WO2018201671A1 - 一种极化码迭代接收机、***和极化码迭代译码方法 - Google Patents

一种极化码迭代接收机、***和极化码迭代译码方法 Download PDF

Info

Publication number
WO2018201671A1
WO2018201671A1 PCT/CN2017/105330 CN2017105330W WO2018201671A1 WO 2018201671 A1 WO2018201671 A1 WO 2018201671A1 CN 2017105330 W CN2017105330 W CN 2017105330W WO 2018201671 A1 WO2018201671 A1 WO 2018201671A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
bit
polarization code
inverse
iterative
Prior art date
Application number
PCT/CN2017/105330
Other languages
English (en)
French (fr)
Inventor
马征
穆航
范平志
Original Assignee
西南交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南交通大学 filed Critical 西南交通大学
Publication of WO2018201671A1 publication Critical patent/WO2018201671A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes

Definitions

  • the present invention relates to the field of coding and decoding technologies in wireless communication, and in particular, to a polarization code iterative receiver, system and polarization code iterative decoding method.
  • the existing reception scheme focuses on the design and improvement of the decoder.
  • the redesigned and modified decoding scheme can be summarized into the following two categories:
  • the first type is a decoding scheme that performs serial processing on decoding information by using a successively cancelled code (Successive cancellation (SC) decoding algorithm;
  • SC Successessive cancellation
  • the LDPC code BP decoding algorithm is used to decode the decoding information in parallel.
  • the typical decoding schemes are: Successive cancellation list decoder (SCLD), Multi-level polar decoder (MPD), cascading Concatenated polar decoder (CPD).
  • SCLD Successive cancellation list decoder
  • MPD Multi-level polar decoder
  • CPD cascading Concatenated polar decoder
  • the decoder calculates the L decoding paths one by one, and selects the polarization codeword with the largest Likelihood value as the output in the list
  • the MPD after the polarization
  • the subchannel is used to transmit the component code component code, which is re-blocked by the polarization code encoder, and then transmitted by the polarization code, and the decoding end reassembles the received bit according to each polarization subchannel.
  • the polarization code decoder First, it is decoded by the polarization code decoder, and then transmitted to the component code decoder to decode and output.
  • the source bits are encoded in the form of codeword nesting, for example, Turbo code as outer code, Ploar
  • the code is used as an inner code.
  • the combined decoder first translates the inner code and then transcodes the outer code and outputs it.
  • the Belief propagation (BP) algorithm since the Belief propagation (BP) algorithm is relatively mature, Only for the modification of the polarization code encoding process, for example, the LDPC code is used to embed the sub-channel codeword that is not fully polarized to improve the error performance.
  • the LDPC code at the decoding end is similar to the outer code of the concatenated code, and the whole Codeword decoding can be done using the improved BP algorithm.
  • the biggest advantage is that the BP algorithm can calculate each bit in the codeword in parallel, which is beneficial to hardware implementation; but the disadvantage is that the BP algorithm requires a large number of internal iterations and the computational complexity is high.
  • the prior art scheme for improving the error performance of the polarization code is limited to treating the polarization code compiled code as an independent module, such as a module independent of the modulation mapping, and there is no system-level improvement scheme.
  • the key is that no algorithm involves solving the inverse computation problem of the coded bit soft information of the polarization code.
  • the present invention provides a polarization code iterative receiver, system and polarization code iterative decoding method, thereby improving the wireless communication system without preserving the coding gain without increasing the decoding complexity.
  • the bit error rate and block error rate performance improve the user experience.
  • a polarization code iterative receiver comprising: a detector, a first adder-subtractor, a deinterleaver, an iterative polarization code decoder, a second adder-subtracter, an interleaver, and Inverse mapper
  • the detector is configured to determine a current prior probability according to a type of the input signal, perform a user message passing algorithm detection using the determined current prior probability, and output the detected bit information L D ;
  • the first adder-subtractor is configured to subtract, after the detected bit information L D output by the detector, the inter-interpolated inverse-coded external information output by the interleaver Production of the first foreign information And the first foreign information Output to the deinterleaver; wherein, if it is the first iteration, then
  • the deinterleaver is configured to receive the first external information Deinterleaving, the information after deinterleaving Sending to the iterative polarization code decoder and the second adder-subtractor;
  • the iterative polarization code decoder is configured to perform information according to deinterleaving Generate inverse coding information L RC and decoding bits And outputting the inverse encoding information L RC to the second adder-subtractor when the current iteration number is less than a preset maximum number of iterations;
  • the second adder-subtracter is configured to subtract the deinterleaved information from the received inverse coding information L RC Generate second foreign information And the second foreign information Output to the interleaver;
  • the interleaver is configured to receive the second external information Interleaving to generate inter-encoded inverse coding information And interleaving the inverse encoded outer information Output to the inverse mapper and the first adder-subtractor;
  • the inverse mapper is configured to use the inverse encoded outer information after the interleaving Convert to probability array And the probability array Output to the detector.
  • the iterative polarization code decoder comprises: a polarization code SC decoder, a polarization code inverse encoder and a hard decider;
  • the polarization code SC decoder for deinterleaving information of N bits Converting to n-bit information bit information L C , and transmitting n-bit information bit information L C to the polarization code inverse encoder and hard decider respectively;
  • the polarization code inverse encoder is configured to generate N-bit inverse coding information L RC according to n-bit information bit information L C when the current iteration number is less than a preset maximum number of iterations;
  • the hard decider is configured to generate a decoding bit according to the n-bit information bit information L C
  • the polarization code inverse encoder generates N-bit inverse-coded information L RC according to the n-bit information bit information L C .
  • the invention also provides a polarization code iterative coding and decoding system, the system comprising: a transmitting end and a receiving end;
  • a transmitter is disposed in the transmitting end;
  • a receiver is disposed in the receiving end;
  • the receiver is the polarization code iterative receiver of claim 1;
  • the transmitter includes: an information source, a polarization code encoder, and a modulator;
  • the information source is used to generate n bits of source bits
  • the polarization code encoder is configured to perform polarization code encoding on the generated n-bit source bits, generate N-bit coded bits, and perform interleaving to generate a polarization codeword;
  • the modulator is configured to map the generated polarization code codeword into a multi-dimensional modulation symbol including N S transmission symbols;
  • the sending end is configured to send the multi-dimensional modulation symbol generated by the transmitter to the receiving end through the transmission channel H;
  • the detector in the receiver in the receiving end takes the transmission signal y received through the transmission channel H as an input signal, and finally outputs the decoding bit.
  • the modulator is a modulator having a modulation order of M.
  • the modulator is a sparse code multiple access module with a modulation order of M;
  • the sparse code multiple access module maps the polarization code codeword to a user-specific multi-dimensional modulation symbol by using a unique codebook of the sparse code.
  • J transmitters are disposed in the transmitting end; J receivers are disposed in the receiving end; wherein J is an integer greater than 0;
  • the information source is used to generate an n-bit source bit b i ; wherein 1 ⁇ i ⁇ J;
  • the polarization code encoder is configured to perform polarization code encoding on the generated n-bit source bit b i , generate N-bit coded bits, and perform interleaving to generate a polarization code code word c i ;
  • the modulator is configured to map the generated polarization code code c i to a multi-dimensional modulation symbol x i including N S transmission symbols;
  • the transmitting end is configured to superimpose and transmit the multi-dimensional modulation symbols generated by the J transmitters to the receiving end in the transmission channel H;
  • a detector in each of the receivers extracts a corresponding transmission signal y i as an input signal from the transmission signal y received through the transmission channel H, and finally outputs a corresponding decoding bit.
  • the invention also provides a polarization code iterative decoding method, the method comprising the following steps:
  • the detector in the receiving end determines the current prior probability according to the type of the input signal, performs the user message passing algorithm detection using the determined current prior probability, and outputs the detected bit information L D ;
  • the first adder-subtractor subtracts the detected bit information L D from the interleaved inverse encoded outer information output by the interleaver Production of the first foreign information Where, if it is the first iteration, then
  • the deinterleaver pairs the first foreign information Deinterleaving to obtain deinterleaved information
  • the iterative polarization code decoder is based on the information after deinterleaving Generate inverse coding information L RC and decoding bits
  • the iterative polarization code decoder determines whether the current number of iterations is less than a preset maximum number of iterations; if so, outputs the soft information L RC to the second adder-subtracter; otherwise, the process ends;
  • the second adder-subtractor subtracts the de-interleaved information from the inverse coding information L RC Generate second foreign information And the second foreign information Output to the interleaver;
  • the interleaver pairs the second foreign information Interleaving to generate inter-encoded inverse coding information And interleaved inverse coding information Output to the inverse mapper and the first adder-subtractor;
  • the inverse mapper will interleave the inverse coding information Convert to probability array Probability array Output to the detector and return to step A.
  • the determining the current prior probability according to the type of the input signal, performing the user message delivery algorithm detection by using the determined current prior probability, and outputting the detected bit information specifically includes:
  • the user message transmission algorithm is detected using the current prior probability stored in the detector, and the detected bit information L D is output;
  • the input signal is an array of probabilities of the inverse mapper output
  • the probability array As the current prior probability in the detector, the user prioritization probability is used to perform the user messaging algorithm detection, and the detected bit information L D is output.
  • the detected bit information L D is calculated by the following formula:
  • b i is the n-bit source bit generated by the i-th transmitter of the J receivers at the transmitting end
  • L D (b i ) is the detected bit information corresponding to b i
  • x is the output of the transmitting end
  • the multi-dimensional modulation symbol, y is the transmission signal received by the receiving end through the transmission channel H.
  • the iterative polarization code decoder is based on the information after deinterleaving
  • Generate inverse coding information L RC and decoding bits include:
  • Decoding bits are generated from the n-bit information bit bit information L C using a hard decider
  • the generating the N-bit inverse encoding information L RC according to the n-bit information bit information L C comprises:
  • the n-bit information bit information L C is calculated by the conversion function f to obtain N-bit inverse coding information L RC ;
  • G N ⁇ N is a generation matrix of polarization code encoding
  • L Vi is the i-th row vector of the matrix for the polarization code encoding
  • u e is a vector of length n, each element in the vector is 0 or 1, and the number of elements is 1 or 0 or even;
  • u o is a vector of length n, each element in the vector is 0 or 1, and the number of elements is 1 is an odd number;
  • is a set of position labels of information bits after channel polarization
  • ⁇ f is a set of position labels of frozen bits after channel polarization
  • the value is 0 or 1;
  • the element that satisfies the u o vector requirement has a value of 0 or 1.
  • the method further comprises:
  • the transmitting end transmits the transmission signal to the receiving end through the transmission channel H.
  • the step A is:
  • Step A1 determining whether the input signal is the transmission signal y from the transmission channel; if yes, performing step A2; otherwise, performing step A3;
  • Step A2 performing user message passing algorithm detection using the current prior probability stored in the detector, and outputting the detected bit information L D ;
  • Step A3 the probability array As the current prior probability in the detector, the user prioritization probability is used to perform the user messaging algorithm detection, and the detected bit information L D is output.
  • the iterative polarization code decoder after receiving the transmission signal y from the transmission channel, the iterative polarization code decoder will generate two outputs. And one of the outputs is inversely encoded, that is, one of the outputs is deinterleaved and then input into the inverse mapper to generate an array of probabilities, and the probability array is used as the current prior probability in the detector for multiple iterations until iteration The final decoded bit is obtained after the end At this point, the decoding bit can be Compare with source bit b to calculate the bit error rate.
  • the polarization code inverse encoder utilizes polarization.
  • the soft information output by the code SC decoder recovers the coded bit soft information and implements detection and decoding iterative reception, so that the polarization code coding gain can be preserved without increasing the decoding complexity.
  • An iterative receiver using polarization code as channel coding is implemented, and the implementation of the iterative scheme improves the bit error rate and block error rate performance of the wireless communication system, and improves the user experience of using the above polarization code iterative receiver. . Therefore, the polarization code iterative receiver and the polarization code iterative decoding method in the present invention can be applied to a wireless communication scenario with low complexity and high reliability short code words.
  • FIG. 1 is a schematic structural diagram of a polarization code iterative receiver according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an iterative polarization code decoder in an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a polarization code inverse encoder according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a polarization code iterative coding and decoding system according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a polarization code iterative coding and decoding system according to another embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method for decoding a polarization code iterative decoding according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart diagram of a method for performing iterative encoding and decoding of a polarization code according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a simple example of an algorithm of a polarization code inverse encoder according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a bit error rate performance curve of a polarization code iterative coding method in an additive white Gaussian noise channel according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a bit error rate performance curve of a polarization code iterative coding method in a Rayleigh channel according to an embodiment of the present invention.
  • This embodiment provides a polarization code iterative receiver, system and polarization code iterative decoding method.
  • FIG. 1 is a schematic structural diagram of a polarization code iterative receiver according to an embodiment of the present invention.
  • the polarization code iterative receiver in the embodiment of the present invention includes: a detector 101, a first adder-subtractor 102, a deinterleaver 103, an iterative polarization code decoder 104, a second adder-subtractor 105, and an interleaver 106 and inverse mapper 107;
  • the detector 101 is configured to determine a current prior probability according to a type of the input signal, perform a user message passing algorithm detection using the determined current prior probability, and output the detected bit information L D ;
  • the first adder-subtractor 102 is configured to subtract the inter-interpolated inverse-coded information output by the interleaver 106 by the detected bit information L D output by the detector 101. Production of the first foreign information And the first foreign information Output to the deinterleaver 103; wherein, if it is the first iteration, then
  • the deinterleaver 103 is configured to receive the received first external information Deinterleaving, the information after deinterleaving Sending to the iterative polarization code decoder 104 and the second adder-subtractor 105;
  • the iterative polarization code decoder 104 is configured to perform information according to the deinterleaved Generate inverse coding information L RC and decoding bits And when the current number of iterations is less than the preset maximum number of iterations, the inverse encoding information L RC is output to the second adder-subtractor 105;
  • the second adder-subtractor 105 is configured to subtract the deinterleaved information from the received inverse coding information L RC Generate second foreign information And the second foreign information Output to the interleaver 106;
  • the interleaver 106 is configured to receive the second external information Interleaving to generate inter-encoded inverse coding information And interleaving the inverse encoded outer information Output to the inverse mapper 107 and the first adder-subtractor 102;
  • the inverse mapper 107 is configured to use the inverse encoded outer information after the interleaving Convert to probability array And the probability array Output to the detector 101.
  • the iterative polarization code decoder will generate two Outputs, and one of the outputs is inversely encoded, that is, one of the outputs is deinterleaved and then input into the inverse mapper to generate an array of probabilities, and the probability array is used as the current prior probability for multiple iterations in the detector.
  • the final decoded bit is obtained after the end of the iteration At this point, the decoding bit can be Compare with source bit b to calculate the bit error rate.
  • the clipping, hard decision and soft information loss preserve the gain of the original coding and decoding scheme. Therefore, by using the above-mentioned polarization code iterative receiver, the coding gain can be preserved while The iterative receiver design using the polarization code as the channel coding is realized without increasing the decoding complexity, and the implementation of the iterative scheme improves the bit error rate and the block error rate performance of the wireless communication system, and improves the user. Experience.
  • L D can specifically include:
  • the user message transmission algorithm is detected using the current prior probability stored in the detector, and the detected bit information L D is output;
  • the input signal is an array of probabilities of the inverse mapper output
  • the probability array As the current prior probability in the detector (ie replacing the original prior probability in the detector with the probability array)
  • the user message passing algorithm detection is performed using the current prior probability, and the detected bit information L D is output.
  • the above-described iterative polarization code decoder can be implemented in various ways.
  • the technical solution of the present invention will be described below by taking one of the specific implementations as an example.
  • FIG. 2 is a schematic structural diagram of an iterative polarization code decoder according to an embodiment of the present invention. As shown in FIG. 2, in an embodiment of the present invention, the iterative polarization code is decoded.
  • the device 104 may include: a polarization code SC decoder 201, a polarization code inverse encoder 202, and a hard decider 203;
  • the polarization code SC decoder 201 is configured to deinterleave N bits of information Converting into n bits of information bit information L C , and transmitting n bits of information bit information L C to the polarization code inverse encoder 202 and hard decider 203;
  • the polarization code inverse encoder 202 is configured to generate N-bit inverse-coded information L RC according to the n-bit information bit information L C when the current iteration number is less than the preset maximum number of iterations;
  • the hard decider 203 is configured to generate a decoding bit according to the n-bit information bit bit information L C
  • FIG. 3 is a schematic structural diagram of a polarization code inverse encoder according to an embodiment of the present invention.
  • the polarization code inverse encoder may be based on n bits.
  • the information bit information L C generates N-bit inverse encoded information L RC .
  • FIG. 4 is a schematic structural diagram of a polarization code iterative coding and decoding system according to an embodiment of the present invention.
  • the polarization code iterative coding and decoding system in the embodiment of the present invention includes: a transmitting end 41 and a receiving end 42;
  • the transmitting end 41 is provided with a transmitter 401; the receiving end 42 is provided with a receiver 402;
  • the receiver 402 is a polarization code iterative receiver shown in FIG. 1 , and details are not described herein again;
  • the transmitter 401 includes: an information source 411, a polarization code encoder 412, and a modulator 413;
  • the information source is used to generate n bits of source bits
  • the polarization code encoder is configured to perform polarization code encoding on the generated n-bit source bits, generate N-bit coded bits, and perform interleaving to generate a polarization codeword;
  • the modulator is configured to map the generated polarization code codeword into a multi-dimensional modulation symbol including N S transmission symbols;
  • the sending end is configured to send the multi-dimensional modulation symbol generated by the transmitter to the receiving end through the transmission channel H;
  • the detector in the receiver in the receiving end takes the transmission signal y received through the transmission channel H as an input signal, and finally outputs the decoding bit.
  • the modulator may be a modulator having a modulation order of M.
  • the modulator may be a sparse code multiple access module with a modulation order of M.
  • the sparse code multiple access module can map the polarization code code word to the user-specific multi-dimensional modulation symbol by using the unique codebook of the sparse code.
  • other types of modulators can also be used, which are not limited herein.
  • one transmitter may be set in the transmitting end, or multiple transmitters may be set; similarly, one receiver may be set in the receiving end, or multiple receivers may be set. For example, if there is only one user, one transmitter and one receiver can be set; if there are J users, J transmitters and J receivers can be set.
  • FIG. 5 is a schematic structural diagram of a polarization code iterative coding and decoding system according to another embodiment of the present invention.
  • J transmitters are disposed in the transmitting end;
  • J receivers are disposed in the receiving end; wherein J is an integer greater than 0;
  • the information source is used to generate an n-bit source bit b i ; wherein 1 ⁇ i ⁇ J;
  • the polarization code encoder is configured to perform polarization code encoding on the generated n-bit source bit b i , generate N-bit coded bits, and perform interleaving to generate a polarization code code word c i ;
  • the modulator is configured to map the generated polarization code code c i to a multi-dimensional modulation symbol x i including N S transmission symbols;
  • the sending end is configured to superimpose and transmit the multi-dimensional modulation symbols generated by the J transmitters (that is, J users) in the transmission channel H to the receiving end;
  • a detector in each of the receivers extracts a corresponding transmission signal y i as an input signal from the transmission signal y received through the transmission channel H, and finally outputs a corresponding decoding bit.
  • J connections in the receiving end can be integrated into a multi-user detector, as shown in Figure 5.
  • FIG. 6 is a schematic flowchart of a method for decoding a polarization code iterative decoding according to an embodiment of the present invention. As shown in FIG. 6, the polarization code iterative decoding method in the embodiment of the present invention mainly includes the following steps:
  • Step 61 The detector in the receiving end determines the current prior probability according to the type of the input signal, performs the user message passing algorithm detection using the determined current prior probability, and outputs the detected bit information L D .
  • the detector in the receiving end may determine the current prior probability according to the type of the input signal, perform the user message passing algorithm detection using the determined current prior probability, and output the detected bit information L D .
  • L D can specifically include:
  • the user message transmission algorithm is detected using the current prior probability stored in the detector, and the detected bit information L D is output;
  • the input signal is an array of probabilities of the inverse mapper output
  • the probability array As the current prior probability in the detector (ie replacing the original prior probability in the detector with the probability array)
  • the user message passing algorithm detection is performed using the current prior probability, and the detected bit information L D is output.
  • the detected bit information L D is a log likelihood ratio (LLR) value of N bits, and may also be expressed as ⁇ L D ⁇ . N.
  • LLR log likelihood ratio
  • the transmission signal received by the receiving end through the transmission channel H may be represented by y.
  • y Hx+t
  • x is the multi-dimensional modulation symbol outputted by the transmitting end
  • t is the additive Gaussian noise of the transmission channel H.
  • the detected bit information L D can be calculated by the following formula:
  • b i is an n-bit source bit generated by the i-th transmitter of the J receivers at the transmitting end
  • L D (b i ) is the detected bit information corresponding to b i .
  • Step 62 The first adder-subtractor subtracts the detected bit information L D from the interleaved inverse encoded outer information output by the interleaver Production of the first foreign information
  • Step 63 the deinterleaver pairs the first foreign information Deinterleaving to obtain deinterleaved information
  • Step 64 the iterative polarization code decoder is based on the information after deinterleaving Generate inverse coding information L RC and decoding bits
  • the step 64 may include:
  • Step 641 using N-bit deinterleaved information using a polarization code SC decoder Converted to n-bit information bit information L C .
  • Step 642 Using the polarization code inverse encoder, generating N-bit inverse-coded information L RC according to the n-bit information bit information L C .
  • Step 643 Generate a decoding bit according to the n-bit information bit bit information L C using a hard decider
  • the inverse coding information L RC and the decoding bit can be respectively generated.
  • the foregoing steps 642 and 643 may be performed at the same time, or may be performed sequentially according to a preset execution order, which is not limited by the present invention.
  • the generating the N-bit inverse encoding information L RC according to the n-bit information bit information L C may include:
  • the n-bit information bit information L C is calculated by the conversion function f to obtain N-bit inverse coding information L RC ;
  • G N ⁇ N is a generator matrix of a polarization code encoding
  • L Vi is the i-th row vector of the matrix for the polarization code encoding
  • u e is a vector of length n, each element in the vector is 0 or 1, and the number of elements is 1 or 0 or even;
  • u o is a vector of length n, each element in the vector is 0 or 1, and the number of elements is 1 is an odd number;
  • is a set of position labels of information bits after channel polarization
  • ⁇ f is a set of position labels of frozen bits after channel polarization
  • the value is 0 or 1;
  • the element that satisfies the u o vector requirement has a value of 0 or 1.
  • Step 65 The iterative polarization code decoder determines whether the current number of iterations is less than a preset maximum number of iterations; if so, outputs the soft information L RC to the second adder-subtractor; otherwise, the process ends.
  • Step 66 the second adder-subtractor subtracts the de-interleaved information from the inverse coding information L RC Generate second foreign information And the second foreign information Output to the interleaver.
  • Step 67 the interleaver pairs the second foreign information Interleaving to generate inter-encoded inverse coding information And interleaved inverse coding information Output to the inverse mapper and the first adder-subtractor.
  • Step 68 the inverse mapper will interleave the inverse encoded outer information Convert to probability array Probability array Output to the detector, return to step 61.
  • the probability array It can be a probability matrix of M x N s that can be used to replace the prior probability P(x) in the detector.
  • step 61 Before step 61 above, The encoding process of the transmitting end is added to form a complete polarization code iterative encoding and decoding method.
  • FIG. 7 is a schematic flowchart of a polarization code iterative coding method in the embodiment of the present invention.
  • the polarization code iterative coding method in the embodiment of the present invention mainly includes the following steps:
  • step 701 an n-bit source bit is generated at the transmitting end.
  • n-bit source bits can be generated by the information source at the transmitting end.
  • the generated n-bit source bits can be represented by b.
  • the n-bit source bit of the i-th user can be represented as b i ; where 1 ⁇ i ⁇ J.
  • Step 702 Perform polarization code encoding on the generated n-bit source bits, generate N-bit coded bits, and perform interleaving.
  • the generated n-bit source bits may be coded by a polarization code encoder at the transmitting end to generate N-bit coded bits, and interleaved. , generating a polarization codeword.
  • the generated N-bit polarization code code word can be represented by c.
  • the polarization codeword of the ith user can be represented as c i .
  • Step 703 Map the generated N-bit coded bits into multi-dimensional modulation symbols including NS transmission symbols using a modulator.
  • the generated N-bit coded bits may be mapped to a multi-dimensional modulation symbol including N S transmission symbols by a modulator having a modulation order of M at the transmitting end.
  • N S N/log 2 M.
  • the multi-dimensional modulation symbol including the N S transmission symbols may be represented by x.
  • the multi-dimensional modulation symbol of the ith user can be represented as x i .
  • Step 704 The transmitting end sends the transmission signal to the receiving end through the transmission channel H.
  • the transmission signal is transmitted to the receiving end by the transmitting end.
  • the transmitted signal x will be aggravated by factors such as additive Gaussian noise t of the transmission channel H, fading and intersymbol interference.
  • Steps 705 to 712 are the same as steps 61 to 68 shown in FIG. 6, and are not described herein again.
  • step 705 (ie, step 61) may include:
  • Step 81 Determine whether the input signal is the transmission signal y from the transmission channel; if yes, go to step 82; otherwise, go to step 83;
  • Step 82 Perform a user message passing algorithm detection using the current prior probability stored in the detector, and output the detected bit information L D ;
  • Step 83 the probability array As the current prior probability in the detector (ie replacing the original prior probability in the detector with the probability array)
  • the user message passing algorithm detection is performed using the current prior probability, and the detected bit information L D is output.
  • FIG. 8 is a schematic diagram of a simple example of an algorithm for a polarization code inverse encoder in an embodiment of the present invention.
  • the input signal of the polarization code inverse encoder is n-bit information bit information L C , which can be expressed as ⁇ L C ⁇ n ;
  • the output signal is N-bit inverse coded information L RC , which can be expressed as ⁇ L RC ⁇ N .
  • the 8-bit 1/2 code rate polarization code is taken as an example to explain the calculation process of the algorithm of the polarization code inverse encoder in detail.
  • u 1 to u 8 in the figure respectively represent 8 log likelihood ratio values of 8-bit information bit information L C
  • x 1 to x 8 respectively represent 8-bit log likelihood ratio values of L RC . .
  • numerator and denominator in the above formula each contain 23 factors, and the expansion formula can be written in detail for further discussion.
  • the numerator and denominator expansion equations in the above formula are respectively
  • the amplification, distortion and clipping of the soft value information are not in the whole process, and the coding gain is retained.
  • FIG. 9 is a schematic diagram of a bit error rate performance curve of a polarization code iterative coding method in an additive white Gaussian noise channel according to an embodiment of the present invention.
  • the polar code length of the polarization code at this time is 16 bits
  • the code rate is 0.5
  • the sparse code multiple access access overload rate is 150%
  • the factor matrix is a 4 ⁇ 6 regular matrix.
  • the abscissa in FIG. 9 is a bit-level signal to noise ratio
  • the ordinate is a bit error rate. It can be seen from Fig. 9 that as the number of iterations increases, the system error rate decreases significantly, and the effect of the first three iterations is particularly obvious, the gain is 3.2 dB, and the total gain can reach 3.8 dB after the preset ten iterations.
  • FIG. 10 is an error code of a polarization code iterative coding method in a Rayleigh channel according to an embodiment of the present invention; Schematic diagram of the rate performance curve.
  • the polar code length of the polarization code at this time is 16 bits
  • the code rate is 0.5
  • the sparse code multiple access access overload rate is 150%
  • the factor matrix is a 4 ⁇ 6 regular matrix.
  • the abscissa in FIG. 10 is a bit-level signal-to-noise ratio
  • the ordinate is a bit error rate.
  • the system error rate decreases significantly.
  • the first three iterations are particularly effective, and the gain is 2 dB. After the preset ten iterations, the total gain can reach 2.4 dB.
  • the iterative polarization code decoder after receiving the transmission signal y from the transmission channel, the iterative polarization code decoder will generate two Output, and one of the outputs is inversely encoded, that is, one of the outputs is deinterleaved and then input into the inverse mapper to generate an array of probabilities, and the probability array is repeatedly iterated as the current prior probability in the detector until The final decoding bit is obtained after the iteration At this point, the decoding bit can be Compare with source bit b to calculate the bit error rate.
  • the polarization code inverse encoder utilizes polarization.
  • the soft information output by the code SC decoder recovers the coded bit soft information and implements detection and decoding iterative reception, so that the polarization code coding gain can be preserved without increasing the decoding complexity.
  • An iterative receiver using polarization code as channel coding is implemented, and the implementation of the iterative scheme improves the bit error rate and block error rate performance of the wireless communication system, and improves the user experience of using the above polarization code iterative receiver. . Therefore, the polarization code iterative receiver and the polarization code iterative decoding method in the present invention can be applied to a wireless communication scenario with low complexity and high reliability short code words.

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

一种极化码迭代接收机和极化码迭代译码方法,其中,上述的接收机包括:检测器(101)、第一加减法器(102)、解交织器(103)、迭代极化码译码器(104)、第二加减法器(105)、交织器(106)和逆映射器(107)。通过使用上述的接收机和方法,可以在保留编码增益的同时,在不增加译码复杂度的情况下,提高无线通信***的误码率及误块率性能,提升用户体验。

Description

一种极化码迭代接收机、***和极化码迭代译码方法 技术领域
本发明涉及无线通信中的编译码技术领域,特别涉及一种极化码迭代接收机、***和极化码迭代译码方法。
背景技术
为了提升极化码在无线通信传输中的误码性能,现有接收方案将目光聚焦于译码器的设计和改进。在现有技术中,重新设计和改造后的译码方案可归纳为如下的两类:
第一类,延用原极化码连续消除(Successive cancellation,SC)译码算法对译码信息做串行处理的译码方案;
第二类,采用LDPC码BP译码算法对译码信息做并行处理的译码方案。
在第一类方案中,比较典型的译码方案有:连续消除列列表码器(Successive cancellation list decoder,SCLD)、多级极化码译码器(Multi-level polar decoder,MPD)、级联极化码译码器(Concatenated polar decoder,CPD)。其中,在SCLD中,译码器将L条译码路径逐个算出,并在列表中选取与之似然值(Likelihood value)最大的极化码码字做为输出;在MPD中,极化后的子信道用于传输成分码码字(component code),在极化码编码器重新分块,再由极化码编码后发送出去,译码端将接收比特按每条极化子信道重新组合,先由极化码译码器译码,后传送给成分码译码器译码输出;在CPD中,信源比特以码字嵌套的形式进行编码,例如,Turbo码作为外码,Ploar码作为内码,在接收端,组合而成的译码器先译内码再译外码并输出。
在第二类方案中,由于置信度传播(Belief propagation,BP)算法相对成熟, 只有具体针对极化码编码过程的改造,例如,用LDPC码内嵌未完全极化的子信道码字,以提高误码性能,在译码端LDPC码类似于级联码的外码,整个码字译码可用改进后的BP算法完成。其最大的优点在于:BP算法可并行计算码字中的每个比特,利于硬件实现;但缺点在于:BP算法需要大量内部迭代,计算复杂度较高。
综上所述,现有技术中提升极化码误码性能的方案,局限于将极化码编译码视为独立的模块,比如独立于调制映射的模块,而并未有***级的提升方案,其关键在于没有一个算法涉及解决极化码已编码比特软信息的逆计算问题。
发明内容
有鉴于此,本发明提供一种极化码迭代接收机、***和极化码迭代译码方法,从而可以在保留编码增益的同时,在不增加译码复杂度的情况下,提高无线通信***的误码率及误块率性能,提升用户体验。
本发明的技术方案具体是这样实现的:
一种极化码迭代接收机,该极化码迭代接收机包括:检测器、第一加减法器、解交织器、迭代极化码译码器、第二加减法器、交织器和逆映射器;
所述检测器,用于根据输入信号的类型确定当前先验概率,使用所确定的当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD
所述第一加减法器,用于将所述检测器输出的检测后的比特信息LD减去所述交织器输出的交织后的逆编码外信息
Figure PCTCN2017105330-appb-000001
生产第一外信息
Figure PCTCN2017105330-appb-000002
并将所述第一外信息
Figure PCTCN2017105330-appb-000003
输出到所述解交织器;其中,如果是第一次迭代,则
Figure PCTCN2017105330-appb-000004
所述解交织器,用于对所接收到的第一外信息
Figure PCTCN2017105330-appb-000005
进行解交织,将解交织后的信息
Figure PCTCN2017105330-appb-000006
发送给所述迭代极化码译码器和所述第二加减法器;
所述迭代极化码译码器,用于根据解交织后的信息
Figure PCTCN2017105330-appb-000007
生成逆编码信息LRC和译码比特
Figure PCTCN2017105330-appb-000008
并当当前迭代次数小于预设的最大迭代次数时,将所述逆编码信息LRC输出给所述第二加减法器;
所述第二加减法器,用于将接收到的逆编码信息LRC减去所述解交织后的信息
Figure PCTCN2017105330-appb-000009
生成第二外信息
Figure PCTCN2017105330-appb-000010
并将所述第二外信息
Figure PCTCN2017105330-appb-000011
输出到所述交织器;
所述交织器,用于对所接收到的第二外信息
Figure PCTCN2017105330-appb-000012
进行交织,生成交织后的逆编码外信息
Figure PCTCN2017105330-appb-000013
并将所述交织后的逆编码外信息
Figure PCTCN2017105330-appb-000014
输出给所述逆映射器和所述第一加减法器;
所述逆映射器,用于将所述交织后的逆编码外信息
Figure PCTCN2017105330-appb-000015
转换为概率数组
Figure PCTCN2017105330-appb-000016
并将所述概率数组
Figure PCTCN2017105330-appb-000017
输出给所述检测器。
较佳的,所述迭代极化码译码器包括:极化码SC译码器、极化码逆编码器和硬判决器;
所述极化码SC译码器,用于将N位的解交织后的信息
Figure PCTCN2017105330-appb-000018
转换为n位的信息位比特信息LC,并将n位的信息位比特信息LC分别发送给所述极化码逆编码器和硬判决器;
所述极化码逆编码器,用于当当前迭代次数小于预设的最大迭代次数时,根据n位的信息位比特信息LC生成N位的逆编码信息LRC
所述硬判决器,用于根据n位的信息位比特信息LC生成译码比特
Figure PCTCN2017105330-appb-000019
较佳的,所述极化码逆编码器根据n位的信息位比特信息LC生成N位的逆编码信息LRC
本发明还提供了一种极化码迭代编译码***,该***包括:发送端和接收端;
所述发送端中设置有发送机;所述接收端中设置有接收机;
所述接收机为如权利要求1所述的极化码迭代接收机;
所述发送机中包括:信息源、极化码编码器和调制器;
所述信息源,用于产生n位信源比特;
所述极化码编码器,用于对所生成的n位信源比特进行极化码编码,生成N位编码比特,并进行交织,生成极化码码字;
所述调制器,用于将所生成的极化码码字映射为包括NS个传输符号的多维调制符号;
所述发送端,用于将所述发送机生成的多维调制符号通过传输信道H发送给接收端;
所述接收端中的接收机中的检测器,将通过传输信道H接收到的传输信号y作为输入信号,并最终输出译码比特
Figure PCTCN2017105330-appb-000020
较佳的,所述极化码编码器为极化码编码率为η的极化码编码器;其中,n=N·η。
较佳的,所述调制器为调制阶数为M的调制器。
较佳的,所述调制器为调制阶数为M的稀疏码多址接入模块;
所述稀疏码多址接入模块通过稀疏码的特***本将极化码码字映射为用户特有的多维调制符号。
较佳的,所述发送端中设置有J个发送机;所述接收端中设置有J个接收机;其中,J为大于0的整数;
对于第i个发送机:
所述信息源,用于产生n位信源比特bi;其中,1≤i≤J;
所述极化码编码器,用于对所生成的n位信源比特bi进行极化码编码,生成N位编码比特,并进行交织,生成极化码码字ci
所述调制器,用于将所生成的极化码码字ci映射为包括NS个传输符号的多维调制符号xi
所述发送端,用于将J个发送机生成的多维调制符号在传输信道H中叠加并发送给接收端;
所述接收端中的各个接收机中的检测器,从通过传输信道H接收到的传输信号y中提取对应的传输信号yi作为输入信号,并最终输出对应的译码比特
Figure PCTCN2017105330-appb-000021
本发明还提供了一种极化码迭代译码方法,该方法包括如下步骤:
A、接收端中的检测器根据输入信号的类型确定当前先验概率,使用所确定的当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息 LD
B、第一加减法器将检测后的比特信息LD减去交织器输出的交织后的逆编码外信息
Figure PCTCN2017105330-appb-000022
生产第一外信息
Figure PCTCN2017105330-appb-000023
其中,如果是第一次迭代,则
Figure PCTCN2017105330-appb-000024
C、解交织器对第一外信息
Figure PCTCN2017105330-appb-000025
进行解交织,得到解交织后的信息
Figure PCTCN2017105330-appb-000026
D、迭代极化码译码器根据解交织后的信息
Figure PCTCN2017105330-appb-000027
生成逆编码信息LRC和译码比特
Figure PCTCN2017105330-appb-000028
E、迭代极化码译码器判断当前迭代次数是否小于预设的最大迭代次数;如果是,则将软信息LRC输出给第二加减法器;否则,结束流程;
F、第二加减法器将逆编码信息LRC减去解交织后的信息
Figure PCTCN2017105330-appb-000029
生成第二外信息
Figure PCTCN2017105330-appb-000030
并将第二外信息
Figure PCTCN2017105330-appb-000031
输出到交织器;
G、交织器对第二外信息
Figure PCTCN2017105330-appb-000032
进行交织,生成交织后的逆编码外信息
Figure PCTCN2017105330-appb-000033
并将交织后的逆编码外信息
Figure PCTCN2017105330-appb-000034
输出给逆映射器和第一加减法器;
H、逆映射器将交织后的逆编码外信息
Figure PCTCN2017105330-appb-000035
转换为概率数组
Figure PCTCN2017105330-appb-000036
并将概率数组
Figure PCTCN2017105330-appb-000037
输出给检测器,返回执行步骤A。
较佳的,所述根据输入信号的类型确定当前先验概率,使用所确定的当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息具体包括:
判断输入信号的类型;
当输入信号为来自传输信道的传输信号y时,使用检测器中存储的当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD
当输入信号为逆映射器输出的概率数组
Figure PCTCN2017105330-appb-000038
时,将所述概率数组
Figure PCTCN2017105330-appb-000039
作为检测器中的当前先验概率,使用当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD
较佳的,通过如下的公式计算得到检测后的比特信息LD
Figure PCTCN2017105330-appb-000040
其中,bi为发送端J个接收机中的第i个发送机产生的n位信源比特,LD(bi)为与bi对应的检测后的比特信息,x为发送端输出的多维调制符号,y为接收端通过传输信道H接收到的传输信号。
较佳的,所述迭代极化码译码器根据解交织后的信息
Figure PCTCN2017105330-appb-000041
生成逆编码信息LRC和译码比特
Figure PCTCN2017105330-appb-000042
包括:
使用极化码SC译码器将N位的解交织后的信息
Figure PCTCN2017105330-appb-000043
转换为n位的信息位比特信息LC
使用极化码逆编码器,根据n位的信息位比特信息LC生成N位的逆编码信息LRC
使用硬判决器根据n位的信息位比特信息LC生成译码比特
Figure PCTCN2017105330-appb-000044
较佳的,所述根据n位的信息位比特信息LC生成N位的逆编码信息LRC包括:
将n位的信息位比特信息LC通过转换函数f进行计算,得到N位的逆编码信息LRC
其中,转换函数f为:
Figure PCTCN2017105330-appb-000045
其中,GN×N为极化码编码的生成矩阵;
LVi为极化码编码生成矩阵的第i行向量;
ue为长度为n的向量,向量中每个元素为0或1,且元素为1的个数有0个或偶数个;
uo为长度为n的向量,向量中每个元素为0或1,且元素为1的个数有奇数个;
Λ为信道极化后信息比特的位置标号集合;
Λf为信道极化后冻结比特(Frozen bits)的位置标号集合;
Figure PCTCN2017105330-appb-000046
为满足ue向量要求的元素,取值为0或1;
Figure PCTCN2017105330-appb-000047
为满足uo向量要求的元素,取值为0或1。
较佳的,在所述步骤A之前,该方法还进一步包括:
在发送端生成n位信源比特;
对所生成的n位信源比特进行极化码编码,生成N位编码比特,并进行交织;
使用调制器将所生成的N位编码比特映射为包括NS个传输符号的多维调制符号;
发送端将传输信号通过传输信道H发送给接收端。
较佳的,所述步骤A为:
步骤A1:判断输入信号是否为来自传输信道的传输信号y;如果是,执行步骤A2;否则,执行步骤A3;
步骤A2,使用检测器中存储的当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD
步骤A3,将所述概率数组
Figure PCTCN2017105330-appb-000048
作为检测器中的当前先验概率,使用当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD
如上可见,在本发明中的极化码迭代接收机、***和极化码迭代译码方法中,在接收到来自传输信道的传输信号y之后,迭代极化码译码器将生成两个输出,并将其中的一个输出进行逆编码,即将其中的一个输出进行解交织之后输入逆映射器生成概率数组,并在检测器中将该概率数组作为当前先验概率进行多次迭代计算,直到迭代结束后得到最终的译码比特
Figure PCTCN2017105330-appb-000049
此时,即可将译码比特
Figure PCTCN2017105330-appb-000050
与信源比特b进行对比,统计误码率。由于上述的迭代过程中没有任何,限幅、硬判决和软信息损失,保留了原编译码方案的增益,因此,通过使用上述的极化码迭代接收机,极化码逆编码器利用极化码SC译码器输出的软信息对已编码比特软信息进行恢复并实现了检测、译码迭代接收,从而可以在保留极化码编 码增益的同时,在不增加译码复杂度的情况下,实现了利用极化码作为信道编码的迭代接收机,并且,通过迭代方案的实施,提高了无线通信***的误码率及误块率性能,提升了使用上述极化码迭代接收机的用户体验。因此,本发明中的极化码迭代接收机和极化码迭代译码方法可以适用于低复杂度、高可靠性短码字的无线通信场景。
附图说明
图1为本发明实施例中的极化码迭代接收机的结构示意图。
图2为本发明实施例中的迭代极化码译码器的结构示意图。
图3为本发明实施例中的极化码逆编码器的结构示意图。
图4为本发明实施例中的极化码迭代编译码***的结构示意图。
图5为本发明另一具体实施例中的极化码迭代编译码***的结构示意图。
图6为本发明实施例中的极化码迭代译码方法的流程示意图。
图7为本发明实施例中的极化码迭代编译码方法的流程示意图。
图8为本发明实施例中的极化码逆编码器的算法简单例示意图。
图9为本发明实施例中的极化码迭代编译码方法在加性高斯白噪声信道中的误码率性能曲线示意图。
图10为本发明实施例中的极化码迭代编译码方法在瑞利信道中的误码率性能曲线示意图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下参照附图并举实施例,对本发明进一步详细说明。
本实施例提供了一种极化码迭代接收机、***和极化码迭代译码方法。
图1为本发明实施例中的极化码迭代接收机的结构示意图。如图1所示, 本发明实施例中的极化码迭代接收机包括:检测器101、第一加减法器102、解交织器103、迭代极化码译码器104、第二加减法器105、交织器106和逆映射器107;
所述检测器101,用于根据输入信号的类型确定当前先验概率,使用所确定的当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD
所述第一加减法器102,用于将所述检测器101输出的检测后的比特信息LD减去所述交织器106输出的交织后的逆编码外信息
Figure PCTCN2017105330-appb-000051
生产第一外信息
Figure PCTCN2017105330-appb-000052
并将所述第一外信息
Figure PCTCN2017105330-appb-000053
输出到所述解交织器103;其中,如果是第一次迭代,则
Figure PCTCN2017105330-appb-000054
所述解交织器103,用于对所接收到的第一外信息
Figure PCTCN2017105330-appb-000055
进行解交织,将解交织后的信息
Figure PCTCN2017105330-appb-000056
发送给所述迭代极化码译码器104和所述第二加减法器105;
所述迭代极化码译码器104,用于根据解交织后的信息
Figure PCTCN2017105330-appb-000057
生成逆编码信息LRC和译码比特
Figure PCTCN2017105330-appb-000058
并当当前迭代次数小于预设的最大迭代次数时,将所述逆编码信息LRC输出给所述第二加减法器105;
所述第二加减法器105,用于将接收到的逆编码信息LRC减去所述解交织后的信息
Figure PCTCN2017105330-appb-000059
生成第二外信息
Figure PCTCN2017105330-appb-000060
并将所述第二外信息
Figure PCTCN2017105330-appb-000061
输出到所述交织器106;
所述交织器106,用于对所接收到的第二外信息
Figure PCTCN2017105330-appb-000062
进行交织,生成交织后的逆编码外信息
Figure PCTCN2017105330-appb-000063
并将所述交织后的逆编码外信息
Figure PCTCN2017105330-appb-000064
输出给所述逆映射器107和所述第一加减法器102;
所述逆映射器107,用于将所述交织后的逆编码外信息
Figure PCTCN2017105330-appb-000065
转换为概率数组
Figure PCTCN2017105330-appb-000066
并将所述概率数组
Figure PCTCN2017105330-appb-000067
输出给所述检测器101。
根据上述的极化码迭代接收机的具体结构可知,在本发明的技术方案中,极化码迭代接收机在接收到来自传输信道的传输信号y之后,迭代极化码译 码器将生成两个输出,并将其中的一个输出进行逆编码,即将其中的一个输出进行解交织之后输入逆映射器生成概率数组,并在检测器中将该概率数组作为当前先验概率进行多次迭代计算,直到迭代结束后得到最终的译码比特
Figure PCTCN2017105330-appb-000068
此时,即可将译码比特
Figure PCTCN2017105330-appb-000069
与信源比特b进行对比,统计误码率。由于上述的迭代过程中没有任何,限幅、硬判决和软信息损失,保留了原编译码方案的增益,因此,通过使用上述的极化码迭代接收机,可以在保留编码增益的同时,在不增加译码复杂度的情况下,实现利用极化码作为信道编码的迭代接收机设计,并且,通过迭代方案的实施,提高了无线通信***的误码率及误块率性能,提升了用户体验。
另外,较佳的,在本发明的具体实施例中,所述根据输入信号的类型确定当前先验概率,使用所确定的当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD具体可以包括:
判断输入信号的类型;
当输入信号为来自传输信道的传输信号y时,使用检测器中存储的当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD
当输入信号为逆映射器输出的概率数组
Figure PCTCN2017105330-appb-000070
时,将所述概率数组
Figure PCTCN2017105330-appb-000071
作为检测器中的当前先验概率(即将检测器中原有的先验概率替换为所述概率数组
Figure PCTCN2017105330-appb-000072
使用当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD
另外,在本发明的技术方案中,可以通过多种方式来实现上述的迭代极化码译码器。以下将以其中的一种具体实现方式为例,对本发明的技术方案进行介绍。
例如,较佳的,图2为本发明实施例中的迭代极化码译码器的结构示意图,如图2所示,在本发明的一个具体实施例中,所述迭代极化码译码器104可以包括:极化码SC译码器201、极化码逆编码器202和硬判决器203;
所述极化码SC译码器201,用于将N位的解交织后的信息
Figure PCTCN2017105330-appb-000073
转换为n 位的信息位比特信息LC,并将n位的信息位比特信息LC分别发送给所述极化码逆编码器202和硬判决器203;
所述极化码逆编码器202,用于当当前迭代次数小于预设的最大迭代次数时,根据n位的信息位比特信息LC生成N位的逆编码信息LRC
所述硬判决器203,用于根据n位的信息位比特信息LC生成译码比特
Figure PCTCN2017105330-appb-000074
另外,图3为本发明实施例中的极化码逆编码器的结构示意图,如图3所示,在本发明的一个具体实施例中,所述极化码逆编码器可以根据n位的信息位比特信息LC生成N位的逆编码信息LRC
此外,在本发明的技术方案中,还提出了一种极化码迭代编译码***。
图4为本发明实施例中的极化码迭代编译码***的结构示意图。如图4所示,本发明实施例中的极化码迭代编译码***包括:发送端41和接收端42;
所述发送端41中设置有发送机401;所述接收端42中设置有接收机402;
所述接收机402为图1中所示的极化码迭代接收机,具体结构在此不再赘述;
所述发送机401中包括:信息源411、极化码编码器412和调制器413;
所述信息源,用于产生n位信源比特;
所述极化码编码器,用于对所生成的n位信源比特进行极化码编码,生成N位编码比特,并进行交织,生成极化码码字;
所述调制器,用于将所生成的极化码码字映射为包括NS个传输符号的多维调制符号;
所述发送端,用于将所述发送机生成的多维调制符号通过传输信道H发送给接收端;
所述接收端中的接收机中的检测器,将通过传输信道H接收到的传输信号y作为输入信号,并最终输出译码比特
Figure PCTCN2017105330-appb-000075
另外,较佳的,在本发明的一个具体实施例中,所述极化码编码器可以 是极化码编码率为η的极化码编码器;其中,n=N·η。
另外,较佳的,在本发明的一个具体实施例中,所述调制器可以是调制阶数为M的调制器。
较佳的,在本发明的一个具体实施例中,所述调制器可以是调制阶数为M的稀疏码多址接入模块。该稀疏码多址接入模块可以通过稀疏码的特***本将极化码码字映射为该用户特有的多维调制符号。当然,在本发明的技术方案中,还可以使用其它类型的调制器,在此并不做限制。
此外,在本发明的技术方案中,发送端中可以设置一个发送机,也可以设置多个发送机;同理,接收端中可以设置一个接收机,也可以设置多个接收机。例如,如果只有一个用户,则可以设置一个发送机和一个接收机;而如果有J个用户,则可以设置J个发送机和J个接收机。
例如,较佳的,图5为本发明另一具体实施例中的极化码迭代编译码***的结构示意图。如图5所示,所述发送端中设置有J个发送机;所述接收端中设置有J个接收机;其中,J为大于0的整数;
对于第i个发送机:
所述信息源,用于产生n位信源比特bi;其中,1≤i≤J;
所述极化码编码器,用于对所生成的n位信源比特bi进行极化码编码,生成N位编码比特,并进行交织,生成极化码码字ci
所述调制器,用于将所生成的极化码码字ci映射为包括NS个传输符号的多维调制符号xi
所述发送端,用于将J个发送机生成的(即J个用户的)多维调制符号在传输信道H中叠加并发送给接收端;
所述接收端中的各个接收机中的检测器,从通过传输信道H接收到的传输信号y中提取对应的传输信号yi作为输入信号,并最终输出对应的译码比特
Figure PCTCN2017105330-appb-000076
另外,较佳的,在本发明的一个具体实施例中,所述接收端中的J个接 收机的检测器可以集成为一个多用户检测器,如图5所示。
此外,在本发明的技术方案中,还提出了一种极化码迭代译码方法。
图6为本发明实施例中的极化码迭代译码方法的流程示意图。如图6所示,本发明实施例中的极化码迭代译码方法主要包括如下所述的步骤:
步骤61,接收端中的检测器根据输入信号的类型确定当前先验概率,使用所确定的当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD
在本发明的技术方案中,接收端中的检测器可以根据输入信号的类型确定当前先验概率,使用所确定的当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD
另外,较佳的,在本发明的具体实施例中,所述根据输入信号的类型确定当前先验概率,使用所确定的当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD具体可以包括:
判断输入信号的类型;
当输入信号为来自传输信道的传输信号y时,使用检测器中存储的当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD
当输入信号为逆映射器输出的概率数组
Figure PCTCN2017105330-appb-000077
时,将所述概率数组
Figure PCTCN2017105330-appb-000078
作为检测器中的当前先验概率(即将检测器中原有的先验概率替换为所述概率数组
Figure PCTCN2017105330-appb-000079
使用当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD
另外,较佳的,在本发明的具体实施例中,所述检测后的比特信息LD为N位的对数似然比(Log likelihood ratio,LLR)值,也可以表示为{LD}N
另外,较佳的,在本发明的技术方案中,可以用y来表示接收端通过传输信道H接收到的传输信号。其中,y=Hx+t,x为发送端输出的多维调制符号,t为传输信道H的加性高斯噪声。
此外,较佳的,在本发明的具体实施例中,可以通过如下所述的公式计 算得到检测后的比特信息LD
Figure PCTCN2017105330-appb-000080
其中,bi为发送端J个接收机中的第i个发送机产生的n位信源比特,LD(bi)为与bi对应的检测后的比特信息。
步骤62,第一加减法器将检测后的比特信息LD减去交织器输出的交织后的逆编码外信息
Figure PCTCN2017105330-appb-000081
生产第一外信息
Figure PCTCN2017105330-appb-000082
其中,如果是第一次迭代,则
Figure PCTCN2017105330-appb-000083
步骤63,解交织器对第一外信息
Figure PCTCN2017105330-appb-000084
进行解交织,得到解交织后的信息
Figure PCTCN2017105330-appb-000085
步骤64,迭代极化码译码器根据解交织后的信息
Figure PCTCN2017105330-appb-000086
生成逆编码信息LRC和译码比特
Figure PCTCN2017105330-appb-000087
另外,较佳的,在本发明的具体实施例中,所述步骤64可以包括:
步骤641,使用极化码SC译码器将N位的解交织后的信息
Figure PCTCN2017105330-appb-000088
转换为n位的信息位比特信息LC
步骤642,使用极化码逆编码器,根据n位的信息位比特信息LC生成N位的逆编码信息LRC
步骤643,使用硬判决器根据n位的信息位比特信息LC生成译码比特
Figure PCTCN2017105330-appb-000089
通过上述的步骤641~643,可以分别生成逆编码信息LRC和译码比特
Figure PCTCN2017105330-appb-000090
其中,上述的步骤642和步骤643可以同时执行,也可以按照预设的执行顺序先后执行,本发明对此不进行限制。
另外,较佳的,在本发明的具体实施例中,所述根据n位的信息位比特信息LC生成N位的逆编码信息LRC可以包括:
将n位的信息位比特信息LC通过转换函数f进行计算,得到N位的逆编码信息LRC
其中,转换函数f为:
Figure PCTCN2017105330-appb-000091
其中,GN×N为极化码编码的生成矩阵(Generator matrix);
LVi为极化码编码生成矩阵的第i行向量;
ue为长度为n的向量,向量中每个元素为0或1,且元素为1的个数有0个或偶数个;
uo为长度为n的向量,向量中每个元素为0或1,且元素为1的个数有奇数个;
Λ为信道极化后信息比特的位置标号集合;
Λf为信道极化后冻结比特(Frozen bits)的位置标号集合;
Figure PCTCN2017105330-appb-000092
为满足ue向量要求的元素,取值为0或1;
Figure PCTCN2017105330-appb-000093
为满足uo向量要求的元素,取值为0或1。
步骤65,迭代极化码译码器判断当前迭代次数是否小于预设的最大迭代次数;如果是,则将软信息LRC输出给第二加减法器;否则,结束流程。
步骤66,第二加减法器将逆编码信息LRC减去解交织后的信息
Figure PCTCN2017105330-appb-000094
生成第二外信息
Figure PCTCN2017105330-appb-000095
并将第二外信息
Figure PCTCN2017105330-appb-000096
输出到交织器。
步骤67,交织器对第二外信息
Figure PCTCN2017105330-appb-000097
进行交织,生成交织后的逆编码外信息
Figure PCTCN2017105330-appb-000098
并将交织后的逆编码外信息
Figure PCTCN2017105330-appb-000099
输出给逆映射器和第一加减法器。
步骤68,逆映射器将交织后的逆编码外信息
Figure PCTCN2017105330-appb-000100
转换为概率数组
Figure PCTCN2017105330-appb-000101
并将概率数组
Figure PCTCN2017105330-appb-000102
输出给检测器,返回执行步骤61。
较佳的,在本发明的具体实施例中,所述概率数组
Figure PCTCN2017105330-appb-000103
可以是M×Ns的概率矩阵,可以用于替换检测器中的先验概率P(x)。
此外,更进一步的,在本发明的技术方案中,还可以在上述步骤61之前, 加入发送端的编码过程,从而形成一个完整的极化码迭代编译码方法。
例如,较佳的,图7为本发明实施例中的极化码迭代编译码方法的流程示意图。如图7所示,本发明实施例中的极化码迭代编译码方法主要包括如下所述的步骤:
步骤701,在发送端生成n位信源比特。
例如,较佳的,在本发明的一个具体实施例中,可以在发送端通过信息源产生n位信源比特。在本发明的技术方案中,可以用b来表示所生成的n位信源比特。例如,当有J个用户时,第i个用户的n位信源比特可以表示为bi;其中,1≤i≤J。
步骤702,对所生成的n位信源比特进行极化码编码,生成N位编码比特,并进行交织。
例如,较佳的,在本发明的一个具体实施例中,可以在发送端通过极化码编码器对所生成的n位信源比特进行极化码编码,生成N位编码比特,并进行交织,生成极化码码字。在本发明的技术方案中,可以用c来表示所生成的N位的极化码码字。例如,第i个用户的极化码码字可以表示为ci
步骤703,使用调制器将所生成的N位编码比特映射为包括NS个传输符号的多维调制符号。
例如,较佳的,在本发明的一个具体实施例中,可以在发送端通过调制阶数为M的调制器,将所生成的N位编码比特映射为包括NS个传输符号的多维调制符号;其中,NS=N/log2M。
在本发明的技术方案中,可以用x来表示所述包括NS个传输符号的多维调制符号。例如,第i个用户的多维调制符号可以表示为xi
步骤704,发送端将传输信号通过传输信道H发送给接收端。
在传输信道H中,传输信号被发送端传输给接收端。在传输过程中,传输信号x将被传输信道H的加性高斯噪声t、衰落和符号间干扰等因素恶化。
步骤705~712:与图6中所示的步骤61~68相同,在此不再赘述。
其中,步骤705(即步骤61)可以包括:
步骤81:判断输入信号是否为来自传输信道的传输信号y;如果是,执行步骤82;否则,执行步骤83;
步骤82,使用检测器中存储的当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD
步骤83,将所述概率数组
Figure PCTCN2017105330-appb-000104
作为检测器中的当前先验概率(即将检测器中原有的先验概率替换为所述概率数组
Figure PCTCN2017105330-appb-000105
使用当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD
此外,为了对本发明的技术方案进行详细的介绍,以下将以一个具体实施例的方式对本发明中的极化码逆编码器的工作原理进行说明。
例如,较佳的,图8为本发明实施例中的极化码逆编码器的算法简单例示意图。极化码逆编码器的输入信号是n位的信息位比特信息LC,可表示为{LC}n;输出信号是N位的逆编码信息LRC,可表示为{LRC}N
在本具体实施例中,将以8比特1/2码率极化码为例,详细阐释极化码逆编码器的算法的计算过程。如图8所示,图中的u1~u8分别表示8位信息位比特信息LC的8个对数似然比值,x1~x8分别表示LRC的8位对数似然比值。
不失一般性,这里假设u3,u5,u7,u8为极化码的信息位,则Λ=[3,5,7,8],编码生成矩阵的构造为现有技术,在此不再赘述,图2中,编码生成矩阵为G8×8
Figure PCTCN2017105330-appb-000106
当计算LRC(x1)时,V1=[1 1 1 1 1 1 1 1],
Figure PCTCN2017105330-appb-000107
此时,ue和uo各有27种情况,导致LRC(x1)的计算复杂度较高,
Figure PCTCN2017105330-appb-000108
根据极化码编码特性,对于冻结比特而言,其对应比特值在收端是已知的,等价于,j∈Λf
Figure PCTCN2017105330-appb-000109
根据这一特性,
Figure PCTCN2017105330-appb-000110
可将上式计算简化为,
Figure PCTCN2017105330-appb-000111
即如公式(1)所描述。
此时,上述公式中的分子、分母各含23个因子,其展开式可详尽写出,以便深入探讨。上述公式中的分子、分母展开式分别为,
Figure PCTCN2017105330-appb-000112
Figure PCTCN2017105330-appb-000113
根据上述列式显然可知,计算过程只用到了n位极化码信息比特的软信息,即极化SC码译码器的输出信号{LC}n,所以,对于极化码逆编码器而言,输入软信息只需要极化SC译码器输出软信息即可,对于计算极化码逆编码器输出位大于n的情况而言,依照图2,以计算LRC(x7)为例,V7=[0 0 0 0 0 0 1 1],
Figure PCTCN2017105330-appb-000114
Figure PCTCN2017105330-appb-000115
同理,在计算其他极化码逆编码软值也可以此类推,整个过程中,没有软值信息的放大、扭曲和限幅,保留了编码增益。
图9为本发明实施例中的极化码迭代编译码方法在加性高斯白噪声信道中的误码率性能曲线示意图。如图9所示,此时的极化码的极码长为16比特,码率为0.5,稀疏码多址接入过载率为150%,因子矩阵为一个4×6常规(regular)矩阵。其中,图9中的横坐标为比特级信噪比,纵坐标为误比特率。从图9中可知,随着迭代次数的增加,***误码率显著下降,前三次迭代效果尤为明显,增益为3.2dB,完成预设十次迭代后总增益可达3.8dB。
图10为本发明实施例中的极化码迭代编译码方法在瑞利信道中的误码 率性能曲线示意图。如图10所示,此时的极化码的极码长为16比特,码率为0.5,稀疏码多址接入过载率为150%,因子矩阵为一个4×6常规(regular)矩阵。其中,图10中的横坐标为比特级信噪比,纵坐标为误比特率。从图10中可知,随着迭代次数的增加,***误码率显著下降,前三次迭代效果尤为明显,增益为2dB,完成预设十次迭代后总增益可达2.4dB。
综上可知,在本发明中的极化码迭代接收机、***和极化码迭代译码方法中,在接收到来自传输信道的传输信号y之后,迭代极化码译码器将生成两个输出,并将其中的一个输出进行逆编码,即将其中的一个输出进行解交织之后输入逆映射器生成概率数组,并在检测器中将该概率数组作为当前先验概率进行多次迭代计算,直到迭代结束后得到最终的译码比特
Figure PCTCN2017105330-appb-000116
此时,即可将译码比特
Figure PCTCN2017105330-appb-000117
与信源比特b进行对比,统计误码率。由于上述的迭代过程中没有任何,限幅、硬判决和软信息损失,保留了原编译码方案的增益,因此,通过使用上述的极化码迭代接收机,极化码逆编码器利用极化码SC译码器输出的软信息对已编码比特软信息进行恢复并实现了检测、译码迭代接收,从而可以在保留极化码编码增益的同时,在不增加译码复杂度的情况下,实现了利用极化码作为信道编码的迭代接收机,并且,通过迭代方案的实施,提高了无线通信***的误码率及误块率性能,提升了使用上述极化码迭代接收机的用户体验。因此,本发明中的极化码迭代接收机和极化码迭代译码方法可以适用于低复杂度、高可靠性短码字的无线通信场景。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (15)

  1. 一种极化码迭代接收机,其特征在于,该极化码迭代接收机包括:检测器、第一加减法器、解交织器、迭代极化码译码器、第二加减法器、交织器和逆映射器;
    所述检测器,用于根据输入信号的类型确定当前先验概率,使用所确定的当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD
    所述第一加减法器,用于将所述检测器输出的检测后的比特信息LD减去所述交织器输出的交织后的逆编码外信息
    Figure PCTCN2017105330-appb-100001
    生产第一外信息
    Figure PCTCN2017105330-appb-100002
    并将所述第一外信息
    Figure PCTCN2017105330-appb-100003
    输出到所述解交织器;其中,如果是第一次迭代,则
    Figure PCTCN2017105330-appb-100004
    所述解交织器,用于对所接收到的第一外信息
    Figure PCTCN2017105330-appb-100005
    进行解交织,将解交织后的信息
    Figure PCTCN2017105330-appb-100006
    发送给所述迭代极化码译码器和所述第二加减法器;
    所述迭代极化码译码器,用于根据解交织后的信息
    Figure PCTCN2017105330-appb-100007
    生成逆编码信息LRC和译码比特
    Figure PCTCN2017105330-appb-100008
    并当当前迭代次数小于预设的最大迭代次数时,将所述逆编码信息LRC输出给所述第二加减法器;
    所述第二加减法器,用于将接收到的逆编码信息LRC减去所述解交织后的信息
    Figure PCTCN2017105330-appb-100009
    生成第二外信息
    Figure PCTCN2017105330-appb-100010
    并将所述第二外信息
    Figure PCTCN2017105330-appb-100011
    输出到所述交织器;
    所述交织器,用于对所接收到的第二外信息
    Figure PCTCN2017105330-appb-100012
    进行交织,生成交织后的逆编码外信息
    Figure PCTCN2017105330-appb-100013
    并将所述交织后的逆编码外信息
    Figure PCTCN2017105330-appb-100014
    输出给所述逆映射器和所述第一加减法器;
    所述逆映射器,用于将所述交织后的逆编码外信息
    Figure PCTCN2017105330-appb-100015
    转换为概率数组
    Figure PCTCN2017105330-appb-100016
    并将所述概率数组
    Figure PCTCN2017105330-appb-100017
    输出给所述检测器。
  2. 根据权利要求1所述的极化码迭代接收机,其特征在于,所述迭代极化码译码器包括:极化码SC译码器、极化码逆编码器和硬判决器;
    所述极化码SC译码器,用于将N位的解交织后的信息
    Figure PCTCN2017105330-appb-100018
    转换为n位的信息位比特信息LC,并将n位的信息位比特信息LC分别发送给所述极化码 逆编码器和硬判决器;
    所述极化码逆编码器,用于当当前迭代次数小于预设的最大迭代次数时,根据n位的信息位比特信息LC生成N位的逆编码信息LRC
    所述硬判决器,用于根据n位的信息位比特信息LC生成译码比特
    Figure PCTCN2017105330-appb-100019
  3. 根据权利要求2所述的极化码迭代接收机,其特征在于:
    所述极化码逆编码器根据n位的信息位比特信息LC生成N位的逆编码信息LRC
  4. 一种极化码迭代编译码***,其特征在于,该***包括:发送端和接收端;
    所述发送端中设置有发送机;所述接收端中设置有接收机;
    所述接收机为如权利要求1所述的极化码迭代接收机;
    所述发送机中包括:信息源、极化码编码器和调制器;
    所述信息源,用于产生n位信源比特;
    所述极化码编码器,用于对所生成的n位信源比特进行极化码编码,生成N位编码比特,并进行交织,生成极化码码字;
    所述调制器,用于将所生成的极化码码字映射为包括NS个传输符号的多维调制符号;
    所述发送端,用于将所述发送机生成的多维调制符号通过传输信道H发送给接收端;
    所述接收端中的接收机中的检测器,将通过传输信道H接收到的传输信号y作为输入信号,并最终输出译码比特
    Figure PCTCN2017105330-appb-100020
  5. 根据权利要求4所述的***,其特征在于:
    所述极化码编码器为极化码编码率为η的极化码编码器;其中,n=N·η。
  6. 根据权利要求4所述的***,其特征在于:
    所述调制器为调制阶数为M的调制器。
  7. 根据权利要求4或6所述的***,其特征在于:
    所述调制器为调制阶数为M的稀疏码多址接入模块;
    所述稀疏码多址接入模块通过稀疏码的特***本将极化码码字映射为用户特有的多维调制符号。
  8. 根据权利要求4所述的***,其特征在于:
    所述发送端中设置有J个发送机;所述接收端中设置有J个接收机;其中,J为大于0的整数;
    对于第i个发送机:
    所述信息源,用于产生n位信源比特bi;其中,1≤i≤J;
    所述极化码编码器,用于对所生成的n位信源比特bi进行极化码编码,生成N位编码比特,并进行交织,生成极化码码字ci
    所述调制器,用于将所生成的极化码码字ci映射为包括NS个传输符号的多维调制符号xi
    所述发送端,用于将J个发送机生成的多维调制符号在传输信道H中叠加并发送给接收端;
    所述接收端中的各个接收机中的检测器,从通过传输信道H接收到的传输信号y中提取对应的传输信号yi作为输入信号,并最终输出对应的译码比特
    Figure PCTCN2017105330-appb-100021
  9. 一种极化码迭代译码方法,其特征在于,该方法包括如下步骤:
    A、接收端中的检测器根据输入信号的类型确定当前先验概率,使用所确定的当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD
    B、第一加减法器将检测后的比特信息LD减去交织器输出的交织后的逆编码外信息
    Figure PCTCN2017105330-appb-100022
    生产第一外信息
    Figure PCTCN2017105330-appb-100023
    其中,如果是第一次迭代,则
    Figure PCTCN2017105330-appb-100024
    C、解交织器对第一外信息
    Figure PCTCN2017105330-appb-100025
    进行解交织,得到解交织后的信息
    Figure PCTCN2017105330-appb-100026
    D、迭代极化码译码器根据解交织后的信息
    Figure PCTCN2017105330-appb-100027
    生成逆编码信息LRC和译码比特
    Figure PCTCN2017105330-appb-100028
    E、迭代极化码译码器判断当前迭代次数是否小于预设的最大迭代次数;如果是,则将软信息LRC输出给第二加减法器;否则,结束流程;
    F、第二加减法器将逆编码信息LRC减去解交织后的信息
    Figure PCTCN2017105330-appb-100029
    生成第二外信息
    Figure PCTCN2017105330-appb-100030
    并将第二外信息
    Figure PCTCN2017105330-appb-100031
    输出到交织器;
    G、交织器对第二外信息
    Figure PCTCN2017105330-appb-100032
    进行交织,生成交织后的逆编码外信息
    Figure PCTCN2017105330-appb-100033
    并将交织后的逆编码外信息
    Figure PCTCN2017105330-appb-100034
    输出给逆映射器和第一加减法器;
    H、逆映射器将交织后的逆编码外信息
    Figure PCTCN2017105330-appb-100035
    转换为概率数组
    Figure PCTCN2017105330-appb-100036
    并将概率数组
    Figure PCTCN2017105330-appb-100037
    输出给检测器,返回执行步骤A。
  10. 根据权利要求9所述的方法,其特征在于,所述根据输入信号的类型确定当前先验概率,使用所确定的当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息具体包括:
    判断输入信号的类型;
    当输入信号为来自传输信道的传输信号y时,使用检测器中存储的当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD
    当输入信号为逆映射器输出的概率数组
    Figure PCTCN2017105330-appb-100038
    时,将所述概率数组
    Figure PCTCN2017105330-appb-100039
    作为检测器中的当前先验概率,使用当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD
  11. 根据权利要求10所述的方法,其特征在于,通过如下的公式计算得到检测后的比特信息LD
    Figure PCTCN2017105330-appb-100040
    其中,bi为发送端J个接收机中的第i个发送机产生的n位信源比特,LD(bi)为与bi对应的检测后的比特信息,x为发送端输出的多维调制符号,y为接收端通过传输信道H接收到的传输信号。
  12. 根据权利要求9所述的方法,其特征在于,所述迭代极化码译码器 根据解交织后的信息
    Figure PCTCN2017105330-appb-100041
    生成逆编码信息LRC和译码比特
    Figure PCTCN2017105330-appb-100042
    包括:
    使用极化码SC译码器将N位的解交织后的信息
    Figure PCTCN2017105330-appb-100043
    转换为n位的信息位比特信息LC
    使用极化码逆编码器,根据n位的信息位比特信息LC生成N位的逆编码信息LRC
    使用硬判决器根据n位的信息位比特信息LC生成译码比特
    Figure PCTCN2017105330-appb-100044
  13. 根据权利要求12所述的方法,其特征在于,所述根据n位的信息位比特信息LC生成N位的逆编码信息LRC包括:
    将n位的信息位比特信息LC通过转换函数f进行计算,得到N位的逆编码信息LRC
    其中,转换函数f为:
    Figure PCTCN2017105330-appb-100045
    其中,GN×N为极化码编码的生成矩阵;
    LVi为极化码编码生成矩阵的第i行向量;
    ue为长度为n的向量,向量中每个元素为0或1,且元素为1的个数有0个或偶数个;
    uo为长度为n的向量,向量中每个元素为0或1,且元素为1的个数有奇数个;
    Λ为信道极化后信息比特的位置标号集合;
    Λf为信道极化后冻结比特(Frozen bits)的位置标号集合;
    Figure PCTCN2017105330-appb-100046
    为满足ue向量要求的元素,取值为0或1;
    Figure PCTCN2017105330-appb-100047
    为满足uo向量要求的元素,取值为0或1。
  14. 根据权利要求9所述的方法,其特征在于,在所述步骤A之前,该方 法还进一步包括:
    在发送端生成n位信源比特;
    对所生成的n位信源比特进行极化码编码,生成N位编码比特,并进行交织;
    使用调制器将所生成的N位编码比特映射为包括NS个传输符号的多维调制符号;
    发送端将传输信号通过传输信道H发送给接收端。
  15. 根据权利要求14所述的方法,其特征在于,所述步骤A为:
    步骤A1:判断输入信号是否为来自传输信道的传输信号y;如果是,执行步骤A2;否则,执行步骤A3;
    步骤A2,使用检测器中存储的当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD
    步骤A3,将所述概率数组
    Figure PCTCN2017105330-appb-100048
    作为检测器中的当前先验概率,使用当前先验概率进行用户消息传递算法检测,并输出检测后的比特信息LD
PCT/CN2017/105330 2017-05-04 2017-10-09 一种极化码迭代接收机、***和极化码迭代译码方法 WO2018201671A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710306686.0 2017-05-04
CN201710306686.0A CN107231158B (zh) 2017-05-04 2017-05-04 一种极化码迭代接收机、***和极化码迭代译码方法

Publications (1)

Publication Number Publication Date
WO2018201671A1 true WO2018201671A1 (zh) 2018-11-08

Family

ID=59934135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105330 WO2018201671A1 (zh) 2017-05-04 2017-10-09 一种极化码迭代接收机、***和极化码迭代译码方法

Country Status (2)

Country Link
CN (1) CN107231158B (zh)
WO (1) WO2018201671A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107231158B (zh) * 2017-05-04 2019-12-31 西南交通大学 一种极化码迭代接收机、***和极化码迭代译码方法
CN108023679B (zh) * 2017-12-07 2020-06-16 中国电子科技集团公司第五十四研究所 基于并行级联***极化码的迭代译码缩放因子优化方法
CN109905130B (zh) 2017-12-08 2021-12-17 大唐移动通信设备有限公司 一种极化码编码、译码方法、装置及设备
TW202037103A (zh) * 2018-08-14 2020-10-01 財團法人工業技術研究院 有部分資訊下進行極性碼傳輸的方法和使用該方法的裝置
CN109412752B (zh) * 2018-10-17 2020-04-14 北京理工大学 极化码的非相干检测接收机、***及方法
CN110492981B (zh) * 2019-09-03 2021-07-30 西南交通大学 基于信道可靠性与码距的极化码混合自动重传请求方法
CN114079530A (zh) * 2020-08-19 2022-02-22 华为技术有限公司 编码方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1674487A (zh) * 2005-04-28 2005-09-28 北京邮电大学 用于分层空时码***的准最大后验概率检测方法及其***
CN104079382A (zh) * 2014-07-25 2014-10-01 北京邮电大学 一种基于概率计算的极化码译码器和极化码译码方法
US20150295593A1 (en) * 2014-04-10 2015-10-15 Samsung Electronics Co., Ltd Apparatus and method for encoding and decoding data in twisted polar code
CN105515590A (zh) * 2015-12-09 2016-04-20 东南大学 一种基于随机二进制数据流的有效低复杂度串行抵消列表极化码译码算法及其译码构架
CN107231158A (zh) * 2017-05-04 2017-10-03 西南交通大学 一种极化码迭代接收机、***和极化码迭代译码方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150333775A1 (en) * 2014-05-15 2015-11-19 Broadcom Corporation Frozen-Bit Selection for a Polar Code Decoder
EP2978146A1 (en) * 2014-07-25 2016-01-27 Xieon Networks S.à r.l. Modulation codée résistante aux glissements de cycle pour des communications par fibres optiques

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1674487A (zh) * 2005-04-28 2005-09-28 北京邮电大学 用于分层空时码***的准最大后验概率检测方法及其***
US20150295593A1 (en) * 2014-04-10 2015-10-15 Samsung Electronics Co., Ltd Apparatus and method for encoding and decoding data in twisted polar code
CN104079382A (zh) * 2014-07-25 2014-10-01 北京邮电大学 一种基于概率计算的极化码译码器和极化码译码方法
CN105515590A (zh) * 2015-12-09 2016-04-20 东南大学 一种基于随机二进制数据流的有效低复杂度串行抵消列表极化码译码算法及其译码构架
CN107231158A (zh) * 2017-05-04 2017-10-03 西南交通大学 一种极化码迭代接收机、***和极化码迭代译码方法

Also Published As

Publication number Publication date
CN107231158B (zh) 2019-12-31
CN107231158A (zh) 2017-10-03

Similar Documents

Publication Publication Date Title
WO2018201671A1 (zh) 一种极化码迭代接收机、***和极化码迭代译码方法
Goldenbaum et al. Nomographic functions: Efficient computation in clustered Gaussian sensor networks
Hanzo et al. Near-capacity variable-length coding: regular and EXIT-chart-aided irregular designs
US8548027B2 (en) Multi-ary error-correcting code transmitting and receiving apparatuse, data transmission system, and relevant method
CN106130687B (zh) 衰落信道下基于译码比特可靠性的Polar码删余方法
CN101119336A (zh) 可变速率的软信息转发
CN108737027B (zh) 一种云接入网上行无速率码度数分布优化方法
CN107864029A (zh) 一种降低多用户检测复杂度的方法
CN109450594B (zh) 云接入网上行链路的无速率码度数分布优化方法
KR20080010609A (ko) 다중입력 다중출력 통신 시스템의 오류 정정 장치 및 방법
CN109361637B (zh) 用于高维信号传输的正交空间编码调制***及方法
CN108306714B (zh) 一种高阶调制下lt码解调译码方法
KR20160031781A (ko) 이진 직렬 연결된 부호를 사용하는 시스템에서 복호 방법 및 장치
CN100486235C (zh) 软信息保留的迭代接收方法
CN110601699B (zh) 码率动态可变的多元ldpc码实现方法
CN109412752B (zh) 极化码的非相干检测接收机、***及方法
US8325850B2 (en) System and method for digital communications with unbalanced codebooks
CN110445554A (zh) 一种基于实际信道衰落统计的非相干水声通信方法及***
CN115225202B (zh) 一种级联译码方法
JP3760244B2 (ja) 超広帯域無線システムにおける受信機構成
CN101854179B (zh) 一种应用于ldpc译码的5比特量化方法
Jiang et al. Optimized polar coded selective relay cooperation with iterative threshold decision of pseudo posterior probability
CN107682122B (zh) 一种无线光通信多级编码调制***的迭代解调译码方法
KR20100111628A (ko) 그룹 변조 방법 및 이를 이용한 송신 장치
Al Bechlawi et al. Frame length reduction for massive-machine communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908409

Country of ref document: EP

Kind code of ref document: A1