WO2018214863A1 - 一种汽车轮毂用轴承钢及其制造方法 - Google Patents

一种汽车轮毂用轴承钢及其制造方法 Download PDF

Info

Publication number
WO2018214863A1
WO2018214863A1 PCT/CN2018/087792 CN2018087792W WO2018214863A1 WO 2018214863 A1 WO2018214863 A1 WO 2018214863A1 CN 2018087792 W CN2018087792 W CN 2018087792W WO 2018214863 A1 WO2018214863 A1 WO 2018214863A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing steel
wheel bearing
minutes
steel
furnace
Prior art date
Application number
PCT/CN2018/087792
Other languages
English (en)
French (fr)
Inventor
刘湘江
万根节
黄宗泽
马强
韩纪鹏
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to DE112018002705.8T priority Critical patent/DE112018002705T5/de
Priority to JP2019565185A priority patent/JP6862578B2/ja
Priority to KR1020197035801A priority patent/KR102314171B1/ko
Publication of WO2018214863A1 publication Critical patent/WO2018214863A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium

Definitions

  • the present invention relates to a bearing steel, and more particularly to a bearing steel for an automobile hub and a method of manufacturing the same.
  • the role of the automotive wheel bearing is to support the car body and guide the wheel rotation, which is subjected to both axial and radial loads.
  • the third generation has been developed.
  • the first generation consists of double-row angular contact bearings; the second generation has a method for fixing bearings on the outer race.
  • the bearing can be simply fixed to the axle and fixed with a nut;
  • the third generation of the hub bearing unit is matched with the bearing unit and the anti-lock brake system ABS.
  • the hub unit is designed with an inner flange and an outer flange, the inner flange is bolted to the drive shaft, and the outer flange mounts the entire bearing together.
  • the bearing steel used to manufacture automobile wheel bearings is generally medium carbon bearing steel. If S55C is used, its chemical composition is: C: 0.52 ⁇ 0.58%, Si: 0.15 ⁇ 0.35%, Mn: 0.60 ⁇ 0.90%, Cr ⁇ 0.20% , P ⁇ 0.030%, S ⁇ 0.035%, Ni ⁇ 0.20%, Cu ⁇ 0.30%, and Ni + Cr ⁇ 0.35%.
  • the new high-speed upset forging process adopts medium-frequency induction heating furnace heating and tower forging process.
  • the tower forging process is to expand and thicken a single piece, then carry out tower forging, and then separate into outer ring and inner ring, outer ring is expanded and expanded. Circle punching.
  • the new high-speed upset forging process has high production efficiency, high dimensional accuracy, high material yield, good metal streamline distribution, grain refinement, and improved internal structure of the metal.
  • the requirements for bearing steel materials for automotive hubs are even more demanding. strict.
  • there are five common failure modes of hub bearings including fatigue failure, wear, corrosion, electrical erosion, plastic deformation, and crack.
  • the hub bearing steel must have fine grain, uniform hardness, corrosion resistance, high purity (including non-metallic inclusions, residual elements and gases), in addition, it should have good upsetting performance and die life.
  • the induction hardening of the subsequent process not only requires the hardness of the raceway surface 730 to 780 HV, but also requires a certain depth of the hardened layer.
  • Chinese Patent Application No. 200710045281.2 and Chinese Patent Application No. 201610001624.4 are invention patents for bearing steels for automobile wheels.
  • China Patent Application No. 200710045281.2 is a medium carbon carbon bearing steel optimized on the basis of S55C. It is used to reduce the carbon content in order to obtain a smaller raceway hardness difference, to refine the grain size and reduce the inclusion of Al2O3 type inclusions. The Al content is defined while controlling the harmful element Ti.
  • Patent application number 201610001624.4 is a micro-alloy car carbon wheel bearing steel, which is mainly added with Al element to refine the grain except for the application.
  • the existing automotive wheel bearing steel cannot effectively improve the hardness of the bearing surface of the hub bearing due to the low carbon content, corresponding to the hub bearing steel bar. It is said that the carbon deviation between the center and the edge is too large, resulting in a hardness deviation of the bearing surface of the hub bearing >50HV; the existing wheel bearing steel has poor purity control, especially the oxygen content and the high titanium content, resulting in a single spherical oxide and nitrogen. Titanium type inclusions exceed 27 ⁇ m, causing early peeling and failure of the raceway surface of the hub bearing.
  • the object of the present invention is to provide an automobile wheel bearing steel and a manufacturing method thereof, which have the characteristics of corrosion resistance, fine grain, high purity, excellent toughness and the like; and the tensile strength of the automobile wheel bearing steel is 800 ⁇ 900MPa, can ensure the hardness of the high-frequency quenching raceway surface reaches 730 ⁇ 780HV, the depth of the hardened layer of the raceway surface reaches 2.0 ⁇ 3.5mm.
  • the hardness of the raceway of the automobile hub bearing after induction hardening is 730-780HV
  • the depth of the hardened layer of the raceway surface is 2.0-3.5mm (excluding the grinding part)
  • the hardness deviation is ⁇ 50HV.
  • Ingredients design The main alloying elements C and Mn need to be reasonably matched (considering the depth and wear resistance of the hardened layer), while increasing the hardenability element Mo, controlling the diffusion of AlN at the grain boundary, and controlling the Al and N elements to suppress the grain length. At the same time, it is necessary to prevent the occurrence of inclusions of Al 2 O 3 and TiN types.
  • the alloy design with the addition of Mn and Cu elements also serves to prevent the corrosion of the working surface due to the pitting corrosion of the wheel bearing.
  • the design in terms of grain size refinement also includes the selective addition of Nb elements, which can be used to obtain fine grain microstructures in conjunction with secondary grain refinement of the hub forging process.
  • 0.020 to 0.040%.
  • the impurities include: Pb ⁇ 0.002%, As ⁇ 0.04%, Sn ⁇ 0.005%, Sb ⁇ 0.004%, or Ca ⁇ 0.0010%.
  • Carbon makes the toughness worse.
  • carbon is an important element to ensure the strength and wear resistance of bearing steel.
  • the raceway surface In the automotive wheel bearing steel, in order to ensure the hardness of the high-frequency quenching raceway surface reaches 730-780HV, the raceway surface The depth of the hardened layer is 2.0 to 3.5 mm, and the carbon content of 0.58 to 0.61% must be controlled.
  • Silicon is soluble in ferrite and austenite to increase the hardness and strength of steel, but higher silicon in this steel can promote the coarsening of ferrite grains.
  • the silicon in the steel of the invention is controlled to be ⁇ 0.15%.
  • Manganese can partially replace chromium to maintain strength, and manganese is a major element that can significantly improve hardenability.
  • manganese has the disadvantage of promoting austenite grain growth in steel, and the content of manganese should be controlled.
  • the manganese content in the invention steel is 0.87-0.95% and is matched with the carbon element, thereby ensuring that the hardness of the high-frequency quenching raceway surface is 730-780 HV, and the depth of the hardened layer of the raceway surface is 2.0-3.5 mm.
  • the main element is 0.87-0.95% and is matched with the carbon element, thereby ensuring that the hardness of the high-frequency quenching raceway surface is 730-780 HV, and the depth of the hardened layer of the raceway surface is 2.0-3.5 mm.
  • Mn and Fe form a solid solution, while increasing the strength of ferrite and austenite; Mn makes the structure uniform and weakly carbide-forming elements, and enters the cementite to replace a part of Fe atoms. In addition, Mn also has an effect of improving wear resistance. Therefore, after the calculation of the phase and the experimental study, the Mn content is controlled at 0.87 to 0.95% and can be combined with other elements to play a corresponding role in the invention.
  • Chromium significantly increases strength, hardness and wear resistance, but at the same time reduces plasticity and toughness. Chromium can also improve the oxidation resistance and corrosion resistance of steel, and the chromium added to the invention steel is 0.10 to 0.20%.
  • Aluminum is a deoxidizer and refines grain elements, but tests have shown that excessive Al tends to form Al 2 O 3 non-metallic inclusions. These non-deformable non-metallic inclusions tend to be fatigue fracture sources, affecting The impact resistance of the bearing. Controlling the finished product from 0.010 to 0.015% in this steel grade is a remarkable technical feature.
  • Typical refinement of grain elements, adding 0.020-0.040% bismuth can improve the grain size of steel and obtain good toughness. However, excessive enthalpy tends to cause the corresponding carbides to aggregate, resulting in a decrease in toughness.
  • Nitrogen element is an important alloying element of the steel of the present invention. Aluminum and nitrogen form AlN, niobium and nitrogen form NbCN and other fine grain elements are precipitated at the grain boundary to obtain a grain size of 7-9, and the nitrogen content is controlled at 0.0060 ⁇ . 0.015%.
  • Copper is generally controlled as a harmful element because copper has the disadvantage of being hot and brittle during hot working, especially when the copper content exceeds 0.5%. Due to the different smelting methods, the electric arc furnace smelting (the raw material is mainly scrap steel) often has a copper content of 0.10-0.20% without special control, while the converter smelting (the raw material is mainly blast furnace hot metal) copper content is generally less than 0.05%. Additional copper alloy is needed. . The addition of 0.10 to 0.25% in the steel of the present invention can improve strength and toughness, and in particular, improve atmospheric corrosion performance. After several rounds of experiments in the laboratory, 0.10-0.25% of copper can effectively improve the corrosion resistance of automotive wheel bearings, especially to reduce pitting corrosion in the atmosphere and reduce the surface peeling of the bearings.
  • Molybdenum element can refine the grain of steel, improve hardenability, and improve mechanical properties. It is also possible to suppress the brittleness of the alloy steel due to fire. In order to control the depth of the hardened layer of the raceway surface to 2.0 to 3.5 mm, the control of 0.12 to 0.18% of molybdenum in the present invention can play a corresponding role.
  • Phosphorus, sulfur, titanium Impurity elements in steel can significantly reduce the plasticity and toughness of steel.
  • phosphorus and titanium are the most harmful, sulfur ⁇ 0.015%, phosphorus ⁇ 0.010%, and titanium ⁇ 0.0015%.
  • lead, antimony, bismuth and oxygen are impurity elements in steel, and their content should be reduced as much as possible under technical conditions.
  • the slab is heated, the temperature of the heating furnace is 600-900 ° C, and the slab is kept in the furnace for 20 to 40 minutes; after 120 minutes to 200 minutes, the temperature is raised to 1180 to 1220 ° C, and the temperature is kept for 80 to 180 minutes;
  • the ladle refining adding 1.5 to 3 kg/t of molten steel of low alkalinity synthetic slag into the ladle of the refining furnace outside the furnace, slag is formed, Al is used for precipitation deoxidation, and Si-C powder is deoxidized by slag surface, at intervals of 15 Add a batch in minutes, add 2 ⁇ 3 batches, add 0.2-0.8kg/t molten steel in each batch; control the top slag alkalinity 2 ⁇ 4 in the furnace outside the furnace.
  • the external refining uses low alkalinity synthetic slag
  • the weight percentage of the synthetic slag component is: CaO 51 to 53%, MgO 15 to 19%, Al 2 O 3 5 to 11%, and SiO 2 22 to 24%.
  • the molten steel temperature is 1580-1616 ° C; before the vacuum degassing, the chromium nitride wire is fed, the nitrogen content is adjusted to 60-150 ppm, and the aluminum wire is supplemented to 0.015-0.025%.
  • the ladle is sedated for more than 40 minutes, the soft air is blown, the molten steel is continuously cast, the superheat degree is controlled to be ⁇ 35° C., and the segregation of the steel is improved by the soft pressing of the solidification end and the electromagnetic stirring technology.
  • the hub bearing works with a large load and is extremely sensitive to the non-deformed inclusions in the wheel bearing steel. In addition to controlling the residual elements such as O, Ti, S, P, H, etc., it must be reduced to a certain level in the smelting process. Control a single non-deformed spherical inclusion, especially the maximum size can not exceed 27 ⁇ m.
  • the present invention designs a personalized refining process and a refining slag system to control the size and number of inclusions that are difficult to deform.
  • the present invention adds alloying elements such as silicon, manganese, molybdenum, copper, and nitrogen to steel and performs corresponding composition design.
  • Automobile wheel bearing steel adopts low alkalinity synthetic slag refining to effectively control the size of single inclusions of oxide and titanium nitride type; it adopts light reduction and electromagnetic stirring to effectively improve segregation.
  • the automobile wheel bearing steel is suitable for the latest high-speed upsetting process, which can ensure the hardness of the high-frequency quenching raceway surface reaches 730-780HV, the hardened layer depth of the raceway surface reaches 2.0-3.5mm, tensile strength, 800-900MPa .
  • the purity of the automobile wheel bearing steel is high: the maximum inclusion size is ⁇ 27 ⁇ m, the oxygen content is ⁇ 6ppm, and the titanium content is ⁇ 0.0015%.
  • composition of the steel embodiment of the present invention will be shown in Tables 1 and 2, and the performance parameters of the steel of the example are shown in Table 3.
  • the preparation method of the invention adopts a two-step process: the first step: electric arc furnace (or converter) initial refining ⁇ ladle furnace vacuum refining ⁇ casting slab; second step: hot rolling and rolling of steel rolling mill.
  • the molten steel is refining in a 150-ton electric arc furnace; the corresponding tonnage of ladle refining; continuous casting and casting; producing a 320 mm ⁇ 425 mm billet with chemical composition meeting the requirements.
  • the initial furnace is an electric arc furnace.
  • the tapping steel of the preliminary furnace reaches: [P] ⁇ 0.015%, [C] ⁇ 0.10%, T ⁇ 1630 ° C starts to tap steel, and an appropriate amount of synthetic slag is added at the later stage of tapping.
  • manganese aluminum alloy (containing 22% of Al) was added to the ladle, and Mn was added to the upper limit of the product composition at 100% recovery.
  • 2 ladle refining furnace furnace outside refining furnace (LF) heating station, adding 2kg/t slag of low alkalinity synthetic slag into ladle, using Al grain for precipitation deoxidation, Si-C powder for slag surface deoxidation, according to slag condition and The amount of silicon in the steel is adjusted and the batch is added. Generally, a batch is added every 15 minutes, and the dosage is 0.2-0.8kg/t, so that the refining process should always maintain good deoxidation.
  • LF refining furnace
  • the second step the slab is sent to the heating furnace at a temperature of 860 ° C for 35 minutes; after 160 minutes, the temperature is raised to 1260 to 1280 ° C; the temperature is maintained for 160 minutes; the initial rolling mill is rolled according to the conventional rolling process, and the preliminary rolling mill rolls the qualified steel ingots.
  • the billet is formed into a 200 mm ⁇ 200 mm square billet; the billet is transferred to a rolling mill heating furnace at a heating temperature of 1140 ° C, a heating time of 130 minutes; and a final rolling temperature of 835 ° C.
  • the automobile wheel bearing steel bearing steel bar which is produced by the invention is processed into an automobile wheel bearing, and is assembled to a well-known automobile model by a foreign automobile company, and the tested performances meet the requirements for use, and the service life is superior to the traditional medium carbon bearing steel such as S55C. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

一种汽车轮毂轴承钢及其制造方法,其化学成分重量百分比为:碳:0.58~0.61%;硅≤0.15%;锰:0.87~0.95%;铜:0.10~0.25%;钼:0.12~0.18%;铬:0.10~0.20%;硫≤0.015%;磷≤0.015%;铝:0.008~0.015%;氧≤0.0006%;氮:0.006~0.015%;氢≤0.0001%;钛≤0.0015%;其余为铁及不可避免杂质,且,同时满足,C%+Mn%/3=0.87~0.95,Al/N=0.85~1.15。本发明轴承钢具有耐腐蚀、晶粒细小、纯洁度高、强韧性性能优良等特点;轴承钢的抗拉强度,800~900MPa,能保证高频淬火滚道面的硬度达到730~780HV,滚道面的淬硬层深度达到2.0~3.5mm。

Description

一种汽车轮毂用轴承钢及其制造方法 技术领域
本发明涉及轴承钢,尤其是指一种汽车轮毂用轴承钢及其制造方法。
背景技术
汽车轮毂轴承的作用是支撑车体和引导车轮旋转,它既承受轴向载荷又承受径向载荷。随着汽车轮毂轴承单元的使用范围和使用量日益增长,如今已经发展到了第三代,第一代是由双列角接触轴承组成;第二代在外滚道上有一个用于将轴承固定的法兰,可简单的将轴承套到轮轴上用螺母固定;第三代轮毂轴承单元是采用了轴承单元和防抱刹***ABS相配合。轮毂单元设计成有内法兰和外法兰,内法兰用螺栓固定在驱动轴上,外法兰将整个轴承安装在一起。第三代轮毂轴承的出现使得轮毂轴承的安装和维修更为方便,对轮毂轴承钢的性能要求也越来越高。
用于制造汽车轮毂轴承的轴承钢一般为中碳轴承钢,如采用S55C,其化学成分为:C:0.52~0.58%,Si:0.15~0.35%,Mn:0.60~0.90%,Cr≤0.20%,P≤0.030%,S≤0.035%,Ni≤0.20%,Cu≤0.30%,Ni+Cr≤0.35%。
随着锻造技术的发展,汽车轮毂毛坯由常规加热炉加热(加热介质:天然气或煤气)+自由模锻生产工艺发展到多工位高速镦锻压力机进行轴承套圈毛坯的热锻生产工艺。
新的高速镦锻工艺采用中频感应加热炉加热和塔锻工艺,塔锻工艺是将单件碾扩镦粗,然后进行塔锻,继而经过分离成外圈和内圈,外圈碾扩、内圈冲孔跚。采用新的高速镦锻工艺具有生产效率高、尺寸精度高、材料成材率高、金属流线分布好、晶粒细化、改善了金属的内部组织,然而对汽车轮毂的轴承钢材料要求更为严格。再进一步,经过某合资汽车品牌市场返回轮毂不良品的解析分类显示,常见的轮毂轴承失效模式有5种,包括疲劳失效、磨损、腐蚀、电蚀、塑性变形、裂纹。因此,轮毂轴承钢必须具有晶粒细小、均匀的硬度、耐腐蚀性能、高的纯净度(包括非金属夹 杂物、残余元素和气体),此外,还应该具有良好的镦锻性能和模具寿命,特别是后道工序的高频淬火不但要获得滚道面730~780HV的硬度,同时还要求具有一定的淬透层深度。
中国专利申请号200710045281.2和中国专利申请号201610001624.4为针对汽车轮毂的轴承钢发明专利。中国专利申请号200710045281.2是在S55C基础上进行优化的中碳碳素轴承钢,为获得较小的滚道面硬度差而缩小碳含量的范围,为细化晶粒尺寸和减少Al2O3类型夹杂物对Al含量进行限定,同时对有害元素Ti进行控制。专利申请号201610001624.4为一种微合金轿车碳素轮毂轴承钢,对用途限定以外主要添加Al元素来细化晶粒。
然而,单纯加入Al来细化晶粒往往不能达到相应的细晶粒效果;现有汽车轮毂轴承钢由于碳含量偏低不能有效改善轮毂轴承滚道面的硬度,相对应轮毂轴承钢棒材来说,中心与边缘的碳偏差过大造成轮毂轴承滚道面的硬度偏差>50HV;现有的轮毂轴承钢纯净度控制不佳,特别是氧含量、钛含量高造成单颗球状氧化物和氮化钛类型夹杂物超过27μm,造成轮毂轴承滚道面的早期剥落和失效。
发明内容
本发明的目的在于提供一种汽车轮毂轴承钢及其制造方法,该轴承钢具有耐腐蚀、晶粒细小、纯洁度高、强韧性性能优良等特点;所述汽车轮毂轴承钢抗拉强度800~900MPa,能保证高频淬火滚道面的硬度达到730~780HV,滚道面的淬硬层深度达到2.0~3.5mm。
为达到上述目的,本发明的技术方案是:
汽车轮毂轴承滚道面高频淬火后的硬度要求为730~780HV,滚道面的淬硬层深度达到2.0~3.5mm(不包括磨削部分),硬度偏差≤50HV。要稳定达到以上技术指标,需要控制淬硬层深度和组织的均匀性。成分设计主要合金元素C和Mn需要合理匹配(考虑淬硬层深度和耐磨性能),同时增加淬透性元素Mo,控制AlN在晶界弥散析出,控制Al和N元素的目的抑制晶粒长大同时还要防止出现Al 2O 3和TiN类型夹杂物出现。添加Mn和Cu元素的合金设计还为了轮毂轴承的耐腐蚀性能,防止局部的点蚀 造成工作面的剥落。在晶粒尺寸细化方面的设计还包括选择添加Nb元素,配合轮毂锻造过程的二次晶粒细化可最终获得晶粒细小的组织。
具体的,本发明的一种汽车轮毂轴承钢,其化学成分重量百分比为:碳:0.58~0.61%;硅≤0.15%;锰:0.87~0.95%;铜:0.10~0.25%;钼:0.12~0.18%;铬:0.10~0.20%;硫≤0.015%;磷≤0.015%;铝:0.008~0.015%;氧≤0.0006%;氮:0.006~0.015%;氢≤0.0001%;钛≤0.0015%;其余为铁及不可避免杂质,且,同时满足,C%+Mn%/3=0.87~0.95,Al/N=0.85~1.15。
进一步,还包括铌:0.020~0.040%。
又,所述杂质包括:Pb≤0.002%,As≤0.04%,Sn≤0.005%,Sb≤0.004%或Ca≤0.0010%。
在本发明钢的成分设计中:
碳:碳元素使韧性恶化,然而,碳元素是保证轴承钢强度和耐磨性能的重要元素,在汽车轮毂轴承钢中为了保证高频淬火滚道面的硬度达到730~780HV,滚道面的淬硬层深度达到2.0~3.5mm,必须控制0.58~0.61%的碳含量。
硅:硅能溶于铁素体和奥氏体中提高钢的硬度和强度,但在本钢种中较高的硅能促使铁素体晶粒粗化。本发明钢中硅控制在≤0.15%。
锰:锰能部分代替铬以保持强度,而且锰是能显著提高淬透性的主要元素。但是锰在钢中有促进奥氏体化晶粒长大的缺点,对锰的含量应加以控制。本发明钢中,发明钢中添加锰含量为0.87~0.95%并与碳元素配合,保证保证高频淬火滚道面的硬度达到730~780HV,滚道面的淬硬层深度达到2.0~3.5mm的主要元素。
Mn和Fe形成固溶体,同时提高铁素体和奥氏体的强度;Mn使组织均匀弱碳化物形成元素,进入渗碳体取代一部分Fe原子。此外,Mn还有提高耐磨性作用。因此,经过计算相的组织和实验的研究,Mn含量控制在0.87~0.95%并与其它元素配合能起到在发明中发挥相应的作用。
铬:铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,发明钢中添加铬0.10~0.20%。
铝:铝是脱氧剂和细化晶粒元素,但试验表明,过多的Al往往会形成Al 2O 3类非金属夹杂物,这些难变形的非金属夹杂物往往会成为疲劳断 裂源,影响轴承的抗冲击性能。本钢种中控制成品0.010~0.015%的是显著的技术特征。
铌:典型的细化晶粒元素,选加0.020-0.040%的铌能改善钢材的晶粒尺寸,获得良好的韧性。但,过多的铌往往会造成相应的碳化物聚集,造成韧性的降低。
氮:氮元素是本发明钢重要的合金元素,铝与氮形成AlN、铌与氮形成NbCN等细化晶粒元素在晶界析出获得7~9级的晶粒尺寸,氮含量控制在0.0060~0.015%。
铜:铜元素一般作为有害元素控制,因为铜的缺点是在热加工时容易产生热脆,特别是铜含量超过0.5%塑性显著降低。由于冶炼方式的不同,电弧炉冶炼(原料以废钢为主)往往铜含量在0.10~0.20%无需特殊控制,而转炉冶炼(原料以高炉铁水为主)铜含量一般小于0.05%需要额外添加铜合金。本发明钢中添加0.10~0.25%,能提高强度和韧性,特别是提高了大气腐蚀性能。经过实验室多轮次的实验表明,0.10~0.25%的铜能有效提高汽车轮毂轴承的耐腐蚀性能,特别是减少大气的点蚀,减少轴承的表面剥落。
钼:钼元素能使钢的晶粒细化,提高淬透性,此外还能提高机械性能。还可以抑制合金钢由于火而引起的脆性。为控制滚道面的淬硬层深度达到2.0~3.5mm,本发明中控制0.12~0.18%钼能起到相应的作用。
磷、硫、钛:钢中的杂质元素,会显著降低钢的塑性和韧性。特别是磷、钛危害最大,硫≤0.015%,磷≤0.010%,钛≤0.0015%。同时铅、锑、铋、氧是钢中的杂质元素,在技术条件允许情况下应尽可能降低其含量。
本发明所述的汽车轮毂轴承钢的制造方法,其特征是,包括如下步骤:
1)冶炼、铸造
按上述成分采用电弧炉或转炉冶炼、钢包精炼、连铸浇注成铸坯;
2)轧制
铸坯加热,加热炉温度600~900℃,铸坯入炉保温20~40分钟;经过120分钟~200分钟升温至1180~1220℃,保温80~180分钟;
初轧机轧制,将铸坯轧制开坯成方钢坯;
常规轧制将方钢坯轧制至棒材:
方钢坯加热温度1160~1200℃,加热时间80分钟~120分钟;常规轧制,控制终轧温度760~900℃。
优选的,所述钢包精炼中:炉外精炼炉钢包中加入低碱度合成渣1.5~3kg/t钢水,造渣,采用Al粒进行沉淀脱氧,Si-C粉进行渣面脱氧,每间隔15分钟加入一批,加2~3批,每批加入量0.2-0.8kg/t钢水;炉外精炼炉控制顶渣碱度2~4。
优选的,所述炉外精炼采用低碱度合成渣,合成渣成分重量百分比为:CaO 51~53%,MgO 15~19%,Al 2O 3 5~11%,SiO 2 22~24%,P 2O 5≤0.10%,S≤0.05%,H 2O≤0.6%,CaO/SiO 2 2.08~2.44;合成渣粒度5~20mm。
优选的,进真空脱气前,钢水温度1580~1610℃;真空脱气前喂氮化铬丝,调整氮含量60~150ppm,喂铝丝补铝至0.015~0.025%。
优选的,真空精炼结束后,钢包镇静40分钟以上,软吹Ar,钢液采用连续浇注,控制过热度≤35℃,采用凝固末端轻压下和电磁搅拌技术改善钢材的偏析。
轮毂轴承工作承受较大的载荷,对轮毂轴承钢中不变形的夹杂物异常敏感,冶炼过程中除了控制O、Ti、S、P、H等残余元素必须降低到一定含量一下之外,还必须控制单颗的不变形的球状夹杂物,特别是最大尺寸不能超过27μm。本发明设计个性化的精炼工艺和精炼渣系,控制难变形的夹杂物尺寸和数量。
本发明的有益效果:
1、本发明通过在钢中加入硅、锰、钼、铜、氮等合金元素并进行相应的成分设计。汽车轮毂轴承钢采用低碱度合成渣精炼有效控制氧化物和氮化钛类型的单颗夹杂物尺寸;采用轻压下和电磁搅拌等工艺手段有效改善偏析。
2、汽车轮毂轴承钢适合最新的高速镦锻工艺,能保证高频淬火滚道面的硬度达到730~780HV,滚道面的淬硬层深度达到2.0~3.5mm,抗拉强度,800~900MPa。
3、汽车轮毂轴承钢晶粒度7~9级。
4、汽车轮毂轴承钢纯净度高:单颗最大夹杂物尺寸≤27μm,氧含量 ≤6ppm,钛含量≤0.0015%。
具体实施方式
下面结合实施例对本发明做进一步说明。
本发明钢实施例成分将表1、表2,实施例钢的性能参数参见表3。
本发明制备方法采用二步法工艺:第一步:电弧炉(或转炉)初炼→钢包炉真空精炼→浇注铸坯;第二步:轧钢机热加工轧制成材。
第一步,在150吨的电弧炉中进行钢液初炼;相应吨位的钢包精炼;连铸浇注;生产出化学成分符合规定的320mm×425mm方坯。
①初炼炉:初炼炉为电弧炉。初炼炉出钢钢水达到:[P]≤0.015%,[C]≥0.10%,T≥1630℃开始出钢,出钢后期加入适量的合成渣。出钢时在钢包中加入锰铝合金(含Al量为22%),Mn按100%回收率加到产品成分中上限。
②钢包精炼炉:炉外精炼炉(LF)加热工位,钢包中加入低碱度合成渣2kg/t造渣,采用Al粒进行沉淀脱氧,Si-C粉进行渣面脱氧,根据渣况及钢中硅含量情况调整加入量及加入批次,一般每间隔15分钟加入一批,用量0.2-0.8kg/t,使精炼过程要始终保持脱氧良好。
在LF初期调整低碱度渣,控制精炼炉顶渣碱度3-4。
真空脱气前喂氮化铬丝(调整氮含量60-150ppm),喂铝丝补铝至0.015~0.025%;进真空脱气前钢液温度1580~1610℃,真空脱气控制低真空度(≤0.3kPa)并保持时间15min;真空结束后温度1530~1560℃。
③浇注:真空精炼结束后,钢包镇静40分钟以上,软吹Ar(Ar压力流量以液面微微颤动为宜)。钢液采用连续浇注,控制过热度≤35℃,采用末端轻压下和电磁搅拌技术改善钢材的偏析。
第二步:铸坯热送进加热炉入炉温度860℃保温35分钟;经过160分钟升温至1260~1280℃;保温160分钟;初轧机按常规轧制工艺,初轧机将合格钢锭轧制开坯成200mm×200mm方钢坯;钢坯转移至轧钢机加热炉加热温度1140℃,加热时间130分钟;终轧温度835℃。
实施本发明生产的汽车轮毂轴承钢轴承钢棒材加工成汽车轮毂轴承,经某外资汽车公司装配到某知名车型,经过测试各项性能均符合使用要 求,寿命优于S55C等传统中碳轴承钢。
表1(单位,wt%)
实施例 C Si Mn Mo Cr Cu P S Nb Al
1 0.58 0.10 0.87 0.12 0.10 0.20 0.008 0.010 0.03 0.013
2 0.61 0.12 0.89 0.18 0.15 0.15 0.004 0.008 / 0.014
3 0.58 0.12 0.88 0.16 0.20 0.10 0.007 0.015 0.03 0.009
4 0.6 0.12 0.89 0.14 0.18 0.12 0.010 0.013 0.04 0.012
5 0.61 0.13 0.95 0.17 0.16 0.25 0.015 0.004 / 0.01
6 0.59 0.14 0.92 0.13 0.14 0.12 0.005 0.003 0.02 0.013
7 0.61 0.15 0.88 014 0.17 0.23 0.008 0.002 0.04 0.008
表2(单位,wt%)
实施例 O N Ti H Pb As Sn Sb Ca C+Mn/3 Al/N
1 0.0006 0.012 0.0012 0.0001 0.0002 0.004 0.002 0.001 0.0006 0.87 1.08
2 0.0005 0.015 0.0015 0.0001 0.0002 0.004 0.002 0.001 0.0006 0.91 0.93
3 0.0004 0.008 0.0010 0.0001 0.0002 0.004 0.002 0.001 0.0006 0.87 1.13
4 0.0004 0.014 0.0012 0.0001 0.0002 0.004 0.002 0.001 0.0006 0.90 0.86
5 0.0006 0.009 0.0014 0.0001 0.0002 0.004 0.002 0.001 0.0006 0.93 1.11
6 0.0005 0.014 0.0011 0.0001 0.0002 0.004 0.002 0.001 0.0006 0.90 0.93
7 0.0005 0.007 0.0013 0.0001 0.0002 0.004 0.002 0.001 0.0006 0.90 1.14
表3
Figure PCTCN2018087792-appb-000001
Figure PCTCN2018087792-appb-000002

Claims (10)

  1. 一种汽车轮毂轴承钢,其化学成分重量百分比为:
    碳:0.58~0.61%;
    硅:≤0.15%;
    锰:0.87~0.95%;
    铜:0.10~0.25%;
    钼:0.12~0.18%;
    铬:0.10~0.20%;
    硫:≤0.015%;
    磷:≤0.015%;
    铝:0.008~0.015%;
    氧:≤0.0006%;
    氮:0.006~0.015%;
    氢:≤0.0001%;
    钛:≤0.0015%;
    其余为铁及不可避免杂质,且,同时满足,C%+Mn%/3=0.87~0.95,Al/N=0.85~1.15。
  2. 如权利要求1所述的汽车轮毂轴承钢,其特征是,还包括铌:0.020~0.040%。
  3. 如权利要求1或2所述的汽车轮毂轴承钢,其特征是,所述杂质包括:Pb≤0.002%,As≤0.04%,Sn≤0.005%,Sb≤0.004%或Ca≤0.0010%。
  4. 如权利要求1或2或3所述的汽车轮毂轴承钢,其特征是,所述汽车轮毂轴承钢抗拉强度,800~900MPa,能保证高频淬火滚道面的硬度达到730~780HV,滚道面的淬硬层深度达到2.0~3.5mm。
  5. 如权利要求1或2所述的汽车轮毂轴承钢的制造方法,其特征是,包括如下步骤:
    3)冶炼、铸造
    按权利要求1或2所述的成分采用电弧炉或转炉冶炼、钢包精炼、连铸浇注成铸坯;
    4)轧制
    铸坯加热,加热炉温度600~900℃,铸坯入炉保温20~40分钟;经过120~200分钟升温至1180~1220℃,保温80~180分钟;
    初轧机轧制,将铸坯轧制开坯成方钢坯;
    常规轧制将方钢坯轧制至棒材:
    方钢坯加热温度1160~1200℃,加热时间80~120分钟;常规轧制,控制终轧温度760~900℃。
  6. 如权利要求5所述的汽车轮毂轴承钢的制造方法,其特征是,所述钢包精炼中:炉外精炼炉钢包中加入低碱度合成渣1.5~3kg/t钢水,造渣,采用Al粒进行沉淀脱氧,Si-C粉进行渣面脱氧,每间隔15分钟加入一批,加2~3批,每批加入量0.2-0.8kg/t钢水;炉外精炼炉控制顶渣碱度2~4。
  7. 如权利要求5所述的汽车轮毂轴承钢的制造方法,其特征是,所述炉外精炼采用低碱度合成渣,合成渣成分重量百分比为:CaO 51~53%,MgO 15~19%,Al 2O 3 5~11%,SiO 2 22~24%,P 2O 5≤0.10%,S≤0.05%,H 2O≤0.6%,CaO/SiO 2 2.08~2.44;合成渣粒度5~20mm。
  8. 如权利要求5所述的汽车轮毂轴承钢的制造方法,其特征是,进真空脱气前,钢水温度1580~1610℃;真空脱气前喂氮化铬丝,调整氮含量60~150ppm,喂铝丝补铝至0.015~0.025%。
  9. 如权利要求5所述的汽车轮毂轴承钢的制造方法,其特征是,真空精炼结束后,钢包镇静40分钟以上,软吹Ar,钢液采用连续浇注,控制过热度≤35℃,采用凝固末端轻压下和电磁搅拌技术改善钢材的偏析。
  10. 如权利要求5所述的汽车轮毂轴承钢的制造方法,其特征是,所述汽车轮毂轴承钢抗拉强度,800~900MPa,能保证高频淬火滚道面的硬度达到730~780HV,滚道面的淬硬层深度达到2.0~3.5mm。
PCT/CN2018/087792 2017-05-26 2018-05-22 一种汽车轮毂用轴承钢及其制造方法 WO2018214863A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018002705.8T DE112018002705T5 (de) 2017-05-26 2018-05-22 Lagerstahl für Radnabe eines Fahrzeugs und Verfahren zur Herstellung eines solchen Lagerstahls
JP2019565185A JP6862578B2 (ja) 2017-05-26 2018-05-22 自動車ハブ用軸受鋼およびその製造方法
KR1020197035801A KR102314171B1 (ko) 2017-05-26 2018-05-22 자동차 휠허브용 베어링강 및 그의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710383386.2 2017-05-26
CN201710383386.2A CN108929997B (zh) 2017-05-26 2017-05-26 一种汽车轮毂用轴承钢及其制造方法

Publications (1)

Publication Number Publication Date
WO2018214863A1 true WO2018214863A1 (zh) 2018-11-29

Family

ID=64395281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087792 WO2018214863A1 (zh) 2017-05-26 2018-05-22 一种汽车轮毂用轴承钢及其制造方法

Country Status (5)

Country Link
JP (1) JP6862578B2 (zh)
KR (1) KR102314171B1 (zh)
CN (1) CN108929997B (zh)
DE (1) DE112018002705T5 (zh)
WO (1) WO2018214863A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218846A (zh) * 2019-06-27 2019-09-10 洛阳Lyc轴承有限公司 一种高碳铬轴承钢乳化液正火加工方法
CN112708728A (zh) * 2020-12-21 2021-04-27 辽宁科技大学 提高铝脱氧钢/含铝钢中非金属夹杂物塑性的方法及钢材
CN115011871A (zh) * 2022-05-06 2022-09-06 本钢板材股份有限公司 一种含Cu超低钛轴承钢的制备方法
CN115323255A (zh) * 2022-08-19 2022-11-11 建龙北满特殊钢有限责任公司 一种高质量、高均质轴承钢盘条用200方连铸坯的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662944A (zh) * 2020-12-03 2021-04-16 宝钢特钢韶关有限公司 轴承钢及其制备方法
CN112680666A (zh) * 2020-12-17 2021-04-20 本钢板材股份有限公司 一种超低钛轿车轮毂轴承用钢HZ55Cr及其制备方法
CN113088623B (zh) * 2021-03-31 2022-11-01 安徽富凯特材有限公司 一种超纯G102Cr18Mo不锈轴承钢的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1139458A (zh) * 1994-11-24 1997-01-01 新日本制铁株式会社 长寿命的感应淬硬轴承钢
US20040047757A1 (en) * 2002-05-10 2004-03-11 Komatsu Ltd. High-hardness, high-toughness steels and crawler components, earth wear resistant components, fastening bolts, high-toughness gears, high-toughness, high contact pressure resistance gears, and wear resistant steel plates using the same
CN105568134A (zh) * 2016-01-05 2016-05-11 江阴兴澄特种钢铁有限公司 一种微合金化轿车碳素轮毂轴承用钢及其制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652084B2 (zh) * 1974-02-18 1981-12-10
JPS594943A (ja) * 1982-06-30 1984-01-11 Nippon Kokan Kk <Nkk> セミマクロ偏析のない連鋳々片製造法
WO2004067790A1 (ja) * 2003-01-30 2004-08-12 Sumitomo Metal Industries, Ltd. 軸受要素部品用鋼管、その製造方法および切削方法
JP4631617B2 (ja) * 2005-08-31 2011-02-16 Jfeスチール株式会社 疲労特性に優れた軸受用鋼部品の製造方法
JP2008088478A (ja) * 2006-09-29 2008-04-17 Jfe Steel Kk 疲労特性に優れた軸受用鋼部品
CN101376948B (zh) * 2007-08-27 2011-03-30 宝山钢铁股份有限公司 一种低成本高纯净度汽车轮毂用中碳轴承钢及其制造方法
BRPI1006852A2 (pt) * 2009-01-16 2017-07-11 Nippon Steel Corp Aço para endurecimento de superfície para uso estrutural em máquinas e peça para uso estrutural em máquinas
JP2012214832A (ja) * 2011-03-31 2012-11-08 Jfe Steel Corp 機械構造用鋼およびその製造方法
JP5825157B2 (ja) * 2012-03-12 2015-12-02 新日鐵住金株式会社 高周波焼入れ用鋼材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1139458A (zh) * 1994-11-24 1997-01-01 新日本制铁株式会社 长寿命的感应淬硬轴承钢
US20040047757A1 (en) * 2002-05-10 2004-03-11 Komatsu Ltd. High-hardness, high-toughness steels and crawler components, earth wear resistant components, fastening bolts, high-toughness gears, high-toughness, high contact pressure resistance gears, and wear resistant steel plates using the same
CN105568134A (zh) * 2016-01-05 2016-05-11 江阴兴澄特种钢铁有限公司 一种微合金化轿车碳素轮毂轴承用钢及其制造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218846A (zh) * 2019-06-27 2019-09-10 洛阳Lyc轴承有限公司 一种高碳铬轴承钢乳化液正火加工方法
CN112708728A (zh) * 2020-12-21 2021-04-27 辽宁科技大学 提高铝脱氧钢/含铝钢中非金属夹杂物塑性的方法及钢材
CN115011871A (zh) * 2022-05-06 2022-09-06 本钢板材股份有限公司 一种含Cu超低钛轴承钢的制备方法
CN115323255A (zh) * 2022-08-19 2022-11-11 建龙北满特殊钢有限责任公司 一种高质量、高均质轴承钢盘条用200方连铸坯的制备方法

Also Published As

Publication number Publication date
DE112018002705T5 (de) 2020-02-13
JP6862578B2 (ja) 2021-04-21
JP2020521053A (ja) 2020-07-16
CN108929997A (zh) 2018-12-04
CN108929997B (zh) 2021-08-17
KR20200003176A (ko) 2020-01-08
KR102314171B1 (ko) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2018214863A1 (zh) 一种汽车轮毂用轴承钢及其制造方法
WO2022160536A1 (zh) 一种等速万向节内滚道用钢及其生产方法
CN108611562B (zh) 一种含硫铝镇静非调质钢及其硫化物形貌控制方法
CN102517521B (zh) 一种MnCr渗碳齿轮钢及其制造方法
CN111961988B (zh) 一种汽车胀断连杆用中碳非调质钢的生产工艺及其锻造方法
CN108929986B (zh) 一种高强度耐磨汽车制动用热轧钢板及其生产工艺
CN110616374B (zh) 一种高碳车轮钢及其热处理方法以及利用其制备车轮的方法
CN114134411B (zh) 一种耐低温高强度滚珠丝杠用球化退火钢及其制造方法
WO2022160720A1 (zh) 一种球笼式万向节保持架用钢及其生产方法
CN113862576B (zh) 一种非调质钢、曲轴及其生产方法
CN104762562A (zh) 一种大直径磨球用钢及其制造方法
TW201632640A (zh) 冷鍛造零件用輥軋棒鋼或輥軋線材
CN108342645B (zh) 一种过共析磨球用钢及其制备方法
US10060014B2 (en) Bearing steel having improved fatigue durability and method of manufacturing the same
CN110904385B (zh) 一种低成本链条用冷轧钢板及其生产方法
CN107354379A (zh) 一种3~6mm 590MPa级热轧车轮钢及其生产方法
CN110904387A (zh) 一种重载铁路货车用贝氏体车轴钢和及其制备方法
CN114645115B (zh) 一种硬度等级在360hb以上的重载货车用车轮及其热处理方法和生产方法
CN110964984A (zh) 一种中、大型汽车轴套用钢sae4160m及其生产工艺
CN104831162A (zh) 一种钒氮微合金化碳素钢及其热处理工艺,生产方法和用途
CN104625630A (zh) 一种耐磨销轴及其加工方法
CN116043106B (zh) 一种高纯净度高韧性长服役周期冷作模具钢及其制备方法
CN115852260B (zh) 一种无缝钢管及其制备方法
CN118256825A (zh) 一种贝氏体非调质钢及制备方法
CN106702280A (zh) 凸轮片的生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565185

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197035801

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18805249

Country of ref document: EP

Kind code of ref document: A1