WO2018205631A1 - 回流器叶片、压缩机结构和压缩机 - Google Patents

回流器叶片、压缩机结构和压缩机 Download PDF

Info

Publication number
WO2018205631A1
WO2018205631A1 PCT/CN2017/118108 CN2017118108W WO2018205631A1 WO 2018205631 A1 WO2018205631 A1 WO 2018205631A1 CN 2017118108 W CN2017118108 W CN 2017118108W WO 2018205631 A1 WO2018205631 A1 WO 2018205631A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
blade
benefit
impeller
compressor structure
Prior art date
Application number
PCT/CN2017/118108
Other languages
English (en)
French (fr)
Inventor
刘增岳
钟瑞兴
蒋楠
蒋彩云
陈玉辉
周义
雷连冬
欧阳鑫望
Original Assignee
格力电器(武汉)有限公司
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格力电器(武汉)有限公司, 珠海格力电器股份有限公司 filed Critical 格力电器(武汉)有限公司
Priority to US16/611,608 priority Critical patent/US11187244B2/en
Priority to EP17908961.0A priority patent/EP3623640A4/en
Publication of WO2018205631A1 publication Critical patent/WO2018205631A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/684Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/124Fluid guiding means, e.g. vanes related to the suction side of a stator vane

Definitions

  • the present application relates to the field of compressors, and in particular to a return vane, a compressor structure and a compressor.
  • the two-stage compression refrigeration cycle mixes the flash steam separated from the economizer with the exhaust gas from the low-stage compression, reduces the secondary compression intake air temperature, reduces the refrigerant gas specific volume, and reduces the compressor energy consumption.
  • a two-stage compression refrigeration cycle is adopted, and after the refrigerant is compressed by the first-stage impeller, the diffuser, the curve, and the return device are required to reach the second-stage impeller inlet.
  • the return flow is arranged with vanes to eliminate the circumferential velocity of the future flow, such that the secondary impeller inlet speed is axial.
  • the prior art qi scheme reduces the airflow mixing loss and reduces the aerodynamic efficiency of the compressor due to the difference in the magnitude and direction of the airflow between the mainstream and the supplemental airflow.
  • a recirculation blade, a compressor structure and a compressor are provided to reduce the airflow mixing loss caused by the supplemental air and/or to prevent the secondary impeller intake distortion.
  • an embodiment of the present application provides a reflow blade, comprising: a blade body, a cavity is formed inside the blade body, and a plenum is formed on the blade body.
  • the air supply hole is provided on a suction side of the blade body.
  • the blade body is made by casting or machining.
  • the present application also provides a compressor structure including the above described return vane.
  • the compressor structure further includes a housing on which a plenum passage is formed in communication with the cavity of the return vane.
  • the compressor structure further includes a primary impeller and a secondary impeller, the output airflow of the primary impeller entering the secondary impeller through a return flow passage provided with the return vane.
  • the output stream of the primary impeller enters the return flow path through a primary diffuser flow path.
  • the transition between the primary diffuser flow path and the return flow path is formed as a curve.
  • the output of the secondary impeller is fitted with a secondary diffuser.
  • the qi in the cavity of the recirculation blade by the air supply passage forms a jet on the suction surface of the recirculation blade, thereby blowing off the low-speed low-energy region formed by the suction surface.
  • the airflow mixing loss prevents the secondary impeller intake distortion, and improve the compressor operating range.
  • FIG. 2 is a schematic cross-sectional view of a reflow blade of an embodiment of the present application
  • FIG. 3 is a schematic triangular view of the impeller exit speed of the embodiment of the present application.
  • the purpose of the application is to provide a centrifugal compressor structure to reduce the airflow mixing loss caused by the supplemental air, and to prevent the compressor secondary impeller intake distortion and improve the compressor operating range.
  • the hollow type regenerator blade of the present application When the hollow type regenerator blade of the present application is used (preferably, the blade body 1 is made by casting or machining), it has a micro air supply hole 3 at the back of the blade. Therefore, the air supplied into the cavity 2 from the air supply passage 5 forms a jet on the suction side of the return vane 4 (as shown by the arrow in FIG. 2), thereby blowing off the low-speed low-energy region formed by the suction surface to reduce the airflow. Separation loss (flow mixing loss), prevent secondary impeller intake distortion, improve compressor operating range.
  • the air supply hole 3 is provided on a suction side of the blade body 1. Further, by reasonably designing the position, angle and aperture size of the plenum 3, that is, the position, angle and jet velocity of the jet are reasonably organized, the suction surface separation of the return nozzle of the non-design point condition can be effectively suppressed.
  • the present application also provides a compressor structure, and more particularly to a compressor EGR back-off structure comprising the above-described recirculating vane 4.
  • the jet backflow of the backflow vane can effectively reduce the temperature and specific volume of the primary impeller outlet refrigerant, and improve the aerodynamic efficiency of the secondary impeller.
  • the jet is formed on the suction surface of the returning vane by the qi, the low-speed low-energy region formed by the suction surface is blown off, the airflow separation loss is reduced, the aerodynamic efficiency of the centrifugal compressor is improved, the secondary impeller intake distortion is prevented, and the compression is improved. Machine operating range.
  • the compressor structure further includes a housing on which a gas supply passage 5 communicating with the cavity 2 of the return flow vane 4 is formed.
  • the supplemental gas can be introduced into the cavity 2 through the supplemental gas passage 5.
  • the application also provides a compressor comprising the compressor structure described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种回流器叶片、压缩机结构和压缩机。该回流器叶片(4)包括:叶片本体(1),叶片本体(1)的内部形成有空腔(2),叶片本体(1)上形成有补气孔(3)。当采用该中空式回流器叶片(4)时,由补气通道(5)进入回流器叶片(4)的空腔内的补气会在回流器叶片(4)的吸力面形成射流,从而吹除吸力面形成的低速低能区,以减小气流掺混损失,防止二级叶轮进气畸变,提高压缩机运行范围。

Description

回流器叶片、压缩机结构和压缩机
相关申请
本申请要求2017年05月11日申请的,申请号为201710331361.8,名称为“回流器叶片、压缩机结构和压缩机”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及压缩机领域,具体而言,涉及一种回流器叶片、压缩机结构和压缩机。
背景技术
在离心压缩机中,由于气体经压缩后,温度会急剧上升,在高温下,气体比容很大,在保证相同制冷量的情况下,压缩机能耗将会急剧增大。为了降低压缩机耗功,提高制冷能力,常用多级压缩制冷循环。
目前使用最为广泛的是带有闪发蒸汽分离器(俗称经济器)的“双级压缩中间不完全冷却制冷循环”。双级压缩制冷循环,是将从经济器分离出来的闪发蒸汽与来自低级压缩的排气相混合,降低了二级压缩的进气温度,使制冷剂气体比容下降,压缩机能耗降低。
现有技术中,采用双级压缩制冷循环,冷媒经过一级叶轮压缩后,需经过扩压器、弯道及回流器才能达到二级叶轮进口。回流器布置有叶片以将来流的周向速度消除,使二级叶轮进口速度为轴向。
但是,压缩机在非设计点运行时,回流器叶片来流攻角较大,回流器吸里面易出现分离,导致二级叶轮进气畸变,影响压缩机性能。此外,现有技术中的补气方案由于主流与补气流在气流速度大小及方向上的差别,导致补气产生较大气流掺混损失,降低压缩机气动效率。
发明内容
本申请实施例中提供一种回流器叶片、压缩机结构和压缩机,以降低补气带来的气流掺混损失和/或防止二级叶轮进气畸变。
为实现上述目的,本申请实施例提供一种回流器叶片,包括:叶片本体,所述叶片本体的内部形成有空腔,所述叶片本体上形成有补气孔。
作为优选,所述补气孔设置在所述叶片本体的吸力面。
作为优选,所述叶片本体通过铸造或机加工制成。
本申请还提供了一种压缩机结构,包括上述的回流器叶片。
作为优选,所述压缩机结构还包括壳体,所述壳体上形成与所述回流器叶片的所述空腔连通的补气通道。
作为优选,所述压缩机结构还包括一级叶轮和二级叶轮,所述一级叶轮的输出气流经过设置有所述回流器叶片的回流器流道进入所述二级叶轮。
作为优选,所述一级叶轮的输出气流经过一级扩压器流道进入所述回流器流道。
作为优选,所述一级扩压器流道与所述回流器流道之间的过渡处形成为弯道。
作为优选,所述二级叶轮的输出端安装有二级扩压器。
本申请还提供了一种压缩机,包括上述的压缩机结构。
当采用本申请中的中空式回流器叶片时,由补气通道进入回流器叶片的空腔内的补气会在回流器叶片的吸力面形成射流,从而吹除吸力面形成的低速低能区,以减小气流掺混损失,防止二级叶轮进气畸变,提高压缩机运行范围。
附图说明
图1是本申请实施例的离心式压缩机补气回流消旋结构的示意图;
图2是本申请实施例的回流器叶片的截面示意图;
图3是本申请实施例的叶轮出口速度三角形示意图。
附图标记说明:
1-叶片本体;
2-空腔;
3-补气孔;
4-回流器叶片;
5-补气通道;
6-一级叶轮;
7-二级叶轮;
8-回流器流道;
9-一级扩压器流道;
10-二级扩压器流道;
11-一级扩压器叶片;
12-二级扩压器叶片;
13-蜗壳。
具体实施方式
下面结合附图和具体实施例对本申请作进一步详细描述,但不作为对本申请的限定。
本申请的目的是提供一种离心压缩机结构,以降低补气带来的气流掺混损失,并防止压缩机二级叶轮进气畸变,提高压缩机运行范围。
本申请实施例提供一种回流器叶片,包括:叶片本体1,所述叶片本体1的内部形成有 空腔2,所述叶片本体1上形成有补气孔3。
请参考图1至图3,压缩机在设计点工况运行时,气体冷媒经过一级叶轮6后,由于冷媒随一级叶轮6作圆周运动,气流的绝对速度C由Cm和Ct组成。冷媒气流以绝对速度进入一级扩压器流道9,然后经弯道转弯后,以较小攻角冲击回流器叶片4消旋后进入二级叶轮7。在图3中,W为相对速度,U为旋转速度,C为绝对速度,且W+U=C。
当未采用本申请中的回流器叶片时,若压缩机偏离设计点工况运行时,叶轮出口冷媒的绝对气流角a减小,气流经过一级扩压器及弯道后以较大的攻角冲击回流器叶片4,导致在回流器叶片4的吸力面分离,出现较大的低速低能区,导致二级叶轮7进气畸变,严重影响压缩机运行范围。
当采用本申请中的中空式回流器叶片(优选地,所述叶片本体1通过铸造或机加工制成)时,由于其具有位于叶片背部的微型的补气孔3。因此,由补气通道5进入空腔2内的补气会在回流器叶片4的吸力面形成射流(如图2中的箭头),从而吹除吸力面形成的低速低能区,以减小气流分离损失(气流掺混损失),防止二级叶轮进气畸变,提高压缩机运行范围。
优选地,所述补气孔3设置在所述叶片本体1的吸力面。进一步地,通过合理设计补气孔3的位置、角度及孔径大小,即合理组织射流的位置、角度及射流速度,能够有效抑制非设计点工况回流器叶片吸力面分离。
本申请还提供了一种压缩机结构,特别是一种压缩机补气回流消旋结构,其包括上述的回流器叶片4。
通过上述设计,回流器叶片背部射流补气,可以有效降低一级叶轮出口冷媒的温度及比容,提高二级叶轮气动效率。通过补气在回流器叶片吸力面形成射流,吹除吸力面形成的低速低能区,减小气流分离损失,进而提高了离心压缩机的气动效率,还可防止二级叶轮进气畸变,提高压缩机运行范围。
请参考图1,优选地,所述压缩机结构还包括壳体,所述壳体上形成与所述回流器叶片4的所述空腔2连通的补气通道5。通过补气通道5可以将补气引入空腔2中。
优选地,所述压缩机结构还包括一级叶轮6和二级叶轮7,所述一级叶轮6的输出气流经过设置有所述回流器叶片4的回流器流道8进入所述二级叶轮7。所述一级叶轮6的输出气流经过一级扩压器流道9进入所述回流器流道8。所述一级扩压器流道9与所述回流器流道8之间的过渡处形成为弯道。所述二级叶轮7的输出端还安装有二级扩压器。
工作时,冷媒气流依次经过一级叶轮6、一级扩压器流道9(其中设置有一级扩压器叶片11)、弯道进入回流器流道8,经过回流器叶片4时,补气会在回流器叶片4的吸力面形成射流,从而吹除吸力面形成的低速低能区,以减小气流分离损失(气流掺混损失),防止二级叶轮进气畸变。然后,流经二级叶轮7、二级扩压器的二级扩压器流道10,二级扩压器流道10内安装有二级扩压器叶片12,最后从蜗壳13流出。
本申请还提供了一种压缩机,包括上述的压缩机结构。
当然,以上是本申请的优选实施方式。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请基本原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (10)

  1. 一种回流器叶片,其特征在于,包括:叶片本体(1),所述叶片本体(1)的内部形成有空腔(2),所述叶片本体(1)上形成有补气孔(3)。
  2. 根据权利要求1所述的回流器叶片,其特征在于,所述补气孔(3)设置在所述叶片本体(1)的吸力面。
  3. 根据权利要求1所述的回流器叶片,其特征在于,所述叶片本体(1)通过铸造或机加工制成。
  4. 一种压缩机结构,其特征在于,包括权利要求1至3中任一项所述的回流器叶片(4)。
  5. 根据权利要求4所述的压缩机结构,其特征在于,所述压缩机结构还包括壳体,所述壳体上形成与所述回流器叶片(4)的所述空腔(2)连通的补气通道(5)。
  6. 根据权利要求4所述的压缩机结构,其特征在于,所述压缩机结构还包括一级叶轮(6)和二级叶轮(7),所述一级叶轮(6)的输出气流经过设置有所述回流器叶片(4)的回流器流道(8)进入所述二级叶轮(7)。
  7. 根据权利要求6所述的压缩机结构,其特征在于,所述一级叶轮(6)的输出气流经过一级扩压器流道(9)进入所述回流器流道(8)。
  8. 根据权利要求7所述的压缩机结构,其特征在于,所述一级扩压器流道(9)与所述回流器流道(8)之间的过渡处形成为弯道。
  9. 根据权利要求7所述的压缩机结构,其特征在于,所述二级叶轮(7)的输出端安装有二级扩压器。
  10. 一种压缩机,其特征在于,包括权利要求4至9中任一项所述的压缩机结构。
PCT/CN2017/118108 2017-05-11 2017-12-22 回流器叶片、压缩机结构和压缩机 WO2018205631A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/611,608 US11187244B2 (en) 2017-05-11 2017-12-22 Reflux device blade compressor
EP17908961.0A EP3623640A4 (en) 2017-05-11 2017-12-22 REAR FLOW DEVICE FIN, COMPRESSOR STRUCTURE, AND COMPRESSOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710331361.8A CN107013497B (zh) 2017-05-11 2017-05-11 回流器叶片、压缩机结构和压缩机
CN201710331361.8 2017-05-11

Publications (1)

Publication Number Publication Date
WO2018205631A1 true WO2018205631A1 (zh) 2018-11-15

Family

ID=59450505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118108 WO2018205631A1 (zh) 2017-05-11 2017-12-22 回流器叶片、压缩机结构和压缩机

Country Status (4)

Country Link
US (1) US11187244B2 (zh)
EP (1) EP3623640A4 (zh)
CN (1) CN107013497B (zh)
WO (1) WO2018205631A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11098730B2 (en) 2019-04-12 2021-08-24 Rolls-Royce Corporation Deswirler assembly for a centrifugal compressor
US11187243B2 (en) 2015-10-08 2021-11-30 Rolls-Royce Deutschland Ltd & Co Kg Diffusor for a radial compressor, radial compressor and turbo engine with radial compressor
US11286952B2 (en) 2020-07-14 2022-03-29 Rolls-Royce Corporation Diffusion system configured for use with centrifugal compressor
US11441516B2 (en) 2020-07-14 2022-09-13 Rolls-Royce North American Technologies Inc. Centrifugal compressor assembly for a gas turbine engine with deswirler having sealing features
US11578654B2 (en) 2020-07-29 2023-02-14 Rolls-Royce North American Technologies Inc. Centrifical compressor assembly for a gas turbine engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107013497B (zh) 2017-05-11 2024-03-19 珠海格力电器股份有限公司 回流器叶片、压缩机结构和压缩机
CN107120315A (zh) * 2017-05-16 2017-09-01 珠海格力电器股份有限公司 静子叶片、压缩机结构和压缩机
JP2022186266A (ja) * 2021-06-04 2022-12-15 三菱重工コンプレッサ株式会社 遠心圧縮機

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3749520A (en) * 1971-10-04 1973-07-31 Gen Motors Corp Centrifugal compressor blading
US20060115358A1 (en) * 2004-12-01 2006-06-01 Ryo Umeyama Centrifugal compressor
CN101608631A (zh) * 2008-06-17 2009-12-23 日立空调·家用电器株式会社 电动鼓风机及具备该电动鼓风机的电动吸尘器
CN104595247A (zh) * 2015-01-05 2015-05-06 珠海格力电器股份有限公司 一种具有再冷却结构的离心压缩机
CN204532973U (zh) * 2015-01-05 2015-08-05 珠海格力电器股份有限公司 一种具有再冷却结构的离心压缩机
CN106194783A (zh) * 2016-08-31 2016-12-07 武汉格瑞拓机械有限公司 一种齿轮式悬臂两级水蒸汽压缩机
CN107013497A (zh) * 2017-05-11 2017-08-04 珠海格力电器股份有限公司 回流器叶片、压缩机结构和压缩机
CN107023516A (zh) * 2017-05-11 2017-08-08 珠海格力电器股份有限公司 扩压器叶片、压缩机结构和压缩机

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB775784A (en) * 1954-10-14 1957-05-29 Blackburn & Gen Aircraft Ltd Improvements in or relating to turbine engines
US4695224A (en) * 1982-01-04 1987-09-22 General Electric Company Centrifugal compressor with injection of a vaporizable liquid
JPH08284892A (ja) * 1995-04-10 1996-10-29 Mitsubishi Heavy Ind Ltd 遠心圧縮機のディフューザ
JPH0979192A (ja) 1995-09-14 1997-03-25 Hitachi Ltd 多段遠心圧縮機とその段間注入流路構造
JP2004300929A (ja) * 2003-03-28 2004-10-28 Tokyo Electric Power Co Inc:The 多段圧縮機、ヒートポンプ、並びに熱利用装置
TWI266831B (en) * 2005-12-15 2006-11-21 Ind Tech Res Inst Jet channel structure of refrigerant compressor
CN102182519B (zh) * 2011-03-24 2013-11-06 西安交通大学 汽轮机静叶自射流二次流控制结构
US9382911B2 (en) * 2013-11-14 2016-07-05 Danfoss A/S Two-stage centrifugal compressor with extended range and capacity control features
CN105370626B (zh) 2014-08-07 2019-02-19 重庆美的通用制冷设备有限公司 用于离心压缩机的回流器及具有其的离心压缩机
EP2990662B1 (en) * 2014-08-28 2017-06-14 Nuovo Pignone S.r.l. Centrifugal compressors with integrated intercooling
FR3032145B1 (fr) * 2015-01-29 2017-02-10 Snecma Procede de fabrication d'une pale d'helice
CN206889355U (zh) * 2017-05-11 2018-01-16 珠海格力电器股份有限公司 回流器叶片、压缩机结构和压缩机
CN206889356U (zh) * 2017-05-11 2018-01-16 珠海格力电器股份有限公司 扩压器叶片、压缩机结构和压缩机
CN107120315A (zh) * 2017-05-16 2017-09-01 珠海格力电器股份有限公司 静子叶片、压缩机结构和压缩机
CN207363958U (zh) * 2017-06-13 2018-05-15 珠海格力电器股份有限公司 压缩机补气结构和压缩机
CN107165869A (zh) * 2017-06-13 2017-09-15 珠海格力电器股份有限公司 压缩机补气结构和压缩机
CN109162934B (zh) * 2018-11-02 2024-06-11 珠海格力电器股份有限公司 压缩机及空调***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3749520A (en) * 1971-10-04 1973-07-31 Gen Motors Corp Centrifugal compressor blading
US20060115358A1 (en) * 2004-12-01 2006-06-01 Ryo Umeyama Centrifugal compressor
CN101608631A (zh) * 2008-06-17 2009-12-23 日立空调·家用电器株式会社 电动鼓风机及具备该电动鼓风机的电动吸尘器
CN104595247A (zh) * 2015-01-05 2015-05-06 珠海格力电器股份有限公司 一种具有再冷却结构的离心压缩机
CN204532973U (zh) * 2015-01-05 2015-08-05 珠海格力电器股份有限公司 一种具有再冷却结构的离心压缩机
CN106194783A (zh) * 2016-08-31 2016-12-07 武汉格瑞拓机械有限公司 一种齿轮式悬臂两级水蒸汽压缩机
CN107013497A (zh) * 2017-05-11 2017-08-04 珠海格力电器股份有限公司 回流器叶片、压缩机结构和压缩机
CN107023516A (zh) * 2017-05-11 2017-08-08 珠海格力电器股份有限公司 扩压器叶片、压缩机结构和压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3623640A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11187243B2 (en) 2015-10-08 2021-11-30 Rolls-Royce Deutschland Ltd & Co Kg Diffusor for a radial compressor, radial compressor and turbo engine with radial compressor
US11098730B2 (en) 2019-04-12 2021-08-24 Rolls-Royce Corporation Deswirler assembly for a centrifugal compressor
US11286952B2 (en) 2020-07-14 2022-03-29 Rolls-Royce Corporation Diffusion system configured for use with centrifugal compressor
US11441516B2 (en) 2020-07-14 2022-09-13 Rolls-Royce North American Technologies Inc. Centrifugal compressor assembly for a gas turbine engine with deswirler having sealing features
US11815047B2 (en) 2020-07-14 2023-11-14 Rolls-Royce North American Technologies Inc. Centrifugal compressor assembly for a gas turbine engine with deswirler having sealing features
US11578654B2 (en) 2020-07-29 2023-02-14 Rolls-Royce North American Technologies Inc. Centrifical compressor assembly for a gas turbine engine

Also Published As

Publication number Publication date
EP3623640A4 (en) 2020-05-27
US11187244B2 (en) 2021-11-30
US20200158134A1 (en) 2020-05-21
CN107013497B (zh) 2024-03-19
EP3623640A1 (en) 2020-03-18
CN107013497A (zh) 2017-08-04

Similar Documents

Publication Publication Date Title
WO2018205631A1 (zh) 回流器叶片、压缩机结构和压缩机
US11408440B2 (en) Stator blade, compressor structure and compressor
WO2018205632A1 (zh) 扩压器叶片、压缩机结构和压缩机
US11306734B2 (en) Centrifugal compressor
RU2007140869A (ru) Спиральный наддув воздуха
US11391289B2 (en) Interstage capacity control valve with side stream flow distribution and flow regulation for multi-stage centrifugal compressors
JP2011043130A (ja) 遠心圧縮機及び冷凍装置
WO2013051290A1 (ja) ポンプ装置およびポンプシステム
US11002288B2 (en) Integrated structure of refluxer and pressure diffuser, and centrifugal compressor
JP2017133498A (ja) インペラ、遠心圧縮機及び冷凍サイクル装置
JP2004144029A (ja) ターボチャージャ用遠心圧縮機
JP6035508B2 (ja) 送風機とそれを用いた室外ユニット
CN114375370A (zh) 具有优化级间流入口的压缩机
CN101566164A (zh) 多功能同步后流通风压缩机
CN206889355U (zh) 回流器叶片、压缩机结构和压缩机
CN206889356U (zh) 扩压器叶片、压缩机结构和压缩机
TWM634139U (zh) 離心式壓縮機
CN210033882U (zh) 压缩机及空调***
KR20110125717A (ko) 사류형 압축기
JP6839040B2 (ja) 遠心式流体機械
KR20190105792A (ko) 터보 압축기
RU2729312C1 (ru) Двухконтурный двигатель
JP6594019B2 (ja) 入口案内羽根及び遠心圧縮機
US20170284407A1 (en) Automatic Inlet Swirl Device for Turbomachinery
KR20200118737A (ko) 터보 냉동기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017908961

Country of ref document: EP

Effective date: 20191211