WO2018210056A1 - 触控板及其显示屏 - Google Patents

触控板及其显示屏 Download PDF

Info

Publication number
WO2018210056A1
WO2018210056A1 PCT/CN2018/080101 CN2018080101W WO2018210056A1 WO 2018210056 A1 WO2018210056 A1 WO 2018210056A1 CN 2018080101 W CN2018080101 W CN 2018080101W WO 2018210056 A1 WO2018210056 A1 WO 2018210056A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch electrode
metal
layer
touch
organic insulating
Prior art date
Application number
PCT/CN2018/080101
Other languages
English (en)
French (fr)
Inventor
陈军
陈启程
张明
郭总杰
丁贤林
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/098,234 priority Critical patent/US11132075B2/en
Publication of WO2018210056A1 publication Critical patent/WO2018210056A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a field of flexible touch display technologies.
  • a conventional touch screen is prepared on a glass substrate using ITO (indium tin oxide) as a sensing electrode and metal as a wire.
  • ITO indium tin oxide
  • the fabrication of inductive sensors and metal traces on substrates is facing new challenges due to variations in flexible substrates.
  • the existing flexible touch screen uses ITO as an electrode.
  • the ITO deposited by magnetron sputtering has a problem of cracking and falling off when the flexible substrate is bent.
  • ITO thickness by improving the ITO coating process
  • the following can meet the flexible base film bending test requirements, that is, there will be no problem of cracking and falling off.
  • the limitation of the thickness of the ITO film causes the square resistance of the ITO to be too large, which seriously restricts the size and touch performance of the flexible touch screen.
  • the present disclosure provides a metal-mesh screen printing structure using a highly ductile metal as an inductive sensor to improve flexural bending performance.
  • the metal electrode array formed by etching the metal on the glass substrate causes a metal electrode shadow to be generated, which affects the display effect of the touch screen.
  • the reflectivity of the metal is much higher than that of the surrounding glass substrate without the metal region, so the reflectance of the two regions differs greatly, the visual contrast is obvious, and the metal electrode shadow can be observed by the naked eye.
  • this paper achieves the appearance of metal appearance and the adhesion of buffer layer to meet the reliability requirement through the laminated design of metal reflectivity.
  • the present disclosure provides a touch panel, a touch display panel, and a touch electrode included therein, which relate to the field of display technology and can solve the problem of poor touch performance of the touch panel.
  • a touch electrode is disposed on a substrate, wherein the touch electrode includes a metal layer and a buffer layer, and the metal layer is an electrode wire used as a touch electrode.
  • the ductile metal is a metal or metal alloy for improving the adhesion between the metal layer and the substrate, wherein the buffer layer is disposed between the metal layer and the substrate.
  • a low reflectivity metal oxide layer is disposed over the metal layer.
  • the metal layer is Ag or Cu.
  • the buffer layer is selected from one or a combination of the following: Mo, Mo alloy, Ti, Ti alloy.
  • the metal oxide is at least one of the following: Ag oxide, Ag alloy oxide, Cu oxide, Mo oxide, MoNb alloy oxide, Ti oxide, Ti alloy oxide.
  • a touch panel includes at least one first touch electrode assembly and at least one second touch electrode assembly, the first touch electrode assembly including a first touch electrode and a cover a first organic insulating layer of the first touch electrode, the second touch electrode assembly includes a second touch electrode and a second organic insulating layer covering the second touch electrode, wherein the first touch electrode and The second touch electrode is any one of the touch electrodes as described above.
  • the second organic insulating layer is away from the substrate on the first organic insulating layer, and the first organic insulating layer has a refractive index smaller than that of the second organic insulating layer.
  • the first organic insulating layer has a refractive index of ⁇ 1.4
  • the second organic insulating layer has a refractive index of ⁇ 1.6.
  • the first organic insulating layer and the second organic insulating layer are equal in thickness.
  • the first organic insulating layer has a thickness of 0.5-4 um
  • the second organic insulating layer has a thickness of 0.5-4 um.
  • a touch display screen including any one of the touch panels described above.
  • the touch screen of some embodiments of the present disclosure replaces ITO with a metal material Ag or Cu which is more resistant to bending, and an inductive sensor is prepared by preparing a metal mesh. Due to the lower metal resistance, large size and high performance touch requirements can be achieved.
  • the present disclosure also proposes a laminate design scheme in which a metal underlayer is prepared to improve the adhesion of the buffer layer, a metal top layer is prepared to reduce the reflectivity, and at the same time, two materials of high and low refractive indices are used to prepare the organic insulating layer, thereby ensuring The reflectivity of the metal line region is consistent with the reflectance of the metal-free region, achieving the purpose of metal shading.
  • FIG. 1 is a schematic structural diagram of a touch electrode according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a planar structure of a touch panel according to an embodiment of the present disclosure
  • FIG. 3 is a schematic cross-sectional view of a display screen including a touch panel according to an embodiment of the present disclosure
  • 4-1 is a schematic structural diagram of a metal shading principle of a touch panel according to an embodiment of the present disclosure
  • 4-2 is a schematic structural diagram of a metal shading principle of a touch panel according to an embodiment of the present disclosure
  • FIG. 5 is a diagram of a metal shading effect of a touch display screen according to an embodiment of the present disclosure
  • a touch display screen includes a touch panel structure and a flexible display panel, and the touch panel structure may further include a touch electrode.
  • FIG. 1 is a schematic diagram showing a specific structure of a touch electrode according to an embodiment of the present disclosure.
  • the touch electrode may be the first touch electrode 10 shown in FIG. 2 .
  • the first touch electrode 10 includes a first metal layer 2 , a first buffer layer 1 , and a first low reflection layer 3 .
  • the first buffer layer 1 may be a metal or a metal alloy, such as Mo or Mo alloy, Ti or Ti alloy, for improving the adhesion between the metal layer and the substrate, so that the touch panel and the substrate are stably combined.
  • the first buffer layer 1 has better ductility, and satisfies the bending variation of the substrate diversity, especially the flexible display, but is not limited to the flexible display.
  • the first metal layer 2 is located above the first buffer layer 1.
  • the first metal layer 2 is a metal having good ductility, such as Ag, Cu material, etc., and is used as an electrode lead of a touch electrode. Compared with the traditional touch electrode material ITO, the metal touch electrode has small square resistance and large signal-to-noise ratio, which effectively improves the touch sensitivity of the touch screen.
  • the first low reflection layer 3 is located above the first metal layer 2, and the first low reflection layer 3 is a metal oxide such as Ag or Ag alloy oxide; Cu or Cu oxide; Mo or MoNb alloy Oxide, Ti or Ti alloy oxide.
  • the first low-reflection layer 3 can effectively reduce the reflection of the light on the surface of the first touch electrode 10, thereby achieving the purpose of metal shading.
  • FIG. 2 is a schematic diagram showing a planar structure of a touch panel according to an embodiment of the present disclosure.
  • the touch screen includes at least one first touch electrode 10 and at least one second touch electrode 20.
  • An exemplary structure of the first touch electrode 10 is shown in FIG. 1 , and the second touch electrode 20 can also adopt the same structure as the first touch electrode 10 .
  • the arrangement of the first touch electrodes 10 and the second touch electrodes 20 may be as shown in FIG. 2 .
  • the plurality of first touch electrodes 10 are parallel and spaced apart, and the plurality of second touch electrodes 20 are parallel and spaced apart.
  • the plurality of first touch electrodes 10 and the plurality of second touch electrodes 20 are disposed to intersect each other.
  • the first touch electrode 10 can be used as the Rx, and the second touch electrode 20 can be used as the Tx.
  • the first touch electrode 10 and the second touch electrode 20 are insulated by using an insulating layer. Since the reflectivity of the metal used in the touch electrode is much higher than that of the surrounding glass substrate without the metal region, the visual contrast caused by the large difference in reflectance between the two regions is too obvious. In view of the problem of metal electrode shadows in metal touch glasses, some embodiments of the present disclosure achieve metal appearance shading by a laminate design of an organic insulating layer.
  • FIG. 3 illustrates a schematic cross-sectional view of a display screen including a touch panel (a cross section of the position of FIG. 2c-c') according to an embodiment of the present disclosure.
  • the display screen includes an organic light-emitting device OLED panel 8, a flexible substrate 6, an adhesive 7 (OCA) disposed between the OLED panel 8 and the flexible substrate 6.
  • OCA adhesive 7
  • the touch panel is disposed on the flexible substrate 6.
  • the touch panel includes a first touch electrode assembly a and a second touch electrode assembly b.
  • the second touch electrode assembly b can be disposed on the first touch electrode assembly a away from the substrate.
  • the first touch electrode assembly a includes a first touch electrode 10 and a first organic insulating layer 4 covering the first touch electrode 10 .
  • the second touch electrode assembly b includes a second touch electrode 20 and a second organic insulating layer 5 covering the second touch electrode 20 .
  • the first touch electrode 10 may include a first metal layer 2, a first buffer layer 1, and a first low reflection layer 3.
  • the second touch electrode 20 may include a second metal layer 2', a second buffer layer 1', and a second low reflection layer 3'.
  • the first/second metal layer 2/2' is disposed above the first/second buffer layer 1/1'; the first/second low reflection layer 3/3' is disposed on the first/second layer Above the metal layer 2/2'.
  • the refractive index of the first organic insulating layer 4 is smaller than the refractive index of the second organic insulating layer 5.
  • the first organic insulating layer may have a refractive index of ⁇ 1.4
  • the second organic insulating layer may have a refractive index of ⁇ 1.6.
  • the thickness of the first organic insulating layer 4 and the thickness of the second organic insulating layer 5 may be set to be the same.
  • the thickness of the first organic insulating layer 4 may be set to 0.5-4 um
  • the thickness of the second organic insulating layer 5 may also be set to 0.5-4 um. Since the light is reflected by the two layers of different refractive index organic insulating layers, the reflectances of the metal regions and the non-metal regions are nearly uniform, so that the effect of metal shading can be achieved.
  • FIG. 4 is a schematic structural diagram of a metal shading principle of a touch panel according to an embodiment of the present disclosure.
  • the reflection of the metal region and the reflection of the non-metal region are divided into two cases: the first case is as shown in FIG. 4-1, and the reflected light includes the reflected light reflected by the first metal layer 2. And reflected light that is not reflected by any metal layer; the second case is shown in Figure 4-2.
  • the reflected light includes reflected light reflected by the second metal layer 2' and reflected light that is not reflected by any metal layer.
  • the difference between the metal reflective region and the metal-free region can be reduced, while the first metal layer 2 and the second metal layer 2' are The first low reflection layer 3 and the second low reflection layer 3' further reduce the reflection of light, and the combination of the two makes the metal reflection area coincide with the non-metal reflection area, thereby solving the problem of metal shadow elimination.
  • FIG. 5 illustrates a metal shading effect diagram of a touch display screen according to an embodiment of the present disclosure.
  • the embodiment in the figure uses an incident wavelength of 550 nm, a first organic insulating layer 4 having a thickness of 1.5 ⁇ m, a refractive index n of 1.5, a second organic insulating layer 5 having a thickness of 1.5 ⁇ m, and a refractive index n of 1.9; first and second low
  • the reflective layer 3/3' is a Cu oxide metal film; the first and second metal layers 2/2' are Cu, and the first and second buffer layers 1/1' are Ti alloys.
  • the blackening of the metal surface can reduce the reflectance index to 11% to 22%.
  • the transparent conductive layer ITO is replaced by the ductile metal Ag and Cu, the flexibility and bending resistance can be satisfied, and the touch screen impedance is low, the touch sensitivity is increased, and the touch performance is improved; and the buffer layer is used (buffer- Layer) design to solve the problem of low metal adhesion; use metal upper low reflection layer to reduce metal reflection; use high refractive index organic insulating film layer and low refractive index organic insulating film layer to make metal reflection zone and metal free zone The reflection is consistent, solving the problem of metal shadowing.
  • the foregoing embodiment is only exemplified by the division of the foregoing functional modules.
  • the foregoing functions may be allocated to different functional modules as needed.
  • the internal structure of the device can be divided into different functional modules to perform all or part of the functions described above.
  • the function of one module described above may be completed by multiple modules, and the functions of the above multiple modules may also be integrated into one module.
  • any reference signs placed in parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of the elements or the The word “a” or “an” or “an”
  • the invention may be implemented by means of hardware comprising several discrete elements, or by suitably programmed software or firmware, or by any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Position Input By Displaying (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

本公开提供了一种触控板及其显示屏,该触控板包括第一触控电极组件、第二触控电极组件;所述第一触控电极组件包括第一触控电极和覆盖第一触控电极的第一有机绝缘层;所述第二触控电极组件包括第二触控电极和覆盖第二触控电极的第二有机绝缘层。所述触控电极包括金属层、缓冲层以及低反射层,所述缓冲层设置于金属层的下方,所述低反射层设置于金属层的上方。一些实施例使用耐弯折性能更高的金属材料,可实现大尺寸与高性能触控的要求,在金属上层制备低反射层,降低反射率,同时使用高折射率和低折射率绝缘层材料,保证金属线区域反射率与无金属线区域反射率一致,达到金属消影的目的和解决附着力不足问题。

Description

触控板及其显示屏
相关申请
本申请要求2017年5月16日提交、申请号为201710344650.1的中国专利申请的优先权,该申请的全部内容通过引用并入本文。
技术领域
本公开涉及显示技术领域,尤其涉及一种柔性触控显示技术领域。
背景技术
随着科技的发展,柔性显示OLED(有机发光二极管)发展越来越迅速与普及,为搭配柔性OLED显示,柔性触控屏亦发展起来。传统的触控屏是制备在玻璃(Glass)基材上,采用ITO(氧化铟锡)作为感应电极,金属作为导线。由于柔性基材的变化,在基材上制备感应传感器(sensor)和金属走线面临新的挑战。现有柔性触控屏采用ITO作为电极,然而通过磁控溅射蒸镀上去的ITO在进行柔性基板弯折测试时出现龟裂而脱落的问题。
发明内容
通过改善ITO镀膜工艺,目前ITO厚度
Figure PCTCN2018080101-appb-000001
以下可以满足柔性基膜弯折测试要求,即不会出现龟裂、脱落的问题。然而ITO膜厚的限制导致ITO的方阻太大,严重制约柔性触控屏的尺寸和触控性能。
为提高柔性触控屏的尺寸与触控性能,同时满足柔性触控屏弯折测试要求。本公开提供一种使用延展性高的金属作为感应传感器,制备出金属-mesh网印结构,以提高柔性屏弯折性能。
但是,通过刻蚀玻璃基板上的金属形成的金属电极阵列会导致产生金属电极影,影响触控屏的显示效果。这是因为金属的反射率远高于周围玻璃基板没有金属区域的反射率,因此两个区域反射率相差较大,视觉反差明显,肉眼可观察到金属电极影。针对金属触控玻璃存在金属电极影的问题,本文通过金属反射率的叠层设计来达到金属外观消影以及采用缓冲层附着力满足信赖性要求。
具体而言,本公开提供了一种触控板、触控显示屏以及其中包含 的触控电极,涉及显示技术领域,能够解决触控板触控性能不佳的问题。
根据本公开的一个方面,提供了一种触控电极,该触控电极设置在基板上,其中,该触控电极包括金属层和缓冲层,所述金属层为用作触控电极的电极导线的延展性好的金属,所述缓冲层为提高金属层和基板之间的粘附力的金属或金属合金,其中,所述缓冲层设置于所述金属层和基板之间。
在一个实施例中,所述金属层上方设置一低反射率的金属氧化物层。
在一个实施例中,所述金属层为Ag或Cu。
在一个实施例中,所述缓冲层选自以下其中之一或其组合:Mo、Mo合金、Ti、Ti合金。
在一个实施例中,所述金属氧化物为以下至少其中之一:Ag氧化物、Ag合金氧化物、Cu氧化物、Mo氧化物、MoNb合金氧化物、Ti氧化物、Ti合金氧化物。
根据本公开另一个方面,提供了一种触控板,包括至少一个第一触控电极组件和至少一个第二触控电极组件,所述第一触控电极组件包括第一触控电极和覆盖第一触控电极的第一有机绝缘层,所述第二触控电极组件包括第二触控电极和覆盖第二触控电极的第二有机绝缘层,其中,所述第一触控电极和所述第二触控电极为如上所述的任意一个触控电极。
在一个实施例中,所述第二有机绝缘层在所述第一有机绝缘层上远离基板的方向,所述第一有机绝缘层的折射率小于第二有机绝缘层折射率。
在一个实施例中,所述第一有机绝缘层的折射率≤1.4,所述第二有机绝缘层的折射率≥1.6。
在一个实施例中,所述第一有机绝缘层和所述第二有机绝缘层的厚度相等。
在一个实施例中,所述第一有机绝缘层厚度为0.5-4um,所述第二有机绝缘层厚度为0.5-4um。
根据本公开另一个方面,提供了一种触控显示屏,包括如上所述的任意一个触控板。
本公开一些实施例的触控屏使用耐弯折性能更高的金属材料Ag或者Cu取代ITO,通过制备金属网格制备感应传感器。由于金属方阻更低,可实现大尺寸与高性能触控的要求。本公开还提出了一种叠层设计方案,金属底层制备缓冲层改善附着力,金属顶层制备低反射层降低反射率,同时使用高、低不同折射率的的两种材料制备有机绝缘层,保证金属线区域反射率与无金属线区域反射率一致,达到金属消影的目的。
本发明内容部分以简化的形式介绍了本发明的一些构思,这些构思在下面的具体实施方式中进一步加以描述。本发明内容部分并非要给出要求保护的主题的必要特征或实质特征,也不是要限制要求保护的主题的范围。此外,正如本文所描述的,各种各样的其他特征和优点也可以根据需要结合到这些技术中。
附图说明
为了更清楚地说明本公开一些实施例的技术方案,本公开提供了下列附图以便在实施例描述时使用,这些附图构成说明书的一部分,与本公开的实施例一起用于解释本公开一些实施例的技术方案。应当意识到,下面描述中的附图仅仅涉及一些实施例,并不构成对本发明技术方案的限制,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,所述其它的附图也在本发明的范围内。
图1为根据本公开一个实施例提供的触控电极具体结构示意图;
图2为根据本公开一个实施例提供的一种触控板平面结构示意图;
图3为根据本公开一个实施例提供的一种包括触控板的显示屏截面结构示意图;
图4-1为根据本公开一个实施例的触控板金属消影原理结构示意图;
图4-2为根据本公开一个实施例的触控板金属消影原理结构示意图;
图5为采用根据本公开一个实施例的触控显示屏金属消影效果图;
附图标记:
1-第一缓冲层;2-第一金属层;3-第一低反射层;1’-第二缓冲层; 2’-第二金属层;3’-第二低反射层;4-第一有机绝缘层;5-第二有机绝缘层;6-柔性基板;7-粘结剂;8-OLED面板;10-第一触控电极;20-第二触控电极;a-第一触控电极组件;b-第二触控电极组件。
具体实施方式
下面将结合附图,对本公开实施例的技术方案进行清楚、完整地描述。本领域普通技术人员能够理解,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本公开的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
根据本公开一个实施例提供了一种触控显示屏,所述触控显示屏包括触控板结构和柔性显示面板,所述触控板结构可以进一步包括触控电极。
图1示出了根据本公开一个实施例的触控电极具体结构示意图。例如,所述触控电极可以是图2所示的第一触控电极10。如图1所示,第一触控电极10包括第一金属层2、第一缓冲层1、第一低反射层3。所述第一缓冲层1可以是金属或金属合金,如Mo或Mo合金、Ti或者Ti合金,用来提高金属层和基板之间的粘附力,使触控板与基板稳定结合。同时第一缓冲层1具有较好的延展性能,满足基板多样性的弯折变化,尤其是实现柔性显示,但不仅限于柔性显示。所述的第一金属层2位于所述第一缓冲层1的上方,第一金属层2为延展性好的的金属,例如Ag、Cu材料等,用作触控电极的电极导线。相比传统触控电极材料ITO,金属触控电极方阻小,信噪比大,有效提升触控屏的触控灵敏度。所述第一低反射层3位于所述第一金属层2的上方,所述第一低反射层3为金属氧化物,例如Ag或者Ag合金氧化物;Cu或者Cu氧化物;Mo或者MoNb合金氧化物,Ti或Ti合金氧化物。第一低反射层3可以有效降低第一触控电极10表面光线的反射,从而可以达到金属消影的目的。
图2示出了根据本公开一个实施例提供的一种触控板平面结构示意图。该触控屏包括至少一个第一触控电极10和至少一个第二触控电极20。第一触控电极10的例示结构在图1中示出,第二触控电极20也可以采用与第一触控电极10相同的结构。所述第一触控电极10和 所述第二触控电极20的排列可以为图2所示,多个第一触控电极10平行且间隔设置,多个第二触控电极20平行且间隔设置,所述多个第一触控电极10和所述多个第二触控电极20交叉设置。第一触控电极10可以作为Rx,第二触控电极20可以作为Tx,第一触控电极10与第二触控电极20之间使用绝缘层隔绝。由于相关技术用于触控电极的金属的反射率远高于周围玻璃基板没有金属区域的反射率,两个区域反射率相差较大引起的视觉反差过于明显。针对金属触控玻璃存在金属电极影的问题,本公开一些实施例通过有机绝缘层的叠层设计来达到金属外观消影。
图3示出了根据本公开一个实施例提供的一种包括触控板的显示屏截面结构示意图(图2c-c’位置的横截面)。该显示屏包括有机致电发光器件OLED面板8、柔性基板6、所述OLED面板8和柔性基板6之间设置的粘胶剂7(OCA)。通过粘胶剂7,OLED面板8和柔性基板6贴合在一起。触控板设置在所述柔性基板6上,所述触控板包括第一触控电极组件a、第二触控电极组件b。第二触控电极组件b可以设置在所述第一触控电极组件a上远离基板的方向。所述第一触控电极组件a包括第一触控电极10和覆盖第一触控电极10的第一有机绝缘层4。所述第二触控电极组件b包括第二触控电极20和覆盖第二触控电极20的第二有机绝缘层5。第一触控电极10可以包括第一金属层2、第一缓冲层1、第一低反射层3。第二触控电极20可以包括第二金属层2’、第二缓冲层1’、第二低反射层3’。所述第一/第二金属层2/2’设置于第一/第二缓冲层1/1’的上方;所述第一/第二低反射层3/3’设置于第一/第二金属层2/2’的上方。
在一个实施例中,第一有机绝缘层4折射率小于第二有机绝缘层5的折射率。例如,所述第一有机绝缘层折射率可以≤1.4,所述第二有机绝缘层折射率可以≥1.6。所述第一有机绝缘层4厚度与所述第二有机绝缘层5厚度可以设置为相同。例如,所述第一有机绝缘层4厚度可以设置为0.5-4um,所述第二有机绝缘层5厚度也可以设置为0.5-4um。由于光线经过两层不同折射率的有机绝缘层反射,使金属区和非金属区反射率接近一致,从而可以达到金属消影的效果。
图4示出了根据本公开一个实施例触控板金属消影原理结构示意图。具体的,如图4所示,金属区域的反射和非金属区域的反射分为 两种情况:第一种情况如图4-1所示,反射光线包括经过第一金属层2反射的反射光线以及不经过任何金属层反射的反射光线;第二种情况如图4-2所示,反射光线包括经过第二金属层2’反射的反射光线和不经过任何金属层反射的反射光线。使用高折射率第二有机绝缘层5与低折射率第一有机绝缘层4搭配,可以使金属反射区与无金属区反射差异减小,同时第一金属层2和第二金属层2’上的第一低反射层3和第二低反射层3’进一步减小了对光线的反射,两者结合下使金属反射区与非金属反射区一致,从而解决了金属消影的问题。
图5示出了采用根据本公开一个实施例的触控显示屏金属消影效果图。通过低反射率金属层以及有机绝缘膜层叠层设计,降低了金属线网格处反射,使之与非金属线网格处反射相同,通过这种方式使得金属线外观不明显。图中实施例采用入射波长为550nm,第一有机绝缘层4厚度1.5um,折射率n值为1.5,第二有机绝缘层5厚度1.5um,折射率n值为1.9;第一和第二低反射层3/3’为Cu氧化物金属膜;第一和第二金属层2/2’为Cu,第一和第二缓冲层1/1’为Ti合金。金属表面黑化可以将反射率指标降低为11%至22%,通过匹配使用高、低不同折射率的有机绝缘膜层可以使反射率更相近,达到如图5所示消影的效果。
由于使用延展性好的金属Ag、Cu取代透明导电层ITO,可以满足柔性耐弯折的要求,同时触控屏阻抗低,增大触控灵敏度,提高了触控性能;使用缓冲层(buffer-layer)设计,解决金属附着力低的问题;搭配使用金属上层低反射层,降低金属反射;使用高折射率有机绝缘膜层与低折射率有机绝缘膜层搭配,使金属反射区与无金属区反射一致,解决金属消影的问题。
可以理解的是,以上所述仅为本发明的示例性实施方式,但本发明的保护范围并不局限于此。应当指出的是,在不脱离本发明的精神和原理的前提下,本领域的普通技术人员可轻易想到各种变化或替换,这些变化或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所附权利要求的保护范围为准。
需要说明的是,上述实施例仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要将上述功能分配给不同的功能模块完成。可以将装置的内部结构划分成不同的功能模块,以完成以上描 述的全部或者部分功能。另外,上述一个模块的功能可以由多个模块来完成,上述多个模块的功能也可以集成到一个模块中完成。
在权利要求书中,任何置于括号中的附图标记都不应当解释为限制权利要求。术语“包括”并不排除除了权利要求中所列出的元件或步骤之外的元件或步骤的存在。元件前的词语“一”或“一个”并不排除存在多个这样的元件。本发明可以借助于包括若干分离元件的硬件来实现,也可以通过适当编程的软件或固件来实现,或者通过它们的任意组合来实现。
在列举了若干装置的设备或***权利要求中,这些装置中的一个或多个能够在同一个硬件项目中体现。仅仅某些措施记载在相互不同的从属权利要求中这个事实并不表明这些措施的组合不能被有利地使用。

Claims (11)

  1. 一种触控电极,该触控电极设置在基板上,其中,该触控电极包括金属层和缓冲层,所述金属层为用作触控电极的电极导线的延展性好的金属,所述缓冲层为提高金属层和基板之间的粘附力的金属或金属合金,其中,所述缓冲层设置于所述金属层和基板之间。
  2. 根据权利要求1所述的触控电极,其中,所述金属层上方设置一低反射率的金属氧化物层。
  3. 根据权利要求1所述的触控电极,其中,所述金属层为Ag或Cu。
  4. 根据权利要求1所述的触控电极,其中所述缓冲层选自以下其中之一或其组合:Mo、Mo合金、Ti、Ti合金。
  5. 根据权利要求2所述的触控电极,其中,所述金属氧化物为以下至少其中之一:Ag氧化物、Ag合金氧化物、Cu氧化物、Mo氧化物、MoNb合金氧化物、Ti氧化物、Ti合金氧化物。
  6. 一种触控板,包括至少一个第一触控电极组件和至少一个第二触控电极组件,所述第一触控电极组件包括第一触控电极和覆盖第一触控电极的第一有机绝缘层,所述第二触控电极组件包括第二触控电极和覆盖第二触控电极的第二有机绝缘层,其中,所述第一触控电极和所述第二触控电极为权利要求1-5中任何一项所述的触控电极。
  7. 根据权利要求6所述的触控板,其中,所述第二触控电极组件在所述第一触控电极组件上远离基板的方向,所述第一有机绝缘层的折射率小于第二有机绝缘层折射率。
  8. 根据权利要求7所述的触控板,其中,所述第一有机绝缘层的折射率≤1.4,所述第二有机绝缘层的折射率≥1.6。
  9. 根据权利要求7或8所述的触控板,其中,所述第一有机绝缘层和所述第二有机绝缘层的厚度相等。
  10. 根据权利要求9所述的触控板,其中,所述第一有机绝缘层厚度为0.5-4um,所述第二有机绝缘层厚度为0.5-4um。
  11. 一种触控显示屏,包括权利要求6-9中任一项所述的触控板。
PCT/CN2018/080101 2017-05-16 2018-03-23 触控板及其显示屏 WO2018210056A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/098,234 US11132075B2 (en) 2017-05-16 2018-03-23 Touchpad and display screen thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710344650.1 2017-05-16
CN201710344650.1A CN107168580A (zh) 2017-05-16 2017-05-16 一种触控板及其显示屏

Publications (1)

Publication Number Publication Date
WO2018210056A1 true WO2018210056A1 (zh) 2018-11-22

Family

ID=59815793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080101 WO2018210056A1 (zh) 2017-05-16 2018-03-23 触控板及其显示屏

Country Status (3)

Country Link
US (1) US11132075B2 (zh)
CN (1) CN107168580A (zh)
WO (1) WO2018210056A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107168580A (zh) * 2017-05-16 2017-09-15 京东方科技集团股份有限公司 一种触控板及其显示屏
CN109659339A (zh) * 2018-12-10 2019-04-19 武汉华星光电半导体显示技术有限公司 可折叠显示面板及其制作方法和可折叠显示装置
CN109947288B (zh) * 2019-02-27 2020-06-30 武汉华星光电半导体显示技术有限公司 一种内嵌式触控面板与制造方法
CN114510167B (zh) * 2020-11-17 2024-04-12 瀚宇彩晶股份有限公司 触控感测面板
KR20220086764A (ko) * 2020-12-16 2022-06-24 삼성디스플레이 주식회사 표시 장치
CN113268165B (zh) * 2021-06-09 2023-11-17 合肥维信诺科技有限公司 触控模组、显示模组及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102999196A (zh) * 2011-09-09 2013-03-27 宸鸿科技(厦门)有限公司 触控堆叠结构
CN105929998A (zh) * 2016-04-19 2016-09-07 昆山龙腾光电有限公司 触控显示面板及其制造方法
CN105997058A (zh) * 2016-05-28 2016-10-12 惠州市力道电子材料有限公司 一种聚合物柔性叉指电极及其加工方法
CN107168580A (zh) * 2017-05-16 2017-09-15 京东方科技集团股份有限公司 一种触控板及其显示屏

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040188150A1 (en) * 2003-03-25 2004-09-30 3M Innovative Properties Company High transparency touch screen
KR101172113B1 (ko) * 2008-11-14 2012-08-10 엘지이노텍 주식회사 터치스크린 및 그 제조방법
KR101469485B1 (ko) * 2012-08-13 2014-12-05 엘지디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
KR101341030B1 (ko) * 2012-08-29 2013-12-13 엘지디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
CN103278955B (zh) * 2012-12-14 2015-11-11 上海天马微电子有限公司 一种彩膜基板及触控式液晶显示装置
TWI485589B (zh) * 2012-12-17 2015-05-21 Unidisplay Inc 觸控面板及其製造方法
TW201428586A (zh) * 2013-01-11 2014-07-16 Henghao Technology Co Ltd 觸控面板
CN203759670U (zh) * 2014-03-17 2014-08-06 胜华科技股份有限公司 触摸板
CN104166490A (zh) * 2014-08-07 2014-11-26 宜昌南玻显示器件有限公司 Ito导电玻璃及其制备方法
CN104216598A (zh) * 2014-08-29 2014-12-17 合肥鑫晟光电科技有限公司 触摸基板及其制作方法、触摸显示装置
US20160139708A1 (en) * 2014-11-13 2016-05-19 Industrial Technology Research Institute Touch panel
CN104503162A (zh) * 2014-12-24 2015-04-08 深圳市华星光电技术有限公司 具有触控功能的显示面板及其制造方法和复合电极
KR102490624B1 (ko) * 2015-10-30 2023-01-20 엘지디스플레이 주식회사 플렉서블 디스플레이 및 이의 제조 방법
US10290495B2 (en) * 2016-07-29 2019-05-14 Japan Display Inc. Electronic apparatus and manufacturing method of the same
KR102583831B1 (ko) * 2016-11-25 2023-09-27 엘지디스플레이 주식회사 플렉서블 전계발광 표시장치
US10824285B2 (en) * 2018-02-06 2020-11-03 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Electrode structure and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102999196A (zh) * 2011-09-09 2013-03-27 宸鸿科技(厦门)有限公司 触控堆叠结构
CN105929998A (zh) * 2016-04-19 2016-09-07 昆山龙腾光电有限公司 触控显示面板及其制造方法
CN105997058A (zh) * 2016-05-28 2016-10-12 惠州市力道电子材料有限公司 一种聚合物柔性叉指电极及其加工方法
CN107168580A (zh) * 2017-05-16 2017-09-15 京东方科技集团股份有限公司 一种触控板及其显示屏

Also Published As

Publication number Publication date
CN107168580A (zh) 2017-09-15
US20210096667A1 (en) 2021-04-01
US11132075B2 (en) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2018210056A1 (zh) 触控板及其显示屏
TWI511168B (zh) 導電基板、觸控螢幕及包含其之顯示器
JP6807428B2 (ja) タッチウィンドウ、タッチデバイス
KR102271659B1 (ko) 터치 패널 내장형 유기 발광 표시 장치
TWI480776B (zh) 導電結構、觸控面板及其製備方法
US20130194220A1 (en) Touch panel
CN109753181B (zh) 一种显示面板及显示装置
TW201510794A (zh) 觸控面板及其裝飾面板
US10019126B2 (en) Touch window and display including the same
TWI628563B (zh) 觸碰感測電極以及含此之觸控螢幕面板
JP2014194749A (ja) タッチパネル
TW201530387A (zh) 觸控感測器
TW201504871A (zh) 觸控面板與觸控顯示面板
JP6361106B2 (ja) 透明導電膜付き基板、タッチパネル基板、タッチパネル一体型の表示装置用前面保護板、及び表示装置
CN106125988A (zh) 触控屏和触控显示面板
JP5941935B2 (ja) タッチパネル装置及びその電極構造
US9715289B2 (en) Method for manufacturing a conducting substrate
TWM426082U (en) Touch panel and touch display panel using the same
TW201601043A (zh) 靜電容量型觸控面板
CN204856433U (zh) 触控面板与触控显示设备
JP6108094B2 (ja) 電極付き表示装置用前面保護板及び表示装置
JP6446209B2 (ja) 透明電極パターン積層体及びこれを備えたタッチスクリーンパネル
TWM503608U (zh) 觸控面板與觸控顯示裝置
US20150104600A1 (en) Touch sensor
JP2018092148A (ja) 調光フィルム用光透過性導電フィルム及び調光フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 17/01/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18801780

Country of ref document: EP

Kind code of ref document: A1