WO2018198998A1 - ゴム架橋物の製造方法 - Google Patents

ゴム架橋物の製造方法 Download PDF

Info

Publication number
WO2018198998A1
WO2018198998A1 PCT/JP2018/016399 JP2018016399W WO2018198998A1 WO 2018198998 A1 WO2018198998 A1 WO 2018198998A1 JP 2018016399 W JP2018016399 W JP 2018016399W WO 2018198998 A1 WO2018198998 A1 WO 2018198998A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
acid
weight
crosslinking
cross
Prior art date
Application number
PCT/JP2018/016399
Other languages
English (en)
French (fr)
Inventor
敦弘 塩野
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2019514475A priority Critical patent/JP7103352B2/ja
Publication of WO2018198998A1 publication Critical patent/WO2018198998A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/14Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules

Definitions

  • the present invention relates to a method for producing a rubber cross-linked product of a nitrile group-containing copolymer rubber, and more particularly, a rubber cross-linked product having good normal state properties and good tear strength and excellent compression set resistance. Is related with the manufacturing method of the rubber crosslinked material which can be manufactured with high productivity.
  • Nitrile rubber (acrylonitrile-butadiene copolymer rubber) has been used as a material for automotive rubber parts such as hoses and seals, taking advantage of oil resistance, mechanical properties, chemical resistance, etc.
  • Hydrogenated nitrile rubber (hydrogenated acrylonitrile-butadiene copolymer rubber) in which carbon-carbon double bonds in the polymer main chain of rubber are hydrogenated is further excellent in mechanical properties and heat resistance, so rubbers such as belts, hoses, diaphragms, etc. Used for parts.
  • Patent Document 1 has an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and a monoester monomer unit of ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid, and has an iodine value of 120 or less.
  • a rubber composition containing a certain highly saturated nitrile rubber and a polyamine-based crosslinking agent is press-molded at 170 ° C. for 20 minutes, and then subjected to secondary crosslinking at 170 ° C. for 4 hours to obtain a crosslinked rubber product. Obtaining techniques are disclosed.
  • Patent Document 1 Although a normal rubber property and tear strength are good and a rubber cross-linked product having excellent compression set resistance can be obtained, it is long in the cross-linking step in obtaining the rubber cross-linked product. Time processing is required, and therefore improvement has been desired from the viewpoint of improving productivity.
  • the present invention has been made in view of such a situation, and is a rubber capable of producing a rubber cross-linked product having excellent normal properties and tear strength and having excellent compression set resistance with high productivity. It aims at providing the manufacturing method of a crosslinked material.
  • the present inventors have determined that a specific amount of ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and a single amount of ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester
  • a crosslinkable rubber composition containing a nitrile group-containing highly saturated copolymer rubber containing a body unit and having an iodine value of 120 or less and a polyamine crosslinking agent is heated at a temperature of 200 ° C. or more simultaneously with molding.
  • a crosslinkable rubber composition containing a nitrile group-containing copolymer rubber having an iodine value of 120 or less and a polyamine-based crosslinking agent is crosslinked by heating at a temperature of 200 ° C. or more simultaneously with molding.
  • a method for producing a rubber cross-linked product to obtain a rubber cross-linked product is provided.
  • the crosslinkable rubber composition is crosslinked by heating at a temperature of 200 ° C. or more for 10 to 60 minutes simultaneously with molding to obtain a crosslinked rubber product.
  • the heating operation is not performed after the crosslinking is performed by heating at a temperature of 200 ° C. or more simultaneously with the molding.
  • the nitrile group-containing copolymer rubber preferably further contains 20 to 89% by weight of a conjugated diene monomer unit (including a hydrogenated portion).
  • the crosslinkable rubber composition further contains a basic crosslinking accelerator having a cyclic amidine structure.
  • the method for producing a crosslinked rubber product of the present invention comprises 10 to 60% by weight of ⁇ , ⁇ -ethylenically unsaturated nitrile monomer units and 1 to 60 ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomer units.
  • the crosslinkable rubber composition used in the present invention comprises 10 to 60% by weight of an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and 1 to 1 ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomer unit.
  • a nitrile group-containing copolymer rubber containing 60% by weight and having an iodine value of 120 or less and a polyamine-based crosslinking agent are contained.
  • the nitrile group-containing copolymer rubber and the polyamine crosslinking agent will be described in this order.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer forming the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit of the nitrile group-containing copolymer rubber used in the present invention includes ⁇ , ⁇ having a nitrile group.
  • -Ethylenically unsaturated compounds are not limited and include acrylonitrile; ⁇ -halogenoacrylonitriles such as ⁇ -chloroacrylonitrile and ⁇ -bromoacrylonitrile; ⁇ -alkylacrylonitriles such as methacrylonitrile and ethacrylonitrile; Among these, acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is particularly preferable.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer may be used alone or in combination of two or more.
  • the content ratio of ⁇ , ⁇ -ethylenically unsaturated nitrile monomer units in the nitrile group-containing copolymer rubber used in the present invention is 10 to 60% by weight, preferably 10%, based on all monomer units. -50% by weight, more preferably 15-45% by weight. If the content ratio of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is too small, the oil resistance of the resulting rubber cross-linked product is lowered. On the other hand, if the amount is too large, the cold resistance of the resulting rubber cross-linked product is lowered.
  • the ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomer unit forming the ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomer unit includes monomethyl maleate, monoethyl maleate, monopropyl maleate, Maleic acid monoalkyl esters such as mono-n-butyl maleate; maleic acid monocycloalkyl esters such as monocyclopentyl maleate, monocyclohexyl maleate, monocycloheptyl maleate; monomethylcyclopentyl maleate, monoethylcyclohexyl maleate, etc.
  • Monoalkyl cycloalkyl esters of maleic acid monoalkyl esters of fumaric acid such as monomethyl fumarate, monoethyl fumarate, monopropyl fumarate, mono-n-butyl fumarate; monocyclopentyl fumarate, fumaric acid
  • monocycloalkyl esters of fumaric acid such as monocyclohexyl luric acid and monocycloheptyl fumarate
  • monomethylcyclopentyl fumarate monoalkylcycloalkyl fumaric acid such as monoethylcyclohexyl fumarate
  • Citraconic acid monoalkyl esters such as propyl and monon-butyl citraconic acid
  • Citraconic acid monocycloalkyl esters such as citraconic acid monocyclopentyl, citraconic acid monocyclohexyl and citraconic acid monocycl
  • the ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomer may be used alone or in combination of two or more.
  • ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoalkyl ester monomers are more preferable, maleic acid monoalkyl esters are more preferable, and mono-n-butyl maleate is particularly preferable.
  • the number of carbon atoms in the alkyl group of the alkyl ester is preferably 2-8.
  • the content ratio of the ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomer unit in the nitrile group-containing copolymer rubber used in the present invention is 1 to 60% by weight in the total monomer units, The amount is preferably 1 to 10% by weight, more preferably 3 to 8% by weight.
  • the content ratio of the ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomer unit is too small, the compression set resistance of the resulting rubber cross-linked product is lowered.
  • the amount is too large, the elongation, which is one of the mechanical properties of the resulting rubber cross-linked product, is lowered.
  • the nitrile group-containing copolymer rubber used in the present invention preferably contains a conjugated diene monomer unit so that the resulting rubber cross-linked product has rubber elasticity.
  • conjugated diene monomer forming the conjugated diene monomer unit examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, chloroprene and the like having 4 to 4 carbon atoms. 6 conjugated diene monomers are preferred, 1,3-butadiene and isoprene are more preferred, and 1,3-butadiene is particularly preferred.
  • the conjugated diene monomer may be used alone or in combination of two or more.
  • the content of the conjugated diene monomer unit (including the hydrogenated part) is preferably 20 to 89% by weight, more preferably 30 to 80% by weight, and still more preferably based on the total monomer units. 40 to 75% by weight.
  • the nitrile group-containing copolymer rubber used in the present invention includes an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and an ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomer unit, and
  • units containing other monomers that can be copolymerized with the monomers that form them may also be contained.
  • Such other monomers include ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid monomers, ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid ester monomers, ⁇ , ⁇ -ethylenically unsaturated monomers.
  • Polyvalent carboxylic acid monomers except those corresponding to ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomers
  • ethylene, ⁇ -olefin monomers, aromatic vinyl monomers, fluorine-containing Examples include vinyl monomers and copolymerizable anti-aging agents.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid monomer include acrylic acid, methacrylic acid, ethyl acrylic acid, crotonic acid, and cinnamic acid.
  • Examples of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid ester monomers include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, n-dodecyl acrylate, methyl methacrylate, and ethyl methacrylate.
  • (Meth) acrylic acid ester having an alkyl group having 1 to 18 carbon atoms (abbreviation of “methacrylic acid ester and acrylic acid ester”; the same shall apply hereinafter); methoxymethyl acrylate, methoxyethyl acrylate, ethoxypropyl acrylate, (Meth) acrylic acid ester having a C2-C18 alkoxyalkyl group such as methoxybutyl acrylate, ethoxydodecyl acrylate, methoxyethyl methacrylate, methoxybutyl methacrylate, ethoxypentyl methacrylate; ⁇ -cyanoethyl acrylate; (Meth) acrylic acid esters having a cyanoalkyl group having 2 to 12 carbon atoms such as ⁇ -cyanoethyl tacrylate and cyanobutyl methacrylate; 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyeth
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic acid monomer include butenedionic acid such as fumaric acid and maleic acid, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, allylmalonic acid, and teraconic acid.
  • Examples of the anhydride of ⁇ , ⁇ -unsaturated polyvalent carboxylic acid include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like.
  • the ⁇ -olefin monomer preferably has 3 to 12 carbon atoms, and examples thereof include propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and 1-octene.
  • aromatic vinyl monomer examples include styrene, ⁇ -methylstyrene, vinyl pyridine and the like.
  • fluorine-containing vinyl monomer examples include fluoroethyl vinyl ether, fluoropropyl vinyl ether, o-trifluoromethylstyrene, vinyl pentafluorobenzoate, difluoroethylene, and tetrafluoroethylene.
  • copolymerizable anti-aging agents examples include N- (4-anilinophenyl) acrylamide, N- (4-anilinophenyl) methacrylamide, N- (4-anilinophenyl) cinnamamide, N- (4-anilino). Phenyl) crotonamide, N-phenyl-4- (3-vinylbenzyloxy) aniline, N-phenyl-4- (4-vinylbenzyloxy) aniline and the like.
  • the content of other monomer units is preferably 50% by weight or less, more preferably 40% by weight or less, and still more preferably 30%, based on all monomer units constituting the nitrile group-containing copolymer rubber. % By weight or less.
  • the iodine value of the nitrile group-containing copolymer rubber used in the present invention is 120 or less, preferably 60 or less, more preferably 50 or less, and particularly preferably 30 or less. If the iodine value of the nitrile group-containing copolymer rubber is too high, the heat resistance and ozone resistance of the resulting rubber cross-linked product may be lowered.
  • the polymer Mooney viscosity (ML1 + 4, 100 ° C.) of the nitrile group-containing copolymer rubber used in the present invention is preferably 10 to 200, more preferably 15 to 150, still more preferably 15 to 100, and particularly preferably 30 to 90. It is. By setting the polymer Mooney viscosity within the above range, the mechanical properties of the obtained rubber cross-linked product can be appropriately enhanced while improving the processability.
  • the method for producing the nitrile group-containing copolymer rubber used in the present invention is not particularly limited, but by copolymerizing the above-described monomers and hydrogenating the carbon-carbon double bonds in the resulting copolymer. Can be manufactured.
  • the polymerization method is not particularly limited and may be a known emulsion polymerization method or solution polymerization method. From the viewpoint of industrial productivity, the emulsion polymerization method is preferable. In emulsion polymerization, in addition to an emulsifier, a polymerization initiator, and a molecular weight modifier, a commonly used polymerization auxiliary material can be used.
  • nonionic emulsifiers such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester; myristic acid, palmitic acid, oleic acid
  • anionic emulsifiers such as salts of fatty acids such as linolenic acid, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, polycondensates of naphthalene sulfonate and formalin, higher alcohol sulfates, alkyl sulfosuccinates; , ⁇ -unsaturated carboxylic acid sulfoesters, ⁇ , ⁇ -unsaturated carboxylic acid sulfate esters, sulfoalkyl aryl ethers and other copolymerizable emuls
  • the polymerization initiator is not particularly limited as long as it is a radical initiator, but inorganic peroxides such as potassium persulfate, sodium persulfate, ammonium persulfate, potassium perphosphate, hydrogen peroxide; t-butyl peroxide, cumene Hydroperoxide, p-menthane hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, dibenzoyl peroxide, 3, 5, 5 Organic peroxides such as trimethylhexanoyl peroxide and t-butylperoxyisobutyrate; azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, methyl azobisisobutyrate, etc.
  • inorganic peroxides
  • polymerization initiators can be used alone or in combination of two or more.
  • an inorganic or organic peroxide is preferable.
  • a peroxide as the polymerization initiator, use it as a redox polymerization initiator in combination with a reducing agent such as sodium bisulfite, ferrous sulfate, sodium formaldehyde sulfoxylate and sodium ethylenediaminetetraacetate. You can also.
  • chelating agents such as sodium ethylenediaminetetraacetate tetrahydrate and builders such as sodium carbonate and sodium sulfate can be used in combination.
  • the addition amount of the polymerization initiator is preferably 0.01 to 2 parts by weight with respect to 100 parts by weight of the monomer used for the polymerization.
  • the molecular weight modifier is not particularly limited, but mercaptans such as t-dodecyl mercaptan, n-dodecyl mercaptan, octyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, methylene chloride, methylene bromide; ⁇ -methylstyrene dimer And sulfur-containing compounds such as tetraethylthiuram disulfide, dipentamethylene thiuram disulfide, and diisopropylxanthogen disulfide. These can be used alone or in combination of two or more.
  • the amount of the molecular weight modifier used is preferably 0.1 to 0.8 parts by weight with respect to 100 parts by weight of the total monomers.
  • Water is usually used as the emulsion polymerization medium.
  • the amount of water is preferably 80 to 500 parts by weight, more preferably 80 to 300 parts by weight with respect to 100 parts by weight of the monomer used for the polymerization.
  • polymerization auxiliary materials such as a stabilizer, a dispersant, a pH adjuster, an oxygen scavenger, and a particle size adjuster can be used as necessary. In using these, neither the kind nor the usage-amount is specifically limited.
  • the obtained copolymer may be subjected to hydrogenation (hydrogenation reaction) as necessary.
  • Hydrogenation may be carried out by a known method. After coagulating a latex of a copolymer obtained by emulsion polymerization, an oil layer hydrogenation method in which hydrogenation is performed in an oil layer, or a latex of the obtained copolymer is hydrogenated as it is. And water layer hydrogenation method.
  • the copolymer latex prepared by emulsion polymerization is preferably dissolved in an organic solvent through salting out, coagulation with alcohol, filtration and drying.
  • a hydrogenation reaction oil layer hydrogenation method
  • the resulting hydride is poured into a large amount of water and coagulated, washed with water, filtered and dried to obtain a nitrile group-containing copolymer rubber.
  • centrifugal dehydration may be performed.
  • a known coagulant such as sodium chloride, calcium chloride, aluminum sulfate, magnesium sulfate can be used.
  • coagulation may be performed using alcohol such as methanol, ethanol, or isopropyl alcohol.
  • the solvent for the oil layer hydrogenation method is not particularly limited as long as it is a liquid organic compound that dissolves the copolymer obtained by emulsion polymerization, but benzene, chlorobenzene, toluene, xylene, hexane, cyclohexane, tetrahydrofuran, methyl ethyl ketone, ethyl acetate. Cyclohexanone and acetone are preferably used.
  • any known selective hydrogenation catalyst can be used without limitation.
  • Palladium-based catalysts and rhodium-based catalysts are preferable, and palladium-based catalysts (such as palladium acetate, palladium chloride and palladium hydroxide) are preferred. More preferred. Two or more of these may be used in combination. In this case, it is preferable to use a palladium-based catalyst as the main active ingredient.
  • These catalysts are usually used by being supported on a carrier.
  • the carrier include silica, silica-alumina, alumina, diatomaceous earth, activated carbon and the like.
  • the amount of catalyst used is preferably 10 to 20000 ppm by weight, more preferably 50 to 15000 ppm by weight, based on the copolymer.
  • the latex of the copolymer prepared by the emulsion polymerization is diluted with water as necessary to perform a hydrogenation reaction.
  • the water layer hydrogenation method is a water layer direct hydrogenation method in which hydrogen is supplied to a reaction system in the presence of a hydrogenation catalyst to perform hydrogenation, and reduction and hydrogenation are performed in the presence of an oxidizing agent, a reducing agent and an activator.
  • An aqueous layer indirect hydrogenation method can be mentioned, and among these, the aqueous layer direct hydrogenation method is preferable.
  • the concentration of the copolymer in the aqueous layer is preferably 40% by weight or less in order to prevent aggregation.
  • a hydrogenation catalyst will not be specifically limited if it is a compound which is hard to decompose
  • the palladium catalyst include palladium salts of carboxylic acids such as formic acid, propionic acid, lauric acid, succinic acid, oleic acid, and phthalic acid; palladium chloride, dichloro (cyclooctadiene) palladium, dichloro (norbornadiene) palladium, Palladium chloride such as ammonium hexachloropalladium (IV); Iodide such as palladium iodide; Palladium nitrate; Palladium sulfate dihydrate and the like.
  • carboxylic acids such as formic acid, propionic acid, lauric acid, succinic acid, oleic acid, and phthalic acid
  • palladium chloride dichloro (cyclooctadiene) palladium, dichloro (norbornadiene) palladium
  • Palladium chloride such as ammonium hexachloropalladium (IV)
  • Iodide such as
  • palladium salts of carboxylic acids dichloro (norbornadiene) palladium, ammonium hexachloropalladium (IV) ammonium palladium chloride, and palladium nitrate are particularly preferable.
  • the amount of the hydrogenation catalyst used may be appropriately determined, but is preferably 5 to 20000 ppm by weight, more preferably 10 to 15000 ppm by weight, based on the copolymer obtained by polymerization.
  • the hydrogenation catalyst in the latex is removed after completion of the hydrogenation reaction.
  • an adsorbent such as activated carbon or ion exchange resin is added to adsorb the hydrogenation catalyst with stirring, or a complex of the hydrogenation catalyst is formed using a complexing agent together with an oxidizing agent or a reducing agent.
  • the thus-obtained latex after the hydrogenation reaction is subjected to coagulation, washing with water, filtration and drying by alcohol, such as methanol, ethanol or isopropyl alcohol, or salting out.
  • alcohol such as methanol, ethanol or isopropyl alcohol
  • salting out a nitrile group-containing copolymer rubber
  • the water washing, filtration and drying steps subsequent to coagulation can be performed by known methods.
  • a known coagulant such as sodium chloride, calcium chloride, aluminum sulfate, magnesium sulfate can be used.
  • centrifugal dehydration may be performed.
  • an anti-aging agent can also be added to the oil layer or water layer before solidification.
  • the anti-aging agent is not particularly limited, but 2,6-di-t-butyl-4-cresol (Antage BHT, manufactured by Kawaguchi Chemical Co., Ltd.), 2,2′-methylenebis (4-methyl-6-tert- Butylphenol) (Sandant 2246, manufactured by Sanshin Chemical Industry Co., Ltd.), Bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide (Sandant 103, manufactured by Sanshin Chemical Industry Co., Ltd.), Pentaerythritol Tetrakis [ 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (Irganox 1010, manufactured by BASF Japan), octadecyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) Propionate (Irganox 1076, manufactured by BASF Japan), isooctyl-3- (3,5-di- tert-
  • the crosslinkable rubber composition used in the present invention contains a polyamine-based crosslinking agent in addition to the nitrile group-containing copolymer rubber described above.
  • the polyamine-based crosslinking agent is not particularly limited as long as it is a compound having two or more amino groups or a compound having two or more amino groups at the time of crosslinking.
  • a compound in which a plurality of hydrogen atoms of a group hydrocarbon are substituted with an amino group or a hydrazide structure (a structure represented by —CONHNH 2 , CO represents a carbonyl group), and a compound that is in the form of the compound upon crosslinking are preferred .
  • polyamine-based cross-linking agent examples include aliphatic polyvalent compounds such as hexamethylene diamine, hexamethylene diamine carbamate, N, N-dicinnamylidene-1,6-hexane diamine, tetramethylene pentamine, and hexamethylene diamine cinnamaldehyde adduct.
  • aliphatic polyvalent amines and aromatic polyvalent amines are preferable from the viewpoint that the effects of the present invention can be made more remarkable, and hexamethylenediamine carbamate and 2,2-bis [ 4- (4-Aminophenoxy) phenyl] propane is more preferred, and hexamethylenediamine carbamate is particularly preferred.
  • the content of the crosslinking agent in the crosslinkable rubber composition used in the present invention is not particularly limited, but is preferably 0.1 to 20 parts by weight, more preferably 1 to 100 parts by weight of the nitrile group-containing copolymer rubber. -15 parts by weight, more preferably 1-10 parts by weight, particularly preferably 1-5 parts by weight.
  • crosslinkable rubber composition used in the present invention further contains a basic crosslinking accelerator.
  • basic crosslinking accelerators include compounds represented by the following general formula (1), basic crosslinking accelerators having a cyclic amidine structure, guanidine basic crosslinking accelerators, and aldehyde amine basic crosslinking accelerators. Agents and the like.
  • R 1 and R 2 may each independently have an alkyl group having 1 to 12 carbon atoms which may have a substituent, or may have a substituent.
  • It is a cycloalkyl group having 5 to 12 carbon atoms.
  • R 1 and R 2 are each an optionally substituted alkyl group having 1 to 12 carbon atoms or an optionally substituted cycloalkyl group having 5 to 12 carbon atoms.
  • a cycloalkyl group having 5 to 12 carbon atoms which may have a group is preferable, and a cycloalkyl group having 5 to 8 carbon atoms which may have a substituent is particularly preferable.
  • R 1 and R 2 are preferably not substituted.
  • R 1 and R 2 have a substituent include a hydroxyl group, an alkoxy group, an alkoxycarbonyl group, an amino group, and a halogen atom.
  • a compound represented by the following general formula (2) is more preferable from the viewpoint that processability and scorch stability can be further improved.
  • R 3 and R 4 are each independently a cycloalkyl group having 5 to 8 carbon atoms which may have a substituent.
  • R 3 and R 4 are cycloalkyl groups having 5 to 8 carbon atoms which may have a substituent, but may be cycloalkyl groups which may have a substituent having 5 or 6 carbon atoms. Is preferable, and a cycloalkyl group which may have a substituent having 6 carbon atoms is more preferable. R 3 and R 4 preferably have no substituent.
  • R 3 and R 4 have a substituent include a hydroxyl group, an alkoxy group, an alkoxycarbonyl group, an amino group, and a halogen atom.
  • Specific examples of the compound represented by the general formula (1) include dicycloalkylamines such as dicyclopentylamine, dicyclohexylamine and dicycloheptylamine; N-methylcyclopentylamine, N-butylcyclopentylamine and N-heptyl.
  • Examples of the basic crosslinking accelerator having a cyclic amidine structure include 1,8-diazabicyclo [5,4,0] undecene-7 (hereinafter sometimes abbreviated as “DBU”) and 1,5-diazabicyclo [4, 3,0] nonene-5 (hereinafter sometimes abbreviated as “DBN”), 1-methylimidazole, 1-ethylimidazole, 1-phenylimidazole, 1-benzylimidazole, 1,2-dimethylimidazole, 1-ethyl- 2-methylimidazole, 1-methoxyethylimidazole, 1-phenyl-2-methylimidazole, 1-benzyl-2-methylimidazole, 1-methyl-2-phenylimidazole, 1-methyl-2-benzylimidazole, 1,4 -Dimethylimidazole, 1,5-dimethylimidazole, 1,2,4-trimethylimidazole, 1,4- Methyl-2-ethylimidazole,
  • 1,8-diazabicyclo [5,4,0] undecene-7 and 1,5-diazabicyclo [4,3,0] nonene-5 are preferred, , 8-diazabicyclo [5,4,0] undecene-7 is more preferred.
  • the guanidine-based basic crosslinking accelerator include tetramethylguanidine, tetraethylguanidine, diphenylguanidine, 1,3-di-ortho-tolylguanidine, orthotolyl biguanide and the like.
  • aldehyde amine basic crosslinking accelerator include n-butyraldehyde aniline and acetaldehyde ammonia.
  • guanidine basic crosslinking accelerators compounds represented by the above general formula (1), guanidine basic crosslinking accelerators, and basic crosslinking accelerators having a cyclic amidine structure are preferable.
  • the compound represented and the basic crosslinking accelerator having a cyclic amidine structure are more preferable, and the basic crosslinking accelerator having a cyclic amidine structure is more preferable.
  • the compound represented by the general formula (1) may be a mixture of an alkylene glycol or an alcohol such as an alkyl alcohol having 5 to 20 carbon atoms, and an inorganic acid and / or an organic acid. May be included. Further, as the compound represented by the general formula (1), a salt is formed by the compound represented by the general formula (1) and the inorganic acid and / or organic acid, and a complex is formed with alkylene glycol. It may be.
  • the basic crosslinking accelerator having a cyclic amidine structure may form a salt with an organic carboxylic acid or an alkyl phosphoric acid.
  • the blending amount in the crosslinkable rubber composition used in the present invention is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the nitrile group-containing copolymer rubber. More preferably 0.2 to 15 parts by weight, still more preferably 0.5 to 10 parts by weight.
  • the crosslinkable rubber composition used in the present invention includes compounding agents commonly used in the rubber field, for example, reinforcing agents such as carbon black and silica, fillers such as calcium carbonate, talc and clay, Metal oxides such as zinc oxide and magnesium oxide, ⁇ , ⁇ -ethylenically unsaturated carboxylic acid metal salts such as zinc methacrylate and zinc acrylate, co-crosslinking agent, crosslinking aid, crosslinking retarder, anti-aging agent, oxidation Anti-scorching agent such as inhibitor, light stabilizer, primary amine, activator such as diethylene glycol, coupling agent, plasticizer, processing aid, lubricant, adhesive, lubricant, flame retardant, antifungal agent, acid acceptor Further, an antistatic agent, a pigment, a foaming agent and the like can be blended.
  • the compounding amount of these compounding agents is not particularly limited as long as it does not impair the object and effect of the present invention, and an amount corresponding to the compounding purpose
  • the coupling agent examples include silane coupling agents, aluminum coupling agents, titanate coupling agents, and the like.
  • the silane coupling agent is not particularly limited, and specific examples thereof include ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptomethyltrimethoxysilane, ⁇ -mercaptomethyltriethoxysilane, ⁇ -mercaptohexamethyldisilazane, bis Silane coupling agents containing sulfur such as (3-triethoxysilylpropyl) tetrasulfane and bis (3-triethoxysilylpropyl) disulfane; ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyl Epoxy group-containing silane coupling agents such as dimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxy
  • the aluminum coupling agent is not particularly limited, and specific examples thereof include acetoalkoxyaluminum diisopropylate.
  • the titanate coupling agent is not particularly limited, and specific examples thereof include isopropyl triisostearoyl titanate, isopropyl tris (dioctylpyrophosphate) titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, tetraoctyl bis ( Ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl phosphite) titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) ethylene titanate, tetra Examples thereof include isopropyl bis (dioctyl phosphite) titanate and is
  • carbon black examples include furnace black, acetylene black, thermal black, channel black, Austin black, and graphite. These can be used alone or in combination.
  • silica examples include natural silica such as quartz powder and silica powder; synthetic silica such as anhydrous silicic acid (silica gel, aerosil, etc.) and hydrous silicic acid. Among these, synthetic silica is preferable.
  • These silicas may be surface-treated with a coupling agent or the like. As the coupling agent used for the surface treatment, for example, those described above can be used.
  • the co-crosslinking agent is not particularly limited, but is preferably a low molecular or high molecular compound having a plurality of radical-reactive unsaturated groups in the molecule.
  • a polyfunctional vinyl compound such as divinylbenzene or divinylnaphthalene; Isocyanurates such as allyl isocyanurate and trimethallyl isocyanurate; cyanurates such as triallyl cyanurate; maleimides such as N, N′-m-phenylene dimaleimide; diallyl phthalate, diallyl isophthalate, diallyl maleate, diallyl Allyl esters of polyvalent acids such as fumarate, diallyl sebacate, triallyl phosphate; diethylene glycol bisallyl carbonate; ethylene glycol diallyl ether, triallyl ether of trimethylolpropane, pentaerythritol Allyl ethers such as partial trityl ethers of trit; ally
  • the plasticizer is not particularly limited, but trimellitic acid plasticizer, pyromellitic acid plasticizer, ether ester plasticizer, polyester plasticizer, phthalic acid plasticizer, adipate ester plasticizer, phosphoric acid
  • trimellitic acid plasticizer pyromellitic acid plasticizer
  • ether ester plasticizer polyester plasticizer
  • phthalic acid plasticizer adipate ester plasticizer
  • phosphoric acid An ester plasticizer, a sebacic acid ester plasticizer, an alkyl sulfonic acid ester compound plasticizer, an epoxidized vegetable oil plasticizer, or the like can be used.
  • trimellitic acid tri-2-ethylhexyl trimellitic acid isononyl ester, trimellitic acid mixed linear alkyl ester, dipentaerythritol ester, pyromellitic acid 2-ethylhexyl ester, polyether ester (molecular weight 300 to About 5,000), bis [2- (2-butoxyethoxy) ethyl adipate], dioctyl adipate, polyester based on adipic acid (molecular weight about 300 to 5000), dioctyl phthalate, diisononyl phthalate, dibutyl phthalate, phosphoric acid
  • examples include tricresyl, dibutyl sebacate, alkylsulfonic acid phenyl ester, epoxidized soybean oil, diheptanoate, di-2-ethylhexanoate, and didecanoate. These can be used alone or in combination.
  • blend rubbers other than the nitrile group containing copolymer rubber mentioned above with the crosslinkable rubber composition used by this invention in the range which does not inhibit the effect of this invention.
  • examples of such rubbers include acrylic rubber, ethylene-acrylic acid copolymer rubber, styrene-butadiene copolymer rubber, polybutadiene rubber, ethylene-propylene copolymer rubber, ethylene-propylene-diene terpolymer rubber, Examples include epichlorohydrin rubber, fluorine rubber, urethane rubber, chloroprene rubber, silicone rubber, natural rubber, and polyisoprene rubber.
  • the blending amount in the crosslinkable rubber composition is preferably 30 parts by weight with respect to 100 parts by weight of the nitrile group-containing copolymer rubber used in the present invention.
  • the amount is more preferably 20 parts by weight or less, still more preferably 10 parts by weight or less.
  • the crosslinkable rubber composition used in the present invention is prepared by mixing each of the above components preferably in a non-aqueous system.
  • the method for preparing the crosslinkable rubber composition used in the present invention is not limited, but usually the components excluding the crosslinking agent and the heat unstable component are primarily kneaded with a mixer such as a Banbury mixer, an intermixer, or a kneader. Then, it can be prepared by transferring to an open roll or the like and adding a cross-linking agent or a heat labile component and then secondary kneading.
  • the primary kneading is usually performed at a temperature of 10 to 200 ° C., preferably 30 to 180 ° C.
  • the reaction is performed at a temperature of 20 to 60 ° C. for 1 minute to 1 hour, preferably 1 minute to 30 minutes.
  • Manufacturing method of rubber cross-linked product is to cross-link the above-mentioned cross-linkable rubber composition by heating at a temperature of 200 ° C. or more simultaneously with molding to obtain a rubber cross-linked product.
  • crosslinking by heating at a temperature of 200 ° C. or more simultaneously with molding means that the above-described crosslinkable rubber composition is molded into a desired shape with a molding machine corresponding to the desired shape.
  • the crosslinkable rubber composition is heated at a temperature of 200 ° C. or more to advance the crosslinking, thereby fixing the shape of the crosslinked rubber and the crosslinking reaction.
  • the production method of the present invention by adopting such a molding and cross-linking method, the resulting rubber cross-linked product has good normal properties and tear strength, and is resistant to compression without performing secondary cross-linking. It can be excellent in permanent distortion. Further, according to the production method of the present invention, since it is not necessary to perform secondary crosslinking, a rubber crosslinked product can be produced with high productivity.
  • the molding machine used for crosslinking simultaneously with molding is not particularly limited as long as it is a molding machine capable of crosslinking simultaneously with molding. Examples include a molding machine and a transfer molding machine.
  • the heating time when performing crosslinking simultaneously with molding is preferably 10 to 60 minutes, more preferably 10 to 50 minutes, and further preferably 15 to 40 minutes.
  • the heating time is preferably 20 to 60 minutes, and when the heating temperature is higher than 220 ° C., the heating time is preferably 15 to 40 minutes. Further, at a higher temperature or for a longer time, the O-ring compression set may increase (become worse).
  • the press pressure is preferably 1 to 20 MPa, more preferably 5 to 15 MPa, and further preferably 7 to 12 MPa.
  • Such a crosslinked rubber product obtained by the production method of the present invention can be produced with high productivity, has good normal physical properties and good tear strength, and has excellent compression set resistance. is there. For this reason, the rubber cross-linked product obtained by the production method of the present invention makes use of such characteristics, and O-rings, packings, diaphragms, oil seals, shaft seals, bearing seals, well head seals, shock absorber seals, long lifespans.
  • Coolant seals such as coolant (LLC), seals for oil coolant, oil coolant seals, pneumatic equipment seals, CFCs or fluorohydrocarbons used in air conditioner cooling devices and compressors for air conditioner refrigerators
  • CO sealing seal, supercritical carbon dioxide or subcritical carbon dioxide sealing seal used for precision cleaning media rolling devices (rolling bearings, automotive hub units, automotive water pumps, linear guide devices and Ball screw)
  • Various sealing materials such as lubes and valve seats, BOP (Blow Out Preventer), bladder, etc .
  • intake manifold gaskets attached to the connecting part between the intake manifold and the cylinder head, and cylinders attached to the connecting part between the cylinder block and the cylinder head
  • a unit comprising a head gasket, a rocker cover gasket attached to the connecting portion between the rocker cover and the cylinder head, an oil pan gasket attached to the connecting portion between the oil pan and the cylinder block or the transmission case, a positive electrode, an electrolyte plate, and a negative electrode
  • the iodine value of the nitrile group-containing copolymer rubber was measured according to JIS K 6235.
  • composition of nitrile group-containing copolymer rubber The content ratio of each monomer unit constituting the nitrile group-containing copolymer rubber was measured by the following method. That is, the content ratio of the mono-n-butyl maleate unit was determined by determining the number of moles of carboxyl groups relative to 100 g of the nitrile group-containing copolymer rubber after hydrogenation by the above-mentioned “carboxyl group content” measurement method. The number was calculated by converting to the amount of mono-n-butyl maleate units.
  • the content ratio of 1,3-butadiene units was calculated by measuring the iodine value (according to JIS K6235) using a nitrile group-containing copolymer rubber before hydrogenation.
  • the content ratio of the acrylonitrile unit was calculated according to JIS K6384 by measuring the nitrogen content in the nitrile group-containing copolymer rubber after hydrogenation by the semi-micro Kjeldahl method or the modified Dumas method.
  • the Mooney viscosity (polymer Mooney viscosity) (ML1 + 4, 100 ° C.) of the nitrile group-containing copolymer rubber was measured according to JIS K6300.
  • test piece was produced by punching a sheet-like rubber cross-linked product with a No. 3 dumbbell, and the tensile strength and elongation were measured according to JIS K6251 using this test piece.
  • the tear strength was evaluated by using a sheet-like rubber cross-linked product according to JIS K6252-1: 2015 according to Test Method B-Procedure (a): Method using an angle-shaped test piece without cutting.
  • Compression set test (O-ring compression set) Using an O-ring-shaped rubber cross-linked product, the distance between two planes sandwiching the O-ring-shaped rubber cross-linked product was placed in an environment of 150 ° C. for 168 hours in a state compressed by 25% in the ring thickness direction. Thereafter, compression set was measured according to JIS K6262. The smaller this value, the better the compression set resistance.
  • Production Example 1 (Production of nitrile group-containing copolymer rubber (n1))
  • a reactor 180 parts of ion-exchanged water, 25 parts of a 10% strength sodium dodecylbenzenesulfonate aqueous solution, 5 parts of a sodium salt of a 10% strength naphthalene sulfonate formalin condensate, 35.5 parts of acrylonitrile, mono-n- maleate 5.5 parts of butyl and 0.75 parts of t-dodecyl mercaptan (molecular weight modifier) were charged in this order, and the internal gas was substituted three times with nitrogen, and then 59 parts of 1,3-butadiene was charged.
  • t-dodecyl mercaptan molecular weight modifier
  • the reactor was kept at 10 ° C., and 0.1 parts of cumene hydroperoxide (polymerization initiator), a reducing agent, a chelating agent and an appropriate amount of a builder were charged, and the polymerization reaction was continued while stirring, with a polymerization conversion of 80%. Then, 4 parts of a 2,2,6,6-tetramethylpiperidine-1-oxyl aqueous solution (polymerization terminator) having a concentration of 2.5% by weight was added to terminate the polymerization reaction. Subsequently, the residual monomer was removed at a water temperature of 60 ° C. to obtain a latex of nitrile group-containing copolymer rubber (X1) (solid content concentration 25% by weight).
  • X1 solid content concentration 25% by weight
  • the nitrile group-containing copolymer weight is adjusted so that the palladium content relative to the dry weight of the rubber contained in the latex of the nitrile group-containing copolymer rubber (X1) obtained above is 3000 ppm.
  • a latex of coalesced rubber (X1) and a palladium catalyst a solution in which 1% by weight palladium acetate / acetone solution and equal weight of ion exchange water are mixed
  • hydrogen pressure 3 MPa
  • temperature 50 ° C. solid content concentration 15% by weight.
  • a hydrogenation reaction was performed for 6 hours to obtain a latex of the nitrile group-containing copolymer rubber (n1).
  • 0.1 part of 4,6-bis (octylthiomethyl) -o-cresol Irganox 1520L, manufactured by BASF Japan, anti-aging agent
  • the latex of the resulting nitrile group-containing copolymer rubber (n1) was adjusted to pH 4 with 1 wt% sulfuric acid, solidified by adding 3 volumes of isopropyl alcohol, and then vacuum dried at 60 ° C. for 12 hours. A group-containing copolymer rubber (n1) was obtained.
  • the iodine value of the obtained nitrile group-containing copolymer rubber (n1) was 10, and the polymer Mooney viscosity (ML1 + 4, 100 ° C.) was 50.
  • the monomer composition of the resulting nitrile group-containing copolymer rubber (n1) was 36% by weight of acrylonitrile units, 6% by weight of mono n-butyl maleate units, and 58% by weight of 1,3-butadiene units. there were.
  • Example 1 Using a Banbury mixer, 100 parts of the nitrile group-containing copolymer rubber (n1) obtained in Production Example 1, 40 parts of FEF carbon (trade name “Seast SO”, carbon black manufactured by Tokai Carbon Co., Ltd.) Mellitic acid tri-2-ethylhexyl (trade name “Adekasizer C-8”, plasticizer, manufactured by ADEKA), 1 part stearic acid, polyoxyethylene alkyl ether phosphate ester (trade name “phosphanol RL210”) 1 part of Toho Chemical Industries, Ltd., processing aid), and 4,4′-di- ( ⁇ , ⁇ ′-dimethylbenzyl) diphenylamine (trade name “NOCRACK CD”, manufactured by Ouchi Shinsei Chemical Co., Ltd., anti-aging agent ) 1.5 parts is added and kneaded, then the mixture is transferred to a roll and 1,8-diazabicyclo [5,4,0] undecene-7 (DBU) (trade name: “R
  • Example 2 Similar to Example 1, except that the crosslinkable rubber composition obtained in the same manner as in Example 1 was used, and the conditions for performing molding and crosslinking simultaneously were 20 MPa at a press pressure of 10 MPa and a temperature of 220 ° C. Thus, a sheet-like rubber cross-linked product and an O-ring-shaped rubber cross-linked product were obtained. Then, according to the above method, the obtained sheet-like rubber cross-linked product is used to measure normal properties and tear strength, and the obtained O-ring-like rubber cross-linked product is used to measure compression set. Measurements were made. The results are shown in Table 1.
  • Example 3 Similar to Example 1 except that the crosslinkable rubber composition obtained in the same manner as in Example 1 was used, and the conditions for carrying out molding and crosslinking simultaneously were 20 MPa at a press pressure of 10 MPa and a temperature of 210 ° C. Thus, a sheet-like rubber cross-linked product and an O-ring-shaped rubber cross-linked product were obtained. Then, according to the above method, the obtained sheet-like rubber cross-linked product is used to measure normal properties and tear strength, and the obtained O-ring-like rubber cross-linked product is used to measure compression set. Measurements were made. The results are shown in Table 1.
  • Example 4 Similar to Example 1 except that the crosslinkable rubber composition obtained in the same manner as in Example 1 was used, and the conditions for simultaneous molding and crosslinking were set at a press pressure of 10 MPa and a temperature of 205 ° C. for 25 minutes. Thus, a sheet-like rubber cross-linked product and an O-ring-shaped rubber cross-linked product were obtained. Then, according to the above method, the obtained sheet-like rubber cross-linked product is used to measure normal properties and tear strength, and the obtained O-ring-like rubber cross-linked product is used to measure compression set. Measurements were made. The results are shown in Table 1.
  • Example 5 Similar to Example 1 except that the crosslinkable rubber composition obtained in the same manner as in Example 1 was used, and the conditions for simultaneous molding and crosslinking were set at a press pressure of 10 MPa and a temperature of 250 ° C. for 20 minutes. Thus, a sheet-like rubber cross-linked product and an O-ring-shaped rubber cross-linked product were obtained. Then, according to the above method, the obtained sheet-like rubber cross-linked product is used to measure normal properties and tear strength, and the obtained O-ring-like rubber cross-linked product is used to measure compression set. Measurements were made. The results are shown in Table 1.
  • Example 6 Similar to Example 1 except that the crosslinkable rubber composition obtained in the same manner as in Example 1 was used, and the conditions for simultaneous molding and crosslinking were set at a press pressure of 10 MPa and a temperature of 200 ° C. for 60 minutes. Thus, a sheet-like rubber cross-linked product and an O-ring-shaped rubber cross-linked product were obtained. Then, according to the above method, the obtained sheet-like rubber cross-linked product is used to measure normal properties and tear strength, and the obtained O-ring-like rubber cross-linked product is used to measure compression set. Measurements were made. The results are shown in Table 1.
  • Comparative Example 1 Using the crosslinkable rubber composition obtained in the same manner as in Example 1, the conditions for carrying out molding and crosslinking at the same time were set at a press pressure of 10 MPa and a temperature of 170 ° C. for 20 minutes to obtain a primary crosslinked product.
  • the primary cross-linked product was transferred to a gear-type oven and further heated at 170 ° C. for 4 hours to perform secondary cross-linking in the same manner as in Example 1, except that a sheet-like rubber cross-linked product and An O-ring-like rubber cross-linked product was obtained.
  • the obtained sheet-like rubber cross-linked product is used to measure normal properties and tear strength, and the obtained O-ring-like rubber cross-linked product is used to measure compression set. Measurements were made. The results are shown in Table 1.
  • Comparative Example 2 Similar to Example 1 except that the crosslinkable rubber composition obtained in the same manner as in Example 1 was used, and the conditions for carrying out molding and crosslinking simultaneously were 20 MPa at a press pressure of 10 MPa and a temperature of 170 ° C. Thus, a sheet-like rubber cross-linked product and an O-ring-shaped rubber cross-linked product were obtained. Then, according to the above method, the obtained sheet-like rubber cross-linked product is used to measure normal properties and tear strength, and the obtained O-ring-like rubber cross-linked product is used to measure compression set. Measurements were made. The results are shown in Table 1.
  • Comparative Example 3 Similar to Example 1 except that the crosslinkable rubber composition obtained in the same manner as in Example 1 was used, and the conditions for simultaneous molding and crosslinking were set at a press pressure of 10 MPa and a temperature of 190 ° C. for 30 minutes. Thus, a sheet-like rubber cross-linked product and an O-ring-shaped rubber cross-linked product were obtained. Then, according to the above method, the obtained sheet-like rubber cross-linked product is used to measure normal properties and tear strength, and the obtained O-ring-like rubber cross-linked product is used to measure compression set. Measurements were made. The results are shown in Table 1.
  • Example 6 was excellent in tensile strength and elongation to the same extent as Comparative Example 1 in which primary crosslinking was performed at the same time as molding and then secondary crosslinking, and in compression set (O-ring compression set) and tear strength. It was excellent. That is, according to Examples 1 to 6, it is possible to realize characteristics comparable to those obtained when primary crosslinking and secondary crosslinking are performed with fewer crosslinking operations and with a short crosslinking operation, and excellent productivity. It was a thing. In particular, among Examples 1 to 6, in Examples 2 to 5 in which the heating temperature when performing crosslinking simultaneously with molding exceeded 200 ° C., the heating time when performing crosslinking simultaneously with molding, that is, molding and crosslinking The time can be shortened and the productivity is more excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

α,β-エチレン性不飽和ニトリル単量体単位10~60重量%、およびα,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位1~60重量%を含有し、ヨウ素価が120以下であるニトリル基含有共重合体ゴムと、ポリアミン系架橋剤とを含有する架橋性ゴム組成物を、成形と同時に200℃以上の温度で加熱することで、ゴム架橋物を得るゴム架橋物の製造方法を提供する。

Description

ゴム架橋物の製造方法
 本発明は、ニトリル基含有共重合体ゴムのゴム架橋物を製造するための方法に係り、さらに詳しくは、常態物性および引裂強度が良好であり、優れた耐圧縮永久歪み性を有するゴム架橋物を、高い生産性にて製造可能なゴム架橋物の製造方法に関する。
 従来から、ニトリルゴム(アクリロニトリル-ブタジエン共重合ゴム)は、耐油性、機械的特性、耐薬品性等を活かして、ホースやシールなどの自動車用ゴム部品の材料として使用されており、また、ニトリルゴムのポリマー主鎖中の炭素-炭素二重結合を水素化した水素化ニトリルゴム(水素化アクリロニトリル-ブタジエン共重合ゴム)はさらに機械特性、耐熱性に優れるため、ベルト、ホース、ダイアフラム等のゴム部品に使用されている。
 たとえば、特許文献1では、α,β-エチレン性不飽和ニトリル単量体単位、および、α,β-エチレン性不飽和ジカルボン酸のモノエステル単量体単位を有し、ヨウ素価が120以下である高飽和ニトリルゴムと、ポリアミン系架橋剤とを含有するゴム組成物を、170℃で20分間プレス成形し、次いで、170℃4時間の条件にて二次架橋することで、ゴム架橋物を得る技術が開示されている。
特開2008-56793号公報
 上記特許文献1の技術によれば、常態物性および引裂強度が良好であり、優れた耐圧縮永久歪み性を有するゴム架橋物を得ることができるものの、ゴム架橋物を得る際における架橋工程に長時間の処理が必要となり、そのため、生産性の向上の観点より、改善が望まれていた。
 本発明は、このような実状に鑑みてなされたものであり、常態物性および引裂強度が良好であり、優れた耐圧縮永久歪み性を有するゴム架橋物を、高い生産性にて製造可能なゴム架橋物の製造方法を提供することを目的とする。
 本発明者等は、上記目的を達成するために鋭意研究した結果、特定量のα,β-エチレン性不飽和ニトリル単量体単位、およびα,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位を含有し、ヨウ素価が120以下であるニトリル基含有高飽和共重合体ゴムと、ポリアミン系架橋剤とを含有する架橋性ゴム組成物を、成形と同時に200℃以上の温度で加熱することにより架橋を行うことで、上記目的を達成できることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、α,β-エチレン性不飽和ニトリル単量体単位10~60重量%、およびα,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位1~60重量%を含有し、ヨウ素価が120以下であるニトリル基含有共重合体ゴムと、ポリアミン系架橋剤とを含有する架橋性ゴム組成物を、成形と同時に200℃以上の温度で加熱することで架橋させて、ゴム架橋物を得るゴム架橋物の製造方法が提供される。
 本発明の製造方法において、前記架橋性ゴム組成物を、成形と同時に200℃以上の温度で10~60分加熱することで架橋させて、ゴム架橋物を得ることが好ましい。
 本発明の製造方法において、成形と同時に200℃以上の温度で加熱して架橋を行った後、加熱操作を行わないことが好ましい。
 本発明の製造方法において、前記ニトリル基含有共重合体ゴムが、共役ジエン単量体単位(水素化されている部分も含む)20~89重量%をさらに含有することが好ましい。
 本発明の製造方法において、前記架橋性ゴム組成物が、環状アミジン構造を有する塩基性架橋促進剤をさらに含有することが好ましい。
 本発明の製造方法によれば、常態物性および引裂強度が良好であり、優れた耐圧縮永久歪み性を有するゴム架橋物を、高い生産性にて製造することができる。
 本発明のゴム架橋物の製造方法は、α,β-エチレン性不飽和ニトリル単量体単位10~60重量%、およびα,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位1~60重量%を含有し、ヨウ素価が120以下であるニトリル基含有共重合体ゴムと、ポリアミン系架橋剤とを含有する架橋性ゴム組成物を、成形と同時に200℃以上の温度で加熱することで架橋させて、ゴム架橋物を得るものである。
 まず、本発明で用いる架橋性ゴム組成物について説明する。本発明で用いる、架橋性ゴム組成物は、α,β-エチレン性不飽和ニトリル単量体単位10~60重量%、およびα,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位1~60重量%を含有し、ヨウ素価が120以下であるニトリル基含有共重合体ゴムと、ポリアミン系架橋剤とを含有する。
 以下、ニトリル基含有共重合体ゴム、ポリアミン系架橋剤の順に説明を行う。
 本発明で用いるニトリル基含有共重合体ゴムのα,β-エチレン性不飽和ニトリル単量体単位を形成するα,β-エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β-エチレン性不飽和化合物であれば限定されず、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリル、エタクリロニトリルなどのα-アルキルアクリロニトリル;などが挙げられる。これらのなかでも、アクリロニトリルおよびメタクリロニトリルが好ましく、アクリロニトリルが特に好ましい。α,β-エチレン性不飽和ニトリル単量体は、一種単独でも、複数種を併用してもよい。
 本発明で用いるニトリル基含有共重合体ゴム中における、α,β-エチレン性不飽和ニトリル単量体単位の含有割合は、全単量体単位中、10~60重量%であり、好ましくは10~50重量%、より好ましくは15~45重量である。α,β-エチレン性不飽和ニトリル単量体単位の含有割合が少なすぎると、得られるゴム架橋物の耐油性が低下してしまう。一方、多すぎると、得られるゴム架橋物の耐寒性が低下してしまう。
 α,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位を形成するα,β-エチレン性不飽和ジカルボン酸モノエステル単量体としては、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノプロピル、マレイン酸モノn-ブチルなどのマレイン酸モノアルキルエステル;マレイン酸モノシクロペンチル、マレイン酸モノシクロヘキシル、マレイン酸モノシクロヘプチルなどのマレイン酸モノシクロアルキルエステル;マレイン酸モノメチルシクロペンチル、マレイン酸モノエチルシクロヘキシルなどのマレイン酸モノアルキルシクロアルキルエステル;フマル酸モノメチル、フマル酸モノエチル、フマル酸モノプロピル、フマル酸モノn-ブチルなどのフマル酸モノアルキルエステル;フマル酸モノシクロペンチル、フマル酸モノシクロヘキシル、フマル酸モノシクロヘプチルなどのフマル酸モノシクロアルキルエステル;フマル酸モノメチルシクロペンチル、フマル酸モノエチルシクロヘキシルなどのフマル酸モノアルキルシクロアルキルエステル;シトラコン酸モノメチル、シトラコン酸モノエチル、シトラコン酸モノプロピル、シトラコン酸モノn-ブチルなどのシトラコン酸モノアルキルエステル;シトラコン酸モノシクロペンチル、シトラコン酸モノシクロヘキシル、シトラコン酸モノシクロヘプチルなどのシトラコン酸モノシクロアルキルエステル;シトラコン酸モノメチルシクロペンチル、シトラコン酸モノエチルシクロヘキシルなどのシトラコン酸モノアルキルシクロアルキルエステル;イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノプロピル、イタコン酸モノn-ブチルなどのイタコン酸モノアルキルエステル;イタコン酸モノシクロペンチル、イタコン酸モノシクロヘキシル、イタコン酸モノシクロヘプチルなどのイタコン酸モノシクロアルキルエステル;イタコン酸モノメチルシクロペンチル、イタコン酸モノエチルシクロヘキシルなどのイタコン酸モノアルキルシクロアルキルエステル;などが挙げられる。
 α,β-エチレン性不飽和ジカルボン酸モノエステル単量体は、一種単独でも、複数種を併用してもよい。これらの中でも、α,β-エチレン性不飽和ジカルボン酸モノアルキルエステル単量体がより好ましく、マレイン酸モノアルキルエステルがさらに好ましく、マレイン酸モノn-ブチルが特に好ましい。なお、上記アルキルエステルのアルキル基の炭素数は、2~8が好ましい。
 本発明で用いるニトリル基含有共重合体ゴム中における、α,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位の含有割合は、全単量体単位中、1~60重量%であり、好ましくは1~10重量%、より好ましくは3~8重量%である。α,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位の含有割合が少なすぎると、得られるゴム架橋物の耐圧縮永久歪み性が低下してしまう。一方、多すぎると、得られるゴム架橋物の機械特性の一つである伸びが低下してしまう。
 また、本発明で用いるニトリル基含有共重合体ゴムは、得られるゴム架橋物がゴム弾性を有するものとするために、共役ジエン単量体単位をも含有することが好ましい。
 共役ジエン単量体単位を形成する共役ジエン単量体としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、クロロプレンなどの炭素数4~6の共役ジエン単量体が好ましく、1,3-ブタジエンおよびイソプレンがより好ましく、1,3-ブタジエンが特に好ましい。共役ジエン単量体は一種単独でも、複数種を併用してもよい。
 共役ジエン単量体単位(水素化されている部分も含む)の含有量は、全単量体単位に対して、好ましくは20~89重量%、より好ましくは30~80重量%、さらに好ましくは40~75重量%である。共役ジエン単量体単位の含有量を上記範囲とすることにより、得られるゴム架橋物を、耐熱性や耐化学的安定性を良好に保ちながら、ゴム弾性に優れたものとすることができる。
 また、本発明で用いるニトリル基含有共重合体ゴムは、α,β-エチレン性不飽和ニトリル単量体単位およびα,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位、ならびに、必要に応じて含有させることのできる共役ジエン単量体単位に加えて、これらを形成する単量体と共重合可能なその他の単量体の単位を含有するものであってもよい。このようなその他の単量体としては、α,β-エチレン性不飽和モノカルボン酸単量体、α,β-エチレン性不飽和モノカルボン酸エステル単量体、α,β-エチレン性不飽和多価カルボン酸単量体(α,β-エチレン性不飽和ジカルボン酸モノエステル単量体に該当するものを除く。)、エチレン、α-オレフィン単量体、芳香族ビニル単量体、フッ素含有ビニル単量体、共重合性老化防止剤などが例示される。
 α,β-エチレン性不飽和モノカルボン酸単量体としては、アクリル酸、メタクリル酸、エチルアクリル酸、クロトン酸、ケイ皮酸などが挙げられる。
 α,β-エチレン性不飽和モノカルボン酸エステル単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸n-ドデシル、メタクリル酸メチル、メタクリル酸エチルなどの炭素数1~18のアルキル基を有する(メタ)アクリル酸エステル(「メタクリル酸エステルおよびアクリル酸エステル」の略記。以下同様。);アクリル酸メトキシメチル、アクリル酸メトキシエチル、アクリル酸エトキシプロピル、アクリル酸メトキシブチル、アクリル酸エトキシドデシル、メタクリル酸メトキシエチル、メタクリル酸メトキシブチル、メタクリル酸エトキシペンチルなどの炭素数2~18のアルコキシアルキル基を有する(メタ)アクリル酸エステル;アクリル酸α-シアノエチル、メタクリル酸α-シアノエチル、メタクリル酸シアノブチルなどの炭素数2~12のシアノアルキル基を有する(メタ)アクリル酸エステル;アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、メタクリル酸2-ヒドロキシエチルなどの炭素数1~12のヒドロキシアルキル基を有する(メタ)アクリル酸エステル;アクリル酸トリフルオロエチル、メタクリル酸テトラフルオロプロピルなどの炭素数1~12のフルオロアルキル基を有する(メタ)アクリル酸エステル;などが挙げられる。
 α,β-エチレン性不飽和多価カルボン酸単量体としては、フマル酸やマレイン酸などのブテンジオン酸、イタコン酸、シトラコン酸、メサコン酸、グルタコン酸、アリルマロン酸、テラコン酸などが挙げられる。また、α,β-不飽和多価カルボン酸の無水物としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸などが挙げられる。
 α-オレフィン単量体としては、炭素数が3~12のものが好ましく、たとえば、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンなどが挙げられる。
 芳香族ビニル単量体としては、スチレン、α-メチルスチレン、ビニルピリジンなどが挙げられる。
 フッ素含有ビニル単量体としては、フルオロエチルビニルエーテル、フルオロプロピルビニルエーテル、o-トリフルオロメチルスチレン、ペンタフルオロ安息香酸ビニル、ジフルオロエチレン、テトラフルオロエチレンなどが挙げられる。
 共重合性老化防止剤としては、N-(4-アニリノフェニル)アクリルアミド、N-(4-アニリノフェニル)メタクリルアミド、N-(4-アニリノフェニル)シンナムアミド、N-(4-アニリノフェニル)クロトンアミド、 N-フェニル-4-(3-ビニルベンジルオキシ)アニリン、N-フェニル-4-(4-ビニルベンジルオキシ)アニリンなどが挙げられる。
 これらの共重合可能なその他の単量体は、複数種類を併用してもよい。その他の単量体の単位の含有量は、ニトリル基含有共重合体ゴムを構成する全単量体単位に対して、好ましくは50重量%以下、より好ましくは40重量%以下、さらに好ましくは30重量%以下である。
 本発明で用いるニトリル基含有共重合体ゴムのヨウ素価は、120以下であり、好ましくは60以下、より好ましくは50以下、特に好ましくは30以下である。ニトリル基含有共重合体ゴムのヨウ素価が高すぎると、得られるゴム架橋物の耐熱性および耐オゾン性が低下するおそれがある。
 本発明で用いるニトリル基含有共重合体ゴムのポリマー・ムーニー粘度(ML1+4、100℃)は、好ましくは10~200、より好ましくは15~150、さらに好ましくは15~100、特に好ましくは30~90である。ポリマー・ムーニー粘度を上記範囲とすることにより、加工性を良好なものとしながら、得られるゴム架橋物の機械特性を適切に高めることができる。
 本発明で用いるニトリル基含有共重合体ゴムの製造方法は、特に限定されないが、上述した単量体を共重合し、得られる共重合体中の炭素-炭素二重結合を水素化することによって製造することができる。重合方法は、特に限定されず公知の乳化重合法や溶液重合法によればよいが、工業的生産性の観点から乳化重合法が好ましい。乳化重合に際しては、乳化剤、重合開始剤、分子量調整剤に加えて、通常用いられる重合副資材を使用することができる。
 乳化剤としては、特に限定されないが、たとえば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル等の非イオン性乳化剤;ミリスチン酸、パルミチン酸、オレイン酸およびリノレン酸等の脂肪酸の塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、ナフタレンスルホン酸塩とホルマリンとの重縮合物、高級アルコール硫酸エステル塩、アルキルスルホコハク酸塩等のアニオン性乳化剤;α,β-不飽和カルボン酸のスルホエステル、α,β-不飽和カルボン酸のサルフェートエステル、スルホアルキルアリールエーテル等の共重合性乳化剤;などが挙げられる。乳化剤の添加量は、重合に用いる単量体100重量部に対して、好ましくは0.1~10重量部、より好ましくは0.5~5重量部である。
 重合開始剤としては、ラジカル開始剤であれば特に限定されないが、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物;t-ブチルパーオキサイド、クメンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、アセチルパーオキサイド、イソブチリルパーオキサイド、オクタノイルパーオキサイド、ジベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシイソブチレート等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル等のアゾ化合物;等を挙げることができる。これらの重合開始剤は、単独でまたは2種類以上を組み合わせて使用することができる。重合開始剤としては、無機または有機の過酸化物が好ましい。重合開始剤として過酸化物を用いる場合には、重亜硫酸ナトリウム、硫酸第一鉄、ナトリウムホルムアルデヒドスルホキシレートとエチレンジアミン四酢酸鉄ナトリウム等の還元剤と組み合わせて、レドックス系重合開始剤として使用することもできる。更に、エチレンジアミン四酢酸鉄ナトリウム四水塩などのキレート剤、炭酸ナトリウムや硫酸ナトリウムなどのビルダーを併用することもできる。重合開始剤の添加量は、重合に用いる単量体100重量部に対して、好ましくは0.01~2重量部である。
 分子量調整剤としては、特に限定されないが、t-ドデシルメルカプタン、n-ドデシルメルカプタン、オクチルメルカプタン等のメルカプタン類;四塩化炭素、塩化メチレン、臭化メチレン等のハロゲン化炭化水素;α-メチルスチレンダイマー;テトラエチルチウラムダイサルファイド、ジペンタメチレンチウラムダイサルファイド、ジイソプロピルキサントゲンダイサルファイド等の含硫黄化合物等が挙げられる。これらは単独で、または2種類以上を組み合わせて使用することができる。なかでも、メルカプタン類が好ましく、t-ドデシルメルカプタンがより好ましい。分子量調整剤の使用量は、全単量体100重量部に対して、好ましくは0.1~0.8重量部である。
 乳化重合の媒体には、通常、水が使用される。水の量は、重合に用いる単量体100重量部に対して、好ましくは80~500重量部、より好ましくは80~300重量部である。
 乳化重合に際しては、さらに、必要に応じて安定剤、分散剤、pH調整剤、脱酸素剤、粒子径調整剤等の重合副資材を用いることができる。これらを用いる場合においては、その種類、使用量とも特に限定されない。
 また、本発明においては、得られた共重合体について、必要に応じて、共重合体の水素化(水素添加反応)を行ってもよい。水素添加は公知の方法によればよく、乳化重合で得られた共重合体のラテックスを凝固した後、油層で水素添加する油層水素添加法や、得られた共重合体のラテックスをそのまま水素添加する水層水素添加法などが挙げられる。
 水素添加を油層水素添加法で行う場合、好適には上記乳化重合により調製した共重合体のラテックスを塩析やアルコールによる凝固、濾別および乾燥を経て、有機溶媒に溶解する。次いで水素添加反応(油層水素添加法)を行い、得られた水素化物を大量の水中に注いで凝固、水洗、濾別および乾燥を行うことによりニトリル基含有共重合体ゴムを得ることができる。場合によっては、遠心脱水を行ってもよい。
 ラテックスの塩析による凝固には、塩化ナトリウム、塩化カルシウム、硫酸アルミニウム、硫酸マグネシウムなど公知の凝固剤を使用することができる。また、塩析による凝固に代えて、メタノール、エタノール、またはイソプロピルアルコールなどのアルコールを用いて凝固を行ってもよい。油層水素添加法の溶媒としては、乳化重合により得られた共重合体を溶解する液状有機化合物であれば特に限定されないが、ベンゼン、クロロベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン、テトラヒドロフラン、メチルエチルケトン、酢酸エチル、シクロヘキサノンおよびアセトンなどが好ましく使用される。
 油層水素添加法の触媒としては、公知の選択的水素化触媒であれば限定なく使用でき、パラジウム系触媒およびロジウム系触媒が好ましく、パラジウム系触媒(酢酸パラジウム、塩化パラジウムおよび水酸化パラジウムなど)がより好ましい。これらは2種以上併用してもよいが、その場合はパラジウム系触媒を主たる活性成分とすることが好ましい。これらの触媒は、通常、担体に担持させて使用される。担体としては、シリカ、シリカ-アルミナ、アルミナ、珪藻土、活性炭などが例示される。触媒使用量は、共重合体に対して好ましくは10~20000重量ppm、より好ましくは50~15000重量ppmである。
 あるいは、水素添加を水層水素添加法で行う場合、好適には上記乳化重合により調製した共重合体のラテックスに、必要に応じて水を加えて希釈し、水素添加反応を行う。水層水素添加法は、水素化触媒存在下の反応系に水素を供給して水素化する水層直接水素添加法と、酸化剤、還元剤および活性剤の存在下で還元して水素化する水層間接水素添加法とが挙げられるが、これらの中でも、水層直接水素添加法が好ましい。
 水層直接水素添加法において、水層における共重合体の濃度(ラテックス状態での濃度)は、凝集を防止するため40重量%以下であることが好ましい。水素化触媒は、水で分解しにくい化合物であれば特に限定されない。その具体例として、パラジウム触媒では、ギ酸、プロピオン酸、ラウリン酸、コハク酸、オレイン酸、フタル酸などのカルボン酸のパラジウム塩;塩化パラジウム、ジクロロ(シクロオクタジエン)パラジウム、ジクロロ(ノルボルナジエン)パラジウム、ヘキサクロロパラジウム(IV)酸アンモニウムなどのパラジウム塩素化物;ヨウ化パラジウムなどのヨウ素化物;硝酸パラジウム;硫酸パラジウム・二水和物などが挙げられる。これらの中でもカルボン酸のパラジウム塩、ジクロロ(ノルボルナジエン)パラジウムおよびヘキサクロロパラジウム(IV)酸アンモニウム塩化パラジウム、硝酸パラジウムが特に好ましい。水素化触媒の使用量は、適宜定めればよいが、重合により得られた共重合体に対し、好ましくは5~20000重量ppm、より好ましくは10~15000重量ppmである。
 水層直接水素添加法においては、水素添加反応終了後、ラテックス中の水素化触媒を除去する。その方法として、たとえば、活性炭、イオン交換樹脂などの吸着剤を添加して攪拌下で水素化触媒を吸着させる工程、または酸化剤もしくは還元剤とともに錯化剤を用いて水素化触媒の錯体を形成させる工程、を経て、次いでラテックスを遠心分離またはおよび濾過する方法を採ることができる。水素化触媒を除去せずにラテックス中に残存させることも可能である。
 そして、水層直接水素添加法においては、このようにして得られた水素添加反応後のラテックスについて、メタノール、エタノールやイソプロピルアルコールなどのアルコールまたは塩析による凝固、水洗、濾別および乾燥などを行なうことにより、ニトリル基含有共重合体ゴムを得ることができる。この場合における、凝固に続く水洗、濾別および乾燥の工程はそれぞれ公知の方法によって行なうことができる。塩析による凝固には、塩化ナトリウム、塩化カルシウム、硫酸アルミニウム、硫酸マグネシウムなど公知の凝固剤を使用することができる。また場合によっては、遠心脱水を行ってもよい。
 また、凝固前の油層や水層に老化防止剤を加えることもできる。老化防止剤としては特に限定されないが、2,6-ジ-t-ブチル-4-クレゾール(アンテージBHT、川口化学工業株式会社製)、2,2’―メチレンビス(4-メチル-6―tert―ブチルフェノール)(サンダント 2246、三新化学工業株式会社製)、ビス(3,5―ジ―tert―ブチル―4―ヒドロキシベンジル)スルフィド(サンダント 103、三新化学工業株式会社製)、ペンタエリスリトールテトラキス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕(イルガノックス1010、BASFジャパン社製)、オクタデシル3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート(イルガノックス1076、BASFジャパン社製)、イソオクチル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート(イルガノックス1135、BASFジャパン社製)、ヘキサメチレンビス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕(イルガノックス259、BASFジャパン社製)、4,6-ビス(オクチルチオメチル)-o-クレゾール(イルガノックス1520L、BASFジャパン社製)などを用いることができる。
 本発明で用いる架橋性ゴム組成物は、上述したニトリル基含有共重合体ゴムに加えて、ポリアミン系架橋剤を含有する。
 ポリアミン系架橋剤としては、2つ以上のアミノ基を有する化合物、または、架橋時に2つ以上のアミノ基を有する化合物の形態になるもの、であれば特に限定されないが、脂肪族炭化水素や芳香族炭化水素の複数の水素原子が、アミノ基またはヒドラジド構造(-CONHNHで表される構造、COはカルボニル基を表す。)で置換された化合物および架橋時にその化合物の形態になるものが好ましい。
 ポリアミン系架橋剤の具体例としては、ヘキサメチレンジアミン、ヘキサメチレンジアミンカルバメート、N,N-ジシンナミリデン-1,6-ヘキサンジアミン、テトラメチレンペンタミン、ヘキサメチレンジアミンシンナムアルデヒド付加物などの脂肪族多価アミン類;4,4-メチレンジアニリン、m-フェニレンジアミン、4,4-ジアミノジフェニルエーテル、3,4-ジアミノジフェニルエーテル、4,4-(m-フェニレンジイソプロピリデン)ジアニリン、4,4-(p-フェニレンジイソプロピリデン)ジアニリン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4-ジアミノベンズアニリド、4,4-ビス(4-アミノフェノキシ)ビフェニル、m-キシリレンジアミン、p-キシリレンジアミン、1,3,5-ベンゼントリアミンなどの芳香族多価アミン類;イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド、フタル酸ジヒドラジド、2,6-ナフタレンジカルボン酸ジヒドラジド、ナフタレン酸ジヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタミン酸ジヒドラジド、アジピン酸ジヒドラジド、ピメリン酸ジヒドラジド、スベリン酸ジヒドラジド、アゼライン酸ジヒドラジド、セバシン酸ジヒドラジド、ブラッシル酸ジヒドラジド、ドデカン二酸ジヒドラジド、アセトンジカルボン酸ジヒドラジド、フマル酸ジヒドラジド、マレイン酸ジヒドラジド、イタコン酸ジヒドラジド、トリメリット酸ジヒドラジド、1,3,5-ベンゼントリカルボン酸ジヒドラジド、アコニット酸ジヒドラジド、ピロメリット酸ジヒドラジドなどの多価ヒドラジド類;が挙げられる。これらの中でも、本発明の効果をより一層顕著なものとすることができるという点より、脂肪族多価アミン類および芳香族多価アミン類が好ましく、ヘキサメチレンジアミンカルバメートおよび2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンがより好ましく、ヘキサメチレンジアミンカルバメートが特に好ましい。
 本発明で用いる架橋性ゴム組成物中における、架橋剤の含有量は特に限定されないがニトリル基含有共重合体ゴム100重量部に対して、好ましくは0.1~20重量部、より好ましくは1~15重量部であり、さらに好ましくは1~10重量部であり、特に好ましくは1~5重量部である。
 また、本発明で用いる架橋性ゴム組成物には、塩基性架橋促進剤をさらに含有させることが好ましい。
 塩基性架橋促進剤の具体例としては、下記一般式(1)で表される化合物や、環状アミジン構造を有する塩基性架橋促進剤、グアニジン系塩基性架橋促進剤、アルデヒドアミン系塩基性架橋促進剤などが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 (上記一般式(1)中、RおよびRは、それぞれ独立して、置換基を有していてもよい炭素数1~12のアルキル基、または、置換基を有していてもよい炭素数5~12のシクロアルキル基である。)
 RおよびRは、置換基を有していてもよい炭素数1~12のアルキル基、または、置換基を有していてもよい炭素数5~12のシクロアルキル基であるが、置換基を有していてもよい炭素数5~12のシクロアルキル基であることが好ましく、置換基を有していてもよい炭素数5~8のシクロアルキル基であることが特に好ましい。
 また、RおよびRは、置換基を有していないことが好ましい。
 なお、RおよびRが置換基を有する場合の置換基の具体例としては、ヒドキシル基、アルコキシ基、アルコキシカルボニル基、アミノ基、ハロゲン原子などが挙げられる。
 また、上記一般式(1)で表される化合物のなかでも、加工性およびスコーチ安定性をより高めることができるという点より、下記一般式(2)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000002
 (上記一般式(2)中、RおよびRは、それぞれ独立して、置換基を有していてもよい炭素数5~8のシクロアルキル基である。)
 RおよびRは、置換基を有していてもよい炭素数5~8のシクロアルキル基であるが、炭素数5または6の置換基を有していてもよいシクロアルキル基であることが好ましく、炭素数6の置換基を有していてもよいシクロアルキル基であることがより好ましい。
 また、RおよびRは、置換基を有していないことが好ましい。
 なお、RおよびRが置換基を有する場合の置換基の具体例としては、ヒドキシル基、アルコキシ基、アルコキシカルボニル基、アミノ基、ハロゲン原子などが挙げられる。
 上記一般式(1)で表される化合物の具体例としては、ジシクロペンチルアミン、ジシクロヘキシルアミン、ジシクロヘプチルアミンなどのジシクロアルキルアミン;N-メチルシクロペンチルアミン、N-ブチルシクロペンチルアミン、N-ヘプチルシクロペンチルアミン、N-オクチルシクロペンチルアミン、N-エチルシクロヘキシルアミン、N-ブチルシクロヘキシルアミン、N-ヘプチルシクロヘキシルアミン、N-オクチルシクロオクチルアミンなどのアルキル基とシクロアルキル基が窒素原子に結合した二級アミン;N-ヒドロキシメチルシクロペンチルアミン、N-ヒドロキシブチルシクロヘキシルアミンなどのヒドロキシ基を有するアルキル基とシクロアルキル基が窒素原子に結合した二級アミン;N-メトキシエチルシクロペンチルアミン、N-エトキシブチルシクロヘキシルアミンなどのアルコキシ基を有するアルキル基とシクロアルキル基が窒素原子に結合した二級アミン;N-メトキシカルボニルブチルシクロペンチルアミン、N-メトキシカルボニルヘプチルシクロヘキシルアミンなどのアルコキシカルボニル基を有するアルキル基とシクロアルキル基が窒素原子に結合した二級アミン;N-アミノプロピルシクロペンチルアミン、N-アミノヘプチルシクロヘキシルアミンなどのアミノ基を有するアルキル基とシクロアルキル基が窒素原子に結合した二級アミン;ジ(2-クロロシクロペンチル)アミン、ジ(3-クロロシクロペンチル)アミンなどのハロゲン原子を有するシクロアルキル基が窒素原子に結合した二級アミン;などが挙げられるが、加工性およびスコーチ安定性をより高めることができるという点より、ジシクロアルキルアミンが好ましく、ジシクロペンチルアミンおよびジシクロヘキシルアミンがより好ましく、ジシクロヘキシルアミンが特に好ましい。
 また、環状アミジン構造を有する塩基性架橋促進剤としては、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(以下「DBU」と略す場合がある)および1,5-ジアザビシクロ[4,3,0]ノネン-5(以下「DBN」と略す場合がある)、1-メチルイミダゾール、1-エチルイミダゾール、1-フェニルイミダゾール、1-ベンジルイミダゾール、1,2-ジメチルイミダゾール、1-エチル-2-メチルイミダゾール、1-メトキシエチルイミダゾール、1-フェニル-2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-メチル-2-フェニルイミダゾール、1-メチル-2-ベンジルイミダゾール、1,4-ジメチルイミダゾール、1,5-ジメチルイミダゾール、1,2,4-トリメチルイミダゾール、1,4-ジメチル-2-エチルイミダゾール、1-メチル-2-メトキシイミダゾール、1-メチル-2-エトキシイミダゾール、1-メチル-4-メトキシイミダゾール、1-メチル-2-メトキシイミダゾール、1-エトキシメチル-2-メチルイミダゾール、1-メチル-4-ニトロイミダゾール、1,2-ジメチル-5-ニトロイミダゾール、1,2-ジメチル-5-アミノイミダゾール、1-メチル-4-(2-アミノエチル)イミダゾール、1-メチルベンゾイミダゾール、1-メチル-2-ベンジルベンゾイミダゾール、1-メチル-5-ニトロベンゾイミダゾール、1-メチルイミダゾリン、1,2-ジメチルイミダゾリン、1,2,4-トリメチルイミダゾリン、1,4-ジメチル-2-エチルイミダゾリン、1-メチル-2-フェニルイミダゾリン、1-メチル-2-ベンジルイミダゾリン、1-メチル-2-エトキシイミダゾリン、1-メチル-2-ヘプチルイミダゾリン、1-メチル-2-ウンデシルイミダゾリン、1-メチル-2-ヘプタデシルイミダゾリン、1-メチル-2-エトキシメチルイミダゾリン、1-エトキシメチル-2-メチルイミダゾリンなどが挙げられる。これら環状アミジン構造を有する塩基性架橋促進剤のなかでも、1,8-ジアザビシクロ[5,4,0]ウンデセン-7および1,5-ジアザビシクロ[4,3,0]ノネン-5が好ましく、1,8-ジアザビシクロ[5,4,0]ウンデセン-7がより好ましい。
 グアニジン系塩基性架橋促進剤としては、テトラメチルグアニジン、テトラエチルグアニジン、ジフェニルグアニジン、1,3-ジ-オルト-トリルグアニジン、オルトトリルビグアニドなどが挙げられる。
 アルデヒドアミン系塩基性架橋促進剤としては、n-ブチルアルデヒドアニリン、アセトアルデヒドアンモニアなどが挙げられる。
 これら塩基性架橋促進剤のなかでも、上記一般式(1)で表される化合物、グアニジン系塩基性架橋促進剤および環状アミジン構造を有する塩基性架橋促進剤が好ましく、上記一般式(1)で表される化合物、および環状アミジン構造を有する塩基性架橋促進剤がより好ましく、環状アミジン構造を有する塩基性架橋促進剤がさらに好ましい。
 なお、上記一般式(1)で表される化合物は、アルキレングリコールや炭素数5~20のアルキルアルコールなどのアルコール類が混合されたものであってもよく、さらに無機酸および/または有機酸を含んでいてもよい。また、一般式(1)で表される化合物としては、一般式(1)で表される化合物と前記無機酸および/または有機酸とで塩を形成し、さらにアルキレングリコールと複合体を形成していてもよい。また、上記環状アミジン構造を有する塩基性架橋促進剤は、有機カルボン酸やアルキルリン酸などと塩を形成していてもよい。
 塩基性架橋促進剤を配合する場合における、本発明で用いる架橋性ゴム組成物中の配合量は、ニトリル基含有共重合体ゴム100重量部に対して、好ましくは0.1~20重量部であり、より好ましくは0.2~15重量部、さらに好ましくは0.5~10重量部である。
 また、本発明で用いる架橋性ゴム組成物には、上記以外に、ゴム分野において通常使用される配合剤、たとえば、カーボンブラックやシリカなどの補強剤、炭酸カルシウム、タルクやクレイなどの充填材、酸化亜鉛や酸化マグネシウムなどの金属酸化物、メタクリル酸亜鉛やアクリル酸亜鉛などのα,β-エチレン性不飽和カルボン酸金属塩、共架橋剤、架橋助剤、架橋遅延剤、老化防止剤、酸化防止剤、光安定剤、一級アミンなどのスコーチ防止剤、ジエチレングリコールなどの活性剤、カップリング剤、可塑剤、加工助剤、滑剤、粘着剤、潤滑剤、難燃剤、防黴剤、受酸剤、帯電防止剤、顔料、発泡剤などを配合することができる。これらの配合剤の配合量は、本発明の目的や効果を阻害しない範囲であれば特に限定されず、配合目的に応じた量を配合することができる。
 カップリング剤としては、たとえば、シランカップリング剤、アルミニウム系カップリング剤、チタネート系カップリング剤などが挙げられる。
 シランカップリング剤としては特に限定されないが、その具体例としては、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトメチルトリメトキシシラン、γ-メルカプトメチルトリエトキシシラン、γ-メルカプトヘキサメチルジシラザン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、ビス(3-トリエトキシシリルプロピル)ジスルファンなどの硫黄を含有するシランカップリング剤;γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン等のエポキシ基含有シランカップリング剤;N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ基含有シランカップリング剤;γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-アクリロキシプロピルトリメトキシシラン等の(メタ)アクリロキシ基含有シランカップリング剤;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリクロロシラン、ビニルトリアセトキシシラン等のビニル基含有シランカップリング剤;3-クロロプロピルトリメトキシシラン等のクロロプロピル基含有シランカップリング剤;3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基含有シランカップリング剤;p-スチリルトリメトキシシラン等のスチリル基含有シランカップリング剤;3-ウレイドプロピルトリエトキシシラン等のウレイド基含有シランカップリング剤;ジアリルジメチルシラン等のアリル基含有シランカップリング剤;テトラエトキシシラン等のアルコキシ基含有シランカップリング剤;ジフェニルジメトキシシラン等のフェニル基含有シランカップリング剤;トリフルオロプロピルトリメトキシシラン等のフロロ基含有シランカップリング剤;イソブチルトリメトキシシラン、シクロヘキシルメチルジメトキシシラン等のアルキル基含有シランカップリング剤;などが挙げられる。
 アルミニウム系カップリング剤としては特に限定されないが、その具体例としては、アセトアルコキシアルミニウムジイソプロピレートなどが挙げられる。
 チタネート系カップリング剤としては特に限定されないが、その具体例としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、イソプロピルトリイソステアロイルチタネートなどが挙げられる。これらのシランカップリング剤、アルミニウム系カップリング剤、チタネート系カップリング剤などは1種または複数種併せて用いることができる。
 カーボンブラックとしては、たとえば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、オースチンブラック、グラファイトなどが挙げられる。これらは1種または複数種併せて用いることができる。
 シリカとしては、石英粉末、珪石粉末等の天然シリカ;無水珪酸(シリカゲル、アエロジル等)、含水珪酸等の合成シリカ;等が挙げられ、これらの中でも、合成シリカが好ましい。またこれらシリカはカップリング剤等で表面処理されたものであってもよい。表面処理に用いるカップリング剤としては、たとえば、上述したものを用いることができる。
 共架橋剤としては、特に限定されないが、ラジカル反応性の不飽和基を分子中に複数個有する低分子または高分子の化合物が好ましく、たとえば、ジビニルベンゼンやジビニルナフタレンなどの多官能ビニル化合物;トリアリルイソシアヌレート、トリメタリルイソシアヌレートなどのイソシアヌレート類;トリアリルシアヌレートなどのシアヌレート類;N,N'-m-フェニレンジマレイミドなどのマレイミド類;ジアリルフタレート、ジアリルイソフタレート、ジアリルマレエート、ジアリルフマレート、ジアリルセバケート、トリアリルホスフェートなどの多価酸のアリルエステル;ジエチレングリコールビスアリルカーボネート;エチレングリコールジアリルエーテル、トリメチロールプロパンのトリアリルエーテル、ペンタエリトリットの部分的アリルエーテルなどのアリルエーテル類;アリル化ノボラック、アリル化レゾール樹脂等のアリル変性樹脂;トリメチロールプロパントリメタクリレートやトリメチロールプロパントリアクリレートなどの、3~5官能のメタクリレート化合物やアクリレート化合物;などが挙げられる。これらは1種または複数種併せて用いることができる。
 可塑剤としては、特に限定されないが、トリメリット酸系可塑剤、ピロメリット酸系可塑剤、エーテルエステル系可塑剤、ポリエステル系可塑剤、フタル酸系可塑剤、アジピン酸エステル系可塑剤、リン酸エステル系可塑剤、セバシン酸エステル系可塑剤、アルキルスルホン酸エステル化合物類可塑剤、エポキシ化植物油系可塑剤などを用いることができる。具体例としては、トリメリット酸トリ-2-エチルヘキシル、トリメリット酸イソノニルエステル、トリメリット酸混合直鎖アルキルエステル、ジペンタエリスリトールエステル、ピロメリット酸2-エチルヘキシルエステル、ポリエーテルエステル(分子量300~5000程度)、アジピン酸ビス[2-(2-ブトキシエトキシ)エチル]、アジピン酸ジオクチル、アジピン酸系のポリエステル(分子量300~5000程度)、フタル酸ジオクチル、フタル酸ジイソノニル、フタル酸ジブチル、リン酸トリクレシル、セバシン酸ジブチル、アルキルスルホン酸フェニルエステル、エポキシ化大豆油、ジヘプタノエート、ジ-2-エチルヘキサノエート、ジデカノエートなどが挙げられる。これらは1種または複数種併せて用いることができる。
 さらに、本発明で用いる架橋性ゴム組成物には、本発明の効果を阻害しない範囲で、上述したニトリル基含有共重合体ゴム以外のゴムを配合してもよい。
 このようなゴムとしては、アクリルゴム、エチレン-アクリル酸共重合体ゴム、スチレン-ブタジエン共重合体ゴム、ポリブタジエンゴム、エチレン-プロピレン共重合体ゴム、エチレン-プロピレン-ジエン三元共重合体ゴム、エピクロロヒドリンゴム、フッ素ゴム、ウレタンゴム、クロロプレンゴム、シリコーンゴム、天然ゴム、ポリイソプレンゴムなどが挙げられる。
 ニトリル基含有共重合体ゴム以外のゴムを配合する場合における、架橋性ゴム組成物中の配合量は、本発明で用いるニトリル基含有共重合体ゴム100重量部に対して、好ましくは30重量部以下、より好ましくは20重量部以下、さらに好ましくは10重量部以下である。
 また、本発明で用いる架橋性ゴム組成物は、上記各成分を好ましくは非水系で混合することで調製される。本発明で用いる架橋性ゴム組成物を調製する方法に限定はないが、通常、架橋剤および熱に不安定な成分を除いた成分を、バンバリーミキサ、インターミキサ、ニーダなどの混合機で一次混練した後、オープンロールなどに移して架橋剤や熱に不安定な成分を加えて二次混練することにより調製できる。なお、一次混練は、通常、10~200℃、好ましくは30~180℃の温度で、1分間~1時間、好ましくは1分間~30分間行い、二次混練は、通常、10~90℃、好ましくは20~60℃の温度で、1分間~1時間、好ましくは1分間~30分間行う。
 ゴム架橋物の製造方法
 本発明の製造方法は、上述した架橋性ゴム組成物を、成形と同時に200℃以上の温度で加熱することで架橋させて、ゴム架橋物を得るものである。
 本発明の製造方法において、成形と同時に200℃以上の温度で加熱することで架橋させるとは、所望の形状に対応した成形機にて、上述した架橋性ゴム組成物を所望の形状に成形しながら、成形機内で、架橋性ゴム組成物を200℃以上の温度で加熱することで、架橋を進行させることにより、ゴム架橋物としての形状の固定化と、架橋反応を行うものである。本発明の製造方法によれば、このような成形、架橋方法を採用することにより、二次架橋を行うことなく、得られるゴム架橋物を常態物性および引裂強度が良好であり、かつ、耐圧縮永久歪み性に優れたものとすることができるものである。また、本発明の製造方法によれば、二次架橋を行う必要がないため、ゴム架橋物を高い生産性にて製造することができるものである。
 なお、本発明の製造方法において、成形と同時に架橋を行う際に用いる成形機としては、成形と同時に架橋を行うことが可能な成形機であればよく、特に限定されないが、圧縮成形機、射出成型機、トランスファー成型機などが挙げられる。
 成形と同時に架橋を行う際における加熱温度は、200℃以上であり、好ましくは200℃超、より好ましくは205℃以上、さらに好ましくは210℃以上である。また、加熱温度の上限は、通常、300℃以下、好ましくは250℃以下、より好ましくは230℃以下である。加熱温度が低すぎると、架橋反応の進行が不十分となり、得られるゴム架橋物の機械特性が悪化してしまう。加熱温度が高すぎると、得られるゴム架橋物が劣化してしまう。
 成形と同時に架橋を行う際における加熱時間、すなわち、成形および架橋時間は、好ましくは10~60分であり、より好ましくは10~50分、さらに好ましくは15~40分である。加熱時間を上記範囲とすることにより、高い生産性にて、所望の特性を有するゴム架橋物を適切に得ることができる。また、加熱温度が200~220℃の場合は、加熱時間は20~60分であることが好ましく、加熱温度が220℃超の場合は、加熱時間は15~40分であることが好ましい。さらに高温や、さらに長時間になるとO-リング圧縮永久歪みが大きくなる(悪くなる)可能性がある。
 成形と同時に架橋を行う際にプレス成形機を用いる場合における、プレス圧は、好ましくは1~20MPa、より好ましくは5~15MPa、さらに好ましくは7~12MPaである。
 また、本発明の製造方法においては、生産性をより適切に高めるという観点より、上述した成形と同時に200℃以上の温度で加熱して架橋を行った後、このような成形と同時に行う架橋以外の加熱操作、特に、二次架橋を含む50℃以上の加熱操作については、行わないことが望ましい。
 このような本発明の製造方法により得られるゴム架橋物は、高い生産性にて製造が可能であり、しかも、常態物性および引裂強度が良好であり、優れた耐圧縮永久歪み性を備えるものである。
 このため、本発明の製造方法により得られるゴム架橋物は、このような特性を活かし、O-リング、パッキン、ダイアフラム、オイルシール、シャフトシール、ベアリングシール、ウェルヘッドシール、ショックアブソーバシール、ロングライフクーラント(LLC)など冷却液の密封用シールであるクーラントシールやオイルクーラントシール、空気圧機器用シール、エアコンディショナの冷却装置や空調装置の冷凍機用コンプレッサに使用されるフロン若しくはフルオロ炭化水素または二酸化炭素の密封用シール、精密洗浄の洗浄媒体に使用される超臨界二酸化炭素または亜臨界二酸化炭素の密封用シール、転動装置(転がり軸受、自動車用ハブユニット、自動車用ウォーターポンプ、リニアガイド装置およびボールねじ等)用のシール、バルブおよびバルブシート、BOP(Blow Out Preventer)、ブラダーなどの各種シール材;インテークマニホールドとシリンダヘッドとの連接部に装着されるインテークマニホールドガスケット、シリンダブロックとシリンダヘッドとの連接部に装着されるシリンダヘッドガスケット、ロッカーカバーとシリンダヘッドとの連接部に装着されるロッカーカバーガスケット、オイルパンとシリンダブロックあるいはトランスミッションケースとの連接部に装着されるオイルパンガスケット、正極、電解質板および負極を備えた単位セルを挟み込む一対のハウジング間に装着される燃料電池セパレーター用ガスケット、ハードディスクドライブのトップカバー用ガスケットなどの各種ガスケット;印刷用ロール、製鉄用ロール、製紙用ロール、工業用ロール、事務機用ロールなどの各種ロール;平ベルト(フィルムコア平ベルト、コード平ベルト、積層式平ベルト、単体式平ベルト等)、Vベルト(ラップドVベルト、ローエッジVベルト等)、Vリブドベルト(シングルVリブドベルト、ダブルVリブドベルト、ラップドVリブドベルト、背面ゴムVリブドベルト、上コグVリブドベルト等)、CVT用ベルト、タイミングベルト、歯付ベルト、コンベアーベルト、などの各種ベルト;燃料ホース、ターボエアーホース、オイルホース、ラジェターホース、ヒーターホース、ウォーターホース、バキュームブレーキホース、コントロールホース、エアコンホース、ブレーキホース、パワーステアリングホース、エアーホース、マリンホース、ライザー、フローラインなどの各種ホース;CVJブーツ、プロペラシャフトブーツ、等速ジョイントブーツ、ラックアンドピニオンブーツなどの各種ブーツ;クッション材、ダイナミックダンパ、ゴムカップリング、空気バネ、防振材、クラッチフェーシング材などの減衰材ゴム部品;ダストカバー、自動車内装部材、摩擦材、タイヤ、被覆ケーブル、靴底、電磁波シールド、フレキシブルプリント基板用接着剤等の接着剤、燃料電池セパレーターの他、エレクトロニクス分野など幅広い用途に使用することができる。
 以下に、実施例および比較例を挙げて本発明を具体的に説明する。以下において、特記しない限り「部」は重量基準である。なお、試験、評価は以下によった。
 ヨウ素価
 ニトリル基含有共重合体ゴムのヨウ素価は、JIS K 6235に準じて測定した。
 カルボキシル基含有量
 2mm角のニトリル基含有共重合体ゴム0.2gに、ピリジン100mLを加えて16時間攪拌した後、攪拌しながら水酸化カリウムの0.02Nアルコール性水酸化カリウム溶液を用いて、室温でチモールフタレインを指示薬とする滴定により、ゴム100gに対するカルボキシル基のモル数として、カルボキシル基含有量を求めた(単位はephr)。
 ニトリル基含有共重合体ゴムの組成
 ニトリル基含有共重合体ゴムを構成する各単量体単位の含有割合は、以下の方法により測定した。
 すなわち、マレイン酸モノn-ブチル単位の含有割合は、上記「カルボキシル基含有量」の測定方法により、水素化後のニトリル基含有共重合体ゴム100gに対するカルボキシル基のモル数を求め、求めたモル数をマレイン酸モノn-ブチル単位の量に、換算することにより算出した。
 1,3-ブタジエン単位(水素化された部分も含む)の含有割合は、水素添加前のニトリル基含有共重合体ゴムを用いて、ヨウ素価(JIS K6235による)を測定することにより算出した。
 アクリロニトリル単位の含有割合は、JIS K6384に従い、セミミクロケルダール法または改良デュマ法により、水素化後のニトリル基含有共重合体ゴム中の窒素含量を測定することにより算出した。
 ポリマー・ムーニー粘度
 ニトリル基含有共重合体ゴムのムーニー粘度(ポリマー・ムーニー粘度)(ML1+4、100℃)は、JIS  K6300に従って測定した。
 常態物性(引張強度、伸び)
 シート状のゴム架橋物を3号形ダンベルで打ち抜いて試験片を作製し、この試験片を用いて、JIS K6251に従い引張強度および伸びを測定した。
 引裂強度
 引裂強度の評価は、シート状のゴム架橋物を用いて、JIS  K6252-1:2015に記載の、試験方法B-手順(a):切込みなしアングル形試験片を用いる方法に従って測定した。
 圧縮永久歪み試験(O-リング圧縮永久歪み)
 O-リング状のゴム架橋物を用いて、O-リング状のゴム架橋物を挟んだ二つの平面間の距離をリング厚み方向に25%圧縮した状態で150℃の環境下に168時間置いた後、JIS  K6262に従って、圧縮永久歪みを測定した。この値が小さいほど、耐圧縮永久歪み性に優れる。
 製造例1(ニトリル基含有共重合体ゴム(n1)の製造)
 反応器に、イオン交換水180部、濃度10%のドデシルベンゼンスルホン酸ナトリウム水溶液25部、濃度10%のナフタレンスルホン酸ホルマリン縮合物のナトリウム塩5部、アクリロニトリル35.5部、マレイン酸モノn-ブチル5.5部、およびt-ドデシルメルカプタン(分子量調整剤)0.75部の順に仕込み、内部の気体を窒素で3回置換した後、1,3-ブタジエン59部を仕込んだ。そして、反応器を10℃に保ち、クメンハイドロパーオキサイド(重合開始剤)0.1部、還元剤、キレート剤およびビルダー適量を仕込み、攪拌しながら重合反応を継続し、重合転化率が80%になった時点で、濃度2.5重量%の2,2,6,6-テトラメチルピペリジン-1-オキシル水溶液(重合停止剤)4部を加えて重合反応を停止した。次いで、水温60℃で残留単量体を除去し、ニトリル基含有共重合体ゴム(X1)のラテックス(固形分濃度25重量%)を得た。
 そして、上記にて得られたニトリル基含有共重合体ゴム(X1)のラテックスに含有されるゴムの乾燥重量に対するパラジウム含有量が3000重量ppmになるように、オートクレーブ中に、ニトリル基含有共重合体ゴム(X1)のラテックスおよびパラジウム触媒(1重量%酢酸パラジウムアセトン溶液と等重量のイオン交換水を混合した溶液)を添加して、水素圧3MPa、温度50℃、固形分濃度15重量%で6時間水素添加反応を行い、ニトリル基含有共重合体ゴム(n1)のラテックスを得た。次いで、ラテックス中の重合体100部に対して、0.1部の4,6-ビス(オクチルチオメチル)-o-クレゾール(イルガノックス1520L、BASFジャパン社製、老化防止剤)を添加した。
 得られたニトリル基含有共重合体ゴム(n1)のラテックスを1wt%硫酸でpH4に調整した後、3倍容量のイソプロピルアルコールを加えて凝固した後、60℃で12時間真空乾燥することによりニトリル基含有共重合体ゴム(n1)を得た。
 得られたニトリル基含有共重合体ゴム(n1)のヨウ素価は10であり、ポリマー・ムーニー粘度(ML1+4、100℃)は、50であった。また、得られたニトリル基含有共重合体ゴム(n1)の単量体組成は、アクリロニトリル単位36重量%、マレイン酸モノn-ブチル単位6重量%、および1,3-ブタジエン単位58重量%であった。
 実施例1
 バンバリーミキサを用いて、製造例1にて得られたニトリル基含有共重合体ゴム(n1)100部に、FEFカーボン(商品名「シーストSO」、東海カーボン社製、カーボンブラック)40部、トリメリット酸トリ-2-エチルヘキシル(商品名「アデカサイザー C-8」、ADEKA社製、可塑剤)5部、ステアリン酸1部、ポリオキシエチレンアルキルエーテルリン酸エステル(商品名「フォスファノールRL210」、東邦化学工業社製、加工助剤)1部、および4,4’-ジ-(α,α‘-ジメチルベンジル)ジフェニルアミン(商品名「ノクラックCD」、大内新興化学社製、老化防止剤)1.5部を添加して混練し、次いで、混合物をロールに移して1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)(商品名:「RHENOGRAN XLA-60(GE2014)」、RheinChemie社製、DBU60重量%(ジンクジアルキルジフォスフェイト塩になっている部分を含む)、および、アクリル酸ポリマーと分散剤40重量%からなるもの、塩基性架橋促進剤)4部、および、ヘキサメチレンジアミンカルバメート(商品名「Diak#1」、デュポン社製、脂肪族多価アミン類に属するポリアミン系架橋剤)2.4部を添加して混練することで、架橋性ゴム組成物を得た。
 そして、得られた架橋性ゴム組成物のうち一部を、縦15cm、横15cm、深さ0.2cmの金型に入れ、プレス圧10MPaで加圧しながら温度200℃で30分間プレスすることにより成形と架橋とを同時に行い、シート状のゴム架橋物を得た。
 また、上記とは別に、得られた架橋性ゴム組成物のうち一部を、内径30mm、リング径3mmの金型に入れ、プレス圧10MPaで加圧しながら温度200℃で30分間プレスすることにより成形と架橋とを同時に行い、O-リング状のゴム架橋物を得た。
 そして、上記方法にしたがって、得られたシート状のゴム架橋物を用いて、常態物性および引裂強度の測定を、また、得られたO-リング状のゴム架橋物を用いて、圧縮永久歪みの測定を行った。結果を表1に示す。
 実施例2
 実施例1と同様にして得られた架橋性ゴム組成物を用い、成形と架橋とを同時に行う際の条件を、プレス圧10MPa、温度220℃で20分間とした以外は、実施例1と同様にして、シート状のゴム架橋物およびO-リング状のゴム架橋物を得た。
 そして、上記方法にしたがって、得られたシート状のゴム架橋物を用いて、常態物性および引裂強度の測定を、また、得られたO-リング状のゴム架橋物を用いて、圧縮永久歪みの測定を行った。結果を表1に示す。
 実施例3
 実施例1と同様にして得られた架橋性ゴム組成物を用い、成形と架橋とを同時に行う際の条件を、プレス圧10MPa、温度210℃で20分間とした以外は、実施例1と同様にして、シート状のゴム架橋物およびO-リング状のゴム架橋物を得た。
 そして、上記方法にしたがって、得られたシート状のゴム架橋物を用いて、常態物性および引裂強度の測定を、また、得られたO-リング状のゴム架橋物を用いて、圧縮永久歪みの測定を行った。結果を表1に示す。
 実施例4
 実施例1と同様にして得られた架橋性ゴム組成物を用い、成形と架橋とを同時に行う際の条件を、プレス圧10MPa、温度205℃で25分間とした以外は、実施例1と同様にして、シート状のゴム架橋物およびO-リング状のゴム架橋物を得た。
 そして、上記方法にしたがって、得られたシート状のゴム架橋物を用いて、常態物性および引裂強度の測定を、また、得られたO-リング状のゴム架橋物を用いて、圧縮永久歪みの測定を行った。結果を表1に示す。
 実施例5
 実施例1と同様にして得られた架橋性ゴム組成物を用い、成形と架橋とを同時に行う際の条件を、プレス圧10MPa、温度250℃で20分間とした以外は、実施例1と同様にして、シート状のゴム架橋物およびO-リング状のゴム架橋物を得た。
 そして、上記方法にしたがって、得られたシート状のゴム架橋物を用いて、常態物性および引裂強度の測定を、また、得られたO-リング状のゴム架橋物を用いて、圧縮永久歪みの測定を行った。結果を表1に示す。
 実施例6
 実施例1と同様にして得られた架橋性ゴム組成物を用い、成形と架橋とを同時に行う際の条件を、プレス圧10MPa、温度200℃で60分間とした以外は、実施例1と同様にして、シート状のゴム架橋物およびO-リング状のゴム架橋物を得た。
 そして、上記方法にしたがって、得られたシート状のゴム架橋物を用いて、常態物性および引裂強度の測定を、また、得られたO-リング状のゴム架橋物を用いて、圧縮永久歪みの測定を行った。結果を表1に示す。
 比較例1
 実施例1と同様にして得られた架橋性ゴム組成物を用い、成形と架橋とを同時に行う際の条件を、プレス圧10MPa、温度170℃で20分間として一次架橋物を得て、得られた一次架橋物をギヤー式オーブンに移し、温度170℃で4時間の条件でさらに加熱することで、二次架橋を行った以外は、実施例1と同様にして、シート状のゴム架橋物およびO-リング状のゴム架橋物を得た。
 そして、上記方法にしたがって、得られたシート状のゴム架橋物を用いて、常態物性および引裂強度の測定を、また、得られたO-リング状のゴム架橋物を用いて、圧縮永久歪みの測定を行った。結果を表1に示す。
 比較例2
 実施例1と同様にして得られた架橋性ゴム組成物を用い、成形と架橋とを同時に行う際の条件を、プレス圧10MPa、温度170℃で20分間とした以外は、実施例1と同様にして、シート状のゴム架橋物およびO-リング状のゴム架橋物を得た。
 そして、上記方法にしたがって、得られたシート状のゴム架橋物を用いて、常態物性および引裂強度の測定を、また、得られたO-リング状のゴム架橋物を用いて、圧縮永久歪みの測定を行った。結果を表1に示す。
 比較例3
 実施例1と同様にして得られた架橋性ゴム組成物を用い、成形と架橋とを同時に行う際の条件を、プレス圧10MPa、温度190℃で30分間とした以外は、実施例1と同様にして、シート状のゴム架橋物およびO-リング状のゴム架橋物を得た。
 そして、上記方法にしたがって、得られたシート状のゴム架橋物を用いて、常態物性および引裂強度の測定を、また、得られたO-リング状のゴム架橋物を用いて、圧縮永久歪みの測定を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 表1より、α,β-エチレン性不飽和ニトリル単量体単位10~60重量%、およびα,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位1~60重量%を含有し、ヨウ素価が120以下であるニトリル基含有共重合体ゴムと、ポリアミン系架橋剤とを含有する架橋性ゴム組成物を、成形と同時に200℃以上の温度で加熱することで架橋させた実施例1~6は、成形と同時に一次架橋を行った後、二次架橋を行った比較例1と同等程度に引張強度および伸びに優れ、また、圧縮永久歪み(O-リング圧縮永久歪み)および引裂強度に優れるものであった。すなわち、実施例1~6によれば、より少ない架橋操作で、かつ、短時間の架橋操作にて、一次架橋および二次架橋を行った場合と同等程度の特性を実現でき、生産性に優れるものであった。特に、実施例1~6のうち、成形と同時に架橋を行う際の加熱温度を200℃超とした実施例2~5においては、成形と同時に架橋を行う際の加熱時間、すなわち、成形および架橋時間をより短くすることができ、より生産性に優れるものであった。
 一方、成形と同時に架橋を行う際の加熱温度を200℃未満とした比較例2,3においては、得られるゴム架橋物は圧縮永久歪み(O-リング圧縮永久歪み)および引裂強度に劣るものであった。

Claims (5)

  1.  α,β-エチレン性不飽和ニトリル単量体単位10~60重量%、およびα,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位1~60重量%を含有し、ヨウ素価が120以下であるニトリル基含有共重合体ゴムと、ポリアミン系架橋剤とを含有する架橋性ゴム組成物を、成形と同時に200℃以上の温度で加熱することで架橋させて、ゴム架橋物を得るゴム架橋物の製造方法。
  2.  前記架橋性ゴム組成物を、成形と同時に200℃以上の温度で10~60分加熱することで架橋させて、ゴム架橋物を得る請求項1に記載のゴム架橋物の製造方法。
  3.  成形と同時に200℃以上の温度で加熱して架橋を行った後、加熱操作を行わない請求項1または2に記載のゴム架橋物の製造方法。
  4.  前記ニトリル基含有共重合体ゴムが、共役ジエン単量体単位(水素化されている部分も含む)20~89重量%をさらに含有する請求項1~3のいずれかに記載のゴム架橋物の製造方法。
  5.  前記架橋性ゴム組成物が、環状アミジン構造を有する塩基性架橋促進剤をさらに含有する請求項1~4のいずれかに記載のゴム架橋物の製造方法。
PCT/JP2018/016399 2017-04-26 2018-04-23 ゴム架橋物の製造方法 WO2018198998A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019514475A JP7103352B2 (ja) 2017-04-26 2018-04-23 ゴム架橋物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017087466 2017-04-26
JP2017-087466 2017-04-26

Publications (1)

Publication Number Publication Date
WO2018198998A1 true WO2018198998A1 (ja) 2018-11-01

Family

ID=63919085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016399 WO2018198998A1 (ja) 2017-04-26 2018-04-23 ゴム架橋物の製造方法

Country Status (2)

Country Link
JP (1) JP7103352B2 (ja)
WO (1) WO2018198998A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819275B2 (ja) * 1987-09-09 1996-02-28 日本合成ゴム株式会社 加硫可能なエラストマー組成物の製造方法
JP2007224215A (ja) * 2006-02-24 2007-09-06 Nippon Zeon Co Ltd 半導電性ゴム組成物、架橋性ゴム組成物およびゴム架橋物
JP4168189B2 (ja) * 1998-01-14 2008-10-22 ソルバーユ ソレクシス エッセ.ピー.ア. アクリルゴムとフッ素ゴムとの複合体、その製造方法および加硫性ゴム組成物
WO2010038720A1 (ja) * 2008-09-30 2010-04-08 日本ゼオン株式会社 ニトリル基含有高飽和共重合ゴム、これを含有する架橋性ゴム組成物および架橋物
JP2013018936A (ja) * 2011-07-14 2013-01-31 Nippon Zeon Co Ltd 架橋性ゴム組成物およびゴム架橋物
JP2015147855A (ja) * 2014-02-06 2015-08-20 内山工業株式会社 ゴム組成物及びそれを架橋させてなる成形品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819275B2 (ja) * 1987-09-09 1996-02-28 日本合成ゴム株式会社 加硫可能なエラストマー組成物の製造方法
JP4168189B2 (ja) * 1998-01-14 2008-10-22 ソルバーユ ソレクシス エッセ.ピー.ア. アクリルゴムとフッ素ゴムとの複合体、その製造方法および加硫性ゴム組成物
JP2007224215A (ja) * 2006-02-24 2007-09-06 Nippon Zeon Co Ltd 半導電性ゴム組成物、架橋性ゴム組成物およびゴム架橋物
WO2010038720A1 (ja) * 2008-09-30 2010-04-08 日本ゼオン株式会社 ニトリル基含有高飽和共重合ゴム、これを含有する架橋性ゴム組成物および架橋物
JP2013018936A (ja) * 2011-07-14 2013-01-31 Nippon Zeon Co Ltd 架橋性ゴム組成物およびゴム架橋物
JP2015147855A (ja) * 2014-02-06 2015-08-20 内山工業株式会社 ゴム組成物及びそれを架橋させてなる成形品

Also Published As

Publication number Publication date
JP7103352B2 (ja) 2022-07-20
JPWO2018198998A1 (ja) 2020-03-12

Similar Documents

Publication Publication Date Title
EP3323850B1 (en) Nitrile rubber composition and cross-linked rubber
EP3305817B1 (en) Nitrile group containing, highly saturated copolymer rubber
WO2017047571A1 (ja) ニトリルゴム組成物、架橋性ニトリルゴム組成物およびゴム架橋物
US10287382B2 (en) Nitrile rubber composition and cross-linked rubber
JP6969384B2 (ja) ニトリルゴム組成物、架橋性ニトリルゴム組成物およびゴム架橋物
JPWO2017086358A1 (ja) ゴム架橋物
JP6741002B2 (ja) ニトリル基含有高飽和共重合体ゴム
WO2018168395A1 (ja) ニトリル基含有共重合体ゴム
JP6733658B2 (ja) ニトリルゴム組成物およびゴム架橋物
JPWO2018123737A1 (ja) カルボキシル基含有ニトリルゴムおよびその製造方法、架橋性ニトリルゴム組成物およびゴム架橋物
JP7259423B2 (ja) ニトリルゴム組成物およびゴム架橋物
JP7103352B2 (ja) ゴム架橋物の製造方法
WO2018168396A1 (ja) ニトリル基含有共重合体ゴム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514475

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791376

Country of ref document: EP

Kind code of ref document: A1