WO2018201424A1 - 一种智能滚动接触疲劳试验***及其测试方法 - Google Patents

一种智能滚动接触疲劳试验***及其测试方法 Download PDF

Info

Publication number
WO2018201424A1
WO2018201424A1 PCT/CN2017/083145 CN2017083145W WO2018201424A1 WO 2018201424 A1 WO2018201424 A1 WO 2018201424A1 CN 2017083145 W CN2017083145 W CN 2017083145W WO 2018201424 A1 WO2018201424 A1 WO 2018201424A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
main
shaft
test piece
box
Prior art date
Application number
PCT/CN2017/083145
Other languages
English (en)
French (fr)
Inventor
杨岩
李晖
胡建军
刘妤
杨长辉
朱岗
王毅
梁举科
Original Assignee
重庆淏晗科技有限公司
重庆理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201720488369.0U external-priority patent/CN207408077U/zh
Priority claimed from CN201720488411.9U external-priority patent/CN207336031U/zh
Priority claimed from CN201720488370.3U external-priority patent/CN207074179U/zh
Priority claimed from CN201710309480.3A external-priority patent/CN107941479A/zh
Priority claimed from CN201720488405.3U external-priority patent/CN207336030U/zh
Application filed by 重庆淏晗科技有限公司, 重庆理工大学 filed Critical 重庆淏晗科技有限公司
Priority to US16/488,604 priority Critical patent/US11408808B2/en
Publication of WO2018201424A1 publication Critical patent/WO2018201424A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/021Gearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/08Detecting presence of flaws or irregularities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Definitions

  • the invention relates to the field of mechanical fatigue testing.
  • Rolling contact fatigue damage is one of the main reasons for the failure of mechanical parts. According to statistics, in the failure of mechanical parts such as shafts, gears, bearings, blades, springs, etc., about 80% of them are contact fatigue damage, and there is no obvious deformation before the damage, so fatigue damage often causes major accidents. Therefore, accurate access to material fatigue performance is one of the key ways to solve the problem of underlying components, basic processes and basic materials.
  • the invention aims at the problem that the existing rolling contact fatigue testing machine can not quantitatively evaluate fatigue failure and can not accurately obtain material contact fatigue data, and designs a fatigue state monitoring and quantitative evaluation system based on machine vision technology, which can be quantified by image processing technology and the like. Evaluate the fatigue failure state of the roller test piece and obtain data on material contact fatigue failure.
  • the technical solution adopted for achieving the object of the present invention is such an intelligent rolling contact fatigue test system, which mainly comprises a main test system, a loading system and a companion test system.
  • the main test system and the accompanying test system are installed on the same experimental platform.
  • the main test system mainly comprises a main test system base, a main test shaft drive servo motor, a main test box body, a main test system moving slider, a main test system moving guide rail and a main test box body base.
  • the main test box mainly comprises a main shaft A, two sealed end covers, a box body and a sensor seat ring A.
  • the spindle A is mounted in the housing by bearings. Both ends of the box are sealed by a sealed end cap with an oil seal. Both ends of the main shaft A pass through the sealed end cover at both ends of the box, one end of which is connected to the main test shaft to drive the servo motor, and the other end is mounted with the roller test piece.
  • the sensor race A is mounted on one of the sealed end caps. Accelerometer Mounted on the sensor seat A.
  • the bottom of the main test chamber is fixed on the base of the main test system.
  • the base of the main test system is installed on the moving rail of the main test system by moving the slider of the main test system.
  • the main test system moving rail is fixed on the experimental platform.
  • the direction in which the main test chamber slides along the moving rail of the main test system is perpendicular to the axial direction of the main shaft A.
  • the companion test system includes a test box body, a test sample base, and a test shaft drive servo motor.
  • the test box mainly comprises a main shaft B, two sealed end covers and a box body.
  • the spindle B is mounted in the housing by bearings. Both ends of the box are sealed by a sealed end cap with an oil seal. Both ends of the main shaft B pass through the sealed end cover at both ends of the box, one end of which is connected to the test shaft to drive the servo motor, and the other end is mounted with the test piece.
  • the test box is fixed on the experimental platform.
  • the test piece has the same shape and dimensions as the roller test piece.
  • the loading system mainly includes a servo electric cylinder driven by a drive motor.
  • the mounting base of the servo electric cylinder is fixed to one side of the main test system.
  • a pressure sensor is mounted on the telescopic end of the servo electric cylinder. The pressure sensor is in contact with the main test chamber.
  • the servo electric cylinder pushes the main test chamber to move along the moving rail of the main test system, the pressure sensor measures the load loaded on the main test chamber.
  • the loading system pushes the main test chamber so that the test piece is in contact with the roller test piece.
  • the experimental platform includes a test machine base.
  • the main body portion of the test machine base is a cabinet.
  • the lower end of the cabinet is equipped with a pulley, and the upper surface is the main and the test box base.
  • the main and accompanying test box base is a water platform surface.
  • the box of the main test box includes a cover A, a cover A and a lower case A.
  • the lower case A is hollow and has spindle holes at both ends.
  • the lower casing A is internally provided with a main shaft A, a bearing NJ314A, and a bearing NJ310A.
  • the upper end opening of the lower case A is closed by the cover A.
  • the cover A has an inspection hole. The inspection hole is closed by the box cover A.
  • the outer ring of the bearing NJ314A and the bearing NJ310A is fixed in the lower case A.
  • the spindle A passes through and is fixed to the inner ring of the bearing NJ314A and the bearing NJ310A.
  • the sealed end cap of the left side of the main test chamber includes a skeleton oil seal IA and a left end cover A.
  • the left side of the main shaft A passes through the center hole of the left end cover A.
  • the left end cover A closes the main shaft hole on the left side of the lower case A.
  • the left end cover A faces the inside of the main test chamber and is mounted with a skeleton oil seal IA.
  • the spindle A passes through the skeleton oil seal IA.
  • the sealed end cap on the right side of the main test chamber includes a skeleton oil seal IIA and a right end cover A.
  • the right side of the main shaft A passes through the center hole of the right end cover A.
  • the right end cover A closes the spindle hole on the right side of the lower case A.
  • the right end cover A is attached to the side of the main test chamber to mount the skeleton oil seal IIA.
  • the spindle A passes through the skeleton oil seal IIA.
  • the spindle A is a roller test piece mounted through a shaft end connector A and a roller test piece mount A.
  • the shaft end connector A is a revolving body which is fitted to one end of the main shaft A by means of a keyway connection.
  • the shaft end connector A rotates with the spindle A.
  • the roller test piece mounting base A is a rotating body, and one end thereof is connected to the end surface of the shaft end connecting piece A by a bolt IIIA, and the other end is fixed to the roller test piece.
  • the box body of the test box includes a box cover B, a box cover B and a lower case B.
  • the lower case B is hollow and has spindle holes at both ends.
  • the lower casing B is internally provided with a main shaft B, a bearing NJ314B, and a bearing NJ310B.
  • the upper end opening of the lower case B is closed by the cover B.
  • the cover B has an inspection hole. The inspection hole is closed by the box cover B.
  • the outer ring of the bearing NJ314B and the bearing NJ310B is fixed in the lower case B.
  • the main shaft B passes through and is fixed to the inner circumference of the bearing NJ314B and the bearing NJ310B.
  • the sealed end cap of the left side of the main test chamber includes a skeleton oil seal IB and a left end cover B.
  • the left side of the main shaft B passes through the center hole of the left end cover B.
  • the left end cover B closes the main shaft hole on the left side of the lower case B.
  • a skeleton oil seal IB is attached to a side of the left end cover B facing the inside of the main test chamber.
  • the spindle B passes through the skeleton oil seal IB.
  • the sealed end cap of the right side of the main test chamber includes a skeleton oil seal IIB and a right end cover B.
  • the right side of the main shaft B passes through the center hole of the right end cover B.
  • the right end cover B closes the spindle hole on the right side of the lower case B.
  • a skeleton oil seal IIB is attached to one side of the right end cover B facing the inside of the main test chamber.
  • the spindle B passes through the skeleton oil seal IIB.
  • the spindle B is mounted with a test piece through a shaft end connector B and a roller test piece mount B.
  • the shaft end connecting member B is a rotating body which is fitted to one end of the main shaft B by means of a keyway connection.
  • the shaft end connector B rotates with the spindle B.
  • the roller test piece mounting base B is a rotating body, and one end thereof is connected to the end surface of the shaft end connecting member B through the bolt IIIB, and the other end is fixed to the test piece. 4.
  • the intelligent rolling contact fatigue testing system according to claim 1, further comprising a control box.
  • the control shaft drives the servo motor and the main test shaft to drive the servo motor through the control box.
  • the lubrication system includes a lubricating oil tank, an oil pump motor, an oil pump, and a lubricating oil shell.
  • the oil pump motor drives the oil pump such that the lubricating oil of the lubricating oil tank is withdrawn and provides lubricating oil to the main test system, the loading system, and the companion system.
  • the upper end of the lubricating oil shell is open.
  • the lubricating oil shell is located below the roller test piece. After the lubricant in the oil tank is sprayed on the roller test piece, it is collected into the oil case and recirculated to the oil tank.
  • the test device includes a light source, a CCD camera, and a monitoring aid.
  • the light source is an annular light source.
  • the light source surrounds the lens barrel of the CCD camera.
  • the monitoring auxiliary device comprises a box body, an oil box, a lubricating oil tube, a vertical oil bar, a tilting oil plate and a rotating brush.
  • the box body is composed of a top plate, a left side plate, a rear side plate and a front side plate.
  • the open end of the box is fastened to the oil tank.
  • the left side plate is perforated.
  • the CCD camera and the light source face the opening of the left side panel.
  • Two rotating shafts are mounted on the rear side plate.
  • the two shafts are simultaneously driven by the drive shaft to which the DC motor is connected.
  • the two rotating shafts are respectively provided with a roller test piece and a rotating brush.
  • the roller test piece faces a CCD camera.
  • a lubricating oil nozzle and a vertical oil retaining plate are mounted on the top plate.
  • the lubricating oil nozzle is supplied with oil through a lubricating oil pipe.
  • the vertical oil baffle is located above the roller test piece, and the vertical oil baffle is between the lubricating oil spray head and the left side plate.
  • One side of the inclined oil baffle is connected to the rear side plate.
  • the inclined oil deflector is located below the roller test piece.
  • the intelligent rolling contact fatigue test system is used to make the roller test piece and the accompanying test piece contact each other and roll each other. In this process, the load measured by the pressure sensor and the vibration data measured by the acceleration sensor are recorded.
  • the roller test piece is mounted in the monitoring assisting device, and the roller test piece and the rotating brush are simultaneously rotated in the state where the lubricating oil is sprayed.
  • Image preprocessing After using the image enhancement algorithm to improve the sharpness of the image, the threshold algorithm is used to determine the bright area of the image and the bright ROI tile is obtained by subtracting the region.
  • Image processing using the edge template matching algorithm to image the entire circumference of the roller test piece Then, the threshold algorithm is used to obtain the pitting hole, and the morphological analysis is performed on the highlighted defect area.
  • Image post-processing Connected domain analysis is performed on the image defect area, and the pitting area is selected according to the feature, and the area of the pitting area is calculated according to the camera pixel equivalent and the fatigue failure state is quantitatively evaluated.
  • the intelligent rolling contact fatigue test system is an important equipment for studying the fatigue failure mechanism of key basic components such as bearings, gears and shafts, and the invention can not quantitatively evaluate the roller for the existing rolling contact fatigue testing machine.
  • the status quo of the surface fatigue defect state of the test piece, the design of the machine surface technology based roller fatigue surface defect monitoring system is beneficial to obtain accurate and reliable material contact fatigue data, to realize industrial strong foundation engineering, to solve basic components and foundations. Problems such as the backwardness of technology and basic materials are of great significance.
  • this type of system can enhance the research and development strength and economic strength of key infrastructure components such as bearings, gears and shafts.
  • FIG. 1 main view of the main and accompanying test system
  • Figure 3 is a top view of the main and accompanying test system
  • Figure 4 is a left side view of the main and accompanying test system
  • Figure 5 is a top view of the lubrication system
  • Figure 6 is a front view of the lubrication system
  • Figure 7 is a left side view of the lubrication system
  • Figure 8 is a structural view of the main test chamber 305
  • Figure 9 is a structural diagram of the test box 705.
  • test machine base 1 main and accompanying test box base 2, main test system 3, loading system 4, control box 5, touch display screen 6, companion test system 7, test machine lubrication system 8,
  • Main test system base 301 main test shaft drive servo motor 302, main test shaft coupling 303, main test shaft rotating disc 304, main test chamber 305, roller test piece 306, lubricating oil shell 307, main test system movement Slider 308, main test system moving rail 309, main test box base 310, main shaft A3051, skeleton oil seal IA3052, right end cover A3053, box cover A3054, bolt IA3055, box cover A3056, bearing NJ314A3057, bearing inner ring A3058, Bearing outer ring IA3059, sensor seat A30510, shaft end connector A30511, bolt IIA30512, roller test piece mount A30513, bolt IIIA30514, bolt IVA30515, left end cover A30517, skeleton oil seal IIA30516, copper retaining ring A30518, bearing NJ310A30519, Bearing outer ring IIA30520, bolt VA30521, lower case A30522, bolt VIA30523.
  • Pressure sensor 401 servo electric cylinder 402, servo electric cylinder drive motor 403, right angle reducer 404, servo electric cylinder mounting base 405, main specimen loading device 406,
  • test box base 701 The test box base 701, the test shaft drive servo motor 702, the test shaft coupling 703, the test shaft coupling 704, the test box 705, the test piece 706,
  • Lubricating oil tank 811 oil pump motor 805, oil pump 806, lubricating oil shell 307 tank level gauge 812, lubrication line pressure gauge 813
  • An intelligent rolling contact fatigue test system is characterized in that it mainly comprises a main test system 3, a loading system 4 and a companion system 7.
  • the main test system 3 and the accompanying test system 7 are mounted on the same experimental platform.
  • the main test system 3 mainly includes a main test system base 301, a main test shaft drive servo motor 302, a main test case 305, a main test system moving slide 308, a main test system moving guide 309, and a main test case base 310.
  • the main test chamber 305 mainly comprises a main shaft A 3051, two sealed end covers, a box body and a sensor seat ring A30510.
  • the spindle A 3051 is mounted in the housing by bearings. Both ends of the box are sealed by a sealed end cap with an oil seal. Both ends of the main shaft A 3051 pass through the sealed end cover at both ends of the box, one end of which is connected to the main trial shaft driving servo motor 302, and the other end is mounted with the roller test piece 306.
  • the roller test piece 306 is a metal cylinder having a connecting hole at one end.
  • the sensor mount A30510 is mounted on one of the sealed end caps.
  • An acceleration sensor is mounted on the sensor holder A30510.
  • the acceleration sensor is used to measure vibration, and the bottom of the sensor is fixed on the sensor seat A30510.
  • the sensor seat A30510 is concentric with the main shaft A3051.
  • the bottom of the main test chamber 305 is fixed to the base 301 of the main test system.
  • the main test system base 301 is mounted on the main test system moving rail 309 by the main test system moving slider 308.
  • the main test system moving rail 309 is fixed on the experimental platform.
  • the direction in which the main test chamber 305 slides along the main test system moving rail 309 is perpendicular to the axial direction of the main shaft A 3051.
  • the juror system 7 includes a juxtaposition box 705, an accompanying test piece 706, a test box base 701, and an accompanying test shaft drive servo motor 702.
  • the test box 705 mainly includes a main shaft B7051, two sealed end covers, and a box body.
  • the main shaft B7051 is mounted in the casing through a bearing. Both ends of the box are sealed by a sealed end cap with an oil seal. Both ends of the main shaft B7051 pass through the sealed end cover at both ends of the box, one end of which is connected to the test shaft drive servo motor 702, and the other end is mounted with the test piece 706.
  • the test box 705 is fixed on the experimental platform.
  • the test piece 706 is identical in shape and size to the roller test piece 306. During the experiment,
  • the loading system 4 primarily includes a servo cylinder 402 that is driven by a drive motor 403.
  • the drive motor 403 drives the servo electric cylinder through the right angle reducer 404.
  • the mounting base 405 of the servo electric cylinder is fixed to one side of the main test system 3.
  • a pressure sensor 401 is attached to the telescopic end of the servo electric cylinder 402. The pressure sensor 401 is in contact with the main test chamber 305.
  • the pressure sensor 401 measures the load loaded on the main test chamber 305.
  • the loading system 4 pushes the main test chamber 305 such that the test piece 706 is in contact with the roller test piece 306. Both are driven to scroll.
  • the experimental platform includes a tester base 1.
  • the main body portion of the test machine base 1 is a cabinet.
  • the lower end of the cabinet is equipped with a pulley, and the upper surface is the main and the test box base 2.
  • the main and accompanying test box base 2 is a water platform surface.
  • the box of the main test box 305 includes a box cover A 3054, a box cover A 3056 and a lower case A 30522.
  • the lower case A30522 is hollow and has spindle holes at both ends.
  • the lower casing A30522 is internally provided with a main shaft A3051, a plurality of bearings NJ314A3057 and a plurality of bearings NJ310A30519.
  • the upper end opening of the lower case A30522 is closed by the cover A3054.
  • the cover A3054 has an inspection hole.
  • the inspection hole is closed by the box cover A3056.
  • the box cover A3056 is fixed in the screw hole around the inspection hole by a bolt IA3055.
  • the outer ring of the bearing NJ314A3057 and the bearing NJ310A30519 is fixed in the lower case A30522.
  • the spindle A 3051 passes through and is fixed to the inner ring of the bearing NJ314A3057 and the bearing NJ310A30519.
  • the sealed end cap of the left side of the main test chamber 305 includes a skeleton oil seal IA3052 and a left end cover A30516.
  • the left side of the main shaft A 3051 passes through the center hole of the left end cover A 30516.
  • the left end cover A3053 closes the main shaft hole on the left side of the lower case A30522.
  • the left end cover A30516 is fixed around the left spindle hole of the lower case A30522 by bolt VIA30523.
  • the left end cap A30516 is mounted to the side of the main test chamber 305 to mount the skeleton oil seal IA3052.
  • the spindle A 3051 passes through the skeleton oil seal IA3052.
  • the sealed end cap of the right side of the main test chamber 305 includes a skeleton oil seal IIA30516 and a right end cover A3053.
  • the right side of the main shaft A 3051 passes through the center hole of the right end cover A 3053.
  • the right end cover A3053 closes the spindle hole on the right side of the lower case A30522.
  • the right end cover A3053 is fixed to the periphery of the right main shaft hole of the lower case A30522 by the bolt VA30521.
  • the right end cap A3053 is attached to the inner side of the main test chamber 305 to mount the skeleton oil seal IIA30516.
  • the spindle A 3051 passes through the skeleton oil seal IIA30516.
  • the spindle A 3051 is mounted with a roller test piece 306 through a shaft end connector A30511 and a roller test piece mount A30513.
  • the shaft end connector A30511 is a revolving body which is assembled at one end of the main shaft A3051 by means of a keyway connection.
  • the shaft end connector A30511 rotates with the spindle A 3051.
  • the bolt IIA30512 is screwed into the center of rotation of the shaft end connector A30511 and the spindle A 3051, thereby joining the two together.
  • the roller test piece mounting seat A30513 is a rotating body, and one end thereof is connected to the end surface of the shaft end connecting piece A30511 by a bolt IIIA30514, and the roller test piece 306 is fixed at the other end.
  • the connecting hole of the roller test piece 306 is nested on the mounting seat A30513, and the end faces of the roller test piece 306 and the mounting seat A30513 are coaxial with the axial threaded holes, and the two can be connected by bolts.
  • the sensor seat A30510 is a metal ring. This metal ring is fixed to the left end cover A30517 by a bolt IVA30515.
  • the shaft end connector A30511 passes through this metal ring.
  • the shaft end connector A30511 is coaxial with the sensor seat A30510 with a gap therebetween.
  • the box of the test box 705 includes a box cover B7054, a box cover B7056, and a lower case B70522.
  • the lower case B70522 is hollow, and has spindle holes at both ends thereof.
  • the lower casing B70522 is internally provided with a main shaft B7051, a plurality of bearings NJ314B7057 and a plurality of bearings NJ310B70519.
  • the upper end opening of the lower case B70522 is closed by the cover B7054.
  • the cover B7054 has an inspection hole.
  • the inspection hole is closed by the box cover B7056.
  • the box cover B7056 is fixed in a screw hole around the inspection hole by a bolt IB7055.
  • the outer ring of the bearing NJ314B7057 and the bearing NJ310B70519 is fixed in the lower case B70522.
  • the main shaft B7051 passes through and is fixed to the inner ring of the bearing NJ314B7057 and the bearing NJ310B70519.
  • the sealed end cap of the left side of the main test chamber 305 includes a skeleton oil seal IB7052 and a left end cover B70516.
  • the left side of the main shaft B7051 passes through the center hole of the left end cover B70516.
  • the left end cover B7053 closes the main shaft hole on the left side of the lower case B70522.
  • the left end cover B70516 is fixed to the periphery of the left main shaft hole of the lower case B70522 by a bolt VIB70523.
  • the left end cover B70516 is mounted on the side of the main test chamber 305 with a skeleton oil seal IB7052.
  • the main shaft B7051 passes through the skeleton oil seal IB7052.
  • the sealed end cover of the right side of the main test box 305 includes a skeleton oil seal IIB70516 And right end cover B7053.
  • the right side of the main shaft B7051 passes through the center hole of the right end cover B7053.
  • the right end cover B7053 closes the spindle hole on the right side of the lower case B70522.
  • the right end cover B7053 is fixed to the periphery of the right main shaft hole of the lower case B70522 by a bolt VB70521.
  • the right end cover B7053 faces the inner side of the main test chamber 305 and is provided with a skeleton oil seal IIB70516.
  • the main shaft B7051 passes through the skeleton oil seal IIB70516.
  • the spindle B7051 is mounted with the test piece 706 through the shaft end connector B70511 and the roller test piece mount B70513.
  • the shaft end connector B70511 is a rotating body which is assembled at one end of the main shaft B7051 by means of a keyway connection.
  • the shaft end connector B70511 rotates with the spindle B7051.
  • the bolt IIB70512 is screwed into the center of rotation of the shaft end connector B70511 and the spindle B7051, thereby joining the two together.
  • the roller test piece mounting seat B70513 is a rotating body, and one end thereof is connected to the end surface of the shaft end connecting piece B70511 through the bolt IIIB70514, and the other end is fixed to the test piece 706.
  • the connecting hole of the test piece 706 is nested on the mounting seat B70513, and the end faces of the test piece 706 and the mounting seat B70513 are coaxial with the axial threaded holes, and the two can be connected by bolts.
  • a control box 5 is also included.
  • the rotation speed, torque, and the like of the test shaft drive servo motor 702 and the main test shaft drive servo motor 302 are controlled by the control box 5.
  • a lubrication system is also included.
  • the lubrication system includes a lubricating oil tank 811, an oil pump motor 805, an oil pump 806, and a lubricating oil shell 307.
  • the oil pump motor 805 drives the oil pump 806 such that the lubricating oil of the oil tank 811 is withdrawn and supplies lubricating oil to the main test system 3, the loading system 4, and the companion system 7.
  • the upper end of the lubricating oil shell 307 is open.
  • the lubricating oil shell 307 is located below the roller test piece 306. After the lubricating oil in the lubricating oil tank 811 is sprayed toward the roller test piece 306, it is collected into the lubricating oil case 307, and the lubricating oil tank 811 is returned again.
  • the oil tank 811 is provided with a tank level gauge 812 and a lubrication line pressure gauge 813.
  • the present invention is based on machine vision technology using CCD. Camera, light source, monitoring aids, etc. Build an image acquisition environment and system for surface fatigue defects of roller specimens that meet the requirements of rolling contact fatigue test. Combine various image processing algorithms to compile an image acquisition processing program to circumferentially splicing the surface of the specimen. And processing, and get accurate pitting area.
  • the image acquisition and processing flow is shown in Figure 13.
  • the test device includes a light source S3, a CCD camera S5, and a monitoring aid S2.
  • the light source S3 is an annular light source.
  • the light source S3 is wound around the lens barrel S4 of the CCD camera S5. That is, the lens S8 of the CCD camera S5 is located at the center of the light source S3.
  • the monitoring assisting device S2 includes a tank, an oil tank S9, a lubricating oil pipe S202, a vertical oil baffle S203, a tilting oil baffle S209, and a rotating brush S210.
  • the case is composed of a top plate S204, a left side plate S205, a rear side plate S206, and a front side plate S211.
  • the open end of the lower end of the box is fastened on the oil tank S9.
  • the left side plate S205 is perforated.
  • the CCD camera S5 and the light source S3 face the opening of the left side plate S205.
  • Two rotating shafts are mounted on the rear side plate S206.
  • the two rotating shafts are simultaneously driven by the transmission shaft S12 connected to the DC motor, and the two are rotated in opposite directions.
  • the two rotating shafts are respectively mounted with a roller test piece 306 and a rotating brush S210.
  • the roller test piece 306 faces the CCD camera S5.
  • a lubricating oil nozzle S201 and a vertical oil barrier S203 are mounted on the top plate S204.
  • the lubricating oil nozzle S201 is supplied with oil through the lubricating oil pipe S202.
  • the lubricating oil nozzle S201 injects oil to the roller test piece 306.
  • the rotating brush S210 brushes the lubricating oil on the surface of the roller test piece 306.
  • the vertical oil baffle S203 is located above the roller test piece 306, and the vertical oil baffle S203 is between the lubricating oil sprinkler S201 and the left side plate S205 to prevent the lubricating oil splash from affecting the operation of the CCD camera S5.
  • One side of the inclined oil deflector S209 is coupled to the rear side panel S206.
  • the inclined oil baffle S209 is located below the roller test piece 306, so that the lubricating oil brushed by the rotating brush S210 is sent to the oil tank S9 to avoid splashing and then re-circulating.
  • the test device includes a table S6 and a camera mount S7.
  • the oil tank S9 and the camera mount S7 are fixed to the table S6.
  • the CCD camera S5 is mounted on the camera mount S7.
  • the basic flow of image acquisition processing on the surface of the roller test piece is: before performing the surface monitoring of the roller test piece, firstly, the working distance of the camera needs to be adjusted, and the camera pixels are equivalently calibrated and recorded according to the single chip microcomputer. The number of pulses is set to test the camera. The surface dynamic image acquisition, the collected image processing flow is divided into three steps.
  • the roller test piece 306 and the test piece 706 are brought into contact with each other and rolled together.
  • the load measured by the pressure sensor 401 and the vibration data measured by the acceleration sensor are recorded.
  • roller test piece 306 is attached to the monitoring assisting device S2, and the roller test piece 306 and the rotating brush S210 are simultaneously rotated in the state where the lubricating oil is sprayed.
  • Image preprocessing After using the image enhancement algorithm to improve the sharpness of the image, the threshold algorithm is used to determine the bright area of the image and the bright ROI tile is obtained by subtracting the region.
  • Image processing The edge template matching algorithm is used to splicing the image of the roller test piece 306 over the whole week.
  • the threshold algorithm is used to obtain the pitting hole, and the morphological analysis is performed on the highlighted defect area.
  • Image post-processing Connected domain analysis is performed on the image defect area, and the pitting area is selected according to the feature, and the area of the pitting area is calculated according to the camera pixel equivalent and the fatigue failure state is quantitatively evaluated.
  • roller test piece is a cylindrical arc surface, and the light path has the characteristics of radiation and diffuse reflection. Therefore, the low-angle ring light is used to build the optical path environment, and the camera pixel equivalent is calibrated to facilitate the actual size of a single pixel.
  • the system collects the pulse of the encoder through the STM32 single-chip microcomputer and adds it to the specified number and triggers the photographing.
  • the dynamic image acquired by the camera (Fig. 14) is improved by the image enhancement algorithm in the halcon software toolbox.
  • the mathematical principle of sharpening is as follows:
  • the bright area is segmented (as shown in Figure 8). And use bolb analysis to get a complete bright area ( Figure 9).
  • the region subtraction algorithm is used to obtain the bright region tiles (Fig. 19), and the common portion of each image is selected as the template, and the edge grayscale template matching algorithm is used to locate the position of each template region, and then the radiation region is used to make the common region.
  • the overlap is performed to realize the splicing of the ROI region, and an image of the surface of the test piece over the entire circumference is obtained.
  • the spliced image is subjected to threshold algorithm processing to obtain the pitting hole portion of the image (Fig. 20), and the extracted defect portion is subjected to morphological processing to obtain the integrity of the defect portion (Fig. 21).
  • the area area analysis algorithm is used to obtain the number of pixels of the area area of 15354 (see Figure 23).
  • the actual size of the area can be obtained, and the degree of surface defect of the roller test piece can be quantitatively evaluated.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

一种智能滚动接触疲劳试验***及其测试方法,包括主试验***(3)、加载***(4)和陪试***(7),还包括一个测试装置,所述测试装置包括光源(S3)、CCD相机(S5)和检测辅助装置(S2),试验时,滚子试件(306)与陪试件(706)相互接触滚压一定时间后被安装在检测辅助装置(S2)中,在润滑油喷射的状态下,使滚子试件(306)与旋转毛刷(S210)同时旋转,通过CCD相机(S5)动态采集滚子试件(306)的表面图像,再通过图像的预处理、处理和后处理对疲劳失效状态进行量化评估,解决了现有滚动接触疲劳试验机不能量化评估疲劳失效、不能精准获得材料接触疲劳数据等问题。

Description

一种智能滚动接触疲劳试验***及其测试方法 技术领域
本发明涉及机械疲劳测试领域。
背景技术
滚动接触疲劳破坏是机械零件失效的主要原因之一。据统计,在轴、齿轮、轴承、叶片、弹簧等机械零件失效中大约有80%以上属于接触疲劳破坏,而且破坏前没有明显的变形,所以疲劳破坏经常造成重大事故。所以精准获取材料疲劳性能是解决基础零部件、基础工艺、基础材料落后问题的关键途径之一。
国内外相关研发机构及企业推出了满足不同试验需求的多种滚动接触疲劳试验机,但存在很多不足,主要表现在:设备稳定性、可靠性不高;只能单目标测试,试验效率低;试验环境恶劣,人员需长期值守,劳动强度大,参与积极性不高;失效情况需停机后人为主观判断,无法实现设备连续测试运转,导致不能精准获取材料接触疲劳强度数据,严重制约了相应材料性能基础数据库的建立。
发明内容
本发明针对现有滚动接触疲劳试验机不能量化评估疲劳失效、不能精准获得材料接触疲劳数据等问题,设计了基于机器视觉技术的疲劳状态监测及量化评估***,该***通过图像处理技术等可量化评估滚子试件疲劳失效状态,并可获得材料接触疲劳失效的数据。
为实现本发明目的而采用的技术方案是这样的,一种智能滚动接触疲劳试验***,其特征在于:主要包括主试验***、加载***和陪试***。
所述主试验***和陪试***安装在同一个实验平台上。
所述主试验***主要包括主试验***底座、主试轴驱动伺服电机、主试验箱体、主试***移动滑块、主试***移动导轨和主试箱体底座。
所述主试验箱体主要包括主轴A、两个密封端盖、箱体、传感器座圈A。所述主轴A通过轴承安装在箱体内。所述箱体的两端通过带有油封的密封端盖封堵。所述主轴A的两端穿出箱体两端的密封端盖,其一端接入所述主试轴驱动伺服电机、另一端安装滚子试件。
所述传感器座圈A安装在其中一个密封端盖上。加速度传感器 安装在所述传感器座圈A上。所述主试验箱体的底部固定在主试验***底座上。所述主试验***底座通过主试***移动滑块安装在主试***移动导轨上。所述主试***移动导轨固定在所述实验平台上。所述主试验箱体沿主试***移动导轨滑动的方向垂直于主轴A的轴向。
所述陪试***包括陪试箱体、陪试件陪试箱底座和陪试轴驱动伺服电机。
所述陪试箱体主要包括主轴B、两个密封端盖、箱体。所述主轴B通过轴承安装在箱体内。所述箱体的两端通过带有油封的密封端盖封堵。所述主轴B的两端穿出箱体两端的密封端盖,其一端接入所述陪试轴驱动伺服电机、另一端安装陪试件。所述陪试箱体固定在实验平台上。所述陪试件的形状和尺寸与滚子试件相同。实验时,
所述加载***主要包括一个通过驱动电机驱动的伺服电缸。所述伺服电缸的安装底座固定在所述主试验***的一侧。伺服电缸的伸缩端安装压力传感器。所述压力传感器与主试验箱体接触。所述伺服电缸推动主试验箱体沿主试***移动导轨移动时,所述压力传感器测量加载在主试验箱体上的载荷。实验时,加载***推动主试验箱体,使得陪试件与滚子试件接触。
进一步,所述实验平台包括一个试验机底座。所述试验机底座的主体部分是一个柜体。该柜体下端安装滑轮、上表面是主、陪试箱体底座。所述主、陪试箱体底座是一个水平台面。
进一步,所述主试验箱体的箱体包括箱盖A、箱盖板A和下箱体A。所述下箱体A中空,其两端具有主轴孔。下箱体A内部安装主轴A、轴承NJ314A和轴承NJ310A。
所述下箱体A的上端敞口被箱盖A封闭。所述箱盖A具有一个检查孔。所述检查孔被箱盖板A封闭。
所述轴承NJ314A和轴承NJ310A的外圈固定在下箱体A中。所述主轴A穿过并固定在轴承NJ314A和轴承NJ310A的内圈。
所述主试验箱体的左侧的密封端盖包括骨架油封IA和左端盖A。所述主轴A的左侧穿过左端盖A的中心孔。所述左端盖A封闭下箱体A左侧的主轴孔。所述左端盖A面向主试验箱体内部的一侧安装骨架油封IA。所述主轴A穿过骨架油封IA。
所述主试验箱体的右侧的密封端盖包括骨架油封IIA和右端盖A。所述主轴A的右侧穿过右端盖A的中心孔。所述右端盖A封闭下箱体A右侧的主轴孔。所述右端盖A面向主试验箱体内部的一侧安装骨架油封IIA。所述主轴A穿过骨架油封IIA。
所述主轴A是通过轴端连接件A和滚子试件安装座A安装滚子试件。所述轴端连接件A是一个回转体,它通过键槽连接的方式,套装在主轴A的一端。轴端连接件A随着主轴A旋转。所述滚子试件安装座A是一个回转体,它的一端通过螺栓IIIA连接在轴端连接件A的端面、另一端固定滚子试件。陪试箱体的箱体包括箱盖B、箱盖板B和下箱体B。所述下箱体B中空,其两端具有主轴孔。下箱体B内部安装主轴B、轴承NJ314B和轴承NJ310B。
所述下箱体B的上端敞口被箱盖B封闭。所述箱盖B具有一个检查孔。所述检查孔被箱盖板B封闭。
所述轴承NJ314B和轴承NJ310B的外圈固定在下箱体B中。所述主轴B穿过并固定在轴承NJ314B和轴承NJ310B的内圈。
所述主试验箱体的左侧的密封端盖包括骨架油封IB和左端盖B。所述主轴B的左侧穿过左端盖B的中心孔。所述左端盖B封闭下箱体B左侧的主轴孔。所述左端盖B面向主试验箱体内部的一侧安装骨架油封IB。所述主轴B穿过骨架油封IB。
所述主试验箱体的右侧的密封端盖包括骨架油封IIB和右端盖B。所述主轴B的右侧穿过右端盖B的中心孔。所述右端盖B封闭下箱体B右侧的主轴孔。所述右端盖B面向主试验箱体内部的一侧安装骨架油封IIB。所述主轴B穿过骨架油封IIB。
所述主轴B是通过轴端连接件B和滚子试件安装座B安装陪试件。所述轴端连接件B是一个回转体,它通过键槽连接的方式,套装在主轴B的一端。轴端连接件B随着主轴B旋转。所述滚子试件安装座B是一个回转体,它的一端通过螺栓IIIB连接在轴端连接件B的端面、另一端固定陪试件。4.根据权利要求1所述的一种智能滚动接触疲劳试验***,其特征在于:还包括控制箱。通过所述控制箱来控制陪试轴驱动伺服电机和主试轴驱动伺服电机。
进一步,还包括润滑***。所述润滑***包括润滑油箱、油泵电机、油泵和润滑油壳。
所述油泵电机驱动油泵,使得润滑油箱的润滑油被抽出,并对主试验***、加载***和陪试***提供润滑油。
所述润滑油壳上端敞口。所述润滑油壳位于滚子试件下方。润滑油箱中的润滑油喷向滚子试件后,汇集到润滑油壳中,并重新回流润滑油箱。
基于上述智能滚动接触疲劳试验***的滚动接触疲劳试验方法,其特征在于:
包括一个测试装置。所述测试装置包括:光源、CCD相机和监测辅助装置。
所述光源为环形光源。所述光源环绕在CCD相机的镜筒上。
所述监测辅助装置包括箱体、油盒、润滑油管、竖直挡油板、倾斜挡油板和旋转毛刷。
所述箱体由顶板、左侧板、后侧板和前侧板组成。所述箱体下端的敞口扣在油盒上。
所述左侧板开孔。所述CCD相机和光源面向左侧板的开孔。
所述后侧板上面安装两个转轴。这两个转轴被连接直流电机的传动轴同时驱动。这两个转轴分别安装滚子试件和旋转毛刷。所述滚子试件面对CCD相机。
所述顶板上安装有润滑油喷头和竖直挡油板。所述润滑油喷头通过润滑油管供油。。所述竖直挡油板位于滚子试件的上方,所述竖直挡油板处于润滑油喷头与左侧板之间。所述倾斜挡油板的一侧连接在后侧板上。所述倾斜挡油板位于滚子试件的下方。
测试时,包括以下步骤:
1〕利用智能滚动接触疲劳试验***,使得滚子试件与陪试件相互接触、相互滚压。此过程中,记录压力传感器测得的载荷、加速度传感器测得的振动数据。
2〕在试验所设定的时间结束后,将滚子试件安装在监测辅助装置中,在润滑油喷射的状态下,使滚子试件与旋转毛刷同时旋转。
3〕调整CCD相机,动态采集滚子试件的表面图像。
4〕图像预处理:采用图像增强算法提高图像的锐化程度后,采用阈值算法确定图像亮区域并通过区域相减获得亮ROI图块。
5〕图像处理:采用边缘模板匹配算法进行滚子试件整周图像拼 接,采取阈值算法获取点蚀孔洞,并对凸显缺陷区域进行形态学分析。
6〕图像后处理:对图像缺陷区域进行连通域分析,根据特征挑选点蚀区域,并根据相机像素当量计算出点蚀区域的面积并对疲劳失效状态进行量化评估。
本发明的技术效果是毋庸置疑的,智能滚动接触疲劳试验***是研究轴承、齿轮、轴等关键基础零部件疲劳失效机理的重要装备,本发明针对现有滚动接触疲劳试验机不能量化评估滚子试件表面疲劳缺陷状态的现状,设计的基于机器视觉技术的滚子试件表面疲劳缺陷监测***,有利于获取准确可靠的材料接触疲劳数据,对实现工业强基工程,解决基础零部件、基础工艺、基础材料落后等问题具有十分重要的意义。同时该类***可增强轴承、齿轮、轴等关键基础零部件企业的研发实力和经济实力。
附图说明
图1接触疲劳试验***机械部分总布局
图2主、陪试验***主视图;
图3主、陪试验***俯视图;
图4主、陪试验***左视图;
图5润滑***俯视图;
图6润滑***主视图;
图7润滑***左视图;
图8主试验箱体305结构图;
图9陪试箱体705结构图。
图10监测***辅助装置
图11监测***辅助装置俯视图
图12辅助装置内部结构图
图13滚子试件表面图像采集处理流程
图14动态采集图像
图15图像增强效果图
图16灰度特征直方图
图17阈值处理
图18孔洞填充算法处理
图19区域相减
图20阈值处理结果
图21形态学分析
图22特征挑选
图23点蚀孔洞面积计算
图中:试验机底座1、主、陪试箱体底座2、主试验***3、加载***4、控制箱5、触摸显示屏6、陪试***7、试验机润滑***8、
主试验***底座301、主试轴驱动伺服电机302、主试轴联轴器303、主试轴转动盘304、主试验箱体305、滚子试件306、润滑油壳307、主试***移动滑块308、主试***移动导轨309、主试箱体底座310、主轴A3051、骨架油封IA3052、右端盖A3053、箱盖A3054、螺栓IA3055、箱盖板A3056、轴承NJ314A3057、轴承内挡圈A3058、轴承外挡圈IA3059、传感器座圈A30510、轴端连接件A30511、螺栓IIA30512、滚子试件安装座A30513、螺栓IIIA30514、螺栓IVA30515、左端盖A30517、骨架油封IIA30516、铜挡圈A30518、轴承NJ310A30519、轴承外挡圈IIA30520、螺栓VA30521、下箱体A30522、螺栓VIA30523。
压力传感器401、伺服电缸402、伺服电缸驱动电机403、直角减速机404、伺服电缸安装底座405、主试件加载装置406、
陪试箱底座701、陪试轴驱动伺服电机702、陪试轴联轴器703、陪试轴联轴器704、陪试箱体705、陪试件706、
润滑油箱811油泵电机805、油泵806、润滑油壳307油箱液位计812、润滑管路压力表813
直流电机S1、监测辅助装置S2、光源S3、镜筒S4、CCD相机S5、工作台S6、相机安装座S7、镜片S8、油盒S9、轴承座底座S10、传动轴S12、直流电机座S13、润滑油喷头S201、润滑油管S202、竖直挡油板S203、顶板S204、左侧板S205、后侧板S206、滚子试件306、右侧板S208、倾斜挡油板S209、旋转毛刷S210、前侧板S211。
具体实施方式
下面结合实施例对本发明作进一步说明,但不应该理解为本发明上述主题范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换 和变更,均应包括在本发明的保护范围内。
实施例1:
一种智能滚动接触疲劳试验***,其特征在于:主要包括主试验***3、加载***4和陪试***7。
所述主试验***3和陪试***7安装在同一个实验平台上。
所述主试验***3主要包括主试验***底座301、主试轴驱动伺服电机302、主试验箱体305、主试***移动滑块308、主试***移动导轨309和主试箱体底座310。
所述主试验箱体305主要包括主轴A3051、两个密封端盖、箱体、传感器座圈A30510。所述主轴A3051通过轴承安装在箱体内。所述箱体的两端通过带有油封的密封端盖封堵。所述主轴A3051的两端穿出箱体两端的密封端盖,其一端接入所述主试轴驱动伺服电机302、另一端安装滚子试件306。所述滚子试件306是一个金属圆柱体,其一端具有连接孔。
所述传感器座圈A30510安装在其中一个密封端盖上。加速度传感器安装在所述传感器座圈A30510上。所述加速度传感器用于测量振动,将其底部固定在传感器座圈A30510上即可。所述传感器座圈A30510与主轴A3051同心。所述主试验箱体305的底部固定在主试验***底座301上。所述主试验***底座301通过主试***移动滑块308安装在主试***移动导轨309上。所述主试***移动导轨309固定在所述实验平台上。所述主试验箱体305沿主试***移动导轨309滑动的方向垂直于主轴A3051的轴向。
所述陪试***7包括陪试箱体705、陪试件706陪试箱底座701和陪试轴驱动伺服电机702。
所述陪试箱体705主要包括主轴B7051、两个密封端盖、箱体。所述主轴B7051通过轴承安装在箱体内。所述箱体的两端通过带有油封的密封端盖封堵。所述主轴B7051的两端穿出箱体两端的密封端盖,其一端接入所述陪试轴驱动伺服电机702、另一端安装陪试件706。所述陪试箱体705固定在实验平台上。所述陪试件706的形状和尺寸与滚子试件306相同。实验时,
所述加载***4主要包括一个通过驱动电机403驱动的伺服电缸402。实施例中,驱动电机403通过直角减速机404驱动伺服电缸 402。所述伺服电缸的安装底座405固定在所述主试验***3的一侧。伺服电缸402的伸缩端安装压力传感器401。所述压力传感器401与主试验箱体305接触。所述伺服电缸402推动主试验箱体305沿主试***移动导轨309移动时,所述压力传感器401测量加载在主试验箱体305上的载荷。实验时,加载***4推动主试验箱体305,使得陪试件706与滚子试件306接触。二者均被驱动滚动。
实施例中,所述实验平台包括一个试验机底座1。所述试验机底座1的主体部分是一个柜体。该柜体下端安装滑轮、上表面是主、陪试箱体底座2。所述主、陪试箱体底座2是一个水平台面。
实施例中,所述主试验箱体305的箱体包括箱盖A3054、箱盖板A3056和下箱体A30522。所述下箱体A30522中空,其两端具有主轴孔。下箱体A30522内部安装主轴A3051、若干个轴承NJ314A3057和若干个轴承NJ310A30519。
所述下箱体A30522的上端敞口被箱盖A3054封闭。所述箱盖A3054具有一个检查孔。所述检查孔被箱盖板A3056封闭。所述箱盖板A3056通过螺栓IA3055固定于检查孔周边的螺孔中。
所述轴承NJ314A3057和轴承NJ310A30519的外圈固定在下箱体A30522中。所述主轴A3051穿过并固定在轴承NJ314A3057和轴承NJ310A30519的内圈。
所述主试验箱体305的左侧的密封端盖包括骨架油封IA3052和左端盖A30516。所述主轴A3051的左侧穿过左端盖A30516的中心孔。所述左端盖A3053封闭下箱体A30522左侧的主轴孔。左端盖A30516通过螺栓VIA30523固定在下箱体A30522左侧主轴孔的四周。所述左端盖A30516面向主试验箱体305内部的一侧安装骨架油封IA3052。所述主轴A3051穿过骨架油封IA3052。
所述主试验箱体305的右侧的密封端盖包括骨架油封IIA30516和右端盖A3053。所述主轴A3051的右侧穿过右端盖A3053的中心孔。所述右端盖A3053封闭下箱体A30522右侧的主轴孔。右端盖A3053通过螺栓VA30521固定在下箱体A30522右侧主轴孔的四周。所述右端盖A3053面向主试验箱体305内部的一侧安装骨架油封IIA30516。所述主轴A3051穿过骨架油封IIA30516。
所述主轴A3051是通过轴端连接件A30511和滚子试件安装座A30513安装滚子试件306。所述轴端连接件A30511是一个回转体,它通过键槽连接的方式,套装在主轴A3051的一端。轴端连接件A30511随着主轴A3051旋转。螺栓IIA30512旋入所述轴端连接件A30511和主轴A3051的旋转中心,以此方式将二者连接在一起。所述滚子试件安装座A30513是一个回转体,它的一端通过螺栓IIIA30514连接在轴端连接件A30511的端面、另一端固定滚子试件306。实施例中,滚子试件306的连接孔嵌套在安装座A30513上,滚子试件306和安装座A30513的端面均具有轴向的螺纹孔同轴,可以通过螺栓将二者连接。
所述传感器座圈A30510是一个金属环。这个金属环通过螺栓IVA30515固定在左端盖A30517上。轴端连接件A30511穿过这个金属环。所述轴端连接件A30511与传感器座圈A30510同轴,二者之间具有间隙。
陪试箱体705的箱体包括箱盖B7054、箱盖板B7056和下箱体B70522。所述下箱体B70522中空,其两端具有主轴孔。下箱体B70522内部安装主轴B7051、若干个轴承NJ314B7057和若干个轴承NJ310B70519。
所述下箱体B70522的上端敞口被箱盖B7054封闭。所述箱盖B7054具有一个检查孔。所述检查孔被箱盖板B7056封闭。所述箱盖板B7056通过螺栓IB7055固定于检查孔周边的螺孔中。
所述轴承NJ314B7057和轴承NJ310B70519的外圈固定在下箱体B70522中。所述主轴B7051穿过并固定在轴承NJ314B7057和轴承NJ310B70519的内圈。
所述主试验箱体305的左侧的密封端盖包括骨架油封IB7052和左端盖B70516。所述主轴B7051的左侧穿过左端盖B70516的中心孔。所述左端盖B7053封闭下箱体B70522左侧的主轴孔。左端盖B70516通过螺栓VIB70523固定在下箱体B70522左侧主轴孔的四周。所述左端盖B70516面向主试验箱体305内部的一侧安装骨架油封IB7052。所述主轴B7051穿过骨架油封IB7052。
所述主试验箱体305的右侧的密封端盖包括骨架油封IIB70516 和右端盖B7053。所述主轴B7051的右侧穿过右端盖B7053的中心孔。所述右端盖B7053封闭下箱体B70522右侧的主轴孔。右端盖B7053通过螺栓VB70521固定在下箱体B70522右侧主轴孔的四周。所述右端盖B7053面向主试验箱体305内部的一侧安装骨架油封IIB70516。所述主轴B7051穿过骨架油封IIB70516。
所述主轴B7051是通过轴端连接件B70511和滚子试件安装座B70513安装陪试件706。所述轴端连接件B70511是一个回转体,它通过键槽连接的方式,套装在主轴B7051的一端。轴端连接件B70511随着主轴B7051旋转。螺栓IIB70512旋入所述轴端连接件B70511和主轴B7051的旋转中心,以此方式将二者连接在一起。所述滚子试件安装座B70513是一个回转体,它的一端通过螺栓IIIB70514连接在轴端连接件B70511的端面、另一端固定陪试件706。实施例中,陪试件706的连接孔嵌套在安装座B70513上,陪试件706和安装座B70513的端面均具有轴向的螺纹孔同轴,可以通过螺栓将二者连接。
实施例中,还包括控制箱5。通过所述控制箱5来控制陪试轴驱动伺服电机702和主试轴驱动伺服电机302的转速、扭矩等。
实施例中,还包括润滑***。所述润滑***包括润滑油箱811、油泵电机805、油泵806和润滑油壳307。
所述油泵电机805驱动油泵806,使得润滑油箱811的润滑油被抽出,并对主试验***3、加载***4和陪试***7提供润滑油。
所述润滑油壳307上端敞口。所述润滑油壳307位于滚子试件306下方。润滑油箱811中的润滑油喷向滚子试件306后,汇集到润滑油壳307中,并重新回流润滑油箱811。
实施例中,所述润滑油箱811带有油箱液位计812和润滑管路压力表813。
实施例2:
一种基于实施例1所述的智能滚动接触疲劳试验***的滚动接触疲劳试验方法,
获取试件表面满足试验要求的疲劳缺陷图像是进行滚子试件表面疲劳缺陷精准量化评估的关键,本发明基于机器视觉技术采用CCD 相机、光源、监测辅助装置等搭建了满足滚动接触疲劳试验要求的滚子试件表面疲劳缺陷图像采集环境及***,融合多种图像处理算法编写图像采集处理程序对试件表面图像进行周向拼接和处理,并获得精准的点蚀区域面积。图像采集、处理流程如图13所示。
所述测试装置包括:光源S3、CCD相机S5和监测辅助装置S2。
所述光源S3为环形光源。所述光源S3环绕在CCD相机S5的镜筒S4上。即CCD相机S5的镜片S8位于光源S3的中心。
所述监测辅助装置S2包括箱体、油盒S9、润滑油管S202、竖直挡油板S203、倾斜挡油板S209和旋转毛刷S210。
所述箱体由顶板S204、左侧板S205、后侧板S206和前侧板S211组成。所述箱体下端的敞口扣在油盒S9上。
所述左侧板S205开孔。所述CCD相机S5和光源S3面向左侧板S205的开孔。
所述后侧板S206上面安装两个转轴。这两个转轴被连接直流电机的传动轴S12同时驱动,二者旋向相反。这两个转轴分别安装滚子试件306和旋转毛刷S210。所述滚子试件306面对CCD相机S5。
所述顶板S204上安装有润滑油喷头S201和竖直挡油板S203。所述润滑油喷头S201通过润滑油管S202供油。所述润滑油喷头S201向滚子试件306喷油。所述旋转毛刷S210刷匀滚子试件306表面的润滑油。所述竖直挡油板S203位于滚子试件306的上方,所述竖直挡油板S203处于润滑油喷头S201与左侧板S205之间,避免润滑油飞溅影响CCD相机S5工作。所述倾斜挡油板S209的一侧连接在后侧板S206上。所述倾斜挡油板S209位于滚子试件306的下方,使得旋转毛刷S210刷除的润滑油汇入油盒S9,避免飞溅,进而重新循环使用。
实施例中,测试装置包括工作台S6和相机安装座S7。
所述油盒S9和相机安装座S7固定在工作台S6上。所述CCD相机S5被架设在相机安装座S7上。
由图13可看出,滚子试件表面图像采集处理的基本流程是:在进行滚子试件表面监测前,首先需调整相机的工作距离,并对相机像素进行当量标定,并根据单片机记录的脉冲个数出发相机进行试 件表面动态图像采集,采集到的图像处理流程分为三步。
即,测试时,包括以下步骤:
1〕利用智能滚动接触疲劳试验***,使得滚子试件306与陪试件706相互接触、相互滚压。此过程中,记录压力传感器401测得的载荷、加速度传感器测得的振动数据。
2〕在试验所设定的时间结束后,将滚子试件306安装在监测辅助装置S2中,在润滑油喷射的状态下,使滚子试件306与旋转毛刷S210同时旋转。
3〕调整CCD相机S5,动态采集滚子试件306的表面图像。
4〕图像预处理:采用图像增强算法提高图像的锐化程度后,采用阈值算法确定图像亮区域并通过区域相减获得亮ROI图块。
5〕图像处理:采用边缘模板匹配算法进行滚子试件306整周图像拼接,采取阈值算法获取点蚀孔洞,并对凸显缺陷区域进行形态学分析。
6〕图像后处理:对图像缺陷区域进行连通域分析,根据特征挑选点蚀区域,并根据相机像素当量计算出点蚀区域的面积并对疲劳失效状态进行量化评估。
值得说明的是,滚子试件是圆柱形的弧面,且光路具有放射和漫反射特性。因此,采用低角度环形光搭建光路环境,并标定相机像素当量,便于获取单个像素的实际大小。本***通过STM32单片机采集编码器的脉冲并累加到指定的数量并外触发拍照。
相机获取的动态图像(如图14)通过halcon软件工具箱中的图像增强算法提高图像锐化度,锐化的数学原理如下:
设原图像矩阵为X,经中值滤波的图像矩阵为Y,对比度系数a,输出图像矩阵Z,则图像增强原理公式为:Z=((X-Y)*a)+X,图像增强后的效果如图15。
通过分析图像灰度特征直方图(如图16),采用基于色差的固定阈值图像分割算法,算法原理表达式为:
Figure PCTCN2017083145-appb-000001
以T0=30为临界值,分割出亮区域(如图8)。并且使用bolb分析获取完整的亮区域(如图9)。通过区域相减算法获取亮区域图块(如图19),选择每幅图像公共部分作为模板,使用边缘灰度模板匹配算法,定位到每幅图模板区域位置,然后使用放射变换算法使公共区域重叠,从而实现ROI区域的拼接,得到试件整周表面的图像。
对拼接后的图像进行阈值算法处理,获取图像的点蚀孔洞部分(如图20),并对提取的缺陷部分进行形态学处理以获得缺陷部分的完整性(如图21)。对提取缺损的区域进行8连通域分析,然后对每一个区域进行特征分析使用区域的面积和高度特征挑选出试件的缺陷部分(如图22)。使用区域面积分析算法获取区域面积像素个数15354(如图23)。
根据标定结果获取区域面积实际大小,即可量化评估滚子试件表面缺陷程度。

Claims (6)

  1. 一种智能滚动接触疲劳试验***,其特征在于:主要包括所述主试验***(3)、加载***(4)和陪试***(7);
    所述主试验***(3)和陪试***(7)安装在同一个实验平台上;
    所述主试验***(3)主要包括主试验***底座(301)、主试轴驱动伺服电机(302)、主试验箱体(305)、主试***移动滑块(308)、主试***移动导轨(309)和主试箱体底座(310);
    所述主试验箱体(305)主要包括主轴A(3051)、两个密封端盖、箱体、传感器座圈A(30510);所述主轴A(3051)通过轴承安装在箱体内;所述箱体的两端通过带有油封的密封端盖封堵;所述主轴A(3051)的两端穿出箱体两端的密封端盖,其一端接入所述主试轴驱动伺服电机(302)、另一端安装滚子试件(306);
    所述传感器座圈A(30510)安装在其中一个密封端盖上;加速度传感器安装在所述传感器座圈A(30510)上;所述主试验箱体(305)的底部固定在主试验***底座(301)上;所述主试验***底座(301)通过主试***移动滑块(308)安装在主试***移动导轨(309)上;所述主试***移动导轨(309)固定在所述实验平台上;所述主试验箱体(305)沿主试***移动导轨(309)滑动的方向垂直于主轴A(3051)的轴向;
    所述陪试***(7)包括陪试箱体(705)、陪试件(706)陪试箱底座(701)和陪试轴驱动伺服电机(702);
    所述陪试箱体(705)主要包括主轴B(7051)、两个密封端盖、箱体;所述主轴B(7051)通过轴承安装在箱体内;所述箱体的两端通过带有油封的密封端盖封堵;所述主轴B(7051)的两端穿出箱体两端的密封端盖,其一端接入所述陪试轴驱动伺服电机(702)、另一端安装陪试件(706);所述陪试箱体(705)固定在实验平台上;所述陪试件(706)的形状和尺寸与滚子试件(306)相同;实验时,
    所述加载***(4)主要包括一个通过驱动电机(403)驱动的伺服电缸(402);所述伺服电缸的安装底座(405)固定在所述主试验***(3)的一侧;伺服电缸(402)的伸缩端安装压力传感器(401);所述压力传感器(401)与主试验箱体(305)接触;所述伺服电缸(402)推动主试验箱体(305)沿主试***移动导轨(309)移动时, 所述压力传感器(401)测量加载在主试验箱体(305)上的载荷;实验时,加载***(4)推动主试验箱体(305),使得陪试件(706)与滚子试件(306)接触。
  2. 根据权利要求1所述的一种智能滚动接触疲劳试验***,其特征在于:所述实验平台包括一个试验机底座(1);所述试验机底座(1)的主体部分是一个柜体;该柜体下端安装滑轮、上表面是主、陪试箱体底座(2);所述主、陪试箱体底座(2)是一个水平台面。
  3. 根据权利要求1或2所述的一种智能滚动接触疲劳试验***,其特征在于:所述主试验箱体(305)的箱体包括箱盖A(3054)、箱盖板A(3056)和下箱体A(30522);所述下箱体A(30522)中空,其两端具有主轴孔;下箱体A(30522)内部安装主轴A(3051)、轴承NJ314A(3057)和轴承NJ310A(30519);
    所述下箱体A(30522)的上端敞口被箱盖A(3054)封闭;所述箱盖A(3054)具有一个检查孔;所述检查孔被箱盖板A(3056)封闭;
    所述轴承NJ314A(3057)和轴承NJ310A(30519)的外圈固定在下箱体A(30522)中;所述主轴A(3051)穿过并固定在轴承NJ314A(3057)和轴承NJ310A(30519)的内圈。
    所述主试验箱体(305)的左侧的密封端盖包括骨架油封IA(3052)和左端盖A(30516);所述主轴A(3051)的左侧穿过左端盖A(30516)的中心孔;所述左端盖A(3053)封闭下箱体A(30522)左侧的主轴孔;所述左端盖A(30516)面向主试验箱体(305)内部的一侧安装骨架油封IA(3052);所述主轴A(3051)穿过骨架油封IA(3052);
    所述主试验箱体(305)的右侧的密封端盖包括骨架油封IIA(30516)和右端盖A(3053);所述主轴A(3051)的右侧穿过右端盖A(3053)的中心孔;所述右端盖A(3053)封闭下箱体A(30522)右侧的主轴孔;所述右端盖A(3053)面向主试验箱体(305)内部的一侧安装骨架油封IIA(30516);所述主轴A(3051)穿过骨架油封IIA(30516);
    所述主轴A(3051)是通过轴端连接件A(30511)和滚子试件安装座A(30513)安装滚子试件(306);所述轴端连接件A(30511) 是一个回转体,它通过键槽连接的方式,套装在主轴A(3051)的一端;轴端连接件A(30511)随着主轴A(3051)旋转;所述滚子试件安装座A(30513)是一个回转体,它的一端通过螺栓IIIA(30514)连接在轴端连接件A(30511)的端面、另一端固定滚子试件(306)。
    陪试箱体(705)的箱体包括箱盖B(7054)、箱盖板B(7056)和下箱体B(70522);所述下箱体B(70522)中空,其两端具有主轴孔;下箱体B(70522)内部安装主轴B(7051)、轴承NJ314B(7057)和轴承NJ310B(70519);
    所述下箱体B(70522)的上端敞口被箱盖B(7054)封闭;所述箱盖B(7054)具有一个检查孔;所述检查孔被箱盖板B(7056)封闭;
    所述轴承NJ314B(7057)和轴承NJ310B(70519)的外圈固定在下箱体B(70522)中;所述主轴B(7051)穿过并固定在轴承NJ314B(7057)和轴承NJ310B(70519)的内圈。
    所述陪试箱体(705)的左侧的密封端盖包括骨架油封IB(7052)和左端盖B(70516);所述主轴B(7051)的左侧穿过左端盖B(70516)的中心孔;所述左端盖B(7053)封闭下箱体B(70522)左侧的主轴孔;所述左端盖B(70516)面向主试验箱体(305)内部的一侧安装骨架油封IB(7052);所述主轴B(7051)穿过骨架油封IB(7052);
    所述陪试箱体(705)的右侧的密封端盖包括骨架油封IIB(70516)和右端盖B(7053);所述主轴B(7051)的右侧穿过右端盖B(7053)的中心孔;所述右端盖B(7053)封闭下箱体B(70522)右侧的主轴孔;所述右端盖B(7053)面向陪试箱体(705)内部的一侧安装骨架油封IIB(70516);所述主轴B(7051)穿过骨架油封IIB(70516);
    所述主轴B(7051)是通过轴端连接件B(70511)和滚子试件安装座B(70513)安装陪试件(706);所述轴端连接件B(70511)是一个回转体,它通过键槽连接的方式,套装在主轴B(7051)的一端;轴端连接件B(70511)随着主轴B(7051)旋转;所述滚子试件安装座B(70513)是一个回转体,它的一端通过螺栓IIIB(70514)连接在轴端连接件B(70511)的端面、另一端固定陪试件(706)。
  4. 根据权利要求1或3所述的一种智能滚动接触疲劳试验系 统,其特征在于:还包括控制箱(5);通过所述控制箱(5)来控制陪试轴驱动伺服电机(702)和主试轴驱动伺服电机(302)。
  5. 根据权利要求1或3所述的一种智能滚动接触疲劳试验***,其特征在于:还包括润滑***;所述润滑***包括润滑油箱(811)、油泵电机(805)、油泵(806)和润滑油壳(307);
    所述油泵电机(805)驱动油泵(806),使得润滑油箱(811)的润滑油被抽出,并对主试验***(3)、加载***(4)和陪试***(7)提供润滑油;
    所述润滑油壳(307)上端敞口;所述润滑油壳(307)位于滚子试件(306)下方;润滑油箱(811)中的润滑油喷向滚子试件(306)后,汇集到润滑油壳(307)中,并重新回流润滑油箱(811)。
  6. 一种基于权利要求1~5所述的智能滚动接触疲劳试验***的滚动接触疲劳试验方法,其特征在于:
    包括一个测试装置;所述测试装置包括:光源(S3)、CCD相机(S5)和监测辅助装置(S2);
    所述光源(S3)为环形光源;所述光源(S3)环绕在CCD相机(S5)的镜筒(S4)上;
    所述监测辅助装置(S2)包括箱体、油盒(S9)、润滑油管(S202)、竖直挡油板(S203)、倾斜挡油板(S209)和旋转毛刷(S210);
    所述箱体由顶板(S204)、左侧板(S205)、后侧板(S206)和前侧板(S211)组成;所述箱体下端的敞口扣在油盒(S9)上;
    所述左侧板(S205)开孔;所述CCD相机(S5)和光源(S3)面向左侧板(S205)的开孔;
    所述后侧板(S206)上面安装两个转轴;这两个转轴被连接直流电机的传动轴(S12)同时驱动;这两个转轴分别安装滚子试件(306)和旋转毛刷(S210);所述滚子试件(306)面对CCD相机(S5);
    所述顶板(S204)上安装有润滑油喷头(S201)和竖直挡油板(S203);所述润滑油喷头(S201)通过润滑油管(S202)供油;;所述竖直挡油板(S203)位于滚子试件(306)的上方,所述竖直挡油板(S203)处于润滑油喷头(S201)与左侧板(S205)之间;所述倾斜挡油板(S209)的一侧连接在后侧板(S206)上;所述倾斜挡油板(S209)位于滚子试件(306)的下方;
    测试时,包括以下步骤:
    1〕利用智能滚动接触疲劳试验***,使得滚子试件(306)与陪试件(706)相互接触、相互滚压;此过程中,记录压力传感器(401)测得的载荷、加速度传感器测得的振动数据;
    2〕在试验所设定的时间结束后,将滚子试件(306)安装在监测辅助装置(S2)中,在润滑油喷射的状态下,使滚子试件(306)与旋转毛刷(S210)同时旋转;
    3〕调整CCD相机(S5),动态采集滚子试件(306)的表面图像;
    4〕图像预处理:采用图像增强算法提高图像的锐化程度后,采用阈值算法确定图像亮区域并通过区域相减获得亮ROI图块。
    5〕图像处理:采用边缘模板匹配算法进行滚子试件(306)整周图像拼接,采取阈值算法获取点蚀孔洞,并对凸显缺陷区域进行形态学分析。
    6〕图像后处理:对图像缺陷区域进行连通域分析,根据特征挑选点蚀区域,并根据相机像素当量计算出点蚀区域的面积并对疲劳失效状态进行量化评估。
PCT/CN2017/083145 2017-05-04 2017-05-05 一种智能滚动接触疲劳试验***及其测试方法 WO2018201424A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/488,604 US11408808B2 (en) 2017-05-04 2017-05-05 Intelligent rolling contact fatigue testing system and testing method therefor

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201720488369.0U CN207408077U (zh) 2017-05-04 2017-05-04 一种滚动接触疲劳试验台
CN201720488411.9 2017-05-04
CN201720488411.9U CN207336031U (zh) 2017-05-04 2017-05-04 一种滚动接触疲劳试验***
CN201720488370.3 2017-05-04
CN201720488369.0 2017-05-04
CN201720488370.3U CN207074179U (zh) 2017-05-04 2017-05-04 一种金属表面缺陷测量***
CN201710309480.3 2017-05-04
CN201720488405.3 2017-05-04
CN201710309480.3A CN107941479A (zh) 2017-05-04 2017-05-04 一种智能滚动接触疲劳试验***及其测试方法
CN201720488405.3U CN207336030U (zh) 2017-05-04 2017-05-04 一种可测量回转体零件疲劳振动的主轴箱

Publications (1)

Publication Number Publication Date
WO2018201424A1 true WO2018201424A1 (zh) 2018-11-08

Family

ID=64016923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083145 WO2018201424A1 (zh) 2017-05-04 2017-05-05 一种智能滚动接触疲劳试验***及其测试方法

Country Status (2)

Country Link
US (1) US11408808B2 (zh)
WO (1) WO2018201424A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109297820A (zh) * 2018-12-01 2019-02-01 洛阳恒辉实业有限公司 一种拉杆旅行箱综合疲劳检测装置
CN109946079A (zh) * 2019-03-14 2019-06-28 济南益华摩擦学测试技术有限公司 一种水润滑滑动轴承摩擦磨损试验机
CN110411831A (zh) * 2019-07-29 2019-11-05 泸州临港工业化建筑科技有限公司 一种有利于避免废料四溅的建筑材料生产用强度检测装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CO2016005750A1 (es) * 2016-12-23 2018-07-10 Univ Industrial De Santander Máquina para fatiga multiaxial
CN112414942B (zh) * 2020-11-27 2023-09-01 长安大学 一种检测空间密闭拍摄距离可调的可视化缆索检测装置
CN112485148B (zh) * 2020-11-30 2024-06-04 合肥工业大学 一种三点式滑滚接触疲劳磨损试验机
CN113551896A (zh) * 2021-07-19 2021-10-26 朗顺精密技术(苏州)有限公司 一种油封耐久性测试设备
CN114923682B (zh) * 2022-05-17 2023-10-24 北京通嘉宏瑞科技有限公司 一种轴封寿命加速验证试验机及试验方法
CN116183423B (zh) * 2023-04-28 2023-08-08 标格达精密仪器(广州)有限公司 一种基于图像识别的智能刷洗***

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001013083A (ja) * 1999-06-30 2001-01-19 Tokyo Seimitsu Co Ltd 球体外観検査装置
CN201051048Y (zh) * 2007-05-22 2008-04-23 比亚迪股份有限公司 一种转动轴***及离合器盖总成动静态分离耐久性试验台
CN101750259A (zh) * 2010-01-19 2010-06-23 西南交通大学 一种小位移往复滚动摩擦磨损试验装置
CN102266949A (zh) * 2011-07-29 2011-12-07 山东宏康机械制造有限公司 铣镗床主轴箱传动***
CN102384880A (zh) * 2011-10-09 2012-03-21 中华人民共和国温州出入境检验检疫局 鞋类自动耐磨测试装置
CN102494963A (zh) * 2011-11-04 2012-06-13 中国航空工业集团公司北京航空精密机械研究所 一种滚柱元件滚动接触疲劳试验机
CN102879197A (zh) * 2012-09-27 2013-01-16 重庆大学 一种转动传动副机构在线检测实验机
CN104155102A (zh) * 2014-07-15 2014-11-19 重庆大学 一种多用途机械零部件传动与摩擦实验台
CN105136805A (zh) * 2015-07-24 2015-12-09 哈尔滨工业大学 基于流体驱动的轴承球转动及表面缺陷检测装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452065A (en) * 1981-08-28 1984-06-05 Federal-Mogul Corporation Rolling contact fatigue test assembly
US5837882A (en) * 1997-06-05 1998-11-17 Ntn Corporation Stationary element rolling contact fatigue tester
US6427541B1 (en) * 1999-01-15 2002-08-06 Mitjan Kalin Apparatus for testing rolling contact fatigue resistance of materials with possible interruptions
US20080168823A1 (en) * 2007-01-17 2008-07-17 Gentek Technologies Marketing Inc. Roller fatigue test apparatus
CN112414880A (zh) * 2020-11-12 2021-02-26 中机试验装备股份有限公司 金属材料滚动接触疲劳摩擦磨损试验台

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001013083A (ja) * 1999-06-30 2001-01-19 Tokyo Seimitsu Co Ltd 球体外観検査装置
CN201051048Y (zh) * 2007-05-22 2008-04-23 比亚迪股份有限公司 一种转动轴***及离合器盖总成动静态分离耐久性试验台
CN101750259A (zh) * 2010-01-19 2010-06-23 西南交通大学 一种小位移往复滚动摩擦磨损试验装置
CN102266949A (zh) * 2011-07-29 2011-12-07 山东宏康机械制造有限公司 铣镗床主轴箱传动***
CN102384880A (zh) * 2011-10-09 2012-03-21 中华人民共和国温州出入境检验检疫局 鞋类自动耐磨测试装置
CN102494963A (zh) * 2011-11-04 2012-06-13 中国航空工业集团公司北京航空精密机械研究所 一种滚柱元件滚动接触疲劳试验机
CN102879197A (zh) * 2012-09-27 2013-01-16 重庆大学 一种转动传动副机构在线检测实验机
CN104155102A (zh) * 2014-07-15 2014-11-19 重庆大学 一种多用途机械零部件传动与摩擦实验台
CN105136805A (zh) * 2015-07-24 2015-12-09 哈尔滨工业大学 基于流体驱动的轴承球转动及表面缺陷检测装置及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109297820A (zh) * 2018-12-01 2019-02-01 洛阳恒辉实业有限公司 一种拉杆旅行箱综合疲劳检测装置
CN109946079A (zh) * 2019-03-14 2019-06-28 济南益华摩擦学测试技术有限公司 一种水润滑滑动轴承摩擦磨损试验机
CN109946079B (zh) * 2019-03-14 2023-11-28 济南益华摩擦学测试技术有限公司 一种水润滑滑动轴承摩擦磨损试验机
CN110411831A (zh) * 2019-07-29 2019-11-05 泸州临港工业化建筑科技有限公司 一种有利于避免废料四溅的建筑材料生产用强度检测装置
CN110411831B (zh) * 2019-07-29 2021-09-21 泸州临港工业化建筑科技有限公司 一种有利于避免废料四溅的建筑材料生产用强度检测装置

Also Published As

Publication number Publication date
US11408808B2 (en) 2022-08-09
US20200049603A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
WO2018201424A1 (zh) 一种智能滚动接触疲劳试验***及其测试方法
EP1995553B1 (en) System and method for identifying a feature of a workpiece
CN107941479A (zh) 一种智能滚动接触疲劳试验***及其测试方法
CN110554050B (zh) 摄像视频图像采集的螺孔螺纹检查装置和螺纹检查方法
JP4739044B2 (ja) 外観検査装置
CN102374996A (zh) 伞齿轮全齿侧面缺陷多目检测装置及其检测方法
CN108067714A (zh) 一种薄壁环缝端接质量在线监测与缺陷定位***及方法
CN102183578B (zh) 一种轮对荧光磁粉探伤机
CN111220535A (zh) 用于评估金属材料表面均匀腐蚀的检测设备
CN201732061U (zh) 一种轮对荧光磁粉探伤机
CN213750363U (zh) 一种滤清器检测用环形检测设备
CN220040286U (zh) 液压启闭机活塞杆锈蚀检测装置的可调节爬升机构
Li et al. Visual inspection of weld surface quality
CN208140527U (zh) 一种旋转式铁谱仪谱片图像采集***
CN115575402A (zh) 一种收口筒形零件内壁缺陷智能识别、计算、判断方法
CN207336031U (zh) 一种滚动接触疲劳试验***
CN202486053U (zh) 一种多功能煤、焦显微分析***
JPH08505478A (ja) 固体の1つの面の表面状態を制御する方法および関連する装置
CN211667598U (zh) 一种便于报警显示的石油化工管道泄漏巡检机器人
CN209945642U (zh) 一种核一级高放阀门焊缝自动渗透检测装置
CN112051272A (zh) 一种基于机器视觉的高压气瓶内表面缺陷检测***
CN211697461U (zh) 一种视觉缺陷检测识别装置
CN114384090B (zh) 一种强度试验中机身筒段损伤检测装置及检测方法
Zhifeng Measuring diameter of non-threaded hex bolts based on hough transform
CN215366468U (zh) 一种带视觉检测的便捷高效智能验布机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908520

Country of ref document: EP

Kind code of ref document: A1