WO2018201428A1 - Thermally curable sealant composition and use thereof - Google Patents

Thermally curable sealant composition and use thereof Download PDF

Info

Publication number
WO2018201428A1
WO2018201428A1 PCT/CN2017/083160 CN2017083160W WO2018201428A1 WO 2018201428 A1 WO2018201428 A1 WO 2018201428A1 CN 2017083160 W CN2017083160 W CN 2017083160W WO 2018201428 A1 WO2018201428 A1 WO 2018201428A1
Authority
WO
WIPO (PCT)
Prior art keywords
groups
thermally curable
acid
sealant composition
curable sealant
Prior art date
Application number
PCT/CN2017/083160
Other languages
French (fr)
Inventor
Zhenhua JU
Zhuming SHI
Cheng Lu
Jiangbo Ouyang
Baoshan GAO
JinQian CHEN
Original Assignee
Henkel Ag & Co. Kgaa
Henkel IP & Holding GmbH
Henkel (China) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Ag & Co. Kgaa, Henkel IP & Holding GmbH, Henkel (China) Co., Ltd. filed Critical Henkel Ag & Co. Kgaa
Priority to PCT/CN2017/083160 priority Critical patent/WO2018201428A1/en
Priority to TW107109212A priority patent/TW201843231A/en
Publication of WO2018201428A1 publication Critical patent/WO2018201428A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1018Macromolecular compounds having one or more carbon-to-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/124Unsaturated polyimide precursors the unsaturated precursors containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08L79/085Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2003/1034Materials or components characterised by specific properties
    • C09K2003/1059Heat-curable materials

Definitions

  • thermoally curable sealant composition and the term “composition” may be employed interchangeably.
  • the maleimide resin has the following generic structure:
  • the latent curing agent is used to cure component a) thermally curable resin when heated.
  • the filler includes, but is not limited to, inorganic filler such as silica, diatomaceous earth, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, magnesium hydroxide, aluminium hydroxide, magnesium carbonate, barium sulphate, gypsum, calcium silicate, talc, glass bead, sericite activated white earth, bentonite, aluminum nitride, silicon nitride, and the like; and organic filler such as polymethyl methacrylate, polyethyl methacrylate, polypropyl methacrylate, polybutyl methacrylate, butylacrylate-methacrylic acid-methyl methacrylate copolymer, polyacrylonitrile, polystyrene, polybutadiene, polypentadiene, polyisoprene, polyisopropylene and the like. These fillers may be used alone or in any combination thereof.
  • inorganic filler such as silica, di
  • the adhesive composition of the present disclosure can be prepared by mixing each component through any suitable method and in any suitable order.
  • the components can be mixed continuously or discontinuously.
  • the components can be stirred during mixing, if necessary.
  • the stirring speed may be constant throughout the whole mixing step or can vary during different stages of mixing.

Abstract

A thermally curable sealant composition, comprising: a) a thermally curable resin selected from maleimide resins, maleimide-modified epoxy resins and any combination thereof;b) a latent curing agent;c) a polysiloxane containing a mercapto group;and optionally d) a stabilizer. The thermally curable sealant composition exhibits suitable gelling time and excellent storage stability. In addition, when used as one drop fill (ODF) sealant for liquid-crystal display (LCD) panels, the thermally curable sealant composition permits assembly of LCD panels without mutual migration of the sealant into the liquid crystal during LCD.

Description

Thermally curable sealant composition and use thereof Technical field
The present invention relates to a thermally curable sealant composition and use thereof. The thermally curable sealant composition according to the present invention exhibits suitable gelling time and excellent storage stability. In addition, when used as one drop fill (ODF) sealant for liquid crystal display (LCD) panels, the thermally curable sealant composition permits assembly of LCD panels without mutual migration of the sealant into the liquid crystal during LCD assembly and/or curing of the sealant.
Background of the invention
The one drop fill (ODF) process is becoming the mainstream process in the assembly of LCD panels in display applications, replacing the conventional vacuum injection technology to meet faster manufacturing process demands. In the normal ODF process, first, a sealant is dispensed on an electrode-equipped substrate to form a frame of a display element, and liquid crystals are dropped inside the frame. In the next step of the assembly, another electrode-equipped substrate is joined thereto under vacuum. Then, the sealant undergoes a curing process, either by a combination of UV and thermal curing process or by thermal only curing process.
The ODF method has a few problems in that the sealant material in the uncured state comes into contact with the liquid crystals during the assembly process. This could cause reduction in electro-optical properties of the liquid crystals by sealant migration into the liquid crystals or vice versa, or because of ionic impurities that may be present. Hence, design of sealant materials that show good liquid crystal resistance (less  contamination) along with suitable gelling time and excellent storage stability has remained a challenge.
Summary of the invention
After intensive study, the inventors have developed a thermally curable sealant composition, comprising:
a) a thermally curable resin selected from maleimide resins, maleimide-modified epoxy resins and any combination thereof;
b) a latent curing agent;
c) a polysiloxane containing a mercapto group; and optionally
d) a stabilizer.
The present invention also provides use of the thermally curable sealant composition according to the present invention as sealant, especially as one drop fill (ODF) sealant for liquid crystal display (LCD) panels.
Detailed description of the invention
In the following passages, the present invention is described in more detail. Each aspect so described may be combined with any other aspect or aspects unless clearly indicated to the contrary. In particular, any feature indicated as being preferred or advantageous may be combined with any other feature or features indicated as being preferred or advantageous.
In the context of the present invention, the terms used are to be construed in accordance with the following definitions, unless a context dictates otherwise.
In the present specification, the terms “a” and “an” and “at least one” are the same as the term “one or more” and can be employed interchangeably. “At least one” and “one or more” , as used herein, relate to 1, 2, 3, 4, 5, 6, 7, 8, 9 or more of the referenced species. When used in combination with a compound or class of compounds, this term does not refer to the total number of molecules but rather to the number of types of the respective compound or class of compounds.
In the present specification, the term “thermally curable sealant composition” and the term “composition” may be employed interchangeably.
The terms “comprising” , “comprises” and “comprised of” as used herein are synonymous with “including” , “includes” , “containing” or “contains” , and are inclusive or open-ended and do not exclude additional, non-recited members, elements or process steps.
The recitation of numerical end points includes all numbers and fractions subsumed within the respective ranges, as well as the recited end points.
Unless otherwise defined, all terms used in the invention, including technical and scientific terms, have the meaning as commonly understood by one of the ordinary skill in the art to which this invention belongs. By means of further guidance, term definitions are included to better appreciate the teaching of the present invention.
Unless specially indicated, all materials and agents used in the present invention are commercially available.
The thermally curable sealant composition according to the present invention comprises:
a) a thermally curable resin selected from maleimide resins, maleimide-modified epoxy resins and any combination thereof;
b) a latent curing agent;
c) a polysiloxane containing a mercapto group; and optionally
d) a stabilizer.
The specific formulation of the thermally curable sealant composition, especially the combination of the specific thermally curable resin and the specific polysiloxane imparts suitable gelling time and excellent storage stability to the thermally curable sealant composition. In some embodiments, the thermally curable sealant composition may cure in about 2 to about 4 minutes at a temperature of at least 70 ℃, such as from about 70 to about 120 ℃.
Each component in the curable sealant composition of the present invention will be described in detail below.
Component a) : thermally curable resin
The thermally curable sealant composition comprises component a) a thermally curable resin selected from maleimide resins, maleimide-modified epoxy resins and any combination thereof. The thermally curable resin can be used alone or in a combination of two or more kinds.
The thermally curable resin is stable at room temperature. Upon heating, such as heating at a temperature of at least 70 ℃, the thermally curable resin reacts with component b) latent curing agent and component c) polysiloxane to form a three-dimensional network structure. The thermally curable resin provides a curable part upon heating, as well as providing a good adhesion and high reliability under high temperature and high humidity.
In some embodiments of the present invention, the thermally curable resin is used in an amount of about 10 to about 85%by weight, preferably about 30 to about 70%by weight, based on the total amount of the thermally curable sealant composition.
The term "epoxy resin" is understood in the context of the present invention as a polyepoxide having at least about two 1, 2-epoxy groups per molecule.
In some embodiments, the maleimide resin has the following generic structure:
Figure PCTCN2017083160-appb-000001
in which n is an integer from 1 to 3, and
X1 is selected from C1-C20 aliphatic groups, C4-C36 alicyclic groups, C6-C40 aromatic groups, urethane groups, urea groups, carbamate groups, ether groups, carboxyl group, ester groups, carbonyl group, amide groups, imide groups, poly (butadiene) groups, polycarbonate groups, polyurethane groups, polyether groups, polyester groups and any combination thereof.
The term "aliphatic" or "aliphatic group" , as used herein, means an optionally substituted linear or branched C1-20 hydrocarbon, which is completely saturated or which contains one or more units of unsaturation, but which is not aromatic. For example, suitable aliphatic groups include optionally substituted linear or branched alkyl, alkenyl, alkynyl groups and hybrids thereof.
The term "alkyl" , used alone or as part of a larger moiety, refers to an optionally substituted linear or branched hydrocarbon group having 1-20, 1-18, 1-16, 1-14, 1-12, 1-10, 1-8, 1-6, 1-5, 1-4, 1-3, or 1-2 carbon atoms.
The term "alkenyl" , used alone or as part of a larger moiety, refers to an optionally substituted linear or branched hydrocarbon group having at least one carbon-carbon double bond and having 2-20, 2-18, 2-16, 2-14, 2-12, 2-10, 2-8, 2-6, 2-5, 2-4, or 2-3 carbon atoms.
The term "alkynyl" , used alone or as part of a larger moiety, refers to an optionally substituted linear or branched hydrocarbon group having at least one carbon-carbon triple bond and having 2-20, 2-18, 2-16, 2-14, 2-12, 2-10, 2-8, 2-6, 2-5, 2-4, or 2-3 carbon atoms.
It will be appreciated that the phrase "optionally substituted" is used interchangeably with the phrase "substituted or unsubstituted. " In general, the term "substituted" , whether preceded by the term "optionally" or not, means that a hydrogen radical of the designated moiety is replaced with the radical of a specified substituent, provided that the substitution results in a stable or chemically feasible compound. Unless otherwise indicated, an "optionally substituted" group may have a substituent at each substitutable position of the group, and when more than one position in any given structure may be substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at every position. Combinations of substituents envisioned by this disclosure are for instance, those that result in the formation of stable or chemically feasible compounds.
The term “alicyclic” , as used herein, refers to a group which combines the properties  of aliphatic and cyclic compounds and include but are not limited to monocyclic, or polycyclic aliphatic hydrocarbons and bridged cycloalkyl groups, which are optionally substituted with one or more functional groups. As will be appreciated by one of ordinary skill in the art, “alicyclic” is intended herein to include, but is not limited to, C4-C36, preferably C4-C30 cycloalkyl, cycloalkenyl, and cycloalkynyl moieties, which are optionally substituted with one or more functional groups.
The term “cycloalkyl” , as used herein, refers specifically to groups having 4 to 36, , preferably 4 to 30 carbon atoms, more preferably 4 to 18, even more preferably from 4 to 10, most preferably 4 to 7 carbon atoms. Suitable cycloalkyls include, but are not limited to cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and the like.
In general, the term “aromatic moiety” , as used herein, refers to a stable mono-or polycyclic, unsaturated moiety having preferably 6-40 carbon atoms, preferably 6-30 carbon atoms, each of which may be substituted or unsubstituted. In certain embodiments, the term “aromatic moiety” refers to a planar ring having p-orbitals perpendicular to the plane of the ring at each ring atom and satisfying the Huckel rule where the number of pi electrons in the ring is (4n+2) wherein n is an integer. A mono-or polycyclic, unsaturated moiety that does not satisfy one or all of these criteria for aromaticity is defined herein as “non-aromatic” , and is encompassed by the term “alicyclic” .
Exemplary embodiments of the maleimide resins include, but not limited to:
Figure PCTCN2017083160-appb-000002
Figure PCTCN2017083160-appb-000003
in which C36 represents a linear or branched hydrocarbon chain (with or without cyclic moieties) having 36 carbon atoms;
Figure PCTCN2017083160-appb-000004
Figure PCTCN2017083160-appb-000005
In some embodiments, the maleimide-modified epoxy resin has the following generic structure:
Figure PCTCN2017083160-appb-000006
in which n1, n2 and n3 each independently represent an integer from about 1 to about 10, and
R1 represents a divalent linking unit, preferably, R1 is a divalent linking unit containing one or more alicyclic rings or aromatic rings.
In some embodiments, R1 may be selected from C4–C36 cycloalkylenes, bicycloalkylenes, tricycloalkylenes, arylenes, aralkylenes, arylbicycloalkylenes, aryltricycloalkylenes, bicycloalkylarylenes, tricycloalkylarylenes, bisphenylenes, cycloalkylarylenes, heteraocycloalkylene or heterocycloarylenes.
The term "cycloalkylene" , used either alone or in combination, refers to a bivalent cycloalkyl moiety of 4 to 36, preferably 4 to 30 carbon atoms, more preferably 4 to 18, even more preferably from 4 to 10, most preferably 4 to 7 carbon atoms. Exemplary  cycloalkylene moieties include cyclobutylene, cyclopentylene, cyclohexylene, cycloheptylene and the like.
The terms "aryl" , used alone or as part of a larger moiety, e.g., "aralkyl" , refer to an optionally substituted aromatic hydrocarbon moiety comprising one to three aromatic rings. Aryl groups include, without limitation, optionally substituted phenyl, naphthyl, or anthracenyl. The terms "aryl" , as used herein, also include groups in which an aryl ring is fused to one or more cycloaliphatic rings to form an optionally substituted cyclic structure such as a tetrahydronaphthyl, indenyl, or indanyl ring.
The term "arylene" refers to divalent mono-or multi-cyclic systems which have 6 to 36, preferably 6 to 18 ring carbon atoms, wherein at least one ring is aromatic. Examples of suitable arylene include, for instance, phenylenediyl, naphthalenediyl, tetrahydronaphthalenediyl, indanediyl, indenediyl radicals at any suitable position, and the like.
The terms "heterocycloalkylene" and "heteroarylene" , used herein either alone or in combination, are, respectively, a cycloalkylene and arylene, as defined above, wherein at least one atom in the chain or ring is a heteroatom selected from N, S or O.
Suitable commercially available maleimide-modified epoxy resins include, but are not limited to X378538 and X27284 available from Henkel Corporation.
Figure PCTCN2017083160-appb-000007
Figure PCTCN2017083160-appb-000008
To provide good processability, the maleimide modified epoxy resin is preferably liquid at room temperature (about 25℃) . Besides, the maleimide modified epoxy resin can also be solid as long as it can be mixed with other components in the thermally curable sealant composition into a liquid state.
Component b) : latent curing agent
The latent curing agent is used to cure component a) thermally curable resin when heated.
The latent curing agent is a thermal latent curing agent; and is preferably selected from amine-based curing agents, modified amine-based curing agents, modified imidazole-based curing agents and any combination thereof. The latent curing agent can be used alone or in a combination of two or more kinds.
Examples of the amine-based latent curing agent include dicyandiamide, hydrazides such as adipic acid dihydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, suberic acid dihydrazide, azelaic acid dihydrazide, sebacic acid dihydrazide, and phthalic acid dihydrazide.
The modified amine-and modified imidazole-based compounds include core-shell type in which the surface of an amine compound (or amine adducts) core is coated  with the shell of a modified amine product or modified imidazole product (surface adduction and the like) . A blend of the core-shell type curing agent with an epoxy resin is also referred to as a master-batch type curing agent. These types of latent curing agents are capable of providing a blend having good viscosity stability and can be cured at a relatively lower temperature (such as about 70 to about 120 ℃) .
Examples of commercially available latent curing agents include, but not limited to Adeka Hardener EH-4357S (modified-amine-type) , Adeka Hardener EH-4357PK (modified-amine-type) , EH-5057PK (modified-amine-type) , Adeka Hardener EH-4380S (special hybrid-type) , Fujicure FXR-1081 (modified-amine-type) , Fujicure FXR-1020 (modified-amine-type) , Sunmide LH-210 (modified-imidazole-type) , Sun-mide LH-2102 (modified-imidazole-type) , Sunmide LH-2100 (modified-imidazole-type) , Ajicure PN-23 (modified-imidazole-type) , Ajicure PN-F (modified-imidazole-type) , Ajicure PN-23J (modified-imidazole-type) , Ajicure PN-31 (modified-imidazole-type) , Ajicure PN-31J (modified-imidazole-type) , Novacure HX-3722 (master-batch type) , Novacure HX-3742 (master-batch type) , Novacure HX-3613 (master-batch type) , HX3932HP (modified-imidazole-type, available from Asahi Kasei Chemicals Corporation) and the like.
Latent curing agents having a melting temperature of about 50 to about 110℃, particularly having a melting temperature of about 60 to about 100℃ are preferred. With the melting temperature falling within these ranges, the latent curing agents exhibit good viscosity stability and suitable open time, which further avoids liquid crystal contamination.
The amount of the latent curing agent contained in the composition may be appropriately selected depending on the kind of the latent curing agent and the amount of component a) in the composition. In some embodiments of the present  invention, the latent curing agent is used in an amount of about 10 to about 60%by weight, preferably about 20 to about 50%by weight, based on the total amount of thermally curable sealant composition.
Component c) : polysiloxane containing a mercapto group
The polysiloxane containing a mercapto group (abbreviated as polysiloxane hereinafter) can increase the curing speed of the thermally curable sealant composition and avoid the penetration and contamination issues during heating process.
In some embodiments, the polysiloxane has the following repeat unit:
Figure PCTCN2017083160-appb-000009
In which n4 represents an integer from about 1 to about 20, preferably from about 3 to about 10; and
R2 and R3 each independently represent C1-C10 aliphatic groups, C4-C30 alicyclic groups, C6-C30 aromatic groups and any combination thereof.
Preferably, R2 and R3 are all C1-C10 alkyl groups. For example, the polysiloxanes particularly include polydialkylsiloxanes comprising two or more thiol groups such as the SMS-022, SMS-042 and SMS-992 (poly (mercaptopropyl methyl) siloxane) available from Gelest Inc.
In addition to the repeat unit represented by Formula III, the polysiloxane may further contain other repeat units, such as one or more kinds of repeat units represented by Formula IV:
Figure PCTCN2017083160-appb-000010
wherein m represents an integer from about 1 to about 20, preferably from about 3 to about 10; and
R4 and R5 each independently represent C1-C10 aliphatic groups, C4-C30 alicyclic groups, C6-C30 aromatic groups and any combination thereof.
The repeat units represented by Formula (III) and Formula (IV) may be distributed in an alternating, random, graft and/or block manner.
The polysiloxane can be used alone or in a combination of two or more kinds.
In some embodiments of the present invention, the polysiloxane is used in an amount of about 5 to about 50%by weight, preferably about 10 to about 35%by weight, based on the total amount of the thermally curable sealant composition.
Component d) : stabilizer
The thermally curable sealant composition optionally comprises component d) : stabilizer. At room temperature, the stabilizer may prevent the thermally curable resin from undesirable curing.
In some embodiments, the stabilizer is a solid organic acid. Preferably, the stabilizer is selected from aliphatic, alicyclic and aromatic carboxylic acids and derivatives thereof; aliphatic, alicyclic and aromatic quinones and derivatives thereof; phenols and derivatives thereof; enolisable aliphatic, alicyclic and aromatic compounds and derivatives thereof; and any combination thereof. More preferably, the stabilizer is selected from 4-nitroguaiacol, 3, 4, 5-trimethoxy benzoic acid, hexachlorophene, 3, 5-dinitrosalicylic acid, 4, 5, 7-trihydroxyflavanone, 2, 2-dithiosalicylic acid, phloroglucinol, fumaric acid, 3, 4-dihydroxy benzoic acid, 3, 4, 5-trihydroxy benzoic acid, 6-hydroxy-2, 5, 7, 8-tetramelhylchroman-2 carboxylic acid, pamoic acid, ascorbic acid, salicylic acid, citric acid, 3, 4-dihydroxy cinnamic acid, 2, 3-dicyanohydroquinone, barbituric acid, tetrahydroxy-p-benzoquinone, parabanic acid, phenyl boronic acid, Meldrum’s acid, 5-phenyl Meldrum’s acid and any combination thereof. The stabilizer can be used alone or in a combination of two or more kinds.
In some embodiments of the present invention, the stabilizer is used in an amount of 0 to about 10%by weight, and preferably about 0.1 to about 1%by weight, based on the total amount of the thermally curable sealant composition.
Component e) : optional additives
The components that may be optionally contained in the composition include, but are not limited to, thermoplastic polymer, organic or inorganic filler, thixotropic agent, silane coupling agent, diluent, modifier, coloring agent such as pigment and dye, surfactant, preservative, stabilizer, plasticizer, lubricant, defoamer, leveling agent and the like. In particular, the composition preferably comprises an additive selected from the group consisting of organic or inorganic filler, a thixotropic agent, and a silane coupling agent.
The filler includes, but is not limited to, inorganic filler such as silica, diatomaceous earth, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, magnesium hydroxide, aluminium hydroxide, magnesium carbonate, barium sulphate, gypsum, calcium silicate, talc, glass bead, sericite activated white earth, bentonite, aluminum nitride, silicon nitride, and the like; and organic filler such as polymethyl methacrylate, polyethyl methacrylate, polypropyl methacrylate, polybutyl methacrylate, butylacrylate-methacrylic acid-methyl methacrylate copolymer, polyacrylonitrile, polystyrene, polybutadiene, polypentadiene, polyisoprene, polyisopropylene and the like. These fillers may be used alone or in any combination thereof.
The thixotropic agent includes, but is not limited to, talc, fume silica, superfine surface-treated calcium carbonate, fine particle alumina, plate-like alumina; layered compound such as montmorillonite, peculiar compound such as aluminium borate whisker and the like. Among them, talc, fume silica and fine particle alumina are preferred. Suitable commercially available thioxotropic agents include Aerosil RX200 (fume silica) available from Evonik Industries. The thixotropic agent may control the thixotropism of the thermally curing composition.
The silane coupling agent includes, but is not limited to, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxylsilane, and the like.
In addition to the maleimide resins and maleimide-modified epoxy resins, the thermally curable resins may further contain epoxy resins which have no maleimide groups in their molecules. The amount of the epoxy resins which have no maleimide groups in their molecules may be selected according to actual requirement, so long as they do not adversely affect the desirable effects of the present invention. In some embodiments, the amount of the epoxy resins which have no maleimide groups in  their molecules may be less than about 40 %by weight, based on the total amount of the thermally curable sealant composition. Preferably, the thermally curable sealant composition does not contain epoxy resins which have no maleimide groups in their molecules.
In addition to the polysiloxane containing a mercapto group, the thermally curable sealant composition may further contain thiols which have no siloxane groups in their molecules. The amount of the thiols which have no siloxane groups in their molecules may be selected according to actual requirement, so long as they do not adversely affect the desirable effects of the present invention. In some embodiments, the amount of the thiols which have no siloxane groups in their molecules may be less than about 5%by weight, based on the total amount of the thermally curable sealant composition. Preferably, the thermally curable sealant composition does not contain thiols which have no siloxane groups in their molecules.
Thermally curable sealant composition
In some embodiments, the thermally curable sealant composition comprises:
a) from about 10 to about 85 %, preferably from about 30 to about 70%by weight of a thermally curable resin selected from epoxy resins, maleimide resins, maleimide-modified epoxy resins and any combination thereof
b) from about 10 to about 60 %, preferably from about 20 to about 50%by weight of a latent curing agent; and
c) from about 5 to about 50 %, preferably from about 10 to about 35%by weight of a polysiloxane containing a mercapto group; and
d) from 0 to about 10 %, preferably from about 0.1 to about 1%by weight of a stabilizer,
based on the total weight of the thermally curable sealant composition.
In some embodiments, the composition has a viscosity from 50 to 3,000 Pa·s, preferably from 100 to 2000 Pa·s, more preferably from 300 to 1000 Pa·s at about 25℃, measured with a rotary rheometer at a shear rate of 50 s-1.
The composition may be used as sealant, especially as ODF sealant for LCD panels.
Preparation of adhesive composition
The adhesive composition of the present disclosure can be prepared by mixing each component through any suitable method and in any suitable order. The components can be mixed continuously or discontinuously. The components can be stirred during mixing, if necessary. The stirring speed may be constant throughout the whole mixing step or can vary during different stages of mixing.
There is no specific limitation to the mixing time, which may be adjusted according to actual requirements. Preferably, the mixing temperature may be below about 40 ℃, such as at room temperature (about 25℃) .
Examples
The present disclosure will be further described and illustrated in detail with reference to the following examples. The examples are intended to assist one skilled in the art to better understand and practice the present disclosure, however, are not intended to restrict the scope of the present disclosure. Unless otherwise specified, all preparation and test experiments are conducted at room temperature and atmospheric pressure.
Materials
X378538: maleimide-modified epoxy resin, available from Henkel Corporation.
X27284: maleimide-modified epoxy resin, available from Henkel Corporation.
CM1016: maleimide resin, available from Henkel Corporation.
Epon828: epoxy resin containing no maleimide group; available from Aldrich.
PN-23: modified-imidazole-type latent curing agent, available from Ajinomoto Fine-Techno Co., Inc.
EH-4357S: modified-amine-type latent curing agent, available from ADEKA Corporation.
HX3932HP: modified-imidazole-type latent curing agent, available from Asahi Kasei Chemicals Corporation.
SM-992: poly (mercaptopropyl methyl) siloxane, available from Gelest Inc.
Propanethiol: thiol containing no siloxane group in its molecule, available from Aldrich.
PM182: barbituric acid dispersed in bisphenol-Aepoxy, stabilizer, available from Henkel Corporation.
RX200: thixotropic agent, available from Evonik Industries.
γ-glycidoxypropyl trimethoxylsilane: silane coupling agent, available from Momentive
Example 1 (Ex. 1)
5.0 g X378538, 0.5 g SMS-992 and 0.2 g PM-182 were mixed for 1 minute at room temperature by employing a speedmixer (2350 rpm, Flacktek, DAC150) . Subsequently, 0.5 g PN-23 was added into the speedmixer and mixed for 4 minutes (2350 rpm) . The obtained composition sample was kept at -20 ℃ before it was used.
Examples 2-4 and Comparative Examples 1-2
Thermally curable sealant compositions in Examples 2-4 and Comparative Examples 1-2 were prepared in the same way as described above for Example 1, except that the formulations were changed according to Table 1 below.
Table 1: Formulations of thermally curable sealant compositions
Figure PCTCN2017083160-appb-000011
Property tests
Gelling time
Each composition sample was put on a hot plate of 100℃, and the time it took for the composition sample to reach gelling point was designated as gelling time. To measure the gelling point, a wood stick was used to thrust into the sample. When the composition sample was completely hardened, it reached the gelling point.
Table 2: Gelling time of the thermally curable sealant compositions
Figure PCTCN2017083160-appb-000012
It can be seen from Table 2 that the thermally curable sealant compositions according to the present invention had a suitable gelling time, which was long enough to enable the application of the composition, and was not too long to decrease the efficiency of automatic production line.
3-Day gelling test
Each composition sample was stored at room temperature. The viscosity of each  sample was recorded every day.
Table 3: Storage stability of the thermally curable sealant compositions
Figure PCTCN2017083160-appb-000013
It can be seen from Table 3 that the thermally curable sealant compositions according to the present invention did not gel after 3 days and exhibited excellent storage stability, while Comparative Examples 1 and 2 both gelled within 3 days.
Examples 5-6 and Comparative Examples 3-4
Thermally curable sealant compositions in Examples 5-6 and Comparative Examples 3-4 were prepared in the same way as described above for Example 1, except that the formulations were changed according to Table 4 below.
Table 4: Formulations of thermally curable sealant compositions
Figure PCTCN2017083160-appb-000014
Property test
Liquid crystal contamination test
In a vacuum oven (OV11, LabPlant) with a pressure of about 3KPa, each composition sample of Examples 5-6 and Comparative Examples 3-4 was respectively dispensed along the four edges of a first glass plate (50 mmx50 mm) to form a rectangular  sealant frame. Then a drop of the same composition sample was dripped onto the centre of the first glass plate. Subsequently, liquid crystals (LC 52, Merck) were dispensed by using a screw dispense machine (ML-808GX, Musashi) around the central sample drop within the sealant frame. The diameter of dispensing nozzle was 0.2mm, and the dispensing speed was 70mm/s. The volume ratio of the liquid crystals to the sealant frame was 1.05: 1. Finally, a second glass plate was placed onto the first glass plate to obtain an LCD assembly.
Vacuum was released to return the vacuum oven to atmospheric pressure. Then the obtained LCD assembly was heated in the oven at 120℃ for 60 minutes to cure the sealant. A voltage of 3 V was applied to the LCD assembly. Then the LCD assembly was observed by using a polarizing glass to verify the contamination performance. The final contamination performance was recorded as “good” if the orientation disorder of the liquid crystal is less than 0.2mm from the central sealant drop; the final contamination performance was recorded as “generic” if the orientation disorder of the liquid crystal is from 0.2mm to 0.6mm from the central sealant drop; while it was recorded as “poor” if the orientation disorder of the liquid crystal is more than 0.6mm from the central sealant drop. The results are shown in table 5.
Table 5: Contamination performances of the thermally curable sealant compositions
Figure PCTCN2017083160-appb-000015
It can be seen from Table 5 that the thermally curable sealant compositions of Examples 5 and 6 almost did not contaminate or only slightly contaminated the LCD, while the thermally curable sealant compositions of Comparative Examples 3 and 4 severely contaminated the LCD.
Examples 7-8 and Comparative Examples 5-6
Thermally curable sealant compositions in Examples 7-8 and Comparative Examples 5-6 were prepared in the same way as described above for Example 1, except that the formulations were changed according to Table 6 below.
Table 6: Formulations of thermally curable sealant compositions
Figure PCTCN2017083160-appb-000016
Property test
Liquid crystal penetration test
In a vacuum oven (OV11, LabPlant) with a pressure of about 3KPa, each composition sample of Examples 5-6 and Comparative Examples 3-4 was respectively dispensed along the four edges of a first glass plate (50 mmx50 mm) to form a rectangular sealant frame. Then liquid crystals (LC52, Merck) were dispensed by using a screw dispense machine (ML-808GX, Musashi) within the sealant frame. The diameter of dispensing nozzle was 0.2mm, and the dispensing speed was 70mm/s. The volume ratio of the liquid crystals to the sealant frame was 1.05: 1. Finally, a second glass plate was placed onto the first glass plate to obtain an LCD assembly.
Vacuum was released to return the vacuum oven to atmospheric pressure. Then the obtained LCD assembly was heated in the oven at 120℃ for 60 minutes to cure the sealant. Then the LCD assembly was observed by naked eyes to verify the  penetration performance, including maintenance of the sealant frame shape, liquid crystal penetration and liquid crystal leakage. The penetration performance was recorded as “good” if the sealant frame shape was well kept and no liquid crystal leaked, while it was recorded as “poor” if there was liquid crystal leakage. The results are shown in table 7.
Table 7: Penetration performances of the thermally curable sealant compositions
Figure PCTCN2017083160-appb-000017
It can be seen from Table 7 that the thermally curable sealant compositions of Examples 7 and 8 kept the sealant frame shape well and no liquid crystal leakage occurred. In contrast, the thermally curable sealant compositions of Comparative Examples 5 and 6 leaked liquid crystal under the same condition.

Claims (10)

  1. A thermally curable sealant composition, comprising:
    a) a thermally curable resin selected from maleimide resins, maleimide-modified epoxy resins and any combination thereof;
    b) a latent curing agent;
    c) a polysiloxane containing a mercapto group; and optionally
    d) a stabilizer.
  2. The thermally curable sealant composition according to claim 1, wherein the maleimide resin has the following generic structure:
    Figure PCTCN2017083160-appb-100001
    in which n is an integer from 1 to 3, and
    X1 is selected from C1-C20 aliphatic groups, C4-C36 alicyclic groups, C6-C40 aromatic groups, urethane groups, urea groups, carbamate groups, ether groups, carboxyl group, ester groups, carbonyl group, amide groups, imide groups, poly (butadiene) groups, polycarbonate groups, polyurethane groups, polyether groups, polyester groups and any combination thereof.
  3. The thermally curable sealant composition according to claim 1 or 2, wherein the maleimide-modified epoxy resin has the following generic structure:
    Figure PCTCN2017083160-appb-100002
    in which n1, n2 and n3 each independently represent an integer from about 1 to about 10, and
    R1 represents a divalent linking unit, preferably, R1 is a divalent linking unit containing one or more alicyclic rings or aromatic rings.
  4. The thermally curable sealant composition according to any one of claims 1 to 3, wherein the latent curing agent is a thermal latent curing agent; and is preferably selected from amine-based curing agents, modified amine-based curing agents, modified imidazole-based curing agents and any combination thereof.
  5. The thermally curable sealant composition according to any one of claims 1 to 5, wherein the polysiloxane has the following repeat unit:
    Figure PCTCN2017083160-appb-100003
    In which n4 represents an integer from 1 to 20, preferably from 3 to 10; and
    R2 and R3 each independently represent C1-C10 aliphatic groups, C4-C30  alicyclic groups, C6-C30 aromatic groups and any combination thereof.
  6. The thermally curable sealant composition according to any one of claims 1 to 5, wherein the stabilizer is a solid organic acid; more preferably, the stabilizer is selected from aliphatic, alicyclic and aromatic carboxylic acids and derivatives thereof; aliphatic, alicyclic and aromatic quinones and derivatives thereof; phenols and derivatives thereof; enolisable aliphatic, alicyclic and aromatic compounds and derivatives thereof; and any combination thereof.
  7. The thermally curable sealant composition according to claim 6, wherein the stabilizer is selected from 4-nitroguaiacol, 3, 4, 5-trimethoxy benzoic acid, hexachlorophene, 3, 5-dinitrosalicylic acid, 4, 5, 7-trihydroxyflavanone, 2, 2-dithiosalicylic acid, phloroglucinol, fumaric acid, 3, 4-dihydroxy benzoic acid, 3, 4, 5-trihydroxy benzoic acid, 6-hydroxy-2, 5, 7, 8-tetramelhylchroman-2 carboxylic acid, pamoic acid, ascorbic acid, salicylic acid, citric acid, 3, 4-dihydroxy cinnamic acid, 2, 3-dicyanohydroquinone, barbituric acid, tetrahydroxy-p-benzoquinone, parabanic acid, phenyl boronic acid, Meldrum's acid, 5-phenyl Meldrum's acid and any combination thereof.
  8. The thermally curable sealant composition according to any one of claims 1 to 7, wherein the composition has a viscosity from 50 to 3,000 Pa·s, preferably from 100 to 2000 Pa·s, more preferably from 300 to 1000 Pa·s at about 25℃, measured with a rotary rheometer at a shear rate of 50 s-1.
  9. The thermally curable sealant composition according to any one of claims 1 to 8, comprising:
    a) from 10 to 85 %by weight of a thermally curable resin selected from maleimide resins, maleimide-modified epoxy resins and any combination thereof
    b) from 10 to 60 %by weight of a latent curing agent; and
    c) from 5 to 50 %by weight of a polysiloxane containing a mercapto group; and
    d) from 0 to 10 %by weight of a stabilizer,
    based on the total weight of the thermally curable sealant composition.
  10. Use of the thermally curable sealant composition according to any one of claims 1 to 9 as sealant, especially as one drop fill sealant for liquid crystal display panels.
PCT/CN2017/083160 2017-05-05 2017-05-05 Thermally curable sealant composition and use thereof WO2018201428A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/083160 WO2018201428A1 (en) 2017-05-05 2017-05-05 Thermally curable sealant composition and use thereof
TW107109212A TW201843231A (en) 2017-05-05 2018-03-19 Thermally curable sealant composition and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/083160 WO2018201428A1 (en) 2017-05-05 2017-05-05 Thermally curable sealant composition and use thereof

Publications (1)

Publication Number Publication Date
WO2018201428A1 true WO2018201428A1 (en) 2018-11-08

Family

ID=64015921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083160 WO2018201428A1 (en) 2017-05-05 2017-05-05 Thermally curable sealant composition and use thereof

Country Status (2)

Country Link
TW (1) TW201843231A (en)
WO (1) WO2018201428A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109971175A (en) * 2019-03-18 2019-07-05 苏州生益科技有限公司 Modified maleimide resin combination and its prepreg and laminate of preparation
CN114989381A (en) * 2021-03-02 2022-09-02 信越化学工业株式会社 Polysiloxanepolyurethane, stretchable film, and method for forming same
WO2022183481A1 (en) * 2021-03-05 2022-09-09 Henkel Ag & Co. Kgaa Curable adhesive composition comprising maleimide and thiol

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132203A1 (en) * 2011-03-28 2012-10-04 三井化学株式会社 Liquid crystal sealing agent, method for producing liquid crystal display device using same, and liquid crystal display panel
WO2013005693A1 (en) * 2011-07-03 2013-01-10 日本化薬株式会社 Liquid crystal sealant and liquid crystal display cell using same
WO2013005692A1 (en) * 2011-07-03 2013-01-10 日本化薬株式会社 Liquid crystal sealing material and liquid crystal display cell using same
WO2013038571A1 (en) * 2011-09-15 2013-03-21 Henkel Ag & Co. Kgaa Sealant composition
KR101269792B1 (en) * 2008-09-30 2013-05-30 미쓰이 가가쿠 가부시키가이샤 Liquid crystal sealing agent, liquid crystal display panel using same, method for producing the liquid crystal display panel, and liquid crystal display device
WO2014171141A1 (en) * 2013-04-18 2014-10-23 三井化学株式会社 Composition, cured product, and display device and method for manufacturing same
WO2015123824A1 (en) * 2014-02-19 2015-08-27 Ablestik (Shanghai) Ltd. Curable resin composition for sealing liquid crystal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101269792B1 (en) * 2008-09-30 2013-05-30 미쓰이 가가쿠 가부시키가이샤 Liquid crystal sealing agent, liquid crystal display panel using same, method for producing the liquid crystal display panel, and liquid crystal display device
WO2012132203A1 (en) * 2011-03-28 2012-10-04 三井化学株式会社 Liquid crystal sealing agent, method for producing liquid crystal display device using same, and liquid crystal display panel
WO2013005693A1 (en) * 2011-07-03 2013-01-10 日本化薬株式会社 Liquid crystal sealant and liquid crystal display cell using same
WO2013005692A1 (en) * 2011-07-03 2013-01-10 日本化薬株式会社 Liquid crystal sealing material and liquid crystal display cell using same
WO2013038571A1 (en) * 2011-09-15 2013-03-21 Henkel Ag & Co. Kgaa Sealant composition
WO2014171141A1 (en) * 2013-04-18 2014-10-23 三井化学株式会社 Composition, cured product, and display device and method for manufacturing same
WO2015123824A1 (en) * 2014-02-19 2015-08-27 Ablestik (Shanghai) Ltd. Curable resin composition for sealing liquid crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109971175A (en) * 2019-03-18 2019-07-05 苏州生益科技有限公司 Modified maleimide resin combination and its prepreg and laminate of preparation
CN109971175B (en) * 2019-03-18 2021-09-21 苏州生益科技有限公司 Modified maleimide resin composition, prepreg and laminated board prepared from same
CN114989381A (en) * 2021-03-02 2022-09-02 信越化学工业株式会社 Polysiloxanepolyurethane, stretchable film, and method for forming same
WO2022183481A1 (en) * 2021-03-05 2022-09-09 Henkel Ag & Co. Kgaa Curable adhesive composition comprising maleimide and thiol

Also Published As

Publication number Publication date
TW201843231A (en) 2018-12-16

Similar Documents

Publication Publication Date Title
TWI506084B (en) Composition, composition for end-face seal agent of display device composed of the same, display device and fabricating method thereof
TWI294443B (en)
KR102451905B1 (en) Resin composition, adhesive and encapsulant
JP4563448B2 (en) SEALING MATERIAL RESIN COMPOSITION, SEALING MATERIAL, SEALING METHOD, AND ELECTROLUMINESCENT DISPLAY
WO2000046317A1 (en) Resin compositions
TW201132667A (en) Liquid crystal sealing agent, method for fabricating liquid crystal display panel using the same and liquid crystal display panel
US20170247586A1 (en) Thermally curable sealant composition and the use thereof
TWI826714B (en) Epoxy resin composition
WO2018201428A1 (en) Thermally curable sealant composition and use thereof
WO2011007649A1 (en) Sealing agent for liquid crystal dripping method
TWI534168B (en) Liquid crystal sealing agent, fabricating method of liquid crystal display panel using the same and liquid crystal display panel
WO2021033325A1 (en) Epoxy resin composition
TW200940588A (en) Curable composition
KR20220133967A (en) Sealing agent for display devices
TWI465813B (en) A method for manufacturing a liquid crystal display
JP3024440B2 (en) Liquid crystal sealant
TW200914958A (en) Sealing material for liquid crystal and liquid-crystal display cell made with the same
JP4302381B2 (en) Liquid crystal sealant composition, method for producing liquid crystal display cell, and liquid crystal display element
WO2018129685A1 (en) Thermally curable sealant composition
TWI817988B (en) Epoxy resin composition
WO2018129686A1 (en) Radiation curable sealant composition
TW201839027A (en) Resin composition
JP2003286473A (en) Display element seal material
KR20080072321A (en) Curable resin composition and liquid crystal display device
JP2008088350A (en) Liquid crystal sealant and liquid crystal display cell using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908412

Country of ref document: EP

Kind code of ref document: A1