WO2018215716A1 - Procédé et appareil pour la séparation de l'air par distillation cryogénique - Google Patents

Procédé et appareil pour la séparation de l'air par distillation cryogénique Download PDF

Info

Publication number
WO2018215716A1
WO2018215716A1 PCT/FR2018/051201 FR2018051201W WO2018215716A1 WO 2018215716 A1 WO2018215716 A1 WO 2018215716A1 FR 2018051201 W FR2018051201 W FR 2018051201W WO 2018215716 A1 WO2018215716 A1 WO 2018215716A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
column
pressure
compressor
liquid
Prior art date
Application number
PCT/FR2018/051201
Other languages
English (en)
Inventor
Jean-Pierre Tranier
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to RU2019140617A priority Critical patent/RU2761562C2/ru
Priority to EP18736971.5A priority patent/EP3631327B1/fr
Priority to CN201880033702.6A priority patent/CN110678710B/zh
Priority to US16/615,978 priority patent/US12025372B2/en
Publication of WO2018215716A1 publication Critical patent/WO2018215716A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0234Integration with a cryogenic air separation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • F25J3/04345Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04387Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • F25J3/04503Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
    • F25J3/04509Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • F25J3/04503Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
    • F25J3/04509Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
    • F25J3/04515Simultaneously changing air feed and products output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/50Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/58Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/58One fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration

Definitions

  • the present invention relates to a method and an apparatus for the separation of air by cryogenic distillation.
  • it relates to methods and apparatus for producing oxygen and / or nitrogen under high pressure.
  • the gaseous oxygen produced by the air separation units is usually at a high pressure of about 20 to 50 bar.
  • the basic distillation scheme is usually a double column process producing oxygen at the bottom of the second column operated at a pressure of 1 to 4 bar.
  • Oxygen must be compressed at a higher pressure, thanks to an oxygen compressor or the liquid pumping process. Because of the safety issues associated with oxygen compressors, the newer oxygen production units use the liquid pumping process.
  • an additional booster is required to elevate a portion of the air or feed nitrogen to a higher pressure in the range of 40 to 80 bar. . In essence, the booster replaces the oxygen compressor.
  • One of the goals of developing new process cycles is to reduce the energy consumption of an oxygen generating unit.
  • FIG. 1 This prior art is illustrated in FIG.
  • a double column 2 is used in an air separation unit 1, comprising a first column 8 and a second column 9 operating at a lower pressure than the first column, thermally connected by a reboiler / condenser 10.
  • the entire supply air is compressed in a compressor 6 at the pressure of the first column 8, purified in the purification unit 7, and subdivided into three .
  • a flow 502 is sent to a booster 503, cooled in a water cooler (not shown), and further cooled in the heat exchanger 5, then expanded in a turbine 501 coupled to the booster 503.
  • the expanded air 502 is sent to the second column.
  • Another part of the air is sent to the heat exchanger 5 substantially under the same pressure as the first column 8.
  • the third flow is compressed in a compressor 230 and sent to the heat exchanger, where it condenses.
  • the liquefied air is subdivided between the first column 8 and the second column 9.
  • An oxygen enriched liquid flow LR is expanded and sent from the first column to the second column.
  • the nitrogen-enriched liquid flow LP is relaxed and sent from the first column to the second column.
  • Pure liquid nitrogen NLMP is produced by the first column, then cooled again in the heat exchanger 24 and expanded in the valve 143 and sent to a storage 144.
  • the high pressure nitrogen gas 39 is withdrawn at the top of the the first column and heated in the heat exchanger to form a product flow 40.
  • the liquid oxygen OL is withdrawn from the bottom of the second column 9, pressurized by a pump 37 and sent partly in the form of a flow rate 38 to the heat exchanger 5, where it vaporizes by heat exchange with the pressurized air to form a pressurized oxygen gas.
  • the remainder of the liquid oxygen 52 is withdrawn as a liquid product.
  • a nitrogen-enriched head gas stream NR is withdrawn from the second column 9, heated in the heat exchanger 5 in the form of a flow rate 33.
  • Argon is produced using a column of impure argon 3 and pure argon 4.
  • the impure argon column is fed with a flow 16 from the second column 9.
  • a flow of liquid 17 is sent from the bottom of the impure argon column 3 to the second column 9.
  • a rich liquid is sent to the top condenser 12 of the column 3 through the valve 26 and is evaporated to form a flow 27 which is returned to the second column .
  • a product flow 19 is sent to the condenser 20 and hence the flow 19.
  • the flow 19 is condensed in the heat exchanger 20 and subdivided into the flow 48 which is sent to the waste flow 33 at the point of intersection 50 , and another flow.
  • the other flow is sent by the valve 21 to the column 4.
  • the pure argon column 4 produces a product flow 45.
  • a purge flow 46 is also withdrawn.
  • the condenser 20 is fed by the nitrogen-rich liquid LP through the valve 31, and the vaporized liquid is sent by the valve 32 to the waste flow 33.
  • Figure 2 shows the relationship between heat exchange in kcal / h and temperature for fluids cooling and heating in exchanger 5.
  • a cold compression process as described in US-A-5,475,980, provides a technique for controlling an oxygen generating unit with a single air compressor.
  • the air to be distilled is cooled in the heat exchanger, and is then compressed again by a booster controlled by an expansion machine whose effluent is sent to the first column of a double column process. which operates at the highest pressure.
  • the discharge pressure of the air compressor is of the order of 15 bar, which is likewise very advantageous for the purification unit.
  • a disadvantage of this approach is the increased size of the heat exchanger due to the additional recycling of the flow, which is representative of a cold pressing unit. It is possible to reduce the size of the exchanger by opening the temperature approaches of the exchanger. However, this would lead to inefficient use of energy, and higher compressor discharge pressure, which would increase the cost.
  • US-A-5,596,885 a portion of the feed air is further compressed in a hot booster, while at least a portion of the air is still compressed in a cold booster. .
  • the air from both boosters is liquefied, and some of the cold compressed air is expanded in a Claude turbine.
  • US-A-5,901,576 discloses various arrangements of cold compression schemes using the expansion of a vaporized rich liquid from the bottom of the first column, or the expansion of the high pressure nitrogen to drive the compressor cold. In some cases, motor-driven cold compressors have also been used. These processes also operate with feed air at approximately the pressure of the first column and, in most cases, a booster is also required.
  • US-A-6,626,008 discloses a heat pump cycle using a cold compressor to improve the distillation process for the production of low purity oxygen for a double vaporizer oxygen production process. Low air pressure, and a booster, are also representative of this type of process.
  • EP-A-1 972 872 discloses means for improving the above processes using a cold compressor, in particular by introducing all the feed air flows into the columns at a temperature close to the temperature. of the column at the point where the flow is introduced, in order to reduce the thermodynamic irreversibility of the system. But it requires the addition of at least one additional compression stage.
  • the present invention therefore aims at solving the disadvantages of these processes, in particular by introducing all the feed air flow rates into the columns at a temperature close to the temperature of the column at the point where the flow is introduced, in the goal of reducing the thermodynamic irreversibility of the system without adding an additional compression stage.
  • the overall cost of the products of an oxygen production unit can therefore be reduced.
  • the main improvement is due to the use of an air booster (Booster Air Compressor (BAC)) to recycle air once it has been used to recover the heat produced by the vaporization of a liquid high pressure in the main heat exchanger.
  • Booster Air Compressor BAC
  • a process according to the preamble of claim 1 is known from US6336345.
  • a method for separating air by cryogenic distillation in a column system comprising a first column and a second column operating at a lower pressure than the first column, comprising the steps of:
  • Clean, cooled air is sent from the first compressor to the column system to separate.
  • the expansion is performed in at least one valve.
  • the expansion is performed in at least one turbine and produces work.
  • the temperature of the at least one fraction before expansion is less than the sum of the temperature of the vaporization of the liquid and the minimum temperature approach in the heat exchanger.
  • the second compressor is a multi-stage compressor.
  • said at least one third pressure is at least the inlet pressure of one of the stages of the second compressor.
  • a stage of the second compressor is driven by a machine for expanding a process fluid.
  • the inlet temperature of the expansion machine is lower than the ambient temperature.
  • At least one stage of the second compressor has a suction temperature lower than the ambient temperature.
  • the suction temperature is higher than the vaporization temperature of the liquid, but is close to it.
  • the liquid is a flow enriched in oxygen
  • the liquid is a flow enriched in nitrogen.
  • the production rate of the liquid product or products is not greater than 10% of the supply air, preferably not more than 5% of the supply air.
  • an apparatus for separating air by cryogenic distillation in a column system comprising a first column and a second column operating at a lower pressure than the first column, further comprising:
  • a first compressor for compressing the supply air to a first outlet pressure of at least one bar greater than the pressure of the first column, preferably substantially equal to the pressure of the first column
  • iv means for withdrawing the liquid from a column of the column system, means for pressurizing the liquid, means for supplying the pressurized liquid to the heat exchanger, and means for withdrawing the vaporized liquid from the exchanger heat,
  • the apparatus comprises an expansion turbine of the auxiliary flow rate fraction compressed in the second compressor.
  • FIGS. 3, 5 and 6 are fluid flow schemes showing cryogenic air separation methods according to the invention, and FIG. heat exchange diagram for the exchanger 5 of FIG. 3.
  • a double column 2 comprising a first column 8 and a second column 9 made available, thermally connected by a reboiler / condenser 10.
  • the entire supply air is compressed in the compressor 6 at a pressure of at least one bar greater than the pressure of the first column 8, preferably substantially equal to the pressure of the first column 8, allowing a pressure drop in the intermediate pipes, purified in the purification unit 7 and subdivided into three.
  • a flow 502 is sent to a booster 503, cooled in a water cooler (not shown), then further cooled in the heat exchanger 5, then expanded in a turbine 501, coupled to the booster 503.
  • the air relaxed 502 is sent to the second column.
  • Another part 507 of the air is sent to the heat exchanger 5 under a pressure substantially equal to that of the first column 8.
  • the third flow 505 is compressed in a compressor 230 and sent to the heat exchanger, where it condenses.
  • the compressor 230 is a four-stage centrifugal compressor 230A, 230B, 230C and 230D, for example of the integrated speed-multiplication type cooled by intermediate water coolers 232A, 232B, 232C and a cooler. final 232D.
  • the compressor suction pressure is 5.5 bar abs
  • the intermediate pressures are 10.2 bar abs, 18.9 bar abs and 35.1 bar abs
  • the final outlet pressure is 65 bar abs.
  • the suction flow rate is 26.5% of the total air flow.
  • the liquefied air is subdivided between the first column 8, the second column 9, and the fractions to be expanded in the valves 1 16A, 1 16B and 1 16C.
  • An oxygen enriched liquid flow LR is expanded and sent from the first column to the second column.
  • An LP-enriched liquid flow rate is expanded and fed from the first column to the second column.
  • NLMP pure liquid nitrogen is produced by the first column 8, cooled again in the heat exchanger 24 and expanded in the valve 143 and sent to the storage 144.
  • the high pressure nitrogen gas 39 is withdrawn at the top of the first column and heated in the heat exchanger to form a product flow 40.
  • the liquid oxygen OL is withdrawn from the bottom of the second column 9, pressurized by a pump 37 and sent partly as a flow 38 to the heat exchanger 5, where it vaporizes by heat exchange with the pressurized air to form pressurized gaseous oxygen.
  • the remainder of the liquid oxygen 52 is withdrawn as a liquid product.
  • a nitrogen-enriched top-stream gas stream NR is withdrawn from the second column 9, heated in the heat exchanger 5 in the form of a flow 33.
  • Argon is produced by using the column of impure argon 3 and pure argon 4.
  • the impure argon column is fed by the flow 16 from the second column 9.
  • a flow of liquid 17 is sent from the base of the impure argon column 3 to the second column 9.
  • the oxygen enriched liquid is sent to the top condenser 12 of the column 3 by the valve 26 and evaporated to form the flow 27, which is returned to the second column.
  • a product flow 19 is sent to the condenser 20, and from there, forms the flow 19.
  • the flow 19 is condensed in the heat exchanger 20 and subdivided into a flow 48 which is sent to the waste flow 33 at the point d intersection 50, and another flow.
  • the other flow is sent by the valve 21 to the column 4.
  • the pure argon column 4 produces a product flow 45.
  • the overhead condenser 13 of the pure argon column 4 is fed by the nitrogen-rich LP liquid from the first column via the valve 34, and the vaporized nitrogen is withdrawn by the valve 35 in the form of a flow 33 and cooled in the subcooler 24.
  • the bottom reboiler 14 of the pure argon column is heated by using air, and the liquefied air 23 is sent to the first column.
  • a purge flow 46 is likewise withdrawn.
  • Nitrogen-rich liquid 43 is collected via valve 143 into storage 144.
  • the condenser 20 is fed with the LP liquid rich in nitrogen through the valve 31, and the vaporized liquid is sent by the valve 32 to the waste flow 33.
  • the air flow 505 at 65 bar is subdivided into two. Part of the air is expanded in the valve 231 and sent to the columns 8 and 9 in liquid form.
  • the remainder of the air 107 is subdivided into three fractions 107A, 107B, 107C.
  • the fraction of air 107A recycled between the first stage 230A and the second stage 230B corresponds to 1.08% of the total air flow. It is expanded in the valve 1 16A 65 bar abs to about 10.2 bar abs and introduced into the heat exchanger 5, where it is vaporized, heated after vaporization to give a recirculation air 107A.
  • 230C corresponds to 0.84% of the total air flow. It is expanded in the valve 1 16B 65 bar abs to about 18.9 bar abs and introduced into the heat exchanger 5, where it is vaporized, heated after vaporization to give a recirculation air 107B.
  • the fraction of air 107C recycled between the third stage 230C and the fourth stage 230D corresponds to 22.08% of the total air flow rate. It is expanded in the valve 1 16C from 65 bar abs to about 35.1 bar abs and introduced into the heat exchanger 5, where it is vaporized, heated after vaporization to give a recirculation air 107C.
  • These three air fractions represent a total recycle air flow rate of 24% of the total air flow rate, which means that the fluid 505 corresponds to a flow rate of 50.5% of the total air flow, and that the flow rate through the valve 231 is 26.5%.
  • the vaporization of the three air fractions 107A, 107B and 107C takes place in the heat exchanger 5 respectively at temperatures of about -166 ° C, -155 ° C and -142 ° C, as can be seen on Figure 4, which is less than the vaporization temperature of oxygen, which is about -125 ° C.
  • a phase separator should be added if the expanded flow is a two-phase fluid, the liquid phase being introduced into the heat exchanger 5 and the vapor phase being mixed with the flow 107.
  • condensation covers the condensation of a form vapor to a liquid or partially liquid form. It also covers the pseudo-condensation of a supercritical fluid when it is cooled from a temperature above the supercritical temperature to a temperature below the supercritical temperature.
  • Figure 4 shows the exchange diagram corresponding to the process of Figure 3.
  • a less optimized variant of FIG. 3 should involve the subdivision of the flow rate 107 into one or two fractions and the recycling of these fractions, after vaporization, with return to the compressor 230.
  • valves 231, 16A, 16B and 16C could be replaced by liquid turbines, that is, an expansion system producing work in order to reduce the irreversibility associated with the isenthalpic expansion. These liquid turbines could be installed in parallel or in series.
  • the compressor 230 in the basic case, is considered to be a machine driven by a motor, but could also be driven by a steam turbine or a gas turbine (the same as that for the Main Air Compressor 6) .
  • any one of the four compressor stages 230A, 230B, 230C and 230D could be driven by an expansion machine of any of the fluids of this cryogenic air separation process, preferably at a low temperature. temperature.
  • any one of the four compressor stages 230A, 230B, 230C and 230D could have a suction temperature lower than the ambient temperature, preferably slightly higher than the vaporization temperature of the oxygen, at about -125. ° C.
  • specific energy kWh / Nm3 of O2
  • the specific energy required for the production of oxygen at 40 bar abs according to the invention is 92.9%. that is to say a gain of 7.1%.
  • the fractions 107A, 107B, 107C could be separated from the air passing through 231 and extracted from the heat exchanger 5 at a temperature higher than the temperature of the cold end of the heat exchanger 5.
  • the process may be modified to vaporize the pumped liquid nitrogen, as an additional flow rate or as a flow rate to replace the pumped oxygen flow rate.
  • the compressor 230 should be supplied with at least a portion of the high pressure nitrogen gas 40.
  • liquid buffers 131, 152 are added to the storage unit, and release cryogenic liquids to decorrelate oxygen production by the ASU from consumer consumption. In addition, it reduces power consumption during peak hours without reducing the flow of oxygen to the end user, and increasing the consumption of hydrogen at off-peak times, without increasing the flow rate. oxygen to the end user.
  • the feed air is compressed in the compressor 6 and purified in the purification unit 7 and subdivided into two.
  • a flow 505 is compressed in a compressor 230 and is sent to the heat exchanger, where it undergoes a partial condensation, or "pseudo-condensation", because it is beyond the critical pressure.
  • the compressor 230 is a four-stage centrifugal compressor 230A, 230B, 230C and 230D, for example of the integrated speed-multiplier type, cooled by intermediate water coolers 232A, 232B, 232C and a 232D final cooler.
  • the suction pressure of the compressor is 5.5 bar abs
  • the intermediate pressures are 10.2 bar abs, 18.9 bar abs and 35.1 bar abs
  • final pressure 65 bar abs The suction flow rate is 23% of the total air flow rate when no cryogenic liquid is stored or destocked.
  • the flow 505 is divided into a first secondary flow 505A, which goes directly to the heat exchanger 5, and a second secondary flow, which goes to the refrigeration unit 102 to be cooled to -5 ° C and introduced into the heat exchanger 5.
  • a first fraction of the high-pressure air is withdrawn and sent to the two-phase expansion device 1 16D, reintroduced into the heat exchanger 5 to be heated and recycled to 35.1 bar abs in the compressor 230 at the level of stage 230D as flow 107D.
  • This first fraction has a flow rate of 18.4% of the total air flow.
  • a second fraction is cooled to -192.2 ° C by complete passage through the heat exchanger 5 and is expanded in the valve 231 to be sent to the liquid air storage unit 131 (LAIR) as a flow 234.
  • the flow rate of this second fraction is only 23% of the total air flow from the main air compressor 6.
  • a fraction 107 is withdrawn from the cold end of the heat exchanger 5 and subdivided into three.
  • the fraction of air 107A recycled between the first stage 230A and the second stage 230B corresponds to 1.1% of the total air flow. It is expanded in the valve 1 16A 65 bar abs to about 10.2 bar abs and introduced into the heat exchanger 5, where it is evaporated, heated after vaporization to give a recirculation air 107A.
  • the air fraction 107B recycled between the second stage 230B and the third stage 230C corresponds to 3.15% of the total air flow rate. It is expanded in the valve 1 16B 65 bar abs to about 18.9 bar abs and is introduced into the heat exchanger 5, where it is vaporized, heated after vaporization to give a recirculation air 107B.
  • the air fraction 107C is expanded in the valve 1 16C from 65 bar abs to about 1.2 bar abs and is introduced into the heat exchanger 5, where it is vaporized, heated after vaporization to give a recirculation air 107C which can be used to regenerate air purifiers if the ASU 101 is not running. It represents 4.45% of the total air flow.
  • a liquid oxygen storage tank 152 powered by ASU 101 provides oxygen 151 to the system.
  • a liquid oxygen pump 37 pressurizes the oxygen to the required pressure level before introduction into the heat exchanger 5, where it undergoes vaporization or pseudo-vaporization.
  • the ASU 101 is powered by air 510 from the same compressor 6 (MAC) and liquid air 235 which is used to compensate for the production of liquid oxygen 150.
  • MAC compressor 6
  • the flow 510 is cooled in a heat exchanger independent of the heat exchanger 5 by heat exchange with nitrogen gas from the air separation unit (not shown). It is possible to cool the cold flow 510 in the heat exchanger 5, but this would make the system less flexible.
  • compressor systems supplying air to the ASU and the cold recovery system when both units are in the same location, if it is considered more convenient and / or more efficient. This is particularly the case when the two units do not operate simultaneously at the same capacity.
  • a single compressor would require accurate measurement dynamics and lose efficiency at low capacity. With different compressor systems, it is possible to optimize the measurement dynamics on each machine.
  • valves 231, 16A, 16B and 16C could be replaced by liquid-displacing turbines, ie a work-producing expansion system, in order to reduce the irreversibility associated with isenthalpic expansion. .
  • liquid-displacing turbines ie a work-producing expansion system, in order to reduce the irreversibility associated with isenthalpic expansion.
  • These liquid-displacing turbines could be installed in parallel and / or in series.
  • the air separation unit operates such that the amount of liquid oxygen stored in the storage tank 152 increases.
  • the amount of liquid oxygen vaporized in the heat exchanger 5 is less than the liquid oxygen produced by the air separation unit. No air is sent to the valve 1 16C, and the purification unit 7 is regenerated using a nitrogen flow from the air separation unit 101.
  • the air flows 510 are sent to the air separation unit via a heat exchanger independent of the heat exchanger 5, and an air flow 235 is sent to the air unit. separation of air from the storage tank 131, and the liquid oxygen 150 is sent to the storage tank 152. However, the amount of liquid air sent to the tank 131 exceeds the amount of air which is withdrawn, and the amount of liquid oxygen sent to the tank 152 exceeds the amount of liquid oxygen that is withdrawn.
  • the air separation unit will not operate, or operate at a low capacity, usually 50% or less of maximum capacity, even if the total oxygen produced is well above 50% of the maximum capacity. No air is sent to the air separation unit through flow rates 510 and 235.
  • the liquid oxygen stored in the vessel 152 is vaporized to give the oxygen gas flow rate.
  • the regeneration of the purification unit 7 is carried out using the flow 107C.
  • the liquid air produced by the vaporization of the liquid oxygen is stored in the storage tank 131 during the peak periods, and no gaseous or liquid air is sent to the air separation unit 101.
  • the process may be modified to vaporize the pumped liquid nitrogen as an additional flow rate, or as a flow rate to replace the pumped oxygen flow rate.
  • a nitrogen cycle (rather than an air cycle), as shown in FIG. 6.
  • the compressor 230 is powered by at least a portion of the In this case, it is necessary to have an available nitrogen source, coming from the air separation unit 101 operating at reduced capacity, or other separation units of air, optionally via a nitrogen line. This is why air is the preferred fluid for such an application because it is available independently of any air separation unit.
  • the compressed nitrogen is cooled and condensed in the heat exchanger 5.
  • the compressed nitrogen is then subdivided into at least two portions, three portions being presented here, expanded to at least two different pressures, and vaporized in the heat exchanger 5.
  • valves 1 16A and 1 16B are returned to intermediate positions of nitrogen compressor 230, and the vaporized nitrogen from valve 1 16C can be used to regenerate the purification unit if the air separation does not work.
  • the produced liquid nitrogen 234 is expanded in the valve 231 and stored in the storage unit 131 for use.
  • the liquid oxygen can be vaporized against the nitrogen in the periods during which the air separation unit does not operate, for example the periods during which the electricity is particularly expensive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Un procédé pour séparer l'air par distillation cryogénique dans un système de colonnes comprenant une première colonne (8) et une deuxième colonne (9) opérant à une plus basse pression que la première colonne comprend les étapes de compression de la totalité de l'air d'alimentation dans un premier compresseur (6) jusqu'à une première pression de sortie d'au moins un bar supérieure à la pression de la première colonne, d'envoi d'une première partie de l'air sous la première pression de sortie au deuxième compresseur (230), et de compression de l'air jusqu'à une deuxième pression de sortie, de refroidissement et de condensation d'au moins une partie de l'air sous la deuxième pression de sortie dans un échangeur de chaleur (5), de soutirage d'un liquide (OL) d'une colonne du système de colonnes, pressurisation du liquide (37) et de vaporisation du liquide par échange de chaleur dans l'échangeur de chaleur (5), et de détente d'une partie de l'air comprimée à une deuxième pression de sortie, de vaporisation au moins partielle dudit air (107) dans l'échangeur de chaleur, éventuellement de chauffage supplémentaire dudit air dans l'échangeur de chaleur, d'envoi d'au moins une partie de cet air au deuxième compresseur (108).

Description

Procédé et appareil pour la séparation de l'air par distillation cryogénique
La présente invention concerne un procédé et un appareil pour la séparation de l'air par distillation cryogénique. Elle concerne en particulier des procédés et un appareil pour produire de l'oxygène et/ou de l'azote sous une pression élevée.
L'oxygène gazeux produit par les unités de séparation de l'air est habituellement à une pression élevée d'environ 20 à 50 bar. Le schéma de distillation de base est habituellement un procédé à double colonne produisant de l'oxygène au fond de la deuxième colonne, exploitée sous une pression de 1 à 4 bar. L'oxygène doit être comprimé à une pression plus élevée, grâce à un compresseur d'oxygène ou grâce au procédé de pompage de liquide. Du fait des problèmes de sécurité associés aux compresseurs d'oxygène, les unités de production d'oxygène les plus récentes utilisent le procédé de pompage de liquide. Pour vaporiser l'oxygène liquide sous une pression élevée, on a besoin d'un surpresseur additionnel pour élever une partie de l'air ou de l'azote d'alimentation à une pression plus élevée, comprise dans la plage de 40 à 80 bar. Par essence, le surpresseur remplace le compresseur d'oxygène. L'un des buts du développement de nouveaux cycles de procédé est de diminuer la consommation d'énergie d'une unité de production d'oxygène.
Dans un effort de réduction de cette consommation d'énergie, il est souhaitable d'introduire tous les débits d'air d'alimentation dans les colonnes à une température proche de la température de la colonne, au point où le débit est introduit, pour réduire l'irréversibilité thermodynamique du système. Malheureusement, on ne peut y arriver avec un cycle de pompage "classique".
Cet art antérieur est illustré sur la Figure 1 . Sur la Figure 1 , telle que décrite dans FR-A-2 777 641 , on utilise dans une unité de séparation d'air 1 une double colonne 2, comprenant une première colonne 8 et une deuxième colonne 9 opérant à une plus basse pression que la première colonne, thermiquement reliées par un rebouilleur/condenseur 10. La totalité de l'air d'alimentation est comprimée dans un compresseur 6 à la pression de la première colonne 8, purifiée dans l'unité de purification 7, et subdivisée en trois.
Un débit 502 est envoyé à un surpresseur 503, refroidi dans un refroidisseur d'eau (non représenté), et encore plus refroidi dans l'échangeur de chaleur 5, puis détendu dans une turbine 501 couplée au surpresseur 503. L'air détendu 502 est envoyé à la deuxième colonne.
Une autre partie de l'air est envoyée à l'échangeur de chaleur 5 sensiblement sous la même pression que la première colonne 8.
Le troisième débit est comprimé dans un compresseur 230 et envoyé dans l'échangeur de chaleur, où il se condense. L'air liquéfié est subdivisé entre la première colonne 8 et la deuxième colonne 9.
Un débit de liquide enrichi en oxygène LR est détendu et envoyé de la première colonne à la deuxième colonne. Le débit de liquide enrichi en azote LP est détendu et envoyé de la première colonne à la deuxième colonne. De l'azote liquide pur NLMP est produit par la première colonne, puis refroidi de nouveau dans l'échangeur de chaleur 24 et détendu dans la vanne 143 et envoyé à un stockage 144. L'azote gazeux haute pression 39 est soutiré en tête de la première colonne et chauffé dans l'échangeur de chaleur pour former un débit de produit 40. L'oxygène liquide OL est soutiré du fond de la deuxième colonne 9, pressurisé par une pompe 37 et envoyé en partie sous forme d'un débit 38 à l'échangeur de chaleur 5, où il se vaporise par échange de chaleur avec l'air pressurisé pour former un oxygène gazeux pressurisé. Le reste de l'oxygène liquide 52 est soutiré sous forme d'un produit liquide. Un débit gazeux de tête enrichi en azote NR est soutiré de la deuxième colonne 9, chauffé dans l'échangeur de chaleur 5 sous forme d'un débit 33.
De l'argon est produit par utilisation d'une colonne d'argon impur 3 et d'argon pur 4. La colonne d'argon impur est alimentée par un débit 16 provenant de la deuxième colonne 9. Un débit de liquide 17 est envoyé de la base de la colonne d'argon impur 3 à la deuxième colonne 9. Un liquide riche est envoyé au condenseur de tête 12 de la colonne 3 par la vanne 26 et est évaporé pour former un débit 27 qui est renvoyé à la deuxième colonne. Un débit de produit 19 est envoyé au condenseur 20 et de là forme le débit 19. Le débit 19 est condensé dans l'échangeur de chaleur 20 et subdivisé en le débit 48 qui est envoyé au débit de déchets 33 au point d'intersection 50, et un autre débit. L'autre débit est envoyé par la vanne 21 à la colonne 4.
La colonne d'argon pur 4 produit un débit de produit 45. Le condenseur de tête
13 de la colonne d'argon pur 4 est alimenté par le liquide riche en azote LP provenant de la première colonne par la vanne 34, et l'azote vaporisé est soutiré par la vanne 35 sous forme d'un débit 33 et refroidi dans le sous-refroidisseur 24. Le rebouilleur de fond 14 de la colonne d'argon pur est chauffé par utilisation d'air, et l'air liquéfié 23 est envoyé à la première colonne.
Un débit de purge 46 est lui aussi soutiré.
Le condenseur 20 est alimenté par le liquide riche en azote LP par la vanne 31 , et le liquide vaporisé est envoyé par la vanne 32 au débit de déchets 33.
La Figure 2 montre les relations entre l'échange de chaleur en kcal/h et la température pour les fluides se refroidissant et se réchauffant dans l'échangeur 5.
Certaines versions différentes du procédé de compression à froid sont aussi décrites dans la technique antérieure, comme dans US-A-5 379 598, US-A-5 475 980, US-A-5 596 885, US-A-5 901 576 et US-A-6 626 008.
Dans US-A-5 379 598 une fraction de l'air d'alimentation est recomprimée par un surpresseur, suivi d'un compresseur à froid, pour donner un débit pressurisé nécessaire à la vaporisation de l'oxygène. Cette approche possède encore au moins deux compresseurs, et l'unité de purification fonctionne encore sous une basse pression.
Un procédé de compression à froid, tel que décrit dans US-A-5 475 980, fournit une technique pour commander une unité de production d'oxygène avec un compresseur d'air unique. Dans ce procédé, de l'air à distiller est refroidi dans l'échangeur de chaleur, puis est de nouveau comprimé par un surpresseur commandé par une machine de détente dont l'effluent est envoyé dans la première colonne d'un procédé à double colonne, celle qui opère à la pression la plus élevée.
Ce faisant, la pression de refoulement du compresseur d'air est de l'ordre de 15 bar, ce qui est de même très avantageux pour l'unité de purification. Un inconvénient de cette approche réside dans l'augmentation de la taille de l'échangeur de chaleur en raison du recyclage supplémentaire de l'écoulement, qui est représentatif d'une unité de compression à froid. Il est possible de réduire la taille de l'échangeur en ouvrant les approches de température de l'échangeur. Cependant, cela conduirait à une utilisation inefficace de l'énergie, et à une pression de refoulement plus élevée du compresseur, ce qui augmenterait le coût.
Dans US-A-5 596 885, une partie de l'air d'alimentation est soumise à une compression plus poussée dans un surpresseur à chaud, pendant qu'au moins une partie de l'air est encore comprimée dans un surpresseur à froid. L'air provenant des deux surpresseurs est liquéfié, et une partie de l'air comprimé à froid est détendue dans une turbine Claude. US-A-5 901 576 décrit différents arrangements de schémas de compression à froid utilisant la détente d'un liquide riche vaporisé du fond de la première colonne, ou la détente de l'azote haute pression pour entraîner le compresseur à froid. Dans certains cas, on a aussi utilisé des compresseurs à froid entraînés par un moteur. Ces procédés fonctionnent aussi avec de l'air d'alimentation approximativement à la pression de la première colonne et, dans la plupart des cas, on a aussi besoin d'un surpresseur.
US-A-6 626 008 décrit un cycle de pompe à chaleur utilisant un compresseur à froid pour améliorer le processus de distillation pour la production d'oxygène de faible pureté pour un procédé de production d'oxygène à double vaporiseur. Une faible pression d'air, et un surpresseur, sont aussi représentatifs de ce type de procédé.
EP-A-1 972 872 décrit des moyens pour améliorer les procédés ci-dessus faisant appel à un compresseur à froid, en particulier par introduction de la totalité des débits d'air d'alimentation dans les colonnes à une température proche de la température de la colonne en le point où le débit est introduit, dans le but de réduire l'irréversibilité thermodynamique du système. Mais elle exige l'addition d'au moins un étage additionnel de compression.
La présente invention vise donc à résoudre les inconvénients de ces procédés, en particulier par introduction de tous les débits d'air d'alimentation dans les colonnes à une température proche de la température de la colonne en le point où le débit est introduit, dans le but de réduire l'irréversibilité thermodynamique du système sans ajouter un étage additionnel de compression. Le coût global des produits d'une unité de production d'oxygène peut donc être réduit. L'amélioration principale est due à l'utilisation d'un surpresseur d'air (Booster Air Compressor (BAC)) pour recycler l'air une fois qu'il a été utilisé pour récupérer la chaleur produite par la vaporisation d'un liquide haute pression dans l'échangeur de chaleur principal.
Tous les pourcentages mentionnés sont des pourcentages en moles.
Un procédé selon le préambule de la revendication 1 est connu de US6336345.
Selon la présente invention, il est prévu un procédé pour séparer l'air par distillation cryogénique dans un système de colonnes comprenant une première colonne et une deuxième colonne opérant à une plus basse pression que la première colonne, comprenant les étapes de :
i) compression de la totalité de l'air d'alimentation dans un premier compresseur jusqu'à une première pression de sortie d'au plus un bar supérieur à la pression de la première colonne, de préférence sensiblement égale à la pression de la première colonne,
ii) envoi d'une première partie de l'air sous la première pression de sortie à un deuxième compresseur, et compression de l'air à une deuxième pression de sortie, iii) refroidissement et condensation d'au moins une partie de l'air sous la deuxième pression de sortie dans un échangeur de chaleur,
iv) prélèvement du liquide d'une colonne du système de colonnes, pressurisation du liquide et vaporisation du liquide par échange de chaleur dans l'échangeur de chaleur,
v) détente d'au moins une fraction de l'air refroidi et condensé sous la deuxième pression de sortie jusqu'à une pression intermédiaire comprise entre la première pression de sortie et la deuxième pression de sortie, au moins vaporisation partielle dudit air dans l'échangeur de chaleur, éventuellement chauffage dudit air dans l'échangeur de chaleur caractérisé en ce qu'au moins une partie de cet air est envoyée au deuxième compresseur pour être comprimée jusqu'à la deuxième pression de sortie.
De l'air épuré et refroidi est envoyé du premier compresseur au système de colonnes pour s'y séparer.
Selon d'autres aspects facultatifs de l'invention qui peuvent être combinés entre eux :
la détente est réalisée dans au moins une vanne.
la détente est réalisée dans au moins une turbine et produit du travail. la température de l'au moins une fraction avant détente est inférieure à la somme de la température de la vaporisation du liquide et l'approche de température minimale dans l'échangeur de chaleur.
le deuxième compresseur est un compresseur multi-étages.
ladite au moins une troisième pression est au moins la pression d'entrée de l'un des étages du deuxième compresseur.
un étage du deuxième compresseur est entraîné par une machine de détente d'un fluide du procédé.
la température d'entrée de la machine de détente est inférieure à la température ambiante.
au moins un étage du deuxième compresseur a une température d'aspiration inférieure à la température ambiante. la température d'aspiration est supérieure à la température de vaporisation du liquide, mais en est proche.
le liquide est un débit enrichi en oxygène,
le liquide est un débit enrichi en azote.
- le débit de production du ou des produits liquides n'est pas supérieur à 10% de l'air d'alimentation, de préférence n'est pas supérieur à 5% de l'air d'alimentation.
Selon un autre aspect de l'invention, il est prévu un appareil pour séparer l'air par distillation cryogénique dans un système de colonnes comprenant une première colonne et une deuxième colonne opérant à une plus basse pression que la première colonne, comprenant en outre :
i) un premier compresseur pour comprimer l'air d'alimentation jusqu'à une première pression de sortie d'au moins un bar supérieur à la pression de la première colonne, de préférence sensiblement égale à la pression de la première colonne, ii) un deuxième compresseur et un moyen pour envoyer une première partie de l'air sous la première pression de sortie au deuxième compresseur pour comprimer l'air jusqu'à une deuxième pression de sortie,
iii) un échangeur de chaleur, dans lequel au moins une partie de l'air sous la deuxième pression de sortie est refroidie et condensée,
iv) un moyen pour soutirer le liquide d'une colonne du système de colonnes, un moyen pour pressuriser le liquide, un moyen pour envoyer le liquide pressurisé à l'échangeur de chaleur, et un moyen pour soutirer le liquide vaporisé de l'échangeur de chaleur,
v) un moyen pour détendre une fraction de l'air refroidi et condensé sous la deuxième pression de sortie, un moyen pour envoyer ledit fluide d'air à l'échangeur de chaleur, un moyen pour envoyer au moins une partie dudit air ayant été vaporisée dans l'échangeur de chaleur sous au moins une troisième pression, intermédiaire entre les première et deuxième pressions de sorties, au deuxième compresseur pour être comprimé jusqu'à la deuxième pression de sortie et
vi) des moyens pour envoyer de l'air épuré et refroidi au système de colonnes pour s'y séparer.
Selon d'autres aspects facultatifs de l'invention :
le premier stockage et éventuellement le deuxième stockage est indépendant du système de colonnes. l'appareil comprend une turbine de détente de la fraction de débit auxiliaire comprimé dans le deuxième compresseur.
L'invention va être maintenant décrite plus en détail par référence aux Figures 3, 5 et 6, qui sont des schémas de circulation des fluides représentant des procédés de séparation cryogénique d'air selon l'invention, et la Figure 4, qui est un diagramme d'échange de chaleur pour l'échangeur 5 de la Figure 3.
Dans la forme de réalisation de la Figure 3, dans une unité de séparation d'air 1 , on utilise une double colonne 2, comprenant une première colonne 8 et une deuxième colonne 9 mis à disposition, reliées thermiquement par un rebouilleur/condenseur 10. La totalité de l'air d'alimentation est comprimée dans le compresseur 6 à une pression d'au moins un bar supérieur à la pression de la première colonne 8, de préférence sensiblement égale à la pression de la première colonne 8, en permettant une perte de charge dans les conduites intermédiaires, purifiée dans l'unité de purification 7 et subdivisée en trois.
Un débit 502 est envoyé à un surpresseur 503, refroidi dans un refroidisseur d'eau (non représenté), puis encore refroidi dans l'échangeur de chaleur 5, puis détendu dans une turbine 501 , couplée au surpresseur 503. L'air détendu 502 est envoyé à la deuxième colonne.
Une autre partie 507 de l'air est envoyée à l'échangeur de chaleur 5 sous une pression sensiblement égale à celle de la première colonne 8.
Le troisième débit 505 est comprimé dans un compresseur 230 et envoyé à l'échangeur de chaleur, où il se condense. Dans ce cas, on considère que le compresseur 230 est un compresseur centrifuge à quatre étages 230A, 230B, 230C et 230D, par exemple du type à multiplication de vitesse intégrée refroidi par des refroidisseurs intermédiaires d'eau 232A, 232B, 232C et un refroidisseur final 232D. La pression d'aspiration du compresseur est de 5,5 bar abs, les pressions intermédiaires sont de 10,2 bar abs, 18,9 bar abs et 35,1 bar abs, et la pression finale de sortie est de 65 bar abs. Le débit d'aspiration est de 26,5% du débit total de l'air. L'air liquéfié est subdivisé entre la première colonne 8, la deuxième colonne 9, et les fractions à détendre dans les vannes 1 16A, 1 16B et 1 16C.
Un débit de liquide enrichi en oxygène LR est détendu et envoyé de la première colonne à la deuxième colonne. Un débit de liquide enrichi en azote LP est détendu et envoyé de la première colonne à la deuxième colonne. De l'azote liquide pur NLMP est produit par la première colonne 8, de nouveau refroidi dans l'échangeur de chaleur 24 et détendu dans la vanne 143 et envoyé au stockage 144. L'azote gazeux haute pression 39 est soutiré en tête de la première colonne et chauffé dans l'échangeur de chaleur pour former un débit de produit 40. L'oxygène liquide OL est soutiré du fond de la deuxième colonne 9, pressurisé par une pompe 37 et envoyé en partie sous forme d'un débit 38 à l'échangeur de chaleur 5, où il se vaporise par échange de chaleur avec l'air pressurisé pour former de l'oxygène gazeux pressurisé. Le reste de l'oxygène liquide 52 est soutiré sous forme d'un produit liquide. Un débit gazeux NR de tête, enrichi en azote, est soutiré de la deuxième colonne 9, chauffé dans l'échangeur de chaleur 5 sous forme d'un débit 33.
De l'argon est produit par utilisation de la colonne d'argon impur 3 et d'argon pur 4. La colonne d'argon impur est alimentée par le débit 16 provenant de la deuxième colonne 9. Un débit de liquide 17 est envoyé de la base de la colonne d'argon impur 3 à la deuxième colonne 9. Le liquide enrichi en oxygène est envoyé au condenseur de tête 12 de la colonne 3 par la vanne 26 et évaporé pour former le débit 27, qui est renvoyé à la deuxième colonne. Un débit de produit 19 est envoyé au condenseur 20, et, de là, forme le débit 19. Le débit 19 est condensé dans l'échangeur de chaleur 20 et subdivisé en un débit 48 qui est envoyé au débit de déchets 33 au point d'intersection 50, et un autre débit. L'autre débit est envoyé par la vanne 21 à la colonne 4.
La colonne d'argon pur 4 produit un débit de produit 45. Le condenseur de tête 13 de la colonne d'argon pur 4 est alimenté par le liquide LP riche en azote provenant de la première colonne par l'intermédiaire de la vanne 34, et l'azote vaporisé est soutiré par la vanne 35 sous forme d'un débit 33 et refroidi dans le sous-refroidisseur 24. Le rebouilleur de fond 14 de la colonne d'argon pur est chauffé par utilisation d'air, et l'air liquéfié 23 est envoyé à la première colonne.
Un débit de purge 46 est de même soutiré.
Le liquide 43 riche en azote est recueilli par l'intermédiaire de la vanne 143 dans le stockage 144.
Le condenseur 20 est alimenté par le liquide LP riche en azote par l'intermédiaire de la vanne 31 , et le liquide vaporisé est envoyé par la vanne 32 au débit de déchets 33. Après refroidissement et condensation dans l'échangeur de chaleur 5 vers l'extrémité froide de l'échangeur de chaleur, le débit d'air 505 sous 65 bar est subdivisé en deux. Une partie de l'air est détendue dans la vanne 231 et envoyée aux colonnes 8 et 9 sous forme liquide.
Le reste de l'air 107 est subdivisé en trois fractions 107A, 107B, 107C. La fraction d'air 107A recyclée entre le premier étage 230A et le deuxième étage 230B correspond à 1 ,08% du débit d'air total. Elle est détendue dans la vanne 1 16A de 65 bar abs à environ 10,2 bar abs et introduite dans l'échangeur de chaleur 5, où elle est vaporisée, chauffée après vaporisation pour donner un air de recyclage 107A.
La fraction d'air 107B recyclée entre le deuxième étage 230B et le troisième étage
230C correspond à 0,84% du débit d'air total. Elle est détendue dans la vanne 1 16B de 65 bar abs à environ 18,9 bar abs et introduite dans l'échangeur de chaleur 5, où elle est vaporisée, chauffée après vaporisation pour donner un air de recyclage 107B.
La fraction d'air 107C recyclée entre le troisième étage 230C et le quatrième étage 230D correspond à 22,08% du débit d'air total. Elle est détendue dans la vanne 1 16C de 65 bar abs à environ 35,1 bar abs et introduite dans l'échangeur de chaleur 5, où elle est vaporisée, chauffée après vaporisation pour donner un air de recyclage 107C.
Ces trois fractions d'air représentent un débit total d'air de recyclage de 24% du débit d'air total, ce qui signifie que le fluide 505 correspond à un débit de 50,5% du débit d'air total, et que le débit par la vanne 231 est de 26,5%. La vaporisation des trois fractions d'air 107A, 107B et 107C a lieu dans l'échangeur de chaleur 5 respectivement à des températures d'environ -166°C, -155°C et -142°C, comme on peut le voir sur la Figure 4, ce qui est inférieur à la température de vaporisation de l'oxygène, qui est d'environ -125°C. Un séparateur de phase devrait être ajouté si le débit détendu est un fluide diphasique, la phase liquide étant introduite dans l'échangeur de chaleur 5 et la phase vapeur étant mélangée au débit 107. Le terme "condensation" recouvre la condensation d'une forme vapeur à une forme liquide ou partiellement liquide. Il recouvre aussi la pseudo-condensation d'un fluide supercritique quand il est refroidi d'une température supérieure à la température supercritique à une température inférieure à la température supercritique.
La Figure 4 présente le diagramme d'échange correspondant au procédé de la Figure 3. Une variante moins optimisée de la Figure 3 devrait impliquer la subdivision du débit 107 en une ou deux fractions et le recyclage de ces fractions, après vaporisation, avec retour au compresseur 230.
Pour simplifier le procédé décrit ci-dessus, considérant les faibles débits de 107A et de 107B, il est possible de conserver une fraction d'air recyclé unique 107C.
Les vannes, 231 , 1 16A, 1 16B et 1 16C pourraient être remplacées par des turbines à liquide, c'est-à-dire un système de détente produisant du travail dans le but de diminuer l'irréversibilité associée à la détente isenthalpique. Ces turbines à liquide pourraient installées en parallèle ou en série.
Le compresseur 230, dans le cas de base, est considéré comme étant une machine entraînée par un moteur, mais pourrait aussi être entraîné par une turbine à vapeur ou une turbine à gaz (le même que celui pour le Compresseur d'Air Principal 6). En tant que variante, l'un quelconque des quatre étages de compresseur 230A, 230B, 230C et 230D pourrait être entraîné par une machine de détente de l'un quelconque des fluides de ce procédé de séparation cryogénique d'air, de préférence à basse température. En outre, l'un quelconque des quatre étages de compresseur 230A, 230B, 230C et 230D pourrait avoir une température d'aspiration inférieure à la température ambiante, de préférence légèrement supérieure à la température de vaporisation de l'oxygène, à environ -125°C. En termes d'énergie spécifique (kWh/Nm3 d'O2), si la technique antérieure correspond à 100, l'énergie spécifique nécessaire à la production d'oxygène sous 40 bar abs selon l'invention est de 92,9, c'est-à-dire un gain de 7,1 %.
Les fractions 107A, 107B, 107C pourraient être séparées de la partir de l'air passant par 231 et extraites de l'échangeur de chaleur 5 à une température supérieure à la température de l'extrémité froide de l'échangeur de chaleur 5.
Le procédé peut être modifié pour vaporiser l'azote liquide pompé, en tant que débit additionnel ou en tant que débit remplaçant le débit d'oxygène pompé.
Il est de même possible d'utiliser un cycle d'azote (plutôt qu'un cycle d'air) dans une variante qui n'est pas couverte par les revendications. Dans ce cas, le compresseur 230 devrait être alimenté par au moins une partie de l'azote gazeux haute pression 40.
Il est de même possible d'utiliser l'invention pour réduire la pression de calcul de l'échangeur de chaleur 5, c'est-à-dire la deuxième pression d'air avec une plus faible pénalité d'énergie grâce au recyclage du débit 107. Les procédés illustrés présentent des systèmes à double colonne, mais on comprendra aisément que l'invention s'applique à des systèmes à triple colonne.
Ils pourraient aussi être utilisés avec des cycles de procédé produisant de l'oxygène de faible pureté (habituellement, de ΓΟ2 à 95% au lieu d'O2 à 99,5%), tels que les cycles de procédé "à double vaporiseur".
Dans la forme de réalisation de la Figure 5, il est prévu d'exploiter le système de la Figure 3 pour récupérer du froid de l'oxygène liquide d'une manière plus indépendante à partir de l'unité de séparation d'air 101 .
En particulier, des tampons liquides 131 , 152 sont ajoutés à l'unité de stockage, et libèrent des liquides cryogéniques pour décorréler la production d'oxygène par l'ASU de la consommation par le client. En outre, il permet de réduire la consommation d'énergie aux heures de pointe sans réduire le débit d'oxygène allant vers l'utilisateur final, et l'augmentation de la consommation d'hydrogène aux heures creuses, sans augmentation du débit d'oxygène vers l'utilisateur final.
L'air d'alimentation est comprimé dans le compresseur 6 et purifié dans l'unité de purification 7 et subdivisé en deux.
Un débit 505 est comprimé dans un compresseur 230 et est envoyé à l'échangeur de chaleur, où il subit une condensation partielle, ou "pseudo-condensation", car il se trouve au-delà de la pression critique. Dans ce cas, on considère que le compresseur 230 est un compresseur centrifuge à quatre étages 230A, 230B, 230C et 230D, par exemple du type à multiplicateur de vitesse intégré, refroidi par des refroid isseurs intermédiaires d'eau 232A, 232B, 232C et un refroidisseur final 232D. La pression d'aspiration du compresseur est de 5,5 bar abs, les pressions intermédiaires sont de 10,2 bar abs, 18,9 bar abs et 35,1 bar abs, pression finale 65 bar abs. Le débit d'aspiration est de 23% du débit d'air total quand aucun liquide cryogénique n'est stocké ou déstocké.
Le débit 505 est divisé en un premier débit secondaire 505A, qui va directement à l'échangeur de chaleur 5, et un deuxième débit secondaire, qui va à l'unité de réfrigération 102 pour être refroidi à -5°C et introduit dans l'échangeur de chaleur 5.
En un point intermédiaire de l'échangeur de chaleur 5, à une température de
-124°C, une première fraction de l'air haute pression est soutirée et envoyée au machine de détente à deux phases 1 16D, réintroduit dans l'échangeur de chaleur 5 pour être chauffé et recyclé à 35,1 bar abs dans le compresseur 230 au niveau de l'étage 230D en tant que débit 107D. Cette première fraction a un débit de 18,4% du débit d'air total.
Une deuxième fraction est refroidie à -192,2°C par passage complet à travers l'échangeur de chaleur 5 et est détendue dans la vanne 231 pour être envoyée à l'unité de stockage 131 d'air liquide (LAIR) en tant que débit 234. Le débit de cette deuxième fraction n'est que de 23% du débit d'air total provenant du compresseur d'air principal 6.
Une fraction 107 est soutirée de l'extrémité froide de l'échangeur de chaleur 5 et subdivisée en trois. La fraction d'air 107A recyclée entre le premier étage 230A et le deuxième étage 230B correspond à 1 ,1 % du débit d'air total. Elle est détendue dans la vanne 1 16A de 65 bar abs à environ 10,2 bar abs et introduite dans l'échangeur de chaleur 5, où elle est évaporée, chauffée après vaporisation pour donner un air de recyclage 107A.
La fraction d'air 107B recyclée entre le deuxième étage 230B et le troisième étage 230C correspond à 3,15% du débit d'air total. Elle est détendue dans la vanne 1 16B de 65 bar abs à environ 18,9 bar abs et est introduite dans l'échangeur de chaleur 5, où elle est vaporisée, chauffée après vaporisation pour donner un air de recyclage 107B.
La fraction d'air 107C est détendue dans la vanne 1 16C de 65 bar abs à environ 1 ,2 bar abs et est introduite dans l'échangeur de chaleur 5, où elle est vaporisée, chauffée après vaporisation pour donner un air de recyclage 107C qui peut être utilisé pour régénérer des purificateur d'air si l'ASU 101 n'est pas en marche. Elle représente 4,45% du débit d'air total.
Ces trois fractions d'air 107A, 107B, 107C, et la première fraction d'air détendue dans la turbine 1 16D représentent un débit total d'air de recyclage de 27,1 % du débit d'air total provenant du compresseur 230, ce qui signifie que le fluide 505 représente 50,1 % du débit d'air total provenant du compresseur principal 6, et le débit passant par la vanne 231 correspond à 23% du débit d'air total.
Une cuve de stockage d'oxygène liquide 152 alimentée par l'ASU 101 fournit l'oxygène 151 au système. Une pompe d'oxygène liquide 37 pressurise l'oxygène jusqu'au niveau de pression requis avant introduction dans l'échangeur de chaleur 5, où il subit une vaporisation ou une pseudo-vaporisation. L'ASU 101 est alimentée par un air 510 provenant du même compresseur 6 (MAC) et par l'air liquide 235 qui est utilisé pour compenser la production d'oxygène liquide 150.
Le débit 510 est refroidi dans un échangeur de chaleur indépendant de l'échangeur de chaleur 5 par échange de chaleur avec l'azote gazeux provenant de l'unité de séparation d'air (non représentée). Il est possible de refroidir le débit froid 510 dans l'échangeur de chaleur 5, mais cela rendrait le système moins flexible.
Il est de même possible d'avoir l'unité de séparation d'air et ce système de récupération du froid en des emplacements distincts. Dans ce cas, on aurait un système de compresseur fournissant de l'air à l'ASU et un autre système compresseur fournissant de l'air au système de récupération de froid, et le transport de l'air liquide 235 et de l'oxygène liquide 150 peut être réalisé par camion ou canalisation. Les stockages de liquide 152 et 131 doivent aussi être doublés sur chaque site.
Il pourrait aussi y avoir des systèmes compresseurs distincts fournissant de l'air à l'ASU et au système de récupération de froid quand les deux unités se trouvent sur le même emplacement, si cela est considéré comme étant plus commode et/ou plus efficace. C'est particulièrement le cas quand les deux unités ne fonctionnent pas simultanément à la même capacité. Un compresseur unique exigerait une dynamique de mesure précise et perdrait son efficacité à faible capacité. Avec des systèmes de compresseurs différents, il est possible d'optimiser la dynamique de mesure sur chaque machine.
Pour simplifier le procédé décrit ci-dessus, considérant les faibles débits de 107A et de 107B, il est possible de maintenir une fraction d'air recyclé unique 107D et de l'air basse pression vers l'unité de purification 107C.
Les vannes 231 , 1 16A, 1 16B et 1 16C pourraient être remplacées par des turbines détendant du liquide, c'est-à-dire un système de détente produisant du travail, dans le but de diminuer l'irréversibilité associée à la détente isenthalpique. Ces turbines détendant du liquide pourraient être installées en parallèle et/ou en série.
Pendant les périodes creuses, quand le coût de l'électricité est inférieur à une valeur donnée, l'unité de séparation d'air fonctionne de telle sorte que la quantité d'oxygène liquide stockée dans la cuve de stockage 152 augmente. La quantité d'oxygène liquide vaporisée dans l'échangeur de chaleur 5 est inférieure à l'oxygène liquide produit par l'unité de séparation d'air. Aucun air n'est envoyé à la vanne 1 16C, et l'unité de purification 7 est régénérée par utilisation d'un débit d'azote provenant de l'unité de séparation d'air 101 .
Les débits d'air 510 sont envoyés à l'unité de séparation d'air par l'intermédiaire d'un échangeur de chaleur indépendant de l'échangeur de chaleur 5, et un débit d'air 235 est envoyé à l'unité de séparation d'air à partir de la cuve de stockage 131 , et l'oxygène liquide 150 est envoyé à la cuve de stockage 152. Cependant, la quantité d'air liquide envoyée à la cuve 131 dépasse la quantité d'air qui en est soutirée, et la quantité d'oxygène liquide envoyée à la cuve 152 dépasse la quantité d'oxygène liquide qui en est soutirée.
Pendant les périodes de pointe, quand le coût de l'électricité est supérieur à une valeur donnée, l'unité de séparation d'air ne fonctionne pas, ou fonctionne à faible capacité, habituellement de 50% ou moins de la capacité maximale, même si l'oxygène total produit est très supérieur à 50% de la capacité maximale. Aucun air n'est envoyé à l'unité de séparation d'air par les débits 510 et 235. L'oxygène liquide stocké dans la cuve 152 est vaporisé pour donner le débit d'oxygène gazeux. La régénération de l'unité de purification 7 est réalisée par utilisation du débit 107C.
L'air liquide produit par la vaporisation de l'oxygène liquide est stocké dans la cuve de stockage 131 pendant les périodes de pointe, et aucun air gazeux ou liquide n'est envoyé à l'unité de séparation d'air 101 .
Le procédé peut être modifié pour vaporiser l'azote liquide pompé en tant que débit additionnel, ou en tant que débit remplaçant le débit d'oxygène pompé.
Il est de même possible d'utiliser un cycle d'azote (plutôt qu'un cycle d'air), comme on le voit sur la Figure 6. Dans ce cas, le compresseur 230 est alimenté par au moins une partie de l'azote gazeux haute pression 40. Mais, dans ce cas, il est nécessaire d'avoir une source d'azote disponible, provenant de l'unité de séparation d'air 101 fonctionnant à capacité réduite, ou d'autres unités de séparation d'air, en option par l'intermédiaire d'une conduite d'azote. C'est la raison pour laquelle c'est l'air qui est le fluide préféré pour une telle application, car il est disponible indépendamment de toute unité de séparation d'air.
Dans ce cas, la totalité de l'air d'alimentation est comprimée dans le compresseur d'air principal 6 jusqu'à la pression requise pour la séparation d'air dans l'ASU 101 .
L'azote comprimé est refroidi et condensé dans l'échangeur de chaleur 5. L'azote comprimé est ensuite subdivisé en au moins deux portions, trois portions étant présentées ici, détendu à au moins deux pressions différentes, et vaporisé dans l'échangeur de chaleur 5.
L'azote vaporisé provenant des vannes 1 16A et 1 16B est renvoyé à des positions intermédiaires du compresseur d'azote 230, et l'azote vaporisé provenant de la vanne 1 16C peut servir à régénérer l'unité de purification si l'unité de séparation d'air ne fonctionne pas.
L'azote liquide produit 234 est détendu dans la vanne 231 et stocké dans l'unité de stockage 131 pour utilisation.
Ainsi, l'oxygène liquide peut être vaporisé contre l'azote dans les périodes au cours desquelles l'unité de séparation d'air ne fonctionne pas, par exemple les périodes au cours desquelles l'électricité est particulièrement onéreuse.
Ces variantes de l'invention pourraient être utilisées pour récupérer le froid d'un système de secours d'oxygène/azote liquide dans le cas d'une indisponibilité planifiée (maintenance) ou non planifiée (incident) de la ou des unités de séparation d'air.
Les procédés illustrés présentent des systèmes à double colonne, mais on comprendra aisément que l'invention s'applique à des systèmes à triple colonne. Elle pourrait aussi être utilisée avec des cycles de procédé produisant de l'oxygène de faible pureté (habituellement de ΓΟ2 à 95% au lieu d'O2 à 99,5%), tels que des cycles de procédé "à double vaporiseur".

Claims

Revendications
1 . Procédé de séparation d'air par distillation cryogénique dans un système de colonnes comprenant une première colonne et une deuxième colonne opérant à une plus basse pression que la première colonne, comprenant les étapes de :
i) compression de la totalité de l'air d'alimentation dans un premier compresseur (6) jusqu'à une première pression de sortie d'au plus un bar supérieur à et de préférence sensiblement égale à la pression de la première colonne,
ii) envoi d'une première partie de l'air (505) sous la première pression de sortie à un deuxième compresseur (230), et compression de l'air à une deuxième pression de sortie,
iii) refroidissement et condensation d'au moins une partie de l'air sous la deuxième pression de sortie dans l'échangeur de chaleur (5),
iv) envoi d'un débit d'air gazeux sous la première pression de sortie au système de colonnes, sans compression plus poussée, et séparation de l'air dans le système de colonnes,
v) prélèvement du liquide d'une colonne du système de colonnes, pressurisation du liquide et vaporisation du liquide (38) par un échange de chaleur dans l'échangeur de chaleur, et
vi) détente d'au moins une fraction de l'air refroidi et condensé, de la deuxième pression de sortie à au moins une troisième pression, vaporisation au moins partielle dudit air (107A, 107B, 107C) dans l'échangeur de chaleur sous l'au moins une troisième pression, la troisième pression étant intermédiaire entre la première pression de sortie et la deuxième pression de sortie, éventuellement chauffage dudit air au moins partiellement vaporisé dans l'échangeur de chaleur caractérisé en ce qu'au moins une partie vaporisée de cet air est envoyé au deuxième compresseur (230) pour être comprimée jusqu'à la deuxième pression de sortie.
2. Procédé selon la revendication 1 , dans lequel la détente est réalisée dans au moins une vanne (1 16A,1 16B,1 16C).
3. Procédé selon la revendication 1 , dans lequel la détente est réalisée dans au moins une turbine et produit du travail.
4. Procédé selon la revendication 1 , dans lequel la température de l'au moins une fraction avant détente est inférieure à la somme de la température de la vaporisation du liquide et l'approche de température minimale dans l'échangeur de chaleur.
5. Procédé selon la revendication 1 , dans lequel le deuxième compresseur est un compresseur multi-étages.
6. Procédé selon la revendication 5, dans lequel ladite au moins une troisième pression est au moins la pression d'entrée de l'un des étages du deuxième compresseur.
7. Procédé selon l'une quelconque des revendications précédentes, dans lequel un étage du deuxième compresseur est entraîné par une machine de détente sur un fluide du procédé.
8. Procédé selon la revendication 7, dans lequel la température d'entrée de la machine de détente est inférieure à la température ambiante.
9. Procédé selon l'une quelconque des revendications précédentes, dans lequel au moins un étage du deuxième compresseur a une température d'aspiration inférieure à la température ambiante.
10. Procédé selon la revendication 9, dans lequel la température d'aspiration est supérieure à la température de vaporisation du liquide, mais en est proche.
1 1 . Procédé selon l'une quelconque des revendications précédentes, dans lequel le liquide est un débit enrichi en oxygène.
12. Procédé selon l'une quelconque des revendications précédentes, dans lequel le liquide est un débit enrichi en azote.
13. Procédé selon l'une quelconque des revendications précédentes, dans lequel le débit de production du ou des produits liquides finaux n'est pas supérieur à 10% de l'air d'alimentation, de préférence n'est pas supérieur à 5% de l'air d'alimentation.
14. Appareil pour séparer l'air par distillation cryogénique dans un système de colonnes comprenant une première colonne et une deuxième colonne opérant à une plus basse pression que la première colonne, comprenant en outre :
i) un premier compresseur (6) pour comprimer l'air d'alimentation à une première pression de sortie, d'au plus un bar supérieure à la pression de la première colonne, ii) un deuxième compresseur (230) et un moyen pour envoyer une première partie de l'air sous la première pression de sortie du premier compresseur au deuxième compresseur pour comprimer l'air à une deuxième pression de sortie,
iii) un échangeur de chaleur (5), dans lequel au moins une partie de l'air sous la deuxième pression de sortie est refroidie et condensée,
iv) un moyen pour prélever le liquide d'une colonne du système de colonnes, un moyen (37) pour pressuriser le liquide, un moyen pour envoyer le liquide pressurisé à l'échangeur de chaleur, et un moyen pour prélever le liquide vaporisé de l'échangeur de chaleur, et
v) un moyen pour détendre une fraction de l'air refroidi et condensé sous la deuxième pression de sortie, un moyen pour envoyer ledit air détendu à l'échangeur de chaleur et un moyen pour envoyer au moins une partie dudit air détendu, ayant été vaporisée dans l'échangeur de chaleur sous au moins une troisième pression, intermédiaire(s) entre les première et deuxième pressions de sorties, de l'échangeur de chaleur au deuxième compresseur, pour le comprimer à la deuxième pression de sortie et
vi) des moyens pour envoyer de l'air épuré et refroidi au système de colonnes pour s'y séparer.
15. Appareil selon la revendication 14 où le moyen pour détendre est une vanne ou une turbine.
PCT/FR2018/051201 2017-05-24 2018-05-18 Procédé et appareil pour la séparation de l'air par distillation cryogénique WO2018215716A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2019140617A RU2761562C2 (ru) 2017-05-24 2018-05-18 Способ и устройство для разделения воздуха криогенной дистилляцией
EP18736971.5A EP3631327B1 (fr) 2017-05-24 2018-05-18 Procédé et appareil pour la séparation de l'air par distillation cryogénique
CN201880033702.6A CN110678710B (zh) 2017-05-24 2018-05-18 用于通过低温蒸馏分离空气的方法和设备
US16/615,978 US12025372B2 (en) 2017-05-24 2018-05-18 Method and apparatus for air separation by cryogenic distillation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1754624A FR3062197B3 (fr) 2017-05-24 2017-05-24 Procede et appareil pour la separation de l'air par distillation cryogenique
FR1754619 2017-05-24
FR1754624 2017-05-24
FR1754619A FR3066809B1 (fr) 2017-05-24 2017-05-24 Procede et appareil pour la separation de l'air par distillation cryogenique

Publications (1)

Publication Number Publication Date
WO2018215716A1 true WO2018215716A1 (fr) 2018-11-29

Family

ID=62815073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/051201 WO2018215716A1 (fr) 2017-05-24 2018-05-18 Procédé et appareil pour la séparation de l'air par distillation cryogénique

Country Status (5)

Country Link
EP (1) EP3631327B1 (fr)
CN (1) CN110678710B (fr)
FR (2) FR3066809B1 (fr)
RU (1) RU2761562C2 (fr)
WO (1) WO2018215716A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4004468A4 (fr) * 2019-07-26 2023-04-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil de séparation de l'air par distillation cryogénique

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111928511B (zh) * 2020-08-07 2021-09-07 西安西热节能技术有限公司 基于压缩机中间吸气的液化空气储能调峰***和方法
FR3119226B1 (fr) 2021-01-25 2023-05-26 Lair Liquide Sa Pour Letude Et Lexploitation De Procede et appareil de separation d’air par distillation cryogenique

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE460927C (de) * 1922-05-27 1928-06-09 Arthur Seligmann Dr Ing Verfahren zur Verfluessigung und Trennung schwer kondensierbarer Gase und Gasgemische unter Zuhilfenahme aeusserer Arbeitsleistung
EP0044679A1 (fr) * 1980-07-22 1982-01-27 Air Products And Chemicals, Inc. Méthode de production d'oxygène gazeux et installation cryogénique pour la mise en oeuvre de cette méthode
US5379598A (en) 1993-08-23 1995-01-10 The Boc Group, Inc. Cryogenic rectification process and apparatus for vaporizing a pumped liquid product
US5475980A (en) 1993-12-30 1995-12-19 L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude Process and installation for production of high pressure gaseous fluid
EP0752566A1 (fr) * 1995-07-06 1997-01-08 The BOC Group plc Séparation d'air
US5596885A (en) 1994-06-20 1997-01-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of gaseous oxygen under pressure
US5901576A (en) 1998-01-22 1999-05-11 Air Products And Chemicals, Inc. Single expander and a cold compressor process to produce oxygen
FR2777641A1 (fr) 1998-04-21 1999-10-22 Air Liquide Procede et installation de distillation d'air avec production d'argon
US6336345B1 (en) 1999-07-05 2002-01-08 Linde Aktiengesellschaft Process and apparatus for low temperature fractionation of air
US6626008B1 (en) 2002-12-11 2003-09-30 Praxair Technology, Inc. Cold compression cryogenic rectification system for producing low purity oxygen
EP1972872A1 (fr) 2006-01-11 2008-09-24 Dong-Lei Wang Réfrigérateur produisant de l'azote et préservant la fraîcheur
EP2299221A2 (fr) * 2009-09-21 2011-03-23 Linde Aktiengesellschaft Procédé et dispositif destinés à la décomposition à basse température d'air
EP2600090A1 (fr) * 2011-12-01 2013-06-05 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455682A (ja) * 1990-06-22 1992-02-24 Kobe Steel Ltd 空気分離装置
JP3213846B2 (ja) * 1991-01-25 2001-10-02 日本酸素株式会社 超臨界ガスの液化方法及び装置
DE19526785C1 (de) * 1995-07-21 1997-02-20 Linde Ag Verfahren und Vorrichtung zur variablen Erzeugung eines gasförmigen Druckprodukts
US6006545A (en) * 1998-08-14 1999-12-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Liquefier process
JP4313389B2 (ja) * 2006-10-13 2009-08-12 大陽日酸株式会社 ヘリウム精製装置の運転方法
RU2433363C1 (ru) * 2007-08-10 2011-11-10 Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод Способ и аппарат для разделения воздуха с помощью криогенной дистилляции
CN101482336A (zh) * 2008-05-28 2009-07-15 上海启元空分技术发展有限公司 用于空气分离的压缩节流制冷方法
EP2249128A1 (fr) * 2009-05-08 2010-11-10 Linde Aktiengesellschaft Agencement de mesure et procédé de détermination du flux de la fraction liquide dans un décompositeur d'air
FR2995393B1 (fr) * 2012-09-12 2014-10-03 Air Liquide Procede et appareil de separation d'air par distillation cryogenique.
EP2963367A1 (fr) * 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE460927C (de) * 1922-05-27 1928-06-09 Arthur Seligmann Dr Ing Verfahren zur Verfluessigung und Trennung schwer kondensierbarer Gase und Gasgemische unter Zuhilfenahme aeusserer Arbeitsleistung
EP0044679A1 (fr) * 1980-07-22 1982-01-27 Air Products And Chemicals, Inc. Méthode de production d'oxygène gazeux et installation cryogénique pour la mise en oeuvre de cette méthode
US5379598A (en) 1993-08-23 1995-01-10 The Boc Group, Inc. Cryogenic rectification process and apparatus for vaporizing a pumped liquid product
US5475980A (en) 1993-12-30 1995-12-19 L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude Process and installation for production of high pressure gaseous fluid
US5596885A (en) 1994-06-20 1997-01-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of gaseous oxygen under pressure
EP0752566A1 (fr) * 1995-07-06 1997-01-08 The BOC Group plc Séparation d'air
US5901576A (en) 1998-01-22 1999-05-11 Air Products And Chemicals, Inc. Single expander and a cold compressor process to produce oxygen
FR2777641A1 (fr) 1998-04-21 1999-10-22 Air Liquide Procede et installation de distillation d'air avec production d'argon
US6336345B1 (en) 1999-07-05 2002-01-08 Linde Aktiengesellschaft Process and apparatus for low temperature fractionation of air
US6626008B1 (en) 2002-12-11 2003-09-30 Praxair Technology, Inc. Cold compression cryogenic rectification system for producing low purity oxygen
EP1972872A1 (fr) 2006-01-11 2008-09-24 Dong-Lei Wang Réfrigérateur produisant de l'azote et préservant la fraîcheur
EP2299221A2 (fr) * 2009-09-21 2011-03-23 Linde Aktiengesellschaft Procédé et dispositif destinés à la décomposition à basse température d'air
EP2600090A1 (fr) * 2011-12-01 2013-06-05 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4004468A4 (fr) * 2019-07-26 2023-04-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil de séparation de l'air par distillation cryogénique

Also Published As

Publication number Publication date
EP3631327B1 (fr) 2021-06-23
RU2019140617A3 (fr) 2021-07-19
EP3631327A1 (fr) 2020-04-08
RU2019140617A (ru) 2021-06-10
FR3066809A1 (fr) 2018-11-30
CN110678710A (zh) 2020-01-10
US20200132367A1 (en) 2020-04-30
CN110678710B (zh) 2021-12-10
FR3062197A3 (fr) 2018-07-27
FR3062197B3 (fr) 2019-05-10
FR3066809B1 (fr) 2020-01-31
RU2761562C2 (ru) 2021-12-09

Similar Documents

Publication Publication Date Title
EP1782011B1 (fr) Procédé de séparation d'air a basse température permettant d'obtenir un produit gazeux sous pression
US20090078001A1 (en) Cryogenic Distillation Method and System for Air Separation
EP1711765B1 (fr) Procédé et installationde de séparation d'air par distillation cryogénique
EP3631327B1 (fr) Procédé et appareil pour la séparation de l'air par distillation cryogénique
EP1623172A1 (fr) Procede et installation de production de gaz de l`air sous pression par distillation cryogenique d`air
EP1014020B1 (fr) Procédé de séparation cryogénique des gaz de l'air
EP2847060A2 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
EP1102953B1 (fr) Installation de production d'electricite basse tension integree a une unite de separation des gaz de l'air
EP2694898B1 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
FR2973864A1 (fr) Procede et appareil de liquefaction d'un gaz riche en co2
EP1269094A2 (fr) Procede et installation de generation d'energie
EP3058297B1 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
FR2830928A1 (fr) Procede de separation d'air par distillation cryogenique et une installation pour la mise en oeuvre de ce procede
EP1132700B1 (fr) Procédé et installation de séparation d'air par distillation cryogénique
FR2973485A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
GB2493230A (en) Air separation by cryogenic distillation
EP1697690A2 (fr) Procede et installation d enrichissement d'un flux gazeux en l'un de ses constituants
FR2837564A1 (fr) Procede et installation de production d'oxygene et/ou d'azote sous pression et d'argon pur
FR2864213A1 (fr) Procede et installation de production sous forme gazeuse et sous haute pression d'au moins un fluide choisi parmi l'oxygene, l'argon et l'azote par distillation cryogenique de l'air
EP3913310A1 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
WO2019106250A1 (fr) Procédé et appareil de séparation d'air par distillation cryogénique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018736971

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018736971

Country of ref document: EP

Effective date: 20200102