WO2018205242A1 - 针齿摆线减速器及工业机器人 - Google Patents

针齿摆线减速器及工业机器人 Download PDF

Info

Publication number
WO2018205242A1
WO2018205242A1 PCT/CN2017/084063 CN2017084063W WO2018205242A1 WO 2018205242 A1 WO2018205242 A1 WO 2018205242A1 CN 2017084063 W CN2017084063 W CN 2017084063W WO 2018205242 A1 WO2018205242 A1 WO 2018205242A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycloidal
pin
structure system
disk
speed reducer
Prior art date
Application number
PCT/CN2017/084063
Other languages
English (en)
French (fr)
Inventor
孙子建
郑美珠
彭学云
Original Assignee
昆山光腾智能机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山光腾智能机械有限公司 filed Critical 昆山光腾智能机械有限公司
Priority to PCT/CN2017/084063 priority Critical patent/WO2018205242A1/zh
Priority to JP2018549536A priority patent/JP6646758B2/ja
Priority to KR1020187025597A priority patent/KR102127061B1/ko
Priority to US16/079,695 priority patent/US10767733B2/en
Priority to DE112017000935.9T priority patent/DE112017000935B4/de
Publication of WO2018205242A1 publication Critical patent/WO2018205242A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/08Profiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/34Toothed gearings for conveying rotary motion with gears having orbital motion involving gears essentially having intermeshing elements other than involute or cycloidal teeth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/323Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear comprising eccentric crankshafts driving or driven by a gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/325Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear comprising a carrier with pins guiding at least one orbital gear with circular holes

Definitions

  • the invention relates to the technical field of a reducer, and in particular to a pin-tooth cycloidal speed reducer and an industrial robot.
  • Industrial robots are machines that can perform various movements or other processes in place of human labor during the production process.
  • the industrial robot has a power source for performing various actions by the actuator and the drive actuator.
  • a speed reducer is provided between the power source and the actuator, and the speed reducer is used to output the high-speed power such as the motor and the internal combustion engine to the actuator through the speed reducer. In order to achieve the purpose of slowing down and increasing torque.
  • the RV type reducer (needle-toothed cycloidal speed reducer) produced by NabtecSCO of Japan has become the most widely used reducer in industrial robots due to its compact structure and strong transmission capability.
  • the RV type reducer generally comprises a pin gear case, a cycloidal disk capable of performing a cycloidal motion in the pin gear case, and a pin tooth located between the pin gear case and the cycloidal disk, and the cycloidal disk is placed in the pin tooth housing. Line movement to achieve the purpose of deceleration.
  • the RV reducer also includes a planet carrier that is coupled to the cycloidal disk via an eccentric shaft, and when the cycloidal motion of the cycloidal disk is transmitted to the planet carrier, the planet carrier only rotates to output power.
  • the RV type reducer has relatively many components and complicated structure, and the manufacturing precision between the components is extremely high, resulting in a low product qualification rate.
  • investigations have shown that the RV type reducer is easily damaged during use, especially the eccentric shaft disposed between the planet carrier and the cycloidal disc, which is prone to wear or is damaged by stress concentration.
  • the pin-tooth cycloidal speed reducer can be omitted without using the planet carrier, so that the planetary carrier can be omitted, so that it has a relatively simple structure and is easy to manufacture; And during use, because there is no planet carrier, the parts related to the reducer are not easily damaged.
  • the problem addressed by the present invention is to provide a new pin-tooth cycloidal speed reducer that is easier to manufacture and less susceptible to damage.
  • the present invention provides a pin-tooth cycloidal speed reducer comprising: a first cycloidal structure system and a second cycloidal structure system disposed along an axial direction, the first cycloidal structure system being sleeved on an eccentricity a shaft, each of the cycloidal structure systems includes at least one cycloidal structure in the axial direction;
  • the cycloidal structure includes: a cycloidal disk disposed radially inwardly from the outside, a plurality of circumferentially distributed pins and teeth a housing;
  • the pin gear is rotatably fixed to the pin gear housing, the cycloidal disk is engaged with the pin gear; all of the pin gear housings are coaxially disposed; and at least the second cycloidal structure system
  • a cycloidal disk is circumferentially fixed to at least one cycloidal disk in the first cycloidal structure system, and the circumferentially fixed cycloidal disk is coaxially disposed; when the eccentric shaft rotates, if the cycloidal line in the first cycloidal
  • the second cycloidal structure system is sleeved on the eccentric shaft.
  • the cycloidal structure is one; and in the second cycloidal structure system, the cycloidal structure is one.
  • the first cycloidal structure system and the second cycloidal structure system each include at least two cycloidal structures arranged in the axial direction; a cycloidal disk in the first cycloidal structure system, The number of cycloidal disks in the second cycloidal structure system is equal, and a pair is fixedly connected in a single direction.
  • the two cycloidal discs having the shortest distance in the axial direction are circumferentially fixed, and the remaining cycloidal discs are sequentially fixed in the circumferential direction.
  • the eccentric shaft has a plurality of eccentric portions, and the eccentric phases of any two eccentric portions are the same or opposite.
  • the number of the eccentric portions is an even number, wherein one half of the eccentric portions are collectively facing the first direction, and the other half of the eccentric portions are collectively facing the second direction, and the first direction and the second direction are opposite to each other.
  • the pin-tooth cycloidal speed reducer further includes a connecting member to implement a circumferential fixed connection of the cycloidal disk.
  • the plurality of connectors are evenly distributed along the circumferential direction.
  • the connecting member is at least one of a pin, a bolt, and a screw.
  • the cycloidal disk that is circumferentially fixed is a unitary structure.
  • the connecting member includes a first connecting segment and a second connecting segment disposed in the axial direction, the first connecting segment is connected to the cycloidal disk in the first cycloidal structure system, and the second connecting segment is connected to the second pendulum
  • the cycloidal disk in the wire structure system; the first connecting segment and the second connecting segment are not on the same straight line, so that the circumferentially fixedly connected cycloidal disk has an angular difference in the circumferential direction.
  • a pincushion is disposed on an inner circumferential surface of the pin gear housing, and the pin teeth are disposed in the pin gear groove.
  • the pinion cycloid reducer further includes a limiting member for axially limiting the pin gear in the pin slot.
  • the limiting member comprises an annular partition sleeved on a periphery of the eccentric shaft, and the annular partition plate is fixedly disposed at one axial end of the pin gear groove.
  • the pin teeth are at least two columns along the axial direction, and all of the pin teeth in the same column are distributed along the circumferential direction.
  • all the cycloidal discs have a tooth number between 10 and 55, and all of the pin gear housings have a number of teeth between 10 and 55; and/or the second pendulum
  • the number of teeth of all the cycloidal discs is between 10-55, and the number of teeth of all the pin-toothed housings is between 10-55.
  • the cycloidal disk and the pin gear housing are disposed one-to-one; or, in at least one cycloidal structure, one of the cycloidal disks corresponds to two or more of the needle teeth Or the first cycloidal structure system has at least two adjacent cycloidal structures sharing the same pincushion; or, in the second cycloidal structure system, at least two adjacent cycloidal structures share the same pincushion.
  • the pin gear shells are fixedly connected, or the first cycloidal structure system shares the same pin gear shell.
  • the second cycloidal structure system all the pin gear shells are fixedly connected, or the second cycloidal structure system shares the same pin gear shell.
  • At least one of the cycloidal disks is connected to the eccentric shaft through a bearing.
  • At least one of the cycloidal disks of the second cycloidal structure system is coupled to the eccentric shaft by a bearing; and/or at least one of the pin gear housings is coupled to the eccentric shaft by a bearing.
  • the bearing includes a retainer and a roller disposed in the retainer, the roller contacting the eccentric shaft and the cycloidal disc.
  • the pinion cycloid reducer further includes an outer casing, and the pin gear housing in the first cycloidal structure system is fixedly disposed on the outer casing.
  • At least one of the pin gear housings of the second cycloidal structure system is connected to the outer casing by a bearing.
  • the pinion cycloid reducer further includes an oil seal disposed between the pin gear housing and the outer casing connected by the bearing.
  • the pin-tooth cycloid reducer further includes a cover plate, the pin gear housing and the outer casing in the first cycloidal structure system are sequentially disposed in an axial direction; the first cycloidal structure system
  • the pin gear housing is axially fixedly disposed between the outer casing and the cover plate, and the cover plate is coupled to the eccentric shaft by a bearing.
  • the present invention further provides an industrial robot comprising: a power source and an actuator, the industrial robot further comprising the above-mentioned pin-tooth cycloidal speed reducer, the pin-tooth cycloidal speed reducer fixed setting Between the power source and the actuator, the rotation speed of the power source is reduced to be output to the actuator.
  • the pin-tooth cycloidal speed reducer of the technical solution adopts a first cycloidal structure system and a second cycloidal structure system along the axial direction, and the cycloidal disk and the second cycloidal structure in the first cycloidal structure system
  • the cycloidal disk in the system is circumferentially fixed, and the cycloidal disk is rotatably disposed on the eccentric shaft.
  • the cycloidal disc in the first cycloidal structure system performs a cycloidal motion in the pin gear housing.
  • the autotransmission motion of the eccentric shaft is converted into the rotation of the cycloidal disc and the pendulum around the eccentric shaft.
  • the linear motion; the cycloidal disk in the second cycloidal structure system cooperates with the corresponding pin gear housing to drive the pin gear shell to rotate, and the cycloidal motion of the cycloidal disk is converted into the rotation motion of the pin gear shell.
  • the pinion cycloidal speed reducer undergoes the first deceleration; the power is transmitted to the second cycloidal structure system in the cycloidal disk system During the process, the pinion cycloidal speed reducer is decelerated for the second time; thus, the purpose of deceleration and torque increase can be achieved. Moreover, the rotation motion of the pin housing does not change the motion form of the eccentric shaft, and thus can directly output power as an output end.
  • the manner in which the cycloidal motion is converted into the rotation motion in the pin-tooth cycloidal speed reducer of the technical solution does not pass through the carrier. Therefore, compared with the prior art, the structure is relatively simple, easy to manufacture, and the product qualification rate can be improved. Moreover, the pin-tooth cycloidal speed reducer is not easily damaged during use, and the product quality is improved.
  • FIG. 1 is a schematic view showing a motion transmission relationship of a pin-tooth cycloidal speed reducer according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural view of a needle-tooth cycloidal speed reducer according to a first embodiment of the present invention
  • Figure 3 is an exploded perspective view of the pinion cycloidal speed reducer of Figure 2;
  • FIG. 4 is a schematic view showing a motion transmission relationship of a pin-tooth cycloidal speed reducer according to a second embodiment of the present invention.
  • Figure 5 is a schematic structural view of a needle-tooth cycloidal speed reducer according to a second embodiment of the present invention.
  • Figure 6 is an exploded perspective view of the pinion cycloidal speed reducer of Figure 5;
  • Figure 7 is a partial schematic view of the cycloidal disk in the circumferential direction of the pin-tooth cycloidal speed reducer of Figure 5;
  • the needle-tooth cycloidal speed reducer is mainly used to reduce the rotation speed.
  • the core component of the pin-tooth cycloidal speed reducer is a cycloidal structure, and the cycloidal structure mainly includes: a cycloidal disk, a needle tooth and a needle which are arranged radially from the inside to the outside. Tooth shell.
  • the eccentric shaft passes through the cycloidal disk as an input end.
  • the cycloidal disc performs a cycloidal motion in the area enclosed by the pin gear housing to achieve the purpose of deceleration (reducing the rotational speed of the eccentric shaft).
  • the cycloidal motion of the cycloidal disc includes the rotation motion of the cycloidal disc and the revolving motion around the eccentric shaft, and therefore, it is not possible to directly output power as a power output end.
  • a planetary carrier in order to convert the cycloidal motion of the cycloidal disc into an autorotation motion that can be used as a power output, a planetary carrier is usually provided, and the planetary carrier and the pin gear housing are coaxially arranged, and the planetary carrier and the cycloidal disk are passed between The additional eccentric shafts are connected, and the eccentric shafts are usually provided in multiple pieces and distributed in the circumferential direction.
  • the planetary frame In the process of running the cycloidal disk, the planetary frame can be driven to rotate as the power output end to output power.
  • the present invention creatively proposes a new pin-tooth cycloidal speed reducer in which the motion conversion of the pin-tooth cycloidal speed reducer is not in the form of the above-described carrier.
  • first cycloidal structure another cycloidal structure (second cycloidal structure) is disposed along the axial direction, and the first cycloidal disk in the first cycloidal structure is The second cycloidal disk in the second cycloidal structure is fixedly connected.
  • the first cycloidal disc drives the second cycloidal disc to perform the cycloidal motion
  • the second cycloidal disc passes through the second cycloidal structure.
  • the second pin gear shell cooperates to drive the second pin gear shell to perform the rotation motion
  • the second pin gear shell serves as the output end to output the power, thereby realizing the transformation of the motion form.
  • the present invention provides a pin-tooth cycloidal speed reducer comprising: a first cycloidal structure system and a second cycloidal structure system disposed along an axial direction, the first cycloidal structure system being sleeved on an eccentric shaft, each The cycloidal structure system includes at least one cycloidal structure along the axial direction.
  • the cycloidal structure comprises: a cycloidal disk arranged radially from the inside to the outside, a plurality of circumferentially distributed pin teeth and a pin gear case; the pin teeth are rotatably fixed to the pin gear case, and the cycloidal disk is engaged with the pin gear .
  • pin gear shells are coaxially disposed; and at least one cycloidal disk in the second cycloidal structure system is circumferentially fixed to at least one cycloidal disk in the first cycloidal structure system, and the circumferentially fixed cycloidal disk Coaxial settings.
  • the first cycloidal structure system may include a cycloidal structure, and may also include a plurality of cycloidal structures;
  • the second cycloidal structure system may include a cycloidal structure or a plurality of cycloidal structures;
  • the one of the first cycloidal structure system is fixedly connected to one of the coaxial cycloidal structures of the second cycloidal structure system, that is, the transmission of power can be realized, and the form of motion can be changed.
  • all the cycloidal structures in the first cycloidal structure system need to rotate the same first angle ⁇ relative to the corresponding pin-toothed shells, and all the cycloidal structures in the second cycloidal structure system are corresponding to the corresponding pin-toothed shells. It is necessary to rotate the same second angle ⁇ between them. However, the first angle ⁇ and the second angle ⁇ cannot be equal, otherwise the output cannot be performed as power.
  • the cycloidal structure in the first cycloidal structure system, is one; in the second cycloidal structural system, the cycloidal structure is one.
  • a pinion cycloidal speed reducer 100 includes a first cycloidal structure system I and a second cycloidal structure system II disposed in the axial direction.
  • the first cycloidal structure system 1 includes a first cycloidal structure 10
  • the second cycloidal structural system II includes a second cycloidal structure 20.
  • the first cycloidal structure 10 includes: a first cycloidal disk 11 disposed radially inwardly from the outside, a plurality of circumferentially distributed first teeth 12 and a first pin gear case 13; the first pin teeth 12 are rotatable Fixed to the first pin housing 13 and the first cycloidal disk 11 is engaged with the first pin gear 12.
  • the second cycloidal structure 20 includes a second cycloidal disk 21 disposed radially inwardly from the outside, a plurality of circumferentially distributed second teeth 22 and a second pin gear housing 23; the second pin gear 22 is rotatable It is fixed to the second pin gear case 23, and the second cycloid disk 21 is engaged with the second pin gear 22.
  • the pinion cycloid reducer 100 further includes an eccentric shaft 30 having an eccentric portion 31 having eccentric phases and eccentricities at respective positions in the axial direction along the axial direction of the eccentric shaft.
  • the first cycloidal disk 11 is rotatably sleeved on the eccentric portion 31.
  • first pin gear case 13 and the second pin gear case 23 are coaxially disposed; the first cycloidal disk 11 and the second cycloidal disk 21 are circumferentially fixed and coaxially disposed.
  • the eccentric shaft 30 rotates
  • the first cycloidal disk 11 is rotated by a first angle ⁇ with respect to the first pin gear housing 13, and the second cycloidal cycloidal disk 21 is rotated by a second angle ⁇ with respect to the second pin gear housing 23, the first angle ⁇ , the second angle ⁇ satisfies: ⁇ .
  • the first cycloidal disk 11 disposed on the eccentric portion 31 performs a cycloidal motion within a range enclosed by the first pin gear housing 13 (the first cycloidal disk rotates around itself) And revolving around the eccentric axis; at the same time, the first cycloidal disk 11 drives the second cycloidal disk 21 of the circumferentially fixed connection for the cycloidal motion, and the second cycloidal disk 21 and the second pin gear housing 23 are combined.
  • the two-pin gear housing 23 is rotated, and the rotation motion of the second pin gear housing 23 does not change the motion form of the eccentric shaft 30 (both are self-rotating), and thus can directly output power as an output end.
  • the rotational speed of the eccentric shaft 30 is V
  • the second pin gear case 23 is circumferentially rotated with respect to the first pin gear case 13, and can be used as a power output, and can achieve the purpose of deceleration; and the rotation direction of the second pin gear case 23 is the same as the rotation direction of the eccentric shaft 30.
  • M-N is the tooth difference, that is, the difference between the number of teeth of the pinion case and the number of teeth of the cycloidal disk.
  • the second cycloidal structure 20 is a tooth difference eccentric shaft 30 having a rotational speed of V.
  • the second pin gear case 23 cannot be used as the power output; if M1 ⁇ M2, the rotation direction of the second pin gear case 23 is opposite to the rotation direction of the eccentric shaft 30; if M1>M2, the second pin The rotation direction of the tooth housing 23 is the same as the rotation direction of the eccentric shaft 30.
  • first cycloidal structure 10 and the second cycloidal structure 20 are each a tooth difference.
  • first cycloidal structure 10 may also be two tooth differences or more tooth difference
  • second cycloid structure 20 may also be two tooth differences or more tooth difference.
  • the first cycloidal structure system I includes a plurality of cycloidal structures, in order to prevent mutual interference of the cycloidal discs, in the eccentric shaft rotation process, all the cycloidal structures, the cycloidal disc The same first angle ⁇ needs to be rotated between the corresponding pin-toothed shells, but different cycloidal structures may have different tooth differences;
  • the second cycloidal structure system II includes a plurality of cycloidal structures, in order to prevent pendulum
  • the mutual interference of the reels, in the eccentric shaft rotation process, in all the cycloidal knots the cycloidal disc needs to rotate the same second angle ⁇ relative to the corresponding pin-toothed shell, but the different cycloidal structures may have different The difference in teeth.
  • the pin-tooth cycloidal speed reducer in this embodiment converts the cycloidal motion into a self-rotating motion without passing through the planet carrier. Therefore, the overall structure is relatively simple, easy to manufacture, and can improve the product yield rate; in addition, since no planet is involved
  • the frame also makes the pin-tooth cycloidal reducer less prone to damage during use, thereby improving product quality.
  • the cycloidal disk and the pinion housing may be arranged one-to-one, or one cycloidal disk may correspond to two or more pin-toothed housings. Further, between the cycloid disk and the pin housing, only one row of pins may be provided, or two or more rows of pins may be provided in the circumferential direction.
  • the first cycloid structure 10 includes only one first pin housing 13 and one row of first pins 12, and the second cycloid structure 20 includes only one second pin housing 23 and one second pin. Teeth 22.
  • the eccentric shaft 30 axially passes through the second cycloidal structure 20 , that is, the first cycloidal structure 10 and the second cycloidal structure 20 are sleeved on the eccentric shaft 30 .
  • the first cycloidal disk 11 and the second cycloidal disk 21 are rotatably sleeved on the eccentric portion 31 to ensure that the first cycloidal disk 11 and the second cycloidal disk 21 are coaxially disposed; and the eccentric shaft 30 is The non-eccentric portion passes through the center positions of the first pin housing 13 and the second pin housing 23 to ensure that the first pin housing 13 and the second pin housing 23 are coaxially disposed.
  • the eccentric shaft 30 may pass only through the first cycloidal structure 10.
  • the other rotating shafts on the same straight line as the eccentric shaft 30 are passed through the second pin housing 23 to realize the coaxial arrangement of the first pin housing 13 and the second pin housing 23; the second cycloid disk 21 is directly fixed at The first cycloidal disk 11 is disposed coaxially with the first cycloidal disk 11 and the second cycloidal disk 21.
  • the pinion cycloid reducer 100 further includes a connecting member 40 for circumferentially fixedly connecting the first cycloidal disk 11 and the second cycloidal disk 21.
  • the first cycloidal disk 11 has a first mounting hole 41 disposed axially
  • the second cycloidal disk 21 has a second mounting hole 42 disposed in the axial direction, and the first mounting hole 41 and the second mounting hole 42 axis Set to relative.
  • the connecting members 40 are respectively inserted into the first mounting hole 41 and the second mounting hole 42 to achieve circumferential fixing of the first cycloidal disk 11 and the second cycloidal disk 21.
  • the connector 40 may take any one or more of a pin, a screw, or a bolt. Specifically, when the first cycloidal disk 11 and the second cycloidal disk 21 respectively have only one oppositely disposed first mounting hole 41 and second mounting hole 42, the connecting member 40 can adopt any of a pin, a screw or a bolt. One. When the first cycloidal disk 11 and the second cycloidal disk 21 respectively have a plurality of oppositely disposed first mounting holes 41 and second mounting holes 42, the connecting member 40 may adopt any one of a pin, a screw or a bolt or A variety.
  • a plurality of connecting members 40 may be provided to uniformly distribute the plurality of connecting members 40 in the circumferential direction.
  • the first cycloidal disk 11 and the second cycloidal disk 21 are respectively provided with a plurality of first mounting holes 41 and second mounting holes 42 uniformly distributed in the circumferential direction.
  • the connecting member 40 functions to permanently connect the first cycloidal disk 11 and the second cycloidal disk 21 in the circumferential direction.
  • the manner of realizing the first cycloidal disk 11 and the second cycloidal disk 21 to be circumferentially fixed may also adopt other manners, for example, the first cycloidal disk 11 and the second cycloidal disk 21 as an integral structure; or, the second The cycloidal disk 21 is fixed to the first cycloidal disk 11 or the like by snapping or gluing.
  • the first pin gear 12 is rotatably fixed to the first pin gear housing 13 in such a manner that the inner surface of the first pin gear housing 13 is provided with a plurality of first pin gear grooves 14 and a first pin gear groove. 14 is disposed in one-to-one correspondence with the first teeth 12, the first teeth 12 are fixedly disposed in the first pin gears 14, and the first teeth 12 are rotatable about themselves.
  • the first cycloidal disk 11 When the first cycloidal disk 11 performs a cycloidal motion in the first pin gear housing 13, the first cycloidal disk 11 can be engaged with the plurality of first pin teeth 12, and the first cycloidal disk 11 and the first pin gear The 12-phase contact portion does not slide relative to each other, and the first pin gear 12 rotates to cause relative rotation between the first cycloid disk 11 and the first pin gear case 13.
  • the second pin gear 22 is rotatably fixed to the second pin gear housing 23 in such a manner that a plurality of second pin gear grooves 24 are provided on the inner circumferential surface of the second pin gear housing 23, and the second pin gear groove 24 is provided.
  • the second teeth 22 are fixedly disposed in the second pin gear grooves 24, and the second pin teeth 22 are rotatable about themselves.
  • the number of teeth of the first cycloidal disk 11 and the number of teeth of the first pincushion case 13 can be set as needed, and optionally, the number of teeth of the first cycloidal disk 11 is controlled to 10-55. Between the first pin housings 13, the number of teeth is controlled between 10-55, so that the manufacture of the first cycloidal disk 11 and the first pin housing 13 can be facilitated.
  • the number of teeth of the second cycloidal disk 21 and the number of teeth of the second pin gear housing 23 can be set as needed, and optionally, the number of teeth of the second cycloidal disk 21 is controlled at Between 10-55, the number of teeth of the second pincushion case 23 is controlled to be between 10 and 55, so that the manufacture of the second cycloidal disk 21 and the second pincushion case 23 can be facilitated.
  • a first bearing 51 is disposed between the first cycloidal disk 11 and the eccentric portion 31, that is, the first cycloidal disk 11 is connected to the eccentric portion 31 through the first bearing 51 to realize the first pendulum.
  • the reel 11 is rotatably sleeved on the eccentric portion 31;
  • a second bearing 52 is disposed between the second cycloidal disk 21 and the eccentric portion 31, that is, the second cycloidal disk 21 is connected to the eccentric portion 31 via the second bearing 52.
  • the first bearing 51 comprises a cage and a roller disposed in the cage, the rollers of the first bearing respectively contacting the eccentric portion 31 and the first cycloidal disk 11;
  • the second bearing 52 comprises a cage and is disposed on the cage The inner roller and the roller of the second bearing also contact the eccentric portion 31 and the second cycloidal disk 21, respectively. That is to say, the first bearing 51 and the second bearing 52 are not provided with the inner ring and the outer ring, so that the radial dimensions of the first cycloidal structure 10 and the second cycloidal structure 20 can be made more compact.
  • first bearing 51 and the second bearing 52 can be designed as the same bearing, that is, the first cycloidal disk 11 and the second cycloidal disk 21 are sleeved on the same bearing.
  • first bearing 51 and the second bearing 52 may also be provided with an inner ring and an outer ring, which do not affect the implementation of the present technical solution.
  • a third bearing 53 is further disposed between the second pin gear housing 23 and the eccentric shaft 30, that is, the second pin gear housing 23 is connected to the eccentric shaft 30 via the third bearing 53 so that the second pin gear housing 23 can be The rotating sleeve is sleeved on the eccentric shaft 30.
  • the second pin gear housing 23 is disposed coaxially with the first pin gear housing 13; on the other hand, when the eccentric shaft 30 serves as the input end and the second pin gear housing 23 serves as the output end, the eccentric shaft 30,
  • the second pin housings 23 may have between Different speeds.
  • the sinus cycloid reducer 100 further includes an outer casing 60.
  • the first cycloidal structure 10, the second cycloidal structure 20 and the eccentric shaft 30 are fixedly disposed in the outer casing 60.
  • a fourth bearing 54 is further disposed between the second pin housing 23 and the outer housing 60, and the second pin housing 23 is connected to the inner peripheral surface of the outer casing 60 through the fourth bearing 54, thereby making the second pin housing 23 is rotatable relative to the outer casing 60 to serve as a power take-off.
  • lubricating oil is usually provided inside for lubrication between the moving parts.
  • an oil seal 61 is further provided between the outer casing 60 and the second pin gear housing 23.
  • the oil seal 61 is an annular seal ring, and the outer casing 60 is provided with an annular groove, and the annular seal ring is fixedly disposed in the annular groove.
  • the oil seal can also be provided with other forms of seals that provide a sealing effect.
  • the pin-tooth cycloidal speed reducer 100 further includes a cover plate 62, and the cover plate 62, the first pin-toothed case 13, and the outer casing 60 are sequentially disposed in the axial direction.
  • the radially outer edge of the first pin housing 13 is axially fixedly disposed between the outer casing 60 and the cover plate 62 by means of screws 63.
  • the cover plate 62 has a central hole through which the eccentric shaft 30 passes, and a fifth bearing 55 is further disposed between the cover plate 62 and the eccentric shaft 30.
  • the cover plate 62 is connected to the outer peripheral surface of the eccentric shaft 30 via the fifth bearing 55. Thereby, the eccentric shaft 30 can be rotated relative to the cover plate 62 as a power input end.
  • the third bearing 53, the fourth bearing 54, and the fifth bearing 55 in this embodiment may not be provided with an inner ring and an outer ring, and may also be provided with an inner ring and an outer ring, without affecting the implementation of the technical solution.
  • the pinion cycloid reducer 100 further includes a limiting member 25, which is an annular partition sleeve sleeved on the periphery of the eccentric shaft 30, and the annular partition plate is fixedly disposed in the axial direction of the second pin gear housing 23 by screws 26.
  • a limiting member 25 is an annular partition sleeve sleeved on the periphery of the eccentric shaft 30, and the annular partition plate is fixedly disposed in the axial direction of the second pin gear housing 23 by screws 26.
  • One end prevents the second pin 22 from sliding out of the second pincus groove 24 in the axial direction.
  • the second pin gear housing 23 serves as a limiting member to prevent the second pin gear 22 from sliding axially out of the second pincus groove 24 from the other end.
  • annular diaphragm is also in contact with the fourth bearing 54 to axially limit the fourth bearing 54 to prevent the fourth bearing 54 from axially swaying.
  • a fourth bearing 54 and a cover plate 62 are respectively disposed at two axial ends of the first pin gear 12, and the fourth bearing 54 and the cover plate 62 respectively serve as a limiting member of the first pin gear 12 to prevent the first pin gear 12 along The first pinch slot 14 is axially slid out.
  • annular baffle may be disposed at both axial ends of the first pin 12 as the limiting member 25 to prevent the first pin 12 from sliding out of the first pincus slot 14 in the axial direction; or
  • An annular partition plate is disposed at both axial ends of the second pin gear 22 as the stopper 25 to prevent the second pin gear 22 from sliding out of the second pincus groove 24 in the axial direction.
  • the embodiment also provides an industrial robot comprising: a power source and an actuator, and the pinion cycloid reducer 100 described above.
  • the pin-tooth cycloidal speed reducer 100 is fixedly disposed between the power source and the actuator, and the power source is connected to the eccentric shaft 30 to drive the eccentric shaft 30 to rotate; the second pin gear housing 23 is connected to the actuator to drive the actuator to operate.
  • the rotation speed of the second pin gear case 23 is smaller than the rotation speed of the eccentric shaft 30, so that the rotation speed of the power source can be reduced to be output to the actuator.
  • first cycloidal structure system 1 two cycloidal structures are included, and in the second cycloidal structural system II, two cycloidal structures are included.
  • the pin-tooth cycloid reducer 100 includes a first cycloidal structure system I and a second cycloidal structure system II disposed in the axial direction.
  • the first cycloidal structure system 1 includes: a first cycloidal structure 10a and a second cycloidal structure 10b.
  • the cycloid in the first cycloidal structure 10a and the second cycloidal structure 10b The disk rotates by the same first angle ⁇ ;
  • the second cycloidal structure system II includes: a third cycloidal structure 20a and a fourth cycloidal structure 20b.
  • the third cycloidal structure 20a and the fourth pendulum The cycloidal disk in the wire structure 20b rotates the same second angle ⁇ .
  • the first angle ⁇ and the second angle ⁇ satisfy: ⁇ .
  • the eccentric shaft 30 has two eccentric portions, which are a first eccentric portion 31 and a second eccentric portion 32, respectively.
  • the first eccentric portion 31 and the second eccentric portion 32 have opposite eccentric phases.
  • the first pin housing 13a, the second pin housing 13b, the third pin housing 23a, and the fourth pin housing 23b are all coaxially disposed; the second cycloidal disk 11b and the third cycloidal disk 21a are circumferentially disposed.
  • the first eccentric portion 31 is fixedly and coaxially disposed; the first cycloidal disk 11a and the fourth cycloidal disk 21b are circumferentially fixed and coaxially sleeved on the second eccentric portion 32.
  • the first cycloidal disk 11a and the second cycloidal disk 11b are symmetrically located on both sides of the eccentric shaft 30.
  • the three cycloidal disk 21a and the fourth cycloidal disk 21b are symmetrically located on both sides of the radial direction of the eccentric shaft 30. Therefore, the dynamic balance of the pin-tooth cycloidal speed reducer 100 can be improved, and particularly when the rotational speed of the eccentric shaft 30 is high and the load is large, the vibration of the pin-tooth cycloidal speed reducer 100 can be effectively reduced.
  • the second cycloidal disk 11b disposed on the first eccentric portion 31 performs a cycloidal motion within a range enclosed by the second pin gear housing 13b, and is disposed on the second eccentric portion 32.
  • the first cycloidal disk 11a performs a cycloidal motion within a range enclosed by the first pin gear case 13a.
  • the first cycloidal disk 11a and the second cycloidal disk 11b have the same rotational speed, and drive the third cycloidal disk 21a and the fourth cycloidal disk 21b to perform a cycloidal motion at the same rotational speed.
  • the third cycloidal disk 21a and the fourth cycloidal disk 21b can rotate the third pincushion case 23a and the fourth pincushion case 23b and have the same rotational speed. Therefore, the third pincushion case 23a and the fourth pincushion case 23b can directly output power as an output end.
  • the first pin housing 13a and the second pin housing 13b are the same pin housing, that is, the first cycloid structure 10a and the second cycloid structure 10b share the same pin housing.
  • the third pin gear housing 23a and the fourth pin gear housing 23b are the same pin housing, that is, the third cycloidal structure 20a and the fourth cycloidal structure 20b share the same pin housing.
  • the second eccentric portion 32 includes a first eccentric block 32a and a second eccentric block 32b.
  • the first eccentric block 32a and the second eccentric block 32b are respectively located at the first eccentric portion 31.
  • the first cycloidal disk 11a is rotatably sleeved on the first eccentric block 32a
  • the fourth cycloidal disk 21b is rotatably sleeved on the second eccentric block 32b.
  • the first cycloidal disk 11a and the fourth cycloidal disk 21b are respectively located on both axial sides of the second cycloidal disk 11b and the third cycloidal disk 21a.
  • the second cycloidal disk 11b and the third cycloidal disk 21a having the shortest axial distance are fixedly connected in the circumferential direction, and the manner of fixing in the circumferential direction can be referred to the first embodiment, and specifically, the connecting member or the integrally formed manner can be used. Achieve circumferential fixation.
  • the first cycloidal disk 11a and the fourth cycloidal disk 21b having the longest axial distance are fixedly connected in the circumferential direction, and the manner of fixing in the circumferential direction can also refer to the first embodiment.
  • the connecting member can be used to achieve circumferential fixation.
  • the first cycloidal disk 11a is connected by a connecting member.
  • the connecting member needs to pass through the second cycloidal disk 11b and the third cycloidal disk 21a; therefore, it is necessary to open the second cycloidal disk 11b and the third cycloidal disk 21a so that the connecting member can pass through. Through hole.
  • the pin-tooth cycloidal speed reducer 100 includes a first connecting member 40a and a second connecting member 40b, and the first connecting member 40a is for circumferentially fixedly connecting the second cycloidal disk 11b and the third cycloidal disk 21a.
  • the second connecting member 40b is for circumferentially fixedly connecting the first cycloidal disk 11a and the fourth cycloidal disk 21b.
  • the second cycloidal disk 11b has a first through hole 41b disposed in the axial direction
  • the third cycloidal disk 21a has a second through hole 42b disposed in the axial direction, the first through hole 41b and the second through hole 42b.
  • the second connecting member 40b passes through the first through hole 41b and the second through hole 42b to achieve circumferential fixation of the first cycloidal disk 11a and the fourth cycloidal disk 21b.
  • the eccentric shaft 30 rotates during the rotation, a relative movement occurs between the first cycloidal disk 11a and the second cycloidal disk 11b, and a relative relationship between the third cycloidal disk 21a and the fourth cycloidal disk 21b is also generated. motion. Therefore, the first through hole 41b and the second through hole 42b should be larger than the diameter of the second connecting member 40b to prevent the first through hole 41b and the second through hole 42b from interfering with the second connecting member 40b during operation. Block the movement of the cycloidal disc.
  • the first connecting member 40a includes a first connecting portion 43a and a second connecting portion 44a.
  • the first connecting portion 43a is fixedly connected to the second cycloidal disk 11b, and the second connecting portion 44a is fixedly connected to the third cycloidal disk 21a.
  • the first connecting section 43a and the second connecting section 44a are not on the same straight line, that is, the first connecting section 43a and the second connecting section 44a have a misalignment distance ⁇ ; therefore, the second cycloidal disc 11b and the third cycloidal line can be made
  • the disk 21a has an angular difference in the circumferential direction, that is, in the axial direction, the teeth of the second cycloidal disk 11b and the third cycloidal disk 21a are not completely aligned, and have an angular difference in the circumferential direction.
  • first cycloidal structure 10a and the second cycloidal structure 10b share the same pin gear case, if the first cycloidal disk 11a and the fourth cycloidal disk 21b do not have an angular difference in the circumferential direction, or the first cycloidal line
  • the angular difference between the disk 11a and the fourth cycloidal disk 21b in the circumferential direction is not the same as the angular difference between the second cycloidal disk 11b and the third cycloidal disk 21a in the circumferential direction;
  • An angular difference is generated between the reel 21a and the fourth cycloidal disk 21b.
  • the angular difference between the third cycloidal disk 21a and the fourth cycloidal disk 21b enables the third cycloidal disk 21a and the fourth.
  • the cycloidal disk 21b is more closely meshed with the pinion housing.
  • the third cycloidal disk 21a and the fourth cycloidal disk 21b are applied to the second cycloidal disk 11b and the first cycloidal disk 11a via the connecting member, so that the first cycloidal disk 11a and the second cycloidal disk 11b are There is an angular difference between them, so that the first cycloidal disk 11a, the second cycloidal disk 11b and the pinion case are more closely meshed.
  • the pinion engagement position In the manufacturing process of the cycloidal structure, the pinion engagement position inevitably creates a gap, which is set to offset the gap at the tooth engagement position; and at the same time, it can compensate for the gap due to wear at the tooth engagement position.
  • the needle teeth and the pin housing To make the meshing between the cycloidal disc, the needle teeth and the pin housing closer.
  • the second connecting member 40b can be configured to include two connecting segments, and the two connecting segments are not on the same straight line, so that the first cycloidal disk 11a and the fourth cycloidal wire respectively connecting the two connecting segments are respectively connected.
  • the disk 21b has an angular difference in the circumferential direction.
  • the first connecting member 40a includes two connecting segments not on the same straight line
  • the second connecting member 40b includes two connecting segments not on the same straight line, so that the second cycloidal disk 11b and the third cycloidal disk 21a
  • the eccentric shaft 30 in this embodiment has two eccentric portions, the first cycloidal structure system 1 includes two cycloidal structures, and the second cycloidal structure system II includes two cycloidal structures.
  • the eccentric shaft 30 may further have more eccentric portions with the same or opposite eccentric directions, and the first cycloidal structure system 1 may include a plurality of cycloidal structures equal to the number of eccentric portions, and the second cycloidal structure System II can include a plurality of cycloidal structures equal in number to the eccentric portion.
  • the eccentric portion includes two eccentric blocks, and the two eccentric blocks are respectively located on opposite axial sides of the other eccentric portion, and a cycloid in the first cycloidal structure system I
  • the structure is disposed in one of the eccentric blocks, and one cycloidal structure in the second cycloidal structure system II is disposed in the other of the eccentric blocks. That is to say, in the first cycloidal disc structure system I and the second cycloidal structure system II, the two cycloidal discs having the shortest distance in the axial direction are circumferentially fixed, and the remaining cycloidal discs are sequentially fixed in the circumferential direction.
  • the number of eccentric portions having the same eccentric direction is equal to the number of eccentric portions opposite to the eccentric direction, that is, the number of eccentric portions is an even number, wherein half of the eccentric portions are oriented toward the same In one direction, the other half of the eccentric portion faces toward the second direction, and the first direction and the second direction are opposite to each other.
  • first cycloidal structure system I includes a plurality of cycloidal structures
  • first cycloidal structure system I all of the pincushion shells may be fixedly connected, or all of the cycloidal structures may share the same pinning tooth. shell.
  • second cycloidal structure system II includes a plurality of cycloidal structures
  • all of the pincushion shells may be fixedly connected, or all of the cycloidal structures may share the same pincushion. shell.
  • first eccentric portion 31 and the second eccentric portion 32 may also be disposed such that the first eccentric portion 31 includes two eccentric blocks, and the second eccentric portion 32 includes two eccentric blocks, and the first Two eccentric blocks of the eccentric portion 31 and two partial eccentric portions 32 The heart blocks are alternately arranged in the axial direction.
  • the first eccentric portion 31 and the second eccentric portion 32 may also have the same eccentric phase, that is, the first eccentric portion 31 and the second eccentric portion 32 face in the same direction. If the first eccentric portion 31 and the second eccentric portion 32 have the same eccentric amount, they can be regarded as the first cycloidal disk 11a, the second cycloidal disk 11b, the third cycloidal disk 21a, and the fourth cycloidal disk 21b. Each of the first yoke disk 11a, the second cycloidal disk 11b, the third cycloidal disk 21a, and the fourth cycloidal disk 21b can be fixedly connected in the circumferential direction.
  • first eccentric portion 31 and the second eccentric portion 32 have different eccentricities
  • the first cycloidal disk 11a, the second cycloidal disk 11b, the third cycloidal disk 21a, and the fourth cycloidal disk 21b may be designed. Refer to the case where the aforementioned eccentric directions are opposite.
  • a first bearing 51 is disposed between the first cycloidal disk 11a and the first eccentric block 32a, and the second cycloidal disk 11b and the first eccentric portion 31 are provided with a first
  • a third bearing 53 is disposed between the second bearing 52, the third cycloidal disk 21a, and the first eccentric portion 31, and a fourth bearing 54 is disposed between the fourth cycloidal disk 21b and the second eccentric block 32b.
  • the first bearing 51, the second bearing 52, the third bearing 53, and the fourth bearing 54 are not provided with an inner ring and an outer ring, so that the diameters of the first cycloidal structure system I and the second cycloidal structure system II can be made. The size is more compact.
  • a fifth bearing 55 is further disposed between the pin gear housing (ie, the third pin gear housing 23a and the fourth pin gear housing 23b) in the second cycloidal structure system II and the eccentric shaft 30, so that the pin gear housing
  • the eccentric shaft 30 is rotatably sleeved and disposed coaxially with the pin gear housing (ie, the first pin housing 13a and the second pin housing 13b) in the first cycloidal structure system 1.
  • the pinion cycloid reducer 100 further includes an outer casing 60.
  • the first cycloidal structure system I, the second cycloidal structure system II, and the eccentric shaft 30 are fixedly disposed in the outer casing 60.
  • An oil seal 61 is also disposed between the casing and the outer casing 60.
  • the pinion cycloid reducer 100 further includes a cover plate 62 with which the radially outer edge of the pinion housing in the first cycloidal structure system 1 is axially fixedly disposed between the outer casing 60 and the cover plate 62.
  • the cover plate 62 has a central hole through which the eccentric shaft 30 passes, and a seventh bearing 57 is further disposed between the cover plate 62 and the eccentric shaft 30.
  • first cycloidal structure 10a and the second cycloidal structure 10b also share the first pin gear 12, and the first pin gear 12 is fixedly disposed in the pin gear groove of the pin gear housing in the first cycloidal structure system 1.
  • the third cycloidal structure 20a and the fourth cycloidal structure 20b also share the second pin gear 22, and the second pin gear 22 is fixedly disposed in the pincushion of the pin gear housing in the second cycloidal structure system II.
  • the pinion cycloid reducer 100 further includes a limiting member 25, which is an annular baffle sleeved on the periphery of the eccentric shaft 30, and the annular baffle is fixedly disposed on the shaft of the second pin 22 by means of a screw 26. To one end, to prevent the second pin 22 from sliding out of the pinch groove in the axial direction.
  • a limiting member 25 which is an annular baffle sleeved on the periphery of the eccentric shaft 30, and the annular baffle is fixedly disposed on the shaft of the second pin 22 by means of a screw 26. To one end, to prevent the second pin 22 from sliding out of the pinch groove in the axial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Retarders (AREA)
  • Manipulator (AREA)

Abstract

一种针齿摆线减速器及工业机器人,针齿摆线减速器(100)包括:沿轴向设置的第一摆线结构***(Ⅰ)和第二摆线结构***(Ⅱ),第一摆线结构***(Ⅰ)套设于偏心轴(30),每一摆线结构***(Ⅰ,Ⅱ)沿轴向至少包括一个摆线结构(10,20);摆线结构(10,20)包括:径向由内而外依次设置的摆线盘(11,21)、若干周向分布的针齿(12,22)和针齿壳(13,23);针齿(12,22)可旋转的固定于针齿壳(13,23),摆线盘(11,21)啮合于针齿(12,22);所有针齿壳(13,23)同轴设置;第二摆线结构***(Ⅱ)中的至少一个摆线盘(21)与第一摆线结构***(Ⅰ)中的至少一个摆线盘(11)周向固定,周向固定的摆线盘(11,21)同轴设置。当偏心轴传递动力至第一摆线结构***时,针齿摆线减速器历经第一回减速;当摆线盘传递动力至第二摆线结构***时,针齿摆线减速器历经第二回减速,以达到减速的目的。

Description

针齿摆线减速器及工业机器人 技术领域
本发明涉及减速器技术领域,具体涉及一种针齿摆线减速器及工业机器人。
背景技术
工业机器人是指在生产过程中,能够完成各种移动或其他工艺以代替人类劳动的机器。工业机器人具有执行机构和驱动执行机构完成各种动作的动力源,通常在动力源、执行机构之间还设置减速器,减速器用于将电动机、内燃机等高速运转的动力通过减速器输出至执行机构,以达到减速、及提高扭矩的目的。
目前,日本纳博特斯克精密机械公司(NABTESCO)生产的RV型减速器(针齿摆线减速器)以其结构紧凑、传动能力强等特点已成为工业机器人中应用最为广泛的一种减速器。RV型减速器一般包括针齿壳、能够在针齿壳内做摆线运动的摆线盘,以及位于针齿壳、摆线盘之间的针齿,摆线盘在针齿壳内做摆线运动以达到减速的目的。RV型减速器还包括行星架,行星架通过偏心轴连接于摆线盘,使摆线盘的摆线运动传递至行星架时,行星架仅产生自转从而输出动力。
研究发现,RV型减速器的零部件相对较多、结构较为复杂,且各零部件之间的制造精度要求极高,导致产品合格率较低。另外,调查表明,RV型减速器在使用过程中,容易损坏,尤其是设置在行星架、摆线盘之间的偏心轴,容易磨损,或因应力集中而被破坏。
因此,如果能够设计一种新的针齿摆线减速器,使该针齿摆线减速器无需利用行星架进行输出,从而能够省略行星架,使其具有相对较为简单的结构,便于生产制造;且在使用过程中,由于没有行星架,减速器相关零件也不容易发生损坏。
发明内容
本发明解决的问题是提供一种新的针齿摆线减速器,使其更容易生产制造,且不容易损坏。
为解决上述问题,本发明提供一种针齿摆线减速器,包括:沿轴向设置的第一摆线结构***和第二摆线结构***,所述第一摆线结构***套设于偏心轴,每一所述摆线结构***沿轴向至少包括一个摆线结构;所述摆线结构包括:径向由内而外依次设置的摆线盘、若干周向分布的针齿和针齿壳;所述针齿可旋转的固定于所述针齿壳,所述摆线盘啮合于所述针齿;所有所述针齿壳同轴设置;所述第二摆线结构***中的至少一个摆线盘与第一摆线结构***中的至少一个摆线盘周向固定,周向固定的摆线盘同轴设置;当偏心轴旋转时,若第一摆线结构***中的摆线盘相对针齿壳旋转第一角度α,第二摆线结构***中的摆线盘相对针齿壳旋转第二角度β,第一角度α、第二角度β满足:α≠β。
可选的,所述第二摆线结构***套设于所述偏心轴。
可选的,所述第一摆线结构***中,所述摆线结构为一个;所述第二摆线结构***中,所述摆线结构为一个。
可选的,所述第一摆线结构***、所述第二摆线结构***均包括至少两个沿轴向依次设置的所述摆线结构;第一摆线结构***中的摆线盘、第二摆线结构***中的摆线盘数量相等,一对一周向固定连接。
可选的,第一摆线盘结构***和第二摆线结构***中,沿轴向方向距离最短的两摆线盘周向固定,其余摆线盘,依次周向固定。
可选的,所述偏心轴具有多个偏心部,且任意两个偏心部的偏心相位相同或相反。
可选的,所述偏心部的数量为偶数个,其中,一半偏心部共同朝向第一方向,另一半偏心部共同朝向第二方向,所述第一方向、第二方向朝向相反。
可选的,所述针齿摆线减速器还包括连接件,以实现所述摆线盘的周向固定连接。
可选的,所述连接件为多个,沿所述周向均匀分布。
可选的,所述连接件为销钉、螺栓、螺钉中的至少一种。
可选的,周向固定的所述摆线盘为一体结构。
可选的,所述连接件包括沿轴向依次设置的第一连接段、第二连接段,第一连接段连接第一摆线结构***中的摆线盘,第二连接段连接第二摆线结构***中的摆线盘;第一连接段、第二连接段不在同一直线上,使周向固定连接的摆线盘沿周向方向具有角度差。
可选的,至少其中一个摆线结构中,所述针齿壳的内周面上设有针齿槽,所述针齿设置在所述针齿槽内。
可选的,所述针齿摆线减速器还包括限位件,所述限位件用于将所述针齿轴向限位在所述针齿槽内。
可选的,所述限位件包括套设在偏心轴***的环形隔板,所述环形隔板固定设置在所述针齿槽的轴向一端。
可选的,至少其中一个摆线结构中,沿所述轴向,所述针齿至少为两列,同一列中的所有所述针齿沿所述周向分布。
可选的,所述第一摆线结构***中,所有的摆线盘的齿数在10-55之间,所有针齿壳的齿数在10-55之间;和/或,所述第二摆线结构***中,所有的摆线盘的齿数在10-55之间,所有针齿壳的齿数在10-55之间。
可选的,在至少一个摆线结构中,所述摆线盘、针齿壳一对一设置;或者,在至少一个摆线结构中,一个所述摆线盘对应两个以上所述针齿壳;或者,第一摆线结构***中至少有两相邻摆线结构共用同一针齿壳;或者,第二摆线结构***中至少有两相邻摆线结构共用同一针齿壳。
可选的,所述第一摆线结构***中,所有所述针齿壳均固定连接,或,所述第一摆线结构***共用同一针齿壳。
可选的,所述第二摆线结构***中,所有所述针齿壳均固定连接,或,所述第二摆线结构***共用同一针齿壳。
可选的,第一摆线结构***中,至少其中一个摆线盘通过轴承连接所述偏心轴。
可选的,第二摆线结构***中,至少其中一个摆线盘通过轴承连接所述偏心轴;和/或,至少其中一个针齿壳通过轴承连接所述偏心轴。
可选的,所述轴承包括保持架和设置于所述保持架内的滚子,所述滚子接触所述偏心轴和摆线盘。
可选的,所述针齿摆线减速器还包括外壳体,所述第一摆线结构***中的针齿壳固定设置于所述外壳体。
可选的,所述第二摆线结构***中、至少其中一个针齿壳通过轴承连接所述外壳体。
可选的,所述针齿摆线减速器还包括油封,所述油封设置于通过轴承连接的所述针齿壳和外壳体之间。
可选的,所述针齿摆线减速器还包括盖板,所述盖板、第一摆线结构***中的针齿壳和外壳体沿轴向依次设置;所述第一摆线结构***中的针齿壳轴向固定设置于所述外壳体和所述盖板之间,所述盖板通过轴承连接于所述偏心轴。
为解决上述技术问题,本发明还提供一种工业机器人,包括:动力源和执行机构,所述工业机器人还包括以上所述的针齿摆线减速器,所述针齿摆线减速器固定设置在动力源、执行机构之间,用于降低动力源的转速以输出至所述执行机构。
与现有技术相比,本发明的技术方案具有以下优点:
本技术方案的针齿摆线减速器,通过设置沿轴向的第一摆线结构***和第二摆线结构***,且使第一摆线结构***中的摆线盘与第二摆线结构***中的摆线盘周向固定,摆线盘可旋转的设置于偏心轴上。当偏心轴旋转时,第一摆线结构***中的摆线盘在针齿壳内做摆线运动,此时,将偏心轴的自传运动转化为摆线盘的自转和围绕偏心轴公转的摆线运动;第二摆线结构***中的摆线盘通过与对应的针齿壳配合,带动针齿壳自转,此时将摆线盘的摆线运动转化为针齿壳的自转运动。
在偏心轴传递动力至第一摆线结构***中摆线盘的过程中,针齿摆线减速器历经第一次减速;在摆线盘传递动力至第二摆线结构***中针齿壳的过程中,针齿摆线减速器历经第二次减速;从而能够达到减速、提高扭矩的目的。而且,针齿壳的自转运动并不改变偏心轴的运动形式,因而可以直接作为输出端输出动力。
另外,本技术方案针齿摆线减速器中将摆线运动转化为自转运动的方式并未通过行星架,因此,相较于现有技术,结构相对简单,容易生产制造,能够提升产品合格率;而且,也使得该针齿摆线减速器在使用过程中不容易发生损坏,提升产品品质。
附图说明
图1为是本发明第一实施例针齿摆线减速器的运动传递关系示意图;
图2是本发明第一实施例针齿摆线减速器的结构示意图;
图3是图2所示针齿摆线减速器的立体分解图;
图4是本发明第二实施例针齿摆线减速器的运动传递关系示意图;
图5是本发明第二实施例针齿摆线减速器的结构示意图;
图6是图5所示针齿摆线减速器的立体分解图;
图7是图5所示针齿摆线减速器中周向固定连接的摆线盘的局部示意图。
具体实施方式
现有技术的工业机器人,为了将动力源输出的扭矩输出给执行机构,以驱动执行机构执行相应的操作,通常需要将电动机、内燃机等动力源的大转速降低变化为小转速。目前主要利用针齿摆线减速器来降低转速,针齿摆线减速器的核心部件为摆线结构,摆线结构主要包括:径向由内而外依次设置的摆线盘、针齿和针齿壳。
偏心轴作为输入端穿过摆线盘,偏心轴在旋转的过程中,摆线盘在针齿壳所围成的区域内做摆线运动以达到减速的目的(降低偏心轴的转速)。但是,摆线盘的摆线运动包括摆线盘的自转运动和围绕偏心轴的公转运动,因此,无法直接作为动力输出端输出动力。
现有技术中,为了将摆线盘的摆线运动转化为能够作为动力输出的自转运动,通常设置行星架,行星架与针齿壳同轴设置,且使行星架与摆线盘之间通过另外的偏心轴连接,该偏心轴通常设置多根、且沿周向分布。使得在摆线盘运转的过程中,能够带动行星架自转作为动力输出端输出动力。
但是,研究发现,此种减速器对各零部件之间的制造精度要求极高,例如,设置在行星架、摆线盘之间的多根偏心轴需要严格的平行。若任意两根偏心轴之间存在角度差,则会导致应力集中,导致磨损或被破坏。由于制造精度要求高,在具体使用过程中,也要尤其小心,一旦因外力作用或操作失误,也极容易导致减速器的损坏。
为了解决以上问题,本发明创造性的提出了一种新的针齿摆线减速器,其中,该针齿摆线减速器的运动转换并非通过以上所述的行星架形式。
具体的,在原摆线结构(第一摆线结构)的基础上、沿轴向设置另一摆线结构(第二摆线结构),并使第一摆线结构中的第一摆线盘 固定连接第二摆线结构中的第二摆线盘。
当偏心轴自转作为输入端带动第一摆线盘做摆线运动时,第一摆线盘带动第二摆线盘同样做摆线运动,第二摆线盘通过与第二摆线结构中的第二针齿壳配合,带动第二针齿壳做自转运动,第二针齿壳作为输出端输出动力,从而实现运动形式的转化。
基于此,本发明提出一种针齿摆线减速器,包括:沿轴向设置的第一摆线结构***和第二摆线结构***,第一摆线结构***套设于偏心轴,每一摆线结构***沿轴向至少包括一个摆线结构。
所述摆线结构包括:径向由内而外依次设置的摆线盘、若干周向分布的针齿和针齿壳;针齿可旋转的固定于针齿壳,摆线盘啮合于针齿。
其中,所有的针齿壳同轴设置;且第二摆线结构***中的至少一个摆线盘与第一摆线结构***中的至少一个摆线盘周向固定,周向固定的摆线盘同轴设置。
当偏心轴旋转时,第一摆线结构***中所有的摆线盘相对对应的针齿壳之间旋转相同的第一角度α,第二摆线结构***中所有的摆线盘相对对应的针齿壳之间旋转相同的第二角度β,第一角度α、第二角度β满足:α≠β。
本发明中,第一摆线结构***可以包括一个摆线结构、也可以包括多个摆线结构;第二摆线结构***可以包括一个摆线结构、也可以包括多个摆线结构;但只要使第一摆线结构***中的其中一个摆线盘与同轴设置的第二摆线结构***中的其中一个摆线盘固定连接,即能够实现动力的传递,改变运动形式。
另外,若在偏心轴旋转过程中,第一摆线结构***中不同的摆线盘相对对应的针齿壳之间旋转的角度不一样;或,第二摆线结构***中不同的摆线盘相对对应的针齿壳之间旋转的角度不一样。则不同转速的摆线盘之间会相互干涉,导致针齿摆线减速器无法正常运转。
因此,第一摆线结构***中所有的摆线结构相对对应的针齿壳之间均需要旋转相同的第一角度α,第二摆线结构***中所有的摆线结构相对对应的针齿壳之间均需要旋转相同的第二角度β。但第一角度α、第二角度β不能相等,否则无法作为动力进行输出。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
第一实施例
本实施例中,在第一摆线结构***中,摆线结构为一个;在第二摆线结构***中,摆线结构为一个。
参照图1、图2和图3,一种针齿摆线减速器100,包括:沿轴向设置的第一摆线结构***Ⅰ和第二摆线结构***Ⅱ。其中,第一摆线结构***Ⅰ包括第一摆线结构10,第二摆线结构***Ⅱ包括第二摆线结构20。
第一摆线结构10包括:径向由内而外依次设置的第一摆线盘11、若干周向分布的第一针齿12和第一针齿壳13;第一针齿12可旋转的固定于所述第一针齿壳13,且第一摆线盘11啮合于所述第一针齿12。
第二摆线结构20包括:径向由内而外依次设置的第二摆线盘21、若干周向分布的第二针齿22和第二针齿壳23;第二针齿22可旋转的固定于所述第二针齿壳23,且第二摆线盘21啮合于所述第二针齿22。
针齿摆线减速器100还包括:偏心轴30,偏心轴30具有偏心部31,沿偏心轴的轴向,偏心部31在轴向上的各个位置具有相同的偏心相位和偏心量。第一摆线盘11可旋转的套设于偏心部31。
本实施例中,第一针齿壳13、第二针齿壳23同轴设置;第一摆线盘11、第二摆线盘21周向固定并同轴设置。且当偏心轴30旋转 时,第一摆线盘11相对第一针齿壳13旋转第一角度α,第二摆线摆线盘21相对第二针齿壳23旋转第二角度β,第一角度α、第二角度β满足:α≠β。
因此,当偏心轴30作为输入端旋转时,设置在偏心部31上的第一摆线盘11在第一针齿壳13围成的范围内做摆线运动(第一摆线盘围绕自身自转并围绕偏心轴公转);同时,第一摆线盘11带动周向固定连接的第二摆线盘21作摆线运动,通过第二摆线盘21与第二针齿壳23的配合使第二针齿壳23产生自转,第二针齿壳23的自转运动并不改变偏心轴30的运动形式(均为自转),因而可以直接作为输出端输出动力。
具体的,在偏心轴30传递动力至第一摆线结构10的过程中,若保持第一针齿壳13周向固定不动,假设偏心轴30的转速为V,第一针齿壳13的齿数为M1、第一摆线盘11的齿数为N1(M1>N1),则:第一摆线盘11的自转转速V1:V1=V/(M1/(M1-N1))。第一摆线盘11、第二摆线盘21周向固定,则:第二摆线盘21的自转转速为:V1=V/(M1/(M1-N1))。第二针齿壳23的齿数为M2、第二摆线盘21的齿数为N2(M2>N2),则:第二针齿壳23的转速V2:V2=V/(M2/(M2-N2))-V/(M1/(M1-N1))。
令:i1=M1/(M1-N1),i2=M2/(M2-N2);
当i1=i2时,第二针齿壳23的转速:V2=0;此时,第二针齿壳23相对第一针齿壳13周向固定,第二针齿壳23无法作为动力输出。
当i1<i2时,第二针齿壳23的转速:V2=V/i2-V/i1;此时,第二针齿壳23相对第一针齿壳13周向转动,可以作为动力输出,并能够达到减速的目的;且第二针齿壳23的旋转方向与偏心轴30的旋转方向相反。
当i1>i2时,第二针齿壳23的转速:V2=V/i2-V/i1;此 时,第二针齿壳23相对第一针齿壳13周向转动,可以作为动力输出,并能够达到减速的目的;且第二针齿壳23的旋转方向与偏心轴30的旋转方向相同。
在摆线结构中,M-N为齿差,即针齿壳的齿数与摆线盘的齿数的差值。
当M-N=1时,即一齿差,也就是说,当摆线盘在针齿壳上摆动一圈后,摆线盘相对针齿壳前进一个齿;当M-N=2时,即两齿差,也就是说,当摆线盘在针齿壳上摆动一圈后,摆线盘相对针齿壳前进两个齿。依次类推,根据需要,可以设计具体齿差的摆线结构。
本实施例中,若第一摆线结构10为一齿差,第二摆线结构20为一齿差偏心轴30的转速为V。
则:第一摆线盘11的自转转速V1:V1=V/M1,第二摆线盘21的自转转速为:V1=V/M1;第二针齿壳23的转速V2:V2=V/M2-V/M1。
此时,若M1=M2,第二针齿壳23无法作为动力输出;若M1<M2,第二针齿壳23的旋转方向与偏心轴30的旋转方向相反;若M1>M2,第二针齿壳23的旋转方向与偏心轴30的旋转方向相同。
以上以第一摆线结构10、第二摆线结构20均为一齿差的情况举例进行说明。在其他变形例中,第一摆线结构10也可以是两齿差或更多齿数差,第二摆线结构20也可以是两齿差或更多齿数差。
另外,还需说明的是,当第一摆线结构***Ⅰ包括多个摆线结构时,为了防止摆线盘的相互干涉,在偏心轴旋转过程中,所有的摆线结构中,摆线盘相对对应的针齿壳之间均需旋转相同的第一角度α,但不同的摆线结构可以具有不同的齿差;当第二摆线结构***Ⅱ包括多个摆线结构时,为了防止摆线盘的相互干涉,在偏心轴旋转过程中,所有的摆线结中,摆线盘相对对应的针齿壳之间均需旋转相同的第二角度β,但不同的摆线结构可以具有不同的齿差。
本实施例中的针齿摆线减速器将摆线运动转化为自转运动的方式并未通过行星架,因此,整体结构相对简单,容易生产制造,能够提升产品合格率;另外,由于不涉及行星架,也使得该针齿摆线减速器在使用过程中不容易发生损坏,从而能够提升产品品质。
需要说明的是,一个摆线结构中,摆线盘、针齿壳可以一对一设置,也可以使一个摆线盘对应两个以上的针齿壳。另外,在摆线盘、针齿壳之间,可以仅设置一列针齿,也可以沿周向设置两列以上的针齿。
具体在本实施例中,第一摆线结构10仅包括一个第一针齿壳13和一列第一针齿12,第二摆线结构20仅包括一个第二针齿壳23和一列第二针齿22。
继续参照图1,偏心轴30轴向穿过第二摆线结构20,即:第一摆线结构10、第二摆线结构20均套设于偏心轴30。具体的,第一摆线盘11、第二摆线盘21均可旋转的套设于偏心部31,以保证第一摆线盘11、第二摆线盘21同轴设置;偏心轴30的非偏心部分穿过第一针齿壳13、第二针齿壳23的中心位置,以保证第一针齿壳13、第二针齿壳23同轴设置。
此外,也可以使偏心轴30仅穿过第一摆线结构10。利用与偏心轴30位于同一直线上的其它转轴穿过第二针齿壳23,以实现第一针齿壳13、第二针齿壳23同轴设置;使第二摆线盘21直接固定在第一摆线盘11上,以实现第一摆线盘11、第二摆线盘21同轴设置。
参照图2、图3,针齿摆线减速器100还包括连接件40,连接件40用于周向固定连接第一摆线盘11和第二摆线盘21。具体的,第一摆线盘11具有轴向设置的第一安装孔41,第二摆线盘21具有沿轴向设置的第二安装孔42,第一安装孔41、第二安装孔42轴向相对设置。连接件40分别***第一安装孔41、第二安装孔42中以实现第一摆线盘11、第二摆线盘21的周向固定。
连接件40可以采用销钉、螺钉或螺栓中的任意一种或多种。具体的,当第一摆线盘11、第二摆线盘21分别仅具有一个相对设置的第一安装孔41、第二安装孔42时,连接件40可以采用销钉、螺钉或螺栓中的任意一种。当第一摆线盘11、第二摆线盘21分别具有多个相对设置的第一安装孔41、第二安装孔42时,连接件40可以采用销钉、螺钉或螺栓中的任意一种或多种。
本实施例中,为了使第一摆线盘11、第二摆线盘21的周向固定更为可靠,可以设置多个连接件40,使多个连接件40沿周向均匀分布。相应的,第一摆线盘11、第二摆线盘21上分别设有多个沿周向均匀分布的第一安装孔41、第二安装孔42。
需要说明的是,连接件40的作用在于:周向固定连接第一摆线盘11和第二摆线盘21。实现第一摆线盘11和第二摆线盘21周向固定的方式还可以采用其他方式,例如:将第一摆线盘11、第二摆线盘21作为一体结构;或者,将第二摆线盘21以卡合或胶接的方式固定在第一摆线盘11上等。
参照图3,第一针齿12可旋转的固定于第一针齿壳13的方式为:第一针齿壳13的内周面上设有若干第一针齿槽14,第一针齿槽14与第一针齿12一一对应设置,第一针齿12固定设置在所述第一针齿槽14内,且第一针齿12能够围绕自身旋转。
当第一摆线盘11在第一针齿壳13内做摆线运动时,第一摆线盘11能够与多个第一针齿12相啮合,第一摆线盘11与第一针齿12相接触的部位不发生相对滑动,通过第一针齿12的旋转,以使第一摆线盘11、第一针齿壳13之间发生相对转动。
同样的,第二针齿22可旋转的固定于第二针齿壳23的方式为:在第二针齿壳23的内周面上设置若干第二针齿槽24,第二针齿槽24与第二针齿22一一对应设置,第二针齿22固定设置在所述第二针齿槽24内,且第二针齿22能够围绕自身旋转。
在第一摆线结构10中,第一摆线盘11的齿数、第一针齿壳13的齿数可以根据需要进行设置,可选的,使第一摆线盘11的齿数控制在10-55之间,第一针齿壳13的齿数控制在10-55之间,从而能够方便第一摆线盘11和第一针齿壳13的制造。
同样的,在第二摆线结构20中,第二摆线盘21的齿数、第二针齿壳23的齿数可以根据需要进行设置,可选的,使第二摆线盘21的齿数控制在10-55之间,第二针齿壳23的齿数控制在10-55之间,从而能够方便第二摆线盘21和第二针齿壳23的制造。
继续参照图2、图3,第一摆线盘11、偏心部31之间设有第一轴承51,即,第一摆线盘11通过第一轴承51连接偏心部31,以实现第一摆线盘11可旋转的套设在偏心部31上;第二摆线盘21、偏心部31之间设有第二轴承52,即,第二摆线盘21通过第二轴承52连接偏心部31,以实现第二摆线盘21可旋转的套设在偏心部31上。
其中,第一轴承51包括保持架和设置于保持架内的滚子,第一轴承的滚子分别接触偏心部31和第一摆线盘11;第二轴承52包括保持架和设置于保持架内的滚子,第二轴承的滚子也分别接触偏心部31和第二摆线盘21。也就是说,第一轴承51、第二轴承52均不设有内圈和外圈,从而可以使第一摆线结构10、第二摆线结构20的径向尺寸更为紧凑。
需要说明的是,第一轴承51、第二轴承52可以设计为同一个轴承,即,第一摆线盘11、第二摆线盘21共同套设于同一个轴承上。另外,第一轴承51、第二轴承52也可以设置内圈和外圈,不影响本技术方案的实施。
此外,在第二针齿壳23、偏心轴30之间还设有第三轴承53,即,第二针齿壳23通过第三轴承53连接偏心轴30,以使得第二针齿壳23可旋转的套设于偏心轴30。一方面,能够保证第二针齿壳23与第一针齿壳13同轴设置;另一方面,当偏心轴30作为输入端、第二针齿壳23作为输出端时,使偏心轴30、第二针齿壳23之间可以具有 不同的转速。
本实施例中,针齿摆线减速器100还包括外壳体60,第一摆线结构10、第二摆线结构20和偏心轴30均固定设置在外壳体60内。其中,在第二针齿壳23、外壳体60之间还设有第四轴承54,第二针齿壳23通过第四轴承54连接外壳体60的内周面,从而使第二针齿壳23能够相对外壳体60旋转,以作为动力输出端。
针齿摆线减速器100在运转的过程中,其内部通常设有润滑油,用于各个运动部件之间的润滑。为了防止润滑油泄漏致外界,或使外界杂质进入针齿摆线减速器100的内部,在外壳体60和第二针齿壳23之间还设有油封61。
具体的,油封61为环形密封圈,外壳体60上设有环形凹槽,环形密封圈固定设置在环形凹槽内。此外,油封还可以采用能够起到密封效果的其他形式的密封件。
针齿摆线减速器100还包括盖板62,盖板62、第一针齿壳13、外壳体60沿轴向依次设置。利用螺钉63,使第一针齿壳13的径向外边缘轴向固定设置在外壳体60和盖板62之间。盖板62具有中心孔,偏心轴30穿过中心孔,且在盖板62、偏心轴30之间还设有第五轴承55,盖板62通过第五轴承55连接于偏心轴30的外周面,从而使偏心轴30能够相对盖板62旋转,以作为动力输入端。
需要说明的是,本实施例中的第三轴承53、第四轴承54和第五轴承55可以不设置内圈和外圈,也可以设置内圈和外圈,不影响本技术方案的实施。
针齿摆线减速器100还包括限位件25,限位件25为套设在偏心轴30***的环形隔板,利用螺钉26将环形隔板固定设置在第二针齿壳23的轴向一端,以防止第二针齿22沿轴向滑出第二针齿槽24。在第二针齿22的轴向另一端,第二针齿壳23作为限位件,以防止第二针齿22从另一端沿轴向滑出第二针齿槽24。
此外,环形隔板还与第四轴承54接触,对第四轴承54进行轴向限位,防止第四轴承54轴向窜动。
第一针齿12的轴向两端分别设有第四轴承54和盖板62,第四轴承54和盖板62分别作为第一针齿12的限位件,以防止第一针齿12沿轴向滑出第一针齿槽14。
在其他实施例中,还可以在第一针齿12的轴向两端均设置环形隔板作为限位件25以防止第一针齿12沿轴向滑出第一针齿槽14;或者,在第二针齿22的轴向两端均设置环形隔板作为限位件25以防止第二针齿22沿轴向滑出第二针齿槽24。
本实施例还提供一种工业机器人,包括:动力源和执行机构和以上所述的针齿摆线减速器100。其中,针齿摆线减速器100固定设置在动力源、执行机构之间,动力源连接偏心轴30,以驱动偏心轴30旋转;第二针齿壳23连接执行机构,以带动执行机构运转,第二针齿壳23的转速小于偏心轴30的转速,从而能够降低动力源的转速以输出至执行机构。
第二实施例
本实施例中,在第一摆线结构***Ⅰ中,包括两个摆线结构,在第二摆线结构***Ⅱ中,包括两个摆线结构。
参照图4、图5和图6,针齿摆线减速器100,包括:沿轴向设置的第一摆线结构***Ⅰ和第二摆线结构***Ⅱ。其中,第一摆线结构***Ⅰ包括:第一摆线结构10a、第二摆线结构10b,在偏心轴30旋转过程中,第一摆线结构10a、第二摆线结构10b中的摆线盘旋转相同的第一角度α;第二摆线结构***Ⅱ包括:第三摆线结构20a、第四摆线结构20b,在偏心轴30旋转过程中,第三摆线结构20a、第四摆线结构20b中的摆线盘旋转相同的第二角度β。并且,第一角度α、第二角度β满足:α≠β。
偏心轴30具有两个偏心部,分别为第一偏心部31和第二偏心部32。其中,第一偏心部31、第二偏心部32偏心相位相反。
参照图4,第一针齿壳13a、第二针齿壳13b、第三针齿壳23a、第四针齿壳23b均同轴设置;第二摆线盘11b、第三摆线盘21a周向固定并同轴的套设在第一偏心部31上;第一摆线盘11a、第四摆线盘21b周向固定并同轴的套设在第二偏心部32上。
由于第一偏心部31、第二偏心部32的偏心方向相反,偏心轴30旋转时,第一摆线盘11a、第二摆线盘11b始终对称的位于偏心轴30的径向两侧,第三摆线盘21a、第四摆线盘21b始终对称的位于偏心轴30的径向两侧。因此,能够改善针齿摆线减速器100的动平衡,尤其当偏心轴30转速较高、载荷较大时,能够有效降低针齿摆线减速器100的振动。
当偏心轴30作为输入端旋转时,设置在第一偏心部31上的第二摆线盘11b在第二针齿壳13b围成的范围内做摆线运动,设置在第二偏心部32上的第一摆线盘11a在第一针齿壳13a围成的范围内做摆线运动。
第一摆线盘11a、第二摆线盘11b具有相同的转速,并带动第三摆线盘21a、第四摆线盘21b以相同的转速做摆线运动。
第三摆线盘21a、第四摆线盘21b能够使第三针齿壳23a、第四针齿壳23b产生自转,并具有相同的转速。从而使第三针齿壳23a、第四针齿壳23b可以直接作为输出端输出动力。
具体在本实施例中,第一针齿壳13a、第二针齿壳13b为同一针齿壳,即,第一摆线结构10a、第二摆线结构10b共用同一针齿壳。第三针齿壳23a、第四针齿壳23b为同一针齿壳,即,第三摆线结构20a、第四摆线结构20b共用同一针齿壳。
结合图5、图6,第二偏心部32包括第一偏心块32a、第二偏心块32b,第一偏心块32a、第二偏心块32b分别位于第一偏心部31的 轴向两侧。第一摆线盘11a可旋转的套设在第一偏心块32a上,第四摆线盘21b可旋转的套设在第二偏心块32b上。
也就是说,第一摆线盘11a、第四摆线盘21b分别位于第二摆线盘11b、第三摆线盘21a的轴向两侧。此时,轴向距离最短的第二摆线盘11b、第三摆线盘21a周向固定连接,其周向固定的方式可以参照第一实施例,具体可以采用连接件或一体成型的方式以实现周向固定。
轴向距离最长的第一摆线盘11a、第四摆线盘21b周向固定连接,其周向固定的方式也可以参照第一实施例,具体可以采用连接件的方式以实现周向固定。但是,需要注意的是:由于第二摆线盘11b、第三摆线盘21a位于第一摆线盘11a、第四摆线盘21b之间,采用连接件连接第一摆线盘11a、第四摆线盘21b时,连接件需要穿过第二摆线盘11b和第三摆线盘21a;因此,需要在第二摆线盘11b和第三摆线盘21a开设使连接件能够穿过的通孔。
本实施例中,针齿摆线减速器100包括第一连接件40a和第二连接件40b,第一连接件40a用于周向固定连接第二摆线盘11b和第三摆线盘21a,第二连接件40b用于周向固定连接第一摆线盘11a和第四摆线盘21b。
具体的,第二摆线盘11b具有轴向设置的第一通孔41b,第三摆线盘21a具有沿轴向设置的第二通孔42b,第一通孔41b、第二通孔42b轴向相对设置。第二连接件40b穿过第一通孔41b、第二通孔42b以实现第一摆线盘11a、第四摆线盘21b的周向固定。
另外,由于偏心轴30在旋转过程中,第一摆线盘11a、第二摆线盘11b之间会产生相对运动,第三摆线盘21a、第四摆线盘21b之间也会产生相对运动。因此,第一通孔41b、第二通孔42b均应大于第二连接件40b的直径,以避免运转过程中,第一通孔41b、第二通孔42b对第二连接件40b造成干涉,阻碍摆线盘的运动。
参照图7,为本实施例中第一连接件连接第二摆线盘、第三摆线盘时的局部结构图。其中,第一连接件40a包括第一连接段43a和第二连接段44a,第一连接段43a固定连接第二摆线盘11b,第二连接段44a固定连接第三摆线盘21a;且,第一连接段43a、第二连接段44a不在同一直线上,即第一连接段43a、第二连接段44a之间具有错位距离△;因此,可以使第二摆线盘11b、第三摆线盘21a在周向方向上具有角度差,即,沿轴向方向,第二摆线盘11b、第三摆线盘21a的齿并未完全对齐、沿周向具有角度差。
由于第一摆线结构10a、第二摆线结构10b共用同一针齿壳,若第一摆线盘11a、第四摆线盘21b在周向方向上不具有角度差,或者,第一摆线盘11a、第四摆线盘21b在周向方向上的角度差与第二摆线盘11b、第三摆线盘21a在周向方向上的角度差并不相同;则,能够使第三摆线盘21a、第四摆线盘21b之间产生角度差。
由于第三摆线结构20a、第四摆线结构20b共用同一针齿壳,第三摆线盘21a、第四摆线盘21b之间的角度差,能够使第三摆线盘21a、第四摆线盘21b与针齿壳之间啮合的更加紧密。反过来,第三摆线盘21a、第四摆线盘21b通过连接件作用于第二摆线盘11b、第一摆线盘11a,使第一摆线盘11a、第二摆线盘11b之间具有角度差,从而使第一摆线盘11a、第二摆线盘11b与针齿壳之间啮合的更加紧密。
在摆线结构的加工制造过程中,针齿啮合位置不可避免的会产生间隙,如此设置,能够抵消针齿啮合位置处的间隙;同时,也能够弥补针齿啮合位置处因磨损而产生的间隙,使摆线盘、针齿与针齿壳之间的啮合更为紧密。
同样的,还可以设计为:使第二连接件40b包括两个连接段,且两个连接段不在同一直线上,以使分别连接两个连接段的第一摆线盘11a、第四摆线盘21b在周向方向上具有角度差。或者,同时使第一连接件40a包括不在同一直线上的两个连接段,第二连接件40b包括不在同一直线上的两个连接段,以使第二摆线盘11b、第三摆线盘21a 在周向方向上具有角度差;第一摆线盘11a、第四摆线盘21b在周向方向上具有角度差。
需要说明的是,本实施例中的偏心轴30具有两个偏心部,第一摆线结构***Ⅰ包括两个摆线结构,第二摆线结构***Ⅱ包括两个摆线结构。在其他变形例中,偏心轴30还可以具有更多的偏心方向相同或相反的偏心部,第一摆线结构***Ⅰ可以包括与偏心部数量相等的多个摆线结构,第二摆线结构***Ⅱ可以包括与偏心部数量相等的多个摆线结构。
多个偏心部的设置方式可以参照本实施例,使偏心部包括两个偏心块,两个偏心块分别位于另一个偏心部的轴向两侧,第一摆线结构***Ⅰ中的一个摆线结构设置于其中一个偏心块,第二摆线结构***Ⅱ中的一个摆线结构设置于其中另一个偏心块。也就是说,第一摆线盘结构***Ⅰ和第二摆线结构***Ⅱ中,沿轴向方向距离最短的两摆线盘周向固定,其余摆线盘,依次周向固定。
可选的,在多个偏心部中,使偏心方向相同的偏心部的数量等于与上述偏心方向相反的偏心部的数量,即:偏心部的数量为偶数个,其中,一半偏心部共同朝向第一方向,另一半偏心部共同朝向第二方向,所述第一方向、第二方向朝向相反。如此设置,能够在较大程度上改善针齿摆线减速器100的动平衡,有效降低针齿摆线减速器100的振动。
当第一摆线结构***Ⅰ包括多个摆线结构时,在第一摆线结构***Ⅰ中,所有的针齿壳均可以固定连接,或者,所有的摆线结构均可以共用同一个针齿壳。当第二摆线结构***Ⅱ包括多个摆线结构时,在第二摆线结构***Ⅱ中,所有的针齿壳均可以固定连接,或者,所有的摆线结构均可以共用同一个针齿壳。
此外,在其他变形例中,第一偏心部31、第二偏心部32还可以如此设置:使第一偏心部31包括两个偏心块,第二偏心部32包括两个偏心块,且第一偏心部31的两个偏心块、第二偏心部32的两个偏 心块沿轴向交替设置。
第一偏心部31、第二偏心部32还可以具有相同的偏心相位,即第一偏心部31、第二偏心部32朝向相同的方向。若第一偏心部31、第二偏心部32具有相同的偏心量,则,可视为第一摆线盘11a、第二摆线盘11b、第三摆线盘21a、第四摆线盘21b均套设于同一偏心部,此时,可以使第一摆线盘11a、第二摆线盘11b、第三摆线盘21a、第四摆线盘21b均周向固定连接。
若第一偏心部31、第二偏心部32具有不同的偏心量,则第一摆线盘11a、第二摆线盘11b、第三摆线盘21a、第四摆线盘21b的设计方式可以参照前述偏心方向相反时的情形。
参照图5、图6,本实施例中,第一摆线盘11a、第一偏心块32a之间设有第一轴承51,第二摆线盘11b、第一偏心部31之间设有第二轴承52,第三摆线盘21a、第一偏心部31之间设有第三轴承53,第四摆线盘21b、第二偏心块32b之间设有第四轴承54。其中第一轴承51、第二轴承52、第三轴承53、第四轴承54均不设有内圈和外圈,从而可以使第一摆线结构***Ⅰ、第二摆线结构***Ⅱ的径向尺寸更为紧凑。
另外,第二摆线结构***Ⅱ中的针齿壳(即第三针齿壳23a、第四针齿壳23b)与偏心轴30之间还设有第五轴承55,以使得该针齿壳可旋转的套设于偏心轴30,并与第一摆线结构***Ⅰ中的针齿壳(即第一针齿壳13a、第二针齿壳13b)同轴设置。
本实施例中,针齿摆线减速器100还包括外壳体60,第一摆线结构***Ⅰ、第二摆线结构***Ⅱ和偏心轴30均固定设置在外壳体60内。其中,在第二摆线结构***Ⅱ中的针齿壳、外壳体60之间还设有第六轴承56。
为了防止针齿摆线减速器100内润滑油泄漏致外界,或使外界杂质进入针齿摆线减速器100的内部,在第二摆线结构***Ⅱ中的针齿 壳和外壳体60之间还设有油封61。
针齿摆线减速器100还包括盖板62,利用螺钉63,使第一摆线结构***Ⅰ中针齿壳的径向外边缘轴向固定设置在外壳体60和盖板62之间。盖板62具有中心孔,偏心轴30穿过中心孔,且在盖板62、偏心轴30之间还设有第七轴承57。
本实施例中,第一摆线结构10a、第二摆线结构10b还共用第一针齿12,第一针齿12固定设置于第一摆线结构***Ⅰ中针齿壳的针齿槽内。第三摆线结构20a、第四摆线结构20b还共用第二针齿22,第二针齿22固定设置于第二摆线结构***Ⅱ中针齿壳的针齿槽内。
此外,针齿摆线减速器100还包括限位件25,限位件25为套设在偏心轴30***的环形隔板,利用螺钉26将环形隔板固定设置在第二针齿22的轴向一端,以防止第二针齿22沿轴向滑出针齿槽。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (28)

  1. 一种针齿摆线减速器,其特征在于,包括:
    沿轴向设置的第一摆线结构***和第二摆线结构***,所述第一摆线结构***套设于偏心轴,每一所述摆线结构***沿轴向至少包括一个摆线结构;
    所述摆线结构包括:径向由内而外依次设置的摆线盘、若干周向分布的针齿和针齿壳;所述针齿可旋转的固定于所述针齿壳,所述摆线盘啮合于所述针齿;
    所有所述针齿壳同轴设置;
    所述第二摆线结构***中的至少一个摆线盘与第一摆线结构***中的至少一个摆线盘周向固定,周向固定的摆线盘同轴设置;
    当偏心轴旋转时,第一摆线结构***中的摆线盘相对针齿壳旋转第一角度α,第二摆线结构***中的摆线盘相对针齿壳旋转第二角度β,第一角度α、第二角度β满足:α≠β。
  2. 如权利要求1所述的针齿摆线减速器,其特征在于,所述第二摆线结构***套设于所述偏心轴。
  3. 如权利要求1所述的针齿摆线减速器,其特征在于,所述第一摆线结构***中,所述摆线结构为一个;所述第二摆线结构***中,所述摆线结构为一个。
  4. 如权利要求1所述的针齿摆线减速器,其特征在于,所述第一摆线结构***、所述第二摆线结构***均包括至少两个沿轴向依次设置的所述摆线结构;
    第一摆线结构***中的摆线盘、第二摆线结构***中的摆线盘数量相等,一对一周向固定连接。
  5. 如权利要求4所述的针齿摆线减速器,其特征在于,第一摆线结构***和第二摆线结构***中,沿轴向方向距离最短的两摆线盘周向固定,其余摆线盘,依次周向固定。
  6. 如权利要求1所述的针齿摆线减速器,其特征在于,所述偏心轴 具有多个偏心部,且任意两个偏心部的偏心相位相同或相反。
  7. 如权利要求6所述的针齿摆线减速器,其特征在于,所述偏心部的数量为偶数个,其中,一半偏心部共同朝向第一方向,另一半偏心部共同朝向第二方向,所述第一方向、第二方向朝向相反。
  8. 如权利要求1所述的针齿摆线减速器,其特征在于,还包括连接件,以实现所述摆线盘的周向固定连接。
  9. 如权利要求8所述的针齿摆线减速器,其特征在于,所述连接件为多个,沿所述周向均匀分布。
  10. 如权利要求8所述的针齿摆线减速器,其特征在于,所述连接件为销钉、螺栓、螺钉中的至少一种。
  11. 如权利要求1所述的针齿摆线减速器,其特征在于,周向固定的所述摆线盘为一体结构。
  12. 如权利要求8所述的针齿摆线减速器,其特征在于,所述连接件包括沿轴向依次设置的第一连接段、第二连接段,第一连接段连接第一摆线结构***中的摆线盘,第二连接段连接第二摆线结构***中的摆线盘;
    第一连接段、第二连接段不在同一直线上,使周向固定连接的摆线盘沿周向方向具有角度差。
  13. 如权利要求1所述的针齿摆线减速器,其特征在于,至少其中一个摆线结构中,所述针齿壳的内周面上设有针齿槽,所述针齿设置在所述针齿槽内。
  14. 如权利要求13所述的针齿摆线减速器,其特征在于,还包括限位件,所述限位件用于将所述针齿轴向限位在所述针齿槽内。
  15. 如权利要求14所述的针齿摆线减速器,其特征在于,所述限位件包括套设在偏心轴***的环形隔板,所述环形隔板固定设置在所述针齿槽的轴向一端。
  16. 如权利要求1所述的针齿摆线减速器,其特征在于,至少其中一 个摆线结构中,沿所述轴向,所述针齿至少为两列,同一列中的所有所述针齿沿所述周向分布。
  17. 如权利要求1所述的针齿摆线减速器,其特征在于,所述第一摆线结构***中,所有的摆线盘的齿数在10-55之间,所有针齿壳的齿数在10-55之间;
    和/或,所述第二摆线结构***中,所有的摆线盘的齿数在10-55之间,所有针齿壳的齿数在10-55之间。
  18. 如权利要求1所述的针齿摆线减速器,其特征在于,在至少一个摆线结构中,所述摆线盘、针齿壳一对一设置;或者,在至少一个摆线结构中,一个所述摆线盘对应两个以上所述针齿壳;或者,第一摆线结构***中至少有两相邻摆线结构共用同一针齿壳;或者,第二摆线结构***中至少有两相邻摆线结构共用同一针齿壳。
  19. 如权利要求1所述的针齿摆线减速器,其特征在于,所述第一摆线结构***中,所有所述针齿壳均固定连接,或,所述第一摆线结构***共用同一针齿壳。
  20. 如权利要求1所述的针齿摆线减速器,其特征在于,所述第二摆线结构***中,所有所述针齿壳均固定连接,或,所述第二摆线结构***共用同一针齿壳。
  21. 如权利要求1所述的针齿摆线减速器,其特征在于,第一摆线结构***中,至少其中一个摆线盘通过轴承连接所述偏心轴。
  22. 如权利要求1所述的针齿摆线减速器,其特征在于,第二摆线结构***中,至少其中一个摆线盘通过轴承连接所述偏心轴;和/或,至少其中一个针齿壳通过轴承连接所述偏心轴。
  23. 如权利要求21或22所述的针齿摆线减速器,其特征在于,所述轴承包括保持架和设置于所述保持架内的滚子,所述滚子接触所述偏心轴和摆线盘。
  24. 如权利要求1所述的针齿摆线减速器,其特征在于,还包括外壳体,所述第一摆线结构***中的针齿壳固定设置于所述外壳体。
  25. 如权利要求24所述的针齿摆线减速器,其特征在于,所述第二摆线结构***中、至少其中一个针齿壳通过轴承连接所述外壳体。
  26. 如权利要求25所述的针齿摆线减速器,其特征在于,还包括油封,所述油封设置于通过轴承连接的所述针齿壳和外壳体之间。
  27. 如权利要求24所述的针齿摆线减速器,其特征在于,还包括盖板,所述盖板、第一摆线结构***中的针齿壳和外壳体沿轴向依次设置;
    所述第一摆线结构***中的针齿壳轴向固定设置于所述外壳体和所述盖板之间,所述盖板通过轴承连接于所述偏心轴。
  28. 一种工业机器人,包括:动力源和执行机构,其特征在于,还包括权利要求1-27任一项所述的针齿摆线减速器,所述针齿摆线减速器固定设置在动力源、执行机构之间,用于降低动力源的转速以输出至所述执行机构。
PCT/CN2017/084063 2017-05-12 2017-05-12 针齿摆线减速器及工业机器人 WO2018205242A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2017/084063 WO2018205242A1 (zh) 2017-05-12 2017-05-12 针齿摆线减速器及工业机器人
JP2018549536A JP6646758B2 (ja) 2017-05-12 2017-05-12 ピン歯サイクロイド減速機および産業用ロボット
KR1020187025597A KR102127061B1 (ko) 2017-05-12 2017-05-12 핀 치형 사이클로이드 감속기 및 산업용 로봇
US16/079,695 US10767733B2 (en) 2017-05-12 2017-05-12 Pin tooth cycloid reducer and industrial robot
DE112017000935.9T DE112017000935B4 (de) 2017-05-12 2017-05-12 Stiftzahn-Zykloidreduziergetriebe und Industrieroboter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/084063 WO2018205242A1 (zh) 2017-05-12 2017-05-12 针齿摆线减速器及工业机器人

Publications (1)

Publication Number Publication Date
WO2018205242A1 true WO2018205242A1 (zh) 2018-11-15

Family

ID=64104093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084063 WO2018205242A1 (zh) 2017-05-12 2017-05-12 针齿摆线减速器及工业机器人

Country Status (5)

Country Link
US (1) US10767733B2 (zh)
JP (1) JP6646758B2 (zh)
KR (1) KR102127061B1 (zh)
DE (1) DE112017000935B4 (zh)
WO (1) WO2018205242A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109372952A (zh) * 2018-12-13 2019-02-22 浙江双环传动机械股份有限公司 一种紧凑型摆线行星谐波变速装置及其变速方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11525502B2 (en) 2019-06-13 2022-12-13 Circular Wave Drive Partners Inc. Circular wave drive
US11125301B1 (en) 2020-03-31 2021-09-21 Circular Wave Drive Partners Inc. Circular wave drive
WO2022179987A1 (de) 2021-02-26 2022-09-01 Spinea, S.R.O. Getriebe
CN117267320B (zh) * 2023-11-17 2024-02-23 江苏万基传动科技有限公司 一种自润滑机器人rv减速机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1670271A1 (ru) * 1989-01-30 1991-08-15 Предприятие П/Я А-3759 Редуктор
CN101660588A (zh) * 2008-08-25 2010-03-03 比亚迪股份有限公司 一种摆线齿轮减速器及摆线齿轮传动机构
CN104100680A (zh) * 2013-04-12 2014-10-15 鸿富锦精密工业(深圳)有限公司 摆线针轮减速机构
CN104565217A (zh) * 2013-10-28 2015-04-29 北京配天技术有限公司 摆线针轮减速器及机器人

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US627382A (en) * 1899-06-20 Ments
US724663A (en) * 1901-01-18 1903-04-07 Cahill & Hall Elevator Company Elevator driving mechanism.
US1192627A (en) * 1915-12-09 1916-07-25 David H Hatlee Speed-reducer.
US2108384A (en) * 1936-11-19 1938-02-15 Moisy Alexandre Transmission gear for electric starters
US2250259A (en) * 1940-03-11 1941-07-22 Jr Bradford Foote Speed reducing gearing
US3413896A (en) * 1967-05-22 1968-12-03 Wildhaber Ernest Planetary motion mechanism
BE770716A (fr) * 1971-07-30 1971-12-01 Soudure Autogene Elect Reducteur de vitesse sans friction et a grands rapports de reduction.
US4014224A (en) * 1973-10-12 1977-03-29 Pitts Drive, Inc. Speed differential planetary gear train
GB1519588A (en) * 1974-08-02 1978-08-02 Precision Mechanical Dev Motion transmiting devices
US4023441A (en) * 1974-11-15 1977-05-17 Osterwalder Jean Pierre F Speed reducing device
US3955445A (en) * 1974-11-15 1976-05-11 Osterwalder Jean Pierre F Speed reducing device
US4386540A (en) * 1977-05-04 1983-06-07 Curtis Machine Company Hypocyclic drive transmission apparatus
US4228698A (en) * 1978-05-08 1980-10-21 Winiasz Michael E Speed reducer
US4271726A (en) * 1978-12-29 1981-06-09 Compudrive Corporation Planetary transmission
US4338831A (en) * 1979-11-02 1982-07-13 Rodaway Keith S Subtractive and additive differential gear reduction system
US4643047A (en) * 1981-10-20 1987-02-17 Advanced Energy Concepts '81 Ltd. Speed reducing gearing mechanism employing trochoidally formed gear surfaces for rolling torque transmission
GB2138098A (en) * 1983-03-18 1984-10-17 Coop Goizper S Planetary torque wrench
US4554846A (en) 1984-02-10 1985-11-26 Advanced Energy Concept "81 Ltd. Two-piece retainer for epicyclic transmissions
US4658675A (en) * 1984-02-10 1987-04-21 Advanced Energy Concepts '81 Ltd. Epicyclic transmission utilizing sets of races having differential clearances
US4604916A (en) * 1984-02-10 1986-08-12 Advanced Energy Concepts '81 Ltd. Epicyclic transmission having cam driven roller retainer
JPS6174935A (ja) * 1984-09-20 1986-04-17 Yasuo Goto 変速機
US4838741A (en) * 1987-05-01 1989-06-13 Primaxis Corporation Method for making an epicyclic speed reducer with two stage integral rotor
CN1009749B (zh) * 1987-07-18 1990-09-26 湖南省机械研究所 混合少齿差渐开线齿轮行星传动机构及装置
JP2001132803A (ja) * 1999-11-05 2001-05-18 Nidec-Shimpo Corp 変速機
KR200341272Y1 (ko) * 2003-09-08 2004-02-11 천기수 진동이 방지되는 유성기어 감속기
JP5445216B2 (ja) * 2009-06-30 2014-03-19 株式会社ジェイテクト 遊星歯車機構
RU2010135632A (ru) * 2010-06-25 2012-03-10 Камосайко Кабушики Каиша (Jp) Устройство роликового привода (варианты)
EP2479455B1 (en) * 2010-11-04 2017-03-22 Panchien Lin Large-ratio speed changing apparatus
US8827855B2 (en) * 2012-12-18 2014-09-09 Aktiebolaget Skf Coaxially arranged reduction gear assembly
KR101400488B1 (ko) * 2013-04-15 2014-05-28 주식회사 만도 감속기 및 이를 구비한 전동식 동력 보조 조향장치
KR20150012043A (ko) * 2013-07-24 2015-02-03 창원대학교 산학협력단 공액 이중 사이클로이드 치형을 갖는 차동식 감속기
US10610429B2 (en) * 2016-06-29 2020-04-07 Stryker Corporation Rotary actuator having clutch assembly for use with patient support apparatus
TWI608186B (zh) * 2016-12-14 2017-12-11 財團法人工業技術研究院 用於輪體的傳動裝置及動力輔助輪組

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1670271A1 (ru) * 1989-01-30 1991-08-15 Предприятие П/Я А-3759 Редуктор
CN101660588A (zh) * 2008-08-25 2010-03-03 比亚迪股份有限公司 一种摆线齿轮减速器及摆线齿轮传动机构
CN104100680A (zh) * 2013-04-12 2014-10-15 鸿富锦精密工业(深圳)有限公司 摆线针轮减速机构
CN104565217A (zh) * 2013-10-28 2015-04-29 北京配天技术有限公司 摆线针轮减速器及机器人

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109372952A (zh) * 2018-12-13 2019-02-22 浙江双环传动机械股份有限公司 一种紧凑型摆线行星谐波变速装置及其变速方法

Also Published As

Publication number Publication date
US10767733B2 (en) 2020-09-08
KR102127061B1 (ko) 2020-06-25
JP2019522755A (ja) 2019-08-15
KR20180127973A (ko) 2018-11-30
US20200240492A1 (en) 2020-07-30
DE112017000935T5 (de) 2019-01-10
DE112017000935B4 (de) 2023-07-06
JP6646758B2 (ja) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2018205242A1 (zh) 针齿摆线减速器及工业机器人
WO2015008661A1 (ja) 駆動歯車装置
TWI675976B (zh) 齒輪變速器
US10190666B2 (en) Differential device
WO2014042064A1 (ja) 歯車伝動装置とそれに用いられるクランクシャフト構造体
JP2011231802A (ja) 変速歯車装置
JP2018096387A (ja) 歯車伝動機構
CN104832604A (zh) 挠曲啮合式齿轮装置
JP7068102B2 (ja) ハイポサイクロイド減速機
CN212928677U (zh) 传动机构
JP2020524768A (ja) 中空型ハイポサイクロイド遊星減速機
JP2016008633A (ja) 内接歯車式の減速機
JP2014029203A (ja) 遊星歯車機構を利用する高変速比の減速機
JPH01169154A (ja) 遊星歯車減速機
CN212509376U (zh) 传动机构
CN108869641B (zh) 针齿摆线减速器及工业机器人
CN213017530U (zh) 内啮合传动机构
JP2015175380A (ja) 減速機およびアクチュエータ
JP2011231801A (ja) 変速歯車装置
JP2023522538A (ja) 変速機構
TWI428521B (zh) 擺線型減速機構
CN105927713B (zh) 一种具有可变减速比的行星齿轮减速器
WO2024139395A1 (zh) 内啮合行星齿轮装置和机器人用关节装置
JP2015121239A (ja) 偏心揺動型減速機
JP7417360B2 (ja) 歯車装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187025597

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018549536

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909642

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17909642

Country of ref document: EP

Kind code of ref document: A1