WO2018207464A1 - 風力発電機のグリースの監視システムおよび方法 - Google Patents

風力発電機のグリースの監視システムおよび方法 Download PDF

Info

Publication number
WO2018207464A1
WO2018207464A1 PCT/JP2018/010712 JP2018010712W WO2018207464A1 WO 2018207464 A1 WO2018207464 A1 WO 2018207464A1 JP 2018010712 W JP2018010712 W JP 2018010712W WO 2018207464 A1 WO2018207464 A1 WO 2018207464A1
Authority
WO
WIPO (PCT)
Prior art keywords
grease
wind power
power generator
physical property
optical sensor
Prior art date
Application number
PCT/JP2018/010712
Other languages
English (en)
French (fr)
Inventor
小島 恭子
満 佐伯
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018207464A1 publication Critical patent/WO2018207464A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N29/00Special means in lubricating arrangements or systems providing for the indication or detection of undesired conditions; Use of devices responsive to conditions in lubricating arrangements or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind power generator, and more particularly, to a wind power generator capable of supporting maintenance and management of lubricating oil and grease in a nacelle.
  • Patent Document 1 discloses a technique for providing a wind turbine generator that can support a platform with a simple structure, can cope with leakage of lubricating oil from the nacelle, and can improve reliability. .
  • Patent Document 2 techniques for determining the state of oil are disclosed in, for example, Patent Document 2 and Patent Document 3.
  • FIG. 1 shows a schematic overall configuration diagram of a wind turbine generator targeted by the present invention.
  • each device arranged in the nacelle 3 is indicated by a dotted line.
  • the wind turbine generator 1 includes a blade 5 that rotates by receiving wind, a hub 4 that supports the blade 5, a nacelle 3, and a tower 2 that rotatably supports the nacelle 3.
  • a main shaft 31 connected to the hub 4 and rotating together with the hub 4, a shrink disk 32 connected to the main shaft 31, a speed increasing device 33 connected to the main shaft 31 via the shrink disk 32 and increasing the rotation speed, And a generator 34 that performs a power generation operation by rotating the rotor at a rotational speed increased by the speed increaser 33 via the coupling 38.
  • the part that transmits the rotational energy of the blade 5 to the generator 34 is called a power transmission unit.
  • the main shaft 31, the shrink disk 32, the speed increaser 33, and the coupling 38 are included in the power transmission unit.
  • the speed increaser 33 and the generator 34 are held on the main frame 35.
  • a grease tank 37 that stores grease for lubricating the power transmission unit is installed on the main frame 35.
  • a radiator 36 is disposed on the windward side of the nacelle partition wall 30.
  • the wind power generator 1 shown in FIG. 1 shows a 5 MW class wind power generator as an example.
  • the radiator 36 is arranged between an outside air inlet (not shown) provided on the upper surface of the nacelle 3 and an air outlet (not shown) in the nacelle. Is done.
  • Grease is based on a liquid lubricant and thickener, and contains additives such as antioxidants, antiwear agents, and extreme pressure agents.
  • the thickener is used to mix the base oil, which is a liquid, into a gel like a grease. Extreme pressure agents are added to lubricants to reduce friction and wear between two metal surfaces and to prevent seizure.
  • Deterioration over time refers to changes in physicochemical properties over time according to grease specifications. Specifically, flow characteristics (shear rate dependence and time dependence), heat resistance, oil separation, Properties such as oxidation stability and rust prevention. Flow characteristics are important because grease stays in the bearing.For example, if heat resistance is insufficient, oxidative deterioration is likely to be accelerated. It is inconvenient. Due to oxidative degradation, the lubricant and the thickener may be separated and the function as a grease may be impaired.
  • grease used in wind power generators is usually collected every half year by humans, and the state of parts is measured by measuring the above physicochemical properties and the concentration of solids such as wear powder. I manage.
  • Grease is used for several years, but the chronological change in physicochemical properties is small at the initial stage, gradually increases with the progress of oxidative degradation, and is very accelerated at the end stage. You may not be able to find any signs. Further, if the grease is increased or replaced at an excessive frequency preventively, maintenance costs increase.
  • bearing failure due to wear powder may develop symptoms within a few weeks to a few minutes, so it may not be possible to grasp the signs of a semi-annual inspection.
  • a vibration sensor or the like when detecting a bearing abnormality with a vibration sensor or the like, it is possible to detect the abnormality itself and not a sign of abnormality.
  • One aspect of the present invention is a monitoring system for grease supplied to a mechanical drive unit of a wind power generator.
  • the system is basically composed of an input device, a processing device, a storage device, a server including an output device, and the like.
  • the input device receives measurement data obtained from an optical sensor disposed in at least a part of the grease path, and inputs wind turbine operating parameters if necessary.
  • the processing device generates a physical property parameter of the grease from the measurement data.
  • the storage device stores physical property parameters in time series. The processing device monitors the physical property parameter or predicts the future based on the time-series physical property parameter.
  • the future prediction of the physical property parameter can be performed based on the time-series physical property parameter and the operation parameter.
  • the wind power generator targeted by this method is a wind power generator with an optical sensor, which measures the optical properties of grease used in the components of the wind power generator.
  • the monitoring method is basically executed by a server or the like including an input device, a processing device, a storage device, and an output device.
  • the contents of the processing are based on the first step of receiving the measurement data from the optical sensor, the second step of generating the physical property parameter of the grease from the measurement data, the third step of storing the physical property parameter, and the physical property parameter.
  • the fourth step of monitoring current data of physical property parameters or predicting future data is executed.
  • the fifth step of receiving the operating parameter of the wind power generator is executed, and in the fourth step, based on the past data of the physical property parameter and the past and future data of the operating parameter, Predict future data of physical property parameters.
  • the schematic whole block diagram of a wind power generator Schematic of a wind power generator having an automatic grease supply device. Schematic of bearing parts equipped with automatic grease supply device and optical sensor.
  • the block diagram of the wind power generator which has a grease automatic supply device and an optical sensor.
  • Notations such as “first”, “second”, and “third” in this specification and the like are attached to identify the constituent elements, and do not necessarily limit the number, order, or contents thereof. is not.
  • a number for identifying a component is used for each context, and a number used in one context does not necessarily indicate the same configuration in another context. Further, it does not preclude that a component identified by a certain number also functions as a component identified by another number.
  • the wind power generator according to the embodiment includes an automatic grease supply device and a bearing component including a grease discharge channel.
  • An optical sensor is installed in the grease discharge passage, and the grease of the wind power generator is monitored and diagnosed based on the physical property value (chromaticity) of the grease acquired by the optical sensor.
  • ⁇ Grease diagnosis by color difference is performed as follows. Diagnose the degree of oxidative degradation of grease and contamination with solid particles such as wear powder by color difference measurement. The color of the grease is quantitatively expressed by the three primary colors of light (R, G, B) as measured by the color difference sensor.
  • ⁇ E RGB quantification indexes
  • MCD quantification indexes
  • the change in grease condition depends on the operating condition of the wind power generator. For this reason, various parameters indicating the operating status of the wind power generator are simultaneously acquired, and future characteristic changes of the grease are predicted using these parameters.
  • FIG. 2 shows an extracted nacelle 3 portion of the wind power generator 1 of FIG. Inside the nacelle 3, there are a main shaft 31, a speed increaser 33, a generator 34, bearings such as yaw and pitch (not shown), and grease is supplied from a grease tank 37.
  • a plurality of wind power generators 1 are usually installed in the same site, and these are collectively called a farm 200a.
  • Each wind turbine generator 1 is provided with a sensor in the grease supply system, and sensor signals reflecting the state of the grease are collected in the server 210 in the nacelle 3. Further, the sensor signal obtained from the server 210 of each wind power generator 1 is sent to the aggregation server 220 arranged for each farm 200. Data from the aggregation server 220 is sent to the central server 240 via the network 230. Data from other farms 200b and 200c is also sent to the central server 240. Further, the central server 240 can send an instruction to each wind turbine generator 1 via the aggregation server 220 or the server 210.
  • FIG. 3 is a schematic view of a sensor arranged in a grease supply system.
  • the grease is supplied from the automatic grease supply device 301 to the bearing component 302.
  • the automatic grease supply device 301 is connected to the grease tank 37 and receives supply of grease.
  • the bearing component 302 is, for example, a general part where mechanical contact with the speed increaser 33 or the like occurs, and is not particularly limited.
  • the grease supplied to the bearing component 302 is discharged from a grease discharge portion (drain) 303, for example, as indicated by an arrow in the drawing after being used for a predetermined period.
  • the discharge is performed automatically or manually.
  • An optical sensor 304 is disposed in the vicinity of the grease discharge portion, and optically detects the grease characteristics. Since the drain 303 is located near the end of the grease path, it is considered that the grease in this vicinity is most deteriorated, and it is desirable to arrange the optical sensor 304 around the drain.
  • Grease deteriorates in quality due to use and does not perform its initial function. For this reason, it is necessary to perform maintenance such as replacement depending on the quality degradation state. It is useful in terms of maintenance management efficiency to be able to know the timing of such maintenance at a remote place.
  • FIG. 4 is a flowchart of grease diagnosis by the optical sensor.
  • the process shown in FIG. 4 may be performed by any of the server 210, the aggregation server 220, and the central server 240 in FIG. That is, in the present embodiment, functions such as calculation and control are realized in cooperation with other hardware by executing software stored in the storage device of the server by the processor.
  • a function equivalent to the function configured by software can be realized by hardware such as an FPGA (Field Programmable Gate Array) and an ASIC (Application Specific Integrated Circuit).
  • Measurement is performed by fixed point observation, for example, once a day.
  • a measurement instruction may be given from the central server 240 at any time and performed at an arbitrary timing.
  • the optical sensor measures the chromaticity of the grease (S402).
  • the RGB component of the reflected (or transmitted) light of the grease is detected.
  • the measurement value obtained by the optical sensor is transmitted to a server that performs processing.
  • the color of the grease can be shown as coordinates in a three-dimensional space with the RGB components as axes (color coordinate expression).
  • ⁇ E RGB corresponds to the distance on the color coordinate between the measured grease color and black. A decrease in ⁇ E RGB indicates that the color of the grease approaches black. When the color of grease approaches black, there is a possibility of contamination by solid particles such as wear powder.
  • MCD maximum color difference
  • the above ⁇ E RGB and the maximum color difference MCD are used.
  • ⁇ E RGB exceeds a predetermined threshold (S403).
  • a predetermined threshold S403
  • particle contamination of grease include iron powder mixed into grease due to wear of parts.
  • the RGB components are evenly reduced, in addition to the alteration of the grease itself, it is a state in which mixing of fine particle powder is suspected. If the threshold is exceeded, the operator is instructed to perform grease maintenance (S405).
  • the maximum color difference MCD exceeds a threshold value (S404).
  • the alteration of the grease can be detected by the MCD determination. For example, when the value of B (blue) decreases and MCD increases, the grease is red or yellow, and oxidation is suspected. If the threshold is exceeded, the operator is instructed to perform grease maintenance (S405).
  • the threshold value may be determined by comparing the ⁇ E RGB value and MCD value of the new grease and the deteriorated grease.
  • FIG. 5 shows the measured values after two years from the start of operation.
  • ⁇ E RGB decreased, the maximum color difference increased, and oxidation degradation was promoted.
  • ⁇ E RGB increased as in the wind power generator A, but the maximum color difference was a slight increase, and it was confirmed that there was a suspicion of wear particle contamination.
  • the abnormality of the grease can be detected early using the optical sensor, so that the abnormality of the wind power generator can be detected in advance or early. This is a significant advantage compared with the case where, for example, a vibration sensor or the like is difficult to discover until the abnormality of the apparatus becomes obvious. Further, data from the optical sensor is transmitted to a remote server via a network, so that it is possible to monitor from a remote location and work efficiency is improved.
  • Example 2 shows an example in which the maintenance time is predicted using time-series data obtained from an optical sensor.
  • FIG. 6 shows the nacelle 3 portion of the wind turbine generator 1 of FIG. 1 extracted as in FIG.
  • the same components are denoted by the same reference numerals and description thereof is omitted.
  • An automatic grease supply device 301 is installed in each drive unit in the nacelle 3, for example, the speed increaser 33, the generator 34, the pitch bearing 41, and the slewing bearing 45 to supply grease.
  • An optical sensor 304 is disposed in the drain 303 for discharging grease, and detects color information of the grease.
  • the grease discharged from the drain 303 was measured by the optical sensor 304 every 24 hours using the system of FIG.
  • FIG. 7 plots ⁇ E RGB measurement values at the time of the start of operation, after 0.5 years, after 1 year, and after 1.5 years, with the operation time of the wind turbine generator 1 on the horizontal axis. Is. ⁇ E RGB is considered to reflect the solid particle contamination of the grease.
  • the threshold value of ⁇ E RGB which requires grease maintenance, is 350, and when an approximate curve is set for the transition time, ⁇ E RGB is predicted to exceed the threshold value in about 2.2 years.
  • FIG. 8 plots the maximum color difference MCD measurement value at the start of operation, after 0.5 years, after 1 year, and after 1.5 years, with the operation time of the wind turbine generator 1 on the horizontal axis. It is a thing.
  • the maximum color difference MCD is considered to reflect the oxidative degradation of the grease.
  • the threshold for MCD, which requires grease maintenance, was 100, and when an approximate curve was set for the operating time, the MCD was predicted to exceed the threshold in about 2.4 years.
  • artificial fluctuations in operating conditions include a period during which equipment is stopped for inspection and operation adjustment for power generation amount adjustment.
  • These fluctuation parameters can be acquired as control parameters of the wind turbine generator 1.
  • factors that fluctuate the driving situation due to the natural world include wind speed and other weather, temperature, and humidity. These fluctuation factors of the driving situation can be measured by various sensors, respectively. Therefore, by reflecting these operating conditions, the state of the grease can be determined and predicted more accurately.
  • These temperature sensors and humidity sensors are preferably installed in an environment close to grease, such as around the automatic grease supply device 301 and in the nacelle 3, and like the optical sensor 304, the central server 220 is connected via the server 210. Or sent to the central server 240. Further, the control parameters of the wind turbine generator 1 can be obtained from the server 210, the aggregation server 220, or the central server 240 that performs the control.
  • FIG. 9 is a flow chart of a grease state prediction method reflecting the operation state.
  • the grease supply mechanism to the bearing unit is targeted, and the signal from the optical sensor is mainly focused on solid particle contamination as one ⁇ E RGB value of the physical property parameter. did.
  • an operation parameter indicating an operation state a control parameter for the rotational speed R (rpm) of the shaft is used.
  • the physical property parameter and the operation parameter are not limited to this, and various other parameters can be used.
  • the optical sensor 304 is periodically measured, and when the measurement time is reached (S901), the optical sensor 304 measures chromaticity (S902).
  • the data of various sensors are collected in the central server 240 and collectively processed here.
  • the present invention is not limited to this.
  • the central server 240 calculates ⁇ E RGB from the optical sensor data (S903), and obtains the parameter of the rotational speed R of the shaft (S904).
  • the temporal resolution of R may be the same as or shorter than the data cycle of the optical sensor.
  • FIGS. 10A and 10B are graphs showing an example of predicting and displaying the value of the future 1002 based on the data of the wind power generator 1 for the past year 1001.
  • FIG. The past data 1003 for one year is an actual measurement value.
  • Future data 1004A and 1004B are predicted values.
  • FIG. 10B the future driving situation has changed, and the rotational speed R has been doubled over the past year.
  • the prediction data of ⁇ E RGB does not change as in the past year, and the decrease rate becomes large as shown in FIG. 10B, for example.
  • the timing at which the physical property parameter indicating the grease quality such as ⁇ E RGB exceeds the threshold value is more accurately determined. It becomes possible. That is, the future physical property parameter can be determined more accurately based on the past physical property parameter, the past operation parameter, and the future operation parameter.
  • the prediction system can be enhanced by similarly using the parameter representing the operating state for the prediction of the physical property parameter indicating the grease quality.
  • an automatic grease supply mechanism is used. Monitoring is performed regularly by installing a sensor in the grease discharge section provided. In addition, accurate predictive diagnosis can be performed by monitoring parameters of the operating condition of the wind power generator. In addition, the wind generator grease can be constantly monitored remotely via the network. For this reason, since the bearing sign is known early and the stop time of the wind power generator is shortened, the maintenance cost is reduced and the power generation amount is improved.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • the present invention can be used for maintenance of wind power generators.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Wind Motors (AREA)

Abstract

風力発電機の、主軸、発電機、ヨー、ピッチなどの重要な回転部品(軸受)で使用されるグリースの定常的な監視および予兆診断を行う。 風力発電機の機械的駆動部に供給されるグリースの監視システムである。当該システムは、基本的に入力装置、処理装置、記憶装置、および出力装置を備えるサーバ等で構成される。入力装置は、グリースの経路の少なくとも一部に配置された光学式センサから得られる、測定データが入力され、また、風力発電機の運転パラメータが入力される。処理装置は、測定データからグリースの物性パラメータを生成する。記憶装置は、物性パラメータを時系列的に格納する。処理装置は、時系列的な物性パラメータと、運転パラメータに基づいて、物性パラメータの将来的な予測を行なうものである。

Description

風力発電機のグリースの監視システムおよび方法
 本発明は、風力発電装置に係り、特に、ナセル内の潤滑油やグリースの維持管理に対応可能な風力発電装置に関する。
 近年、地球温暖化防止のため自然エネルギーを利用した発電システムが注目を浴びており、中でも風力発電装置については幅広く普及されている。
 風力発電装置のナセル内には、動力伝達部の潤滑用に潤滑油を貯留するオイルタンクが設置される。例えば、特許文献1には、簡易な構造でプラットフォームを支持すると共に、ナセル内からの潤滑油の漏洩に対応でき、信頼性を向上し得る風力発電装置を提供するための技術が開示されている。
 また、油の状態を判定する技術については、例えば特許文献2や特許文献3に開示がある。
特開2017-2729号公報 WO2010-150526号公報 特開2012-117951号公報
 図1に本発明が対象とする風力発電装置の概略全体構成図を示す。図1では、ナセル3内に配される各機器を点線にて示している。図1に示すように、風力発電装置1は、風を受けて回転するブレード5、ブレード5を支持するハブ4、ナセル3、及びナセル3を回動可能に支持するタワー2を備える。
 ナセル3内に、ハブ4に接続されハブ4と共に回転する主軸31、主軸31に連結されるシュリンクディスク32、シュリンクディスク32を介して主軸31に接続され回転速度を増速する増速機33、及びカップリング38を介して増速機33により増速された回転速度で回転子を回転させて発電運転する発電機34を備えている。
 ブレード5の回転エネルギーを発電機34に伝達する部位は、動力伝達部と呼ばれ、本実施例では、主軸31、シュリンクディスク32、増速機33及びカップリング38が動力伝達部に含まれる。そして、増速機33及び発電機34は、メインフレーム35上に保持されている。また、メインフレーム35上には、動力伝達部の潤滑用にグリースを貯留するグリースタンク37が設置されている。
 また、ナセル3内には、ナセル隔壁30よりも風上側にラジエータ36が配されている。図1に示す風力発電装置1は、一例として5MW級の風力発電装置を示している。これに対し、例えば、2MW級の風力発電装置では、ラジエータ36は、ナセル3の上面に設けられた外気導入口(図示せず)とナセル内空気排出口(図示せず)との間に配される。
 風力発電機では、多くの回転部品でグリースが使用されている。図1において、主軸31、発電機34、ヨー、ピッチなどの軸受で使用されるグリースは、経時的な劣化と摩耗粉などの固形分による汚染による潤滑性能の低下が起こり、風力発電機の故障リスクが増大する。なお、風速に応じて翼の角度を変え、出力を制御するのが翼のピッチ制御であり、風向きに応じて首を振るのがヨー制御である。いずれも、可動部分については、グリースを供給する必要がある。
 グリースは、液体の潤滑剤と増ちょう剤を基材とし、酸化防止剤、摩耗防止剤、極圧剤などの添加剤を配合したものである。増ちょう剤は、液体であるベースオイルをグリースのようなゲル状にする為に混ぜるものである。極圧剤は、金属の二面の間の摩擦,摩耗の減少や,焼付の防止のために潤滑油に加えられるものである。
 経時的な劣化とは、グリースの仕様に伴う、物理化学的性質の経時変化のことを示し、具体的には、流動特性(せん断速度依存性および時間依存性)、耐熱性、油分離性、酸化安定性、さび止め性などの性質である。流動特性は、グリースが軸受内にとどまるために重要であり、たとえば、耐熱性が不足すると酸化劣化が促進されやすく、使用にともなう熱負荷により、グリースの粘度が低下すると、グリースが軸受内にとどまらず、不都合である。酸化劣化によって、潤滑剤と増ちょう剤が分離し、グリースとしての機能が損なわれることがある。また、酸化劣化が進むと、カルボン酸化合物や、酸性の添加剤の分解生成物の濃度が増加して腐食反応の触媒となるため、さび止めの効果が弱まり、軸受の腐食が起こりやすくなる。
 摩耗粉などの固形分による汚染は、グリースの潤滑面に入り込むと、軸受の摩耗を促進し、さらにグリース中の摩耗粉が増える。特に、数十ミクロン以上の硬質金属粒子は、軸受の致命的な故障の原因となることが知られている。
 従って、通常、風力発電機で使用されているグリースは、たとえば半年毎に、人間が少量を採取して、上記物理化学的性質や摩耗粉などの固形分濃度を計測することによって部品の状態を管理している。
 グリースは、数年間にわたって使用されるが、物理化学的性質の経時変化は、初期では変化が小さく、酸化劣化の進行とともに次第に加速し、末期には非常に加速されるため、半年毎の点検では予兆を発見できないことがある。また、予防的に過剰な頻度でグリースアップやグリース交換を行うことは、保守コスト増大につながる。
 また、摩耗粉による軸受故障は、数週間から数分の間に症状が進行することがあるため、半年毎の点検では予兆を把握できないことがある。例えば、振動センサなどで軸受けの異常を検出しようと場合、検出できるのは異常そのものであり、異常の予兆ではない場合がある。
 最近では、風力発電機が大型化し、部品が高額なため、故障時の保守コストが増加している。今後は洋上風車も増加するため、リアルタイム遠隔監視技術の需要が高まっている。したがって、風力発電機の、主軸、発電機、ヨー、ピッチなどの重要な回転部品(軸受)で使用されるグリースの定常的な監視および予兆診断が重要となる。
 本発明の一側面は、風力発電機の機械的駆動部に供給されるグリースの監視システムである。当該システムは、基本的に入力装置、処理装置、記憶装置、および出力装置を備えるサーバ等で構成される。入力装置は、グリースの経路の少なくとも一部に配置された光学式センサから得られる、測定データが入力され、また、必要な場合には、風力発電機の運転パラメータが入力される。処理装置は、測定データからグリースの物性パラメータを生成する。記憶装置は、物性パラメータを時系列的に格納する。処理装置は、時系列的な物性パラメータに基づいて、物性パラメータの監視もしくは将来的な予測を行なうものである。
 また、運転パラメータを利用するさらに具体的な例では、時系列的な物性パラメータと、運転パラメータに基づいて、物性パラメータの将来的な予測を行なうことができる。
 本発明の他の一側面は、風力発電機のグリースの監視方法である。この方法が対象とする風力発電機は、光学式センサを備えた風力発電機であって、光学式センサが風力発電機の部品で使用されるグリースの光学的特性を測定するものである。監視方法は、基本的に入力装置、処理装置、記憶装置、および出力装置を備えるサーバ等で実行される。処理の内容は、光学式センサからの測定データを受信する第1のステップ、測定データからグリースの物性パラメータを生成する第2のステップ、物性パラメータを記憶する第3のステップ、物性パラメータに基づいて、物性パラメータの現在のデータを監視し、または、将来のデータを予測する第4のステップを実行する。
 さらに具体的な例では、風力発電機の運転パラメータを受信する第5のステップを実行し、第4のステップでは、物性パラメータの過去のデータと、運転パラメータの過去および将来のデータに基づいて、物性パラメータの将来のデータを予測する。
 風力発電機の、主軸、発電機、ヨー、ピッチなどの重要な回転部品(軸受)で使用されるグリースの定常的な監視および予兆診断が可能となる。
風力発電装置の概略全体構成図。 グリース自動供給デバイスを有する風力発電機の概略図。 グリース自動供給デバイス、光学式センサを備えた軸受部品の概略図。 光学式センサによるグリース劣化診断フロー図。 運転開始から2年経過後の計測値を示す表図。 グリース自動供給デバイスおよび光学センサを有する風力発電機の構成図。 使用時間に対するΔERGBの変化を示すグラフ図。 使用時間に対する最大色差の変化を示すグラフ図。 光学式センサによるグリース劣化予想フロー図。 光学式センサによるグリース劣化予想を示すグラフ図。 光学式センサによるグリース劣化予想を示すグラフ図。
 以下、実施の形態について、図面を用いて詳細に説明する。ただし、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。
 以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、重複する説明は省略することがある。
 同一あるいは同様な機能を有する要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。ただし、複数の要素を区別する必要がない場合には、添字を省略して説明する場合がある。
 本明細書等における「第1」、「第2」、「第3」などの表記は、構成要素を識別するために付するものであり、必ずしも、数、順序、もしくはその内容を限定するものではない。また、構成要素の識別のための番号は文脈毎に用いられ、一つの文脈で用いた番号が、他の文脈で必ずしも同一の構成を示すとは限らない。また、ある番号で識別された構成要素が、他の番号で識別された構成要素の機能を兼ねることを妨げるものではない。
 図面等において示す各構成の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面等に開示された位置、大きさ、形状、範囲などに限定されない。
 実施例で説明される技術の概要を説明する。実施例の風力発電機は、グリースの自動供給デバイスと、グリースの排出流路を備えた軸受部品を有する。グリース排出流路中には、光学式センサを設置し、光学式センサによって取得されるグリース物性値(色度)に基づいて、風力発電機のグリースを監視、診断する。
 色差によるグリースの診断は以下のように行う。色差測定により、グリースの酸化劣化度と、摩耗粉などの固形粒子による汚染を診断する。色差センサによる測定で、グリースの色を、光の三原色(R・G・B)で定量的に表す。
 本実施例では、定量化の指標は2種類あり、ΔERGBとMCDである。グリースの酸化劣化が進行している場合には、三原色座標のうち、B値が大きく低下し、MCD値が大きくなる。固形粒子による汚染が進行している場合には、三原色座標の値が三色ともに減少し、ΔERGB が減少するとともにMCD値は微増もしくは微減である。グリース新品の測定値と、使用により劣化したグリースまたは、酸化試験や強制的に汚染させたグリースサンプルとの測定値より診断の閾値を定め、閾値を超えた場合に、グリース補充や軸受点検などのメンテナンスを行うことができる。
 また、グリースの状態の変化は、風力発電機の運転状況にも依存する。このため、風力発電機の運転状況を示す種々のパラメータを同時に取得し、これらのパラメータを用いて、グリースの将来的な特性変化を予測する。
 (1.システム全体構成)
 図2により、実施例1の酸化劣化と粒子汚染の診断を行うシステムを説明する。図2には説明のため、図1の風力発電装置1のナセル3部分を抽出して示している。ナセル3内部には、主軸31、増速機33、発電機34、図示しないヨー、ピッチなどの軸受があり、これらにはグリースタンク37からグリースが供給される。
 図2に示すように、風力発電装置1は通常複数が同一敷地内に設置され、これをまとめてファーム200aなどと呼ばれる。それぞれの風力発電装置1には、グリースの供給系統にセンサが設置され、グリースの状態を反映したセンサ信号は、ナセル3内のサーバ210に集約される。また、各風力発電装置1のサーバ210から得られるセンサ信号は、ファーム200ごとに配置される集約サーバ220に送られる。集約サーバ220からのデータは、ネットワーク230を介して中央サーバ240へ送られる。中央サーバ240へは、他のファーム200bや200cからのデータも送られる。また、中央サーバ240は、集約サーバ220やサーバ210を介して、各風力発電装置1に指示を送ることができる。
 (2.センサ配置)
 図3は、グリースの供給系統に配置されたセンサの模式図である。グリースは、グリース自動供給デバイス301から軸受部品302に供給される。グリース自動供給デバイス301は、グリースタンク37に接続されてグリースの供給を受ける。軸受部品302は、例えば増速機33その他の機械的な接触が生じる部位一般であり、特に制限するものではない。
 軸受部品302に供給されたグリースは、所定期間使用された後、例えば図中矢印のように、グリース排出部(ドレイン)303から排出される。排出は自動もしくは手動で行われる。グリース排出部付近には光学式センサ304が配置されており、グリースの特性を光学的に検出する。ドレイン303はグリース経路の末端付近に位置するので、この付近のグリースは、最も劣化が進んでいると考えられ、ドレインの周辺に光学式センサ304を配置しておくのが望ましい。
 グリースは、使用により品質が劣化し、初期の機能を果たさなくなる。このため、品質の劣化状況に応じて、交換等のメンテナンスを行う必要がある。このようなメンテナンスのタイミングを、遠隔地で知ることができるようにすることは、保守管理の効率上有用である。
 (3.グリース診断のフロー)
 図4は、光学式センサによるグリース診断のフロー図である。図4で示す処理は、図2のサーバ210,集約サーバ220,中央サーバ240のいずれで行ってもよい。すなわち、本実施例では計算や制御等の機能は、サーバの記憶装置に格納されたソフトウェアがプロセッサによって実行されることで、定められた処理を他のハードウェアと協働して実現される。なお、ソフトウェアで構成した機能と同等の機能は、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)などのハードウェアでも実現できる。
 最初にグリースの光学的測定の準備を行う(S401)。測定は例えば1日1回のように定点観測で行う。あるいは、中央サーバ240から随時測定指示を行って任意のタイミングで行ってもよい。
 つぎに、光学式センサはグリースの色度測定を行う(S402)。光学式センサによるグリースの色度測定については、例えば特許文献2にも記載があるが、グリースの反射(あるいは透過)光のRGB成分を検出する。周知のように、色の表現法のひとつとして、赤 (Red)、緑 (Green)、青 (Blue) (RGB成分)の三つの原色を混ぜて色彩を表現することができる。
 光学式センサで得られた測定値は、処理を行うサーバに送信される。グリースの色彩は、RGB成分の其々を軸とした3次元空間上の座標として示すことができる(色座標表現)。ここで、ΔERGBというパラメータは、以下のように定義できる。
  
   ΔERGB=√(R+G2+B2
  
 なお、255階調の色座標では、(0,0,0)が黒、(255,255,255)が白となり、(0,255,255)がシアン、(0,255,0)が緑、(255,255,0)が黄、(255,0,0)が赤、(255,0,255)がマゼンダとなる。ΔERGBは、測定したグリースの色と黒との色座標上の距離に相当する。ΔERGBが小さくなるということは、グリースの色が黒に近づくことを示す。グリースの色が黒に近づく場合には、摩耗粉などの固形粒子による汚染の可能性がある。
 また、最大色差MCDというパラメータを導入する。MCDは、RGB値における最大値と最小値の差であり、色味の変化を知ることができる。
 本実施例のグリース診断では、上記ΔERGBと最大色差MCDを用いる。まず、ΔERGBが所定の閾値を超えたかどうかを判定する(S403)。これにより、グリースの粒子汚染を検出することができる。粒子汚染の原因としては、部品の磨耗によりグリースに混入する鉄粉などがある。特に、RGB成分が均等に低下している場合には、グリースそのものの変質以外に、微粒子粉の混入が疑われる状態である。閾値を超えた場合は、グリースのメンテナンスを行うようにオペレータに指示する(S405)。
 次に、最大色差MCDが閾値を越えたかどうかを判定する(S404)。MCDの判定により、グリースの変質を検出することができる。例えば、B(青)の値が低下しMCDが増大するということは、グリースが赤色もしくは黄色を呈し、酸化が疑われる状態である。閾値を超えた場合は、グリースのメンテナンスを行うようにオペレータに指示する(S405)。
 なお、閾値の設定については、新品のグリースと劣化後のグリースのΔERGB値、MCD値を比較するなどして決めればよい。
 (4.グリース診断結果例)
 風力発電装置Aと風力発電装置Bについて、発電機軸受にグリース自動供給デバイス301を設置し、グリースのドレイン303に光学式センサ304をそれぞれ設置した。風力発電装置Aと風力発電装置Bについて、ドレイン303から排出されたグリースを、光学式センサ304で24時間毎に計測した。
 図5に運転開始から2年経過後の計測値を示す。風力発電装置Aでは、ΔERGBが減少し、かつ、最大色差が増大し、酸化劣化が促進していたことを確認した。風力発電装置Bでは、風力発電装置Aと同様にΔERGBが増大していたが、最大色差はわずかな増加であり、摩耗粒子汚染の疑いがあることを確認した。
 以上のように、本実施例によると光学式のセンサを用いてグリースの異常を早期検出できるため、風力発電装置の異常を未然あるいは早期に発見することができる。これは、例えば振動センサ等では、装置の異常が顕在化してからでないと発見が困難であるのに比べて、顕著な利点である。また、光学式のセンサからのデータは、ネットワークを介して遠隔地のサーバに送信することで、遠隔地からのモニタが可能となり、作業効率が向上する。
 実施例2では、光学式センサからえられた時系列データを用いて、メンテナンス時期の予測を行う例を示す。
 図6は、図2と同様、図1の風力発電装置1のナセル3部分を抽出して示している。同じ構成は同じ符号を付して説明を省略する。ナセル3内部の各駆動部、例えば増速機33、発電機34、ピッチベアリング41、旋回ベアリング45には、グリース自動供給デバイス301が設置されて、グリースを供給する。またグリースの排出を行うドレイン303に、光学式センサ304が配置されており、グリースの色情報を検出している。
 図6のシステムを用いて、ドレイン303から排出されたグリースを、光学式センサ304で、24時間毎に計測した。
 図7は、風力発電装置1の運転時間を横軸に、縦軸には運転開始時、0.5年経過後、1年経過後、1.5年経過後のΔERGB計測値をプロットしたものである。ΔERGBはグリースの固形粒子汚染を反映していると考えられる。グリースのメンテナンスが必要となる、ΔERGBの閾値は350であり、推移を運転時間に対して近似曲線を設定したところ、ΔERGBは約2.2年で閾値を超えると予測された。
 図8は、風力発電装置1の運転時間を横軸に、縦軸には運転開始時、0.5年経過後、1年経過後、1.5年経過後の最大色差MCD計測値をプロットしたものである。最大色差MCDはグリースの酸化劣化を反映していると考えられる。グリースのメンテナンスが必要となる、MCDの閾値は100であり、推移を運転時間に対して近似曲線を設定したところ、MCDは約2.4年で閾値を超えると予測された。
 以上を総合すると、固形粒子汚染および酸化劣化の両方に対して余裕のあるメンテナンスの時期は、2年経過時と予測することができる。
 ところで、図7および図8の例では、風力発電装置1の運転状況が一定不変であることを前提としている。しかし、実際には風力発電装置1の運転状況は一定ではなく、さまざまな要因で状況が変化する。
 例えば、人為的な運転状況の変動としては、点検のための装置の停止期間や、発電量調整のための運転調整がある。これらの変動パラメータは、風力発電装置1の制御パラメータとして取得することができる。
 また、自然界に起因する運転状況の変動要因としては、風速をはじめとする天候、温度、湿度、などがある。これらの運転状況の変動要因は、それぞれ各種センサで測定することができる。従って、これらの運転状況を反映することで、より正確にグリースの状態を判定および予測することができる。
 これらの温度センサや湿度センサは、グリース自動供給デバイス301周囲やナセル3内など、グリースに近い環境に設置されることが望ましく、光学式センサ304と同様に、サーバ210を介して、集約サーバ220や中央サーバ240に送信される。また、風力発電装置1の制御パラメータは、当該制御を行う、サーバ210、集約サーバ220あるいは中央サーバ240から得ることができる。
 図9は、運転状況を反映したグリース状態予測方法のフロー図である。説明を単純化するために、この例では、軸受け部へのグリースの供給機構を対象とし、光学センサからの信号は物性パラメータのひとつのΔERGB値として、主に固形粒子汚染に着目することとした。また、運転状況を示す運転パラメータとしては、軸の回転数R(rpm)の制御パラメータを用いることにした。物性パラメータや運転パラメータはこれに制限されるものではなく、他の種々のものを利用可能である。
 本例では、定期的に光学式センサ304で測定を行うものとし、測定時間になると(S901)、光学式センサ304は色度を測定する(S902)。本実施例では、各種センサのデータは中央サーバ240へ集約し、ここで一括処理することにしたが、これに限るものではない。
 中央サーバ240では、光学センサのデータからΔERGBを計算し(S903)、また、軸の回転数Rのパラメータを取得する(S904)。Rの時間的分解能は光学センサのデータ周期と同じでもよいし、それより短くてもよい。これらのデータは、記憶装置に時間データとともに格納する(S905)。
 ΔERGBは、時間tと軸の回転数Rの関数と把握できるので、
 f(t,R)=ΔERGB
 となる。過去のt、R,ΔERGBのデータを元に関数f(t,R)をモデル化することも可能である。
 また、ΔERGBの将来予測を行う場合、軸の回転数Rの変化を反映する(S906)。結果は表示装置に表示する(S907)。
 図10A,Bは、風力発電装置1の過去1年1001のデータを元に、将来1002の値を予測して表示する例を示すグラフ図である。1年分の過去データ1003は実測値である。将来のデータ1004A,1004Bは予測値である。
 図10Aでは、将来の運転状況は変わらず、回転数Rは常に一定とした。この場合には、ΔERGBの予測データは過去1年と同様に推移する。
 図10Bでは、将来の運転状況が変化し、回転数Rは過去1年の2倍とした。この場合には、ΔERGBの予測データは過去1年と同様に推移せず、たとえば図10Bに示すように、減少割合が大きくなる。
 図10A,Bの実施例のように、予測データに風力発電装置の運転状況を表すパラメータを反映することにより、ΔERGB等のグリース品質を示す物性パラメータが閾値を超えるタイミングをより正確に判断することが可能となる。すなわち、過去の物性パラメータ、過去の運転パラメータ、および将来の運転パラメータに基づいて、将来の物性パラメータをより正確に判断できる。
 運転状況を表すパラメータのうち、例えば運転時間や発電目標値のように、人為的にコントロールができるものについては、運転スケジュール等に従って、将来のデータを準備することができる。このため、運転状況を表すパラメータを、グリース品質を示す物性パラメータの予測に用いることにより、予測制度を高めることができる。
 また、天候や温度のように人為的にコントロールができないものについては、過去の実績データから将来のデータを予想することができる。このため、同様に運転状況を表すパラメータを、グリース品質を示す物性パラメータの予測に用いることにより、予測制度を高めることができる。
 以上のように、本実施例では風力発電機の、主軸、発電機、ヨー、ピッチなどの重要な回転部品(軸受)で使用されるグリースの適切な監視を行うため、グリースの自動供給機構に備わるグリース排出部にセンサを設置することで、定常的に監視を行う。また、風力発電機の運転状況のパラメータをモニタすることで、正確な予測診断が可能となる。さらに、ネットワークを介して、風力発電機のグリースの常時遠隔監視が可能になる。このため、早期に軸受の予兆が判り、風力発電機の停止時間が短縮するため、保守コストが低減し、発電量が向上する。
 本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。
 本発明は、風力発電装置の維持管理に利用可能である。
 風力発電装置1、タワー2、ナセル3、ハブ4、ブレード5

Claims (10)

  1.  風力発電機の機械的駆動部に供給されるグリースの監視システムであって、
     入力装置、処理装置、記憶装置、および出力装置を備え、
     前記入力装置は、
     前記グリースの経路の少なくとも一部に配置された光学式センサから得られる、測定データが入力され、
     前記処理装置は、
     前記測定データから前記グリースの物性パラメータを生成するものであり、
     前記記憶装置は、
     前記物性パラメータを時系列的に格納するものであり、
     前記処理装置は、
     時系列的な前記物性パラメータに基づいて、前記物性パラメータの監視もしくは将来的な予測を行なうものである、
     風力発電機のグリースの監視システム。
  2.  前記入力装置は、
     さらに、前記風力発電機の運転パラメータが入力され、
     前記処理装置は、
     時系列的な前記物性パラメータと、前記運転パラメータに基づいて、前記物性パラメータの将来的な予測を行なうものである、
     請求項1記載の風力発電機のグリースの監視システム。
  3.  前記処理装置は、
     前記物性パラメータの将来的な予測を行なう際に、予め設定された閾値を前記物性パラメータが超える時間を予測するものである、
     請求項1記載の風力発電機のグリースの監視システム。
  4.  前記物性パラメータは、ΔERGBである、
     請求項1記載の風力発電機のグリースの監視システム。
  5.  前記物性パラメータは、最大色差である、
     請求項1記載の風力発電機のグリースの監視システム。
  6.  前記出力装置は、
     第1の軸に前記物性パラメータを表示し、第2の軸に時間を表示したグラフ形式で、前記物性パラメータの将来的な予測の結果を表示する、
     請求項1記載の風力発電機のグリースの監視システム。
  7.  前記光学式センサは、
     前記グリースの経路の末端付近に配置される、
     請求項1記載の風力発電機のグリースの監視システム。
  8.  前記光学式センサは、
     前記グリースの供給系統の排出部に配置される、
     請求項1記載の風力発電機のグリースの監視システム。
  9.  風力発電機のグリースの監視方法であって、
     前記風力発電機は光学式センサを備えた風力発電機であって、前記光学式センサが前記風力発電機の部品で使用されるグリースの光学的特性を測定するものであり、
     前記光学式センサからの測定データを受信する第1のステップ、
     前記測定データから前記グリースの物性パラメータを生成する第2のステップ、
     前記物性パラメータを記憶する第3のステップ、
     前記物性パラメータに基づいて、前記物性パラメータの現在のデータを監視し、または、将来のデータを予測する第4のステップ、
     を実行する風力発電機のグリースの監視方法。
  10.  さらに、前記風力発電機の運転パラメータを受信する第5のステップを実行し、
     前記第4のステップでは、
     前記物性パラメータの過去のデータと、前記運転パラメータの過去および将来のデータに基づいて、前記物性パラメータの将来のデータを予測する、
     請求項9記載の風力発電機のグリースの監視方法。
PCT/JP2018/010712 2017-05-12 2018-03-19 風力発電機のグリースの監視システムおよび方法 WO2018207464A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-095343 2017-05-12
JP2017095343A JP2018194011A (ja) 2017-05-12 2017-05-12 風力発電機のグリースの監視システムおよび方法

Publications (1)

Publication Number Publication Date
WO2018207464A1 true WO2018207464A1 (ja) 2018-11-15

Family

ID=64104477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010712 WO2018207464A1 (ja) 2017-05-12 2018-03-19 風力発電機のグリースの監視システムおよび方法

Country Status (3)

Country Link
JP (1) JP2018194011A (ja)
TW (1) TWI656282B (ja)
WO (1) WO2018207464A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110219786A (zh) * 2019-07-12 2019-09-10 青岛盘古润滑技术有限公司 一种风力发电机组偏航润滑控制***及控制方法
CN112943911A (zh) * 2021-04-16 2021-06-11 南京师范大学 风电机组齿轮箱润滑油在线监控装置、监控方法及***
US11852294B2 (en) 2019-11-13 2023-12-26 Hitachi, Ltd. Diagnosis system of lubricating oil and diagnosis method of lubricating oil

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031179A (zh) * 2019-03-18 2019-07-19 华中科技大学 一种风机尾流风洞试验装置
JP7179674B2 (ja) * 2019-05-10 2022-11-29 株式会社日立製作所 潤滑油の診断方法および潤滑油の監視システム
JP6941707B1 (ja) * 2020-04-20 2021-09-29 三菱重工業株式会社 アキュムレータの異常診断方法及びアキュムレータの異常診断システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007310611A (ja) * 2006-05-18 2007-11-29 Ntn Corp 軸受使用設備機器の監視・診断システム
WO2015060444A1 (ja) * 2013-10-25 2015-04-30 ナブテスコ 株式会社 潤滑油劣化センサ
JP2016084714A (ja) * 2014-10-23 2016-05-19 Ntn株式会社 風力発電装置の異常監視装置
JP2016161285A (ja) * 2015-02-26 2016-09-05 株式会社荏原製作所 液体ポンプのメインテナンス・スケジューラ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193957A (ja) * 1997-09-25 1999-04-06 Toshiba Corp グリース循環式軸受
FR2827019B1 (fr) * 2001-07-06 2003-09-26 Defontaine Sa Dispositf de graissage automatique de roulements a billes equipant notamment des eoliennes
DE10245078B4 (de) * 2002-09-27 2005-08-11 Aloys Wobben Windenergieanlage
JP2007256033A (ja) * 2006-03-23 2007-10-04 Ntn Corp Icタグ・センサ付き軸受の潤滑剤劣化検出システム
US8390796B2 (en) * 2009-06-23 2013-03-05 National University Corporation University Of Fukui Oil state monitoring method and oil state monitoring device
JP2014085193A (ja) * 2012-10-23 2014-05-12 Hitachi Ltd グリースの余寿命推定方法及び光診断装置
CN203809662U (zh) * 2014-04-23 2014-09-03 沈阳鼓风机集团风电有限公司 风力发电机组齿轮箱润滑油冷却控制***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007310611A (ja) * 2006-05-18 2007-11-29 Ntn Corp 軸受使用設備機器の監視・診断システム
WO2015060444A1 (ja) * 2013-10-25 2015-04-30 ナブテスコ 株式会社 潤滑油劣化センサ
JP2016084714A (ja) * 2014-10-23 2016-05-19 Ntn株式会社 風力発電装置の異常監視装置
JP2016161285A (ja) * 2015-02-26 2016-09-05 株式会社荏原製作所 液体ポンプのメインテナンス・スケジューラ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110219786A (zh) * 2019-07-12 2019-09-10 青岛盘古润滑技术有限公司 一种风力发电机组偏航润滑控制***及控制方法
US11852294B2 (en) 2019-11-13 2023-12-26 Hitachi, Ltd. Diagnosis system of lubricating oil and diagnosis method of lubricating oil
CN112943911A (zh) * 2021-04-16 2021-06-11 南京师范大学 风电机组齿轮箱润滑油在线监控装置、监控方法及***
CN112943911B (zh) * 2021-04-16 2024-04-26 南京师范大学 风电机组齿轮箱润滑油在线监控装置、监控方法及***

Also Published As

Publication number Publication date
JP2018194011A (ja) 2018-12-06
TW201901031A (zh) 2019-01-01
TWI656282B (zh) 2019-04-11

Similar Documents

Publication Publication Date Title
WO2018207464A1 (ja) 風力発電機のグリースの監視システムおよび方法
JP7099816B2 (ja) 潤滑油の劣化診断方法、回転機械の潤滑油の監視システムおよび方法
JP7179674B2 (ja) 潤滑油の診断方法および潤滑油の監視システム
JP7032258B2 (ja) 風力発電機診断システムおよび方法
WO2021095436A1 (ja) 潤滑油の診断システムおよび潤滑油の診断方法
EP2761186B1 (en) Method and system for monitoring the operational state of a pump
JP7016629B2 (ja) ポンプ装置の診断方法及びポンプ装置の診断評価装置
WO2023286437A1 (ja) 潤滑油の診断方法、潤滑油の診断装置および潤滑油の診断システム
JP6919986B2 (ja) 風力発電機の潤滑油の監視システムおよび方法
JP2016161285A (ja) 液体ポンプのメインテナンス・スケジューラ
Tchakoua et al. New trends and future challenges for wind turbines condition monitoring
JP2009115090A (ja) タービン内部構成要素の劣化の自動的検出及び通知
JP7084283B2 (ja) 潤滑油の診断システム、風力発電機、および潤滑油の性状測定用モジュール
Carroll et al. Availability improvements from condition monitoring systems and performance based maintenance contracts
JP7252737B2 (ja) 風力発電機のグリースの監視システムおよび方法
WO2022163077A1 (ja) 潤滑油の診断方法、装置およびシステム
WO2024009607A1 (ja) オイルの診断方法およびオイルの診断システム
JP7303279B2 (ja) ポンプ装置の診断方法、ポンプ装置の診断評価装置
WO2014111169A1 (en) Adjusted operating time of a component in a wind turbine
Fischer Final project report February 2012
Nagel Steam Turbine Condition Monitoring (TCM)
Fischer CMS-based residual life estimation for wind-turbine drivetrain components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18799311

Country of ref document: EP

Kind code of ref document: A1