WO2018212313A1 - Control device for automatic transmission - Google Patents

Control device for automatic transmission Download PDF

Info

Publication number
WO2018212313A1
WO2018212313A1 PCT/JP2018/019229 JP2018019229W WO2018212313A1 WO 2018212313 A1 WO2018212313 A1 WO 2018212313A1 JP 2018019229 W JP2018019229 W JP 2018019229W WO 2018212313 A1 WO2018212313 A1 WO 2018212313A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
transmission
output torque
gear
speed
Prior art date
Application number
PCT/JP2018/019229
Other languages
French (fr)
Japanese (ja)
Inventor
智啓 下沢
諒 ▲高▼野
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201880030279.4A priority Critical patent/CN110799779B/en
Publication of WO2018212313A1 publication Critical patent/WO2018212313A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/48Inputs being a function of acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used

Definitions

  • This disclosure relates to a control device for an automatic transmission.
  • various automatic transmissions that change gears by changing over a plurality of frictional engagement elements are known.
  • a first clutch (friction engagement element) provided between the engine and the odd-numbered gear train
  • a second clutch (friction engagement element) provided between the engine and the even-numbered gear train
  • DCT dual clutch transmission
  • a clutch (friction engagement element) that stops relative rotation of elements constituting the planetary gear
  • a brake (friction engagement element) that stops rotation of the element are provided, and driving force from the engine is transmitted via the planetary gear.
  • An automatic transmission (AT) that transmits to the output side is known.
  • Patent Document 1 discloses an invention relating to a shift control method for a DCT vehicle.
  • the method includes: “a shift command confirming step for confirming whether or not an upshift command is generated during start control of a DCT vehicle; and a result of performing the shift command confirming step, when an upshift command is generated during start control, A slip determination step of determining whether the rotational speed difference between the rotational speed of the input shaft to be synchronized and the engine rotational speed is within a predetermined reference rotational speed order; and the result of execution of the slip determination step, the rotation of the input shaft If the difference between the engine speed and the engine speed is within the above-mentioned reference speed order, a control change stage for ending the start control and switching to gear shift control (claim 1) is included.
  • An object of the present disclosure is an automatic shift capable of performing a shift control capable of preventing a decrease in drivability while preventing excessive heat generation of the frictional engagement element when the frictional engagement element is changed. It is to provide a control device for the machine.
  • a control device for an automatic transmission includes a shift condition establishment determination unit that determines whether a change condition of a transmission for a vehicle that shifts with a plurality of friction engagement elements being changed is satisfied. And a transmission output torque reduction unit that reduces the output torque of the transmission by a certain amount prior to the gripping change of the plurality of frictional engagement elements when it is determined by the transmission condition establishment determination unit And comprising.
  • an automatic shift capable of performing a shift control that can prevent a decrease in drivability while preventing excessive heat generation of the friction engagement element when the friction engagement element is replaced.
  • a machine control device can be provided.
  • FIG. 1 is a schematic configuration diagram illustrating a vehicle to which an automatic transmission control device according to the present disclosure is applied.
  • FIG. 2 is a functional block diagram of the control device for the automatic transmission according to the present disclosure.
  • FIG. 3 is a flowchart showing a flow of control by the automatic transmission control device according to the present disclosure.
  • FIG. 4 is a time chart when the upshift is performed.
  • FIG. 5 is a time chart when the downshift is performed.
  • the vehicle 1 includes an engine 10, a DCT 2 (automatic transmission) including a first clutch 20, a second clutch 30, a transmission unit 40, and a hydraulic circuit 90, and a control device 50.
  • the drive wheels are connected to the output side of the DCT 2 through a propeller shaft and a differential gear (not shown) so that power can be transmitted.
  • the engine 10 is, for example, a diesel engine.
  • the output speed of the engine 10 (hereinafter referred to as “engine speed”) and the output torque are controlled based on the accelerator opening Acc of the accelerator pedal detected by the accelerator opening sensor 101.
  • the engine output shaft 11 is provided with an engine speed sensor 102 that detects the engine speed.
  • the first clutch 20 is a hydraulically operated wet multi-plate clutch having a plurality of first input side clutch plates 21 and a plurality of first output side clutch plates 22.
  • the first input side clutch plate 21 rotates integrally with the engine output shaft 11 that is rotated by the engine 10.
  • the first output side clutch plate 22 rotates integrally with the first input shaft 41 of the transmission unit 40.
  • the first clutch 20 is urged in the disconnecting direction by a return spring (not shown), and the first piston 23 is moved by the clutch operating hydraulic pressure supplied from the hydraulic circuit 90, and the first input side clutch plate 21 and the first clutch 20 are moved.
  • the 1 output side clutch plate 22 is brought into contact by pressure contact.
  • the first clutch 20 is engaged, the power of the engine 10 is transmitted to the first input shaft 41.
  • the connection / disconnection of the first clutch 20 is controlled by the control device 50.
  • the first clutch 20 may be a dry single plate clutch.
  • the second clutch 30 is a hydraulically operated wet multi-plate clutch having a plurality of second input side clutch plates 31 and a plurality of second output side clutch plates 32.
  • the second input side clutch plate 31 rotates integrally with the engine output shaft 11.
  • the second output side clutch plate 32 rotates integrally with the second input shaft 42 of the transmission unit 40.
  • the second clutch 30 is urged in the disconnection direction by a return spring (not shown), and the second piston 33 is moved by the clutch operating hydraulic pressure supplied from the hydraulic circuit 90, and the second input side clutch plate 31 and the second clutch 30 are moved.
  • the two output side clutch plates 32 are brought into contact with each other by pressure contact.
  • the connection / disconnection of the second clutch 30 is controlled by the control device 50.
  • the second clutch 30 may be a dry single plate clutch.
  • the first input side clutch plate 21, the second input side clutch plate 31, the first output side clutch plate 22, and the second output side clutch plate 32 are simply referred to as “clutch plates” as necessary.
  • the second clutch 30 is provided on the outer peripheral side of the first clutch 20.
  • the first input shaft 41 is provided with an unillustrated lubricating oil passage including an axial oil passage and one or a plurality of radial oil passages, and the lubricating oil is injected radially from the first input shaft 41.
  • each clutch plate of the first clutch 20 is cooled, and further, each clutch plate of the second clutch 30 is cooled.
  • the lubricating oil that has cooled each clutch plate of the second clutch 30 flows out from the outer diameter side of the second clutch 30 and returns to an oil pan (not shown) provided in the hydraulic circuit 90.
  • the second clutch 30 is provided on the outer peripheral side of the first clutch 20 as an example.
  • the arrangement relationship between the first clutch 20 and the second clutch 30 is described here. It is not limited. Specifically, for example, the second clutch 30 may be disposed on the rear side of the first clutch 20.
  • the transmission unit 40 includes a first input shaft 41 connected to the output side of the first clutch 20 and a second input shaft 42 connected to the output side of the second clutch 30.
  • the transmission unit 40 includes a sub shaft 43 disposed in parallel with the first input shaft 41 and the second input shaft 42, and an output shaft 44 disposed coaxially with the first input shaft 41 and the second input shaft 42.
  • a vehicle speed sensor 103 that detects a vehicle speed V that is the speed of the vehicle 1 is provided on the rear end side of the output shaft 44.
  • the transmission unit 40 includes a first transmission unit 60, a second transmission unit 70, and a forward / reverse switching unit 80.
  • the first transmission unit 60 includes a first high speed gear train 61, a first low speed gear train 62, and a first coupling mechanism 63.
  • the first high-speed gear train 61 is provided so as to mesh with the first input gear 61 a provided so as to be rotatable relative to the first input shaft 41 and the first input gear 61 a and to rotate integrally with the auxiliary shaft 43. And the first auxiliary gear 61b.
  • the first low-speed gear train 62 is provided so as to mesh with the second input gear 62 a provided so as to be rotatable relative to the first input shaft 41 and the second input gear 62 a and to rotate integrally with the auxiliary shaft 43. And a second auxiliary gear 62b.
  • the first coupling mechanism 63 selectively moves the first input gear 61a and the second input gear 62a by moving the first sleeve 63a in the axial direction (left-right direction in FIG. 1) by a gear shift actuator (not shown). 1 Rotate integrally with the input shaft 41.
  • the second transmission unit 70 includes a second high speed gear train 71, a second low speed gear train 72, and a second connection mechanism 73.
  • the second high-speed gear train 71 is provided so as to mesh with the third input gear 71 a and the third input gear 71 a provided so as to be rotatable relative to the second input shaft 42 and to rotate integrally with the auxiliary shaft 43.
  • a third auxiliary gear 71b is provided so as to mesh with the third input gear 71 a and the third input gear 71 a provided so as to be rotatable relative to the second input shaft 42 and to rotate integrally with the auxiliary shaft 43.
  • the second low-speed gear train 72 is provided so as to mesh with the fourth input gear 72 a and the fourth input gear 72 a provided so as to be rotatable relative to the second input shaft 42 and to rotate integrally with the auxiliary shaft 43. And a fourth auxiliary gear 72b.
  • the second coupling mechanism 73 rotates the second sleeve 73a in the axial direction by a gear shift actuator (not shown), thereby rotating the third input gear 71a and the fourth input gear 72a alternatively with the second input shaft 42.
  • the forward / reverse switching unit 80 includes a forward gear train 81, a reverse gear train 82, and a third coupling mechanism 83.
  • the forward gear train 81 meshes with the first output gear 81a provided so as to be rotatable relative to the output shaft 44 and the first output gear 81a, and the fifth sub gear provided so as to rotate integrally with the auxiliary shaft 43. And a gear 81b.
  • the reverse gear train 82 meshes with the second output gear 82a provided so as to be rotatable relative to the output shaft 44, the second output gear 82a and the idler gear 82c, and is provided so as to rotate integrally with the auxiliary shaft 43. And the sixth sub gear 82b.
  • the third connecting mechanism 83 selectively rotates the first output gear 81a and the second output gear 82a integrally with the output shaft 44 by moving the third sleeve 83a in the axial direction by a gear shift actuator (not shown).
  • the first connecting mechanism 63 connects the second input gear 62a and the first input shaft 41
  • the third connecting mechanism 83 connects the first output gear 81a and the output shaft 44
  • the first clutch It is established by touching 20. Thereby, the power of the engine 10 is transmitted from the first clutch 20 in the order of the first input shaft 41, the first low speed gear train 62, the countershaft 43, the forward gear train 81, and the output shaft 44.
  • the second input mechanism 72 connects the fourth input gear 72a and the second input shaft 42
  • the third connection mechanism 83 connects the first output gear 81a and the output shaft 44
  • the second clutch It is established by touching 30. Thereby, the power of the engine 10 is transmitted from the second clutch 30 in the order of the second input shaft 42, the second low speed gear train 72, the auxiliary shaft 43, the forward gear train 81, and the output shaft 44.
  • the first connection mechanism 63 connects the first input gear 61a and the first input shaft 41
  • the third connection mechanism 83 connects the first output gear 81a and the output shaft 44
  • the first clutch It is established by touching 20. Thereby, the power of the engine 10 is transmitted from the first clutch 20 in the order of the first input shaft 41, the first high speed gear train 61, the counter shaft 43, the forward gear train 81, and the output shaft 44.
  • the third input gear 71a and the second input shaft 42 are connected by the second connecting mechanism 73, the first output gear 81a and the output shaft 44 are connected by the third connecting mechanism 83, and the second clutch It is established by touching 30.
  • the power of the engine 10 is transmitted from the second clutch 30 in the order of the second input shaft 42, the second high speed gear train 71, the countershaft 43, the forward gear train 81, and the output shaft 44.
  • the control device 50 includes a CPU 51, a memory 52, and an interface (not shown) that is connected to various sensors and devices to exchange signals.
  • the CPU 51 controls the engine 10 by executing a program stored in the memory 52 and also controls the DCT 2 through the control of the hydraulic circuit 90.
  • the CPU 51 functions as a shift condition establishment determination unit 53, a transmission output torque reduction unit 54, and an execution unit 55 as shown in FIG. 2 by executing a program stored in the memory 52. .
  • the shift condition establishment determination unit 53 determines whether or not the shift condition is satisfied based on the accelerator opening Acc, the vehicle speed V, the shift map stored in the memory 52, and the like.
  • the transmission output torque reduction unit 54 reduces the output torque of the DCT 2 by a certain amount prior to the start of gripping change at every shift.
  • the execution unit 55 performs connection / disconnection of the first clutch 20, connection / disconnection of the second clutch 30, and movement of the first sleeve 63a, the second sleeve 73a, and the third sleeve 83a via the hydraulic circuit 90, An upshift or downshift is performed.
  • control device 50 any one or more of the functional units described above are other control devices different from the control device 50. It may be realized by.
  • the control device 50 may be configured to function as the shift condition establishment determination unit 53 and the transmission output torque reduction unit 54.
  • any one of the functional units described above may be configured to also function as another functional unit.
  • the shift condition establishment determination unit 53 determines whether or not the upshift or downshift condition is established (S1). Whether or not the speed change condition is satisfied is determined based on the accelerator opening degree Acc, the vehicle speed V, the speed change map, and the like. While it is determined that the speed change condition is not satisfied (NO in S1), the determination as to whether the speed change condition is satisfied is repeated until it is determined that the speed change condition is satisfied (YES in S1).
  • the output torque of the DCT 2 (transmission output torque) is reduced by the transmission output torque reduction unit 54 (S2).
  • the amount of reduction is a constant value determined in advance according to the experiment, how the vehicle 1 is used, the vehicle type, and the like.
  • the execution unit 55 executes the upshift or downshift shift determined to be satisfied by the shift condition satisfaction determination unit 53 (S3). ). This completes the shift control.
  • the transmission output torque reduction unit 54 determines the transmission output torque up to that point. A certain value is reduced from the value (driver requested output torque).
  • the transmission output torque reduction unit 54 establishes the speed ratio and the speed condition of the third speed, which is the speed stage before the gear change, so that the transmission output torque is reduced by a predetermined value.
  • the reduction amount of the engine torque is obtained based on the engine torque when it is determined that.
  • the transmission output torque reduction unit 54 reduces the reduction amount engine torque and the torque capacity of the first clutch 20 that is engaged when the third speed is executed, Reduce to be equal to the engine torque after the reduction.
  • the transmission output torque reduction unit 54 reduces the transmission output torque so as to satisfy Equation 1 below.
  • the jerk referred to here is a front jerk that is a jerk in the traveling direction of the vehicle 1.
  • Equation 1 r w is the tire radius, if is the final gear ratio, m with the symbol ⁇ is the vehicle weight, F aero with the symbol ⁇ is the estimated air resistance, F roll with the symbol ⁇ is the estimated rolling resistance, and g is the gravity. Acceleration and symbol ⁇ attached are gradient estimation values. These parameters are determined in advance or can be obtained by a method known at the time of filing this application. Therefore, detailed description is omitted.
  • Equation 1 the symbol “ ⁇ ” represents the first-order time differentiation, and the symbol “•” represents the second-order time differentiation.
  • T oi is a transmission output torque. Therefore, the first-order time differential value of Toi means the changing speed of the transmission output torque. Further, v x is the forward speed of the vehicle 1. Therefore, the second-order time differential value means the forward jerk of the vehicle 1.
  • the execution unit 55 gradually increases the torque capacity of the second clutch 30 while gradually decreasing the torque capacity of the first clutch 20. That is, the clutch is changed.
  • the first clutch system output torque which is the torque transmitted to the output shaft 44 via the first clutch 20 and the first transmission 60
  • the second clutch system output torque which is the torque transmitted to the output shaft 44 via the second clutch 30 and the second transmission unit 70
  • the transmission output torque which is the torque output from the output shaft 44
  • the execution unit 55 controls the torque capacity of each clutch while maintaining a state in which the transmission output torque is reduced by a predetermined value with respect to the driver requested output torque.
  • the execution unit 55 When the first clutch system output torque becomes zero and the transmission output torque becomes equal to the second clutch system output torque, the execution unit 55 performs control as follows. In other words, as shown in the middle chart, the execution unit 55 maintains the torque capacity of the second clutch 30 at the engine torque when the clutch has been re-engaged for a predetermined period of time and applies the engine torque. Reduce quantitatively. As a result, as shown in the upper chart, the engine speed changes from the speed of the first input shaft 41 to the speed of the second input shaft 42. When the engine rotational speed matches the rotational speed of the second input shaft 42, no slip occurs in any of the clutches.
  • the execution unit 55 increases the torque capacity of the second clutch 30 by a predetermined amount so that slip does not occur, as shown in the middle chart. Further, the engine torque is recovered to the driver request engine torque. Thereby, the fourth speed is achieved and the shift is completed.
  • the first clutch 20 and the second clutch 30 are slipping in the grip changing process of the first clutch 20 and the second clutch 30. Further, the second clutch 30 is slipping during the engine speed transition process.
  • the torque capacity of each clutch is reduced through these processes. Therefore, the energy absorbed by each clutch is reduced, and the amount of heat generated in each clutch is also reduced. That is, according to the transmission control device of the present embodiment, excessive heat generation in each clutch can be prevented.
  • the clutch gripping process and the engine speed transition process are performed in a state where the transmission output torque, which is the output torque of the DCT 2, is reduced, the amount of heat generated in each clutch can be more reliably reduced. .
  • the transmission output torque is reduced by a predetermined value, and this state continues through the re-holding process and the engine speed transition process. Therefore, it is possible to prevent the vehicle jerk fluctuations that the driver does not expect during one shift.
  • the amount of reduction of the transmission output torque with respect to the driver request output torque does not change with every shift, but is always constant. Therefore, it is possible to equalize the degree of change in the acceleration of the vehicle given to the driver at the time of shifting. That is, it is possible to prevent the drivability from being lowered by giving a different acceleration / deceleration feeling to the driver at every shift.
  • FIG. 5 is a time chart when a downshift from the third speed to the second speed is executed.
  • the transmission output torque is reduced by a constant value from the previous value (driver requested output torque) prior to clutch re-engagement, as in the case of the upshift.
  • the engine speed transition process and the grip replacement process are executed. Therefore, as in the case where upshifting is performed, it is possible to prevent excessive heat generation in each clutch and to prevent drivability from being lowered.
  • the automatic transmission may be a DCT that has a larger number of gear trains and can shift gears in multiple stages, a clutch that stops the relative rotation of the elements constituting the planetary gear, and the rotation of the elements.
  • An automatic transmission including a brake to be operated may be used.
  • an automatic shift capable of performing a shift control that can prevent a decrease in drivability while preventing excessive heat generation of the friction engagement element when the friction engagement element is replaced.
  • a machine control device can be provided. Therefore, the industrial applicability is great.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

Provided is a control device for an automatic transmission. The control device can perform shifting control that, when frictional engagement elements are switched, can prevent reduction of drivability while also preventing excessive heat from being generated at the frictional engagement elements. A control device for an automatic transmission, the control device comprising: a shifting conditions satisfaction determination unit that determines whether shifting conditions have been satisfied for a vehicle transmission that shifts in association with the switching of a plurality of frictional engagement elements; and a transmission output torque reduction unit that, when the shifting conditions satisfaction determination unit has determined that the shifting conditions have been satisfied, reduces the output torque of the transmission by a fixed amount before the plurality of frictional engagement elements are switched.

Description

自動変速機の制御装置Control device for automatic transmission
 本開示は、自動変速機の制御装置に関する。 This disclosure relates to a control device for an automatic transmission.
 従来、複数の摩擦締結要素の掴み換えを伴って変速する自動変速機が種々知られている。例えば、エンジンと奇数段ギヤ列との間に設けられた第1クラッチ(摩擦締結要素)と、エンジンと偶数段ギヤ列との間に設けられた第2クラッチ(摩擦締結要素)とを備え、エンジンからの駆動力を第1クラッチ又は第2クラッチを介して出力側に伝達するデュアルクラッチトランスミッション(DCT)が知られている。また、遊星歯車を構成する要素同士の相対回転を停止させるクラッチ(摩擦締結要素)と、当該要素の回転を停止させるブレーキ(摩擦締結要素)とを備え、エンジンからの駆動力を遊星歯車を介して出力側に伝達する自動変速機(AT)が知られている。 Conventionally, various automatic transmissions that change gears by changing over a plurality of frictional engagement elements are known. For example, a first clutch (friction engagement element) provided between the engine and the odd-numbered gear train, and a second clutch (friction engagement element) provided between the engine and the even-numbered gear train, A dual clutch transmission (DCT) that transmits driving force from an engine to an output side via a first clutch or a second clutch is known. In addition, a clutch (friction engagement element) that stops relative rotation of elements constituting the planetary gear and a brake (friction engagement element) that stops rotation of the element are provided, and driving force from the engine is transmitted via the planetary gear. An automatic transmission (AT) that transmits to the output side is known.
 これらの自動変速機における複数の摩擦締結要素の掴み換え、すなわち、互いに並行して行われる一方の摩擦締結要素の解放と他方の摩擦締結要素の締結は、各摩擦締結要素において摩擦熱を発生させる。過度な摩擦熱の発生は摩擦締結要素を損傷させる。よって何らかの熱対策が必要である。 In these automatic transmissions, a plurality of frictional engagement elements are replaced, that is, the release of one frictional engagement element and the engagement of the other frictional engagement element performed in parallel with each other generate frictional heat in each frictional engagement element. . The generation of excessive frictional heat damages the frictional fastening elements. Therefore, some heat countermeasure is necessary.
 そこで、摩擦締結要素の掴み換え時における摩擦締結要素の損傷を防止するための発明がこれまでに種々提案されている。 Therefore, various inventions for preventing damage to the frictional engagement element when the frictional engagement element is replaced have been proposed.
 例えば、特許文献1には、DCT車両の変速制御方法に係る発明が開示されている。当該方法は、「DCT車両の発進制御中にシフトアップ変速指令の発生有無を確認する変速指令確認段階と;上記変速指令確認段階の遂行結果、発進制御中にシフトアップ変速指令発生時には、エンジンと同期しようとする入力軸の回転数とエンジン回転数の間の回転数差が所定の基準回転数次以内であるか判断するスリップ判断段階と;上記スリップ判断段階の遂行結果、上記入力軸の回転数とエンジン回転数の差が上記基準回転数次以内の場合、上記発進制御を終了し変速制御に転換する制御転換段階」(請求項1)を含んでいる。 For example, Patent Document 1 discloses an invention relating to a shift control method for a DCT vehicle. The method includes: “a shift command confirming step for confirming whether or not an upshift command is generated during start control of a DCT vehicle; and a result of performing the shift command confirming step, when an upshift command is generated during start control, A slip determination step of determining whether the rotational speed difference between the rotational speed of the input shaft to be synchronized and the engine rotational speed is within a predetermined reference rotational speed order; and the result of execution of the slip determination step, the rotation of the input shaft If the difference between the engine speed and the engine speed is within the above-mentioned reference speed order, a control change stage for ending the start control and switching to gear shift control (claim 1) is included.
日本国特開2014-55666号公報Japanese Unexamined Patent Publication No. 2014-55666
 特許文献1に記載の方法によれば、特許文献1の図3に示されるように、掴み換え実行時のエンジントルクは、掴み換え前のエンジントルクに比べて低減されているが、その低減量は変速毎に異なる量である。また、実際に変速機から出力されるトルクについては特段注意が払われていない。したがって、摩擦締結要素の損傷は防止できる可能性があるものの、変速毎にドライバに異なる加減速感を与える、すなわち違和感を与えるおそれがある。 According to the method described in Patent Document 1, as shown in FIG. 3 of Patent Document 1, the engine torque at the time of gripping change is reduced compared to the engine torque before the gripping change. Is a different amount for each shift. Further, no particular attention is paid to the torque actually output from the transmission. Therefore, although there is a possibility that damage to the frictional engagement element may be prevented, there is a possibility that the driver feels a different acceleration / deceleration, i.e., a sense of incongruity, at every shift.
 本開示の目的は、摩擦締結要素の掴み換えを行う際の、摩擦締結要素の過度な発熱を防止しつつ、ドライバビリティの低下を防止することが可能な変速制御を行うことが可能な自動変速機の制御装置を提供することである。 An object of the present disclosure is an automatic shift capable of performing a shift control capable of preventing a decrease in drivability while preventing excessive heat generation of the frictional engagement element when the frictional engagement element is changed. It is to provide a control device for the machine.
 本開示の一態様に係る自動変速機の制御装置は、複数の摩擦締結要素の掴み換えを伴って変速する車両用の変速機の変速条件が成立したか否かを判断する変速条件成立判断部と、前記変速条件成立判断部によって変速条件が成立したと判断された場合に、前記複数の摩擦締結要素の掴み換えに先立って前記変速機の出力トルクを一定量低減させる変速機出力トルク低減部と、を備える。 A control device for an automatic transmission according to an aspect of the present disclosure includes a shift condition establishment determination unit that determines whether a change condition of a transmission for a vehicle that shifts with a plurality of friction engagement elements being changed is satisfied. And a transmission output torque reduction unit that reduces the output torque of the transmission by a certain amount prior to the gripping change of the plurality of frictional engagement elements when it is determined by the transmission condition establishment determination unit And comprising.
 本開示によれば、摩擦締結要素の掴み換えを行う際の、摩擦締結要素の過度な発熱を防止しつつ、ドライバビリティの低下を防止することが可能な変速制御を行うことが可能な自動変速機の制御装置を提供することができる。 According to the present disclosure, an automatic shift capable of performing a shift control that can prevent a decrease in drivability while preventing excessive heat generation of the friction engagement element when the friction engagement element is replaced. A machine control device can be provided.
図1は、本開示に係る自動変速機の制御装置が適用された車両を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating a vehicle to which an automatic transmission control device according to the present disclosure is applied. 図2は、本開示に係る自動変速機の制御装置の機能ブロック図である。FIG. 2 is a functional block diagram of the control device for the automatic transmission according to the present disclosure. 図3は、本開示に係る自動変速機の制御装置による制御の流れを示すフローチャートである。FIG. 3 is a flowchart showing a flow of control by the automatic transmission control device according to the present disclosure. 図4は、アップシフトが行われるときのタイムチャートである。FIG. 4 is a time chart when the upshift is performed. 図5は、ダウンシフトが行われるときのタイムチャートである。FIG. 5 is a time chart when the downshift is performed.
 以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、以下に説明する実施形態は一例であり、本開示はこの実施形態により限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The embodiment described below is an example, and the present disclosure is not limited to this embodiment.
 まず、図1を参照して、車両の全体構成について説明する。図1に示すように、車両1は、エンジン10と、第1クラッチ20、第2クラッチ30、変速部40及び油圧回路90からなるDCT2(自動変速機)と、制御装置50とを備えている。そして、DCT2の出力側に、不図示のプロペラシャフトおよびデファレンシャルギヤを介して、駆動輪が動力伝達可能に連結されている。 First, the overall configuration of the vehicle will be described with reference to FIG. As shown in FIG. 1, the vehicle 1 includes an engine 10, a DCT 2 (automatic transmission) including a first clutch 20, a second clutch 30, a transmission unit 40, and a hydraulic circuit 90, and a control device 50. . The drive wheels are connected to the output side of the DCT 2 through a propeller shaft and a differential gear (not shown) so that power can be transmitted.
 エンジン10は、例えばディーゼルエンジンである。エンジン10の出力回転数(以下、「エンジン回転数」と記載する。)および出力トルクは、アクセル開度センサ101によって検出されるアクセルペダルのアクセル開度Accに基づいて制御される。また、エンジン出力軸11には、エンジン回転数を検出するエンジン回転数センサ102が設けられている。 The engine 10 is, for example, a diesel engine. The output speed of the engine 10 (hereinafter referred to as “engine speed”) and the output torque are controlled based on the accelerator opening Acc of the accelerator pedal detected by the accelerator opening sensor 101. The engine output shaft 11 is provided with an engine speed sensor 102 that detects the engine speed.
 第1クラッチ20は、複数の第1入力側クラッチ板21および複数の第1出力側クラッチ板22を有する油圧作動式の湿式多板クラッチである。第1入力側クラッチ板21は、エンジン10によって回転させられるエンジン出力軸11と一体回転する。第1出力側クラッチ板22は、変速部40の第1入力軸41と一体回転する。 The first clutch 20 is a hydraulically operated wet multi-plate clutch having a plurality of first input side clutch plates 21 and a plurality of first output side clutch plates 22. The first input side clutch plate 21 rotates integrally with the engine output shaft 11 that is rotated by the engine 10. The first output side clutch plate 22 rotates integrally with the first input shaft 41 of the transmission unit 40.
 第1クラッチ20は、不図示のリターンスプリングによって断方向に付勢されており、油圧回路90から供給されるクラッチ作動油圧によって第1ピストン23が移動して、第1入力側クラッチ板21および第1出力側クラッチ板22を圧接することで接とされる。第1クラッチ20が接とされることで、エンジン10の動力が第1入力軸41に伝達される。第1クラッチ20の断接は、制御装置50によって制御される。なお、第1クラッチ20は乾式単板クラッチであってもよい。 The first clutch 20 is urged in the disconnecting direction by a return spring (not shown), and the first piston 23 is moved by the clutch operating hydraulic pressure supplied from the hydraulic circuit 90, and the first input side clutch plate 21 and the first clutch 20 are moved. The 1 output side clutch plate 22 is brought into contact by pressure contact. When the first clutch 20 is engaged, the power of the engine 10 is transmitted to the first input shaft 41. The connection / disconnection of the first clutch 20 is controlled by the control device 50. The first clutch 20 may be a dry single plate clutch.
 第2クラッチ30は、複数の第2入力側クラッチ板31および複数の第2出力側クラッチ板32を有する油圧作動式の湿式多板クラッチである。第2入力側クラッチ板31は、エンジン出力軸11と一体回転する。第2出力側クラッチ板32は、変速部40の第2入力軸42と一体回転する。 The second clutch 30 is a hydraulically operated wet multi-plate clutch having a plurality of second input side clutch plates 31 and a plurality of second output side clutch plates 32. The second input side clutch plate 31 rotates integrally with the engine output shaft 11. The second output side clutch plate 32 rotates integrally with the second input shaft 42 of the transmission unit 40.
 第2クラッチ30は、不図示のリターンスプリングによって断方向に付勢されており、油圧回路90から供給されるクラッチ作動油圧によって第2ピストン33が移動して、第2入力側クラッチ板31および第2出力側クラッチ板32を圧接することで接とされる。第2クラッチ30が接とされることで、エンジン10の動力が第2入力軸42に伝達される。第2クラッチ30の断接は、制御装置50によって制御される。なお、第2クラッチ30は乾式単板クラッチであってもよい。以下、必要に応じ、第1入力側クラッチ板21、第2入力側クラッチ板31、第1出力側クラッチ板22及び第2出力側クラッチ板32を単に「クラッチ板」と記載する。 The second clutch 30 is urged in the disconnection direction by a return spring (not shown), and the second piston 33 is moved by the clutch operating hydraulic pressure supplied from the hydraulic circuit 90, and the second input side clutch plate 31 and the second clutch 30 are moved. The two output side clutch plates 32 are brought into contact with each other by pressure contact. When the second clutch 30 is engaged, the power of the engine 10 is transmitted to the second input shaft 42. The connection / disconnection of the second clutch 30 is controlled by the control device 50. The second clutch 30 may be a dry single plate clutch. Hereinafter, the first input side clutch plate 21, the second input side clutch plate 31, the first output side clutch plate 22, and the second output side clutch plate 32 are simply referred to as “clutch plates” as necessary.
 第2クラッチ30は、第1クラッチ20の外周側に設けられている。また、第1入力軸41には、軸方向油路および1つまたは複数の径方向油路からなる不図示の潤滑油路が設けられており、第1入力軸41から潤滑油が放射状に噴射されることで、第1クラッチ20の各クラッチ板が冷却され、さらに、第2クラッチ30の各クラッチ板が冷却される。第2クラッチ30の各クラッチ板を冷却した潤滑油は、第2クラッチ30の外径側等から流出し、油圧回路90が備える不図示のオイルパンに戻る。なお、本実施形態では、第2クラッチ30が第1クラッチ20の外周側に設けられているものを例に挙げて説明を行うが、第1クラッチ20および第2クラッチ30の配置関係はこれに限定されない。具体的には、例えば、第2クラッチ30を、第1クラッチ20の後側に配置するようにしてもよい。 The second clutch 30 is provided on the outer peripheral side of the first clutch 20. The first input shaft 41 is provided with an unillustrated lubricating oil passage including an axial oil passage and one or a plurality of radial oil passages, and the lubricating oil is injected radially from the first input shaft 41. Thus, each clutch plate of the first clutch 20 is cooled, and further, each clutch plate of the second clutch 30 is cooled. The lubricating oil that has cooled each clutch plate of the second clutch 30 flows out from the outer diameter side of the second clutch 30 and returns to an oil pan (not shown) provided in the hydraulic circuit 90. In this embodiment, the second clutch 30 is provided on the outer peripheral side of the first clutch 20 as an example. However, the arrangement relationship between the first clutch 20 and the second clutch 30 is described here. It is not limited. Specifically, for example, the second clutch 30 may be disposed on the rear side of the first clutch 20.
 変速部40は、第1クラッチ20の出力側に接続された第1入力軸41と、第2クラッチ30の出力側に接続された第2入力軸42とを備えている。また、変速部40は、第1入力軸41および第2入力軸42と平行に配置された副軸43と、第1入力軸41および第2入力軸42と同軸上に配置された出力軸44と、を備えている。また、出力軸44の後端側には、車両1の速度である車速Vを検出する車速センサ103が設けられている。 The transmission unit 40 includes a first input shaft 41 connected to the output side of the first clutch 20 and a second input shaft 42 connected to the output side of the second clutch 30. The transmission unit 40 includes a sub shaft 43 disposed in parallel with the first input shaft 41 and the second input shaft 42, and an output shaft 44 disposed coaxially with the first input shaft 41 and the second input shaft 42. And. A vehicle speed sensor 103 that detects a vehicle speed V that is the speed of the vehicle 1 is provided on the rear end side of the output shaft 44.
 変速部40は、第1変速部60と、第2変速部70と、前後進切替部80と、を備えている。第1変速部60は、第1高速ギヤ列61と、第1低速ギヤ列62と、第1連結機構63とを備えている。 The transmission unit 40 includes a first transmission unit 60, a second transmission unit 70, and a forward / reverse switching unit 80. The first transmission unit 60 includes a first high speed gear train 61, a first low speed gear train 62, and a first coupling mechanism 63.
 第1高速ギヤ列61は、第1入力軸41に対して相対回転可能に設けられた第1入力ギヤ61aと、第1入力ギヤ61aと噛合し、副軸43と一体回転するように設けられた第1副ギヤ61bとからなる。 The first high-speed gear train 61 is provided so as to mesh with the first input gear 61 a provided so as to be rotatable relative to the first input shaft 41 and the first input gear 61 a and to rotate integrally with the auxiliary shaft 43. And the first auxiliary gear 61b.
 第1低速ギヤ列62は、第1入力軸41に対して相対回転可能に設けられた第2入力ギヤ62aと、第2入力ギヤ62aと噛合し、副軸43と一体回転するように設けられた第2副ギヤ62bとからなる。 The first low-speed gear train 62 is provided so as to mesh with the second input gear 62 a provided so as to be rotatable relative to the first input shaft 41 and the second input gear 62 a and to rotate integrally with the auxiliary shaft 43. And a second auxiliary gear 62b.
 第1連結機構63は、不図示のギヤシフトアクチュエータによって第1スリーブ63aを軸方向(図1の左右方向)に移動させることによって、第1入力ギヤ61aおよび第2入力ギヤ62aを択一的に第1入力軸41と一体回転させる。 The first coupling mechanism 63 selectively moves the first input gear 61a and the second input gear 62a by moving the first sleeve 63a in the axial direction (left-right direction in FIG. 1) by a gear shift actuator (not shown). 1 Rotate integrally with the input shaft 41.
 第2変速部70は、第2高速ギヤ列71と、第2低速ギヤ列72と、第2連結機構73とを備えている。第2高速ギヤ列71は、第2入力軸42に対して相対回転可能に設けられた第3入力ギヤ71aと、第3入力ギヤ71aと噛合し、副軸43と一体回転するように設けられた第3副ギヤ71bとからなる。 The second transmission unit 70 includes a second high speed gear train 71, a second low speed gear train 72, and a second connection mechanism 73. The second high-speed gear train 71 is provided so as to mesh with the third input gear 71 a and the third input gear 71 a provided so as to be rotatable relative to the second input shaft 42 and to rotate integrally with the auxiliary shaft 43. And a third auxiliary gear 71b.
 第2低速ギヤ列72は、第2入力軸42に対して相対回転可能に設けられた第4入力ギヤ72aと、第4入力ギヤ72aと噛合し、副軸43と一体回転するように設けられた第4副ギヤ72bとからなる。 The second low-speed gear train 72 is provided so as to mesh with the fourth input gear 72 a and the fourth input gear 72 a provided so as to be rotatable relative to the second input shaft 42 and to rotate integrally with the auxiliary shaft 43. And a fourth auxiliary gear 72b.
 第2連結機構73は、不図示のギヤシフトアクチュエータによって第2スリーブ73aを軸方向に移動させることによって、第3入力ギヤ71aおよび第4入力ギヤ72aを択一的に第2入力軸42と一体回転させる。 The second coupling mechanism 73 rotates the second sleeve 73a in the axial direction by a gear shift actuator (not shown), thereby rotating the third input gear 71a and the fourth input gear 72a alternatively with the second input shaft 42. Let
 前後進切替部80は、前進ギヤ列81と、後進ギヤ列82と、第3連結機構83とを備えている。前進ギヤ列81は、出力軸44に対して相対回転可能に設けられた第1出力ギヤ81aと、第1出力ギヤ81aと噛合し、副軸43と一体回転するように設けられた第5副ギヤ81bとからなる。 The forward / reverse switching unit 80 includes a forward gear train 81, a reverse gear train 82, and a third coupling mechanism 83. The forward gear train 81 meshes with the first output gear 81a provided so as to be rotatable relative to the output shaft 44 and the first output gear 81a, and the fifth sub gear provided so as to rotate integrally with the auxiliary shaft 43. And a gear 81b.
 後進ギヤ列82は、出力軸44に対して相対回転可能に設けられた第2出力ギヤ82aと、第2出力ギヤ82aとアイドラギヤ82cを介して噛合し、副軸43と一体回転するように設けられた第6副ギヤ82bとからなる。 The reverse gear train 82 meshes with the second output gear 82a provided so as to be rotatable relative to the output shaft 44, the second output gear 82a and the idler gear 82c, and is provided so as to rotate integrally with the auxiliary shaft 43. And the sixth sub gear 82b.
 第3連結機構83は、不図示のギヤシフトアクチュエータによって第3スリーブ83aを軸方向に移動させることによって、第1出力ギヤ81aおよび第2出力ギヤ82aを択一的に出力軸44と一体回転させる。 The third connecting mechanism 83 selectively rotates the first output gear 81a and the second output gear 82a integrally with the output shaft 44 by moving the third sleeve 83a in the axial direction by a gear shift actuator (not shown).
 ここで、DCT2における動力伝達経路について簡単に説明する。1速は、第1連結機構63によって第2入力ギヤ62aと第1入力軸41とを連結し、第3連結機構83によって第1出力ギヤ81aと出力軸44とを連結し、かつ第1クラッチ20を接とすることで成立する。これにより、エンジン10の動力は、第1クラッチ20から、第1入力軸41、第1低速ギヤ列62、副軸43、前進ギヤ列81、出力軸44の順に伝達される。 Here, the power transmission path in DCT2 will be briefly described. For the first speed, the first connecting mechanism 63 connects the second input gear 62a and the first input shaft 41, the third connecting mechanism 83 connects the first output gear 81a and the output shaft 44, and the first clutch. It is established by touching 20. Thereby, the power of the engine 10 is transmitted from the first clutch 20 in the order of the first input shaft 41, the first low speed gear train 62, the countershaft 43, the forward gear train 81, and the output shaft 44.
 2速は、第2連結機構73によって第4入力ギヤ72aと第2入力軸42とを連結し、第3連結機構83によって第1出力ギヤ81aと出力軸44とを連結し、かつ第2クラッチ30を接とすることで成立する。これにより、エンジン10の動力は、第2クラッチ30から、第2入力軸42、第2低速ギヤ列72、副軸43、前進ギヤ列81、出力軸44の順に伝達される。 For the second speed, the second input mechanism 72 connects the fourth input gear 72a and the second input shaft 42, the third connection mechanism 83 connects the first output gear 81a and the output shaft 44, and the second clutch. It is established by touching 30. Thereby, the power of the engine 10 is transmitted from the second clutch 30 in the order of the second input shaft 42, the second low speed gear train 72, the auxiliary shaft 43, the forward gear train 81, and the output shaft 44.
 3速は、第1連結機構63によって第1入力ギヤ61aと第1入力軸41とを連結し、第3連結機構83によって第1出力ギヤ81aと出力軸44とを連結し、かつ第1クラッチ20を接とすることで成立する。これにより、エンジン10の動力は、第1クラッチ20から、第1入力軸41、第1高速ギヤ列61、副軸43、前進ギヤ列81、出力軸44の順に伝達される。 In the third speed, the first connection mechanism 63 connects the first input gear 61a and the first input shaft 41, the third connection mechanism 83 connects the first output gear 81a and the output shaft 44, and the first clutch. It is established by touching 20. Thereby, the power of the engine 10 is transmitted from the first clutch 20 in the order of the first input shaft 41, the first high speed gear train 61, the counter shaft 43, the forward gear train 81, and the output shaft 44.
 4速は、第2連結機構73によって第3入力ギヤ71aと第2入力軸42とを連結し、第3連結機構83によって第1出力ギヤ81aと出力軸44とを連結し、かつ第2クラッチ30を接とすることで成立する。これにより、エンジン10の動力は、第2クラッチ30から、第2入力軸42、第2高速ギヤ列71、副軸43、前進ギヤ列81、出力軸44の順に伝達される。 For the fourth speed, the third input gear 71a and the second input shaft 42 are connected by the second connecting mechanism 73, the first output gear 81a and the output shaft 44 are connected by the third connecting mechanism 83, and the second clutch It is established by touching 30. As a result, the power of the engine 10 is transmitted from the second clutch 30 in the order of the second input shaft 42, the second high speed gear train 71, the countershaft 43, the forward gear train 81, and the output shaft 44.
 制御装置50は、CPU51、メモリ52、並びに、種々のセンサ及び装置と接続され信号を授受する図示しないインタフェース等から構成されている。CPU51はメモリ52に記憶されているプログラムを実行することにより、エンジン10を制御するとともに、油圧回路90の制御を介してDCT2を制御する。具体的には、CPU51はメモリ52に記憶されているプログラムを実行することにより、図2に示されるように、変速条件成立判断部53、変速機出力トルク低減部54及び実行部55として機能する。 The control device 50 includes a CPU 51, a memory 52, and an interface (not shown) that is connected to various sensors and devices to exchange signals. The CPU 51 controls the engine 10 by executing a program stored in the memory 52 and also controls the DCT 2 through the control of the hydraulic circuit 90. Specifically, the CPU 51 functions as a shift condition establishment determination unit 53, a transmission output torque reduction unit 54, and an execution unit 55 as shown in FIG. 2 by executing a program stored in the memory 52. .
 変速条件成立判断部53は、アクセル開度Acc、車速V、及び、メモリ52に記憶されている変速マップ等に基づいて、変速条件が成立したか否かを判断する。 The shift condition establishment determination unit 53 determines whether or not the shift condition is satisfied based on the accelerator opening Acc, the vehicle speed V, the shift map stored in the memory 52, and the like.
 変速機出力トルク低減部54は、毎回の変速において掴み換え開始に先立って、DCT2の出力トルクを一定量低減させる。 The transmission output torque reduction unit 54 reduces the output torque of the DCT 2 by a certain amount prior to the start of gripping change at every shift.
 実行部55は、油圧回路90を介して第1クラッチ20の断接、第2クラッチ30の断接、並びに、第1スリーブ63a、第2スリーブ73a及び第3スリーブ83aの移動を行うことによって、アップシフト又はダウンシフトの変速を実行する。 The execution unit 55 performs connection / disconnection of the first clutch 20, connection / disconnection of the second clutch 30, and movement of the first sleeve 63a, the second sleeve 73a, and the third sleeve 83a via the hydraulic circuit 90, An upshift or downshift is performed.
 なお、上に説明した各機能部の全てが制御装置50によって実現される必要はなく、上に説明した各機能部のうちの何れか1つ以上が制御装置50とは別の他の制御装置によって実現されてもよい。例えば、制御装置50は変速条件成立判断部53及び変速機出力トルク低減部54として機能するように構成されていてもよい。また、上に説明した各機能部のうち何れか1つが他の機能部の機能をも兼ねるように構成されていても良いことは勿論である。 Note that not all the functional units described above need be realized by the control device 50, and any one or more of the functional units described above are other control devices different from the control device 50. It may be realized by. For example, the control device 50 may be configured to function as the shift condition establishment determination unit 53 and the transmission output torque reduction unit 54. Of course, any one of the functional units described above may be configured to also function as another functional unit.
 続いて、図3のフローチャートを参照して、本実施形態に係る変速機の制御装置による変速制御について詳細に説明する。 Subsequently, the shift control by the transmission control device according to this embodiment will be described in detail with reference to the flowchart of FIG.
 まず、変速条件成立判断部53によって、アップシフト又はダウンシフトの変速条件が成立したか否かが確認される(S1)。変速条件が成立したか否かは、アクセル開度Acc、車速V、及び、変速マップ等に基づいて判断される。変速条件が成立していない(S1においてNO)と判断される間は、変速条件が成立した(S1においてYES)と判断されるまで、変速条件が成立したか否かの判断が繰り返される。 First, it is confirmed by the shift condition establishment determination unit 53 whether or not the upshift or downshift condition is established (S1). Whether or not the speed change condition is satisfied is determined based on the accelerator opening degree Acc, the vehicle speed V, the speed change map, and the like. While it is determined that the speed change condition is not satisfied (NO in S1), the determination as to whether the speed change condition is satisfied is repeated until it is determined that the speed change condition is satisfied (YES in S1).
 変速条件が成立したと判断されると、変速機出力トルク低減部54によって、DCT2の出力トルク(変速機出力トルク)が低減される(S2)。低減量は実験、車両1の使われ方、車種等に応じて予め定められている一定値である。 If it is determined that the speed change condition is satisfied, the output torque of the DCT 2 (transmission output torque) is reduced by the transmission output torque reduction unit 54 (S2). The amount of reduction is a constant value determined in advance according to the experiment, how the vehicle 1 is used, the vehicle type, and the like.
 変速機出力トルク低減部54によってDCT2の出力トルクが低減されると、実行部55は、変速条件成立判断部53によって条件が成立したと判断されたアップシフト又はダウンシフトの変速を実行する(S3)。以上で変速制御が終了する。 When the output torque of the DCT 2 is reduced by the transmission output torque reduction unit 54, the execution unit 55 executes the upshift or downshift shift determined to be satisfied by the shift condition satisfaction determination unit 53 (S3). ). This completes the shift control.
 次に、変速実行時のタイムチャートを示す図4を参照しながら、具体的にどのように変速が進行するのか説明する。ここでは、3速から4速へのアップシフトが行われるものとする。 Next, with reference to FIG. 4 showing a time chart at the time of shifting, how the shifting proceeds will be described in detail. Here, it is assumed that an upshift from the third speed to the fourth speed is performed.
 変速条件成立判断部53によってアップシフトの変速条件が成立したと判断されると、まず、下段のチャートに示されるように、変速機出力トルク低減部54は、変速機出力トルクを、それまでの値(ドライバ要求出力トルク)から一定値低減させる。 When it is determined by the shift condition establishment determination unit 53 that the upshift transmission condition has been established, first, as shown in the lower chart, the transmission output torque reduction unit 54 determines the transmission output torque up to that point. A certain value is reduced from the value (driver requested output torque).
 具体的には、変速機出力トルク低減部54は、変速機出力トルクが予め定められている一定値低減するように、変速実行前の変速段である3速の変速比と変速条件が成立したと判断されたときのエンジントルクとに基づいて、エンジントルクの低減量を求める。低減量が求まると、中段のチャートに示されるように、変速機出力トルク低減部54は当該低減量エンジントルクを低減させるとともに、3速実行時に締結されている第1クラッチ20のトルク容量を、低減後のエンジントルクに等しくなるように低減させる。 Specifically, the transmission output torque reduction unit 54 establishes the speed ratio and the speed condition of the third speed, which is the speed stage before the gear change, so that the transmission output torque is reduced by a predetermined value. The reduction amount of the engine torque is obtained based on the engine torque when it is determined that. When the reduction amount is obtained, as shown in the middle chart, the transmission output torque reduction unit 54 reduces the reduction amount engine torque and the torque capacity of the first clutch 20 that is engaged when the third speed is executed, Reduce to be equal to the engine torque after the reduction.
 また、変速機出力トルクの一定値の低減は、ドライバに違和感を与えないように行うことが好ましい。すなわち、2つのクラッチの掴み換えに先立つ変速機出力トルクの低減は、当該低減が行われている最中の車両1の加加速度がドライバに違和感を与える値とならないような変化速度で行われることが好ましい。例えば、以下の数式1を満たすように、変速機出力トルク低減部54は変速機出力トルクを低減させる。なお、ここでいう加加速度とは、車両1の進行方向の加加速度である前方加加速度である。 Also, it is preferable to reduce the constant value of the transmission output torque so that the driver does not feel uncomfortable. That is, the reduction of the transmission output torque prior to the change of the two clutches is performed at such a changing speed that the jerk of the vehicle 1 during the reduction does not become a value that makes the driver feel uncomfortable. Is preferred. For example, the transmission output torque reduction unit 54 reduces the transmission output torque so as to satisfy Equation 1 below. The jerk referred to here is a front jerk that is a jerk in the traveling direction of the vehicle 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 数式1において、rはタイヤ半径、iはファイナルギア比、記号^付mは車両重量、記号^付Faeroは空気抵抗推定値、記号^付Frollはころがり抵抗推定値、gは重力加速度、記号^付θは勾配推定値である。なお、これらのパラメータは、あらかじめ定められているか、本願出願時に公知となっている方法によって求めることができるものである。よって詳細な説明は省略する。 In Equation 1, r w is the tire radius, if is the final gear ratio, m with the symbol ^ is the vehicle weight, F aero with the symbol ^ is the estimated air resistance, F roll with the symbol ^ is the estimated rolling resistance, and g is the gravity. Acceleration and symbol θ attached are gradient estimation values. These parameters are determined in advance or can be obtained by a method known at the time of filing this application. Therefore, detailed description is omitted.
 また、数式1において、記号・は1階時間微分を、記号・・は2階時間微分を意味している。Toiは変速機出力トルクである。よって、Toiの1階時間微分値は、変速機出力トルクの変化速度を意味している。また、vは車両1の前方速度である。よって、その2階時間微分値は車両1の前方加加速度を意味している。 In Equation 1, the symbol “·” represents the first-order time differentiation, and the symbol “•” represents the second-order time differentiation. T oi is a transmission output torque. Therefore, the first-order time differential value of Toi means the changing speed of the transmission output torque. Further, v x is the forward speed of the vehicle 1. Therefore, the second-order time differential value means the forward jerk of the vehicle 1.
 vの2階時間微分値(車両1の前方加加速度)の好適な値の範囲として、ドライバが違和感を持たない値の範囲が、予め実験的に求められ、メモリ52に格納されている。よって、そのような値を数式1に代入して求められる数値範囲内の変化速度で変速機出力トルクを変化させることで、ドライバに違和感を与えることなく、クラッチの掴み換えに先立って変速機出力トルクを低減させることができる。 As a suitable range of values of the second-order differential value of v x (forward jerk of the vehicle 1), a range of values in which the driver does not feel uncomfortable is experimentally obtained in advance and stored in the memory 52. Therefore, by changing the transmission output torque at a changing speed within the numerical range obtained by substituting such a value into Equation 1, the transmission output prior to clutch clutch change without giving the driver a sense of incongruity. Torque can be reduced.
 続いて、中段のチャートに示されるように、実行部55は第1クラッチ20のトルク容量を徐々に低減させつつ、第2クラッチ30のトルク容量を徐々に増加させる。すなわち、クラッチの掴み換えが行われる。 Subsequently, as shown in the middle chart, the execution unit 55 gradually increases the torque capacity of the second clutch 30 while gradually decreasing the torque capacity of the first clutch 20. That is, the clutch is changed.
 その結果、下段のチャートに示されるように、第1クラッチ20及び第1変速部60を介して出力軸44に伝達されるトルクである第1クラッチ系統出力トルクは徐々に減少する。また、第2クラッチ30及び第2変速部70を介して出力軸44に伝達されるトルクである第2クラッチ系統出力トルクは徐々に増加する。出力軸44から出力されるトルクである変速機出力トルクは、第1クラッチ系統出力トルクと第2クラッチ系統出力トルクの和となる。実行部55は、ドライバ要求出力トルクに対して変速機出力トルクがあらかじめ定められている一定値低減されている状態を維持しながら、各クラッチのトルク容量を制御する。 As a result, as shown in the lower chart, the first clutch system output torque, which is the torque transmitted to the output shaft 44 via the first clutch 20 and the first transmission 60, gradually decreases. Further, the second clutch system output torque, which is the torque transmitted to the output shaft 44 via the second clutch 30 and the second transmission unit 70, gradually increases. The transmission output torque, which is the torque output from the output shaft 44, is the sum of the first clutch system output torque and the second clutch system output torque. The execution unit 55 controls the torque capacity of each clutch while maintaining a state in which the transmission output torque is reduced by a predetermined value with respect to the driver requested output torque.
 第1クラッチ系統出力トルクが0になり、変速機出力トルクが第2クラッチ系統出力トルクと等しくなると、実行部55は、次のように制御を行う。すなわち、中段のチャートに示されるように、実行部55は、所定時間、第2クラッチ30のトルク容量を、クラッチの掴み換えが行われていたときのエンジントルクに維持するとともに、エンジントルクを所定量低減する。その結果、上段のチャートに示されるように、エンジン回転数は第1入力軸41の回転数から第2入力軸42の回転数に遷移する。エンジン回転数が第2入力軸42の回転数に一致すると、いずれのクラッチにおいても滑りが生じていない状態となる。 When the first clutch system output torque becomes zero and the transmission output torque becomes equal to the second clutch system output torque, the execution unit 55 performs control as follows. In other words, as shown in the middle chart, the execution unit 55 maintains the torque capacity of the second clutch 30 at the engine torque when the clutch has been re-engaged for a predetermined period of time and applies the engine torque. Reduce quantitatively. As a result, as shown in the upper chart, the engine speed changes from the speed of the first input shaft 41 to the speed of the second input shaft 42. When the engine rotational speed matches the rotational speed of the second input shaft 42, no slip occurs in any of the clutches.
 エンジン回転数が第2入力軸42の回転数に一致すると、実行部55は、中段のチャートに示されるように、第2クラッチ30のトルク容量を、滑りが生じないように所定量増加させる。また、エンジントルクをドライバ要求エンジントルクに回復させる。これにより、4速が達成され変速が完了する。 When the engine rotational speed matches the rotational speed of the second input shaft 42, the execution unit 55 increases the torque capacity of the second clutch 30 by a predetermined amount so that slip does not occur, as shown in the middle chart. Further, the engine torque is recovered to the driver request engine torque. Thereby, the fourth speed is achieved and the shift is completed.
 変速実行中、第1クラッチ20と第2クラッチ30の掴み換え工程において、第1クラッチ20及び第2クラッチ30は滑っている。また、エンジン回転数の遷移工程において、第2クラッチ30は滑っている。しかしながら、各クラッチのトルク容量は、これらの工程を通して低減している。よって、各クラッチで吸収されるエネルギは低減し、各クラッチにおける発熱量も低減する。すなわち、本実施形態に係る変速機の制御装置によれば、各クラッチにおける過度な発熱を防止することができる。しかも、DCT2の出力トルクである変速機出力トルクが低減した状態で、クラッチの掴み換え工程やエンジン回転数の遷移工程が行われるので、より確実に、各クラッチにおける発熱量を低減させることができる。 During the shifting operation, the first clutch 20 and the second clutch 30 are slipping in the grip changing process of the first clutch 20 and the second clutch 30. Further, the second clutch 30 is slipping during the engine speed transition process. However, the torque capacity of each clutch is reduced through these processes. Therefore, the energy absorbed by each clutch is reduced, and the amount of heat generated in each clutch is also reduced. That is, according to the transmission control device of the present embodiment, excessive heat generation in each clutch can be prevented. In addition, since the clutch gripping process and the engine speed transition process are performed in a state where the transmission output torque, which is the output torque of the DCT 2, is reduced, the amount of heat generated in each clutch can be more reliably reduced. .
 また、掴み換えに先立って、変速機出力トルクはあらかじめ定められている一定値低減され、その状態が掴み換え工程及びエンジン回転数遷移工程を通じて継続する。よって、1回の変速が行われている間に、ドライバが予想しない車両加加速度の変動が生じることが防止される。 Also, prior to the re-holding, the transmission output torque is reduced by a predetermined value, and this state continues through the re-holding process and the engine speed transition process. Therefore, it is possible to prevent the vehicle jerk fluctuations that the driver does not expect during one shift.
 しかも、本実施形態に係る変速機の制御装置によれば、変速機出力トルクのドライバ要求出力トルクに対する低減量は、変速の都度変化するのではなく、常に一定である。よって、変速時にドライバに与える車両の加速度の変化の度合いを均等化することができる。すなわち、変速の都度ドライバに異なる加減速感を与えることによる、ドライバビリティの低下を防止することができる。 In addition, according to the transmission control apparatus of the present embodiment, the amount of reduction of the transmission output torque with respect to the driver request output torque does not change with every shift, but is always constant. Therefore, it is possible to equalize the degree of change in the acceleration of the vehicle given to the driver at the time of shifting. That is, it is possible to prevent the drivability from being lowered by giving a different acceleration / deceleration feeling to the driver at every shift.
 なお、本実施形態に係る変速機の制御装置は、ダウンシフトの場合にも適用することができる。図5は3速から2速へのダウンシフトが実行される場合のタイムチャートである。 The transmission control device according to the present embodiment can also be applied to a downshift. FIG. 5 is a time chart when a downshift from the third speed to the second speed is executed.
 ダウンシフトが実行される場合も、アップシフトが実行される場合と同様に、クラッチの掴み換えに先立って、変速機出力トルクがそれまでの値(ドライバ要求出力トルク)から一定値低減される。その状態で、エンジン回転数遷移工程及び掴み換え工程が実行される。よって、アップシフトが実行される場合と同様に、各クラッチにおける過度な発熱を防止することができるとともに、ドライバビリティの低下を防止することができる。 When the downshift is executed, the transmission output torque is reduced by a constant value from the previous value (driver requested output torque) prior to clutch re-engagement, as in the case of the upshift. In this state, the engine speed transition process and the grip replacement process are executed. Therefore, as in the case where upshifting is performed, it is possible to prevent excessive heat generation in each clutch and to prevent drivability from being lowered.
 なお、自動変速機は、ギヤ列をさらに多数有し、より多段に変速できるDCTであってもよいし、遊星歯車を構成する要素同士の相対回転を停止させるクラッチと、当該要素の回転を停止させるブレーキとを備える自動変速機であってもよい。 The automatic transmission may be a DCT that has a larger number of gear trains and can shift gears in multiple stages, a clutch that stops the relative rotation of the elements constituting the planetary gear, and the rotation of the elements. An automatic transmission including a brake to be operated may be used.
 本出願は、2017年5月19日付で出願された日本国特許出願(特願2017-099983)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2017-099983) filed on May 19, 2017, the contents of which are incorporated herein by reference.
 本開示によれば、摩擦締結要素の掴み換えを行う際の、摩擦締結要素の過度な発熱を防止しつつ、ドライバビリティの低下を防止することが可能な変速制御を行うことが可能な自動変速機の制御装置を提供することができる。よって、その産業上の利用可能性は多大である。 According to the present disclosure, an automatic shift capable of performing a shift control that can prevent a decrease in drivability while preventing excessive heat generation of the friction engagement element when the friction engagement element is replaced. A machine control device can be provided. Therefore, the industrial applicability is great.
 1 車両
 2 DCT
 10 エンジン
 11 エンジン出力軸
 20 第1クラッチ
 21 第1入力側クラッチ板
 22 第1出力側クラッチ板
 23 第1ピストン
 30 第2クラッチ
 31 第2入力側クラッチ板
 32 第2出力側クラッチ板
 33 第2ピストン
 40 変速部
 41 第1入力軸
 42 第2入力軸
 43 副軸
 44 出力軸
 50 制御装置
 51 CPU
 52 メモリ
 53 変速条件成立判断部
 54 変速機出力トルク低減部
 55 実行部
 60 第1変速部
 61 第1高速ギヤ列
 61a 第1入力ギヤ
 61b 第1副ギヤ
 62 第1低速ギヤ列
 62a 第2入力ギヤ
 62b 第2副ギヤ
 63 第1連結機構
 63a 第1スリーブ
 70 第2変速部
 71 第2高速ギヤ列
 71a 第3入力ギヤ
 71b 第3副ギヤ
 72 第2低速ギヤ列
 72a 第4入力ギヤ
 72b 第4副ギヤ
 73 第2連結機構
 73a 第2スリーブ
 80 前後進切替部
 81 前進ギヤ列
 81a 第1出力ギヤ
 81b 第5副ギヤ
 82 後進ギヤ列
 82a 第2出力ギヤ
 82b 第6副ギヤ
 82c アイドラギヤ
 83 第3連結機構
 83a 第3スリーブ
 101 アクセル開度センサ
 102 エンジン回転数センサ
 103 車速センサ
 90 油圧回路
1 Vehicle 2 DCT
DESCRIPTION OF SYMBOLS 10 Engine 11 Engine output shaft 20 1st clutch 21 1st input side clutch board 22 1st output side clutch board 23 1st piston 30 2nd clutch 31 2nd input side clutch board 32 2nd output side clutch board 33 2nd piston 40 Transmission Unit 41 First Input Shaft 42 Second Input Shaft 43 Subshaft 44 Output Shaft 50 Controller 51 CPU
52 Memory 53 Shift Condition Satisfaction Determination Unit 54 Transmission Output Torque Reduction Unit 55 Execution Unit 60 First Transmission Unit 61 First High Speed Gear Train 61a First Input Gear 61b First Sub Gear 62 First Low Speed Gear Train 62a Second Input Gear 62b 2nd sub gear 63 1st connection mechanism 63a 1st sleeve 70 2nd speed change part 71 2nd high speed gear train 71a 3rd input gear 71b 3rd sub gear 72 2nd low speed gear train 72a 4th input gear 72b 4th sub Gear 73 Second coupling mechanism 73a Second sleeve 80 Forward / reverse switching portion 81 Forward gear train 81a First output gear 81b Fifth sub gear 82 Reverse gear train 82a Second output gear 82b Sixth sub gear 82c Idler gear 83 Third coupling mechanism 83a Third sleeve 101 Accelerator opening sensor 102 Engine speed sensor 103 Vehicle speed sensor 90 Hydraulic circuit

Claims (2)

  1.  複数の摩擦締結要素の掴み換えを伴って変速する車両用の変速機の変速条件が成立したか否かを判断する変速条件成立判断部と、
     前記変速条件成立判断部によって変速条件が成立したと判断された場合に、前記複数の摩擦締結要素の掴み換えに先立って前記変速機の出力トルクを一定量低減させる変速機出力トルク低減部と、を備える自動変速機の制御装置。
    A shift condition establishment determination unit that determines whether or not a shift condition of a transmission for a vehicle that shifts with a change of grip of a plurality of frictional engagement elements is satisfied;
    A transmission output torque reducing unit that reduces the output torque of the transmission by a certain amount prior to the change of the plurality of frictional engagement elements when it is determined by the transmission condition establishment determination unit that the transmission condition is satisfied; An automatic transmission control device comprising:
  2.  前記変速機出力トルク低減部は、前記変速機の出力トルクを低減させている最中の車両の加加速度が、前記車両のドライバが違和感を持たないものとして予め定めた所定の範囲内となる変化速度で、前記変速機の出力トルクを低減させる、請求項1に記載の自動変速機の制御装置。 The transmission output torque reduction unit is a change in which the jerk of the vehicle during which the output torque of the transmission is being reduced falls within a predetermined range that the driver of the vehicle does not feel uncomfortable. The control device for an automatic transmission according to claim 1, wherein the output torque of the transmission is reduced by speed.
PCT/JP2018/019229 2017-05-19 2018-05-18 Control device for automatic transmission WO2018212313A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880030279.4A CN110799779B (en) 2017-05-19 2018-05-18 Control device for automatic transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-099983 2017-05-19
JP2017099983A JP6950277B2 (en) 2017-05-19 2017-05-19 Control device for automatic transmission

Publications (1)

Publication Number Publication Date
WO2018212313A1 true WO2018212313A1 (en) 2018-11-22

Family

ID=64273969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019229 WO2018212313A1 (en) 2017-05-19 2018-05-18 Control device for automatic transmission

Country Status (3)

Country Link
JP (1) JP6950277B2 (en)
CN (1) CN110799779B (en)
WO (1) WO2018212313A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116771817A (en) * 2023-08-24 2023-09-19 盛瑞传动股份有限公司 Control method, device and equipment for gearbox and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0849578A (en) * 1995-05-29 1996-02-20 Mazda Motor Corp Speed change shock decreasing device of automatic transmission
JPH09133205A (en) * 1995-11-06 1997-05-20 Toyota Motor Corp Shift controller in automatic transmission
JP2005273822A (en) * 2004-03-25 2005-10-06 Jatco Ltd Shift control device of automatic transmission
JP2014173457A (en) * 2013-03-07 2014-09-22 Nissan Motor Co Ltd Gear change control device of vehicle
JP2015218895A (en) * 2014-05-21 2015-12-07 日産自動車株式会社 Vehicle gearshift control device
JP2016070369A (en) * 2014-09-30 2016-05-09 アイシン・エーアイ株式会社 Power transmission control device of vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101714248B1 (en) * 2015-10-28 2017-03-09 현대자동차주식회사 Shift control method for vehicle with dct

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0849578A (en) * 1995-05-29 1996-02-20 Mazda Motor Corp Speed change shock decreasing device of automatic transmission
JPH09133205A (en) * 1995-11-06 1997-05-20 Toyota Motor Corp Shift controller in automatic transmission
JP2005273822A (en) * 2004-03-25 2005-10-06 Jatco Ltd Shift control device of automatic transmission
JP2014173457A (en) * 2013-03-07 2014-09-22 Nissan Motor Co Ltd Gear change control device of vehicle
JP2015218895A (en) * 2014-05-21 2015-12-07 日産自動車株式会社 Vehicle gearshift control device
JP2016070369A (en) * 2014-09-30 2016-05-09 アイシン・エーアイ株式会社 Power transmission control device of vehicle

Also Published As

Publication number Publication date
JP2018194132A (en) 2018-12-06
CN110799779A (en) 2020-02-14
CN110799779B (en) 2021-06-01
JP6950277B2 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
Tian et al. Modelling and control of a novel two-speed transmission for electric vehicles
US9174644B2 (en) Vehicle shift control device
EP2653754B1 (en) Control device for dual clutch transmission and control method for dual clutch transmission
JP5424953B2 (en) Vehicle power transmission control device
EP2767733B1 (en) Power transmission control device for vehicle
JP4577073B2 (en) Control device for multiple clutch transmission
WO2018212313A1 (en) Control device for automatic transmission
JP2010247603A (en) Control device for transmission unit
WO2018212314A1 (en) Control device for automatic transmission
JP6074133B2 (en) Vehicle power transmission control device
JP6865921B2 (en) Transmission controller
WO2018212324A1 (en) Control device for automatic transmission
JP4720406B2 (en) Control device for multiple clutch transmission
JP2006226380A (en) Control device of twin-clutch transmission
JP2006308061A (en) Control device for transmission
JP5947070B2 (en) Transmission control device
WO2018212325A1 (en) Device for controlling automatic transmission
JP2013032825A (en) Power transmission controller of vehicle
WO2018212326A1 (en) Control device for automatic transmission
CN108700193B (en) Control device for dual clutch transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18802439

Country of ref document: EP

Kind code of ref document: A1