component mounting apparatus. はんだ付け装置を示す斜視図である。It is a perspective view which shows a soldering apparatus. 制御装置を示すブロック図である。It is a block diagram which shows a control apparatus. 回路基材の貫通孔に挿入されているリードに向かって溶融はんだが噴流されている状態を示す概略図である。It is the schematic which shows the state in which the molten solder is jetted toward the lead inserted in the through-hole of a circuit base material. 溶融はんだの中央部分で噴流ノズルとリードとを離間させ、溶融はんだを引き離すパターンの概略図である。It is the schematic of the pattern which spaces apart a jet nozzle and a lead in the center part of molten solder, and separates molten solder. 回路基材の基材上面から見た塗布作業の状態を示す模式図である。It is a schematic diagram which shows the state of the application | coating operation | work seen from the base material upper surface of the circuit base material. 回路基材の基材上面から見た塗布作業の状態を示す模式図である。It is a schematic diagram which shows the state of the application | coating operation | work seen from the base material upper surface of the circuit base material. はんだ付け後の状態を示す概略図である。It is the schematic which shows the state after soldering. 溶融はんだの端部部分で噴流ノズルとリードとを離間させ、溶融はんだを引き離すパターンの概略図である。It is the schematic of the pattern which spaces apart a jet nozzle and a lead in the edge part part of a molten solder, and pulls away a molten solder. 2つのリードにまとめて溶融はんだを塗布する場合の概略図である。It is the schematic in the case of apply | coating a molten solder collectively to two leads. 2つのリードにまとめて溶融はんだを塗布する場合であって、回路基材の基材上面から見た塗布作業の状態を示す模式図である。It is a case where molten solder is applied collectively to two leads, and is a schematic view showing a state of an application operation as viewed from the upper surface of the circuit substrate. 2つのリードにまとめて溶融はんだを塗布する場合であって、回路基材の基材上面から見た塗布作業の状態を示す模式図である。It is a case where molten solder is applied collectively to two leads, and is a schematic view showing a state of an application operation as viewed from the upper surface of the circuit substrate. 噴流ノズルを一度離間させた後に再度接近させ、その後に溶融はんだを引き離すパターンの概略図である。It is the schematic of the pattern which makes it approach again after separating a jet nozzle once, and pulling away molten solder after that. 噴流ノズルを回路基材から離間させる際に加速させ、溶融はんだを引き離すパターンの概略図である。It is the schematic of the pattern which accelerates when separating a jet nozzle from a circuit base material, and pulls away molten solder. 噴流ノズルを階段状に移動させるパターンの概略図である。It is the schematic of the pattern which moves a jet nozzle in steps.
 以下、本願の対基板作業機を部品実装機に具体化した一実施形態について、図を参照しつつ詳しく説明する。 Hereinafter, an embodiment in which the substrate working machine of the present application is embodied as a component mounting machine will be described in detail with reference to the drawings.
 (部品実装機の構成)
 図1に、本実施形態の部品実装機10を示す。部品実装機10は、回路基材12に対する部品の実装作業を実行するための装置である。部品実装機10は、装置本体20、基材搬送保持装置22、部品装着装置24、マークカメラ26、パーツカメラ28、部品供給装置30、ばら部品供給装置32、はんだ付け装置36(図3参照)、制御装置38(図4参照)を備えている。なお、回路基材12としては、回路基板、三次元構造の基材等が挙げられる。また、回路基板としては、プリント配線板、プリント回路板等が挙げられる。
(Component mounter configuration)
FIG. 1 shows a component mounter 10 according to this embodiment. The component mounter 10 is a device for performing a component mounting operation on the circuit substrate 12. The component mounting machine 10 includes an apparatus main body 20, a substrate conveyance holding device 22, a component mounting device 24, a mark camera 26, a parts camera 28, a component supply device 30, a loose component supply device 32, and a soldering device 36 (see FIG. 3). And a control device 38 (see FIG. 4). Examples of the circuit base material 12 include a circuit board and a three-dimensional base material. Examples of the circuit board include a printed wiring board and a printed circuit board.
 装置本体20は、フレーム部40と、そのフレーム部40に上架されたビーム部42とを有している。基材搬送保持装置22は、フレーム部40の前後方向の中央に配設されており、搬送装置50と、クランプ装置52とを有している。搬送装置50は、回路基材12を搬送する装置である。クランプ装置52は、回路基材12を保持する装置である。これにより、基材搬送保持装置22は、回路基材12を搬送するとともに、所定の作業位置において、回路基材12を保持する。なお、以下の説明では、図1に示す回路基材12の搬送方向をX方向と称し、そのX方向に直角な水平の方向をY方向と称し、X方向及びY方向に直角な方向をZ方向と称して説明する。この場合、部品実装機10の幅方向は、X方向である。また、部品実装機10の前後方向は、Y方向である。 The apparatus main body 20 includes a frame portion 40 and a beam portion 42 that is overlaid on the frame portion 40. The substrate conveyance holding device 22 is disposed in the center of the frame portion 40 in the front-rear direction, and includes a conveyance device 50 and a clamp device 52. The transport device 50 is a device that transports the circuit substrate 12. The clamp device 52 is a device that holds the circuit substrate 12. Thereby, the substrate conveyance holding device 22 conveys the circuit substrate 12 and holds the circuit substrate 12 at a predetermined work position. In the following description, the conveyance direction of the circuit substrate 12 shown in FIG. 1 is referred to as an X direction, a horizontal direction perpendicular to the X direction is referred to as a Y direction, and a direction perpendicular to the X direction and the Y direction is referred to as Z direction. This will be described as a direction. In this case, the width direction of the component mounter 10 is the X direction. The front-rear direction of the component mounter 10 is the Y direction.
 部品装着装置24は、ビーム部42に配設されており、2台の作業ヘッド60,62と、作業ヘッド移動装置64とを有している。各作業ヘッド60,62の下端面には、図2に示すように、吸着ノズル66が設けられている。各作業ヘッド60,62は、吸着ノズル66によって部品を吸着保持する。また、作業ヘッド移動装置64は、X方向移動装置68と、Y方向移動装置70と、Z方向移動装置72とを有している。そして、X方向移動装置68とY方向移動装置70とによって、2台の作業ヘッド60,62は、一体的にフレーム部40上の任意の位置に移動させられる。また、各作業ヘッド60,62は、スライダ74,76に着脱可能に装着されている。Z方向移動装置72は、スライダ74,76を個別に上下方向に移動させる。つまり、作業ヘッド60,62は、Z方向移動装置72によって、個別に上下方向に移動させられる。 The component mounting device 24 is disposed in the beam portion 42 and includes two work heads 60 and 62 and a work head moving device 64. As shown in FIG. 2, suction nozzles 66 are provided on the lower end surfaces of the work heads 60 and 62. Each of the work heads 60 and 62 sucks and holds the component by the suction nozzle 66. Further, the work head moving device 64 has an X direction moving device 68, a Y direction moving device 70, and a Z direction moving device 72. Then, the two working heads 60 and 62 are integrally moved to arbitrary positions on the frame portion 40 by the X-direction moving device 68 and the Y-direction moving device 70. The work heads 60 and 62 are detachably attached to the sliders 74 and 76, respectively. The Z-direction moving device 72 moves the sliders 74 and 76 individually in the vertical direction. That is, the work heads 60 and 62 are individually moved in the vertical direction by the Z-direction moving device 72.
 マークカメラ26は、下方を向いた状態でスライダ74に取り付けられており、作業ヘッド60とともに、X方向、Y方向及びZ方向に移動させられる。これにより、マークカメラ26は、フレーム部40上の任意の位置を撮像する。パーツカメラ28は、図1に示すように、フレーム部40上の基材搬送保持装置22と部品供給装置30との間に、上を向いた状態で配設されている。これにより、パーツカメラ28は、作業ヘッド60,62の吸着ノズル66に吸着保持された部品を撮像する。 The mark camera 26 is attached to the slider 74 while facing downward, and is moved together with the work head 60 in the X direction, the Y direction, and the Z direction. As a result, the mark camera 26 images an arbitrary position on the frame unit 40. As shown in FIG. 1, the parts camera 28 is disposed between the base material conveyance holding device 22 and the component supply device 30 on the frame portion 40 so as to face upward. Thereby, the parts camera 28 images the parts sucked and held by the suction nozzles 66 of the work heads 60 and 62.
 図1に示すように、部品供給装置30は、フレーム部40の前後方向における一方側(前方側)の端部に配設されている。部品供給装置30は、例えば、トレイ型部品供給装置78と、フィーダ型部品供給装置80(図4参照)とを有している。トレイ型部品供給装置78は、トレイ上に載置された状態の部品を供給する装置である。フィーダ型部品供給装置80は、テープフィーダ、スティックフィーダ(図示省略)によって部品を供給する装置である。 As shown in FIG. 1, the component supply device 30 is disposed at one end (front side) of the frame portion 40 in the front-rear direction. The component supply device 30 includes, for example, a tray-type component supply device 78 and a feeder-type component supply device 80 (see FIG. 4). The tray-type component supply device 78 is a device that supplies components placed on the tray. The feeder-type component supply device 80 is a device that supplies components by a tape feeder or a stick feeder (not shown).
 ばら部品供給装置32は、フレーム部40の前後方向における他方側(後方側)の端部に配設されている。ばら部品供給装置32は、ばらばらに散在された状態の複数の部品を整列させて、整列させた状態で部品を供給する装置である。つまり、任意の姿勢の複数の部品を、所定の姿勢に整列させて、所定の姿勢の部品を供給する装置である。なお、部品供給装置30及びばら部品供給装置32によって供給される部品としては、例えば、電子回路部品,パワーモジュールの構成部品等が挙げられる。また、電子回路部品としては、リードを有する部品(ラジアル部品やアキシャル部品)、リードを有さない部品等が有る。 The bulk component supply device 32 is disposed at the end portion on the other side (rear side) of the frame portion 40 in the front-rear direction. The separated component supply device 32 is a device for aligning a plurality of components scattered in a separated state and supplying the components in an aligned state. That is, it is an apparatus that aligns a plurality of components in an arbitrary posture into a predetermined posture and supplies the components in a predetermined posture. Examples of components supplied by the component supply device 30 and the bulk component supply device 32 include electronic circuit components, power module components, and the like. In addition, as electronic circuit parts, there are parts having leads (radial parts and axial parts), parts having no leads, and the like.
 はんだ付け装置36は、搬送装置50の下方に配設されており、図3に示すように、噴流装置100と、噴流装置移動装置102とを有している。噴流装置100は、はんだ漕106と、噴流ノズル108と、ノズルカバー110とを有する。はんだ漕106は、概して直方体形状をなし、内部に溶融はんだが貯留されている。噴流ノズル108は、はんだ漕106の上面に立設されている。そして、ポンプ(図示省略)の作動により、はんだ漕106から溶融はんだが汲み上げられ、噴流ノズル108の上端部から上方に向かって、溶融はんだが噴流する。また、ノズルカバー110は、概して、円筒状をなし、噴流ノズル108を囲うように、はんだ漕106の上面に配設されている。そして、噴流ノズル108の上端部から噴流された溶融はんだが、噴流ノズル108の外周面とノズルカバー110の内周面との間を通って、はんだ漕106の内部に還流する。 The soldering device 36 is disposed below the transfer device 50, and includes a jet device 100 and a jet device moving device 102 as shown in FIG. The jet device 100 includes a soldering iron 106, a jet nozzle 108, and a nozzle cover 110. The solder rod 106 has a generally rectangular parallelepiped shape, and molten solder is stored therein. The jet nozzle 108 is erected on the upper surface of the soldering iron 106. Then, by the operation of a pump (not shown), the molten solder is pumped up from the soldering iron 106, and the molten solder jets upward from the upper end portion of the jet nozzle 108. The nozzle cover 110 is generally cylindrical and is disposed on the upper surface of the soldering iron 106 so as to surround the jet nozzle 108. Then, the molten solder jetted from the upper end portion of the jet nozzle 108 passes between the outer peripheral surface of the jet nozzle 108 and the inner peripheral surface of the nozzle cover 110 and returns to the inside of the solder rod 106.
 噴流装置移動装置102は、スライダ112と、X方向移動装置114と、Y方向移動装置116と、Z方向移動装置118とを有している。スライダ112は、概して板状をなしている。スライダ112の上面には、噴流装置100が配設されている。また、X方向移動装置114は、搬送装置50による回路基材12の搬送方向、つまり、X方向に、スライダ112を移動させる。Y方向移動装置116は、スライダ112をY方向に移動させる。さらに、Z方向移動装置118は、スライダ112を、Z方向、つまり、上下方向に移動させる。これにより、噴流装置100は、搬送装置50の下方において、噴流装置移動装置102の作動により、任意の位置に移動する。 The jet device moving device 102 includes a slider 112, an X direction moving device 114, a Y direction moving device 116, and a Z direction moving device 118. The slider 112 is generally plate-shaped. A jet device 100 is disposed on the upper surface of the slider 112. The X-direction moving device 114 moves the slider 112 in the conveyance direction of the circuit base material 12 by the conveyance device 50, that is, in the X direction. The Y direction moving device 116 moves the slider 112 in the Y direction. Further, the Z-direction moving device 118 moves the slider 112 in the Z direction, that is, the up-down direction. Accordingly, the jet device 100 moves to an arbitrary position below the transport device 50 by the operation of the jet device moving device 102.
 また、制御装置38は、図4に示すように、コントローラ152、複数の駆動回路154、画像処理装置156、記憶装置157を備えている。複数の駆動回路154は、上記した搬送装置50、クランプ装置52、作業ヘッド60,62、作業ヘッド移動装置64、トレイ型部品供給装置78、フィーダ型部品供給装置80、ばら部品供給装置32、噴流装置100、噴流装置移動装置102、及び後述する表示操作部159に接続されている。コントローラ152は、CPU,ROM,RAM等を備え、コンピュータを主体とするものであり、複数の駆動回路154に接続されている。これにより、基材搬送保持装置22、部品装着装置24等の作動が、コントローラ152によって制御される。また、コントローラ152は、画像処理装置156にも接続されている。画像処理装置156は、マークカメラ26及びパーツカメラ28によって得られた画像データを処理するものである。コントローラ152は、マークカメラ26及びパーツカメラ28の画像データから各種情報を取得する。 As shown in FIG. 4, the control device 38 includes a controller 152, a plurality of drive circuits 154, an image processing device 156, and a storage device 157. The plurality of drive circuits 154 include the transport device 50, the clamp device 52, the work heads 60 and 62, the work head moving device 64, the tray-type component supply device 78, the feeder-type component supply device 80, the bulk component supply device 32, the jet flow. It is connected to the apparatus 100, the jet apparatus moving apparatus 102, and the display operation part 159 mentioned later. The controller 152 includes a CPU, a ROM, a RAM, and the like, mainly a computer, and is connected to a plurality of drive circuits 154. As a result, the operations of the substrate conveyance holding device 22 and the component mounting device 24 are controlled by the controller 152. The controller 152 is also connected to the image processing device 156. The image processing device 156 processes image data obtained by the mark camera 26 and the part camera 28. The controller 152 acquires various information from the image data of the mark camera 26 and the part camera 28.
 記憶装置157は、例えば、ハードディスクやメモリ等を備えている。本実施形態のコントローラ152は、記憶装置157に保存された制御データD1を読み込んで、回路基材12に対する部品の実装作業を実行する。制御データD1は、例えば、生産する回路基材12の種類、装着する部品の種類、回路基材12における部品の装着位置等のデータが設定されている。また、本実施形態の制御データD1には、後述する溶融はんだの塗布作業における噴流ノズル108の作動のパターンとして複数の種類のパターンのデータが保存されている。コントローラ152は、パターンの種類に応じて、塗布作業での噴流ノズル108の作動を変更する。 The storage device 157 includes, for example, a hard disk and a memory. The controller 152 of the present embodiment reads the control data D1 stored in the storage device 157 and executes a component mounting operation on the circuit substrate 12. In the control data D1, for example, data such as the type of circuit base 12 to be produced, the type of parts to be mounted, the mounting position of the parts on the circuit base 12 and the like are set. Further, in the control data D1 of the present embodiment, data of a plurality of types of patterns are stored as operation patterns of the jet nozzle 108 in a molten solder application operation described later. The controller 152 changes the operation of the jet nozzle 108 in the coating operation according to the type of pattern.
 また、部品実装機10は、図1に示すように、表示操作部159を備える。表示操作部159は、ばら部品供給装置32の後方側の端面に配設されている。表示操作部159は、例えば、タッチパネルであり、液晶パネル、液晶パネルの背面側から光を照射するLED等の光源、液晶パネルの表面に貼り合わされた接触感知膜等を備えている。ユーザは、表示操作部159を操作することで、上記した噴流ノズル108の作動を変更するパターンの種類を選択できる。ユーザは、例えば、部品実装機10で実装作業を行った回路基材12のはんだの上がり具合などを確認し、必要に応じてパターンを変更することができる。なお、コントローラ152は、パターンの何れを実行するのかについてユーザから選択を受け付けるのではなく、噴流ノズル108の作動(パターン)を変更するか否かだけを受け付ける構成でもよい。この場合、コントローラ152は、例えば、実行中のパターンを変更する旨の操作を、表示操作部159に対して受け付けると、予め設定された順番に従ってパターンを変更してもよい。これにより、ユーザは、パターンの変更の指示を行うだけで、噴流ノズル108の作動を変更できる。 Also, the component mounter 10 includes a display operation unit 159 as shown in FIG. The display operation unit 159 is disposed on the rear end surface of the bulk component supply device 32. The display operation unit 159 is, for example, a touch panel, and includes a liquid crystal panel, a light source such as an LED that emits light from the back side of the liquid crystal panel, a contact sensing film bonded to the surface of the liquid crystal panel, and the like. The user can select the pattern type for changing the operation of the jet nozzle 108 by operating the display operation unit 159. For example, the user can confirm the degree of solder rise of the circuit base material 12 that has been mounted by the component mounter 10 and can change the pattern as necessary. The controller 152 may be configured to accept only whether or not to change the operation (pattern) of the jet nozzle 108 instead of accepting selection from the user as to which of the patterns is to be executed. In this case, for example, when the display operation unit 159 receives an operation for changing the pattern being executed, the controller 152 may change the pattern in accordance with a preset order. Thereby, the user can change the operation of the jet nozzle 108 only by giving an instruction to change the pattern.
 (部品実装機の作動)
 本実施形態の部品実装機10は、上記した構成によって、基材搬送保持装置22に保持された回路基材12に対して部品の実装作業を行う。部品実装機10は、種々の部品を回路基材12に実装することが可能であるが、以下の説明では、リードを有する部品(以下、「リード部品」と略して記載する場合がある)を回路基材12に装着する場合について説明する。
(Operation of component mounter)
The component mounter 10 of the present embodiment performs a component mounting operation on the circuit substrate 12 held by the substrate conveyance holding device 22 with the above-described configuration. The component mounter 10 can mount various components on the circuit base 12, but in the following description, a component having a lead (hereinafter may be abbreviated as “lead component”). The case where it mounts | wears with the circuit base material 12 is demonstrated.
 具体的には、まず、搬送装置50は、コントローラ152の制御に基づいて、例えば生産ラインの上流の装置から部品実装機10内へ回路基材12を搬入する。搬送装置50は、作業位置まで回路基材12を搬送する。クランプ装置52は、この作業位置において回路基材12を保持する。 Specifically, first, the transport device 50 carries the circuit base material 12 into the component mounter 10 from, for example, a device upstream of the production line based on the control of the controller 152. The conveyance device 50 conveys the circuit substrate 12 to the work position. The clamp device 52 holds the circuit substrate 12 at this working position.
 次に、マークカメラ26は、コントローラ152の制御に基づいて、回路基材12の上方に移動し、回路基材12を撮像する。これにより、回路基材12の保持位置等に関する情報が得られる。また、部品供給装置30若しくは、ばら部品供給装置32は、所定の供給位置において、リード部品を供給する。そして、作業ヘッド60,62の何れかが、リード部品の供給位置の上方に移動し、吸着ノズル66によってリード部品を保持する。 Next, the mark camera 26 moves above the circuit base 12 based on the control of the controller 152 and images the circuit base 12. Thereby, the information regarding the holding position etc. of the circuit base material 12 is obtained. Further, the component supply device 30 or the bulk component supply device 32 supplies lead components at a predetermined supply position. Then, one of the work heads 60 and 62 moves above the lead component supply position, and the lead component is held by the suction nozzle 66.
 図5は、吸着ノズル66に吸着保持されたリード部品140のリード144を、回路基材12の貫通孔148に挿入した状態を示している。また、図5は、貫通孔148に挿入されているリード144に向かって、噴流ノズル108から溶融はんだ150を噴流している状態を示している。リード部品140は、例えば、部品本体部142と、部品本体部142の底面142Aから延び出す2本のリード144とを有する。リード部品140は、部品本体部142におけるリード144を取り付けた底面142Aとは反対側の上面142Bを、吸着ノズル66によって吸着保持されている。なお、図5は、リード部品140を側方から見た状態であり、2つのリード144、及び2つの貫通孔148のうち、1つのみを図示している。以下の説明では、一例として、1つのリード144のみに溶融はんだ150を塗布する場合について説明する。複数のリード144に溶融はんだ150を塗布する場合については後述する。 FIG. 5 shows a state in which the lead 144 of the lead component 140 sucked and held by the suction nozzle 66 is inserted into the through hole 148 of the circuit substrate 12. FIG. 5 shows a state where the molten solder 150 is jetted from the jet nozzle 108 toward the lead 144 inserted in the through hole 148. The lead component 140 includes, for example, a component main body 142 and two leads 144 extending from the bottom surface 142A of the component main body 142. The lead component 140 is suction-held by the suction nozzle 66 on the upper surface 142B of the component main body 142 opposite to the bottom surface 142A to which the lead 144 is attached. 5 shows a state in which the lead component 140 is viewed from the side, and only one of the two leads 144 and the two through holes 148 is illustrated. In the following description, a case where the molten solder 150 is applied to only one lead 144 will be described as an example. The case where the molten solder 150 is applied to the plurality of leads 144 will be described later.
 作業ヘッド60,62は、供給位置においてリード部品140を吸着ノズル66により吸着した後、リード部品140を保持した状態で、パーツカメラ28の上方に移動する。パーツカメラ28は、吸着ノズル66に保持されたリード部品140を撮像する。これにより、リード部品140の保持位置等に関する情報が得られる。 The work heads 60 and 62 move to above the parts camera 28 while holding the lead component 140 after the lead component 140 is sucked by the suction nozzle 66 at the supply position. The parts camera 28 images the lead component 140 held by the suction nozzle 66. Thereby, information on the holding position of the lead component 140 and the like is obtained.
 次に、リード部品140を保持した作業ヘッド60,62が、回路基材12の上方に移動する。コントローラ152は、作業ヘッド60,62の移動中に、回路基材12の保持位置の誤差や、リード部品140の保持位置の誤差等を補正する。そして、図5に示すように、吸着ノズル66により吸着保持されたリード部品140のリード144が、回路基材12に形成された貫通孔148に挿入される。 Next, the work heads 60 and 62 holding the lead component 140 move above the circuit substrate 12. The controller 152 corrects an error in the holding position of the circuit base 12, an error in the holding position of the lead component 140, and the like while the work heads 60 and 62 are moving. Then, as shown in FIG. 5, the lead 144 of the lead component 140 sucked and held by the suction nozzle 66 is inserted into the through hole 148 formed in the circuit substrate 12.
 なお、リード144の挿入量は、リード部品140の種類毎に、制御データD1に設定されている。具体的には、例えば、部品本体部142の底面142Aが回路基材12の基材上面12Aに接触するまで、リード144を貫通孔148に挿入するリード部品140では、挿入量が大きくなる。また、部品本体部142の底面142Aと回路基材12の基材上面12Aとが離間した状態で維持されるように、リード144を貫通孔148に挿入するリード部品140では、挿入量が小さくなる。このように、リード部品140の種類毎にリード144の挿入量が制御データD1に設定されている。 The insertion amount of the lead 144 is set in the control data D1 for each type of the lead component 140. Specifically, for example, in the lead component 140 in which the lead 144 is inserted into the through-hole 148 until the bottom surface 142A of the component main body 142 comes into contact with the base material top surface 12A of the circuit base material 12, the insertion amount is large. In addition, in the lead component 140 in which the lead 144 is inserted into the through hole 148 so that the bottom surface 142A of the component main body 142 and the substrate top surface 12A of the circuit substrate 12 are maintained apart, the insertion amount is small. . As described above, the insertion amount of the lead 144 is set in the control data D1 for each type of the lead component 140.
 以下の説明では、一例として、部品本体部142の底面142Aと回路基材12の基材上面12Aとが離間した状態で維持されるように、リード144が貫通孔148に挿入される場合について説明する。この場合、リード部品140の部品本体部142が回路基材12から浮いた状態で、リード144が貫通孔148に挿入される。 In the following description, as an example, a case where the lead 144 is inserted into the through-hole 148 so that the bottom surface 142A of the component main body 142 and the substrate top surface 12A of the circuit substrate 12 are maintained apart from each other will be described. To do. In this case, the lead 144 is inserted into the through hole 148 in a state where the component main body 142 of the lead component 140 is lifted from the circuit substrate 12.
 上記した作業ヘッド60,62が回路基材12の上方に移動し、回路基材12の貫通孔148にリード144を挿入する際、噴流装置100は、回路基材12(貫通孔148)の下方に移動している。そして、噴流装置100は、回路基材12の下方に配置され、回路基材12の基材下面12Bに向かって、噴流ノズル108から溶融はんだ150を噴流させ、貫通孔148に挿入されたリード144に溶融はんだ150を塗布する。ここで、上記したように、本実施形態のコントローラ152は、制御データD1に設定された複数のパターンのうち、ユーザによって選択されたパターンのデータに応じて、塗布作業での噴流ノズル108の作動内容を変更する。以下に各パターンの一例を説明する。 When the working heads 60 and 62 described above move above the circuit base 12 and insert the leads 144 into the through holes 148 of the circuit base 12, the jet device 100 is located below the circuit base 12 (through holes 148). Has moved to. The jet device 100 is disposed below the circuit base 12, causes the molten solder 150 to jet from the jet nozzle 108 toward the base lower surface 12 </ b> B of the circuit base 12, and is inserted into the lead 144. A molten solder 150 is applied to the substrate. Here, as described above, the controller 152 of the present embodiment operates the jet nozzle 108 in the coating operation in accordance with the pattern data selected by the user among the plurality of patterns set in the control data D1. Change the contents. An example of each pattern will be described below.
(溶融はんだ150の中央部分で引き離すパターン)
 まず、溶融はんだ150の中央部分で引き離すパターンについて説明する。詳述すると、図6は、溶融はんだ150の中央部分で噴流ノズル108とリード144とを離間させ、溶融はんだ150を引き離すパターンを示している。なお、説明を分かり易くするため、図6や後述する図10等に方向(X方向など)の一例を図示するが、この方向は、一例であり、貫通孔148の配置等に応じて適宜変更される。
(Pattern separated at the center of the molten solder 150)
First, a pattern that is separated at the center of the molten solder 150 will be described. More specifically, FIG. 6 shows a pattern in which the jet nozzle 108 and the lead 144 are separated from each other at the central portion of the molten solder 150 and the molten solder 150 is separated. In order to make the explanation easy to understand, an example of a direction (X direction or the like) is shown in FIG. 6 or FIG. 10 to be described later. Is done.
 図6に示すように、吸着ノズル66により吸着保持されたリード部品140のリード144が、回路基材12に形成された貫通孔148に挿入される。また、図6のステップ(以下、単に「S」と記載する)1に示すように、貫通孔148の下方に位置している噴流装置100は、Z方向に沿って回路基材12に向かって上方へ移動し、貫通孔148に挿入されたリード144の先端部に、噴流装置100の噴流ノズル108を接近させる。この際の噴流ノズル108のZ方向に沿った接近速度、即ち、噴流装置100(噴流ノズル108)を上昇させる移動速度は、制御データD1のパターンのデータに設定されている。なお、移動速度に代えて、あるいは移動速度に加えて噴流ノズル108の移動加速度を、制御データD1に設定してもよい。 As shown in FIG. 6, the lead 144 of the lead component 140 sucked and held by the suction nozzle 66 is inserted into the through hole 148 formed in the circuit substrate 12. Moreover, as shown in step (hereinafter, simply referred to as “S”) 1 in FIG. 6, the jet device 100 located below the through-hole 148 is directed toward the circuit substrate 12 along the Z direction. Moving upward, the jet nozzle 108 of the jet device 100 is brought close to the tip of the lead 144 inserted into the through hole 148. The approach speed along the Z direction of the jet nozzle 108 at this time, that is, the moving speed for raising the jet apparatus 100 (jet nozzle 108) is set in the pattern data of the control data D1. Instead of the movement speed or in addition to the movement speed, the movement acceleration of the jet nozzle 108 may be set in the control data D1.
 噴流装置100は、例えば、回路基材12の下方に移動した際に、噴流ノズル108の先端部から溶融はんだ150の噴流を開始する。このため、噴流装置100が所定距離だけ上昇すると、噴流ノズル108の先端部から噴流されている溶融はんだ150は、リード144の先端部に塗布される。この上昇する移動方向(例えばZ方向)やZ方向に移動する移動距離は、制御データD1のパターンのデータに設定されている。 The jet device 100 starts jetting the molten solder 150 from the tip of the jet nozzle 108 when the jet device 100 moves below the circuit substrate 12, for example. For this reason, when the jet device 100 is raised by a predetermined distance, the molten solder 150 jetted from the tip of the jet nozzle 108 is applied to the tip of the lead 144. The ascending moving direction (for example, the Z direction) and the moving distance for moving in the Z direction are set in the pattern data of the control data D1.
 噴流装置100は、例えば、所定の高さまで上昇した時点で停止し、その高さ(Z方向における位置)を維持し停止する。上昇位置において、吸着ノズル66からリード144に向かって溶融はんだ150が噴流され、リード144の先端部及び、回路基材12の貫通孔148に溶融はんだ150が塗布される。 The jet device 100 stops when it rises to a predetermined height, for example, and maintains its height (position in the Z direction) and stops. At the raised position, the molten solder 150 is jetted from the suction nozzle 66 toward the lead 144, and the molten solder 150 is applied to the leading end portion of the lead 144 and the through hole 148 of the circuit substrate 12.
 図7は、回路基材12の基材上面12Aから見た塗布作業の状態を模式的に示している。図7に示すように、このパターンでは、回路基材12を平面視した場合に、噴流ノズル108(図6参照)から噴流する溶融はんだ150の中央部分を、リード144の位置に合わせた状態となっている。因みに、図7に示す噴流した溶融はんだ150の直径L1は、例えば、6mm~10mmである。そして、コントローラ152は、この中央部分にリード144の位置を合わせた状態で、噴流ノズル108を回路基材12から離間する方向へ移動させる(図6のS2参照)。例えば、コントローラ152は、X方向及びY方向の位置を変えずに、Z方向に沿って噴流ノズル108を下降させる(S2)。 FIG. 7 schematically shows the state of the application work as seen from the substrate upper surface 12A of the circuit substrate 12. As shown in FIG. 7, in this pattern, when the circuit substrate 12 is viewed in plan, the center portion of the molten solder 150 jetted from the jet nozzle 108 (see FIG. 6) is aligned with the position of the lead 144. It has become. Incidentally, the diameter L1 of the molten molten solder 150 shown in FIG. 7 is, for example, 6 mm to 10 mm. Then, the controller 152 moves the jet nozzle 108 in a direction away from the circuit substrate 12 with the position of the lead 144 aligned with the central portion (see S2 in FIG. 6). For example, the controller 152 lowers the jet nozzle 108 along the Z direction without changing the positions in the X direction and the Y direction (S2).
 これによれば、回路基材12やリード144から溶融はんだ150を引き離す際に、噴流ノズル108から噴流させた溶融はんだ150の中央部分、即ち、噴流ノズル108から噴流された溶融はんだ150の頂点部分で、リード144や回路基材12から溶融はんだ150を引き離すことができる。 According to this, when the molten solder 150 is pulled away from the circuit substrate 12 or the lead 144, the central portion of the molten solder 150 jetted from the jet nozzle 108, that is, the apex portion of the molten solder 150 jetted from the jet nozzle 108. Thus, the molten solder 150 can be pulled away from the lead 144 and the circuit substrate 12.
 ここで、図6に示すように、噴流ノズル108の先端部から噴流された溶融はんだ150は、上方へ移動した後、周囲に(X方向やY方向に)散らばって下降し、噴流ノズル108の外周面とノズルカバー110の内周面との間を通ってはんだ漕106(図3参照)の内部に還流する。このため、図7に示す平面視における溶融はんだ150の中央部分(頂点部分)において、噴流ノズル108から上方に噴流された溶融はんだ150は、Z方向における最も高い位置まで上昇する。また、中央部分において、溶融はんだ150の移動方向が上方から下方に転じるため、溶融はんだ150の対流の速度は、遅くなる可能性が高い。 Here, as shown in FIG. 6, the molten solder 150 jetted from the tip of the jet nozzle 108 moves upward and then falls scattered around (in the X direction and the Y direction) to lower the jet nozzle 108. It flows between the outer peripheral surface and the inner peripheral surface of the nozzle cover 110 and returns to the inside of the soldering iron 106 (see FIG. 3). Therefore, in the central portion (vertex portion) of the molten solder 150 in a plan view shown in FIG. 7, the molten solder 150 jetted upward from the jet nozzle 108 rises to the highest position in the Z direction. Moreover, since the moving direction of the molten solder 150 turns from the upper side to the lower side in the central portion, the convection speed of the molten solder 150 is likely to be slow.
 換言すれば、周囲に散らばって下降する溶融はんだ150は、X方向やY方向に移動しつつ、回路基材12から離間する方向(Z方向の下方)に向かって重力加速度等に応じて移動する。このため、回路基材12を平面視した場合、噴流ノズル108から噴流される溶融はんだ150は、中央からX方向やY方向に離れるのに従って、対流の速度が速くなる可能性が高い。そして、対流の速度は、X方向やY方向の端部部分において、中央部分(Z方向の上端部)に比べて速くなる可能性が高い。 In other words, the molten solder 150 scattered and descending moves in the X direction and the Y direction, and moves in a direction away from the circuit substrate 12 (downward in the Z direction) according to gravity acceleration or the like. . For this reason, when the circuit substrate 12 is viewed in plan, the molten solder 150 jetted from the jet nozzle 108 is likely to increase the speed of convection as it moves away from the center in the X direction or the Y direction. The convection velocity is likely to be higher in the end portions in the X direction and the Y direction than in the central portion (upper end portion in the Z direction).
 また、中央部分は、周囲に散らばって下降していく溶融はんだ150に比べて、噴流ノズル108の先端部、即ち、噴流ノズル108の開口に近くなる。このため、溶融はんだ150の温度は、中央部分において高くなり、周囲に散らばって中央から離れるに従って低下する可能性が高い。換言すれば、周囲に散らばって下降する溶融はんだ150、即ち、X方向やY方向における端部部分の溶融はんだ150の温度は、低くなる可能性が高い。本実施形態のコントローラ152は、このような噴流ノズル108、溶融はんだ150、リード144の位置関係を変更することによって、はんだ付けの品質の向上を図ることが可能となっている。 Also, the central portion is closer to the tip of the jet nozzle 108, that is, the opening of the jet nozzle 108, compared to the molten solder 150 scattered and descending around. For this reason, the temperature of the molten solder 150 is high in the central portion, and is likely to decrease as it is scattered around and away from the center. In other words, there is a high possibility that the temperature of the molten solder 150 that is scattered and scattered around the periphery, that is, the molten solder 150 at the end portion in the X direction or the Y direction, becomes low. The controller 152 of this embodiment can improve the soldering quality by changing the positional relationship among the jet nozzle 108, the molten solder 150, and the lead 144.
 ここで言うはんだ付けの品質とは、例えば、はんだの上がり具合や、はんだ付け後の溶融はんだ150内の気泡の有無などである。例えば、はんだ付け後の溶融はんだ150の形状が、回路基材12の基材下面12Bから下方に向かって先細りの形状となっているか否かである(図9参照)。あるいは、貫通孔148内に溶融はんだ150が十分に充填されているか否かである。また、貫通孔148内に充填された溶融はんだ150に気泡が発生しているか否かである。このようなはんだ付けの品質は、溶融はんだ150の種類、室温、湿度などに応じて変動するが、塗布作業において溶融はんだ150をリード144や回路基材12から引き離す際の作動によっても、大きく変動する。そこで、本実施形態のコントローラ152は、複数のパターンを切り替えて、引き離す際の作動を変更し、はんだ付けの品質の向上を図ることが可能となっている。 Here, the soldering quality refers to, for example, the degree of solder rising and the presence or absence of bubbles in the molten solder 150 after soldering. For example, it is whether or not the shape of the molten solder 150 after soldering is a taper shape downward from the substrate lower surface 12B of the circuit substrate 12 (see FIG. 9). Alternatively, it is whether or not the molten solder 150 is sufficiently filled in the through hole 148. Further, whether or not bubbles are generated in the molten solder 150 filled in the through holes 148 is determined. The quality of such soldering varies depending on the type of molten solder 150, room temperature, humidity, and the like, but also varies greatly depending on the operation when the molten solder 150 is pulled away from the lead 144 and the circuit substrate 12 during the coating operation. To do. Therefore, the controller 152 of the present embodiment can switch the plurality of patterns, change the operation when separating them, and improve the soldering quality.
 また、噴流装置100を上昇させた位置において噴流装置100を停止させる時間は、制御データD1のパターンのデータに設定されている。コントローラ152は、例えば、上昇位置に到達してから噴流ノズル108を回路基材12から離間させるまでの時間、即ち、リード144に溶融はんだ150を塗布する時間を計測し、パターンのデータに設定された時間だけ経過すると、噴流ノズル108(噴流装置100)の下降を開始する。従って、コントローラ152は、このような上昇位置での停止時間を変更することによっても、はんだ付けの品質の向上を図ることが可能となっている。なお、コントローラ152は、噴流ノズル108を上昇位置で停止させずに、直ぐに下降させも良い。 The time for stopping the jet device 100 at the position where the jet device 100 is raised is set in the pattern data of the control data D1. The controller 152 measures, for example, the time from reaching the ascending position until the jet nozzle 108 is separated from the circuit substrate 12, that is, the time for applying the molten solder 150 to the lead 144, and is set in the pattern data. After a lapse of time, the jet nozzle 108 (jet device 100) starts to descend. Therefore, the controller 152 can also improve the quality of soldering by changing the stop time at the raised position. Note that the controller 152 may immediately lower the jet nozzle 108 without stopping it at the raised position.
 コントローラ152は、図6のS2において、噴流装置100を下降させる際にも、噴流ノズル108から溶融はんだ150の噴流を継続させる。これにより、噴流する溶融はんだ150とリード144とが上記した中央部分で引き離され、リード144への溶融はんだ150の塗布が終了する。なお、噴流装置100(噴流ノズル108)を下降させる移動速度は、制御データD1のパターンのデータに設定されている。また、下降の移動速度に代えて、あるいは移動速度に加えて噴流ノズル108の移動加速度を、制御データD1に設定してもよい。 The controller 152 continues the jet of the molten solder 150 from the jet nozzle 108 even when the jet device 100 is lowered in S2 of FIG. Thereby, the molten solder 150 and the lead 144 that are jetted are separated at the above-described central portion, and the application of the molten solder 150 to the lead 144 is completed. The moving speed for lowering the jet device 100 (jet nozzle 108) is set in the pattern data of the control data D1. Further, instead of the downward movement speed or in addition to the movement speed, the movement acceleration of the jet nozzle 108 may be set in the control data D1.
 また、本実施形態のコントローラ152は、リード144への溶融はんだ150の塗布作業を終了させた後も、吸着ノズル66によるリード部品140の吸着保持を維持する。コントローラ152は、所定の時間だけ経過すると、吸着ノズル66によるリード部品140の保持を解除する。なお、コントローラ152は、リード144を貫通孔148に挿入した後、即ち、溶融はんだ150の塗布前に、吸着ノズル66によるリード部品140の吸着保持を解除してもよい。あるいは、コントローラ152は、例えば、要求されるリード部品140の装着精度等に応じて、リード部品140の吸着を解除するタイミングを変更してもよい。従って、コントローラ152は、このような吸着保持の状態を変更することによっても、はんだ付けの品質の向上を図ることが可能となっている。 In addition, the controller 152 of the present embodiment maintains the suction holding of the lead component 140 by the suction nozzle 66 even after the operation of applying the molten solder 150 to the lead 144 is finished. When a predetermined time has elapsed, the controller 152 releases the holding of the lead component 140 by the suction nozzle 66. The controller 152 may release the suction holding of the lead component 140 by the suction nozzle 66 after inserting the lead 144 into the through hole 148, that is, before applying the molten solder 150. Alternatively, the controller 152 may change the timing of releasing the suction of the lead component 140 according to the required mounting accuracy of the lead component 140, for example. Therefore, the controller 152 can improve the soldering quality also by changing the state of the suction holding.
 以上の作業により、図9に示すように、部品本体部142を回路基材12から浮かせた状態で、リード部品140は、回路基材12に装着される。装着されたリード部品140は、回路基材12にはんだ付けされる。貫通孔148に挿入されたリード144及び、回路基材12のリード144が挿入された箇所に溶融はんだ150が塗布されることで、リード144と回路基材12とが電気的に接続され、電気回路が形成される。 Through the above operation, as shown in FIG. 9, the lead component 140 is mounted on the circuit substrate 12 in a state where the component main body 142 is lifted from the circuit substrate 12. The mounted lead component 140 is soldered to the circuit substrate 12. By applying the molten solder 150 to the lead 144 inserted into the through hole 148 and the location where the lead 144 of the circuit base 12 is inserted, the lead 144 and the circuit base 12 are electrically connected to each other. A circuit is formed.
(溶融はんだ150の端部部分で引き離すパターン)
 次に、溶融はんだ150の端部部分で引き離すパターンについて説明する。なお、以下の説明では、上記した中央部分で引き離すパターンと同様の内容については、その説明を適宜省略する。図10は、溶融はんだ150の端部部分で噴流ノズル108とリード144とを離間させ、溶融はんだ150を引き離すパターンを示している。
(Pattern separated at the end of the molten solder 150)
Next, a pattern to be separated at the end portion of the molten solder 150 will be described. In the following description, the description of the same contents as those of the pattern separated at the central portion will be omitted as appropriate. FIG. 10 shows a pattern in which the jet nozzle 108 and the lead 144 are separated from each other at the end portion of the molten solder 150 and the molten solder 150 is pulled away.
 まず、図10のS4に示すように、貫通孔148の下方に位置している噴流装置100は、Z方向に沿って回路基材12に向かって上方へ移動し、貫通孔148に挿入されたリード144の先端部に、噴流装置100の噴流ノズル108を接近させる。噴流装置100が所定距離だけ上昇すると、噴流ノズル108の先端部から噴流されている溶融はんだ150は、リード144の先端部に塗布される。 First, as shown in S4 of FIG. 10, the jet device 100 located below the through-hole 148 moves upward toward the circuit substrate 12 along the Z direction and is inserted into the through-hole 148. The jet nozzle 108 of the jet device 100 is brought close to the tip of the lead 144. When the jet device 100 is raised by a predetermined distance, the molten solder 150 jetted from the tip of the jet nozzle 108 is applied to the tip of the lead 144.
 噴流装置100は、例えば、所定の高さまで上昇した後、その高さ(Z方向における位置)を維持しつつ、X方向に沿って移動する(S5)。図8は、回路基材12の基材上面12Aから見た塗布作業の状態を模式的に示している。図8に示すように、このパターンでは、回路基材12を平面視した場合に、まず、噴流ノズル108から噴流する溶融はんだ150の中央部分を、リード144の位置に合わせた状態となっている。 For example, after the jet device 100 has risen to a predetermined height, the jet device 100 moves along the X direction while maintaining the height (position in the Z direction) (S5). FIG. 8 schematically shows the state of the application work as viewed from the substrate upper surface 12 </ b> A of the circuit substrate 12. As shown in FIG. 8, in this pattern, when the circuit substrate 12 is viewed in plan, first, the central portion of the molten solder 150 that is jetted from the jet nozzle 108 is aligned with the position of the lead 144. .
 次に、図8のS5に示すように、噴流ノズル108のX方向への移動にともなって、X方向におけるリード144に対する溶融はんだ150の位置が変更される。回路基材12を平面視した場合に、噴流ノズル108から噴流する溶融はんだ150の端部部分が、リード144の位置となる。そして、コントローラ152は、この端部部分にリード144の位置を合わせた状態で、噴流ノズル108を回路基材12から離間する方向へ移動させる(図10のS6)。例えば、コントローラ152は、X方向及びY方向の位置を変えずに、Z方向に沿って噴流ノズル108を下降させる(S6)。 Next, as shown in S5 of FIG. 8, as the jet nozzle 108 moves in the X direction, the position of the molten solder 150 with respect to the lead 144 in the X direction is changed. When the circuit substrate 12 is viewed in plan, the end portion of the molten solder 150 jetted from the jet nozzle 108 becomes the position of the lead 144. Then, the controller 152 moves the jet nozzle 108 in a direction away from the circuit base material 12 with the position of the lead 144 aligned with the end portion (S6 in FIG. 10). For example, the controller 152 lowers the jet nozzle 108 along the Z direction without changing the positions in the X direction and the Y direction (S6).
 これによれば、回路基材12やリード144から溶融はんだ150を引き離す際に、噴流ノズル108から噴流させた溶融はんだ150の端部部分で、リード144等から溶融はんだ150を引き離すことができる。即ち、噴流ノズル108から回路基材12に向けて噴流された後、回路基材12から離間する方向へ移動(落下)する部分で、リード144等から溶融はんだ150を引き離すことができる。この端部部分は、上記したように溶融はんだ150の対流の速度が早く、溶融はんだ150の温度が低くなる可能性が高い。このように、引き離す位置を変更し、溶融はんだ150の状態を変更することによって、はんだ付けの品質の向上が期待できる。 According to this, when the molten solder 150 is pulled away from the circuit substrate 12 or the lead 144, the molten solder 150 can be pulled away from the lead 144 or the like at the end portion of the molten solder 150 jetted from the jet nozzle 108. That is, the molten solder 150 can be pulled away from the lead 144 or the like at a portion that moves (drops) in a direction away from the circuit substrate 12 after being jetted from the jet nozzle 108 toward the circuit substrate 12. As described above, the end portion has a high convection speed of the molten solder 150, and the temperature of the molten solder 150 is likely to be low. In this way, by changing the position to be separated and changing the state of the molten solder 150, improvement in soldering quality can be expected.
 コントローラ152は、S6において、噴流装置100を下降させる際にも、噴流ノズル108から溶融はんだ150の噴流を継続させる。これにより、溶融はんだ150とリード144とが上記した端部部分で引き離され、リード144への溶融はんだ150の塗布が終了する。 The controller 152 continues the jet of the molten solder 150 from the jet nozzle 108 even when the jet device 100 is lowered in S6. Thereby, the molten solder 150 and the lead 144 are separated from each other at the end portion described above, and the application of the molten solder 150 to the lead 144 is completed.
 以上の作業により、図9に示すように、部品本体部142を回路基材12から浮かせた状態で、リード部品140は、回路基材12に装着される。一方、噴流ノズル108の作動をパターンに応じて変更したため、はんだ付けの品質が変更される。ユーザは、例えば、上記した中央部分で引き離すパターンで所望の品質を得られない場合に、端部部分で引き離すパターンに変更することで、所望の品質を得ることができる。また、逆に、ユーザは、例えば、端部部分で引き離すパターンで所望の品質を得られない場合に、中央部分で引き離すパターンに変更することで、所望の品質を得ることができる。 Through the above operation, as shown in FIG. 9, the lead component 140 is mounted on the circuit substrate 12 in a state where the component main body 142 is lifted from the circuit substrate 12. On the other hand, since the operation of the jet nozzle 108 is changed according to the pattern, the soldering quality is changed. For example, when the desired quality cannot be obtained with the pattern separated at the center portion described above, the user can obtain the desired quality by changing the pattern to be separated at the end portion. On the other hand, for example, when the desired quality cannot be obtained with the pattern separated at the end portion, the user can obtain the desired quality by changing to the pattern separated at the center portion.
 また、ユーザは、上記したように、表示操作部159を操作することで、噴流ノズル108の作動を変更するパターンの種類を選択できる。このパターンは、例えば、噴流ノズル108の移動距離、移動方向、移動速度、及び移動加速度などの作動条件を変更する様々なパターンのうち、はんだ付けの品質を向上できる可能性が高い事を検証したパターンである。この場合、ユーザは、検証済の信頼性の高い複数のパターンの何れかを選択するだけで作動条件を変更し、はんだ付けの品質を向上できる。また、ユーザは、作動条件の内容を検証等する必要がなくなる。なお、上記したパターンは、メーカー等で検証したパターンに限らず、例えば、ユーザの使用においてはんだ付けの品質を向上できた実績のあるパターンでもよい。 Further, as described above, the user can select the type of pattern for changing the operation of the jet nozzle 108 by operating the display operation unit 159. It was verified that this pattern is likely to improve the soldering quality among various patterns that change the operating conditions such as the moving distance, moving direction, moving speed, and moving acceleration of the jet nozzle 108. It is a pattern. In this case, the user can improve the soldering quality by changing the operating condition simply by selecting one of a plurality of verified highly reliable patterns. Further, the user need not verify the contents of the operating conditions. Note that the above-described pattern is not limited to a pattern verified by a manufacturer or the like, and may be a pattern with a track record of improving soldering quality in use by a user, for example.
 また、はんだ付け装置36は、上記したように、回路基材12の平面と平行なX、Y方向(平面方向)、及び回路基材12の平面に対して直交するZ方向(直交方向)に噴流ノズル108(噴流装置100)を移動可能に構成されている。これによれば、例えば、作動条件を変更する対象である噴流ノズル108の移動方向を、X、Y方向(平面方向)、及びZ方向(直交方向)の2方向に限定することで、作動条件を変更する制御内容を簡素化して、塗布作業でのコントローラ152の処理負荷を軽減できる。 Further, as described above, the soldering device 36 is in the X and Y directions (plane direction) parallel to the plane of the circuit substrate 12 and the Z direction (orthogonal direction) orthogonal to the plane of the circuit substrate 12. The jet nozzle 108 (jet device 100) is configured to be movable. According to this, for example, by restricting the moving direction of the jet nozzle 108 that is the target of changing the operating condition to two directions of X, Y direction (plane direction) and Z direction (orthogonal direction), the operating condition It is possible to simplify the control contents for changing the processing load of the controller 152 in the application work.
(複数のリード144に溶融はんだ150を塗布する場合)
 ここで、上記した2つのパターンの例では、1つのリード144のみに溶融はんだ150を塗布する場合について説明したが、複数のリード144に溶融はんだ150を塗布する場合についても同様に実施することができる。図11は、2つのリード144にまとめて溶融はんだ150を塗布する場合を示している。図12は、2つのリード144にまとめて溶融はんだ150を塗布する場合であって回路基材12の基材上面12Aから見た塗布作業の状態を模式的に示している。
(When applying molten solder 150 to a plurality of leads 144)
Here, in the example of the two patterns described above, the case where the molten solder 150 is applied to only one lead 144 has been described, but the case where the molten solder 150 is applied to a plurality of leads 144 may be similarly performed. it can. FIG. 11 shows a case where the molten solder 150 is applied to the two leads 144 together. FIG. 12 schematically shows the state of the application work when the molten solder 150 is applied to the two leads 144 and viewed from the substrate upper surface 12 </ b> A of the circuit substrate 12.
 図11及び図12に示す例では、噴流ノズル108のX方向における幅、即ち、噴流した溶融はんだ150の直径L1(図12参照)が、2つのリード144のピッチL2(図12参照)に比べて十分大きくなっている。この場合には、図12に示すように、回路基材12を平面視した場合に、噴流ノズル108から噴流する溶融はんだ150の中央部分を、2つのリード144の位置に合わせた状態とすることができる。そして、2つのリード144から溶融はんだ150を引き離す際に、噴流ノズル108から噴流させた溶融はんだ150の中央部分で、2つのリード144から溶融はんだ150を引き離すことができる。 In the example shown in FIGS. 11 and 12, the width of the jet nozzle 108 in the X direction, that is, the diameter L1 (see FIG. 12) of the jetted molten solder 150 is compared with the pitch L2 (see FIG. 12) of the two leads 144. Is large enough. In this case, as shown in FIG. 12, when the circuit substrate 12 is viewed in plan, the central portion of the molten solder 150 that is jetted from the jet nozzle 108 is aligned with the positions of the two leads 144. Can do. When the molten solder 150 is pulled away from the two leads 144, the molten solder 150 can be pulled away from the two leads 144 at the central portion of the molten solder 150 jetted from the jet nozzle 108.
 また、図13は、2つのリード144にまとめて溶融はんだ150を塗布する場合であって回路基材12の基材上面12Aから見た塗布作業の状態を模式的に示している。図13に示す場合では、例えば、まず、上昇位置において、噴流ノズル108から噴流する溶融はんだ150の端部部分を、2つのリード144の位置に合わせた状態とする。そして、図13のS8に示すように、噴流ノズル108は、X方向で対向する2つの端部部分のうち、一方の端部部分を2つのリード144に合わせた位置から、他方の端部部分を2つのリード144に合わせた位置までX方向に沿って移動する。 FIG. 13 schematically shows the state of the application work when the molten solder 150 is applied to the two leads 144 and viewed from the upper surface 12 </ b> A of the circuit substrate 12. In the case shown in FIG. 13, for example, first, the end portion of the molten solder 150 jetted from the jet nozzle 108 is set to the position of the two leads 144 at the raised position. And as shown to S8 of FIG. 13, the jet nozzle 108 is the other edge part from the position which match | combined one edge part with the two lead 144 among the two edge parts which oppose in X direction. Is moved along the X direction to a position aligned with the two leads 144.
 即ち、図13に示す例では、図8の場合とは異なり、溶融はんだ150の端部部分でリード144への塗布を開始し、端部部分で溶融はんだ150とリード144との引き離しを実行している。このような作動のパターンにおいても、溶融はんだ150を引き離す状態を変更することによって、はんだ付けの品質の向上が期待できる。 That is, in the example shown in FIG. 13, unlike the case of FIG. 8, application to the lead 144 is started at the end portion of the molten solder 150, and the molten solder 150 and the lead 144 are separated from each other at the end portion. ing. Even in such an operation pattern, improvement in soldering quality can be expected by changing the state of separating the molten solder 150.
(離間する方向へ移動した後に戻るパターン)
 次に、噴流ノズル108を回路基材12から離間する方向に移動させた後、再度、回路基材12(リード144)に接近する方向へ移動させるパターンについて説明する。なお、以下の説明では、上記した各パターンと同様の内容については、その説明を適宜省略する。図14は、噴流ノズル108を一度離間させた後に再度接近させ、その後に溶融はんだ150を引き離すパターンを示している。
(Pattern that returns after moving away)
Next, a pattern in which the jet nozzle 108 is moved in a direction away from the circuit substrate 12 and then moved again in a direction approaching the circuit substrate 12 (lead 144) will be described. In the following description, the description of the same contents as the above-described patterns is omitted as appropriate. FIG. 14 shows a pattern in which the jet nozzle 108 is once separated and then approached again, and then the molten solder 150 is pulled away.
 まず、図14のS10に示すように、貫通孔148の下方に位置している噴流装置100は、Z方向に沿って回路基材12に向かって上方へ移動し、貫通孔148に挿入されたリード144の先端部に、噴流装置100の噴流ノズル108を接近させる。噴流装置100が所定距離だけ上昇すると、噴流ノズル108の先端部から噴流されている溶融はんだ150は、リード144の先端部に塗布される。 First, as shown in S <b> 10 of FIG. 14, the jet device 100 located below the through-hole 148 moves upward toward the circuit substrate 12 along the Z direction and is inserted into the through-hole 148. The jet nozzle 108 of the jet device 100 is brought close to the tip of the lead 144. When the jet device 100 is raised by a predetermined distance, the molten solder 150 jetted from the tip of the jet nozzle 108 is applied to the tip of the lead 144.
 次に、噴流装置100は、リード144の先端部に接近した高さまで上昇した後、所定の距離だけ下降する(S11)。噴流装置100は、例えば、X方向及びY方向における位置を固定したまま、Z方向に沿って下方へ所定距離だけ移動する。例えば、噴流装置100を所定距離だけ下げた場合、噴流ノズル108から噴流される溶融はんだ150は、リード144の先端に到達している。即ち、所定距離を短い距離に設定し、S11で下降させた位置においても、溶融はんだ150は、リード144に塗布される。 Next, the jet device 100 rises to a height close to the tip of the lead 144 and then descends by a predetermined distance (S11). For example, the jet device 100 moves downward by a predetermined distance along the Z direction while fixing the positions in the X direction and the Y direction. For example, when the jet device 100 is lowered by a predetermined distance, the molten solder 150 jetted from the jet nozzle 108 reaches the tip of the lead 144. That is, the molten solder 150 is applied to the lead 144 even at the position where the predetermined distance is set to a short distance and lowered in S11.
 なお、S11において噴流装置100を所定距離だけ下げた場合、噴流ノズル108から噴流される溶融はんだ150は、リード144の先端に到達していなくとも良い。即ち、S12の下降にともなって溶融はんだ150とリード144とを引き離しても良い。この場合、一度引き離された溶融はんだ150が、再度同じリード144に塗布されることとなる。 When the jet device 100 is lowered by a predetermined distance in S11, the molten solder 150 jetted from the jet nozzle 108 does not have to reach the tip of the lead 144. That is, the molten solder 150 and the lead 144 may be separated as S12 descends. In this case, the molten solder 150 once separated is applied to the same lead 144 again.
 次に、下降させた噴流装置100を、再び回路基材12に向けて上昇させる(S12)。噴流ノズル108の先端部から噴流されている溶融はんだ150は、リード144の先端部に塗布される。噴流装置100は、例えば、X方向及びY方向における位置を固定したまま、Z方向に沿って上方へ所定距離だけ移動する。S12の所定距離は、例えば、S11と同一距離である。即ち、噴流装置100は、S11で下降した距離だけ、S12で上昇する。なお、噴流装置100は、S11で下降した移動距離に比べて短い移動距離だけS12で上昇してもよい。この場合、S12で上昇した噴流装置100は、S11で上昇した位置に比べて下方の位置となる。 Next, the lowered jet device 100 is raised again toward the circuit substrate 12 (S12). The molten solder 150 jetted from the tip of the jet nozzle 108 is applied to the tip of the lead 144. For example, the jet device 100 moves upward by a predetermined distance along the Z direction while fixing the positions in the X direction and the Y direction. The predetermined distance in S12 is, for example, the same distance as S11. That is, the jet flow device 100 is raised at S12 by the distance lowered at S11. The jet device 100 may be lifted at S12 by a short moving distance compared to the moving distance lowered at S11. In this case, the jet device 100 that has been lifted in S12 has a lower position than the position that has been lifted in S11.
 そして、コントローラ152は、S12で噴流装置100を再度上昇させた後、噴流装置100(噴流ノズル108)を回路基材12から離間する方向へ移動させる(S13)。例えば、コントローラ152は、X方向及びY方向の位置を変えずに、Z方向に沿って噴流ノズル108を下降させる(S13)。 Then, the controller 152 raises the jet device 100 again in S12, and then moves the jet device 100 (jet nozzle 108) in a direction away from the circuit substrate 12 (S13). For example, the controller 152 lowers the jet nozzle 108 along the Z direction without changing the positions in the X direction and the Y direction (S13).
 このパターンでは、噴流ノズル108を一度、回路基材12から離間させた後に、噴流ノズル108を再び回路基材12側へ移動させることで、下降前に塗布した溶融はんだ150を上昇しながら貫通孔148内へ押し込むことが可能となる。これにより、はんだの上がり具合の向上や、貫通孔148に充填された溶融はんだ150における気泡の発生の低減が期待できる。 In this pattern, after the jet nozzle 108 is once separated from the circuit base material 12, the jet nozzle 108 is moved again to the circuit base material 12 side, so that the molten solder 150 applied before the lowering is lifted and the through hole is lifted. It can be pushed into 148. As a result, it is possible to expect an improvement in the degree of solder rising and a reduction in the generation of bubbles in the molten solder 150 filled in the through holes 148.
 コントローラ152は、S13において、噴流装置100を下降させる際にも、噴流ノズル108から溶融はんだ150の噴流を継続させる。これにより、溶融はんだ150とリード144とが上記した中央部分で引き離され、リード144への溶融はんだ150の塗布が終了する。 The controller 152 continues the jet of the molten solder 150 from the jet nozzle 108 even when the jet device 100 is lowered in S13. Thereby, the molten solder 150 and the lead 144 are separated from each other at the above-described central portion, and the application of the molten solder 150 to the lead 144 is completed.
 なお、上記したパターンでは、コントローラ152は、S11の下降と、S12の上昇とをそれぞれ1回実行したが、複数回実行してもよい。即ち、噴流ノズル108を複数回上下動させてもよい。これにより、はんだの上がり具合のさらなる向上等が期待できる。また、コントローラ152は、上記した再度上昇するパターンにおいて、溶融はんだ150とリード144とを端部部分で引き離すように噴流装置100(はんだ付け装置36)を制御してもよい。また、コントローラ152は、上記したS10~S13の各々における噴流装置100(噴流ノズル108)の移動速度や移動加速度を異なる速度等に変更しても良い。 In the above-described pattern, the controller 152 executes the descending of S11 and the ascending of S12 once, but may be performed a plurality of times. That is, the jet nozzle 108 may be moved up and down a plurality of times. Thereby, the further improvement of the solder rising condition, etc. can be expected. Further, the controller 152 may control the jet device 100 (soldering device 36) so that the molten solder 150 and the lead 144 are separated at the end portion in the above-described rising pattern. The controller 152 may change the moving speed and moving acceleration of the jet device 100 (jet nozzle 108) in each of S10 to S13 described above to different speeds.
(引き離す際に加速するパターン)
 次に、溶融はんだ150をリード144や回路基材12から引き離す際に、噴流ノズル108の移動速度や移動加速度を速くするパターンについて説明する。なお、以下の説明では、上記した各パターンと同様の内容については、その説明を適宜省略する。図15は、噴流ノズル108を回路基材12から離間させる際に加速させ、溶融はんだ150をリード144等から引き離すパターンを示している。
(Pattern that accelerates when pulling apart)
Next, a pattern for increasing the moving speed and moving acceleration of the jet nozzle 108 when the molten solder 150 is pulled away from the lead 144 and the circuit substrate 12 will be described. In the following description, the description of the same contents as the above-described patterns is omitted as appropriate. FIG. 15 shows a pattern in which the jet nozzle 108 is accelerated when being separated from the circuit substrate 12 and the molten solder 150 is separated from the leads 144 and the like.
 まず、図15のS15に示すように、貫通孔148の下方に位置している噴流装置100は、Z方向に沿って回路基材12に向かって上方へ移動し、貫通孔148に挿入されたリード144の先端部に、噴流装置100の噴流ノズル108を接近させる。噴流装置100が所定距離だけ上昇すると、噴流ノズル108の先端部から噴流されている溶融はんだ150は、リード144の先端部に塗布される。 First, as shown in S15 of FIG. 15, the jet device 100 located below the through-hole 148 moves upward toward the circuit substrate 12 along the Z direction and is inserted into the through-hole 148. The jet nozzle 108 of the jet device 100 is brought close to the tip of the lead 144. When the jet device 100 is raised by a predetermined distance, the molten solder 150 jetted from the tip of the jet nozzle 108 is applied to the tip of the lead 144.
 噴流装置100は、例えば、所定の高さまで上昇した後、その高さ(Z方向における位置)を維持する。次に、噴流装置100は、回路基材12から離間する方向への移動を開始する。噴流装置100は、例えば、X方向及びY方向における位置を固定したまま、Z方向に沿って下降する。この際、コントローラ152は、下降の初期において噴流ノズル108(噴流装置100)をゆっくりと下降させる(S16)。そして、コントローラ152は、ゆっくりとした速度で噴流ノズル108を下降させた後(S16)、噴流ノズル108の下降する速度を速くする。即ち、コントローラ152は、下降における初期(S16)の移動速度に比べて、後期(S17)の移動速度を速くする。 The jet device 100, for example, maintains its height (position in the Z direction) after rising to a predetermined height. Next, the jet device 100 starts moving in a direction away from the circuit substrate 12. For example, the jet device 100 descends along the Z direction while fixing the positions in the X direction and the Y direction. At this time, the controller 152 slowly lowers the jet nozzle 108 (jet device 100) at the initial stage of lowering (S16). The controller 152 lowers the jet nozzle 108 at a slow speed (S16), and then increases the speed at which the jet nozzle 108 descends. That is, the controller 152 increases the movement speed in the later period (S17) as compared to the movement speed in the initial stage (S16) in the descent.
 これによれば、噴流装置100が下降し、噴流される溶融はんだ150の上端とリード144の先端(下端)とが近づいてくると、噴流装置100は、下降する速度を速くする。従って、溶融はんだ150の上端(頂点)とリード144の先端とを引き離す際に素早く引き離すことができる。その結果、図9に示すように、リード144に塗布された溶融はんだ150の形状を、基材下面12Bから下方に向かうに従って先細りした形状、即ち、基材下面12Bから山形に立設した形状にできる。従って、はんだ付けの品質の向上が期待できる。 According to this, when the jet device 100 descends and the upper end of the molten solder 150 to be jetted approaches the tip (lower end) of the lead 144, the jet device 100 increases the descending speed. Accordingly, when the upper end (vertex) of the molten solder 150 and the tip of the lead 144 are separated, they can be quickly separated. As a result, as shown in FIG. 9, the shape of the molten solder 150 applied to the lead 144 is tapered from the lower surface 12B of the substrate toward the lower side, that is, a shape standing upright from the lower surface 12B of the substrate. it can. Therefore, improvement in soldering quality can be expected.
 そして、コントローラ152は、S17において、噴流装置100を下降させる際にも、噴流ノズル108から溶融はんだ150の噴流を継続させる。これにより、溶融はんだ150とリード144とが引き離され、リード144への溶融はんだ150の塗布が終了する。 And the controller 152 continues the jet of the molten solder 150 from the jet nozzle 108 also when lowering the jet apparatus 100 in S17. Thereby, the molten solder 150 and the lead 144 are separated from each other, and the application of the molten solder 150 to the lead 144 is completed.
 なお、コントローラ152は、噴流ノズル108の移動速度に代えて、あるいは移動速度に加えて移動加速度を変更してもよい。例えば、コントローラ152は、S16の移動加速度に比べて、S17の移動加速度を速くしてもよい。また、コントローラ152は、S16の移動速度に比べて、S17の移動速度を遅くしてもよい。即ち、下降の初期の移動速度に比べて、後期の移動速度を遅くしてもよい。これにより、溶融はんだ150の上端とリード144の先端とをゆっくりと引き離すことができる。その結果、噴流ノズル108の作動の変更により、はんだ付けの品質の向上が期待できる。また、コントローラ152は、S16からS17へと移行し、1段階だけ加速したが、複数段階加速してもよい。また、コントローラ152は、上記した加速するパターンにおいて、溶融はんだ150とリード144とを図10に示す端部部分で引き離すように噴流装置100を制御してもよい。 Note that the controller 152 may change the movement acceleration instead of the movement speed of the jet nozzle 108 or in addition to the movement speed. For example, the controller 152 may increase the movement acceleration in S17 compared to the movement acceleration in S16. Moreover, the controller 152 may make the moving speed of S17 slower than the moving speed of S16. That is, the movement speed in the latter period may be made slower than the initial movement speed of the descent. Thereby, the upper end of the molten solder 150 and the tip of the lead 144 can be slowly separated. As a result, improvement in soldering quality can be expected by changing the operation of the jet nozzle 108. Further, the controller 152 shifts from S16 to S17 and accelerates by one step, but may accelerate by a plurality of steps. Further, the controller 152 may control the jet device 100 so that the molten solder 150 and the lead 144 are separated at the end portion shown in FIG.
(階段状に移動するパターン)
 次に、噴流ノズル108を下降させる際に階段状に移動させ、リード144や回路基材12から溶融はんだ150を引き離すパターンについて説明する。なお、以下の説明では、上記した各パターンと同様の内容については、その説明を適宜省略する。図16は、噴流ノズル108を階段状に移動させるパターンを示している。
(Pattern that moves in a staircase pattern)
Next, a pattern in which the molten solder 150 is moved away from the lead 144 and the circuit substrate 12 when the jet nozzle 108 is lowered will be described. In the following description, the description of the same contents as the above-described patterns is omitted as appropriate. FIG. 16 shows a pattern in which the jet nozzle 108 is moved stepwise.
 まず、図16のS19に示すように、貫通孔148の下方に位置している噴流装置100は、Z方向に沿って回路基材12に向かって上方へ移動し、貫通孔148に挿入されたリード144の先端部に、噴流装置100の噴流ノズル108を接近させる。噴流装置100が所定距離だけ上昇すると、噴流ノズル108の先端部から噴流されている溶融はんだ150は、リード144の先端部に塗布される。 First, as shown in S <b> 19 of FIG. 16, the jet device 100 located below the through-hole 148 moves upward toward the circuit substrate 12 along the Z direction and is inserted into the through-hole 148. The jet nozzle 108 of the jet device 100 is brought close to the tip of the lead 144. When the jet device 100 is raised by a predetermined distance, the molten solder 150 jetted from the tip of the jet nozzle 108 is applied to the tip of the lead 144.
 噴流装置100は、例えば、所定の高さまで上昇した後、その高さ(Z方向における位置)を維持しつつ、X方向に沿って所定距離だけ移動する(S20)。さらに、噴流装置100は、X方向に移動した後、所定距離だけZ方向に沿って下降する(S20)。コントローラ152は、このX方向への移動と、Z方向への移動とを繰り返し噴流装置100に実行させる。噴流装置100は、図16に示すように、階段状に下降しながら回路基材12から離間する。 The jet device 100, for example, moves up to a predetermined height, and then moves by a predetermined distance along the X direction while maintaining the height (position in the Z direction) (S20). Furthermore, after moving in the X direction, the jet device 100 descends along the Z direction by a predetermined distance (S20). The controller 152 causes the jet device 100 to repeatedly execute the movement in the X direction and the movement in the Z direction. As shown in FIG. 16, the jet device 100 moves away from the circuit substrate 12 while descending stepwise.
 X方向及びZ方向のそれぞれの1回の移動は、溶融はんだ150とリード144とが引き離されない範囲内で実行される。X方向の1回の移動距離は、例えば、図7に示す平面視における噴流した溶融はんだ150の中心と端部との間の距離、即ち、直径L1の半分(半径)を分割した距離を設定できる。これにより、噴流ノズル108は、リード144と溶融はんだ150とが接触する位置を、溶融はんだ150の中心から端部に向かって複数の段階に変更して移動する。 The single movement in each of the X direction and the Z direction is executed within a range where the molten solder 150 and the lead 144 are not separated. The one-time movement distance in the X direction is set, for example, as a distance between the center and the end of the jetted molten solder 150 in a plan view shown in FIG. 7, that is, a distance obtained by dividing a half (radius) of the diameter L1. it can. As a result, the jet nozzle 108 moves by changing the position where the lead 144 and the molten solder 150 are in contact from the center of the molten solder 150 toward the end in a plurality of stages.
 また、Z方向の1回の移動距離は、例えば、S19で噴流装置100を上昇させた上端の位置と、リード144と溶融はんだ150とが引き離されるまで噴流装置100を下降させた位置との間の距離を分割した距離を設定できる。これにより、噴流ノズル108は、上昇してリード144に溶融はんだ150を塗布した位置から、リード144と溶融はんだ150とが引き離される位置まで、複数の段階に分けて移動する。 The one-time movement distance in the Z direction is, for example, between the position of the upper end where the jet apparatus 100 is raised in S19 and the position where the jet apparatus 100 is lowered until the lead 144 and the molten solder 150 are separated. A distance obtained by dividing the distance can be set. As a result, the jet nozzle 108 moves in a plurality of stages from the position where the molten solder 150 is applied to the lead 144 to the position where the lead 144 and the molten solder 150 are separated.
 図16のS20に示すように、噴流ノズル108のX方向への移動にともなって、X方向におけるリード144に対する溶融はんだ150の位置が変更される。また、噴流ノズル108のZ方向への移動にともなって、溶融はんだ150の上端の位置は、リード144の基端側(基材下面12B側)から先端側に向かって移動する。そして、コントローラ152は、噴流ノズル108(噴流装置100)を階段状に移動させながら、溶融はんだ150とリード144とを引き離す。 16, as the jet nozzle 108 moves in the X direction, the position of the molten solder 150 relative to the lead 144 in the X direction is changed. Further, as the jet nozzle 108 moves in the Z direction, the position of the upper end of the molten solder 150 moves from the base end side (base material lower surface 12B side) of the lead 144 toward the front end side. Then, the controller 152 separates the molten solder 150 and the lead 144 while moving the jet nozzle 108 (jet device 100) stepwise.
 上記したように、コントローラ152は、回路基材12の平面と平行なX方向(平面方向)への噴流ノズル108の移動と、回路基材12の平面に対して直交するZ方向(直交方向)で且つ回路基材12から離間する方向(下方)への噴流ノズル108の移動とを交互に繰り返すように噴流装置100を制御する。これによれば、回路基材12やリード144から溶融はんだ150を引き離す際に、噴流ノズル108を回路基材12から離間する方向へ階段状に移動させることができる。その結果、リード144と溶融はんだ150とを引き離す際の作動を変更することで、はんだ付けの品質の向上が期待できる。 As described above, the controller 152 moves the jet nozzle 108 in the X direction (plane direction) parallel to the plane of the circuit substrate 12 and the Z direction (orthogonal direction) orthogonal to the plane of the circuit substrate 12. In addition, the jet device 100 is controlled so as to alternately repeat the movement of the jet nozzle 108 in the direction away from the circuit substrate 12 (downward). According to this, when the molten solder 150 is pulled away from the circuit substrate 12 or the lead 144, the jet nozzle 108 can be moved stepwise in a direction away from the circuit substrate 12. As a result, improvement in soldering quality can be expected by changing the operation at the time of separating the lead 144 and the molten solder 150.
 なお、制御装置38のコントローラ152は、図4に示すように、塗布部160と、作動変更部162と、受付部164とを有している。この塗布部160は、貫通孔148に挿入されたリード144に、噴流装置100によって溶融はんだ150を塗布する塗布作業を実行するための機能部である。作動変更部162は、塗布部160の塗布作業における噴流ノズル108の作動を変更するための機能部である。受付部164は、噴流ノズル108の作動を変更するデータ(制御データD1)の複数のパターンのうち、何れのパターンのデータを作動変更部162に実行させるのかを受け付けるための機能部である。 In addition, the controller 152 of the control apparatus 38 has the application part 160, the operation | movement change part 162, and the reception part 164, as shown in FIG. The application unit 160 is a functional unit for performing an application operation of applying the molten solder 150 to the lead 144 inserted into the through hole 148 by the jet device 100. The operation changing unit 162 is a functional unit for changing the operation of the jet nozzle 108 in the application operation of the application unit 160. The receiving unit 164 is a functional unit for receiving which pattern data of the plurality of patterns of data (control data D1) for changing the operation of the jet nozzle 108 is to be executed by the operation changing unit 162.
 因みに、上記実施形態において、部品実装機10は、対基板作業機の一例である。貫通孔148は、貫通部の一例である。回路基材12は、基板の一例である。基材搬送保持装置22は、基板保持装置の一例である。はんだ付け装置36は、噴流装置の一例である。 Incidentally, in the above-described embodiment, the component mounting machine 10 is an example of a substrate working machine. The through hole 148 is an example of a through part. The circuit base 12 is an example of a substrate. The substrate conveyance holding device 22 is an example of a substrate holding device. The soldering device 36 is an example of a jet device.
 以上、上記した本実施形態では、以下の効果を奏する。
 制御装置38のコントローラ152(塗布部160)は、回路基材12(基板)の貫通孔148(貫通部)に挿入されたリード144に、噴流装置100の噴流ノズル108から溶融はんだ150を噴流させ塗布する。コントローラ152(作動変更部162)は、この塗布部160による塗布作業における噴流ノズル108の作動を変更する。作動変更部162は、噴流ノズル108の移動距離、移動方向、移動速度、及び移動加速度の4つの作動条件のうち、少なくとも1つの作動条件を変更する。これにより、回路基材12やリード144から溶融はんだ150を引き離す際の作動を変更でき、はんだ付けの品質を向上できる。
As described above, the above-described embodiment has the following effects.
The controller 152 (application unit 160) of the control device 38 causes the molten solder 150 to jet from the jet nozzle 108 of the jet device 100 to the lead 144 inserted into the through hole 148 (through portion) of the circuit base 12 (substrate). Apply. The controller 152 (operation change unit 162) changes the operation of the jet nozzle 108 in the application work by the application unit 160. The operation changing unit 162 changes at least one of the four operating conditions of the moving distance, moving direction, moving speed, and moving acceleration of the jet nozzle 108. Thereby, the operation | movement at the time of pulling away the molten solder 150 from the circuit base material 12 or the lead 144 can be changed, and the quality of soldering can be improved.
 なお、本願は、上記実施形態に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。
 例えば、上記実施形態では、本願の対基板作業機として、部品装着装置24を備え、作業ヘッド60,62によってリード部品140を回路基材12に装着する部品実装機10を採用したが、これに限らない。本願の対基板作業機は、例えば、リード部品140の装着作業を実施せず、溶融はんだ150を塗布するだけの構成でも良い。例えば、対基板作業機は、既にリード部品140を装着した回路基材12を搬入し、はんだ付けのみを実施する構成でも良い。この場合、対基板作業機は、部品装着装置24や部品供給装置30を備えなくとも良い。
 また、制御データD1には、噴流ノズル108の移動距離、移動方向、移動速度、及び移動加速度の作動条件のうち、少なくとも1つの作動条件を変更するデータが、複数のパターン設定されていた。しかしながら、制御データD1は、変更するパターンを1つだけ有する構成でもよい。
In addition, this application is not limited to the said embodiment, It is possible to implement in the various aspect which gave various change and improvement based on the knowledge of those skilled in the art.
For example, in the above-described embodiment, the component mounting apparatus 10 that includes the component mounting device 24 and mounts the lead component 140 on the circuit base 12 by the work heads 60 and 62 is employed as the substrate working machine of the present application. Not exclusively. The substrate working machine of the present application may have a configuration in which, for example, the molten solder 150 is simply applied without performing the mounting operation of the lead component 140. For example, the substrate working machine may be configured to carry in the circuit base material 12 on which the lead component 140 has already been mounted and to perform only the soldering. In this case, the substrate work machine may not include the component mounting device 24 and the component supply device 30.
In the control data D1, data for changing at least one of the operating conditions of the moving distance, moving direction, moving speed, and moving acceleration of the jet nozzle 108 is set in a plurality of patterns. However, the control data D1 may have a configuration having only one pattern to be changed.
 また、制御データD1は、予め設定されたパターンのデータを有しなくとも良い。例えば、制御装置38は、ユーザによって制御データD1を変更可能な構成でもよい。この場合、ユーザは、パターンを選択するのではなく、制御データD1を直接変更する、即ち、噴流ノズル108の移動距離の長さや、移動速度の大きさなどを変更することで、噴流ノズル108の作動を変更することが可能となる。 Further, the control data D1 does not have to have data of a preset pattern. For example, the control device 38 may be configured such that the control data D1 can be changed by the user. In this case, the user does not select the pattern but directly changes the control data D1, that is, by changing the length of the moving distance of the jet nozzle 108, the magnitude of the moving speed, and the like. It becomes possible to change the operation.
 また、コントローラ152は、噴流ノズル108を、回路基材12の平面に平行な平面方向(X方向、Y方向)、及び平面に直交する直交方向(Z方向)に移動させたが、これに限らない。例えば、コントローラ152は、回路基材12の平面に対して所定の角度をなす斜め方向に噴流ノズル108を移動させてもよい。この場合にも、溶融はんだ150をリード144から引き離す作動を変更し、はんだ付けの品質向上が期待できる。
 また、上記実施形態では、部品本体部142が回路基材12から浮いた状態でリード部品140が回路基材12に装着されているが、部品本体部142が回路基材12に接触した状態でリード部品140が回路基材12に装着されてもよい。
 また、上記実施形態では、本願の貫通部として、貫通孔148を採用したが、これに限らない。貫通部は、回路基材12を上下方向に貫いていればよく、切欠きなどでも良い。
In addition, the controller 152 moves the jet nozzle 108 in a plane direction (X direction, Y direction) parallel to the plane of the circuit substrate 12 and an orthogonal direction (Z direction) orthogonal to the plane, but this is not limitative. Absent. For example, the controller 152 may move the jet nozzle 108 in an oblique direction that forms a predetermined angle with respect to the plane of the circuit substrate 12. Also in this case, the operation of pulling the molten solder 150 away from the lead 144 is changed, and improvement in soldering quality can be expected.
In the above embodiment, the lead component 140 is mounted on the circuit substrate 12 with the component body 142 floating from the circuit substrate 12, but the component body 142 is in contact with the circuit substrate 12. The lead component 140 may be attached to the circuit substrate 12.
Moreover, in the said embodiment, although the through-hole 148 was employ | adopted as a penetration part of this application, it is not restricted to this. The penetration part should just penetrate the circuit base material 12 in the up-down direction, and a notch etc. may be sufficient as it.
 10 部品実装機(対基板作業機)、12 回路基材(基板)、22 基材搬送保持装置(基板保持装置)、36 はんだ付け装置(噴流装置)、38 制御装置、108 噴流ノズル、140 リード部品、144 リード、148 貫通孔(貫通部)、150 溶融はんだ、160 塗布部、162 作動変更部、164 受付部。 10 component mounting machine (to board work machine), 12 circuit base material (board), 22 base material transport and holding device (board holding device), 36 soldering device (jet device), 38 control device, 108 jet nozzle, 140 lead Parts, 144 lead, 148 through hole (penetration part), 150 molten solder, 160 application part, 162 operation change part, 164 reception part.

Claims (8)

  1.  貫通部を形成された基板を保持する基板保持装置と、
     前記貫通部にリードを挿入されたリード部品に対し、噴流ノズルから溶融はんだを噴流させ、前記貫通部に挿入された前記リードに前記溶融はんだを塗布する噴流装置と、
     制御装置と、を備え、
     前記制御装置は、
     前記貫通部に挿入された前記リードに、前記噴流装置によって前記溶融はんだを塗布する塗布作業を実行する塗布部と、
     前記塗布作業における前記噴流ノズルの作動を変更する作動変更部と、
    を有し、
     前記作動変更部は、前記噴流ノズルの移動距離、前記噴流ノズルの移動方向、前記噴流ノズルの移動速度、及び前記噴流ノズルの移動加速度の作動条件のうち、少なくとも1つの作動条件を変更し、前記リードに塗布される前記溶融はんだの状態を変更する、対基板作業機。
    A substrate holding device for holding the substrate on which the penetrating portion is formed;
    A jet device that jets molten solder from a jet nozzle to a lead component having a lead inserted in the penetrating portion, and applies the molten solder to the lead inserted in the penetrating portion;
    A control device,
    The control device includes:
    An application unit that performs an application operation of applying the molten solder to the leads inserted into the penetration part by the jet device;
    An operation changing unit for changing the operation of the jet nozzle in the coating operation;
    Have
    The operation changing unit changes at least one of the operating conditions of the moving distance of the jet nozzle, the moving direction of the jet nozzle, the moving speed of the jet nozzle, and the moving acceleration of the jet nozzle, A substrate working machine that changes a state of the molten solder applied to the lead.
  2.  前記制御装置は、
     前記作動条件のうち、少なくとも1つの作動条件を変更するデータを複数のパターン有する制御データと、
     複数の前記パターンのうち、何れのパターンのデータを前記作動変更部に実行させるのかを受け付ける受付部を有する、請求項1に記載の対基板作業機。
    The control device includes:
    Control data having a plurality of patterns of data for changing at least one of the operating conditions, and
    The work apparatus for a substrate according to claim 1, further comprising a receiving unit that receives which pattern of the plurality of patterns is to be executed by the operation changing unit.
  3.  前記噴流装置は、前記基板の平面と平行な平面方向、及び前記基板の平面に対して直交する直交方向に前記噴流ノズルを移動可能に構成される、請求項1又は請求項2に記載の対基板作業機。 3. The pair according to claim 1, wherein the jet device is configured to be able to move the jet nozzle in a plane direction parallel to a plane of the substrate and an orthogonal direction orthogonal to the plane of the substrate. Board work machine.
  4.  前記作動変更部は、前記基板を平面視した場合に、前記噴流ノズルから噴流する前記溶融はんだの中央部分を前記リードの位置に合わせた状態で、前記噴流ノズルを前記基板から離間する方向へ移動させるように前記作動条件を変更する、請求項1乃至請求項3の何れかに記載の対基板作業機。 The operation changing unit moves the jet nozzle away from the substrate in a state where the central portion of the molten solder jetted from the jet nozzle is aligned with the position of the lead when the substrate is viewed in plan. The substrate working machine according to any one of claims 1 to 3, wherein the operating condition is changed so as to cause the operation to be performed.
  5.  前記作動変更部は、前記基板を平面視した場合に、前記噴流ノズルから噴流する前記溶融はんだの端部部分を前記リードの位置に合わせた状態で、前記噴流ノズルを前記基板から離間する方向へ移動させるように前記作動条件を変更する、請求項1乃至請求項3の何れかに記載の対基板作業機。 The operation changing unit is configured to move the jet nozzle away from the substrate in a state where the end portion of the molten solder jetted from the jet nozzle is aligned with the position of the lead when the substrate is viewed in plan. The substrate working machine according to any one of claims 1 to 3, wherein the operating condition is changed so as to be moved.
  6.  前記作動変更部は、前記噴流ノズルを前記基板から離間する方向へ移動させた後に、前記噴流ノズルを再び前記基板に接近する方向へ移動させるように前記作動条件を変更する、請求項1乃至請求項5の何れかに記載の対基板作業機。 The said operation change part changes the said operation condition so that the said jet nozzle may be moved to the direction which approaches the said board | substrate again after moving the said jet nozzle in the direction which leaves | separates from the said board | substrate. Item 6. The substrate work machine according to any one of Items 5 to 6.
  7.  前記作動変更部は、前記噴流ノズルを前記基板から離間させ前記リードと噴流する前記溶融はんだとを引き離す際に、前記噴流ノズルの前記移動速度及び前記移動加速度のうち少なくとも一方を速くする、請求項1乃至請求項6の何れかに記載の対基板作業機。 The operation changing unit increases at least one of the moving speed and the moving acceleration of the jet nozzle when the jet nozzle is separated from the substrate and the lead and the molten solder jetted are separated. The substrate work machine in any one of Claim 1 thru | or 6.
  8.  前記作動変更部は、前記基板の平面と平行な平面方向への前記噴流ノズルの移動と、前記基板の平面に対して直交する直交方向で且つ前記基板から離間する方向への前記噴流ノズルの移動とを交互に繰り返すように前記作動条件を変更する、請求項1乃至請求項5の何れかに記載の対基板作業機。 The operation changing unit moves the jet nozzle in a plane direction parallel to the plane of the substrate, and moves the jet nozzle in a direction orthogonal to the plane of the substrate and away from the substrate. The substrate working machine according to claim 1, wherein the operating condition is changed so as to alternately repeat.
PCT/JP2017/019050 2017-05-22 2017-05-22 Board working machine WO2018216076A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/019050 WO2018216076A1 (en) 2017-05-22 2017-05-22 Board working machine
JP2019519819A JP6732122B2 (en) 2017-05-22 2017-05-22 Board-to-board working machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/019050 WO2018216076A1 (en) 2017-05-22 2017-05-22 Board working machine

Publications (1)

Publication Number Publication Date
WO2018216076A1 true WO2018216076A1 (en) 2018-11-29

Family

ID=64395372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019050 WO2018216076A1 (en) 2017-05-22 2017-05-22 Board working machine

Country Status (2)

Country Link
JP (1) JP6732122B2 (en)
WO (1) WO2018216076A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228635A (en) * 2010-03-31 2011-11-10 Panasonic Corp Point solder nc data creation method and automatic soldering device
JP2013254888A (en) * 2012-06-08 2013-12-19 Sensbey Co Ltd Selective soldering system
WO2016135891A1 (en) * 2015-02-25 2016-09-01 富士機械製造株式会社 Soldering apparatus
JP2016178283A (en) * 2015-03-20 2016-10-06 古河電気工業株式会社 Wavelength variable laser element and laser module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6076046B2 (en) * 2012-11-07 2017-02-08 ヤマハ発動機株式会社 Electronic component mounting apparatus, arithmetic device and mounting method
JP5945697B2 (en) * 2012-11-19 2016-07-05 パナソニックIpマネジメント株式会社 Electronic component mounting system and electronic component mounting method
JP5945699B2 (en) * 2012-12-25 2016-07-05 パナソニックIpマネジメント株式会社 Electronic component mounting system and electronic component mounting method
JP6297591B2 (en) * 2013-11-29 2018-03-20 富士機械製造株式会社 Data update method for circuit board working system and circuit board working system
JP6280833B2 (en) * 2014-08-01 2018-02-14 ヤマハ発動機株式会社 Control parameter setting method, control device, and program
JP5867645B1 (en) * 2015-03-20 2016-02-24 富士ゼロックス株式会社 NOZZLE TIP MEMBER, NOZZLE, SOLDERING DEVICE, BOARD DEVICE MANUFACTURING METHOD

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228635A (en) * 2010-03-31 2011-11-10 Panasonic Corp Point solder nc data creation method and automatic soldering device
JP2013254888A (en) * 2012-06-08 2013-12-19 Sensbey Co Ltd Selective soldering system
WO2016135891A1 (en) * 2015-02-25 2016-09-01 富士機械製造株式会社 Soldering apparatus
JP2016178283A (en) * 2015-03-20 2016-10-06 古河電気工業株式会社 Wavelength variable laser element and laser module

Also Published As

Publication number Publication date
JP6732122B2 (en) 2020-07-29
JPWO2018216076A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP2008109033A (en) Soldering device
JP6577965B2 (en) Parts supply apparatus and holder determination method
EP3264871B1 (en) Soldering apparatus
JP6759348B2 (en) Anti-board working machine and insertion method
JP6154915B2 (en) Component mounting equipment
WO2018216076A1 (en) Board working machine
JP6467045B2 (en) Estimator
WO2016174715A1 (en) Working machine
CN109691243B (en) Component mounting machine
JP2021129122A (en) Work system, decision method, and information processing device
JP6259331B2 (en) Component mounting equipment
JP6759350B2 (en) Soldering equipment
JP6714730B2 (en) Working machine and soldering method
JPWO2018179315A1 (en) Electronic component mounting machine and mounting method
JP6837941B2 (en) Board backup device and board processing device using this
WO2023286231A1 (en) Viscous fluid feeding apparatus
JP6838073B2 (en) Jet device
JPWO2017068645A1 (en) Component mounting method and component mounting machine
JP4851952B2 (en) Surface mount equipment
JP2017174882A (en) Mounting device, method of raising lead component and program
JP2008141126A (en) Component mounting apparatus and component mounting method
JP2006286936A (en) Method of manufacturing electronic circuit board and system thereof, and component mounting apparatus
JP2013149654A (en) Jet nozzle, soldering apparatus, and soldering method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019519819

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911166

Country of ref document: EP

Kind code of ref document: A1