WO2018207497A1 - 排ガス浄化触媒装置 - Google Patents

排ガス浄化触媒装置 Download PDF

Info

Publication number
WO2018207497A1
WO2018207497A1 PCT/JP2018/013900 JP2018013900W WO2018207497A1 WO 2018207497 A1 WO2018207497 A1 WO 2018207497A1 JP 2018013900 W JP2018013900 W JP 2018013900W WO 2018207497 A1 WO2018207497 A1 WO 2018207497A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
catalyst device
coat layer
partition wall
inlet
Prior art date
Application number
PCT/JP2018/013900
Other languages
English (en)
French (fr)
Inventor
菅原 康
Original Assignee
株式会社キャタラー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キャタラー filed Critical 株式会社キャタラー
Priority to EP18799107.0A priority Critical patent/EP3623048A4/en
Priority to US16/606,362 priority patent/US11149604B2/en
Priority to CN201880028248.5A priority patent/CN110573250B/zh
Priority to AU2018265936A priority patent/AU2018265936B2/en
Publication of WO2018207497A1 publication Critical patent/WO2018207497A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/73After-treatment of removed components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7015CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/723CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/657Pore diameter larger than 1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors

Definitions

  • the present invention relates to an exhaust gas purification catalyst device.
  • PM particulate matter
  • the exhaust gas purification filter for example, a plurality of cells partitioned by porous partition walls are opened on the upstream side of the exhaust gas flow and the downstream side is sealed, and the upstream side of the exhaust gas flow is sealed and the downstream side
  • a honeycomb structure including an outlet-side cell that is open to the outside.
  • Patent Document 1 discloses a heat-resistant base material having a honeycomb structure having a plurality of parallel holes made of porous walls, and adjacent holes are alternately closed at one end, and the base material. And an oxidation catalyst carried on a porous wall constituting the exhaust gas purification structure, wherein the oxidation catalyst is carried on a surface layer that is open in either direction of the wall. Yes.
  • Patent Document 2 discloses a filter base material made of a porous material, an inflow side gas flow path whose gas inflow side end is opened, an outflow side gas flow path whose outflow side end is opened, and an inflow side gas.
  • a honeycomb structure type filter provided between a flow path and an outflow side gas flow and having a partition wall through which exhaust gas is passed and purified, wherein the average pore diameter of the partition wall is 5 ⁇ m or more and 50 ⁇ m or less, and the inflow side gas flow path
  • a honeycomb structure type filter having an average pore diameter of 0.05 ⁇ m or more and 5 ⁇ m or less and a porous film containing a noble metal is described.
  • Patent Document 3 discloses a honeycomb structure portion having a porous partition wall that extends from an inflow side end surface to an outflow side end surface to form a plurality of cells serving as exhaust gas flow paths, and an outflow end surface of an inlet cell that is a predetermined cell.
  • a plugging portion disposed in the side opening and the inflow end face side opening of the outlet cell which is a remaining cell; a surface collection layer disposed on the surface of the inlet side cell of the partition wall of the honeycomb structure portion; A catalyst for purifying exhaust gas formed on at least one surface selected from the group consisting of the surface of the surface collection layer, the inner surface of the pores formed by the surface collection layer, and the surface of the partition wall on the outlet cell side;
  • the exhaust gas purification filter is described in which the amount of catalyst supported from the outflow end face of the honeycomb structure portion to a position of 50 mm is smaller than the amount of catalyst supported on the inflow portion side.
  • Patent Document 4 after a noble metal is supported on a support made of a metal oxide containing CeO 2 , reduction treatment is performed at a temperature in the range of 600 to 800 ° C. in a reducing atmosphere, and then in an oxidizing atmosphere, A low-temperature oxidation catalyst is described in which oxidation treatment is performed at a temperature in the range of 600 to 800 ° C. and reduction treatment is further performed at a temperature in the range of 600 to 800 ° C. It is described that the invention according to Patent Document 4 is made with the intention of purifying diesel exhaust gas and the like.
  • the conventional exhaust gas purification filters represented by Patent Documents 1 to 4 have a high resistance to the passage of exhaust gas and a high pressure loss, so that fuel consumption tends to deteriorate. Furthermore, if these exhaust gas purification filters are continuously used, the collected PM may accumulate in the filter, and the pressure loss may further increase.
  • an object of the present invention is to provide an exhaust gas purification catalyst device in which the pressure loss when used for exhaust gas purification is small and the increase in pressure loss due to PM accumulation is suppressed even when the use is continued for a long time. Is to provide.
  • the present invention is as follows.
  • An exhaust gas purification catalyst device having a honeycomb substrate and an inlet side coating layer,
  • the honeycomb substrate has a plurality of cells partitioned by porous partition walls, and the plurality of cells are formed in an upstream side of the exhaust gas flow, an inlet side cell that is open on the upstream side of the exhaust gas flow and is sealed on the downstream side.
  • the inlet side coat layer is present on the surface side of the partition wall of the inlet side cell,
  • the proportion of through-pores of 4 ⁇ m or more and 9 ⁇ m or less is 80% by volume or more, and a mercury intrusion method using a mercury porosimeter
  • the peak pore diameter measured by is 3.0 ⁇ m or more larger than the peak through-pore diameter measured by the bubble point method using a palm porometer, Exhaust gas purification catalyst device.
  • a method for producing an exhaust gas purification catalyst device includes applying a slurry for forming a coat layer in an inlet side cell of the honeycomb substrate to form a slurry coat layer, and firing the honeycomb substrate after forming the slurry coat layer,
  • the coating layer forming slurry contains inorganic oxide particles and a pore former, Manufacturing method of exhaust gas purification catalyst device.
  • an average particle diameter of the pore former is 10 nm or more and 500 nm or less.
  • the method according to any one of [8] to [10], wherein the amount of the slurry coat layer after firing per unit volume of the honeycomb substrate is 1 g / L or more and 15 g / L or less.
  • the exhaust gas purification catalyst device of the present invention has a small pressure loss when used for purification of exhaust gas, and suppresses an increase in pressure loss due to PM deposition even when the use is continued for a long time. .
  • FIG. 1 is a schematic cross-sectional view for explaining a basic configuration of an exhaust gas purifying catalyst device of the present invention.
  • FIG. 2 is a schematic cross-sectional view for explaining the effects of the exhaust gas purifying catalyst device of the present invention in comparison with the prior art.
  • FIG. 3 is a graph showing the through-pore diameter distribution of the partition walls by the palm porometer and the pore diameter distribution by the mercury porosimeter, measured for the honeycomb substrates used in Examples 1 to 4 and Comparative Examples 1 to 4.
  • FIG. 4 is a graph showing the through-pore diameter distribution of the partition wall by the palm porometer and the pore diameter distribution by the mercury porosimeter measured for the exhaust gas purifying catalyst devices obtained in Examples 1 to 4.
  • FIG. 1 is a schematic cross-sectional view for explaining a basic configuration of an exhaust gas purifying catalyst device of the present invention.
  • FIG. 2 is a schematic cross-sectional view for explaining the effects of the exhaust gas purifying catalyst device of the present invention in comparison with the prior art.
  • FIG. 5 is a graph showing the through-pore diameter distribution of the partition wall by the palm porometer and the pore diameter distribution by the mercury porosimeter measured for the exhaust gas purification catalyst devices obtained in Comparative Examples 1 to 4.
  • FIG. 6 is a graph showing the through-hole diameter distribution of partition walls by a palm porometer and the pore diameter distribution by a mercury porosimeter, measured for the honeycomb substrates used in Examples 5 to 7 and Comparative Examples 5 and 6.
  • FIG. 7 is a graph showing the through-hole pore size distribution of the partition wall by the palm porometer and the pore size distribution by the mercury porosimeter, measured for the exhaust gas purification catalyst devices obtained in Examples 5 to 7.
  • FIG. 6 is a graph showing the through-hole diameter distribution of partition walls by a palm porometer and the pore diameter distribution by a mercury porosimeter, measured for the honeycomb substrates used in Examples 5 to 7 and Comparative Examples 5 and 6.
  • FIG. 7 is a graph showing the through-hole pore size distribution of the partition wall by the palm
  • FIG. 8 is a graph showing the through-pore diameter distribution of the partition walls by the palm porometer and the pore diameter distribution by the mercury porosimeter, measured for the exhaust gas purification catalyst devices obtained in Comparative Examples 5 and 6.
  • FIG. 9 is a graph showing the through-pore diameter distribution of the partition wall by the palm porometer and the pore diameter distribution by the mercury porosimeter measured for the exhaust gas purification catalyst device obtained in Example 8.
  • FIG. 10 is an SEM image (reflection electron image) of the exhaust gas purifying catalyst device obtained in Examples 1 and 4.
  • the exhaust gas purification catalyst device of the present invention is An exhaust gas purification catalyst device having a honeycomb substrate and an inlet side coating layer,
  • the honeycomb substrate has a plurality of cells partitioned by porous partition walls, and the plurality of cells includes an inlet-side cell that is open on the upstream side of the exhaust gas flow and sealed on the downstream side, and an upstream side of the exhaust gas flow.
  • the inlet side coat layer is present on the surface side of the partition wall of the inlet side cell,
  • the proportion of through-pores of 4 ⁇ m or more and 9 ⁇ m or less is 80% by volume or more, and a mercury intrusion method using a mercury porosimeter Is larger by 3.0 ⁇ m or more than the peak through-pore diameter measured by the bubble point method using a palm porometer.
  • the exhaust gas purification catalyst device (100) of the present invention has a honeycomb substrate (10) and an inlet side coat layer (20).
  • the honeycomb substrate (10) has a plurality of cells (30) partitioned by porous partition walls.
  • the plurality of cells (30) include an inlet side cell (31) and an outlet side cell (32).
  • the inlet side cell (31) opens to the upstream side of the exhaust gas flow, but the downstream side is sealed by the sealing portion (11).
  • the outlet side cell (32) is sealed on the upstream side of the exhaust gas flow by the sealing portion (12), but opens to the downstream side.
  • the exhaust gas flowing into the inlet side cell (31) of the honeycomb substrate (10) passes through the partition walls of the honeycomb substrate (10) as in the exhaust gas flow (50) indicated by the arrows, It is discharged from the outlet side cell (32).
  • the inlet side coat layer (20) exists on the surface side of the partition wall of the inlet side cell (31).
  • FIG. 2 shows a schematic cross-sectional view of the exhaust gas purification catalyst device of the present invention in comparison with the prior art exhaust gas purification catalyst device.
  • 2 (a) and 2 (b) each show an exhaust gas purification catalyst device of the prior art, and
  • FIG. 2 (c) shows an exhaust gas purification catalyst device of the present invention.
  • the inlet side coat layer (20) is present in all areas. If particulate matter (PM1) is continuously collected for a long period of time using the exhaust gas purification catalyst device having such a cross-sectional structure, PM1 is clogged in the constricted portion (most detailed) of the pores and the pores are blocked. Incurs great pressure loss.
  • the inlet-side coat layer (20) is present only in a shallow portion from the surface of the partition wall of the inlet-side cell (31) toward the partition wall in the depth direction.
  • This inlet side coat layer (20) closes the surface of the partition wall of the inlet side cell (31) among the pores of the partition wall, and the pressure loss is originally large.
  • the pressure loss is further increased by the deposition of PM1.
  • FIG. 2 (c) is a schematic cross-sectional view of a typical structure of the exhaust gas purifying catalyst device of the present invention.
  • the inlet side coat layer (20) is present in a relatively shallow part from the surface of the partition wall of the inlet side cell (31) in the depth direction of the partition wall.
  • the inlet-side coat layer (20) has fine holes through which gas can flow. Since the exhaust gas purifying catalyst device of the present invention has such a cross-sectional structure, even when PM1 is continuously collected for a long period of time, the pores are blocked by PM1. Moreover, the exhaust gas flowing in from the inlet side cell (31) easily reaches the outlet side cell through the fine pores of the inlet side coat layer (20) and the pores of the partition wall even after PM1 is deposited. can do.
  • the present embodiment the preferred embodiment of the exhaust gas purifying catalyst device of the present invention
  • the honeycomb base material in the exhaust gas purification catalyst device of the present embodiment has a plurality of cells partitioned by porous partition walls.
  • the average pore diameter of the porous partition wall may be, for example, 5 ⁇ m or more, 8 ⁇ m or more, 9 ⁇ m or more, 10 ⁇ m, 11 ⁇ m or more, or 12 ⁇ m or more. If the average pore diameter of the partition walls is 5 ⁇ m or more, it is preferable that the honeycomb base material itself does not cause the pressure loss to increase. On the other hand, the average pore diameter of the partition walls may be, for example, 50 ⁇ m or less, 40 ⁇ m or less, 30 ⁇ m or less, 20 ⁇ m or less, or 15 ⁇ m or less. If the average pore diameter of the partition walls is 50 ⁇ m or less, the honeycomb substrate has a sufficiently high strength, which is preferable.
  • the average pore diameter of the partition walls may be evaluated as a peak pore diameter in a pore diameter distribution measured by a mercury intrusion method using a mercury porosimeter.
  • the maximum value of the highest peak may be used as the peak pore diameter of the partition.
  • the plurality of cells in the honeycomb base material include an inlet side cell that is opened on the upstream side of the exhaust gas flow and sealed on the downstream side, and an outlet side cell that is sealed on the upstream side of the exhaust gas flow and opened on the downstream side.
  • the honeycomb substrate is configured such that exhaust gas flows from the upstream end of the inlet side cell, passes through the partition wall, moves to the outlet side cell, and is discharged from the downstream end of the outlet side cell. . Therefore, the entrance side cell and the exit side cell may be adjacent to each other alternately.
  • the gas passes through the pores of the partition wall, but PM in the exhaust gas is blocked without passing through the pores of the partition wall, and is trapped in the inlet side cell without moving to the outlet side cell. Is done.
  • the PM trapped in the inlet side cell is burned and purified by, for example, a temperature rising process that is performed periodically.
  • the cross-sectional shape of the cells in the honeycomb substrate may be any shape such as a circle, an ellipse, a polygon, an indeterminate shape, and a combination thereof.
  • the polygon may be a triangle, a quadrangle (particularly a square or a rectangle), a hexagon, an octagon, or the like.
  • the cross-sectional area of individual cells in the honeycomb substrate may be, for example, 1 mm 2 or more, 2 mm 2 or more, or 3 mm 2 or more, for example, 7 mm 2 or less, 6 mm 2 or less, or 5 mm 2 or less.
  • the porous partition walls in the honeycomb substrate may be made of a heat-resistant porous material, for example.
  • the heat resistant porous material may be, for example, silicon carbide, cordierite, aluminum titanate, silicon nitride, metal oxide particles, and the like.
  • the shape of the honeycomb base material may be any shape that matches the shape of the exhaust system to which the exhaust gas purification catalyst of the present embodiment is applied, such as a cylindrical shape or a polygonal column shape. A case where the central axis of the honeycomb substrate is curved or bent in the middle is also acceptable.
  • the size of the honeycomb substrate may be appropriately set according to the size of the exhaust system to which the honeycomb substrate is applied.
  • the cross-sectional area of the honeycomb base material 8,000 mm 2 or more, 10,000 mm 2 or more, 15,000 mm 2 or more, or 20,000mm may be two or more, 130,000Mm 2 below, 120,000Mm 2 or less, 100 , 000 mm 2 or less, 80,000 2 or less, 50,000 mm 2 or less, or 30,000mm may be two or less.
  • the length of the honeycomb substrate may be 50 mm or more, 75 mm or more, or 100 mm or more, and may be 400 mm or less, 350 mm or less, or 300 mm or less.
  • the inlet side coat layer in the exhaust gas purifying catalyst device of the present embodiment exists on the surface side of the partition wall of the inlet side cell.
  • the inlet side coat layer may be present only within a range from the surface of the partition wall of the inlet side cell to the depth of 30% of the partition wall thickness in the depth direction of the partition wall.
  • the existence range of the inlet side coating layer is from the surface of the partition wall of the inlet side cell to the depth of the partition wall up to 25% depth, 20% depth, 15% depth, or 10%. It may be only within the range up to the depth. Since the inlet side coat layer exists only in a shallow range from the partition wall surface of the inlet side cell toward the depth of the partition wall to a depth of 30% of the partition wall thickness, PM collection is continued for a long period of time. Even if it is performed, an increase in pressure loss is suppressed, which is preferable.
  • the existence range of the inlet side coat layer is 3% or more, 4% or more, 5% or more, 6% or more, 7% or more of the partition wall thickness from the partition wall surface of the inlet side cell toward the partition wall depth direction. Or it may be 8% or more.
  • PM can be collected with high efficiency, And it is preferable at the point which exhaust gas can be highly purified.
  • the inlet side coat layer is preferably present at a significant length from the upstream end of the exhaust gas flow of the honeycomb base material from the viewpoint of effective PM collection and exhaust gas purification.
  • the existence range of the inlet side coating layer from the upstream end of the exhaust gas flow exists over a length of 70% or more, 75% or more, 80% or more, or 85% or more with respect to the honeycomb substrate length. It may be.
  • the existence range of the inlet-side coat layer from the upstream end of the exhaust gas flow is 98% or less, 96 with respect to the honeycomb substrate length. % Or less, 94% or less, 92% or less, or 90% or less.
  • the inlet side coating layer may contain inorganic oxide particles, and may optionally further contain a noble metal, an inorganic binder, and the like.
  • the entrance-side coat layer contains a noble metal
  • the noble metal may be supported on a part or all of the inorganic oxide particles.
  • the inorganic oxide particles in the entrance-side coat layer may be particles made of an oxide containing one or more metal atoms selected from the group consisting of aluminum, zirconium, cerium, yttrium, rare earth elements, and the like.
  • the noble metal may be at least one selected from palladium, platinum, rhodium, and the like.
  • the inorganic binder may be, for example, alumina sol, titania sol or the like.
  • the inlet side coat layer has fine holes.
  • the micropores in the inlet side coating layer are pores derived from the pore former contained in a slurry for forming a coating layer described later.
  • the fine pore diameter distribution of the inlet side coat layer can be estimated from the through pore diameter distribution measured by the bubble point method using a palm porometer for the exhaust gas purification catalyst device in the present embodiment. This will be described later.
  • the exhaust gas purifying catalyst device of the present embodiment may have an outlet side coat layer in addition to the inlet side coat layer on the honeycomb substrate.
  • the exit side coat layer may be present on the surface of the partition wall of the exit side cell or in the partition wall.
  • the outlet side coating layer is formed from the surface of the partition wall of the outlet side cell in the depth direction of the partition wall up to a depth of 100%, a depth of 50%, a depth of 40%, a depth of 30%, 20 It may be present only within a range of up to 10% depth or up to 10% depth.
  • the outlet side coat layer exists from the downstream end of the exhaust gas flow of the honeycomb base material over a length of 50% or less, 45% or less, 40% or less, 35% or less, or 30% or less of the honeycomb base material length. You can do it.
  • the outlet side coat layer may contain inorganic oxide particles, and may optionally further contain a noble metal, an inorganic binder, and the like.
  • the exit side coat layer contains a noble metal
  • the noble metal may be supported on a part or all of the inorganic oxide particles.
  • the outlet side coating layer does not need to have fine holes, but may have them.
  • the components and configuration of the outlet side coat layer may be the same as or different from those of the inlet side coat layer.
  • the exhaust gas purification catalyst device of the present embodiment is In the through-pore diameter distribution of the partition walls measured by the bubble point method using a palm porometer, the proportion of through-pores of 4 ⁇ m or more and 9 ⁇ m or less is 80% by volume or more, and a mercury intrusion method using a mercury porosimeter Is larger by 3.0 ⁇ m or more than the peak through-pore diameter measured by the bubble point method using a palm porometer.
  • the partition pore diameter distribution measured by the bubble point method using a palm porometer is the narrowest part when the pores penetrating the partition wall are observed from the partition wall surface of the inlet side cell to the partition wall surface of the outlet side cell. This is a pore size distribution reflecting the diameter of each.
  • the pore size distribution measured by mercury porosimetry using one mercury porosimeter is as follows. For all pores (including non-penetrating pores) other than closed pores, from the partition wall surface of the inlet cell to the outlet cell. The distribution reflects the diameter of the entire region up to the partition wall surface.
  • the ratio of the through-pores of 4 ⁇ m or more and 9 ⁇ m or less is 80% by volume or more. It means that the ratio of the through holes that are 4 ⁇ m or more and 9 ⁇ m or less is 80% by volume or more with respect to all the through holes.
  • This ratio is a pore diameter of 4 ⁇ m or more and 9 ⁇ m or less in a graph in which the horizontal axis represents the through-pore diameter measured by the bubble point method using a palm porometer and the vertical axis represents the dimensionless number of pore frequencies. It may be evaluated as the area ratio of the region.
  • the pore frequency is an amount corresponding to the gas flow rate when measuring the through-pore diameter distribution.
  • the peak pore diameter measured by mercury porosimetry using a mercury porosimeter is 3.0 ⁇ m or more larger than the peak through pore diameter measured by bubble point method using a palm porometer. It means that the difference between the average pore diameter and the average value of the diameter of the thinnest through hole is large. In other words, it means that the average pore diameter of all the pores of the partition wall is sufficiently large and the diameter of the thinnest part of the through hole is sufficiently small. If the average pore diameter of all the pores is sufficiently large, the flow of exhaust gas is not hindered, so that the pressure loss can be reduced. When the diameter of the thinnest part of the through hole is sufficiently small, PM can be collected effectively.
  • the through-pore diameter distribution of the partition wall which is measured by a bubble point method using a palm porometer, is presumed to reflect the pore diameter distribution of the micropores possessed by the inlet-side coat layer.
  • the region with the narrowest diameter of the through hole of the partition wall exists in the range from the partition wall surface of the inlet side cell to the depth direction of the partition wall, preferably to a depth of 30% of the partition wall thickness.
  • the narrowest diameter portion of the through hole of the partition wall is 25% deep, 20% deep, 15% deep from the partition wall surface of the inlet side cell toward the partition wall depth direction, or 15% deep, or It may be present in the range up to 10% depth.
  • the ratio of the through-pores of 4 ⁇ m or more and 9 ⁇ m or less in the through-pore diameter distribution of the partition walls is 80% by volume or more, 85% by volume or more, 90% by volume or more, or 95% by volume or more, and 100% by volume. It may be.
  • the exhaust gas purifying catalyst device having such a through-hole diameter distribution can suppress an increase in pressure loss even if PM is continuously collected for a long period of time.
  • the difference between the peak pore diameter measured by the mercury intrusion method using a mercury porosimeter and the peak through pore diameter measured by the bubble point method using a palm porometer is 3 0.0 ⁇ m or more, 3.5 ⁇ m or more, 4.0 ⁇ m or more, 4.5 ⁇ m or more, or 5.0 ⁇ m or more.
  • This value may be 10.0 ⁇ m or less, 9.0 ⁇ m or less, 8.0 ⁇ m or less, or 7.0 ⁇ m.
  • the peak pore diameter measured by the mercury intrusion method using a mercury porosimeter is 9 ⁇ m or more, 10 ⁇ m or more, 11 ⁇ m or more, or 12 ⁇ m or more from the viewpoint of ensuring good exhaust gas circulation. It may be. On the other hand, this value may be 50 ⁇ m or less, 40 ⁇ m or less, 30 ⁇ m or less, 20 ⁇ m or less, or 15 ⁇ m or less from the viewpoint of obtaining an effective filter effect.
  • the exhaust gas purifying catalyst device of the present invention as described above may be manufactured, for example, by the following method.
  • the coating layer forming slurry contains inorganic oxide particles and a pore former, Manufacturing method of exhaust gas purification catalyst device.
  • this embodiment of the method for manufacturing an exhaust gas purification catalyst device of the present invention will be described as an example.
  • honeycomb substrate used in the method for manufacturing the exhaust gas purification catalyst device of the present embodiment may be appropriately selected from those described above as the honeycomb substrate in the exhaust gas purification catalyst device of the present embodiment. .
  • the slurry for forming a coat layer used in the method for manufacturing an exhaust gas purification catalyst device of the present embodiment includes inorganic oxide particles and a pore former.
  • the slurry for forming a coat layer may optionally further contain a noble metal catalyst, an inorganic binder, a viscosity modifier and the like.
  • the noble metal catalyst may be supported on a part or all of the inorganic oxide particles.
  • the inorganic oxide particles, the noble metal catalyst, and the inorganic binder in the slurry for forming the coat layer may be the same as the inorganic oxide, the noble metal catalyst, and the inorganic binder, respectively, included in the inlet side coat layer.
  • the particle diameter of the inorganic oxide particles supporting or not supporting the noble metal catalyst is, for example, 0.1 ⁇ m or more, 0.3 ⁇ m or more, 0.5 ⁇ m or more, 0 as the median diameter.
  • the pore former in the slurry for forming the coating layer has a function of burning out in the baking step after coating and forming fine pores in the inlet side coating layer. Therefore, it may be a particle made of a material that is stably present as primary particles or secondary particles in the slurry for forming a coating layer and the slurry coating layer, and easily disappears by firing.
  • the pore former contained in the coating layer forming slurry may be, for example, organic polymer particles.
  • Organic polymer particles include, for example, (meth) acrylic resin particles, styrene / (meth) acrylic resin particles, polyurethane resin particles, maleic acid resin particles, styrene / maleic resin particles, alkyd resin particles, rosin-modified phenolic resin particles Or ketone resin particles.
  • the average particle diameter of the pore former may be, for example, 500 nm or less, 400 nm or less, 300 nm or less, 200 nm or less, or 100 nm or less as the median diameter from the viewpoint of ensuring effective collection of PM.
  • the median diameter of the pore former may be 10 nm or more, 20 nm or more, 40 nm or more, 60 nm or more, 80 nm or more, or 100 nm or more from the viewpoint of ensuring good exhaust gas circulation even after PM collection.
  • the pore former may be used for preparing a slurry for forming a coat layer as an emulsion.
  • the content of the pore former in the slurry for forming the coating layer is 100% by mass based on the total solid content of the slurry from the viewpoint of ensuring the PM collection and ensuring the mechanical strength of the inlet side coating layer. In some cases, for example, it may be 50% by mass or less, 45% by mass or less, 40% by mass or less, 35% by mass or less, or 30% by mass or less.
  • the pore former in the case where the total solid content of the slurry for forming the coating layer is 100% by mass from the viewpoint that effective fine pores should be formed to ensure good exhaust gas circulation even after PM collection. May be 5 mass% or more, 10 mass% or more, 12 mass% or more, 15 mass% or more, 18 mass% or more, or 20 mass% or more, for example.
  • the dispersion medium of the slurry for forming the coat layer may be an aqueous medium, for example, water or a mixture of water and a water-soluble organic solvent.
  • the dispersion medium of the slurry for forming the coating layer may typically be water.
  • the existence range of the inlet side coating layer from the partition wall surface of the inlet side cell in the depth direction of the partition wall is adjusted.
  • the solid content concentration and the viscosity of the slurry for forming the coating layer may be appropriately set by those skilled in the art according to the desired existence range of the inlet side coating layer. Adjustment of the viscosity of the slurry for forming the coat layer may be performed, for example, by adding a water-soluble polymer such as hydroxyethyl cellulose to the slurry.
  • the slurry for forming the coating layer is applied in the inlet side cell of the honeycomb substrate to form a slurry coating layer.
  • coating may be performed over desired length from the upstream edge part of an exhaust gas flow of an inlet side coating layer.
  • the application range is, for example, 70% or more, 75% or more, 80% or more, or 85% or more of the length of the honeycomb base material from the upstream end of the exhaust gas flow of the inlet side coating layer. For example, it may be performed over a length of 98% or less, 96% or less, 94% or less, 92% or less, or 90% or less.
  • the application method may be, for example, a push-up method, a suction method, an immersion method, or the like.
  • the coating layer forming slurry is pushed up from the lower opening end of the honeycomb substrate held so that the cell is in the vertical direction with the opening end of the inlet side cell on the lower side.
  • coating is performed by placing a slurry for forming a coating layer at the opening end of the inlet side cell of the honeycomb substrate held so that the cells are vertically oriented, and sucking from the opposite end of the outlet side cell.
  • coating is performed by dipping the honeycomb base material into the slurry for forming the coating layer from the opening end side of the inlet side cell.
  • the amount of the slurry coat layer formed by coating is 1 g / L or more, 3 g / L or more, 5 g / L or more, or 7 g / L or more as the amount of the slurry coating layer after firing per unit volume of the honeycomb substrate. It may be 15 g / L or less, 12 g / L or less, 10 g / L or less, or 8 g / L or less.
  • a slurry for forming a coat layer may be applied to the outlet side cell of the honeycomb substrate to form a slurry coat layer.
  • the coating layer forming slurry applied to the outlet side cell may be the same as or different from the slurry applied to the inlet side cell.
  • the exhaust gas purification catalyst of the present embodiment can be obtained by firing the honeycomb substrate after forming the slurry coat layer.
  • the firing step may be performed by heating the honeycomb substrate after forming the slurry coat layer under an appropriate environment such as an inert atmosphere or an oxidizing atmosphere.
  • the heating temperature in the firing step may be, for example, 400 ° C. or higher, 500 ° C. or higher, or 600 ° C. or higher, for example, 800 ° C. or lower, 700 ° C. or lower, or 600 ° C. or lower.
  • the heating time may be, for example, 5 minutes or more, 30 minutes or more, or 1 hour or more, for example, 20 hours or less, 10 hours or less, 8 hours or less, or 6 hours or less.
  • Example 1 Preparation of slurry for coating After impregnating alumina powder in an aqueous solution containing Pt nitrate and Pd nitrate, drying and firing were performed, and 3% by mass of Pt and 1% by mass as mass ratios relative to the mass of alumina. Pt—Pd / Al powder carrying Pd was obtained. 100 g of this Pt—Pd / Al powder was mixed with 50 g of ceria / zirconia composite oxide powder, and then milled to adjust the average particle size to 1 ⁇ m to obtain a mixed powder. To 150 g of this mixed powder, 10 g of alumina sol binder and 300 g of pure water were added and mixed to form a slurry.
  • a styrene / acrylic resin particle as a pore-forming material was added to the slurry, and hydroxyethylcellulose was further added to adjust the viscosity to obtain a coating slurry.
  • the average particle size of the styrene / acrylic resin particles used here was 100 nm, and the proportion of the styrene / acrylic resin particles used was 30% by mass with respect to the total solid content in the obtained coating slurry. .
  • FIG. 3 shows the through-pore diameter distribution of the partition walls by the palm porometer and the pore diameter distribution by the mercury porosimeter, which were measured using this base material as a measurement target.
  • This exhaust gas purification catalyst device is presumed to have a cross-sectional structure as shown in FIG.
  • FIG. 4 (a) The through-pore diameter distribution of the partition walls of the honeycomb base material measured here is shown in FIG. 4 (a).
  • the exhaust gas purification catalyst device produced above was mounted on an exhaust system of a diesel engine with a displacement of 3,000 cc, and was operated for 2 hours under the conditions of 2,000 rpm and 60 Nm. Thereafter, the catalyst device was recovered, pressure loss was measured in the same manner as described above, and the obtained result was used as a pressure loss value after PM deposition.
  • Examples 2 to 4 and Comparative Examples 2 and 3 A slurry for coating was prepared in the same manner as in Example 1, except that the amount of pore former used was as shown in Table 1, and the viscosity was appropriately changed by changing the amount of hydroxyethyl cellulose added. Using this slurry, an exhaust gas purification catalyst device was prepared and evaluated in the same manner as in Example 1 except that the coating length from the upstream side of the exhaust gas flow was as shown in Table 1. The results are summarized in Table 2 and Table 3. In addition, the through pore diameter distribution of the partition wall by the palm porometer and the pore diameter distribution by the mercury porosimeter measured at the time of evaluation are shown in FIGS. 4 (b) to 4 (d) and FIGS. 5 (b) and 5 (c). Indicated.
  • the exhaust gas purification catalyst devices obtained in Examples 2 to 4 are presumed to have a cross-sectional structure as shown in FIG. 2 (c), and the exhaust gas purification catalyst devices obtained in Comparative Examples 2 and 3 are used. Is considered to have a cross-sectional structure as shown in FIG.
  • Example 5 As a base material, a cylindrical SiC honeycomb structure having a diameter of 160 mm and a length of 135 mm (diesel particulate collection filter, average pore diameter of 10.5 ⁇ m (notified value), porosity of 41 vol% (notified value)) was used. Other than that, an exhaust gas purifying catalyst device was produced and evaluated in the same manner as in Example 1. The results are summarized in Table 2 and Table 3.
  • the through-pore diameter distribution of the partition walls measured by the palm porometer and the pore diameter distribution measured by the mercury porosimeter measured for the base material used here are shown in FIG. Moreover, the through-pore diameter distribution of the partition wall by the palm porometer and the pore diameter distribution by the mercury porosimeter measured for the obtained exhaust gas purification catalyst device are shown in FIG.
  • Examples 6 and 7 A slurry for coating was prepared in the same manner as in Example 1 except that the average particle diameter and the amount of the pore former were as shown in Table 1.
  • An exhaust gas purification catalyst device was produced and evaluated in the same manner as in Example 5 except that this slurry was used. The results are summarized in Table 2 and Table 3. Moreover, the through-pore diameter distribution of the partition wall by the palm porometer and the pore diameter distribution by the mercury porosimeter measured at the time of evaluation are shown in FIGS. 7B and 7C.
  • ⁇ Comparative Example 6> Preparation of slurry for coating 90 g of aluminosilicate fibers having an average diameter of 3 ⁇ m and an average length of 105 ⁇ m, 10 g of silica sol binder, and 450 g of pure water are mixed, and further, hydroxyethylcellulose is added to adjust the viscosity. An industrial slurry was obtained.
  • a styrene / acrylic resin particle as a pore former was added to the slurry, and the viscosity was adjusted to obtain a coating slurry.
  • the average particle diameter of the styrene / acrylic resin particles used here was 100 nm, and the use ratio of the styrene / acrylic resin particles was 10% by mass with respect to the total solid content in the obtained coating slurry. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Nanotechnology (AREA)

Abstract

ハニカム基材10及び入口側コート層20を有する排ガス浄化触媒装置100であって、ハニカム基材10は、多孔質の隔壁によって区画された複数のセル30を有し、これら複数のセル30は、入口側セル31と出口側セル32とを含み、入口側セル31に流入した排ガスが隔壁を通過して出口側セル32から排出されるように構成されており、入口側コート層20は、入口側セル31の隔壁の表面側に存在しており、隔壁の貫通細孔径分布における4μm以上9μm以下の貫通細孔の割合が80体積%以上であり、且つ水銀ポロシメータを用いて測定されるピーク細孔径が、パームポロメータを用いて測定されるピーク貫通細孔径よりも3.0μm以上大きい、排ガス浄化触媒装置100。

Description

排ガス浄化触媒装置
 本発明は、排ガス浄化触媒装置に関する。
 排ガス規制の要求は、年々厳しくなり、排ガス浄化触媒装置等の内燃機関の後処理システムに対する要求も極めて高度になってきている。特に、ディーゼルエンジンから排出される排ガス中に含まれる粒子状物質(一般に、「パーティキュレート・マター(PM)」と呼ばれている。)の除去に関する規制は、世界的に厳しくなる傾向にある。このような状況下で、PMを捕集して除去するための排ガス浄化フィルタ、例えば、DPF(ディーゼル・パーティキュレート・フィルタ)、GPF(ガソリン・パーティキュレート・フィルタ)等が知られている。
 排ガス浄化フィルタとしては、例えば、多孔質の隔壁によって区画された複数のセルが、排ガス流れの上流側に開口し下流側が封止された入口側セルと、排ガス流れの上流側が封止され下流側に開口する出口側セルとを含むハニカム構造体が知られている。
 例えば、特許文献1には、多孔質の壁から成る複数の平行な孔を有するハニカム構造から成り、隣接する孔は交互に異なる一方の端部で閉塞された耐熱性基材と、この基材を構成する多孔質の壁に担持された酸化触媒とを有し、この酸化触媒が、壁のいずれか方向に開いている側の表面層に担持されている、排ガス浄化構造体が記載されている。
 特許文献2には、多孔質体からなるフィルタ基材と、ガス流入側端部が開放された流入側ガス流路と、流出側端部が開放された流出側ガス流路と、流入側ガス流路及び流出側ガス流の間に設けられ、排ガスを通過させて浄化する隔壁とを備えるハニカム構造型フィルタであって、隔壁の平均細孔径が5μm以上50μm以下であり、流入側ガス流路の内壁面に、平均気孔径が0.05μm以上5μm以下であり、貴金属を含む多孔質膜が設けられたハニカム構造型フィルタが記載されている。
 特許文献3には、流入側端面から流出側端面まで伸びて排ガスの流路となる複数のセルを区画形成する多孔質の隔壁を有するハニカム構造部と、所定のセルである入口セルの流出端面側開口部と残余のセルである出口セルの流入端面側開口部とに配設された目封止部と、ハニカム構造部の隔壁の入口側セルの表面に配置された表面捕集層と、表面捕集層の表面、表面捕集層により形成された細孔の内面、及び隔壁の出口セル側の表面から成る群より選択される少なくとも1の面に形成された排ガス浄化用の触媒と、を備え、ハニカム構造部の流出端面から50mmの位置までの触媒の担持量が、これよりも流入部側の触媒の担持量より小である、排ガス浄化フィルタが記載されている。
 特許文献4には、CeOを含む金属酸化物から成る担体に貴金属を担持させた後、還元性雰囲気下、600~800℃の範囲の温度で還元処理を施し、次いで、酸化性雰囲気下、600~800℃の範囲の温度で酸化処理を施し、更に600~800℃の範囲の温度で還元処理を施して成る低温酸化触媒が記載されている。この特許文献4に係る発明は、ディーゼル排ガスの浄化等を意図してなされたものであることが記載されている。
特開2006-7117号公報 特開2010-269270号公報 特開2014-188466号公報 特開2009-119430号公報
 特許文献1~4に代表される従来技術における排ガス浄化フィルタは、排ガスの通過に対する抵抗が高く、圧損が高いために、燃費が悪化する傾向にある。更に、これらの排ガス浄化フィルタを継続使用すると、捕集されたPMがフィルタ中に堆積し、圧損が更に大きくなることがある。
 本発明は、上記の事情を改善しようとしてなされた。従って本発明の目的は、排ガスの浄化のために使用したときの圧損が小さく、且つ使用を長期間継続した場合であっても、PMの堆積による圧損の増大が抑制された、排ガス浄化触媒装置を提供することである。
 本発明は、以下のとおりのものである。
 [1]ハニカム基材及び入口側コート層を有する排ガス浄化触媒装置であって、
 前記ハニカム基材は、多孔質の隔壁によって区画された複数のセルを有し、これら複数のセルは、排ガス流れの上流側に開口し下流側が封止された入口側セルと、排ガス流れの上流側が封止され下流側に開口する出口側セルとを含み、それによって前記入口側セルに流入した排ガスが前記隔壁を通過して出口側セルから排出されるように構成されており、
 前記入口側コート層は、前記入口側セルの隔壁の表面側に存在しており、
 パームポロメータを用いてバブルポイント法により測定される、隔壁の貫通細孔径分布において、4μm以上9μm以下の貫通細孔の割合が、80体積%以上であり、且つ
 水銀ポロシメータを用いて水銀圧入法により測定されるピーク細孔径が、パームポロメータを用いてバブルポイント法により測定されるピーク貫通細孔径よりも3.0μm以上大きい、
排ガス浄化触媒装置。
 [2]入口側コート層が、前記入口側セルの隔壁表面から隔壁厚みの30%の深さまでの範囲内にのみ存在している、[1]に記載の触媒装置。
 [3]前記入口側コート層が、前記入口側セルの隔壁表面から隔壁厚みの10%の深さまでの範囲内にのみ存在している、[2]に記載の触媒装置。
 [4]水銀ポロシメータを用いて水銀圧入法により測定されるピーク細孔径が9μm以上である、[1]~[3]のいずれか一項に記載の触媒装置。
 [5]前記入口側コート層が、前記ハニカム基材の排ガス流れの上流側端部からハニカム基材長さの70%以上の長さにわたって存在している、[1]~[4]のいずれか一項に記載の触媒装置。
 [6]前記入口側コート層が、前記ハニカム基材の排ガス流れの上流側端部からハニカム基材長さの98%以下の長さにわたって存在している、[1]~[5]のいずれか一項に記載の触媒装置。
 [7]前記出口側セルの隔壁の表面又は隔壁内に存在する出口側コート層を更に有する、[1]~[6]のいずれか一項に記載の触媒装置。
 [8][1]~[7]のいずれか一項に記載の排ガス浄化触媒装置の製造方法であって、
 前記製造方法は、ハニカム基材の入口側セル内にコート層形成用スラリーを塗布してスラリーコート層を形成すること、及びスラリーコート層形成後のハニカム基材を焼成すること、を含み、
 前記コート層形成用スラリーが、無機酸化物粒子及び造孔材を含む、
排ガス浄化触媒装置の製造方法。
 [9]前記造孔材が有機ポリマー粒子である、[8]に記載の方法。
 [10]前記造孔材の平均粒径が10nm以上500nm以下である、[8]又は[9]に記載の方法。
 [11]前記ハニカム基材の単位容積当たりの焼成後の前記スラリーコート層の量が1g/L以上15g/L以下である、[8]~[10]のいずれか一項に記載の方法。
 本発明の排ガス浄化触媒装置は、排ガスの浄化のために使用したときの圧損が小さく、且つ使用を長期間継続した場合であっても、PMの堆積による圧損の増大が抑制されたものである。
図1は、本発明の排ガス浄化触媒装置の基本的構成を説明するための概略断面図である。 図2は、本発明の排ガス浄化触媒装置の作用効果を、従来技術と比較して説明するための概略断面図である。 図3は、実施例1~4及び比較例1~4で使用したハニカム基材について測定した、パームポロメータによる隔壁の貫通細孔径分布、及び水銀ポロシメータによる細孔径分布を示すグラフである。 図4は、実施例1~4で得られた排ガス浄化触媒装置について測定した、パームポロメータによる隔壁の貫通細孔径分布、及び水銀ポロシメータによる細孔径分布を示すグラフである。 図5は、比較例1~4で得られた排ガス浄化触媒装置について測定した、パームポロメータによる隔壁の貫通細孔径分布、及び水銀ポロシメータによる細孔径分布を示すグラフである。 図6は、実施例5~7、並びに比較例5及び6で使用したハニカム基材について測定した、パームポロメータによる隔壁の貫通細孔径分布、及び水銀ポロシメータによる細孔径分布を示すグラフである。 図7は、実施例5~7で得られた排ガス浄化触媒装置について測定した、パームポロメータによる隔壁の貫通細孔径分布、及び水銀ポロシメータによる細孔径分布を示すグラフである。 図8は、比較例5及び6で得られた排ガス浄化触媒装置について測定した、パームポロメータによる隔壁の貫通細孔径分布、及び水銀ポロシメータによる細孔径分布を示すグラフである。 図9は、実施例8で得られた排ガス浄化触媒装置について測定した、パームポロメータによる隔壁の貫通細孔径分布、及び水銀ポロシメータによる細孔径分布を示すグラフである。 図10は、実施例1及び4で得られた排ガス浄化触媒装置のSEM像(反射電子像)である。
<排ガス浄化触媒装置>
 本発明の排ガス浄化触媒装置は、
 ハニカム基材及び入口側コート層を有する排ガス浄化触媒装置であって、
 ハニカム基材は、多孔質の隔壁によって区画された複数のセルを有し、これら複数のセルは、排ガス流れの上流側に開口し下流側が封止された入口側セルと、排ガス流れの上流側が封止され下流側に開口する出口側セルとを含み、それによって入口側セルに流入した排ガスが前記隔壁を通過して出口側セルから排出されるように構成されており、
 入口側コート層は、入口側セルの隔壁の表面側に存在しており、
 パームポロメータを用いてバブルポイント法により測定される、隔壁の貫通細孔径分布において、4μm以上9μm以下の貫通細孔の割合が、80体積%以上であり、且つ
 水銀ポロシメータを用いて水銀圧入法により測定されるピーク細孔径が、パームポロメータを用いてバブルポイント法により測定されるピーク貫通細孔径よりも3.0μm以上大きい。
 本発明の排ガス浄化触媒装置の基本的構成の概略を、図1の断面図に示した。図1に示したとおり、本発明の排ガス浄化触媒装置(100)は、ハニカム基材(10)及び入口側コート層(20)を有する。
 ハニカム基材(10)は、多孔質の隔壁によって区画された複数のセル(30)を有する。複数のセル(30)は、入口側セル(31)及び出口側セル(32)を含む。入口側セル(31)は、排ガス流れの上流側に開口するが、下流側は封止部(11)により封止されている。出口側セル(32)は、排ガス流れの上流側が封止部(12)により封止されているが、下流側に開口する。
 上記の構成により、ハニカム基材(10)の入口側セル(31)に流入した排ガスは、矢印で示した排ガス流れ(50)のように、ハニカム基材(10)の隔壁を通過して、出口側セル(32)から排出される。
 入口側コート層(20)は、入口側セル(31)の隔壁の表面側に存在している。
 図2に、本発明の排ガス浄化触媒装置の概略断面図を、従来技術の排ガス浄化触媒装置と比較して示した。図2(a)及び図2(b)は、それぞれ、従来技術の排ガス浄化触媒装置を示し、図2(c)は本発明の排ガス浄化触媒装置を示す。
 図2(a)の排ガス浄化触媒装置では、ハニカム基材(10)の隔壁が有する細孔の壁のうちの、入口側セル(31)の隔壁の表面から隔壁の深さ方向に向かう表面のすべての範囲に入口側コート層(20)が存在している。このような断面構造の排ガス浄化触媒装置を用いてパーティキュレートマター(PM1)の捕集を長期間継続して行うと、PM1が細孔のくびれ部(最細部)に詰まって細孔が閉塞し、大きな圧損を招く。
 図2(b)の排ガス浄化触媒装置では、入口側セル(31)の隔壁の表面から隔壁の深さ方向に向かう、浅い部分にのみ入口側コート層(20)が存在している。この入口側コート層(20)は、隔壁の細孔のうち、入口側セル(31)の隔壁の表面近くを閉塞し、圧損がもともと大きい。このような断面構造の排ガス浄化触媒装置を用いてPM1の捕集を長期間継続して行うと、PM1の堆積によって圧損は更に大きくなる。
 図2(c)は、本発明の排ガス浄化触媒装置の代表的な構造の概略断面図である。この排ガス浄化触媒装置では、入口側コート層(20)は、入口側セル(31)の隔壁の表面から隔壁の深さ方向に向かう比較的浅い部分に存在しておいる。しかしながら、図1(b)に示した排ガス浄化触媒装置とは異なり、入口側コート層(20)は気体の流通が可能な微細孔を有する。本発明の排ガス浄化触媒装置は、このような断面構造を有することにより、PM1の捕集を長期間継続して行っても、PM1による細孔の閉塞が抑制されている。しかも、入口側セル(31)から流入した排ガスは、PM1の堆積後であっても、入口側コート層(20)の微細孔及び隔壁の細孔を通過して、出口側セルに容易に到達することができる。
 以下、本発明の排ガス浄化触媒装置について、その好ましい実施形態(以下、「本実施形態」という。)を例として説明する。
[ハニカム基材]
 本実施形態の排ガス浄化触媒装置におけるハニカム基材は、多孔質の隔壁によって区画された複数のセルを有する。
 多孔質の隔壁の平均気孔径は、例えば、5μm以上、8μm以上、9μm以上、10μm、11μm以上、又は12μm以上であってよい。隔壁の平均気孔径が5μm以上であれば、ハニカム基材自体が圧損を大きくする原因となることはなく、好ましい。一方で、隔壁の平均気孔径は、例えば、50μm以下、40μm以下、30μm以下、20μm以下、又は15μm以下であってよい。隔壁の平均気孔径が50μm以下であれば、ハニカム基材が十分に高い強度を有することとなり、好ましい。隔壁の平均気孔径は、水銀ポロシメータを用いて水銀圧入法により測定される細孔径分布におけるピーク細孔径として評価されてよい。隔壁が2つ以上のピーク細孔径を有する場合には、最も高いピークの最大値を、その隔壁のピーク細孔径としてよい。
 ハニカム基材における複数のセルは、排ガス流れの上流側に開口し下流側が封止された入口側セルと、排ガス流れの上流側が封止され下流側に開口する出口側セルとを含む。ハニカム基材は、排ガスが入口側セルの上流側端部から流入し、隔壁を通過して出口側セルに移動し、そして出口側セルの下流側端部から排出されるように構成されている。従って、入口側セルと出口側セルとは、交互に隣接していてよい。
 排ガスが隔壁を通過するとき、気体は隔壁の細孔を通過するが、排ガス中のPMは隔壁の細孔を通過できずにブロックされ、出口側セルには移動せずに入口側セルにトラップされる。入口側セルにトラップされたPMは、例えば、定期的に行われる昇温過程によって燃焼して浄化される。
 ハニカム基材におけるセルの断面形状は、例えば、円形、楕円形、多角形、不定形等、及びこれらの組み合わせ等の任意の形状であってよい。上記多角形は、三角形、四角形(特に正方形又は長方形)、六角形、八角形等であってよい。
 ハニカム基材における個々のセルの断面積は、例えば、1mm以上、2mm以上、又は3mm以上であってよく、例えば、7mm以下、6mm以下、又は5mm以下であってよい。
 ハニカム基材における多孔質の隔壁は、例えば耐熱性の多孔質材料から成っていてよい。耐熱性の多孔質材料は、例えば、炭化ケイ素、コーディライト、チタン酸アルミニウム、窒化ケイ素、金属酸化物粒子等であってよい。
 ハニカム基材の形状は、例えば、円柱状、多角柱状等の、本実施形態の排ガス浄化触媒を適用すべき排気系の形状に適合する任意の形状であってよい。ハニカム基材の中心軸が、途中で湾曲し、或いは折れ曲がっている場合も許容される。
 ハニカム基材のサイズは、これを適用する排気系のサイズに応じて適宜に設定されてよい。ハニカム基材の断面積は、8,000mm以上、10,000mm以上、15,000mm以上、又は20,000mm以上であってよく、130,000mm以下、120,000mm以下、100,000mm以下、80,000mm以下、50,000mm以下、又は30,000mm以下であってよい。ハニカム基材の長さは、50mm以上、75mm以上、又は100mm以上であってよく、400mm以下、350mm以下、又は300mm以下であってよい。
[入口側コート層]
 本実施形態の排ガス浄化触媒装置における入口側コート層は、入口側セルの隔壁の表面側に存在している。
 入口側コート層は、詳しくは、入口側セルの隔壁表面から隔壁の深さ方向に向かって、隔壁厚みの30%の深さまでの範囲内にのみ存在していてよい。入口側コート層の存在範囲は、入口側セルの隔壁表面から隔壁の深さ方向に向かって、隔壁厚みの25%の深さまで、20%の深さまで、15%の深さまで、又は10%の深さまでの範囲内のみであってよい。入口側コート層が、入口側セルの隔壁表面から隔壁の深さ方向に向かって、隔壁厚みの30%の深さまでの浅い範囲にのみ存在することによって、PMの捕集を長期間継続して行っても、圧損の増大が抑制されることとなり、好ましい。
 一方、入口側コート層の存在範囲は、入口側セルの隔壁表面から隔壁の深さ方向に向かって、隔壁厚みの3%以上、4%以上、5%以上、6%以上、7%以上、又は8%以上であってよい。入口側コート層が、入口側セルの隔壁表面から隔壁の深さ方向に向かって、隔壁厚みの3%以上の深さまで存在していることにより、高い効率でPMを捕集することができ、且つ、排ガスが高度に浄化され得る点で、好ましい。
 入口側コート層は、ハニカム基材の排ガス流れの上流側端部から、有意の長さで存在していることが、PMの効果的捕集、及び排ガス浄化の程度の観点から好ましい。入口側コート層の、排ガス流れの上流側端部からの存在範囲は、ハニカム基材長さに対して、70%以上、75%以上、80%以上、又は85%以上の長さにわたって存在していてよい。一方で、PMを効率的に燃焼させて除去するとの観点から、入口側コート層の、排ガス流れの上流側端部からの存在範囲は、ハニカム基材長さに対して、98%以下、96%以下、94%以下、92%以下、又は90%以下の長さであってよい。
 入口側コート層は、無機酸化物粒子を含んでいてよく、任意的に更に、貴金属、無機バインダー等を含んでいてよい。入口側コート層が貴金属を含む場合、貴金属は上記の無機酸化物粒子の一部又は全部に担持されていてよい。
 入口側コート層における無機酸化物粒子は、例えば、アルミニウム、ジルコニウム、セリウム、イットリウム、希土類元素等から成る群より選択される1種以上の金属原子を含む酸化物から成る粒子であってよい。貴金属は、例えば、パラジウム、白金、ロジウム等から選択される1種以上であってよい。無機バインダーは、例えば、アルミナゾル、チタニアゾル等であってよい。
 入口側コート層は、微細孔を有する。入口側コート層における微細孔は、後述のコート層形成用スラリーが含有する造孔材に由来する細孔である。入口側コート層の有する微細孔の細孔径分布は、本実施形態における排ガス浄化触媒装置について、パームポロメータを用いてバブルポイント法により測定される、貫通細孔径分布によって見積もることができる。これについては後述する。
[出口側コート層]
 本実施形態の排ガス浄化触媒装置は、ハニカム基材上に、入口側コート層に加えて、出口側コート層を有していてもよい。
 出口側コート層は、出口側セルの隔壁の表面又は隔壁内に存在していてもよい。出口側コート層は、出口側セルの隔壁表面から隔壁の深さ方向に向かって、隔壁厚みの100%の深さまで、50%の深さまで、40%の深さまで、30%の深さまで、20%の深さまで、又は10%の深さまでの範囲内のみに存在していてよい。出口側コート層は、ハニカム基材の排ガス流れの下流側端部から、ハニカム基材長さの50%以下、45%以下、40%以下、35%以下、又は30%以下の長さにわたって存在していてよい。
 出口側コート層は、無機酸化物粒子を含んでいてよく、任意的に更に、貴金属、無機バインダー等を含んでいてよい。出口側コート層が貴金属を含む場合、その貴金属は上記の無機酸化物粒子の一部又は全部に担持されていてよい。
 出口側コート層は、微細孔を有する必要はないが、これを有していてもよい。
 出口側コート層の成分及び構成は、入口側コート層と同じであってもよく、異なっていてもよい。
[排ガス浄化触媒装置の細孔径分布]
 本実施形態の排ガス浄化触媒装置は、
 パームポロメータを用いてバブルポイント法により測定される、隔壁の貫通細孔径分布において、4μm以上9μm以下の貫通細孔の割合が、80体積%以上であり、且つ
 水銀ポロシメータを用いて水銀圧入法により測定されるピーク細孔径が、パームポロメータを用いてバブルポイント法により測定されるピーク貫通細孔径よりも3.0μm以上大きい。
 パームポロメータを用いてバブルポイント法により測定される隔壁の貫通細孔径分布は、隔壁を貫通する細孔を入口側セルの隔壁表面から出口側セルの隔壁表面まで観察したときに、最も細い部分の径を反映した細孔径分布である。貫通孔が、例えば砂時計の管のような、途中がくびれた形状を有している場合の貫通細孔径分布は、貫通孔のくびれ部の最も細い部分の径の分布を示すものとなる。
 一方の水銀ポロシメータを用いて水銀圧入法により測定される細孔径分布は、閉鎖孔以外の全部の細孔(貫通していない細孔を含む)について、入口側セルの隔壁表面から出口側セルの隔壁表面までの全領域の径を反映した分布である。
 従って、パームポロメータを用いてバブルポイント法により測定される、隔壁の貫通細孔径分布において、4μm以上9μm以下の貫通細孔の割合が80体積%以上であるとは、最も細い部分の径が4μm以上9μm以下である貫通孔の割合が、全貫通孔に対して、80体積%以上であることを意味する。この割合は、パームポロメータを用いてバブルポイント法により測定された貫通細孔径を横軸にとり、縦軸に無次元数である細孔頻度をとって表したグラフにおける、細孔径4μm以上9μm以下の領域の面積割合として評価されてよい。上記の細孔頻度は、貫通細孔径分布を測定する際のガス流量に対応する量である。
 水銀ポロシメータを用いて水銀圧入法により測定されるピーク細孔径が、パームポロメータを用いてバブルポイント法により測定されるピーク貫通細孔径よりも3.0μm以上大きいことは、隔壁の細孔全部の平均細孔径と、貫通孔の最も細い部分の径の平均値との差が大きいことを意味する。換言すると、隔壁の細孔全部の平均細孔径が十分に大きく、且つ貫通孔の最も細い部分の径が十分に小さいことを意味する。細孔全部の平均細孔径が十分に大きいと、排ガスの流通が阻害されないから、圧損を小さくすることができる。貫通孔の最も細い部分の径が十分に小さいと、PMの捕集を効果的に行うことができる。
 本実施形態の排ガス浄化触媒装置について、パームポロメータを用いてバブルポイント法により測定される、隔壁の貫通細孔径分布は、入口側コート層が有する微細孔の孔径分布を反映するものと推察される。従って、隔壁の貫通孔の、径が最も細い領域は、入口側セルの隔壁表面から隔壁の深さ方向に向かって、好ましくは隔壁厚みの30%の深さまでの範囲内に存在することとなる。特に、隔壁の貫通孔の、径が最も細い部分は、入口側セルの隔壁表面から隔壁の深さ方向に向かって、25%の深さまで、20%の深さまで、15%の深さまで、又は10%の深さまでの範囲内に存在してよい。
 隔壁の貫通細孔径分布における、4μm以上9μm以下の貫通細孔の割合は、80体積%以上であり、85体積%以上、90体積%以上、又は95体積%以上であってよく、100体積%であってもよい。このような貫通細孔径分布を有する排ガス浄化触媒装置は、PMの捕集を長期間継続して行っても、圧損の増大が抑制されたものとなる。
 本実施形態の排ガス浄化触媒装置について、水銀ポロシメータを用いて水銀圧入法により測定されるピーク細孔径と、パームポロメータを用いてバブルポイント法により測定されるピーク貫通細孔径との差は、3.0μm以上であり、3.5μm以上、4.0μm以上、4.5μm以上、5.0μm以上であってよい。この値は、10.0μm以下、9.0μm以下、8.0μm以下、又は7.0μmであってよい。
 本実施形態の排ガス浄化触媒装置について、水銀ポロシメータを用いて水銀圧入法により測定されるピーク細孔径は、良好な排ガス流通を確保するとの観点から、9μm以上、10μm以上、11μm以上、又は12μm以上であってよい。一方でこの値は、有効なフィルタ効果を得るとの観点から、50μm以下、40μm以下、30μm以下、20μm以下、又は15μm以下であってよい。
<排ガス浄化触媒装置の製造方法>
 上記のような本発明の排ガス浄化触媒装置は、例えば、以下の方法によって製造されてよい。
 ハニカム基材の入口側セル内にコート層形成用スラリーを塗布してスラリーコート層を形成すること、及びスラリーコート層形成後のハニカム基材を焼成すること、を含み、
 前記コート層形成用スラリーが、無機酸化物粒子及び造孔材を含む、
排ガス浄化触媒装置の製造方法。
 以下、本発明の排ガス浄化触媒装置の製造方法について、その好ましい実施形態(以下、「本実施形態」という。)を例として説明する。
[ハニカム基材]
 本実施形態の排ガス浄化触媒装置の製造方法に使用されるハニカム基材は、本実施形態の排ガス浄化触媒装置におけるハニカム基材として上記に説明したもののうちから、適宜に選択して使用してよい。
[コート層形成用スラリー]
 本実施形態の排ガス浄化触媒装置の製造方法に使用されるコート層形成用スラリーは、無機酸化物粒子及び造孔材を含む。コート層形成用スラリーは、任意的に更に、貴金属触媒、無機バインダー、粘度調整剤等を含んでいてよい。入口側コート層が貴金属触媒を含む場合、貴金属触媒は上記の無機酸化物粒子の一部又は全部に担持されていてよい。
 コート層形成用スラリーにおける無機酸化物粒子、貴金属触媒、及び無機バインダーは、それぞれ、入口側コート層に含まれる無機酸化物、貴金属触媒、及び無機バインダーと同じものであってよい。
 コート層形成用スラリーにおいて、貴金属触媒を担持している又は担持していない無機酸化物粒子の粒径は、メジアン径として、例えば、0.1μm以上、0.3μm以上、0.5μm以上、0.8μm以上、又は1.0μm以上であってよく、例えば、10μm以下、5.0μm以下、3.0μm以下、2.0μm以下、1.5μm以下、又は1.0μm以下であってよい。
 コート層形成用スラリーにおける造孔材は、塗布後の焼成工程において焼失し、入口側コート層に微細孔を形成する機能を有する。従って、コート層形成用スラリー及びスラリーコート層中で一次粒子又は二次粒子として安定に存在し、且つ焼成によって容易に消失する材料から成る粒子であってよい。
 コート層形成用スラリーに含まれる造孔材は、例えば、有機ポリマー粒子であってよい。有機ポリマー粒子は、例えば、(メタ)アクリル系樹脂粒子、スチレン・(メタ)アクリル系樹脂粒子、ポリウレタン樹脂粒子、マレイン酸樹脂粒子、スチレン・マレイン酸樹脂粒子、アルキド樹脂粒子、ロジン変性フェノール樹脂粒子、ケトン樹脂粒子等であってよい。
 造孔材の平均粒径は、PMの効果的な捕集を担保する観点から、メジアン径として、例えば、500nm以下、400nm以下、300nm以下、200nm以下、又は100nm以下であってよい。一方で、PM捕集後にも良好な排ガス流通を確保するとの観点から、造孔材のメジアン径は、10nm以上、20nm以上、40nm以上、60nm以上、80nm以上、又は100nm以上であってよい。
 造孔材は、エマルジョンとしてコート層形成用スラリーの調製に供されてよい。
 コート層形成用スラリーにおける造孔材の含有割合は、PMの捕集を確実にするとともに、入口側コート層の機械的強度を確保するとの観点から、スラリーの全固形分量を100質量%とした場合に、例えば、50質量%以下、45質量%以下、40質量%以下、35質量%以下、又は30質量%以下であってよい。一方で、PM捕集後にも良好な排ガス流通を確保するために有効な微細孔を形成すべきとの観点から、コート層形成用スラリーの全固形分量を100質量%とした場合の造孔材の含有割合は、例えば、5質量%以上、10質量%以上、12質量%以上、15質量%以上、18質量%以上、又は20質量%以上であってよい。
 コート層形成用スラリーの分散媒は、水性媒体であってよく、例えば、水、又は水と水溶性有機溶媒との混合物であってよい。コート層形成用スラリーの分散媒は、典型的には水であってよい。
 コート層形成用スラリーの固形分濃度及び粘度のうちの少なくとも一方を適宜に変更することにより、入口側コート層の、入口側セルの隔壁表面から隔壁の深さ方向に向かう存在範囲を調節することが可能である。従って、コート層形成用スラリーの固形分濃度及び粘度は、入口側コート層の所望の存在範囲に応じて、当業者によって適宜に設定されてよい。コート層形成用スラリーの粘度の調整は、例えば、ヒドロキシエチルセルロース等の水溶性高分子をスラリーに添加することにより行われてよい。
[ハニカム基材へのコート層形成用スラリーの塗布]
 コート層形成用スラリーは、ハニカム基材の入口側セル内に塗布して、スラリーコート層を形成する。塗布は、入口側コート層の、排ガス流れの上流側端部から所望の長さにわたって行われてよい。塗布範囲は、入口側コート層の、排ガス流れの上流側端部から、ハニカム基材長さに対して、例えば、70%以上、75%以上、80%以上、又は85%以上の長さにわたって行われてよく、例えば、98%以下、96%以下、94%以下、92%以下、又は90%以下の長さにわたって行われてよい。
 塗布法は、例えば、押し上げ法、吸引法、浸漬法等であってよい。押し上げ法は、入口側セルの開口端を下側にして、セルが縦向きになるように保持されたハニカム基材に対して、その下側開口端からコート層形成用スラリーを押し上げることにより、塗布を行う。吸引法は、セルが縦向きになるように保持されたハニカム基材の、入口側セルの開口端にコート層形成用スラリーを配置し、出口側セルの対向端から吸引することにより、塗布を行う。浸漬法は、ハニカム基材を入口側セルの開口端側からコート層形成用スラリー中に浸漬することにより、塗布を行う。
 塗布により形成されるスラリーコート層の量は、ハニカム基材の単位容積当たりの焼成後のスラリーコート層の量として、1g/L以上、3g/L以上、5g/L以上、又は7g/L以上であってよく、15g/L以下、12g/L以下、10g/L以下、又は8g/L以下であってよい。
 必要に応じて、ハニカム基材の出口側セル内に、コート層形成用スラリーを塗布してスラリーコート層を形成してもよい。出口側セル内に塗布されるコート層形成用スラリーは、入口側セルに塗布するスラリーと同じであっても異なっていてもよい。
[スラリーコート層形成後のハニカム基材の焼成]
 次いで、スラリーコート層形成後のハニカム基材を焼成することにより、本実施形態の排ガス浄化触媒を得ることができる。
 焼成工程は、不活性雰囲気、酸化性雰囲気等の適当な環境下で、スラリーコート層形成後のハニカム基材を加熱することにより行われてよい。
 焼成工程における加熱温度は、例えば、400℃以上、500℃以上、又は600℃以上であってよく、例えば、800℃以下、700℃以下、又は600℃以下であってよい。加熱時間は、例えば、5分以上、30分以上、又は1時間以上であってよく、例えば、20時間以下、10時間以下、8時間以下、又は6時間以下であってよい。
<実施例1>
(1)塗工用スラリーの調製
 アルミナ粉末を、硝酸Pt及び硝酸Pdを含む水溶液中に含浸した後、乾燥及び焼成して、アルミナの質量に対する質量割合として、3質量%のPt及び1質量%のPdが担持されたPt-Pd/Al粉末を得た。このPt-Pd/Al粉末100gをセリア・ジルコニア複合酸化物粉末50gと混合した後、ミリングして平均粒径を1μmに調製して、混合粉末を得た。この混合粉末150gに、アルミナゾルバインダー10g及び純水300gを加えて混合し、スラリーとした。
 上記のスラリーに、造孔材としてのスチレン・アクリル系樹脂粒子を添加し、更に、ヒドロキシエチルセルロースを添加して粘度を調整することにより、塗工用スラリーを得た。ここで使用したスチレン・アクリル系樹脂粒子の平均粒径は100nmであり、スチレン・アクリル系樹脂粒子の使用割合は、得られた塗工用スラリー中の全固形分に対して30質量%とした。
(2)排ガス浄化触媒装置の作製
 基材としては、直径160mm、長さ135mmの円筒状のSiC製ハニカム構造体(ディーゼル微粒子捕集フィルタ、平均細孔径12μm(公証値)、気孔率42体積%(公証値))を用いた。この基材を測定対象として測定した、パームポロメータによる隔壁の貫通細孔径分布、及び水銀ポロシメータによる細孔径分布を、図3に示した。
 この基材に、上記の塗工用スラリーを、排ガス流れの上流側から基材長さの90%まで、下流側から基材長さの30%まで、それぞれコーティングした後、空気中、500℃において1時間焼成して、基材の表面から深さ方向に向かってコート層を形成することにより、排ガス浄化触媒装置を作製した。この排ガス浄化触媒装置は、図2(c)に示したような断面構造を有しているものと推定される。
(3)排ガス浄化触媒装置の評価
 上記で作製した排ガス浄化触媒装置等について、以下の評価を行った。結果は表2及び表3にまとめて示した。
(3-1)コート層の存在範囲
 上記で作製した排ガス浄化触媒装置につき、反射電子検出器を備えたSEMにより、反射電子像を得た。この反射電子像の画像解析により、コート層が存在する入口側セル表面からの深さを求め、得られた値をコート層の存在範囲とした。
(3-2)水銀ポロシメータによる細孔径の分析
 水銀ポロシメータを用いる水銀圧入法により、上記で作製した排ガス浄化触媒装置の細孔径分布を測定した。この細孔径分布における最も高いピークの最大値に相当する細孔径を、ピーク細孔径として求めた。ここで測定した細孔径分布を、図4(a)に示した。
(3-3)パームポロメータによる貫通細孔径の分析
 パームポロメータを用いるバブルポイント法により、上記で作製した排ガス浄化触媒装置について、隔壁の貫通細孔径分布を測定した。この貫通細孔径分布から、貫通細孔径が4μm以上9μm以下の細孔の体積割合(有効貫通孔割合)を算出した。また、上記貫通細孔径分布における最も高いピークの最大値に相当する細孔径を、隔壁貫通孔のピーク細孔径として求めた。具体的な測定条件は、以下のとおりである。
  使用装置:パームポロメータ、米国Porous Materials Inc.製、型式「CFP-1100A」
  使用試薬:Galwick試薬、米国Porous Materials Inc.製
  流通気体:空気
  具体的操作:測定対象の排ガス浄化触媒装置を約1cm角に切り出し、目詰めを行って流通気体が隔壁のみを通過できるようにした。この試料をGalwick試薬の液体中に浸漬し、真空脱気を行って試料中の空気を抜いた。その後、試料を測定装置にセットし、圧力を変化させながら気体を流通させて、圧力ごとの気体流量をモニターした。ここで、低圧で気体が流通可能な貫通孔は径が大きく、高圧で流通可能となる貫通孔は径が小さいこととなる。
 ここで測定したハニカム基材の隔壁の貫通細孔径分布を、図4(a)に示した。
(3-4)圧力損失の測定
 上記で作製した排ガス浄化触媒装置に対し、排ガス流れの上流側から流速7,000L/分で空気を流入し、隔壁を通過した空気を下流側から排出したときの圧力損失を測定し、PM堆積前の圧力損失値とした。
 上記で作製した排ガス浄化触媒装置を、排気量3,000ccのディーゼルエンジンの排気系に実装し、2,000rpm、60Nmの条件下で2時間の運転を行った。その後、触媒装置を回収し、上記と同様に圧力損失の測定を行い、得られた結果をPM堆積後の圧力損失値とした。
<実施例2~4、並びに比較例2及び3>
 造孔材の使用量を表1のとおりとし、ヒドロキシエチルセルロースの添加量を変更することによって粘度を適宜に変更した他は実施例1と同様にして、塗工用スラリーを調製した。このスラリーを用い、排ガス流れの上流側からのコーティング長さを表1のとおりとした他は実施例1と同様にして、排ガス浄化触媒装置を作製し、評価した。結果は表2及び表3にまとめて示した。また、評価の際に測定した、パームポロメータによる隔壁の貫通細孔径分布、及び水銀ポロシメータによる細孔径分布を、図4(b)~(d)、並びに図5(b)及び(c)に示した。
 実施例2~4で得られた排ガス浄化触媒装置は、図2(c)に示したような断面構造を有しているものと推定され、比較例2及び3で得られた排ガス浄化触媒装置は、図2(b)に示したような断面構造を有しているものと考えられる。
<比較例1>
(1)塗工用スラリーの調製
 造孔材を使用しなかった他は実施例1と同様にして、塗工用スラリーを調製した。
(2)排ガス浄化触媒装置の作製
 実施例1におけるのと同じ基材に、上記の塗工用スラリーをコーティングした後に、500℃において1時間焼成して、基材の表面から深さ方向に向かってコート層を形成することにより、排ガス浄化触媒装置を作製した。本比較例1で得られた排ガス触媒装置は、図2(a)に示したような断面構造を有しているものと考えられる。
(3)排ガス浄化触媒装置の評価
 上記の排ガス浄化触媒装置について、実施例1と同様にして評価した。結果は表2及び表3にまとめて示した。また、評価の際に測定した、パームポロメータによる隔壁の貫通細孔径分布、及び水銀ポロシメータによる細孔径分布を、図5(a)に示した。
<比較例4>
(1)塗工用スラリーの調製
 Pt-Pd/Al粉末の使用量を200gとし、さらにスラリーの粘度を変更した他は実施例2と同様にして、塗工用スラリーを調製した。
(2)排ガス浄化触装置の作製
 実施例1におけるのと同じ基材に、上記の塗工用スラリーをコーティングした後に、500℃において1時間焼成して、基材の表面から深さ方向に向かってコート層を形成することにより、排ガス浄化触媒装置を作製した。
(3)排ガス浄化触媒装置の評価
 上記の排ガス浄化触媒装置について、実施例1と同様にして評価した。結果は表2及び表3にまとめて示した。また、評価の際に測定した、パームポロメータによる隔壁の貫通細孔径分布、及び水銀ポロシメータによる細孔径分布を、図5(d)に示した。
<実施例5>
 基材として、直径160mm、長さ135mmの円筒状のSiC製ハニカム構造体(ディーゼル微粒子捕集フィルタ、平均細孔径10.5μm(公証値)、気孔率41体積%(公証値))を用いた他は実施例1と同様にして排ガス浄化触媒装置を作製し、評価した。結果は表2及び表3にまとめて示した。
 ここで使用した基材について測定した、パームポロメータによる隔壁の貫通細孔径分布、及び水銀ポロシメータによる細孔径分布を、図6に示した。また、得られた排ガス浄化触媒装置について測定した、パームポロメータによる隔壁の貫通細孔径分布、及び水銀ポロシメータによる細孔径分布を、図7(a)に示した。
<実施例6及び7>
 造孔材の平均粒径及び使用量をそれぞれ表1のとおりとした他は実施例1と同様にして、塗工用スラリーを調製した。このスラリーを用いた他は実施例5と同様にして、排ガス浄化触媒装置を作製し、評価した。結果は表2及び表3にまとめて示した。また、評価の際に測定した、パームポロメータによる隔壁の貫通細孔径分布、及び水銀ポロシメータによる細孔径分布を、図7(b)及び(c)に示した。
<比較例5>
(1)塗工用スラリーの調製
 造孔材を使用しなかった他は比較例4と同様にして、塗工用スラリーを調製した。
(2)排ガス浄化触媒装置の作製
 実施例5におけるのと同じ基材に、上記の塗工用スラリーを充填し、余分のスラリーをエアブローにより吹き払った後に、500℃において1時間焼成して、基材の表面から深さ方向に向かってコート層を形成することにより、排ガス浄化触媒装置を作製した。
(3)排ガス浄化触媒装置の評価
 上記の排ガス浄化触媒装置について、実施例1と同様にして評価した。結果は表2及び表3にまとめて示した。また、評価の際に測定した、パームポロメータによる隔壁の貫通細孔径分布、及び水銀ポロシメータによる細孔径分布を、図8(a)に示した。
<比較例6>
(1)塗工用スラリーの調製
 平均径3μm、平均長さ105μmのアルミノシリケート繊維90g、シリカゾルバインダー10g、及び純水450gを混合し、更にヒドロキシエチルセルロースを添加して粘度を調整することにより、塗工用スラリーを得た。
(2)排ガス浄化触媒装置の作製
 実施例5におけるのと同じ基材の隔壁上に、上記の塗工用スラリーを、基材長さの100%にわたってコーティングした後、500℃において1時間焼成して、基材の表面上にコート層を形成することにより、排ガス浄化触媒装置を作製した。
(3)排ガス浄化触媒装置の評価
 上記の排ガス浄化触媒装置について、実施例1と同様にして評価した。結果は表2及び表3にまとめて示した。また、評価の際に測定した、パームポロメータによる隔壁の貫通細孔径分布、及び水銀ポロシメータによる細孔径分布を、図8(b)に示した。
<実施例8>
(1)塗工用スラリーの調製
 CHA型ゼオライト(Si:Al=6.5:1(モル比))を硫酸銅(II)水溶液中に含浸した後、乾燥して、ゼオライトの質量に対する金属銅換算の質量割合として、3.5質量%の硫酸銅(II)が担持されたCuCHA粉末を得た。このCuCHA粉末100gをセリア・ジルコニア複合酸化物粉末50gと混合した後、ミリングして平均粒径を1μmに調製して、混合粉末を得た。この混合粉末150gに、アルミナゾルバインダー10g及び純水300gを加えて混合し、スラリーとした。
 上記のスラリーに、造孔材としてのスチレン・アクリル系樹脂粒子を添加し、更に粘度を調整することにより、塗工用スラリーを得た。ここで使用したスチレン・アクリル系樹脂粒子の平均粒径は100nmであり、スチレン・アクリル系樹脂粒子の使用割合は、得られた塗工用スラリー中の全固形分に対して10質量%とした。
(2)排ガス浄化触媒装置の作製
 基材として、直径160mm、長さ135mmの円筒状のSiC製ハニカム構造体(ディーゼル微粒子捕集フィルタ、平均細孔径20μm(公証値)、気孔率60体積%(公証値))を用いた。この基材、及び上記の塗工用スラリーを用い、コーティング長さを、排ガス流れの上流側から基材長さの80%までとした他は実施例1と同様にして、排ガス浄化触媒装置を作製した。
(3)排ガス浄化触媒装置の評価
 上記の排ガス浄化触媒装置について、実施例1と同様にして評価した。結果は表2及び表3にまとめて示した。また、評価の際に測定した、パームポロメータによる隔壁の貫通細孔径分布、及び水銀ポロシメータによる細孔径分布を、図9に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
<反射電子像>
 実施例1及び実施例4でそれぞれ作製した排ガス浄化触媒装置の反射電子像を、図10(a)及び(b)に示した。これらの図において、グレーに見える部分が基材であり、白い部分がコート層である。
 1  PM
 10  ハニカム基材
 11、12  封止部
 20  入口側コート層
 30  セル
 31  入口側セル
 32  出口側セル
 50  排ガス流れ
 100  排ガス浄化触媒装置

Claims (11)

  1.  ハニカム基材及び入口側コート層を有する排ガス浄化触媒装置であって、
     前記ハニカム基材は、多孔質の隔壁によって区画された複数のセルを有し、これら複数のセルは、排ガス流れの上流側に開口し下流側が封止された入口側セルと、排ガス流れの上流側が封止され下流側に開口する出口側セルとを含み、それによって前記入口側セルに流入した排ガスが前記隔壁を通過して出口側セルから排出されるように構成されており、
     前記入口側コート層は、前記入口側セルの隔壁の表面側に存在しており、
     パームポロメータを用いてバブルポイント法により測定される、隔壁の貫通細孔径分布において、4μm以上9μm以下の貫通細孔の割合が、80体積%以上であり、且つ
     水銀ポロシメータを用いて水銀圧入法により測定されるピーク細孔径が、パームポロメータを用いてバブルポイント法により測定されるピーク貫通細孔径よりも3.0μm以上大きい、
    排ガス浄化触媒装置。
  2.  入口側コート層が、前記入口側セルの隔壁表面から隔壁厚みの30%の深さまでの範囲内にのみ存在している、請求項1に記載の触媒装置。
  3.  前記入口側コート層が、前記入口側セルの隔壁表面から隔壁厚みの10%の深さまでの範囲内にのみ存在している、請求項2に記載の触媒装置。
  4.  水銀ポロシメータを用いて水銀圧入法により測定されるピーク細孔径が9μm以上である、請求項1~3のいずれか一項に記載の触媒装置。
  5.  前記入口側コート層が、前記ハニカム基材の排ガス流れの上流側端部からハニカム基材長さの70%以上の長さにわたって存在している、請求項1~4のいずれか一項に記載の触媒装置。
  6.  前記入口側コート層が、前記ハニカム基材の排ガス流れの上流側端部からハニカム基材長さの98%以下の長さにわたって存在している、請求項1~5のいずれか一項に記載の触媒装置。
  7.  前記出口側セルの隔壁の表面又は隔壁内に存在する出口側コート層を更に有する、請求項1~6のいずれか一項に記載の触媒装置。
  8.  請求項1~7のいずれか一項に記載の排ガス浄化触媒装置の製造方法であって、
     前記製造方法は、ハニカム基材の入口側セル内にコート層形成用スラリーを塗布してスラリーコート層を形成すること、及びスラリーコート層形成後のハニカム基材を焼成すること、を含み、
     前記コート層形成用スラリーが、無機酸化物粒子及び造孔材を含む、
    排ガス浄化触媒装置の製造方法。
  9.  前記造孔材が有機ポリマー粒子である、請求項8に記載の方法。
  10.  前記造孔材の平均粒径が10nm以上500nm以下である、請求項8又は9に記載の方法。
  11.  前記ハニカム基材の単位容積当たりの焼成後の前記スラリーコート層の量が1g/L以上15g/L以下である、請求項8~10のいずれか一項に記載の方法。
PCT/JP2018/013900 2017-05-11 2018-03-30 排ガス浄化触媒装置 WO2018207497A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18799107.0A EP3623048A4 (en) 2017-05-11 2018-03-30 EXHAUST GAS PURIFICATION CATALYST DEVICE
US16/606,362 US11149604B2 (en) 2017-05-11 2018-03-30 Exhaust gas purification catalyst device
CN201880028248.5A CN110573250B (zh) 2017-05-11 2018-03-30 排气净化催化剂装置
AU2018265936A AU2018265936B2 (en) 2017-05-11 2018-03-30 Exhaust gas purification catalyst device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017094559A JP6407349B1 (ja) 2017-05-11 2017-05-11 排ガス浄化触媒装置
JP2017-094559 2017-05-11

Publications (1)

Publication Number Publication Date
WO2018207497A1 true WO2018207497A1 (ja) 2018-11-15

Family

ID=63855163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013900 WO2018207497A1 (ja) 2017-05-11 2018-03-30 排ガス浄化触媒装置

Country Status (6)

Country Link
US (1) US11149604B2 (ja)
EP (1) EP3623048A4 (ja)
JP (1) JP6407349B1 (ja)
CN (1) CN110573250B (ja)
AU (1) AU2018265936B2 (ja)
WO (1) WO2018207497A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020141188A1 (de) * 2019-01-04 2020-07-09 Umicore Ag & Co. Kg Verfahren zur herstellung von katalytisch aktiven wandflussfiltern

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031975A1 (ja) * 2018-08-09 2020-02-13 エヌ・イーケムキャット株式会社 触媒塗工ガソリンパティキュレートフィルター及びその製造方法
JP6956139B2 (ja) 2019-04-26 2021-10-27 株式会社Soken 排ガス浄化フィルタ
JP6947200B2 (ja) * 2019-05-15 2021-10-13 株式会社デンソー 排ガス浄化フィルタ
US20220410129A1 (en) 2019-12-19 2022-12-29 Basf Corporation A catalyst article for capturing particulate matter
JP7475138B2 (ja) 2019-12-27 2024-04-26 株式会社キャタラー 排ガス浄化用触媒
JP7332530B2 (ja) 2020-04-21 2023-08-23 トヨタ自動車株式会社 排ガス浄化装置
JP7502920B2 (ja) * 2020-07-28 2024-06-19 株式会社キャタラー ハニカム基材ホルダー
JP2022111085A (ja) * 2021-01-19 2022-07-29 本田技研工業株式会社 排気浄化フィルタ
WO2023063174A1 (ja) 2021-10-14 2023-04-20 三井金属鉱業株式会社 排ガス浄化触媒及びその製造方法
WO2023096765A1 (en) * 2021-11-24 2023-06-01 Corning Incorporated Emissions treatment articles with inorganic filtration deposits and catalytic material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007117A (ja) 2004-06-25 2006-01-12 Ne Chemcat Corp 排気ガス浄化構造体および該構造体を用いた排気ガス浄化方法
JP2006095352A (ja) * 2004-09-28 2006-04-13 Ngk Insulators Ltd ハニカムフィルタ及びその製造方法
WO2008047558A1 (en) * 2006-09-28 2008-04-24 Hitachi Metals, Ltd. Ceramic honeycomb structure and process for producing ceramic honeycomb structure
JP2009119430A (ja) 2007-11-19 2009-06-04 Toyota Central R&D Labs Inc 低温酸化触媒、その製造方法、および低温酸化触媒を用いた排ガスの浄化方法
JP2010269270A (ja) 2009-05-22 2010-12-02 Sumitomo Osaka Cement Co Ltd ハニカム構造型フィルタ
WO2011125797A1 (ja) * 2010-04-01 2011-10-13 日立金属株式会社 セラミックハニカムフィルタ及びその製造方法
JP2012200670A (ja) * 2011-03-25 2012-10-22 Ngk Insulators Ltd ハニカムフィルタ及びその製造方法
JP2012200642A (ja) * 2011-03-24 2012-10-22 Ngk Insulators Ltd ハニカムフィルタ及びその製造方法
JP2014184356A (ja) * 2013-03-21 2014-10-02 Ngk Insulators Ltd ハニカム触媒担体
JP2014188466A (ja) 2013-03-27 2014-10-06 Ngk Insulators Ltd 排ガス浄化フィルタ及び排ガス浄化フィルタの製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185425A (ja) * 1987-01-28 1988-08-01 Ngk Insulators Ltd 排ガス浄化用セラミツクハニカムフイルタ
GB9919013D0 (en) * 1999-08-13 1999-10-13 Johnson Matthey Plc Reactor
JP3872384B2 (ja) * 2002-06-13 2007-01-24 トヨタ自動車株式会社 排ガス浄化フィルタ触媒
JP3874270B2 (ja) * 2002-09-13 2007-01-31 トヨタ自動車株式会社 排ガス浄化フィルタ触媒及びその製造方法
US7119044B2 (en) * 2003-06-11 2006-10-10 Delphi Technologies, Inc. Multiple washcoats on filter substrate
DE10335785A1 (de) * 2003-08-05 2005-03-10 Umicore Ag & Co Kg Katalysatoranordnung und Verfahren zur Reinigung des Abgases von mager betriebenen Verbrennungsmotoren
US7722829B2 (en) * 2004-09-14 2010-05-25 Basf Catalysts Llc Pressure-balanced, catalyzed soot filter
US20080020922A1 (en) * 2006-07-21 2008-01-24 Li Cheng G Zone catalyzed soot filter
JP5616059B2 (ja) * 2007-04-27 2014-10-29 日本碍子株式会社 ハニカムフィルタ
GB0812544D0 (en) * 2008-07-09 2008-08-13 Johnson Matthey Plc Exhaust system for a lean burn IC engine
KR101028548B1 (ko) * 2008-09-05 2011-04-11 기아자동차주식회사 배기가스 정화장치
JP2010167366A (ja) 2009-01-22 2010-08-05 Ngk Insulators Ltd ハニカム触媒体
US20110244359A1 (en) 2009-10-16 2011-10-06 Hideyuki Ueda Membrane electrode assembly for fuel cell and fuel cell using the same
WO2011125768A1 (ja) * 2010-03-31 2011-10-13 日本碍子株式会社 ハニカムフィルタ
US8591820B2 (en) * 2011-03-11 2013-11-26 Corning Incorporated Honeycomb filters for reducing NOx and particulate matter in diesel engine exhaust
JP5599747B2 (ja) 2011-03-24 2014-10-01 日本碍子株式会社 ハニカム構造体及びその製造方法
WO2012133848A1 (ja) * 2011-03-31 2012-10-04 日本碍子株式会社 目封止ハニカム構造体
JP5859752B2 (ja) 2011-06-17 2016-02-16 日本碍子株式会社 排ガス浄化フィルタ
JP6231909B2 (ja) 2014-03-14 2017-11-15 日本碍子株式会社 目封止ハニカム構造体及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007117A (ja) 2004-06-25 2006-01-12 Ne Chemcat Corp 排気ガス浄化構造体および該構造体を用いた排気ガス浄化方法
JP2006095352A (ja) * 2004-09-28 2006-04-13 Ngk Insulators Ltd ハニカムフィルタ及びその製造方法
WO2008047558A1 (en) * 2006-09-28 2008-04-24 Hitachi Metals, Ltd. Ceramic honeycomb structure and process for producing ceramic honeycomb structure
JP2009119430A (ja) 2007-11-19 2009-06-04 Toyota Central R&D Labs Inc 低温酸化触媒、その製造方法、および低温酸化触媒を用いた排ガスの浄化方法
JP2010269270A (ja) 2009-05-22 2010-12-02 Sumitomo Osaka Cement Co Ltd ハニカム構造型フィルタ
WO2011125797A1 (ja) * 2010-04-01 2011-10-13 日立金属株式会社 セラミックハニカムフィルタ及びその製造方法
JP2012200642A (ja) * 2011-03-24 2012-10-22 Ngk Insulators Ltd ハニカムフィルタ及びその製造方法
JP2012200670A (ja) * 2011-03-25 2012-10-22 Ngk Insulators Ltd ハニカムフィルタ及びその製造方法
JP2014184356A (ja) * 2013-03-21 2014-10-02 Ngk Insulators Ltd ハニカム触媒担体
JP2014188466A (ja) 2013-03-27 2014-10-06 Ngk Insulators Ltd 排ガス浄化フィルタ及び排ガス浄化フィルタの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3623048A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020141188A1 (de) * 2019-01-04 2020-07-09 Umicore Ag & Co. Kg Verfahren zur herstellung von katalytisch aktiven wandflussfiltern

Also Published As

Publication number Publication date
AU2018265936A1 (en) 2019-11-07
EP3623048A1 (en) 2020-03-18
AU2018265936B2 (en) 2020-04-16
CN110573250B (zh) 2022-06-10
CN110573250A (zh) 2019-12-13
US20210189930A1 (en) 2021-06-24
EP3623048A4 (en) 2021-01-13
JP2018187595A (ja) 2018-11-29
JP6407349B1 (ja) 2018-10-17
US11149604B2 (en) 2021-10-19

Similar Documents

Publication Publication Date Title
JP6407349B1 (ja) 排ガス浄化触媒装置
JP6564637B2 (ja) 排ガス浄化装置
EP3207978B1 (en) Exhaust gas purification device
JP4907860B2 (ja) フィルタ触媒
WO2016060049A1 (ja) 排ガス浄化用触媒
WO2016060029A1 (ja) 排ガス浄化装置
US20070140928A1 (en) Low pressure drop coated diesel exhaust filter
CN109973176B (zh) 排气净化过滤器
CN112055615A (zh) 废气净化用催化剂
JP2007252997A (ja) フィルタ型排ガス浄化用触媒
JP2006007117A (ja) 排気ガス浄化構造体および該構造体を用いた排気ガス浄化方法
CN113661311A (zh) 排气净化过滤器
CN112218719B (zh) 废气净化催化剂
US20220347626A1 (en) Exhaust gas purification device
CN112218718B (zh) 废气净化催化剂
CN112041065B (zh) 废气净化催化剂的制造方法
WO2020217774A1 (ja) 排ガス浄化フィルタ
WO2019221214A1 (ja) 排ガス浄化触媒
CN112041062A (zh) 废气净化催化剂及其制造方法
JP6542690B2 (ja) フィルタ触媒の製造方法
JP7443629B2 (ja) 排ガス浄化用触媒の製造方法
CN112203764B (zh) 废气净化催化剂的制造方法
WO2015045559A1 (ja) ハニカム構造体及びハニカムフィルタ
WO2020110379A1 (ja) 排ガス浄化触媒及びその製造方法
CN111699039A (zh) 废气净化催化剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799107

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018265936

Country of ref document: AU

Date of ref document: 20180330

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018799107

Country of ref document: EP

Effective date: 20191211