WO2018212314A1 - Control device for automatic transmission - Google Patents

Control device for automatic transmission Download PDF

Info

Publication number
WO2018212314A1
WO2018212314A1 PCT/JP2018/019230 JP2018019230W WO2018212314A1 WO 2018212314 A1 WO2018212314 A1 WO 2018212314A1 JP 2018019230 W JP2018019230 W JP 2018019230W WO 2018212314 A1 WO2018212314 A1 WO 2018212314A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
shift
speed
vehicle
acceleration
Prior art date
Application number
PCT/JP2018/019230
Other languages
French (fr)
Japanese (ja)
Inventor
智啓 下沢
諒 ▲高▼野
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201880029257.6A priority Critical patent/CN110832230B/en
Publication of WO2018212314A1 publication Critical patent/WO2018212314A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/48Inputs being a function of acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive

Definitions

  • This disclosure relates to a control device for an automatic transmission.
  • various automatic transmissions that change gears by changing over a plurality of frictional engagement elements are known.
  • a first clutch (friction engagement element) provided between the engine and the odd-numbered gear train
  • a second clutch (friction engagement element) provided between the engine and the even-numbered gear train
  • DCT dual clutch transmission
  • a clutch (friction engagement element) that stops relative rotation of elements constituting the planetary gear
  • a brake (friction engagement element) that stops rotation of the element are provided, and driving force from the engine is transmitted via the planetary gear.
  • An automatic transmission (AT) that transmits to the output side is known.
  • Patent Document 1 discloses "a control device for an automatic transmission that suppresses heat generation of the clutch when the temperature of the clutch exceeds a preset temperature" (summary). Is described.
  • the control device described in Patent Document 1 determines whether or not the clutch temperature deriving unit 23b for deriving the temperature of the clutch 20 and the clutch temperature derived by the clutch temperature deriving unit have become higher than a preset set temperature.
  • a clutch temperature determination unit (S102) that performs engagement control with a first control pattern in which the clutch is in a half-clutch state during shift control when the clutch temperature is determined to be equal to or lower than the set temperature. If it is determined as described above, a shift control unit 23a "(summary) that controls the engagement of the clutch with a second control pattern having a smaller slip amount than the half-clutch state is provided.
  • control device described in Patent Document 1 merely switches the control pattern in accordance with the clutch temperature, and does not necessarily prevent a decrease in drivability during shifting.
  • An object of the present disclosure is to provide a control device for an automatic transmission capable of preventing drivability from being deteriorated while preventing excessive heat generation of the friction engagement element when the friction engagement element is replaced. It is.
  • a control device for an automatic transmission is a control device for an automatic transmission for a vehicle in which a shift is executed with a change of a plurality of frictional engagement elements, and is requested by a driver at the start of the shift.
  • a request acceleration determination unit that determines whether or not the vehicle acceleration to be performed is equal to or less than a predetermined threshold; and when the vehicle acceleration is determined to be equal to or less than the threshold by the request acceleration determination unit, the plurality of friction engagement elements
  • An execution unit that executes a protective shift, which is a shift in which the output torque of the automatic transmission is reduced before gripping.
  • an automatic transmission control device capable of preventing a decrease in drivability while preventing excessive heat generation of a frictional engagement element when the frictional engagement element is replaced. Can do.
  • FIG. 1 is a schematic configuration diagram illustrating a vehicle to which an automatic transmission control device according to the present disclosure is applied.
  • FIG. 2 is a functional block diagram of the control device for the automatic transmission according to the present disclosure.
  • FIG. 3 is a flowchart showing a flow of control by the automatic transmission control device according to the present disclosure.
  • FIG. 4 is a time chart when the upshift is performed by the normal shift.
  • FIG. 5 is a time chart when the downshift is performed by the normal shift.
  • FIG. 6 is a time chart when the upshift is performed by the first protective shift or the second protective shift.
  • FIG. 7 is a time chart when the downshift is performed by the first protective shift or the second protective shift.
  • FIG. 8 is a time chart when the control by the control device for the automatic transmission according to the present disclosure is performed.
  • the vehicle 1 includes an engine 10, a DCT 2 (automatic transmission) including a first clutch 20, a second clutch 30, a transmission unit 40, and a hydraulic circuit 90, and a control device 50.
  • the drive wheels are connected to the output side of the DCT 2 through a propeller shaft and a differential gear (not shown) so that power can be transmitted.
  • the engine 10 is, for example, a diesel engine.
  • the output speed of the engine 10 (hereinafter referred to as “engine speed”) and the output torque are controlled based on the accelerator opening Acc of the accelerator pedal detected by the accelerator opening sensor 101.
  • the engine output shaft 11 is provided with an engine speed sensor 102 that detects the engine speed.
  • the first clutch 20 is a hydraulically operated wet multi-plate clutch having a plurality of first input side clutch plates 21 and a plurality of first output side clutch plates 22.
  • the first input side clutch plate 21 rotates integrally with the engine output shaft 11 that is rotated by the engine 10.
  • the first output side clutch plate 22 rotates integrally with the first input shaft 41 of the transmission unit 40.
  • the first clutch 20 is urged in the disconnecting direction by a return spring (not shown), and the first piston 23 is moved by the clutch operating hydraulic pressure supplied from the hydraulic circuit 90, and the first input side clutch plate 21 and the first clutch 20 are moved.
  • the 1 output side clutch plate 22 is brought into contact by pressure contact.
  • the first clutch 20 is engaged, the power of the engine 10 is transmitted to the first input shaft 41.
  • the connection / disconnection of the first clutch 20 is controlled by the control device 50.
  • the first clutch 20 may be a dry single plate clutch.
  • the second clutch 30 is a hydraulically operated wet multi-plate clutch having a plurality of second input side clutch plates 31 and a plurality of second output side clutch plates 32.
  • the second input side clutch plate 31 rotates integrally with the engine output shaft 11.
  • the second output side clutch plate 32 rotates integrally with the second input shaft 42 of the transmission unit 40.
  • the second clutch 30 is urged in the disconnection direction by a return spring (not shown), and the second piston 33 is moved by the clutch operating hydraulic pressure supplied from the hydraulic circuit 90, and the second input side clutch plate 31 and the second clutch 30 are moved.
  • the two output side clutch plates 32 are brought into contact with each other by pressure contact.
  • the connection / disconnection of the second clutch 30 is controlled by the control device 50.
  • the second clutch 30 may be a dry single plate clutch.
  • the first input side clutch plate 21, the second input side clutch plate 31, the first output side clutch plate 22, and the second output side clutch plate 32 are simply referred to as “clutch plates” as necessary.
  • the second clutch 30 is provided on the outer peripheral side of the first clutch 20.
  • the first input shaft 41 is provided with an unillustrated lubricating oil passage including an axial oil passage and one or a plurality of radial oil passages, and the lubricating oil is injected radially from the first input shaft 41.
  • each clutch plate of the first clutch 20 is cooled, and further, each clutch plate of the second clutch 30 is cooled.
  • the lubricating oil that has cooled each clutch plate of the second clutch 30 flows out from the outer diameter side of the second clutch 30 and returns to an oil pan (not shown) provided in the hydraulic circuit 90.
  • the second clutch 30 is provided on the outer peripheral side of the first clutch 20 as an example.
  • the arrangement relationship between the first clutch 20 and the second clutch 30 is described here. It is not limited. Specifically, for example, the second clutch 30 may be disposed on the rear side of the first clutch 20.
  • the transmission unit 40 includes a first input shaft 41 connected to the output side of the first clutch 20 and a second input shaft 42 connected to the output side of the second clutch 30.
  • the transmission unit 40 includes a sub shaft 43 disposed in parallel with the first input shaft 41 and the second input shaft 42, and an output shaft 44 disposed coaxially with the first input shaft 41 and the second input shaft 42.
  • a vehicle speed sensor 103 that detects a vehicle speed V that is the speed of the vehicle 1 is provided on the rear end side of the output shaft 44.
  • the transmission unit 40 includes a first transmission unit 60, a second transmission unit 70, and a forward / reverse switching unit 80.
  • the first transmission unit 60 includes a first high speed gear train 61, a first low speed gear train 62, and a first coupling mechanism 63.
  • the first high-speed gear train 61 is provided so as to mesh with the first input gear 61 a provided so as to be rotatable relative to the first input shaft 41 and the first input gear 61 a and to rotate integrally with the auxiliary shaft 43. And the first auxiliary gear 61b.
  • the first low-speed gear train 62 is provided so as to mesh with the second input gear 62 a provided so as to be rotatable relative to the first input shaft 41 and the second input gear 62 a and to rotate integrally with the auxiliary shaft 43. And a second auxiliary gear 62b.
  • the first coupling mechanism 63 selectively moves the first input gear 61a and the second input gear 62a by moving the first sleeve 63a in the axial direction (left-right direction in FIG. 1) by a gear shift actuator (not shown). 1 Rotate integrally with the input shaft 41.
  • the second transmission unit 70 includes a second high speed gear train 71, a second low speed gear train 72, and a second connection mechanism 73.
  • the second high-speed gear train 71 is provided so as to mesh with the third input gear 71 a and the third input gear 71 a provided so as to be rotatable relative to the second input shaft 42 and to rotate integrally with the auxiliary shaft 43.
  • a third auxiliary gear 71b is provided so as to mesh with the third input gear 71 a and the third input gear 71 a provided so as to be rotatable relative to the second input shaft 42 and to rotate integrally with the auxiliary shaft 43.
  • the second low-speed gear train 72 is provided so as to mesh with the fourth input gear 72 a and the fourth input gear 72 a provided so as to be rotatable relative to the second input shaft 42 and to rotate integrally with the auxiliary shaft 43. And a fourth auxiliary gear 72b.
  • the second coupling mechanism 73 rotates the second sleeve 73a in the axial direction by a gear shift actuator (not shown), thereby rotating the third input gear 71a and the fourth input gear 72a alternatively with the second input shaft 42.
  • the forward / reverse switching unit 80 includes a forward gear train 81, a reverse gear train 82, and a third coupling mechanism 83.
  • the forward gear train 81 meshes with the first output gear 81a provided so as to be rotatable relative to the output shaft 44 and the first output gear 81a, and the fifth sub gear provided so as to rotate integrally with the auxiliary shaft 43. And a gear 81b.
  • the reverse gear train 82 meshes with the second output gear 82a provided so as to be rotatable relative to the output shaft 44, the second output gear 82a and the idler gear 82c, and is provided so as to rotate integrally with the auxiliary shaft 43. And the sixth sub gear 82b.
  • the third connecting mechanism 83 selectively rotates the first output gear 81a and the second output gear 82a integrally with the output shaft 44 by moving the third sleeve 83a in the axial direction by a gear shift actuator (not shown).
  • the first connecting mechanism 63 connects the second input gear 62a and the first input shaft 41
  • the third connecting mechanism 83 connects the first output gear 81a and the output shaft 44
  • the first clutch It is established by touching 20. Thereby, the power of the engine 10 is transmitted from the first clutch 20 in the order of the first input shaft 41, the first low speed gear train 62, the countershaft 43, the forward gear train 81, and the output shaft 44.
  • the second input mechanism 72 connects the fourth input gear 72a and the second input shaft 42
  • the third connection mechanism 83 connects the first output gear 81a and the output shaft 44
  • the second clutch It is established by touching 30. Thereby, the power of the engine 10 is transmitted from the second clutch 30 in the order of the second input shaft 42, the second low speed gear train 72, the auxiliary shaft 43, the forward gear train 81, and the output shaft 44.
  • the first connection mechanism 63 connects the first input gear 61a and the first input shaft 41
  • the third connection mechanism 83 connects the first output gear 81a and the output shaft 44
  • the first clutch It is established by touching 20. Thereby, the power of the engine 10 is transmitted from the first clutch 20 in the order of the first input shaft 41, the first high speed gear train 61, the counter shaft 43, the forward gear train 81, and the output shaft 44.
  • the third input gear 71a and the second input shaft 42 are connected by the second connecting mechanism 73, the first output gear 81a and the output shaft 44 are connected by the third connecting mechanism 83, and the second clutch It is established by touching 30.
  • the power of the engine 10 is transmitted from the second clutch 30 in the order of the second input shaft 42, the second high speed gear train 71, the countershaft 43, the forward gear train 81, and the output shaft 44.
  • the control device 50 includes a CPU 51, a memory 52, and an interface (not shown) that is connected to various sensors and devices to exchange signals.
  • the CPU 51 controls the engine 10 by executing a program stored in the memory 52 and also controls the DCT 2 through the control of the hydraulic circuit 90. Specifically, the CPU 51 executes a program stored in the memory 52, thereby, as shown in FIG. 2, a shift condition establishment determination unit 53, a required acceleration determination unit 54, a vehicle acceleration determination unit 55, and an execution unit. 56 functions.
  • the shift condition establishment determination unit 53 determines whether an upshift or downshift transmission condition is established based on the accelerator opening Acc, the vehicle speed V, the shift map stored in the memory 52, and the like.
  • the requested acceleration determination unit 54 determines whether or not the requested acceleration that is the acceleration of the vehicle 1 requested by the driver is larger than the switching acceleration that is a predetermined reference value.
  • the required acceleration can be obtained by a known method based on the accelerator opening Acc, the vehicle speed V, and the like.
  • the switching acceleration is determined based on the experiment, how the vehicle 1 is used, the vehicle type, and the like, and is stored in the memory 52.
  • the vehicle acceleration determination unit 55 determines whether or not the vehicle acceleration that is the acceleration in the traveling direction of the vehicle 1 exceeds zero.
  • the execution unit 56 connects and disconnects the first clutch 20 and the second clutch 30 via the hydraulic circuit 90, and moves the first sleeve 63a, the second sleeve 73a, and the third sleeve 83a. By doing so, the execution unit 56 performs an upshift or a downshift at any one of the normal shift and the protective shift.
  • the normal shift means that the output torque of the DCT 2 is not reduced by a predetermined amount from the value at the start of the shift, and the clutch changing process of the two clutches and the rotation speed of one of the first input shaft 41 and the second input shaft 42 are used. This is a shift in which the process of shifting the engine speed to the other speed is performed.
  • the protective shift is a process of changing the engine speed from one rotational speed of the first input shaft 41 and the second input shaft 42 to the other rotational speed, and a process of changing the engine speed of the DCT 2.
  • the first protective shift is a process of changing the engine speed from one rotation speed of the first input shaft 41 and the second input shaft 42 to the other rotation speed.
  • the shift is performed in a state where the output torque is reduced by a predetermined amount from the value at the start of the shift.
  • the second protective shift is a process of changing the engine speed from one rotational speed of the first input shaft 41 and the second input shaft 42 to the other rotational speed. Is a shift performed in a state where the output torque of the DCT 2 is reduced within a range where the speed does not decelerate.
  • control device 50 any one or more of the functional units described above are other control devices different from the control device 50. It may be realized by.
  • the control device 50 may be configured to function as the requested acceleration determination unit 54 and the execution unit 56.
  • any one of the functional units described above may be configured to also function as another functional unit.
  • the required acceleration determination unit 54 determines whether the required acceleration is greater than the switching acceleration (S2).
  • the normal shift is executed by the executing unit 56 (S3).
  • the shift control is finished.
  • the execution unit 56 executes the first protective shift (S4).
  • the vehicle acceleration determination unit 55 determines whether the vehicle acceleration exceeds 0 (S5). When vehicle acceleration determination unit 55 determines that the vehicle acceleration exceeds 0 (YES in S5), that is, vehicle 1 is accelerating, until execution unit 56 determines that the first protective shift has ended ( While it is determined NO in S6), the first protective shift by the execution unit 56 is continued. If execution unit 56 determines that the first protective shift has ended (YES in S6), the shift control ends.
  • the vehicle acceleration determination unit 55 determines that the vehicle acceleration is 0 or less (NO in S5), that is, the vehicle 1 is traveling at a constant speed or decelerating. Then, the execution unit 56 executes the second protective shift instead of the first protective shift (S7). When the second protective shift is finished, the shift control is finished.
  • each shift executed by the execution unit 56 will be described in detail with reference to a time chart showing the flow of the shift.
  • the normal shift will be described with reference to FIG.
  • a case where an upshift from the third speed to the fourth speed is performed will be described as an example.
  • the execution unit 56 reduces the torque capacity (transmittable torque) of the first clutch 20 to the engine torque. At this time, the engine torque matches the driver request engine torque.
  • the execution unit 56 gradually increases the torque capacity of the second clutch 30 while gradually decreasing the torque capacity of the first clutch 20. That is, the clutch is changed.
  • the first clutch system output torque which is the torque transmitted to the output shaft 44 via the first clutch 20 and the first transmission 60
  • the second clutch system output torque which is the torque transmitted to the output shaft 44 via the second clutch 30 and the second transmission unit 70
  • the transmission output torque (output torque of DCT2), which is the torque output from the output shaft 44, is the sum of the first clutch system output torque and the second clutch system output torque.
  • the execution unit 56 controls the torque capacity of each clutch so that the transmission output torque matches the driver-requested output torque before and after gripping.
  • the execution unit 56 performs control as follows. In other words, as shown in the middle chart, the execution unit 56 maintains the torque capacity of the second clutch 30 at the same value as the engine torque when the clutch has been changed, for a predetermined time. Reduce the torque by a predetermined amount. As a result, as shown in the upper chart, the engine speed changes from the speed of the first input shaft 41 to the speed of the second input shaft 42. When the engine rotational speed matches the rotational speed of the second input shaft 42, no slip occurs in any of the clutches.
  • the execution unit 56 increases the torque capacity of the second clutch 30 by a predetermined amount so that slip does not occur, as shown in the middle chart. Thereby, the fourth speed is achieved and the normal shift is completed.
  • FIG. 5 shows a time chart when the downshift from the 3rd speed to the 2nd speed is performed at a normal shift.
  • downshifting a process of changing the engine speed from the rotation speed of the second input shaft 42 to the rotation speed of the first input shaft 41 is performed, and subsequently, a clutch re-holding process is performed.
  • the transmission output torque matches the driver requested output torque during the normal shift. Therefore, it is unlikely that the driver will feel uncomfortable during the shift.
  • the energy absorbed by each clutch when slipping occurs also becomes relatively large, so that the temperature of each clutch tends to increase.
  • the execution unit 56 reduces the transmission output torque from the driver requested output torque to a predetermined output torque. Specifically, the execution unit 56 reduces the engine torque to a predetermined value, and reduces the torque capacity of the first clutch 20 that is an engaged clutch to the predetermined value.
  • the predetermined output torque is determined in advance based on the experimental results, how the vehicle 1 is used, the vehicle type, and the like. Further, it can be determined based on the difference between the temperature at the start of shifting of the clutch engaged by re-squeezing or the estimated temperature at the completion of shifting of the clutch and a predetermined threshold.
  • the predetermined output torque is preferably zero acceleration output torque, which is a torque capable of maintaining the vehicle speed when the first protective shift is started, or a torque larger than that.
  • the execution unit 56 reduces the transmission output torque, the vehicle 1 can travel without decelerating. For example, the vehicle 1 can continue traveling without stalling even when a protective shift is performed while traveling on an uphill road.
  • the zero acceleration output torque can be obtained from the following formula 1.
  • Equation 1 T 0acc0 is the zero acceleration output torque, r w is the tire radius, if is the final gear ratio, F aero with the symbol ⁇ is the estimated air resistance, F roll with the symbol ⁇ is the estimated rolling resistance, and g is the gravity Acceleration, symbol “m” is the vehicle weight, and symbol “ ⁇ ” is the gradient estimated value.
  • Equation 1 Each parameter in the right side of Equation 1 is determined in advance or can be obtained by a method known at the time of filing this application. Therefore, detailed description is omitted.
  • the transmission output torque from the driver requested output torque is reduced to the predetermined output torque so as not to give the driver a sense of incongruity. That is, the reduction of the transmission output torque prior to the change of the two clutches is performed at such a changing speed that the jerk of the vehicle 1 during the reduction does not become a value that makes the driver feel uncomfortable.
  • the execution unit 56 reduces the transmission output torque so as to satisfy the following Expression 2.
  • the jerk referred to here is a front jerk that is a jerk in the traveling direction of the vehicle 1.
  • Equation 2 the symbol “ ⁇ ” means first-order time differentiation, and the symbol “ ⁇ ” means second-order time differentiation.
  • T oi is a transmission output torque. Therefore, the first-order time differential value of Toi means the changing speed of the transmission output torque. Further, v x is the forward speed of the vehicle 1. Therefore, the second-order time differential value means the forward jerk of the vehicle 1.
  • Other symbols are the same as those in Equation 1.
  • the execution unit 56 gradually increases the torque capacity of the second clutch 30 while gradually decreasing the torque capacity of the first clutch 20. That is, the clutch is changed.
  • this process is referred to as a “grabbing / replacement process” as necessary.
  • the first clutch system output torque which is the torque transmitted to the output shaft 44 via the first clutch 20 and the first transmission 60
  • the second clutch system output torque which is the torque transmitted to the output shaft 44 via the second clutch 30 and the second transmission unit 70
  • the transmission output torque which is the torque output from the output shaft 44
  • the execution unit 56 increases the torque capacity of each clutch while maintaining a state in which the transmission output torque is less than the driver request output torque and greater than or equal to the zero acceleration output torque before and after gripping. Control.
  • the execution unit 56 controls the torque capacity of the second clutch 30 as follows. That is, the execution unit 56 maintains the torque capacity of the second clutch 30 for a predetermined time at the engine torque when the clutch has been changed, and reduces the engine torque by a predetermined amount. As a result, the engine speed changes from the speed of the first input shaft 41 to the speed of the second input shaft 42.
  • this process is referred to as an “engine speed transition process” as necessary.
  • the engine rotational speed matches the rotational speed of the second input shaft 42, no slip occurs in any of the clutches.
  • the execution unit 56 restores the transmission output torque to the driver requested output torque as shown in the upper chart. Specifically, the execution unit 56 increases the torque capacity of the second clutch 30 to be equal to the torque capacity of the first clutch 20 before the start of shifting, and recovers the engine torque to the driver request engine torque. Thus, the fourth speed is achieved and the first protective shift is completed.
  • the execution unit 56 switches the shift to be performed from the first protective shift to the second protective shift.
  • the shift executed at t x is switched from the first protective shift to the second protective shift.
  • the execution unit 56 controls the torque capacities of the first clutch 20 and the second clutch 30 so that the transmission output torque does not fall below the zero acceleration output torque. Other control contents are the same as those in the first protective shift.
  • FIG. 7 shows a time chart when the downshift from the third speed to the second speed is performed in the first protective shift or the second protective shift.
  • an engine speed transition process is performed, followed by a clutch re-holding process.
  • the first clutch 20 and the second clutch 30 are slipping in the grip changing process.
  • the second clutch 30 or the first clutch 20 is slipping.
  • the torque capacity of each clutch is reduced while these steps are being performed when the first protective shift or the second protective shift is performed, compared to when the normal shift is performed. Therefore, the energy absorbed by each clutch is reduced, and the amount of heat generated in each clutch is reduced. That is, excessive heat generation in each clutch can be prevented by performing the first protective shift or the second protective shift.
  • the grip change process and the engine speed transition process are performed in a state where the transmission output torque that is the output torque of the DCT 2 is reduced, the amount of heat generated in each clutch can be more reliably reduced.
  • FIG. 8 shows a time chart when the control by the control device 50 is performed.
  • the upper chart in FIG. 8 shows an acceleration chart, and the lower chart shows an output torque chart.
  • the vehicle 1 is traveling at the first speed. Further, at time t 1, the accelerator is depressed further. Accordingly, the driver requested output torque increases (see the lower chart), and the requested acceleration that is the vehicle acceleration requested by the driver and the vehicle acceleration that is the acceleration in the traveling direction of the vehicle 1 increase (see the upper chart).
  • the controller 50 performs an upshift from the first speed to the second speed.
  • the required acceleration exceeds the switching acceleration. Therefore, the normal shift is executed.
  • the up-shift to at time t 3 1 speed to the second speed is completed.
  • the controller 50 performs an upshift from the second speed to the third speed.
  • the required acceleration is lower than the switching acceleration. Therefore, the first protective shift is executed.
  • the transmission output torque does not become equal to or less than the zero acceleration output torque (see the lower chart). Therefore, there is no transition from the first protective shift to the second protective shift.
  • the up-shift to at time t 5 2 speed to the third speed is completed.
  • the controller 50 performs an upshift from the third speed to the fourth speed. At this time, as shown in the upper chart, the required acceleration exceeds the switching acceleration. Therefore, the normal shift is executed. In addition, the up-shift to at time t 8 3 speed to the fourth speed is ended.
  • the vehicle 1 enters the uphill road. That is, the gradient estimated value increases rapidly. Therefore, as understood from Equation 1, the zero acceleration output torque increases rapidly (see the lower chart). Further, the vehicle acceleration decreases rapidly. Further, since the accelerator is not stepped on, the driver's required acceleration decreases rapidly with the vehicle acceleration (see the upper chart).
  • the control unit 50 executes the downshift from 4th speed to 3rd speed. At this time, as shown in the upper chart, the required acceleration is lower than the switching acceleration. Therefore, the first protective shift is executed.
  • the vehicle acceleration is zero.
  • the controller 50 switches the control to be executed from the first protective gear to the second protective gear.
  • the transmission output torque is set to zero acceleration output torque as shown in the lower chart. Therefore, the vehicle acceleration is maintained at 0. That is, the vehicle 1 can continue traveling without stalling.
  • the downshift from 4th speed to 3rd speed is completed. Thereafter, the vehicle 1 travels at a constant speed, that is, with the vehicle acceleration being zero.
  • the requested acceleration is equal to or lower than the switching acceleration, that is, if the driver does not have the intention to accelerate the vehicle 1 or if the intention is small, the first protective shift or the first protective shift in which the transmission output torque is reduced. 2 Protection shift is performed. Therefore, according to the control device 50 of the automatic transmission according to the present embodiment, the frictional heat generated by the two clutches can be reduced, and the durability of the two clutches can be improved.
  • the shift to be executed is switched to the second protective shift. Therefore, it is possible to reliably prevent the vehicle 1 from stalling during the execution of shifting.
  • control device 50 of the automatic transmission it is possible to perform a shift that balances drivability and protection of the frictional engagement elements.
  • the automatic transmission may be a DCT that has a larger number of gear trains and can shift gears in multiple stages, a clutch that stops the relative rotation of the elements constituting the planetary gear, and the rotation of the elements.
  • An automatic transmission including a brake to be operated may be used.
  • an automatic transmission control device capable of preventing a decrease in drivability while preventing excessive heat generation of a frictional engagement element when the frictional engagement element is replaced. Can do. Therefore, the industrial applicability is great.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Transmission Device (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

Provided is a control device for an automatic transmission. The control device can perform shifting control that, when frictional engagement elements are switched, can prevent reduction of drivability while also preventing excessive heat from being generated at the frictional engagement elements. A control device for a vehicle automatic transmission that shifts in association with the switching of a plurality of frictional engagement elements, the control device comprising: a requested acceleration determination unit that determines whether the vehicle acceleration requested by a driver at the start of shifting is at or below a prescribed threshold value; and an execution unit that, when the requested acceleration determination unit has determined that said vehicle acceleration is at or below the threshold value, executes protective shifting in which the output torque of the automatic transmission is reduced before the plurality of frictional elements are switched.

Description

自動変速機の制御装置Control device for automatic transmission
 本開示は、自動変速機の制御装置に関する。 This disclosure relates to a control device for an automatic transmission.
 従来、複数の摩擦締結要素の掴み換えを伴って変速する自動変速機が種々知られている。例えば、エンジンと奇数段ギヤ列との間に設けられた第1クラッチ(摩擦締結要素)と、エンジンと偶数段ギヤ列との間に設けられた第2クラッチ(摩擦締結要素)とを備え、エンジンからの駆動力を第1クラッチ又は第2クラッチを介して出力側に伝達するデュアルクラッチトランスミッション(DCT)が知られている。また、遊星歯車を構成する要素同士の相対回転を停止させるクラッチ(摩擦締結要素)と、当該要素の回転を停止させるブレーキ(摩擦締結要素)とを備え、エンジンからの駆動力を遊星歯車を介して出力側に伝達する自動変速機(AT)が知られている。 Conventionally, various automatic transmissions that change gears by changing over a plurality of frictional engagement elements are known. For example, a first clutch (friction engagement element) provided between the engine and the odd-numbered gear train, and a second clutch (friction engagement element) provided between the engine and the even-numbered gear train, A dual clutch transmission (DCT) that transmits driving force from an engine to an output side via a first clutch or a second clutch is known. In addition, a clutch (friction engagement element) that stops relative rotation of elements constituting the planetary gear and a brake (friction engagement element) that stops rotation of the element are provided, and driving force from the engine is transmitted via the planetary gear. An automatic transmission (AT) that transmits to the output side is known.
 これらの自動変速機における複数の摩擦締結要素の掴み換え、すなわち、互いに並行して行われる一方の摩擦締結要素の解放と他方の摩擦締結要素の締結は、各摩擦締結要素において摩擦熱を発生させる。過度な摩擦熱の発生は摩擦締結要素を損傷させる。よって何らかの熱対策が必要である。一方、変速時に予想外の加減速感をドライバに与えることはドライバビリティを低下させるので望ましくない。 In these automatic transmissions, a plurality of frictional engagement elements are replaced, that is, the release of one frictional engagement element and the engagement of the other frictional engagement element performed in parallel with each other generate frictional heat in each frictional engagement element. . The generation of excessive frictional heat damages the frictional fastening elements. Therefore, some heat countermeasure is necessary. On the other hand, it is not desirable to give the driver an unexpected acceleration / deceleration at the time of shifting, because drivability is lowered.
 摩擦熱対策に関する発明として、特許文献1には、「クラッチの温度が予め設定された温度以上となった場合には、クラッチの発熱を抑制するようにした自動変速機の制御装置」(要約)が記載されている。 As an invention related to countermeasures against frictional heat, Patent Document 1 discloses "a control device for an automatic transmission that suppresses heat generation of the clutch when the temperature of the clutch exceeds a preset temperature" (summary). Is described.
日本国特開2013-83318号公報Japanese Unexamined Patent Publication No. 2013-83318
 特許文献1に記載の制御装置は、「クラッチ20の温度を導出するクラッチ温度導出部23bと、クラッチ温度導出部によって導出されたクラッチ温度が予め設定された設定温度より高くなったか否かを判定するクラッチ温度判定部(S102)を有し、クラッチ温度が、設定温度以下と判定された場合には、変速制御時に、クラッチを半クラッチ状態となる第1制御パターンで係合制御し、設定温度以上と判定された場合には、クラッチを半クラッチ状態よりもスリップ量の少ない第2制御パターンで係合制御する変速制御部23a」(要約)を備える。 The control device described in Patent Document 1 determines whether or not the clutch temperature deriving unit 23b for deriving the temperature of the clutch 20 and the clutch temperature derived by the clutch temperature deriving unit have become higher than a preset set temperature. A clutch temperature determination unit (S102) that performs engagement control with a first control pattern in which the clutch is in a half-clutch state during shift control when the clutch temperature is determined to be equal to or lower than the set temperature. If it is determined as described above, a shift control unit 23a "(summary) that controls the engagement of the clutch with a second control pattern having a smaller slip amount than the half-clutch state is provided.
 しかしながら、特許文献1に記載の制御装置はクラッチ温度に応じて単に制御パターンを切り替えるものに過ぎず、必ずしも変速時のドライバビリティの低下を防止できるものではない。 However, the control device described in Patent Document 1 merely switches the control pattern in accordance with the clutch temperature, and does not necessarily prevent a decrease in drivability during shifting.
 本開示の目的は、摩擦締結要素の掴み換えを行う際の、摩擦締結要素の過度な発熱を防止しつつ、ドライバビリティの低下を防止することが可能な自動変速機の制御装置を提供することである。 An object of the present disclosure is to provide a control device for an automatic transmission capable of preventing drivability from being deteriorated while preventing excessive heat generation of the friction engagement element when the friction engagement element is replaced. It is.
 本開示の一態様に係る自動変速機の制御装置は、複数の摩擦締結要素の掴み換えを伴って変速が実行される車両用の自動変速機の制御装置であって、変速開始時にドライバが要求する車両加速度が所定の閾値以下であるか否かを判断する要求加速度判断部と、前記要求加速度判断部によって前記車両加速度が前記閾値以下であると判断された場合、前記複数の摩擦締結要素の掴み換えの前に前記自動変速機の出力トルクが低減される変速である保護変速を実行する実行部と、を備える。 A control device for an automatic transmission according to an aspect of the present disclosure is a control device for an automatic transmission for a vehicle in which a shift is executed with a change of a plurality of frictional engagement elements, and is requested by a driver at the start of the shift. A request acceleration determination unit that determines whether or not the vehicle acceleration to be performed is equal to or less than a predetermined threshold; and when the vehicle acceleration is determined to be equal to or less than the threshold by the request acceleration determination unit, the plurality of friction engagement elements An execution unit that executes a protective shift, which is a shift in which the output torque of the automatic transmission is reduced before gripping.
 本開示によれば、摩擦締結要素の掴み換えを行う際の、摩擦締結要素の過度な発熱を防止しつつ、ドライバビリティの低下を防止することが可能な自動変速機の制御装置を提供することができる。 According to the present disclosure, it is possible to provide an automatic transmission control device capable of preventing a decrease in drivability while preventing excessive heat generation of a frictional engagement element when the frictional engagement element is replaced. Can do.
図1は、本開示に係る自動変速機の制御装置が適用された車両を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating a vehicle to which an automatic transmission control device according to the present disclosure is applied. 図2は、本開示に係る自動変速機の制御装置の機能ブロック図である。FIG. 2 is a functional block diagram of the control device for the automatic transmission according to the present disclosure. 図3は、本開示に係る自動変速機の制御装置による制御の流れを示すフローチャートである。FIG. 3 is a flowchart showing a flow of control by the automatic transmission control device according to the present disclosure. 図4は、通常変速によってアップシフトが行われるときのタイムチャートである。FIG. 4 is a time chart when the upshift is performed by the normal shift. 図5は、通常変速によってダウンシフトが行われるときのタイムチャートである。FIG. 5 is a time chart when the downshift is performed by the normal shift. 図6は、第1保護変速又は第2保護変速によってアップシフトが行われるときのタイムチャートである。FIG. 6 is a time chart when the upshift is performed by the first protective shift or the second protective shift. 図7は、第1保護変速又は第2保護変速によってダウンシフトが行われるときのタイムチャートである。FIG. 7 is a time chart when the downshift is performed by the first protective shift or the second protective shift. 図8は、本開示に係る自動変速機の制御装置による制御が行われるときのタイムチャートである。FIG. 8 is a time chart when the control by the control device for the automatic transmission according to the present disclosure is performed.
 以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、以下に説明する実施形態は一例であり、本開示はこの実施形態により限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The embodiment described below is an example, and the present disclosure is not limited to this embodiment.
 まず、図1を参照して、車両の全体構成について説明する。図1に示すように、車両1は、エンジン10と、第1クラッチ20、第2クラッチ30、変速部40及び油圧回路90からなるDCT2(自動変速機)と、制御装置50とを備えている。そして、DCT2の出力側に、不図示のプロペラシャフトおよびデファレンシャルギヤを介して、駆動輪が動力伝達可能に連結されている。 First, the overall configuration of the vehicle will be described with reference to FIG. As shown in FIG. 1, the vehicle 1 includes an engine 10, a DCT 2 (automatic transmission) including a first clutch 20, a second clutch 30, a transmission unit 40, and a hydraulic circuit 90, and a control device 50. . The drive wheels are connected to the output side of the DCT 2 through a propeller shaft and a differential gear (not shown) so that power can be transmitted.
 エンジン10は、例えばディーゼルエンジンである。エンジン10の出力回転数(以下、「エンジン回転数」と記載する。)および出力トルクは、アクセル開度センサ101によって検出されるアクセルペダルのアクセル開度Accに基づいて制御される。また、エンジン出力軸11には、エンジン回転数を検出するエンジン回転数センサ102が設けられている。 The engine 10 is, for example, a diesel engine. The output speed of the engine 10 (hereinafter referred to as “engine speed”) and the output torque are controlled based on the accelerator opening Acc of the accelerator pedal detected by the accelerator opening sensor 101. The engine output shaft 11 is provided with an engine speed sensor 102 that detects the engine speed.
 第1クラッチ20は、複数の第1入力側クラッチ板21および複数の第1出力側クラッチ板22を有する油圧作動式の湿式多板クラッチである。第1入力側クラッチ板21は、エンジン10によって回転させられるエンジン出力軸11と一体回転する。第1出力側クラッチ板22は、変速部40の第1入力軸41と一体回転する。 The first clutch 20 is a hydraulically operated wet multi-plate clutch having a plurality of first input side clutch plates 21 and a plurality of first output side clutch plates 22. The first input side clutch plate 21 rotates integrally with the engine output shaft 11 that is rotated by the engine 10. The first output side clutch plate 22 rotates integrally with the first input shaft 41 of the transmission unit 40.
 第1クラッチ20は、不図示のリターンスプリングによって断方向に付勢されており、油圧回路90から供給されるクラッチ作動油圧によって第1ピストン23が移動して、第1入力側クラッチ板21および第1出力側クラッチ板22を圧接することで接とされる。第1クラッチ20が接とされることで、エンジン10の動力が第1入力軸41に伝達される。第1クラッチ20の断接は、制御装置50によって制御される。なお、第1クラッチ20は乾式単板クラッチであってもよい。 The first clutch 20 is urged in the disconnecting direction by a return spring (not shown), and the first piston 23 is moved by the clutch operating hydraulic pressure supplied from the hydraulic circuit 90, and the first input side clutch plate 21 and the first clutch 20 are moved. The 1 output side clutch plate 22 is brought into contact by pressure contact. When the first clutch 20 is engaged, the power of the engine 10 is transmitted to the first input shaft 41. The connection / disconnection of the first clutch 20 is controlled by the control device 50. The first clutch 20 may be a dry single plate clutch.
 第2クラッチ30は、複数の第2入力側クラッチ板31および複数の第2出力側クラッチ板32を有する油圧作動式の湿式多板クラッチである。第2入力側クラッチ板31は、エンジン出力軸11と一体回転する。第2出力側クラッチ板32は、変速部40の第2入力軸42と一体回転する。 The second clutch 30 is a hydraulically operated wet multi-plate clutch having a plurality of second input side clutch plates 31 and a plurality of second output side clutch plates 32. The second input side clutch plate 31 rotates integrally with the engine output shaft 11. The second output side clutch plate 32 rotates integrally with the second input shaft 42 of the transmission unit 40.
 第2クラッチ30は、不図示のリターンスプリングによって断方向に付勢されており、油圧回路90から供給されるクラッチ作動油圧によって第2ピストン33が移動して、第2入力側クラッチ板31および第2出力側クラッチ板32を圧接することで接とされる。第2クラッチ30が接とされることで、エンジン10の動力が第2入力軸42に伝達される。第2クラッチ30の断接は、制御装置50によって制御される。なお、第2クラッチ30は乾式単板クラッチであってもよい。以下、必要に応じ、第1入力側クラッチ板21、第2入力側クラッチ板31、第1出力側クラッチ板22及び第2出力側クラッチ板32を単に「クラッチ板」と記載する。 The second clutch 30 is urged in the disconnection direction by a return spring (not shown), and the second piston 33 is moved by the clutch operating hydraulic pressure supplied from the hydraulic circuit 90, and the second input side clutch plate 31 and the second clutch 30 are moved. The two output side clutch plates 32 are brought into contact with each other by pressure contact. When the second clutch 30 is engaged, the power of the engine 10 is transmitted to the second input shaft 42. The connection / disconnection of the second clutch 30 is controlled by the control device 50. The second clutch 30 may be a dry single plate clutch. Hereinafter, the first input side clutch plate 21, the second input side clutch plate 31, the first output side clutch plate 22, and the second output side clutch plate 32 are simply referred to as “clutch plates” as necessary.
 第2クラッチ30は、第1クラッチ20の外周側に設けられている。また、第1入力軸41には、軸方向油路および1つまたは複数の径方向油路からなる不図示の潤滑油路が設けられており、第1入力軸41から潤滑油が放射状に噴射されることで、第1クラッチ20の各クラッチ板が冷却され、さらに、第2クラッチ30の各クラッチ板が冷却される。第2クラッチ30の各クラッチ板を冷却した潤滑油は、第2クラッチ30の外径側等から流出し、油圧回路90が備える不図示のオイルパンに戻る。なお、本実施形態では、第2クラッチ30が第1クラッチ20の外周側に設けられているものを例に挙げて説明を行うが、第1クラッチ20および第2クラッチ30の配置関係はこれに限定されない。具体的には、例えば、第2クラッチ30を、第1クラッチ20の後側に配置するようにしてもよい。 The second clutch 30 is provided on the outer peripheral side of the first clutch 20. The first input shaft 41 is provided with an unillustrated lubricating oil passage including an axial oil passage and one or a plurality of radial oil passages, and the lubricating oil is injected radially from the first input shaft 41. Thus, each clutch plate of the first clutch 20 is cooled, and further, each clutch plate of the second clutch 30 is cooled. The lubricating oil that has cooled each clutch plate of the second clutch 30 flows out from the outer diameter side of the second clutch 30 and returns to an oil pan (not shown) provided in the hydraulic circuit 90. In this embodiment, the second clutch 30 is provided on the outer peripheral side of the first clutch 20 as an example. However, the arrangement relationship between the first clutch 20 and the second clutch 30 is described here. It is not limited. Specifically, for example, the second clutch 30 may be disposed on the rear side of the first clutch 20.
 変速部40は、第1クラッチ20の出力側に接続された第1入力軸41と、第2クラッチ30の出力側に接続された第2入力軸42とを備えている。また、変速部40は、第1入力軸41および第2入力軸42と平行に配置された副軸43と、第1入力軸41および第2入力軸42と同軸上に配置された出力軸44と、を備えている。また、出力軸44の後端側には、車両1の速度である車速Vを検出する車速センサ103が設けられている。 The transmission unit 40 includes a first input shaft 41 connected to the output side of the first clutch 20 and a second input shaft 42 connected to the output side of the second clutch 30. The transmission unit 40 includes a sub shaft 43 disposed in parallel with the first input shaft 41 and the second input shaft 42, and an output shaft 44 disposed coaxially with the first input shaft 41 and the second input shaft 42. And. A vehicle speed sensor 103 that detects a vehicle speed V that is the speed of the vehicle 1 is provided on the rear end side of the output shaft 44.
 変速部40は、第1変速部60と、第2変速部70と、前後進切替部80と、を備えている。第1変速部60は、第1高速ギヤ列61と、第1低速ギヤ列62と、第1連結機構63とを備えている。 The transmission unit 40 includes a first transmission unit 60, a second transmission unit 70, and a forward / reverse switching unit 80. The first transmission unit 60 includes a first high speed gear train 61, a first low speed gear train 62, and a first coupling mechanism 63.
 第1高速ギヤ列61は、第1入力軸41に対して相対回転可能に設けられた第1入力ギヤ61aと、第1入力ギヤ61aと噛合し、副軸43と一体回転するように設けられた第1副ギヤ61bとからなる。 The first high-speed gear train 61 is provided so as to mesh with the first input gear 61 a provided so as to be rotatable relative to the first input shaft 41 and the first input gear 61 a and to rotate integrally with the auxiliary shaft 43. And the first auxiliary gear 61b.
 第1低速ギヤ列62は、第1入力軸41に対して相対回転可能に設けられた第2入力ギヤ62aと、第2入力ギヤ62aと噛合し、副軸43と一体回転するように設けられた第2副ギヤ62bとからなる。 The first low-speed gear train 62 is provided so as to mesh with the second input gear 62 a provided so as to be rotatable relative to the first input shaft 41 and the second input gear 62 a and to rotate integrally with the auxiliary shaft 43. And a second auxiliary gear 62b.
 第1連結機構63は、不図示のギヤシフトアクチュエータによって第1スリーブ63aを軸方向(図1の左右方向)に移動させることによって、第1入力ギヤ61aおよび第2入力ギヤ62aを択一的に第1入力軸41と一体回転させる。 The first coupling mechanism 63 selectively moves the first input gear 61a and the second input gear 62a by moving the first sleeve 63a in the axial direction (left-right direction in FIG. 1) by a gear shift actuator (not shown). 1 Rotate integrally with the input shaft 41.
 第2変速部70は、第2高速ギヤ列71と、第2低速ギヤ列72と、第2連結機構73とを備えている。第2高速ギヤ列71は、第2入力軸42に対して相対回転可能に設けられた第3入力ギヤ71aと、第3入力ギヤ71aと噛合し、副軸43と一体回転するように設けられた第3副ギヤ71bとからなる。 The second transmission unit 70 includes a second high speed gear train 71, a second low speed gear train 72, and a second connection mechanism 73. The second high-speed gear train 71 is provided so as to mesh with the third input gear 71 a and the third input gear 71 a provided so as to be rotatable relative to the second input shaft 42 and to rotate integrally with the auxiliary shaft 43. And a third auxiliary gear 71b.
 第2低速ギヤ列72は、第2入力軸42に対して相対回転可能に設けられた第4入力ギヤ72aと、第4入力ギヤ72aと噛合し、副軸43と一体回転するように設けられた第4副ギヤ72bとからなる。 The second low-speed gear train 72 is provided so as to mesh with the fourth input gear 72 a and the fourth input gear 72 a provided so as to be rotatable relative to the second input shaft 42 and to rotate integrally with the auxiliary shaft 43. And a fourth auxiliary gear 72b.
 第2連結機構73は、不図示のギヤシフトアクチュエータによって第2スリーブ73aを軸方向に移動させることによって、第3入力ギヤ71aおよび第4入力ギヤ72aを択一的に第2入力軸42と一体回転させる。 The second coupling mechanism 73 rotates the second sleeve 73a in the axial direction by a gear shift actuator (not shown), thereby rotating the third input gear 71a and the fourth input gear 72a alternatively with the second input shaft 42. Let
 前後進切替部80は、前進ギヤ列81と、後進ギヤ列82と、第3連結機構83とを備えている。前進ギヤ列81は、出力軸44に対して相対回転可能に設けられた第1出力ギヤ81aと、第1出力ギヤ81aと噛合し、副軸43と一体回転するように設けられた第5副ギヤ81bとからなる。 The forward / reverse switching unit 80 includes a forward gear train 81, a reverse gear train 82, and a third coupling mechanism 83. The forward gear train 81 meshes with the first output gear 81a provided so as to be rotatable relative to the output shaft 44 and the first output gear 81a, and the fifth sub gear provided so as to rotate integrally with the auxiliary shaft 43. And a gear 81b.
 後進ギヤ列82は、出力軸44に対して相対回転可能に設けられた第2出力ギヤ82aと、第2出力ギヤ82aとアイドラギヤ82cを介して噛合し、副軸43と一体回転するように設けられた第6副ギヤ82bとからなる。 The reverse gear train 82 meshes with the second output gear 82a provided so as to be rotatable relative to the output shaft 44, the second output gear 82a and the idler gear 82c, and is provided so as to rotate integrally with the auxiliary shaft 43. And the sixth sub gear 82b.
 第3連結機構83は、不図示のギヤシフトアクチュエータによって第3スリーブ83aを軸方向に移動させることによって、第1出力ギヤ81aおよび第2出力ギヤ82aを択一的に出力軸44と一体回転させる。 The third connecting mechanism 83 selectively rotates the first output gear 81a and the second output gear 82a integrally with the output shaft 44 by moving the third sleeve 83a in the axial direction by a gear shift actuator (not shown).
 ここで、DCT2における動力伝達経路について簡単に説明する。1速は、第1連結機構63によって第2入力ギヤ62aと第1入力軸41とを連結し、第3連結機構83によって第1出力ギヤ81aと出力軸44とを連結し、かつ第1クラッチ20を接とすることで成立する。これにより、エンジン10の動力は、第1クラッチ20から、第1入力軸41、第1低速ギヤ列62、副軸43、前進ギヤ列81、出力軸44の順に伝達される。 Here, the power transmission path in DCT2 will be briefly described. For the first speed, the first connecting mechanism 63 connects the second input gear 62a and the first input shaft 41, the third connecting mechanism 83 connects the first output gear 81a and the output shaft 44, and the first clutch. It is established by touching 20. Thereby, the power of the engine 10 is transmitted from the first clutch 20 in the order of the first input shaft 41, the first low speed gear train 62, the countershaft 43, the forward gear train 81, and the output shaft 44.
 2速は、第2連結機構73によって第4入力ギヤ72aと第2入力軸42とを連結し、第3連結機構83によって第1出力ギヤ81aと出力軸44とを連結し、かつ第2クラッチ30を接とすることで成立する。これにより、エンジン10の動力は、第2クラッチ30から、第2入力軸42、第2低速ギヤ列72、副軸43、前進ギヤ列81、出力軸44の順に伝達される。 For the second speed, the second input mechanism 72 connects the fourth input gear 72a and the second input shaft 42, the third connection mechanism 83 connects the first output gear 81a and the output shaft 44, and the second clutch. It is established by touching 30. Thereby, the power of the engine 10 is transmitted from the second clutch 30 in the order of the second input shaft 42, the second low speed gear train 72, the auxiliary shaft 43, the forward gear train 81, and the output shaft 44.
 3速は、第1連結機構63によって第1入力ギヤ61aと第1入力軸41とを連結し、第3連結機構83によって第1出力ギヤ81aと出力軸44とを連結し、かつ第1クラッチ20を接とすることで成立する。これにより、エンジン10の動力は、第1クラッチ20から、第1入力軸41、第1高速ギヤ列61、副軸43、前進ギヤ列81、出力軸44の順に伝達される。 In the third speed, the first connection mechanism 63 connects the first input gear 61a and the first input shaft 41, the third connection mechanism 83 connects the first output gear 81a and the output shaft 44, and the first clutch. It is established by touching 20. Thereby, the power of the engine 10 is transmitted from the first clutch 20 in the order of the first input shaft 41, the first high speed gear train 61, the counter shaft 43, the forward gear train 81, and the output shaft 44.
 4速は、第2連結機構73によって第3入力ギヤ71aと第2入力軸42とを連結し、第3連結機構83によって第1出力ギヤ81aと出力軸44とを連結し、かつ第2クラッチ30を接とすることで成立する。これにより、エンジン10の動力は、第2クラッチ30から、第2入力軸42、第2高速ギヤ列71、副軸43、前進ギヤ列81、出力軸44の順に伝達される。 For the fourth speed, the third input gear 71a and the second input shaft 42 are connected by the second connecting mechanism 73, the first output gear 81a and the output shaft 44 are connected by the third connecting mechanism 83, and the second clutch It is established by touching 30. As a result, the power of the engine 10 is transmitted from the second clutch 30 in the order of the second input shaft 42, the second high speed gear train 71, the countershaft 43, the forward gear train 81, and the output shaft 44.
 制御装置50は、CPU51、メモリ52、並びに、種々のセンサ及び装置と接続され信号を授受する図示しないインタフェース等から構成されている。CPU51はメモリ52に記憶されているプログラムを実行することにより、エンジン10を制御するとともに、油圧回路90の制御を介してDCT2を制御する。具体的には、CPU51はメモリ52に記憶されているプログラムを実行することにより、図2に示されるように、変速条件成立判断部53、要求加速度判断部54、車両加速度判断部55及び実行部56として機能する。 The control device 50 includes a CPU 51, a memory 52, and an interface (not shown) that is connected to various sensors and devices to exchange signals. The CPU 51 controls the engine 10 by executing a program stored in the memory 52 and also controls the DCT 2 through the control of the hydraulic circuit 90. Specifically, the CPU 51 executes a program stored in the memory 52, thereby, as shown in FIG. 2, a shift condition establishment determination unit 53, a required acceleration determination unit 54, a vehicle acceleration determination unit 55, and an execution unit. 56 functions.
 変速条件成立判断部53は、アクセル開度Acc、車速V、及び、メモリ52に記憶されている変速マップ等に基づいて、アップシフト又はダウンシフトの変速条件が成立したか否かを判断する。 The shift condition establishment determination unit 53 determines whether an upshift or downshift transmission condition is established based on the accelerator opening Acc, the vehicle speed V, the shift map stored in the memory 52, and the like.
 要求加速度判断部54は、ドライバが要求する車両1の加速度である要求加速度が、あらかじめ定められている基準値である切替加速度より大きいか否かを判断する。要求加速度はアクセル開度Acc及び車速V等に基づいて公知の方法で求めることができる。切替加速度は実験、車両1の使われ方及び車種等に基づいて定められており、メモリ52に記憶されている。 The requested acceleration determination unit 54 determines whether or not the requested acceleration that is the acceleration of the vehicle 1 requested by the driver is larger than the switching acceleration that is a predetermined reference value. The required acceleration can be obtained by a known method based on the accelerator opening Acc, the vehicle speed V, and the like. The switching acceleration is determined based on the experiment, how the vehicle 1 is used, the vehicle type, and the like, and is stored in the memory 52.
 車両加速度判断部55は、車両1の進行方向の加速度である車両加速度が0を上回るか否かを判断する。 The vehicle acceleration determination unit 55 determines whether or not the vehicle acceleration that is the acceleration in the traveling direction of the vehicle 1 exceeds zero.
 実行部56は、油圧回路90を介して第1クラッチ20の断接、第2クラッチ30の断接、並びに、第1スリーブ63a、第2スリーブ73a及び第3スリーブ83aの移動を行う。そうすることによって、実行部56は、通常変速及び保護変速の何れかでアップシフト又はダウンシフトを行う。 The execution unit 56 connects and disconnects the first clutch 20 and the second clutch 30 via the hydraulic circuit 90, and moves the first sleeve 63a, the second sleeve 73a, and the third sleeve 83a. By doing so, the execution unit 56 performs an upshift or a downshift at any one of the normal shift and the protective shift.
 通常変速とは、DCT2の出力トルクを変速開始時の値から所定量低減させることなく、2つのクラッチの掴み換え工程、及び、第1入力軸41及び第2入力軸42の一方の回転数から他方の回転数にエンジン回転数を遷移させる工程が行われる変速である。 The normal shift means that the output torque of the DCT 2 is not reduced by a predetermined amount from the value at the start of the shift, and the clutch changing process of the two clutches and the rotation speed of one of the first input shaft 41 and the second input shaft 42 are used. This is a shift in which the process of shifting the engine speed to the other speed is performed.
 保護変速とは、2つのクラッチの掴み換え工程、及び、第1入力軸41及び第2入力軸42の一方の回転数から他方の回転数にエンジン回転数を遷移させる工程が、DCT2の出力トルクが低減した状態で行われる変速である。よって、保護変速実行時は2つのクラッチそれぞれで吸収されるエネルギが低減する。すなわち、2つのクラッチそれぞれで発生する摩擦熱が低減する。よって、2つのクラッチを摩擦熱から保護することができる。保護変速には、第1保護変速及び第2保護変速の2種類がある。 The protective shift is a process of changing the engine speed from one rotational speed of the first input shaft 41 and the second input shaft 42 to the other rotational speed, and a process of changing the engine speed of the DCT 2. Is a shift performed in a state in which is reduced. Therefore, the energy absorbed by each of the two clutches is reduced when the protective shift is executed. That is, frictional heat generated in each of the two clutches is reduced. Thus, the two clutches can be protected from frictional heat. There are two types of protective shifts: a first protective shift and a second protective shift.
 第1保護変速とは、2つのクラッチの掴み換え工程、及び、第1入力軸41及び第2入力軸42の一方の回転数から他方の回転数にエンジン回転数を遷移させる工程が、DCT2の出力トルクが変速開始時の値から所定量低減した状態で行われる変速である。 The first protective shift is a process of changing the engine speed from one rotation speed of the first input shaft 41 and the second input shaft 42 to the other rotation speed. The shift is performed in a state where the output torque is reduced by a predetermined amount from the value at the start of the shift.
 第2保護変速とは、2つのクラッチの掴み換え工程、及び、第1入力軸41及び第2入力軸42の一方の回転数から他方の回転数にエンジン回転数を遷移させる工程が、車両1が減速しない範囲でDCT2の出力トルクが低減した状態で行われる変速である。 The second protective shift is a process of changing the engine speed from one rotational speed of the first input shaft 41 and the second input shaft 42 to the other rotational speed. Is a shift performed in a state where the output torque of the DCT 2 is reduced within a range where the speed does not decelerate.
 なお、上に説明した各機能部の全てが制御装置50によって実現される必要はなく、上に説明した各機能部のうちの何れか1つ以上が制御装置50とは別の他の制御装置によって実現されてもよい。例えば、制御装置50は要求加速度判断部54及び実行部56として機能するように構成されていてもよい。また、上に説明した各機能部のうち何れか1つが他の機能部の機能をも兼ねるように構成されていても良いことは勿論である。 Note that not all the functional units described above need be realized by the control device 50, and any one or more of the functional units described above are other control devices different from the control device 50. It may be realized by. For example, the control device 50 may be configured to function as the requested acceleration determination unit 54 and the execution unit 56. Of course, any one of the functional units described above may be configured to also function as another functional unit.
 続いて、図3のフローチャートを参照して、本実施形態に係る変速機の制御装置による変速制御について詳細に説明する。 Subsequently, the shift control by the transmission control device according to this embodiment will be described in detail with reference to the flowchart of FIG.
 まず、変速条件成立判断部53によって、アップシフト又はダウンシフトの変速条件が成立したか否かが判断される(S1)。変速条件が成立していない(S1においてNO)と判断される間は、変速条件が成立した(S1においてYES)と判断されるまで、変速条件が成立したか否かの判断が繰り返される。 First, it is determined by the shift condition establishment determining unit 53 whether or not the upshift or downshift condition is satisfied (S1). While it is determined that the speed change condition is not satisfied (NO in S1), the determination as to whether the speed change condition is satisfied is repeated until it is determined that the speed change condition is satisfied (YES in S1).
 変速条件が成立したと判断されると、要求加速度判断部54によって、要求加速度が切替加速度より大きいか否かが判断される(S2)。 When it is determined that the speed change condition is satisfied, the required acceleration determination unit 54 determines whether the required acceleration is greater than the switching acceleration (S2).
 要求加速度判断部54によって、要求加速度が切替加速度より大きい(S2においてYES)と判断されると、実行部56によって通常変速が実行される(S3)。通常変速が終了すると変速制御は終了する。 When the requested acceleration determining unit 54 determines that the requested acceleration is larger than the switching acceleration (YES in S2), the normal shift is executed by the executing unit 56 (S3). When the normal shift is finished, the shift control is finished.
 一方、要求加速度判断部54によって、要求加速度が切替加速度以下である(S2においてNO)と判断されると、実行部56によって第1保護変速が実行される(S4)。 On the other hand, when the required acceleration determining unit 54 determines that the required acceleration is equal to or lower than the switching acceleration (NO in S2), the execution unit 56 executes the first protective shift (S4).
 第1保護変速の実行中、車両加速度判断部55によって、車両加速度が0を上回るか否かが判断される(S5)。車両加速度判断部55によって、車両加速度が0を上回る(S5においてYES)、すなわち、車両1は加速していると判断されると、実行部56が第1保護変速が終了したと判断するまで(S6においてNOと判断される間)、実行部56による第1保護変速が継続される。実行部56によって第1保護変速が終了した(S6においてYES)と判断されると、変速制御は終了する。 During execution of the first protective shift, the vehicle acceleration determination unit 55 determines whether the vehicle acceleration exceeds 0 (S5). When vehicle acceleration determination unit 55 determines that the vehicle acceleration exceeds 0 (YES in S5), that is, vehicle 1 is accelerating, until execution unit 56 determines that the first protective shift has ended ( While it is determined NO in S6), the first protective shift by the execution unit 56 is continued. If execution unit 56 determines that the first protective shift has ended (YES in S6), the shift control ends.
 また、第1保護変速の実行中、車両加速度判断部55によって、車両加速度が0以下である(S5においてNO)、すなわち、車両1は定速走行している又は減速していると判断されると、実行部56は第1保護変速に代えて第2保護変速を実行する(S7)。第2保護変速が終了すると変速制御は終了する。 Further, during execution of the first protective shift, the vehicle acceleration determination unit 55 determines that the vehicle acceleration is 0 or less (NO in S5), that is, the vehicle 1 is traveling at a constant speed or decelerating. Then, the execution unit 56 executes the second protective shift instead of the first protective shift (S7). When the second protective shift is finished, the shift control is finished.
 続いて、実行部56によって実行される各変速について、変速の流れを示すタイムチャートを参照しながら、詳細に説明する。まず、図4を参照しながら、通常変速について説明する。ここでは、3速から4速へのアップシフトが行われる場合を例に挙げる。 Subsequently, each shift executed by the execution unit 56 will be described in detail with reference to a time chart showing the flow of the shift. First, the normal shift will be described with reference to FIG. Here, a case where an upshift from the third speed to the fourth speed is performed will be described as an example.
 通常変速が開始されると、まず、中段のチャートに示されるように、実行部56は第1クラッチ20のトルク容量(伝達可能トルク)をエンジントルクまで低減する。なおこのとき、エンジントルクはドライバ要求エンジントルクに一致している。 When the normal shift is started, first, as shown in the middle chart, the execution unit 56 reduces the torque capacity (transmittable torque) of the first clutch 20 to the engine torque. At this time, the engine torque matches the driver request engine torque.
 続いて、実行部56は、第1クラッチ20のトルク容量を徐々に低減させつつ、第2クラッチ30のトルク容量を徐々に増加させる。すなわち、クラッチの掴み換えが行われる。 Subsequently, the execution unit 56 gradually increases the torque capacity of the second clutch 30 while gradually decreasing the torque capacity of the first clutch 20. That is, the clutch is changed.
 その結果、下段のチャートに示されるように、第1クラッチ20及び第1変速部60を介して出力軸44に伝達されるトルクである第1クラッチ系統出力トルクは徐々に減少する。また、第2クラッチ30及び第2変速部70を介して出力軸44に伝達されるトルクである第2クラッチ系統出力トルクは徐々に増加する。出力軸44から出力されるトルクである変速機出力トルク(DCT2の出力トルク)は、第1クラッチ系統出力トルクと第2クラッチ系統出力トルクの和となる。通常変速実行時、実行部56は、掴み換えの前後を通じて、変速機出力トルクがドライバ要求出力トルクに一致するように、各クラッチのトルク容量を制御する。 As a result, as shown in the lower chart, the first clutch system output torque, which is the torque transmitted to the output shaft 44 via the first clutch 20 and the first transmission 60, gradually decreases. Further, the second clutch system output torque, which is the torque transmitted to the output shaft 44 via the second clutch 30 and the second transmission unit 70, gradually increases. The transmission output torque (output torque of DCT2), which is the torque output from the output shaft 44, is the sum of the first clutch system output torque and the second clutch system output torque. During normal shift execution, the execution unit 56 controls the torque capacity of each clutch so that the transmission output torque matches the driver-requested output torque before and after gripping.
 第1クラッチ系統出力トルクが0になり、変速機出力トルクが第2クラッチ系統出力トルクと等しくなると、実行部56は、次のように制御を行う。すなわち、中段のチャートに示されるように、実行部56は、所定時間、第2クラッチ30のトルク容量を、クラッチの掴み換えが行われていたときのエンジントルクと同じ値に維持するとともに、エンジントルクを所定量低減する。その結果、上段のチャートに示されるように、エンジン回転数は第1入力軸41の回転数から第2入力軸42の回転数に遷移する。エンジン回転数が第2入力軸42の回転数に一致すると、いずれのクラッチにおいても滑りが生じていない状態となる。 When the first clutch system output torque becomes zero and the transmission output torque becomes equal to the second clutch system output torque, the execution unit 56 performs control as follows. In other words, as shown in the middle chart, the execution unit 56 maintains the torque capacity of the second clutch 30 at the same value as the engine torque when the clutch has been changed, for a predetermined time. Reduce the torque by a predetermined amount. As a result, as shown in the upper chart, the engine speed changes from the speed of the first input shaft 41 to the speed of the second input shaft 42. When the engine rotational speed matches the rotational speed of the second input shaft 42, no slip occurs in any of the clutches.
 エンジン回転数が第2入力軸42の回転数に一致すると、実行部56は、中段のチャートに示されるように、第2クラッチ30のトルク容量を、滑りが生じないように所定量増加させる。これにより、4速が達成され通常変速が完了する。 When the engine rotational speed matches the rotational speed of the second input shaft 42, the execution unit 56 increases the torque capacity of the second clutch 30 by a predetermined amount so that slip does not occur, as shown in the middle chart. Thereby, the fourth speed is achieved and the normal shift is completed.
 また、3速から2速へのダウンシフトが通常変速で行われる場合のタイムチャートを図5に示す。ダウンシフトの場合、エンジン回転数が第2入力軸42の回転数から第1入力軸41の回転数に遷移する工程が行われ、続いて、クラッチの掴み換え工程が行われる。 Also, FIG. 5 shows a time chart when the downshift from the 3rd speed to the 2nd speed is performed at a normal shift. In the case of downshifting, a process of changing the engine speed from the rotation speed of the second input shaft 42 to the rotation speed of the first input shaft 41 is performed, and subsequently, a clutch re-holding process is performed.
 なお、アップシフトとダウンシフトのいずれの場合も、通常変速実行中は、変速機出力トルクがドライバ要求出力トルクに一致している。よって、変速実行中にドライバに違和感を与えることは少ない。ただし、変速機出力トルクが比較的高い結果、滑りが生じている時に各クラッチで吸収されるエネルギも比較的大きくなるので、各クラッチの温度が高くなる傾向がある。 In both the upshift and the downshift, the transmission output torque matches the driver requested output torque during the normal shift. Therefore, it is unlikely that the driver will feel uncomfortable during the shift. However, as a result of the relatively high transmission output torque, the energy absorbed by each clutch when slipping occurs also becomes relatively large, so that the temperature of each clutch tends to increase.
 次に、図6を参照しながら、第1保護変速及び第2保護変速について説明する。ここでは、3速から4速へのアップシフトが行われる場合を例に挙げる。 Next, the first protective shift and the second protective shift will be described with reference to FIG. Here, a case where an upshift from the third speed to the fourth speed is performed will be described as an example.
 第1保護変速が実行されると、まず、上段のチャートに示されるように、実行部56は変速機出力トルクをドライバ要求出力トルクから、所定の出力トルクまで低減させる。具体的には、実行部56はエンジントルクを所定値まで低減させるとともに、締結されているクラッチである第1クラッチ20のトルク容量を、当該所定値まで低減させる。 When the first protective shift is executed, first, as shown in the upper chart, the execution unit 56 reduces the transmission output torque from the driver requested output torque to a predetermined output torque. Specifically, the execution unit 56 reduces the engine torque to a predetermined value, and reduces the torque capacity of the first clutch 20 that is an engaged clutch to the predetermined value.
 上記所定の出力トルクは、実験結果、車両1の使われ方、車種等に基づいてあらかじめ定められている。また、掴み換えによって締結される側のクラッチの変速開始時の温度、又は、当該クラッチの変速完了時の推定温度と、あらかじめ定められた閾値との差に基づいて決定することができる。 The predetermined output torque is determined in advance based on the experimental results, how the vehicle 1 is used, the vehicle type, and the like. Further, it can be determined based on the difference between the temperature at the start of shifting of the clutch engaged by re-squeezing or the estimated temperature at the completion of shifting of the clutch and a predetermined threshold.
 いずれの場合であっても、上記所定の出力トルクは、第1保護変速を開始するときの車速を維持可能なトルクであるゼロ加速度出力トルク又はそれよりも大きなトルクとすることが好ましい。そのようにすることで、実行部56が変速機出力トルクを低減させても、車両1は減速することなく走行することができる。例えば、登坂路走行中に保護変速が行われる場合も、車両1は失速することなく走行を継続することができる。なお、ゼロ加速度出力トルクは次の数式1から求めることができる。 In any case, the predetermined output torque is preferably zero acceleration output torque, which is a torque capable of maintaining the vehicle speed when the first protective shift is started, or a torque larger than that. By doing so, even if the execution unit 56 reduces the transmission output torque, the vehicle 1 can travel without decelerating. For example, the vehicle 1 can continue traveling without stalling even when a protective shift is performed while traveling on an uphill road. The zero acceleration output torque can be obtained from the following formula 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 数式1において、T0acc0はゼロ加速度出力トルク、rはタイヤ半径、iはファイナルギア比、記号^付Faeroは空気抵抗推定値、記号^付Frollはころがり抵抗推定値、gは重力加速度、記号^付mは車両重量、記号^付θは勾配推定値である。なお、数式1の右辺中の各パラメータは、あらかじめ定められているか、本願出願時に公知となっている方法によって求めることができるものである。よって詳細な説明は省略する。 In Equation 1, T 0acc0 is the zero acceleration output torque, r w is the tire radius, if is the final gear ratio, F aero with the symbol ^ is the estimated air resistance, F roll with the symbol ^ is the estimated rolling resistance, and g is the gravity Acceleration, symbol “m” is the vehicle weight, and symbol “θ” is the gradient estimated value. Each parameter in the right side of Equation 1 is determined in advance or can be obtained by a method known at the time of filing this application. Therefore, detailed description is omitted.
 また、ドライバ要求出力トルクから上記所定の出力トルクへの変速機出力トルクの低減は、ドライバに違和感を与えないように行うことが好ましい。すなわち、2つのクラッチの掴み換えに先立つ変速機出力トルクの低減は、当該低減が行われている最中の車両1の加加速度がドライバに違和感を与える値とならないような変化速度で行われることが好ましい。例えば、以下の数式2を満たすように、実行部56は変速機出力トルクを低減させる。なお、ここでいう加加速度とは、車両1の進行方向の加加速度である前方加加速度である。 Further, it is preferable to reduce the transmission output torque from the driver requested output torque to the predetermined output torque so as not to give the driver a sense of incongruity. That is, the reduction of the transmission output torque prior to the change of the two clutches is performed at such a changing speed that the jerk of the vehicle 1 during the reduction does not become a value that makes the driver feel uncomfortable. Is preferred. For example, the execution unit 56 reduces the transmission output torque so as to satisfy the following Expression 2. The jerk referred to here is a front jerk that is a jerk in the traveling direction of the vehicle 1.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 数式2において、記号・は1階時間微分を、記号・・は2階時間微分を意味している。Toiは変速機出力トルクである。よって、Toiの1階時間微分値は、変速機出力トルクの変化速度を意味している。また、vは車両1の前方速度である。よって、その2階時間微分値は車両1の前方加加速度を意味している。なお、その他の記号は、数式1と共通である。 In Equation 2, the symbol “·” means first-order time differentiation, and the symbol “·” means second-order time differentiation. T oi is a transmission output torque. Therefore, the first-order time differential value of Toi means the changing speed of the transmission output torque. Further, v x is the forward speed of the vehicle 1. Therefore, the second-order time differential value means the forward jerk of the vehicle 1. Other symbols are the same as those in Equation 1.
 vの2階時間微分値(車両1の前方加加速度)の好適な値の範囲として、ドライバが違和感を持たない値の範囲が、予め実験的に求められ、メモリ52に格納されている。よって、そのような値を数式2に代入して求められる数値範囲内の変化速度で変速機出力トルクを変化させることで、ドライバに違和感を与えることなく、クラッチの掴み換えに先立って変速機出力トルクを低減させることができる。 As a suitable range of values of the second-order differential value of v x (forward jerk of the vehicle 1), a range of values in which the driver does not feel uncomfortable is experimentally obtained in advance and stored in the memory 52. Therefore, by changing the transmission output torque at a change speed within the numerical range obtained by substituting such a value into Equation 2, the transmission output prior to clutch reshuffling without giving the driver a sense of incongruity. Torque can be reduced.
 続いて、実行部56は第1クラッチ20のトルク容量を徐々に低減させつつ、第2クラッチ30のトルク容量を徐々に増加させる。すなわち、クラッチの掴み換えが行われる。以下、この工程を、必要に応じ「掴み換え工程」と記載する。 Subsequently, the execution unit 56 gradually increases the torque capacity of the second clutch 30 while gradually decreasing the torque capacity of the first clutch 20. That is, the clutch is changed. Hereinafter, this process is referred to as a “grabbing / replacement process” as necessary.
 その結果、上段のチャートに示されるように、第1クラッチ20及び第1変速部60を介して出力軸44に伝達されるトルクである第1クラッチ系統出力トルクは徐々に減少する。また、第2クラッチ30及び第2変速部70を介して出力軸44に伝達されるトルクである第2クラッチ系統出力トルクは徐々に増加する。出力軸44から出力されるトルクである変速機出力トルクは、第1クラッチ系統出力トルクと第2クラッチ系統出力トルクの和となる。第1保護変速実行中、実行部56は、掴み換えの前後を通じて、変速機出力トルクがドライバ要求出力トルク未満、且つ、ゼロ加速度出力トルク以上となる状態を維持しながら、各クラッチのトルク容量を制御する。 As a result, as shown in the upper chart, the first clutch system output torque, which is the torque transmitted to the output shaft 44 via the first clutch 20 and the first transmission 60, gradually decreases. Further, the second clutch system output torque, which is the torque transmitted to the output shaft 44 via the second clutch 30 and the second transmission unit 70, gradually increases. The transmission output torque, which is the torque output from the output shaft 44, is the sum of the first clutch system output torque and the second clutch system output torque. During execution of the first protective shift, the execution unit 56 increases the torque capacity of each clutch while maintaining a state in which the transmission output torque is less than the driver request output torque and greater than or equal to the zero acceleration output torque before and after gripping. Control.
 第1クラッチ系統出力トルクが0になり、変速機出力トルクが第2クラッチ系統出力トルクと等しくなると、実行部56は、第2クラッチ30のトルク容量を次のように制御する。すなわち、実行部56は、所定時間、第2クラッチ30のトルク容量を、クラッチの掴み換えが行われていたときのエンジントルクに維持するとともに、エンジントルクを所定量低減する。その結果、エンジン回転数は第1入力軸41の回転数から第2入力軸42の回転数に遷移する。以下、この工程を、必要に応じ、「エンジン回転数遷移工程」と記載する。エンジン回転数が第2入力軸42の回転数に一致すると、いずれのクラッチにおいても滑りが生じていない状態となる。 When the first clutch system output torque becomes zero and the transmission output torque becomes equal to the second clutch system output torque, the execution unit 56 controls the torque capacity of the second clutch 30 as follows. That is, the execution unit 56 maintains the torque capacity of the second clutch 30 for a predetermined time at the engine torque when the clutch has been changed, and reduces the engine torque by a predetermined amount. As a result, the engine speed changes from the speed of the first input shaft 41 to the speed of the second input shaft 42. Hereinafter, this process is referred to as an “engine speed transition process” as necessary. When the engine rotational speed matches the rotational speed of the second input shaft 42, no slip occurs in any of the clutches.
 エンジン回転数が第2入力軸42の回転数に一致すると、実行部56は、上段のチャートに示されるように、変速機出力トルクをドライバ要求出力トルクに回復させる。具体的には、実行部56は、第2クラッチ30のトルク容量を、変速開始前の第1クラッチ20のトルク容量と等しくなるように増加させるとともに、エンジントルクをドライバ要求エンジントルクに回復させる。これにより、4速が達成され第1保護変速が完了する。 When the engine rotational speed matches the rotational speed of the second input shaft 42, the execution unit 56 restores the transmission output torque to the driver requested output torque as shown in the upper chart. Specifically, the execution unit 56 increases the torque capacity of the second clutch 30 to be equal to the torque capacity of the first clutch 20 before the start of shifting, and recovers the engine torque to the driver request engine torque. Thus, the fourth speed is achieved and the first protective shift is completed.
 また、第1保護変速の実行中に、変速機出力トルクがゼロ加速度出力トルク以下になった場合、実行部56は、実行する変速を第1保護変速から第2保護変速に切り替える。図6の下段のチャートでは、tにおいて実行される変速が第1保護変速から第2保護変速に切り替わっている。 In addition, when the transmission output torque becomes equal to or less than the zero acceleration output torque during the execution of the first protective shift, the execution unit 56 switches the shift to be performed from the first protective shift to the second protective shift. In the lower chart of FIG. 6, the shift executed at t x is switched from the first protective shift to the second protective shift.
 第2保護変速を開始すると、実行部56は、変速機出力トルクがゼロ加速度出力トルクを下回ることがないように、第1クラッチ20及び第2クラッチ30の各トルク容量を制御する。その他の制御内容は第1保護変速と同様である。 When the second protective shift is started, the execution unit 56 controls the torque capacities of the first clutch 20 and the second clutch 30 so that the transmission output torque does not fall below the zero acceleration output torque. Other control contents are the same as those in the first protective shift.
 また、3速から2速へのダウンシフトが第1保護変速又は第2保護変速で行われる場合のタイムチャートを図7に示す。通常変速の場合と同様、ダウンシフトの場合、エンジン回転数遷移工程が行われ、続いて、クラッチの掴み換え工程が行われる。 FIG. 7 shows a time chart when the downshift from the third speed to the second speed is performed in the first protective shift or the second protective shift. As in the case of the normal shift, in the case of downshifting, an engine speed transition process is performed, followed by a clutch re-holding process.
 アップシフト及びダウンシフトのいずれの場合も、掴み換え工程において、第1クラッチ20及び第2クラッチ30は滑っている。また、エンジン回転数遷移工程において、第2クラッチ30又は第1クラッチ20は滑っている。滑りが生じている限り摩擦熱は発生する。しかしながら、通常変速実行時と比較して、第1保護変速又は第2保護変速の実行時は、各クラッチのトルク容量はこれらの工程が行われている間低減している。よって、各クラッチで吸収されるエネルギは低減し、各クラッチにおける発熱量は小さくなる。すなわち、第1保護変速又は第2保護変速を行うことによって、各クラッチにおける過度な発熱を防止することができる。しかも、DCT2の出力トルクである変速機出力トルクが低減した状態で掴み換え工程やエンジン回転数遷移工程が行われるので、より確実に、各クラッチにおける発熱量を低減させることができる。 In both the upshift and the downshift, the first clutch 20 and the second clutch 30 are slipping in the grip changing process. In the engine speed transition process, the second clutch 30 or the first clutch 20 is slipping. As long as slip occurs, frictional heat is generated. However, the torque capacity of each clutch is reduced while these steps are being performed when the first protective shift or the second protective shift is performed, compared to when the normal shift is performed. Therefore, the energy absorbed by each clutch is reduced, and the amount of heat generated in each clutch is reduced. That is, excessive heat generation in each clutch can be prevented by performing the first protective shift or the second protective shift. In addition, since the grip change process and the engine speed transition process are performed in a state where the transmission output torque that is the output torque of the DCT 2 is reduced, the amount of heat generated in each clutch can be more reliably reduced.
 また、アップシフト及びダウンシフトのいずれの場合も、第2保護変速実行中、変速出力トルクはゼロ加速度出力トルクを下回らない。すなわち、車両1は減速しない。よって、仮に変速が登坂路走行中に行われる場合であっても、車両1は失速することなく走行を継続することができる。 In both cases of upshift and downshift, the shift output torque does not fall below the zero acceleration output torque during execution of the second protective shift. That is, the vehicle 1 does not decelerate. Therefore, even if the speed change is performed during traveling on an uphill road, the vehicle 1 can continue traveling without stalling.
 続いて、本実施形態に係る制御装置50によって行われる変速の具体例を、図8を参照しながら説明する。図8には、制御装置50による制御が行われるときのタイムチャートが示されている。図8の上段には加速度のチャート、下段には出力トルクのチャートが示されている。 Subsequently, a specific example of the shift performed by the control device 50 according to the present embodiment will be described with reference to FIG. FIG. 8 shows a time chart when the control by the control device 50 is performed. The upper chart in FIG. 8 shows an acceleration chart, and the lower chart shows an output torque chart.
 時間tにおいて、車両1は1速で走行している。また、時間tにおいて、アクセルが踏み増される。よって、ドライバ要求出力トルクは増加し(下段チャート参照)、ドライバが要求する車両加速度である要求加速度、及び、車両1の進行方向の加速度である車両加速度は増加する(上段チャート参照)。 At time t 0, the vehicle 1 is traveling at the first speed. Further, at time t 1, the accelerator is depressed further. Accordingly, the driver requested output torque increases (see the lower chart), and the requested acceleration that is the vehicle acceleration requested by the driver and the vehicle acceleration that is the acceleration in the traveling direction of the vehicle 1 increase (see the upper chart).
 時刻tにおいて、変速条件が成立したと判断され、制御装置50は1速から2速へのアップシフトを実行する。このとき、上段チャートに示されるように、要求加速度は切替加速度を超えている。よって、通常変速が実行される。なお、時刻tにおいて1速から2速へのアップシフトは終了する。 In time t 2, the it is determined that the shift condition is satisfied, the controller 50 performs an upshift from the first speed to the second speed. At this time, as shown in the upper chart, the required acceleration exceeds the switching acceleration. Therefore, the normal shift is executed. In addition, the up-shift to at time t 3 1 speed to the second speed is completed.
 時刻t以降、アクセルの踏み込み具合は一定とされる。一方、車速は徐々に増加するので、車両1の空気抵抗は徐々に増加する。よって、要求加速度は徐々に低下する(上段チャート参照)。また、ゼロ加速度出力トルクは徐々に増加する(下段チャート参照)。 After time t 1, the accelerator pedal depression degree is constant. On the other hand, since the vehicle speed gradually increases, the air resistance of the vehicle 1 gradually increases. Therefore, the required acceleration gradually decreases (see the upper chart). Further, the zero acceleration output torque gradually increases (see the lower chart).
 時刻tにおいて変速条件が成立したと判断され、制御装置50は2速から3速へのアップシフトを実行する。このとき、上段チャートに示されるように、要求加速度は切替加速度を下回っている。よって、第1保護変速が実行される。第1保護変速実行中、変速機出力トルクはゼロ加速度出力トルク以下とはならない(下段チャート参照)。よって、第1保護変速から第2保護変速に移行することはない。なお、時刻tにおいて2速から3速へのアップシフトは終了する。 At time t 4 is determined that the shift condition is satisfied, the controller 50 performs an upshift from the second speed to the third speed. At this time, as shown in the upper chart, the required acceleration is lower than the switching acceleration. Therefore, the first protective shift is executed. During the execution of the first protective shift, the transmission output torque does not become equal to or less than the zero acceleration output torque (see the lower chart). Therefore, there is no transition from the first protective shift to the second protective shift. In addition, the up-shift to at time t 5 2 speed to the third speed is completed.
 時刻tにおいて、アクセルが踏み増される。よって、ドライバ要求出力トルクは増加し(下段チャート参照)、要求加速度、及び、車両加速度は増加する(上段チャート参照)。 At time t 6, the accelerator is depressed further. Therefore, the driver requested output torque increases (see the lower chart), and the requested acceleration and the vehicle acceleration increase (see the upper chart).
 時刻tにおいて、変速条件が成立したと判断され、制御装置50は3速から4速へのアップシフトを実行する。このとき、上段チャートに示されるように、要求加速度は切替加速度を超えている。よって、通常変速が実行される。なお、時刻tにおいて3速から4速へのアップシフトは終了する。 At time t 7, it is determined that the shift condition is satisfied, the controller 50 performs an upshift from the third speed to the fourth speed. At this time, as shown in the upper chart, the required acceleration exceeds the switching acceleration. Therefore, the normal shift is executed. In addition, the up-shift to at time t 8 3 speed to the fourth speed is ended.
 時刻tにおいて、車両1は登坂路に進入する。すなわち、勾配推定値は急上昇する。よって、数式1から理解されるように、ゼロ加速度出力トルクは急上昇する(下段チャート参照)。また、車両加速度は急低下する。また、アクセルの踏み増しはないので、ドライバの要求加速度は車両加速度とともに急低下する(上段チャート参照)。 At time t 9, the vehicle 1 enters the uphill road. That is, the gradient estimated value increases rapidly. Therefore, as understood from Equation 1, the zero acceleration output torque increases rapidly (see the lower chart). Further, the vehicle acceleration decreases rapidly. Further, since the accelerator is not stepped on, the driver's required acceleration decreases rapidly with the vehicle acceleration (see the upper chart).
 時刻t10において、変速条件が成立したと判断され、制御装置50は4速から3速へのダウンシフトを実行する。このとき、上段チャートに示されるように、要求加速度は切替加速度を下回っている。よって、第1保護変速が実行される。 At time t 10, it is determined that the shift condition is satisfied, the control unit 50 executes the downshift from 4th speed to 3rd speed. At this time, as shown in the upper chart, the required acceleration is lower than the switching acceleration. Therefore, the first protective shift is executed.
 第1保護変速実行中、上段チャートに示されるように、時刻t11において、車両加速度が0となる。よって、時刻t11において、制御装置50は、実行する制御を第1保護変速から第2保護変速に切り替える。第2保護変速が実行されると、下段チャートに示されるように、変速機出力トルクはゼロ加速度出力トルクとされる。よって、車両加速度は0の状態が維持される。すなわち、車両1は失速することなく走行を継続することができる。なお、時刻t12において、4速から3速へのダウンシフトは終了する。その後車両1は定速で、すなわち車両加速度が0の状態で走行する。 During the first protective shift execution, as shown in the upper chart, at time t 11, the vehicle acceleration is zero. Thus, at time t 11, the controller 50 switches the control to be executed from the first protective gear to the second protective gear. When the second protection shift is executed, the transmission output torque is set to zero acceleration output torque as shown in the lower chart. Therefore, the vehicle acceleration is maintained at 0. That is, the vehicle 1 can continue traveling without stalling. Incidentally, at time t 12, the downshift from 4th speed to 3rd speed is completed. Thereafter, the vehicle 1 travels at a constant speed, that is, with the vehicle acceleration being zero.
 以上のように、要求加速度が切替加速度を超える場合、すなわち、ドライバが車両1を加速させる意思を持っている、又は、その意思が大きい場合は、変速機出力トルクが低減されない通常変速が行われる。よって、本実施形態に係る自動変速機の制御装置50によれば、ドライバの意思に従った、ドライバビリティのよい変速を行うことができる。 As described above, when the required acceleration exceeds the switching acceleration, that is, when the driver has an intention to accelerate the vehicle 1 or when the intention is large, a normal shift in which the transmission output torque is not reduced is performed. . Therefore, according to the control device 50 of the automatic transmission according to the present embodiment, it is possible to perform a shift with good drivability according to the driver's intention.
 一方、要求加速度が切替加速度以下である場合、すなわち、ドライバが車両1を加速させる意思を持っていない、又は、その意思が小さい場合は、変速機出力トルクが低減される第1保護変速又は第2保護変速が行われる。よって、本実施形態に係る自動変速機の制御装置50によれば、2つのクラッチで生じる摩擦熱を低減させることができ、2つのクラッチの耐久性を向上させることができる。 On the other hand, if the requested acceleration is equal to or lower than the switching acceleration, that is, if the driver does not have the intention to accelerate the vehicle 1 or if the intention is small, the first protective shift or the first protective shift in which the transmission output torque is reduced. 2 Protection shift is performed. Therefore, according to the control device 50 of the automatic transmission according to the present embodiment, the frictional heat generated by the two clutches can be reduced, and the durability of the two clutches can be improved.
 しかも、第1保護変速の実行中に車両加速度が0以下となる場合は、実行される変速が第2保護変速に切り替えられる。よって、変速実行中に車両1が失速することを確実に防止することができる。 Moreover, when the vehicle acceleration becomes 0 or less during execution of the first protective shift, the shift to be executed is switched to the second protective shift. Therefore, it is possible to reliably prevent the vehicle 1 from stalling during the execution of shifting.
 すなわち、本実施形態に係る自動変速機の制御装置50によれば、ドライバビリティと摩擦締結要素の保護のバランスがとれた変速を行うことができる。 That is, according to the control device 50 of the automatic transmission according to the present embodiment, it is possible to perform a shift that balances drivability and protection of the frictional engagement elements.
 なお、自動変速機は、ギヤ列をさらに多数有し、より多段に変速できるDCTであってもよいし、遊星歯車を構成する要素同士の相対回転を停止させるクラッチと、当該要素の回転を停止させるブレーキとを備える自動変速機であってもよい。 The automatic transmission may be a DCT that has a larger number of gear trains and can shift gears in multiple stages, a clutch that stops the relative rotation of the elements constituting the planetary gear, and the rotation of the elements. An automatic transmission including a brake to be operated may be used.
 本出願は、2017年5月19日付で出願された日本国特許出願(特願2017-099987)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2017-099987) filed on May 19, 2017, the contents of which are incorporated herein by reference.
 本開示によれば、摩擦締結要素の掴み換えを行う際の、摩擦締結要素の過度な発熱を防止しつつ、ドライバビリティの低下を防止することが可能な自動変速機の制御装置を提供することができる。よって、その産業上の利用可能性は多大である。 According to the present disclosure, it is possible to provide an automatic transmission control device capable of preventing a decrease in drivability while preventing excessive heat generation of a frictional engagement element when the frictional engagement element is replaced. Can do. Therefore, the industrial applicability is great.
 1 車両
 2 DCT
 10 エンジン
 11 エンジン出力軸
 20 第1クラッチ
 21 第1入力側クラッチ板
 22 第1出力側クラッチ板
 23 第1ピストン
 30 第2クラッチ
 31 第2入力側クラッチ板
 32 第2出力側クラッチ板
 33 第2ピストン
 40 変速部
 41 第1入力軸
 42 第2入力軸
 43 副軸
 44 出力軸
 50 制御装置
 51 CPU
 52 メモリ
 53 変速条件成立判断部
 54 要求加速度判断部
 55 車両加速度判断部
 56 実行部
 60 第1変速部
 61 第1高速ギヤ列
 61a 第1入力ギヤ
 61b 第1副ギヤ
 62 第1低速ギヤ列
 62a 第2入力ギヤ
 62b 第2副ギヤ
 63 第1連結機構
 63a 第1スリーブ
 70 第2変速部
 71 第2高速ギヤ列
 71a 第3入力ギヤ
 71b 第3副ギヤ
 72 第2低速ギヤ列
 72a 第4入力ギヤ
 72b 第4副ギヤ
 73 第2連結機構
 73a 第2スリーブ
 80 前後進切替部
 81 前進ギヤ列
 81a 第1出力ギヤ
 81b 第5副ギヤ
 82 後進ギヤ列
 82a 第2出力ギヤ
 82b 第6副ギヤ
 82c アイドラギヤ
 83 第3連結機構
 83a 第3スリーブ
 101 アクセル開度センサ
 102 エンジン回転数センサ
 103 車速センサ
 90 油圧回路
1 Vehicle 2 DCT
DESCRIPTION OF SYMBOLS 10 Engine 11 Engine output shaft 20 1st clutch 21 1st input side clutch board 22 1st output side clutch board 23 1st piston 30 2nd clutch 31 2nd input side clutch board 32 2nd output side clutch board 33 2nd piston 40 Transmission Unit 41 First Input Shaft 42 Second Input Shaft 43 Subshaft 44 Output Shaft 50 Controller 51 CPU
52 Memory 53 Shift Condition Satisfaction Determination Unit 54 Required Acceleration Determination Unit 55 Vehicle Acceleration Determination Unit 56 Execution Unit 60 First Transmission Unit 61 First High Speed Gear Train 61a First Input Gear 61b First Sub Gear 62 First Low Speed Gear Train 62a First 2 input gear 62b 2nd sub gear 63 1st connection mechanism 63a 1st sleeve 70 2nd transmission part 71 2nd high speed gear train 71a 3rd input gear 71b 3rd sub gear 72 2nd low speed gear train 72a 4th input gear 72b Fourth sub gear 73 Second coupling mechanism 73a Second sleeve 80 Forward / reverse switching portion 81 Forward gear train 81a First output gear 81b Fifth sub gear 82 Reverse gear train 82a Second output gear 82b Sixth sub gear 82c Idler gear 83 First 3 connection mechanism 83a 3rd sleeve 101 accelerator opening sensor 102 engine speed sensor 103 vehicle speed sensor 9 Hydraulic circuit

Claims (3)

  1.  複数の摩擦締結要素の掴み換えを伴って変速が実行される車両用の自動変速機の制御装置であって、
     変速開始時にドライバが要求する車両加速度が所定の閾値以下であるか否かを判断する要求加速度判断部と、
     前記要求加速度判断部によって前記車両加速度が前記閾値以下であると判断された場合、前記複数の摩擦締結要素の掴み換えの前に前記自動変速機の出力トルクが低減される変速である保護変速を実行する実行部と、を備える自動変速機の制御装置。
    A control device for an automatic transmission for a vehicle in which a shift is performed with a change of grip of a plurality of frictional engagement elements,
    A requested acceleration determination unit that determines whether or not the vehicle acceleration requested by the driver at the start of shifting is equal to or less than a predetermined threshold;
    When the requested acceleration determination unit determines that the vehicle acceleration is equal to or less than the threshold value, a protective shift that is a shift in which the output torque of the automatic transmission is reduced before the plurality of frictional engagement elements are replaced. An automatic transmission control device comprising: an execution unit that executes the control unit.
  2.  前記実行部は、車速を低減させずに前記保護変速を実行する、
     請求項1に記載の自動変速機の制御装置。
    The execution unit executes the protective shift without reducing the vehicle speed.
    The control device for an automatic transmission according to claim 1.
  3.  前記実行部は、前記保護変速を開始する時の車速を維持可能なトルク以上に前記自動変速機の出力トルクを維持することで、車速を低減させずに前記保護変速を実行する、
     請求項2に記載の自動変速機の制御装置。
    The execution unit executes the protective shift without reducing the vehicle speed by maintaining the output torque of the automatic transmission to be equal to or higher than a torque capable of maintaining the vehicle speed when starting the protective shift.
    The control device for an automatic transmission according to claim 2.
PCT/JP2018/019230 2017-05-19 2018-05-18 Control device for automatic transmission WO2018212314A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880029257.6A CN110832230B (en) 2017-05-19 2018-05-18 Control device for automatic transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-099987 2017-05-19
JP2017099987A JP6932991B2 (en) 2017-05-19 2017-05-19 Control device for automatic transmission

Publications (1)

Publication Number Publication Date
WO2018212314A1 true WO2018212314A1 (en) 2018-11-22

Family

ID=64273941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019230 WO2018212314A1 (en) 2017-05-19 2018-05-18 Control device for automatic transmission

Country Status (3)

Country Link
JP (1) JP6932991B2 (en)
CN (1) CN110832230B (en)
WO (1) WO2018212314A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11103930B2 (en) 2018-10-15 2021-08-31 Sumitomo Electric Hardmetal Corp. Cutting tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308841A (en) * 2003-04-09 2004-11-04 Nissan Motor Co Ltd Shift control device for multi-stage automatic transmission
JP2009127793A (en) * 2007-11-27 2009-06-11 Nissan Motor Co Ltd Driving force controller of vehicle
JP2012107706A (en) * 2010-11-17 2012-06-07 Daimler Ag Shift control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8600633B2 (en) * 2010-07-29 2013-12-03 GM Global Technology Operations LLC Gear preselect systems for a dual clutch transmission
JP5822615B2 (en) * 2011-09-20 2015-11-24 アイシン・エーアイ株式会社 Automatic clutch control device and shift control method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308841A (en) * 2003-04-09 2004-11-04 Nissan Motor Co Ltd Shift control device for multi-stage automatic transmission
JP2009127793A (en) * 2007-11-27 2009-06-11 Nissan Motor Co Ltd Driving force controller of vehicle
JP2012107706A (en) * 2010-11-17 2012-06-07 Daimler Ag Shift control device

Also Published As

Publication number Publication date
JP2018194133A (en) 2018-12-06
CN110832230A (en) 2020-02-21
JP6932991B2 (en) 2021-09-08
CN110832230B (en) 2021-05-28

Similar Documents

Publication Publication Date Title
Tian et al. Modelling and control of a novel two-speed transmission for electric vehicles
US10166974B2 (en) Control system of power transmission system of vehicle
US9174644B2 (en) Vehicle shift control device
JP5506484B2 (en) Vehicle power transmission control device
EP2767733B1 (en) Power transmission control device for vehicle
JP4577073B2 (en) Control device for multiple clutch transmission
EP3822517B1 (en) Control system and control method for vehicle
EP1310696B1 (en) Automatic-clutch control system of automatic clutch type transmission
WO2018212314A1 (en) Control device for automatic transmission
WO2018212313A1 (en) Control device for automatic transmission
JP2006226380A (en) Control device of twin-clutch transmission
WO2018212324A1 (en) Control device for automatic transmission
JP2006308061A (en) Control device for transmission
WO2018212325A1 (en) Device for controlling automatic transmission
WO2018212326A1 (en) Control device for automatic transmission
JP2013032825A (en) Power transmission controller of vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18802801

Country of ref document: EP

Kind code of ref document: A1