WO2018198879A1 - Centrifugal compressor - Google Patents

Centrifugal compressor Download PDF

Info

Publication number
WO2018198879A1
WO2018198879A1 PCT/JP2018/015851 JP2018015851W WO2018198879A1 WO 2018198879 A1 WO2018198879 A1 WO 2018198879A1 JP 2018015851 W JP2018015851 W JP 2018015851W WO 2018198879 A1 WO2018198879 A1 WO 2018198879A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
flow path
communication path
compressor
main flow
Prior art date
Application number
PCT/JP2018/015851
Other languages
French (fr)
Japanese (ja)
Inventor
貴大 上野
龍介 沼倉
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to DE112018002168.8T priority Critical patent/DE112018002168T5/en
Priority to CN201880024680.7A priority patent/CN110520629A/en
Priority to JP2019514413A priority patent/JP6798613B2/en
Publication of WO2018198879A1 publication Critical patent/WO2018198879A1/en
Priority to US16/597,160 priority patent/US20200040899A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0215Arrangements therefor, e.g. bleed or by-pass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps

Definitions

  • This disclosure relates to a centrifugal compressor in which a sub-flow path communicating with a main flow path is formed.
  • a sub-flow path communicating with the main flow path may be formed.
  • a compressor impeller is disposed in the main flow path.
  • the main flow path and the sub flow path are communicated by the upstream communication path and the downstream communication path.
  • the high-pressure air compressed by the compressor impeller flows backward in the downstream communication path and the sub-flow path.
  • the backflowed air returns from the upstream communication path to the main flow path. In this way, since the apparent flow rate increases, the operating region on the small flow rate side is expanded.
  • a fixed vane and a movable vane are provided in the sub-flow channel.
  • the movable vane is arranged on the side away from the impeller from the fixed vane.
  • the secondary flow path is opened and closed by the movable vane.
  • the first partition is arranged like the above-described fixed vane, and the second partition is fixed and arranged instead of the movable vane.
  • a plurality of first partition portions and second partition portions are arranged apart from each other in the rotation direction of the impeller.
  • the air that has flowed into the sub-flow path from the downstream communication path has a swirl speed component.
  • a turning speed component is suppressed by the first partitioning portion and the second partitioning portion, and the operation region is expanded.
  • the number of the second partition portions is not appropriate with respect to the number of the first partition portions, the pressure loss becomes large.
  • An object of the present disclosure is to provide a centrifugal compressor capable of reducing pressure loss.
  • a centrifugal compressor includes an impeller, a main flow path in which the impeller is arranged and extending in a rotation axis direction of the impeller, an upstream communication path communicating with the main flow path, and A sub-flow path having a downstream communication path communicating with the main flow path on the impeller side with respect to the upstream communication path, and N first partition portions fixed to the sub-flow path and spaced apart from each other in the rotation direction of the impeller;
  • the M sub-channels (where N-4 ⁇ M ⁇ N + 4), which are fixed to the upstream communication path side of the first partition and spaced apart from each other in the rotational direction; Is provided.
  • the thickness of the first partition part in the rotational direction may be within 5 times the thickness of the second partition part in the rotational direction.
  • the downstream communication path may be opened between the plurality of first partition portions.
  • the inner wall surface on the side away from the impeller may be inclined in a direction approaching the impeller as it is closer to the main flow path.
  • the second partition may extend in the radial direction of the impeller.
  • pressure loss can be reduced.
  • FIG. 4A is a cross-sectional view taken along line IVa-IVa in FIG.
  • FIG. 4B is a cross-sectional view taken along line IVb-IVb in FIG.
  • It is an example of the measurement result of the compression efficiency according to the number of ribs and the number of fins. It is a 1st graph based on the measurement result shown in FIG. It is a 2nd graph based on the measurement result shown in FIG.
  • FIG. 1 is a schematic sectional view of the supercharger C.
  • the direction of arrow R shown in FIG. 1 will be described as the right side of the supercharger C.
  • the compressor impeller 9 (impeller) side described later functions as a centrifugal compressor.
  • the supercharger C is demonstrated as an example of a centrifugal compressor.
  • the centrifugal compressor is not limited to the supercharger C.
  • the centrifugal compressor may be incorporated in a device other than the supercharger C, or may be a single unit.
  • the supercharger C includes a supercharger main body 1.
  • the supercharger main body 1 includes a bearing housing 2.
  • a turbine housing 4 is connected to the left side of the bearing housing 2 by fastening bolts 3.
  • a compressor housing 100 is connected to the right side of the bearing housing 2 by fastening bolts 5.
  • the bearing housing 2 has a bearing hole 2a.
  • the bearing hole 2a penetrates the supercharger C in the left-right direction.
  • a bearing 6 is provided in the bearing hole 2a.
  • a full floating bearing is shown as an example of the bearing 6.
  • the bearing 6 may be another radial bearing such as a semi-floating bearing or a rolling bearing.
  • a shaft 7 is rotatably supported by the bearing 6.
  • a turbine impeller 8 is provided at the left end of the shaft 7.
  • a turbine impeller 8 is rotatably accommodated in the turbine housing 4.
  • a compressor impeller 9 is provided at the right end of the shaft 7.
  • a compressor impeller 9 is rotatably accommodated in the compressor housing 100.
  • a housing hole 110 is formed in the compressor housing 100.
  • the housing hole 110 opens on the right side of the supercharger C.
  • a mounting member 200 is disposed in the housing hole 110.
  • the main flow path 10 is formed by the compressor housing 100 and the mounting member 200.
  • the main channel 10 opens to the right side of the supercharger C.
  • the main flow path 10 extends in the rotation axis direction of the compressor impeller 9 (hereinafter simply referred to as the rotation axis direction).
  • the main flow path 10 is connected to an air cleaner (not shown).
  • the compressor impeller 9 is disposed in the main flow path 10.
  • the diffuser flow path 11 is formed.
  • the diffuser flow path 11 is formed by facing surfaces of the bearing housing 2 and the compressor housing 100.
  • the diffuser flow path 11 pressurizes air.
  • the diffuser channel 11 is formed in an annular shape from the radially inner side to the outer side of the shaft 7.
  • the diffuser flow channel 11 communicates with the main flow channel 10 on the radially inner side.
  • the compressor housing 100 is provided with a compressor scroll passage 12.
  • the compressor scroll passage 12 is annular.
  • the compressor scroll flow path 12 is located, for example, on the radially outer side of the shaft 7 with respect to the diffuser flow path 11.
  • the compressor scroll passage 12 communicates with an intake port of an engine (not shown).
  • the compressor scroll channel 12 also communicates with the diffuser channel 11.
  • a discharge port 13 is formed in the turbine housing 4.
  • the discharge port 13 opens on the left side of the supercharger C.
  • the discharge port 13 is connected to an exhaust gas purification device (not shown).
  • the turbine housing 4 is provided with a flow path 14 and a turbine scroll flow path 15.
  • the turbine scroll passage 15 is annular.
  • the turbine scroll flow path 15 is located, for example, on the radially outer side of the turbine impeller 8 than the flow path 14.
  • the turbine scroll passage 15 communicates with a gas inlet (not shown). Exhaust gas discharged from an exhaust manifold (not shown) of the engine is guided to the gas inlet.
  • the gas inflow port also communicates with the flow path 14 described above.
  • the exhaust gas guided from the gas inlet to the turbine scroll passage 15 is guided to the discharge port 13 through the passage 14 and the blades of the turbine impeller 8.
  • the exhaust gas guided to the discharge port 13 rotates the turbine impeller 8 in the flow process.
  • FIG. 2 is an extraction diagram of a broken line portion of FIG.
  • a partition wall 120 is formed in the housing hole 110.
  • the partition wall 120 is annular.
  • the partition wall 120 extends in the rotation axis direction.
  • the partition wall 120 is spaced radially inward from the inner peripheral surface of the housing hole 110.
  • the inner peripheral surface of the housing hole 110 and the outer peripheral surface of the partition wall 120 are parallel to the rotation axis direction.
  • the inner peripheral surface of the housing hole 110 and the outer peripheral surface of the partition wall portion 120 may be inclined with respect to the rotation axis direction or may not be parallel to each other.
  • a protrusion 130 is formed on the bottom surface 111 of the housing hole 110.
  • the protrusion 130 is annular.
  • the protrusion 130 extends in the rotation axis direction.
  • the protrusion 130 is spaced radially inward from the inner peripheral surface of the housing hole 110.
  • the outer peripheral surface of the protrusion 130 is parallel to the rotation axis direction. However, the outer peripheral surface of the protrusion 130 may be inclined with respect to the rotation axis direction.
  • the outer peripheral surface of the partition wall 120 and the outer peripheral surface of the protrusion 130 are flush with each other.
  • the outer diameter of the partition wall 120 may be larger or smaller than the outer diameter of the protrusion 130. 2
  • the end surface 121 on the left side (projecting portion 130 side) of FIG. 2 and the end surface 131 of the projecting portion 130 on the right side (partition wall 120 side) in FIG. is doing.
  • a slit (a downstream communication path 310 described later) is formed between the end surface 121 of the partition wall 120 and the end surface 131 of the protrusion 130.
  • Ribs 140 are formed in the housing hole 110.
  • a plurality of the ribs 140 are arranged apart from each other in the circumferential direction of the partition wall 120 (the rotation direction of the compressor impeller 9).
  • the rib 140 is shown by cross hatching for easy understanding.
  • the rib 140 is integrally formed on the bottom surface 111 of the housing hole 110.
  • the rib 140 protrudes from the bottom surface 111 to the right side (fin side described later) in FIG.
  • the rib 140 is also integrally formed on the inner peripheral surface of the housing hole 110 and the outer peripheral surface of the partition wall 120. That is, the partition wall 120 is integrally formed with the compressor housing 100.
  • the partition wall 120 is held by the rib 140 while maintaining a gap with the housing hole 110.
  • the partition wall 120 may be formed separately from the compressor housing 100 and attached to the compressor housing 100.
  • a partition wall 122 is formed in the partition wall 120.
  • the partition hole 122 penetrates the partition 120 in the rotation axis direction.
  • a large diameter portion 122a, a reduced diameter portion 122b, and a small diameter portion 122c are formed in the partition hole 122.
  • the large-diameter portion 122a opens in the end surface 123 on the right side (the side opposite to the protruding portion 130) in FIG.
  • the reduced diameter portion 122b continues to the left side (the protruding portion 130 side) in FIG. 2 with respect to the large diameter portion 122a.
  • the inner diameter of the reduced diameter portion 122b decreases toward the left side (the protruding portion 130 side) in FIG.
  • the inner diameter of the small diameter portion 122c is smaller than the inner diameter of the large diameter portion 122a.
  • a small diameter portion 122c continues to the left side (projection portion 130 side) in FIG. 2 with respect to the reduced diameter portion 122b.
  • the large diameter portion 122a, the reduced diameter portion 122b, and the small diameter portion 122c are formed has been described. However, as long as the partition hole 122 is formed, the shape is not ask
  • a protrusion hole 132 is formed in the compressor housing 100.
  • the protrusion hole 132 penetrates the protrusion 130 in the rotation axis direction.
  • the protruding hole 132 faces the partition hole 122.
  • a part of the compressor impeller 9 is disposed in the protruding hole 132 and the partition hole 122.
  • the inner peripheral surface of the projecting hole 132 follows the outer shape of the compressor impeller 9.
  • the protrusion hole 132 has a smaller inner diameter on the right side (partition wall hole 122 side) in FIG.
  • the partition hole 122 and the protruding hole 132 form a part of the main channel 10.
  • a housing hole 110 is opened on an end surface 100a on the right side (opposite side of the turbine impeller 8) in FIG.
  • the mounting member 200 is disposed in the housing hole 110.
  • the main body 210 of the attachment member 200 is, for example, an annular shape.
  • the main body 210 is not limited to an annular shape, and for example, a part in the circumferential direction may be cut away.
  • the main body 210 is press-fitted into the housing hole 110, for example.
  • the attachment member 200 is attached to the compressor housing 100.
  • the attachment member 200 may be attached to the compressor housing 100 with a fastening member such as a bolt.
  • the attachment member 200 may be joined to the compressor housing 100.
  • a mounting hole 211 is formed in the main body 210.
  • the attachment hole 211 penetrates the main body 210 in the rotation axis direction.
  • the attachment hole 211 is continuous with the partition hole 122 in the rotation axis direction.
  • a reduced diameter portion 211a and a parallel portion 211b are formed in the mounting hole 211.
  • the inner diameter of the reduced diameter portion 211a decreases toward the left side (compressor impeller 9 side) in FIG.
  • the parallel part 211b is located on the left side (compressor impeller 9 side) in FIG. 2 with respect to the reduced diameter part 211a.
  • the inner diameter of the parallel part 211b is substantially constant over the rotation axis direction.
  • the inner diameter of the parallel part 211 b of the mounting hole 211 is approximately equal to the inner diameter of the large diameter part 122 a of the partition hole 122.
  • the case where the reduced diameter portion 211a and the parallel portion 211b are formed has been described. However, as long as the attachment hole 211 is formed, the shape is not ask
  • an attachment hole 211 is opened on the end surface 212 on the right side (the side opposite to the compressor impeller 9) in FIG.
  • the end surface 100a of the compressor housing 100 and the end surface 212 of the attachment member 200 are, for example, flush with each other.
  • the end surface 100a of the compressor housing 100 may be located on the left side (compressor impeller 9 side) in FIG. 2 with respect to the end surface 212 of the mounting member 200. That is, the attachment member 200 may protrude from the housing hole 110 to the right side (side away from the compressor impeller 9) in FIG.
  • the end surface 212 of the attachment member 200 may be located on the left side (compressor impeller 9 side) in FIG. 2 with respect to the end surface 100a of the compressor housing 100.
  • the end surface 213 on the left side (compressor impeller 9 side) in FIG. 2 is a tapered surface.
  • the end surface 213 is located on the left side (compressor impeller 9 side) in FIG. 2 as it goes radially inward.
  • the end surface 213 of the attachment member 200 and the end surface 123 of the partition wall portion 120 are separated in the rotation axis direction.
  • a part of the end surface 213 on the inner side in the radial direction faces the end surface 123 of the partition wall portion 120 in the rotation axis direction.
  • a gap (upstream communication path 320 described later) is formed between the end surface 123 of the partition wall 120 and the end surface 213 of the mounting member 200.
  • Fins 220 are formed on the end surface 213.
  • a plurality of fins 220 are arranged apart from each other in the circumferential direction of main body 210 (the rotation direction of compressor impeller 9).
  • the fins 220 are shown by cross hatching that is coarser than the ribs 140.
  • the fin 220 is integrally formed with the mounting member 200.
  • the fin 220 may be formed separately from the attachment member 200 and attached to the attachment member 200. In the secondary flow path 300, the position of the fin 220 is fixed.
  • the fin 220 has an inner peripheral part 221 and an outer peripheral part 222.
  • the outer peripheral part 222 is located on the radially outer side from the inner peripheral part 221.
  • the inner peripheral portion 221 is continuous with the outer peripheral portion 222 in the radial direction.
  • the inner peripheral portion 221 is a portion of the fin 220 that faces the end surface 123 of the partition wall portion 120.
  • the inner peripheral portion 221 extends from the end surface 213 to the end surface 123 of the partition wall portion 120.
  • the inner peripheral end 221 a of the inner peripheral portion 221 is generally flush with the inner peripheral surface of the parallel portion 211 b of the mounting member 200 and the inner peripheral surface of the large diameter portion 122 a of the partition wall portion 120.
  • the inner peripheral end 221a of the inner peripheral portion 221 may be positioned radially outward from the inner peripheral surface of the parallel portion 211b of the mounting member 200 and the inner peripheral surface of the large diameter portion 122a of the partition wall portion 120.
  • the outer peripheral portion 222 extends to the left side (compressor impeller 9 side) in FIG. 2 from the inner peripheral portion 221.
  • the outer peripheral portion 222 projects into the gap between the outer peripheral surface of the partition wall portion 120 and the inner peripheral surface of the housing hole 110.
  • the main channel 10 includes an attachment hole 211, a partition hole 122, and a protruding hole 132.
  • the sub flow channel 300 is formed on the radially outer side of the main flow channel 10.
  • the sub-flow channel 300 includes a gap between the outer peripheral surface of the protruding portion 130 and the outer peripheral surface of the partition wall portion 120 and the inner peripheral surface of the housing hole 110.
  • the sub flow channel 300 extends in an annular shape.
  • the sub flow path 300 has a downstream communication path 310 and an upstream communication path 320.
  • the downstream communication path 310 is formed by the end surface 121 of the partition wall 120 and the end surface 131 of the protrusion 130.
  • the upstream communication path 320 is formed by the end surface 123 of the partition wall portion 120, the end surface 213 of the mounting member 200, and the fins 220 (inner peripheral portion 221) adjacent in the circumferential direction. Therefore, a plurality of upstream communication paths 320 are formed apart from each other in the circumferential direction.
  • the upstream communication path 320 communicates with the main flow path 10.
  • the downstream communication path 310 communicates with the main flow path 10 on the left side (compressor impeller 9 side, downstream in the flow direction of the main flow path 10) in FIG.
  • the end surface 213 of the mounting member 200 is a tapered surface. That is, in the upstream communication path 320, the inner wall surface 321 on the right side (the side away from the compressor impeller 9 and the end face 100a side) in FIG. 2 is closer to the main flow path 10 (as it goes radially inward), the compressor impeller. 9 is inclined toward the end face 123 (toward the end face 123).
  • the inner wall surface 321 may have a cross-sectional shape shown in FIG. Since the inner wall surface 321 is inclined, the air flowing backward in the upstream communication path 320 joins along the air flowing through the main flow path 10. Thereby, pressure loss is reduced. However, the inner wall surface 321 may extend parallel to the radial direction.
  • the inner wall surface 321 may be inclined in a direction away from the compressor impeller 9 (in a direction away from the end surface 123) as it is closer to the main flow path 10 (inward in the radial direction).
  • the rib 140 is provided on the downstream communication path 310 side in the sub flow path 300.
  • the downstream communication path 310 opens between the plurality of ribs 140 that are spaced apart in the circumferential direction.
  • the radially outer end opens between the plurality of ribs 140.
  • the air flowing backward from the downstream communication path 310 is Among them, there is a possibility of peeling by colliding with the end portion on the bottom surface 111 side.
  • downstream communication path 310 the radially outer end opens between the plurality of ribs 140, thereby avoiding such peeling.
  • the downstream communication path 310 may be opened to the left in FIG. 2 rather than the rib 140 as long as the influence of peeling does not become a problem due to other design conditions.
  • the downstream communication path 310 faces the compressor impeller 9.
  • An end portion on the radially inner side of the downstream communication passage 310 opens on an inner peripheral surface of the compressor housing 100 that faces the compressor impeller 9 in the radial direction.
  • the downstream communication path 310 extends, for example, parallel to the radial direction. However, the downstream communication path 310 may be inclined with respect to the radial direction. The downstream communication path 310 may be inclined in a direction toward the right side (upstream communication path 320 side) in FIG. 2 as it goes outward in the radial direction. The downstream communication path 310 may be inclined in the direction of the left side (the side opposite to the upstream communication path 320) in FIG. 2 as it goes outward in the radial direction.
  • the fin 220 is provided on the upstream communication path 320 side in the sub flow path 300. Out of the fins 220, the outer peripheral portion 222 is located in the sub-flow channel 300. The inner peripheral part 221 is located in the upstream communication path 320.
  • the secondary flow path 300 is partitioned in the circumferential direction by the ribs 140 and the fins 220. That is, in the region where the ribs 140 and the fins 220 are arranged, the sub flow channel 300 is partitioned into a plurality of flow channels that are separated in the circumferential direction.
  • FIG. 3 is a diagram for explaining the relationship between the flow rate of the main flow channel 10 and the flow rate of the sub flow channel 300.
  • air flows forward in the sub flow path 300 (air flows in the same direction as the main flow path 10. Air flows from the upstream communication path 320 side to the downstream communication path 310. To the side). The greater the flow rate of the main channel 10, the greater the flow rate of forward flow through the sub-channel 300.
  • the high-pressure air compressed by the compressor impeller 9 flows backward in the sub flow path 300 (air flows in a direction opposite to the flow direction of the main flow path 10.
  • the air is connected downstream. It flows from the passage 310 side to the upstream communication passage 320 side).
  • the air that has flowed back through the sub-flow path 300 returns to the main flow path 10 from the upstream communication path 320.
  • the apparent flow rate increases, and the operating region on the small flow rate side is expanded.
  • the air flowing backward from the downstream communication path 310 to the sub-flow path 300 is swirled by the influence of the rotation of the compressor impeller 9.
  • the swirling flow is a flow in the same direction as the rotation direction of the compressor impeller 9.
  • FIG. 4A is a sectional view taken along line IVa-IVa in FIG.
  • FIG. 4B is a cross-sectional view taken along line IVb-IVb in FIG.
  • the radially outer portion of the compressor housing 100 and the compressor impeller 9 are not shown.
  • three ribs 140 are formed.
  • the ribs 140 are spaced apart from each other in the circumferential direction of the partition wall 120 and are equally spaced. However, the ribs 140 may not be arranged at equal intervals (the intervals may be different).
  • four fins 220 are formed. The fins 220 are spaced apart at equal intervals in the circumferential direction of the partition wall 120. However, the fins 220 may not be arranged at equal intervals (the intervals may be different).
  • the relative arrangement of the fins 220 in the circumferential direction with respect to the arrangement of the ribs 140 in the circumferential direction is not limited to the positional relationship shown in FIGS. 4 (a) and 4 (b). At least one of the fins 220 may face the rib 140 in the rotation axis direction. All the fins 220 need not face any rib 140 in the direction of the rotation axis.
  • the thickness La of the rib 140 in the rotational direction is not more than 5 times the thickness Lb of the fin 220 in the rotational direction.
  • the thickness La in the rotational direction of the rib 140 exceeds five times the thickness Lb in the rotational direction of the fin 220, the gap between the adjacent ribs 140 becomes narrow.
  • the flow velocity of the air flowing through the gaps between the adjacent ribs 140 is increased.
  • the influence of peeling on the fins 220 described later is increased.
  • separation is formed on the side wall surface in the rotation direction of the fin 220 by increasing the flow velocity of the air. Specifically, the separation flow does not adhere to the wall surfaces of the fins 220, and the separation bubbles extend in the rotation axis direction.
  • the thickness La in the rotation direction of the rib 140 is not more than 5 times the thickness Lb in the rotation direction of the fin 220, the influence of peeling is suppressed and the compression efficiency is improved.
  • the thickness La in the rotational direction of the ribs 140 may exceed five times the thickness Lb in the rotational direction of the fins 220 as long as the influence of peeling does not become a problem due to other design conditions.
  • the fins 220 extend parallel to the radial direction of the compressor impeller 9 (radially along the radial direction). However, the fin 220 may be inclined with respect to the radial direction of the compressor impeller 9. For example, the outer peripheral end of the fin 220 may be displaced in the rotational direction with respect to the inner peripheral end.
  • the ribs 140 extend parallel to the radial direction of the compressor impeller 9 (radially along the radial direction). However, the rib 140 may be inclined with respect to the radial direction of the compressor impeller 9. For example, the outer peripheral end of the rib 140 may be displaced in the rotational direction with respect to the inner peripheral end.
  • FIG. 5 is an example of measurement results of compression efficiency according to the number of ribs 140 and the number of fins 220.
  • FIG. 6 is a first graph based on the measurement results shown in FIG. 5 and 6 show the increase / decrease rate (%) of the compression efficiency based on the case where the number of ribs 140 (the number of ribs) is 3 and the number of fins 220 (the number of fins) is 8.
  • the fin 220 has a higher compression efficiency than the reference value in the first range X (7 or less).
  • the fin 220 has a higher compression efficiency than the reference value in the first range Y (2 or more and 10 or less).
  • the fin 220 has a higher compression efficiency than the reference value in the first range Z (5 or more and 13 or less).
  • the swirl speed component of the air returning from the upstream communication path 320 to the main flow path 10 is suppressed.
  • the pressure on the intake side of the compressor impeller 9 increases, and the operating area on the small flow rate side is expanded.
  • the pressure loss will increase due to the influence of peeling that occurs in the end portion 223 (see FIG. 2) of the fins 220 on the rib 140 side.
  • FIG. 7 is a second graph based on the measurement results shown in FIG. In FIG. 7, the range of the number of fins 220 (first range X ′, Y ′, Z ′) is set narrower than in FIG. 6.
  • the fin 220 has a particularly high compression efficiency in the first range X ′ (1 to 5).
  • the fin 220 has a particularly high compression efficiency in the second range Y ′ (4 or more and 8 or less).
  • the fin 220 has a particularly high compression efficiency in the second range Z ′ (7 to 11).
  • the pressure loss is further suppressed while suppressing the swirl velocity component of the air,
  • the compression efficiency is further improved.
  • the arrangement number difference between the arrangement number N of the ribs 140 and the arrangement number M of the fins 220 may be reduced.
  • the change in the flow area of the air (fluid) passing through the rib 140 and the fin 220 is reduced.
  • loss due to air acceleration / deceleration in the sub-channel 300 can be suppressed. For example, when the air accelerates, the influence of the above-described separation increases. Loss suppression due to the effect of this peeling can be expected.
  • the present disclosure can be used for a centrifugal compressor in which a sub-flow path communicating with the main flow path is formed.
  • Compressor impeller impeller
  • Main flow path 140 Rib (first partition) 220: Fin (second partition)
  • Sub-flow path 310 Downstream communication path 320: Upstream communication path 321: Inner wall surface
  • C Supercharger (centrifugal compressor)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)

Abstract

This centrifugal compressor comprises: a compressor impeller 9 (an impeller); a main flow channel 10 in which the impeller is arranged and which extends in the direction of the rotational axis of the impeller; a sub flow channel 300 having an upstream communication channel 320 communicating with the main flow channel 10, and a downstream communication channel 310 communicating with the main flow channel 10 nearer to the impeller than the upstream communication channel 320; N number of first partitioning parts (ribs 140) fixed to the sub flow channel 300 and arranged so as to be set apart from each other along the impeller rotational direction; and M number (where N - 4 ≤ M ≤ N + 4) of second partitioning parts (fins 220) that are fixed to a side in the sub flow channel 300 that is nearer to the upstream communication channel 320 than the first partitioning parts, and arranged so as to be set apart from each other in the rotational direction.

Description

遠心圧縮機Centrifugal compressor
 本開示は、主流路と連通する副流路が形成された遠心圧縮機に関する。本出願は、2017年4月25日に提出された日本特許出願第2017-086557号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。 This disclosure relates to a centrifugal compressor in which a sub-flow path communicating with a main flow path is formed. This application claims the benefit of priority based on Japanese Patent Application No. 2017-086557 filed on Apr. 25, 2017, the contents of which are hereby incorporated by reference.
 遠心圧縮機においては、主流路と連通する副流路が形成される場合がある。主流路には、コンプレッサインペラが配される。主流路と副流路は、上流連通路および下流連通路によって連通する。流量が小さい領域では、コンプレッサインペラで圧縮された高圧の空気は、下流連通路および副流路を逆流する。逆流した空気は、上流連通路から主流路に還流する。こうして、見かけ上の流量が増加するため、小流量側の作動領域が拡大する。 In the centrifugal compressor, a sub-flow path communicating with the main flow path may be formed. A compressor impeller is disposed in the main flow path. The main flow path and the sub flow path are communicated by the upstream communication path and the downstream communication path. In a region where the flow rate is small, the high-pressure air compressed by the compressor impeller flows backward in the downstream communication path and the sub-flow path. The backflowed air returns from the upstream communication path to the main flow path. In this way, since the apparent flow rate increases, the operating region on the small flow rate side is expanded.
 特許文献1に記載された遠心圧縮機では、副流路に固定ベーンおよび可動ベーンが設けられる。可動ベーンは、固定ベーンよりインペラから離隔する側に配される。可動ベーンによって副流路が開閉される。 In the centrifugal compressor described in Patent Document 1, a fixed vane and a movable vane are provided in the sub-flow channel. The movable vane is arranged on the side away from the impeller from the fixed vane. The secondary flow path is opened and closed by the movable vane.
特許第4798491号公報Japanese Patent No. 4798491
 ところで、上記の固定ベーンのように第1仕切部が配され、可動ベーンの代わりに、第2仕切部を固定して配置する場合がある。第1仕切部および第2仕切部は、インペラの回転方向に離隔して複数配される。下流連通路から副流路に流入した空気は、旋回速度成分を有する。第1仕切部および第2仕切部によって旋回速度成分が抑えられ、作動領域が拡大する。しかし、第1仕切部の数に対して第2仕切部の数が適切でないと、圧力損失が大きくなってしまう。 By the way, there is a case where the first partition is arranged like the above-described fixed vane, and the second partition is fixed and arranged instead of the movable vane. A plurality of first partition portions and second partition portions are arranged apart from each other in the rotation direction of the impeller. The air that has flowed into the sub-flow path from the downstream communication path has a swirl speed component. A turning speed component is suppressed by the first partitioning portion and the second partitioning portion, and the operation region is expanded. However, if the number of the second partition portions is not appropriate with respect to the number of the first partition portions, the pressure loss becomes large.
 本開示の目的は、圧力損失を低減することが可能な遠心圧縮機を提供することである。 An object of the present disclosure is to provide a centrifugal compressor capable of reducing pressure loss.
 上記課題を解決するために、本開示の一態様に係る遠心圧縮機は、インペラと、インペラが配され、インペラの回転軸方向に延在する主流路と、主流路に連通する上流連通路および上流連通路よりもインペラ側で主流路に連通する下流連通路を有する副流路と、副流路に固定され、インペラの回転方向に互いに離隔して配されるN個の第1仕切部と、副流路のうち、第1仕切部より上流連通路側に固定され、回転方向に互いに離隔して配されるM個(ただし、N-4≦M≦N+4)の第2仕切部と、を備える。 In order to solve the above-described problem, a centrifugal compressor according to one aspect of the present disclosure includes an impeller, a main flow path in which the impeller is arranged and extending in a rotation axis direction of the impeller, an upstream communication path communicating with the main flow path, and A sub-flow path having a downstream communication path communicating with the main flow path on the impeller side with respect to the upstream communication path, and N first partition portions fixed to the sub-flow path and spaced apart from each other in the rotation direction of the impeller; The M sub-channels (where N-4 ≦ M ≦ N + 4), which are fixed to the upstream communication path side of the first partition and spaced apart from each other in the rotational direction; Is provided.
 第1仕切部の回転方向の厚みは、第2仕切部の回転方向の厚みの5倍以内であってもよい。 The thickness of the first partition part in the rotational direction may be within 5 times the thickness of the second partition part in the rotational direction.
 下流連通路は、複数の第1仕切部の間に開口してもよい。 The downstream communication path may be opened between the plurality of first partition portions.
 上流連通路のうち、インペラから離隔する側の内壁面は、主流路に近いほど、インペラに近づく向きに傾斜してもよい。 In the upstream communication path, the inner wall surface on the side away from the impeller may be inclined in a direction approaching the impeller as it is closer to the main flow path.
 第2仕切部は、インペラの径方向に延在してもよい。 The second partition may extend in the radial direction of the impeller.
 本開示によれば、圧力損失を低減することが可能となる。 According to the present disclosure, pressure loss can be reduced.
過給機の概略断面図である。It is a schematic sectional drawing of a supercharger. 図1の破線部分の抽出図である。It is an extraction figure of the broken-line part of FIG. 主流路の流量と副流路の流量との関係を説明するための図である。It is a figure for demonstrating the relationship between the flow volume of a main flow path, and the flow volume of a subchannel. 図4(a)は、図2のIVa-IVa線における断面図である。図4(b)は、図2のIVb-IVb線における断面図である。FIG. 4A is a cross-sectional view taken along line IVa-IVa in FIG. FIG. 4B is a cross-sectional view taken along line IVb-IVb in FIG. リブの数およびフィンの数に応じた圧縮効率の測定結果の一例である。It is an example of the measurement result of the compression efficiency according to the number of ribs and the number of fins. 図5に示す測定結果に基づく第1のグラフである。It is a 1st graph based on the measurement result shown in FIG. 図5に示す測定結果に基づく第2のグラフである。It is a 2nd graph based on the measurement result shown in FIG.
 以下に添付図面を参照しながら、本開示の一実施形態について詳細に説明する。実施形態に示す寸法、材料、その他具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略する。また本開示に直接関係のない要素は図示を省略する。 Hereinafter, an embodiment of the present disclosure will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating understanding, and do not limit the present disclosure unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted. Also, illustration of elements not directly related to the present disclosure is omitted.
 図1は、過給機Cの概略断面図である。図1に示す矢印L方向を過給機Cの左側として説明する。図1に示す矢印R方向を過給機Cの右側として説明する。過給機Cのうち、後述するコンプレッサインペラ9(インペラ)側は、遠心圧縮機として機能する。以下では、遠心圧縮機の一例として、過給機Cについて説明する。ただし、遠心圧縮機は、過給機Cに限られない。遠心圧縮機は、過給機C以外の装置に組み込まれてもよいし、単体であってもよい。 FIG. 1 is a schematic sectional view of the supercharger C. The direction of the arrow L shown in FIG. The direction of arrow R shown in FIG. 1 will be described as the right side of the supercharger C. Of the supercharger C, the compressor impeller 9 (impeller) side described later functions as a centrifugal compressor. Below, the supercharger C is demonstrated as an example of a centrifugal compressor. However, the centrifugal compressor is not limited to the supercharger C. The centrifugal compressor may be incorporated in a device other than the supercharger C, or may be a single unit.
 図1に示すように、過給機Cは、過給機本体1を備える。この過給機本体1は、ベアリングハウジング2を備える。ベアリングハウジング2の左側には、締結ボルト3によってタービンハウジング4が連結される。ベアリングハウジング2の右側には、締結ボルト5によってコンプレッサハウジング100が連結される。 As shown in FIG. 1, the supercharger C includes a supercharger main body 1. The supercharger main body 1 includes a bearing housing 2. A turbine housing 4 is connected to the left side of the bearing housing 2 by fastening bolts 3. A compressor housing 100 is connected to the right side of the bearing housing 2 by fastening bolts 5.
 ベアリングハウジング2には、軸受孔2aが形成されている。軸受孔2aは、過給機Cの左右方向に貫通する。軸受孔2aに軸受6が設けられる。図1では、軸受6の一例としてフルフローティング軸受を示す。ただし、軸受6は、セミフローティング軸受や転がり軸受など、他のラジアル軸受であってもよい。軸受6によって、シャフト7が回転自在に軸支されている。シャフト7の左端部にはタービンインペラ8が設けられる。タービンインペラ8がタービンハウジング4内に回転自在に収容されている。また、シャフト7の右端部にはコンプレッサインペラ9が設けられる。コンプレッサインペラ9がコンプレッサハウジング100内に回転自在に収容されている。 The bearing housing 2 has a bearing hole 2a. The bearing hole 2a penetrates the supercharger C in the left-right direction. A bearing 6 is provided in the bearing hole 2a. In FIG. 1, a full floating bearing is shown as an example of the bearing 6. However, the bearing 6 may be another radial bearing such as a semi-floating bearing or a rolling bearing. A shaft 7 is rotatably supported by the bearing 6. A turbine impeller 8 is provided at the left end of the shaft 7. A turbine impeller 8 is rotatably accommodated in the turbine housing 4. A compressor impeller 9 is provided at the right end of the shaft 7. A compressor impeller 9 is rotatably accommodated in the compressor housing 100.
 コンプレッサハウジング100には、ハウジング穴110が形成される。ハウジング穴110は、過給機Cの右側に開口する。ハウジング穴110には取付部材200が配される。コンプレッサハウジング100および取付部材200によって主流路10が形成される。主流路10は、過給機Cの右側に開口する。主流路10は、コンプレッサインペラ9の回転軸方向(以下、単に回転軸方向と称す)に延在する。主流路10は、不図示のエアクリーナに接続される。コンプレッサインペラ9は、主流路10に配される。 A housing hole 110 is formed in the compressor housing 100. The housing hole 110 opens on the right side of the supercharger C. A mounting member 200 is disposed in the housing hole 110. The main flow path 10 is formed by the compressor housing 100 and the mounting member 200. The main channel 10 opens to the right side of the supercharger C. The main flow path 10 extends in the rotation axis direction of the compressor impeller 9 (hereinafter simply referred to as the rotation axis direction). The main flow path 10 is connected to an air cleaner (not shown). The compressor impeller 9 is disposed in the main flow path 10.
 上記のように、締結ボルト5によってベアリングハウジング2とコンプレッサハウジング100が連結された状態では、ディフューザ流路11が形成される。ディフューザ流路11は、ベアリングハウジング2とコンプレッサハウジング100の対向面によって形成される。ディフューザ流路11は、空気を昇圧する。ディフューザ流路11は、シャフト7の径方向内側から外側に向けて環状に形成されている。ディフューザ流路11は、上記の径方向内側において主流路10に連通している。 As described above, in a state where the bearing housing 2 and the compressor housing 100 are connected by the fastening bolt 5, the diffuser flow path 11 is formed. The diffuser flow path 11 is formed by facing surfaces of the bearing housing 2 and the compressor housing 100. The diffuser flow path 11 pressurizes air. The diffuser channel 11 is formed in an annular shape from the radially inner side to the outer side of the shaft 7. The diffuser flow channel 11 communicates with the main flow channel 10 on the radially inner side.
 また、コンプレッサハウジング100には、コンプレッサスクロール流路12が設けられている。コンプレッサスクロール流路12は、環状である。コンプレッサスクロール流路12は、例えば、ディフューザ流路11よりもシャフト7の径方向外側に位置する。コンプレッサスクロール流路12は、不図示のエンジンの吸気口と連通する。コンプレッサスクロール流路12は、ディフューザ流路11にも連通している。コンプレッサインペラ9が回転すると、主流路10からコンプレッサハウジング100内に空気が吸気される。吸気された空気は、コンプレッサインペラ9の翼間を流通する過程において、加速加圧される。加速加圧された空気は、ディフューザ流路11およびコンプレッサスクロール流路12で昇圧される。昇圧された空気は、エンジンの吸気口に導かれる。 The compressor housing 100 is provided with a compressor scroll passage 12. The compressor scroll passage 12 is annular. The compressor scroll flow path 12 is located, for example, on the radially outer side of the shaft 7 with respect to the diffuser flow path 11. The compressor scroll passage 12 communicates with an intake port of an engine (not shown). The compressor scroll channel 12 also communicates with the diffuser channel 11. When the compressor impeller 9 rotates, air is sucked into the compressor housing 100 from the main flow path 10. The sucked air is accelerated and pressurized in the process of flowing between the blades of the compressor impeller 9. The accelerated and pressurized air is pressurized in the diffuser channel 11 and the compressor scroll channel 12. The pressurized air is guided to the intake port of the engine.
 タービンハウジング4には、吐出口13が形成されている。吐出口13は、過給機Cの左側に開口する。吐出口13は、不図示の排気ガス浄化装置に接続される。また、タービンハウジング4には、流路14と、タービンスクロール流路15とが設けられている。タービンスクロール流路15は環状である。タービンスクロール流路15は、例えば、流路14よりもタービンインペラ8の径方向外側に位置する。タービンスクロール流路15は、不図示のガス流入口と連通する。ガス流入口には、不図示のエンジンの排気マニホールドから排出される排気ガスが導かれる。ガス流入口は、上記の流路14にも連通している。ガス流入口からタービンスクロール流路15に導かれた排気ガスは、流路14およびタービンインペラ8の翼間を介して吐出口13に導かれる。吐出口13に導かれた排気ガスは、その流通過程においてタービンインペラ8を回転させる。 A discharge port 13 is formed in the turbine housing 4. The discharge port 13 opens on the left side of the supercharger C. The discharge port 13 is connected to an exhaust gas purification device (not shown). The turbine housing 4 is provided with a flow path 14 and a turbine scroll flow path 15. The turbine scroll passage 15 is annular. The turbine scroll flow path 15 is located, for example, on the radially outer side of the turbine impeller 8 than the flow path 14. The turbine scroll passage 15 communicates with a gas inlet (not shown). Exhaust gas discharged from an exhaust manifold (not shown) of the engine is guided to the gas inlet. The gas inflow port also communicates with the flow path 14 described above. The exhaust gas guided from the gas inlet to the turbine scroll passage 15 is guided to the discharge port 13 through the passage 14 and the blades of the turbine impeller 8. The exhaust gas guided to the discharge port 13 rotates the turbine impeller 8 in the flow process.
 そして、上記のタービンインペラ8の回転力は、シャフト7を介してコンプレッサインペラ9に伝達される。上記のとおりに、空気は、コンプレッサインペラ9の回転力によって昇圧されて、エンジンの吸気口に導かれる。 Then, the rotational force of the turbine impeller 8 is transmitted to the compressor impeller 9 through the shaft 7. As described above, the air is boosted by the rotational force of the compressor impeller 9 and guided to the intake port of the engine.
 図2は、図1の破線部分の抽出図である。図2に示すように、ハウジング穴110には、隔壁部120が形成される。隔壁部120は、環状である。隔壁部120は、回転軸方向に延在する。隔壁部120は、ハウジング穴110の内周面から径方向内側に離隔する。ハウジング穴110の内周面および隔壁部120の外周面は、回転軸方向に平行である。ただし、ハウジング穴110の内周面および隔壁部120の外周面は、回転軸方向に対して傾斜していてもよいし、互いに平行でなくともよい。 FIG. 2 is an extraction diagram of a broken line portion of FIG. As shown in FIG. 2, a partition wall 120 is formed in the housing hole 110. The partition wall 120 is annular. The partition wall 120 extends in the rotation axis direction. The partition wall 120 is spaced radially inward from the inner peripheral surface of the housing hole 110. The inner peripheral surface of the housing hole 110 and the outer peripheral surface of the partition wall 120 are parallel to the rotation axis direction. However, the inner peripheral surface of the housing hole 110 and the outer peripheral surface of the partition wall portion 120 may be inclined with respect to the rotation axis direction or may not be parallel to each other.
 ハウジング穴110の底面111には、突出部130が形成される。突出部130は、環状である。突出部130は、回転軸方向に延在する。突出部130は、ハウジング穴110の内周面から径方向内側に離隔する。突出部130の外周面は、回転軸方向に平行である。ただし、突出部130の外周面は、回転軸方向に対して傾斜していてもよい。 A protrusion 130 is formed on the bottom surface 111 of the housing hole 110. The protrusion 130 is annular. The protrusion 130 extends in the rotation axis direction. The protrusion 130 is spaced radially inward from the inner peripheral surface of the housing hole 110. The outer peripheral surface of the protrusion 130 is parallel to the rotation axis direction. However, the outer peripheral surface of the protrusion 130 may be inclined with respect to the rotation axis direction.
 隔壁部120の外周面および突出部130の外周面は面一である。ただし、隔壁部120の外径は、突出部130の外径より大きくてもよいし、小さくてもよい。隔壁部120のうち、図2中、左側(突出部130側)の端面121と、突出部130のうち、図2中、右側(隔壁部120側)の端面131とは、回転軸方向に離隔している。隔壁部120の端面121と、突出部130の端面131との間にスリット(後述する下流連通路310)が形成される。 The outer peripheral surface of the partition wall 120 and the outer peripheral surface of the protrusion 130 are flush with each other. However, the outer diameter of the partition wall 120 may be larger or smaller than the outer diameter of the protrusion 130. 2, the end surface 121 on the left side (projecting portion 130 side) of FIG. 2 and the end surface 131 of the projecting portion 130 on the right side (partition wall 120 side) in FIG. is doing. A slit (a downstream communication path 310 described later) is formed between the end surface 121 of the partition wall 120 and the end surface 131 of the protrusion 130.
 ハウジング穴110には、リブ140(第1仕切部)が形成される。リブ140は、隔壁部120の周方向(コンプレッサインペラ9の回転方向)に離隔して複数配される。図2では、理解を容易とするため、リブ140をクロスハッチングで示す。リブ140は、ハウジング穴110の底面111に一体成型される。リブ140は、底面111から、図2中、右側(後述するフィン側)に突出する。リブ140は、ハウジング穴110の内周面、および、隔壁部120の外周面にも一体成型される。すなわち、隔壁部120は、コンプレッサハウジング100に一体成型される。隔壁部120は、リブ140によって、ハウジング穴110との間に間隙を維持した状態で保持されている。ただし、隔壁部120は、コンプレッサハウジング100と別体で形成されて、コンプレッサハウジング100に取り付けられてもよい。 Ribs 140 (first partition portions) are formed in the housing hole 110. A plurality of the ribs 140 are arranged apart from each other in the circumferential direction of the partition wall 120 (the rotation direction of the compressor impeller 9). In FIG. 2, the rib 140 is shown by cross hatching for easy understanding. The rib 140 is integrally formed on the bottom surface 111 of the housing hole 110. The rib 140 protrudes from the bottom surface 111 to the right side (fin side described later) in FIG. The rib 140 is also integrally formed on the inner peripheral surface of the housing hole 110 and the outer peripheral surface of the partition wall 120. That is, the partition wall 120 is integrally formed with the compressor housing 100. The partition wall 120 is held by the rib 140 while maintaining a gap with the housing hole 110. However, the partition wall 120 may be formed separately from the compressor housing 100 and attached to the compressor housing 100.
 隔壁部120には、隔壁孔122が形成される。隔壁孔122は、隔壁部120を回転軸方向に貫通する。隔壁孔122には、大径部122a、縮径部122b、小径部122cが形成される。大径部122aは、隔壁部120のうち、図2中、右側(突出部130と反対側)の端面123に開口する。大径部122aに対し、図2中、左側(突出部130側)に縮径部122bが連続する。縮径部122bは、図2中、左側(突出部130側)に向って、内径が小さくなる。小径部122cの内径は、大径部122aの内径より小さい。縮径部122bに対し、図2中、左側(突出部130側)に小径部122cが連続する。ここでは、大径部122a、縮径部122b、小径部122cが形成される場合について説明した。ただし、隔壁孔122が形成されていれば、その形状は問わない。 A partition wall 122 is formed in the partition wall 120. The partition hole 122 penetrates the partition 120 in the rotation axis direction. In the partition hole 122, a large diameter portion 122a, a reduced diameter portion 122b, and a small diameter portion 122c are formed. The large-diameter portion 122a opens in the end surface 123 on the right side (the side opposite to the protruding portion 130) in FIG. The reduced diameter portion 122b continues to the left side (the protruding portion 130 side) in FIG. 2 with respect to the large diameter portion 122a. The inner diameter of the reduced diameter portion 122b decreases toward the left side (the protruding portion 130 side) in FIG. The inner diameter of the small diameter portion 122c is smaller than the inner diameter of the large diameter portion 122a. A small diameter portion 122c continues to the left side (projection portion 130 side) in FIG. 2 with respect to the reduced diameter portion 122b. Here, the case where the large diameter portion 122a, the reduced diameter portion 122b, and the small diameter portion 122c are formed has been described. However, as long as the partition hole 122 is formed, the shape is not ask | required.
 コンプレッサハウジング100には、突出孔132が形成される。突出孔132は、突出部130を回転軸方向に貫通する。突出孔132は、隔壁孔122と対向する。突出孔132および隔壁孔122には、コンプレッサインペラ9の一部が配される。突出孔132の内周面は、コンプレッサインペラ9の外形に沿う。突出孔132は、図2中、右側(隔壁孔122側)ほど、内径が小さくなる。隔壁孔122および突出孔132は、上記の主流路10の一部を形成する。 A protrusion hole 132 is formed in the compressor housing 100. The protrusion hole 132 penetrates the protrusion 130 in the rotation axis direction. The protruding hole 132 faces the partition hole 122. A part of the compressor impeller 9 is disposed in the protruding hole 132 and the partition hole 122. The inner peripheral surface of the projecting hole 132 follows the outer shape of the compressor impeller 9. The protrusion hole 132 has a smaller inner diameter on the right side (partition wall hole 122 side) in FIG. The partition hole 122 and the protruding hole 132 form a part of the main channel 10.
 コンプレッサハウジング100のうち、図2中、右側(タービンインペラ8と反対側)の端面100aには、ハウジング穴110が開口する。上記のように、ハウジング穴110には、取付部材200が配される。取付部材200の本体部210は、例えば、環状である。本体部210は、環状に限らず、例えば、周方向の一部が切り欠かれていてもよい。 In the compressor housing 100, a housing hole 110 is opened on an end surface 100a on the right side (opposite side of the turbine impeller 8) in FIG. As described above, the mounting member 200 is disposed in the housing hole 110. The main body 210 of the attachment member 200 is, for example, an annular shape. The main body 210 is not limited to an annular shape, and for example, a part in the circumferential direction may be cut away.
 本体部210は、例えば、ハウジング穴110に圧入される。こうして、取付部材200がコンプレッサハウジング100に取り付けられる。ただし、取付部材200は、ボルトなどの締結部材でコンプレッサハウジング100に取り付けられてもよい。取付部材200は、コンプレッサハウジング100に接合されてもよい。 The main body 210 is press-fitted into the housing hole 110, for example. Thus, the attachment member 200 is attached to the compressor housing 100. However, the attachment member 200 may be attached to the compressor housing 100 with a fastening member such as a bolt. The attachment member 200 may be joined to the compressor housing 100.
 本体部210には取付孔211が形成される。取付孔211は、本体部210を回転軸方向に貫通する。取付孔211は、隔壁孔122と回転軸方向に連続する。取付孔211には、縮径部211aおよび平行部211bが形成される。縮径部211aは、図2中、左側(コンプレッサインペラ9側)に向って、内径が小さくなる。平行部211bは、縮径部211aよりも、図2中、左側(コンプレッサインペラ9側)に位置する。平行部211bは、回転軸方向に亘って内径が大凡一定である。取付孔211の平行部211bの内径は、隔壁孔122の大径部122aの内径と大凡等しい。ここでは、縮径部211a、平行部211bが形成される場合について説明した。ただし、取付孔211が形成されていれば、その形状は問わない。 A mounting hole 211 is formed in the main body 210. The attachment hole 211 penetrates the main body 210 in the rotation axis direction. The attachment hole 211 is continuous with the partition hole 122 in the rotation axis direction. In the mounting hole 211, a reduced diameter portion 211a and a parallel portion 211b are formed. The inner diameter of the reduced diameter portion 211a decreases toward the left side (compressor impeller 9 side) in FIG. The parallel part 211b is located on the left side (compressor impeller 9 side) in FIG. 2 with respect to the reduced diameter part 211a. The inner diameter of the parallel part 211b is substantially constant over the rotation axis direction. The inner diameter of the parallel part 211 b of the mounting hole 211 is approximately equal to the inner diameter of the large diameter part 122 a of the partition hole 122. Here, the case where the reduced diameter portion 211a and the parallel portion 211b are formed has been described. However, as long as the attachment hole 211 is formed, the shape is not ask | required.
 取付部材200の本体部210のうち、図2中、右側(コンプレッサインペラ9と反対側)の端面212には、取付孔211が開口する。コンプレッサハウジング100の端面100aと、取付部材200の端面212とは、例えば、面一である。ただし、コンプレッサハウジング100の端面100aは、取付部材200の端面212よりも、図2中、左側(コンプレッサインペラ9側)に位置してもよい。すなわち、取付部材200は、ハウジング穴110から、図2中、右側(コンプレッサインペラ9から離隔する側)に突出してもよい。取付部材200の端面212は、コンプレッサハウジング100の端面100aよりも、図2中、左側(コンプレッサインペラ9側)に位置してもよい。 2 in the main body 210 of the attachment member 200, an attachment hole 211 is opened on the end surface 212 on the right side (the side opposite to the compressor impeller 9) in FIG. The end surface 100a of the compressor housing 100 and the end surface 212 of the attachment member 200 are, for example, flush with each other. However, the end surface 100a of the compressor housing 100 may be located on the left side (compressor impeller 9 side) in FIG. 2 with respect to the end surface 212 of the mounting member 200. That is, the attachment member 200 may protrude from the housing hole 110 to the right side (side away from the compressor impeller 9) in FIG. The end surface 212 of the attachment member 200 may be located on the left side (compressor impeller 9 side) in FIG. 2 with respect to the end surface 100a of the compressor housing 100.
 取付部材200の本体部210のうち、図2中、左側(コンプレッサインペラ9側)の端面213は、テーパ面となっている。端面213は、径方向内側に向うほど、図2中、左側(コンプレッサインペラ9側)に位置する。取付部材200の端面213と、隔壁部120の端面123とは、回転軸方向に離隔する。端面213のうち、径方向内側の一部は、隔壁部120の端面123に回転軸方向に対向する。隔壁部120の端面123と、取付部材200の端面213との間に空隙(後述する上流連通路320)が形成される。 In the main body 210 of the mounting member 200, the end surface 213 on the left side (compressor impeller 9 side) in FIG. 2 is a tapered surface. The end surface 213 is located on the left side (compressor impeller 9 side) in FIG. 2 as it goes radially inward. The end surface 213 of the attachment member 200 and the end surface 123 of the partition wall portion 120 are separated in the rotation axis direction. A part of the end surface 213 on the inner side in the radial direction faces the end surface 123 of the partition wall portion 120 in the rotation axis direction. A gap (upstream communication path 320 described later) is formed between the end surface 123 of the partition wall 120 and the end surface 213 of the mounting member 200.
 端面213には、フィン220(第2仕切部)が形成される。フィン220は、本体部210の周方向(コンプレッサインペラ9の回転方向)に離隔して複数配される。図2では、理解を容易とするため、フィン220をリブ140よりも目の粗いクロスハッチングで示す。フィン220は、例えば、取付部材200に一体成型される。ただし、フィン220は、取付部材200と別体に形成され、取付部材200に取り付けられてもよい。副流路300において、フィン220の位置は固定される。 Fins 220 (second partition portions) are formed on the end surface 213. A plurality of fins 220 are arranged apart from each other in the circumferential direction of main body 210 (the rotation direction of compressor impeller 9). In FIG. 2, for easy understanding, the fins 220 are shown by cross hatching that is coarser than the ribs 140. For example, the fin 220 is integrally formed with the mounting member 200. However, the fin 220 may be formed separately from the attachment member 200 and attached to the attachment member 200. In the secondary flow path 300, the position of the fin 220 is fixed.
 フィン220は、内周部221および外周部222を有する。外周部222は、内周部221より、径方向外側に位置する。内周部221は、外周部222に対して径方向に連続する。内周部221は、フィン220のうち、隔壁部120の端面123に面する部位である。内周部221は、端面213から、隔壁部120の端面123まで延在する。内周部221の内周端221aは、取付部材200の平行部211bの内周面、および、隔壁部120の大径部122aの内周面と、大凡面一である。ただし、内周部221の内周端221aは、取付部材200の平行部211bの内周面、および、隔壁部120の大径部122aの内周面より、径方向外側に位置してもよい。外周部222は、内周部221よりも、図2中、左側(コンプレッサインペラ9側)まで延在する。外周部222は、隔壁部120の外周面とハウジング穴110の内周面との間隙に突出する。 The fin 220 has an inner peripheral part 221 and an outer peripheral part 222. The outer peripheral part 222 is located on the radially outer side from the inner peripheral part 221. The inner peripheral portion 221 is continuous with the outer peripheral portion 222 in the radial direction. The inner peripheral portion 221 is a portion of the fin 220 that faces the end surface 123 of the partition wall portion 120. The inner peripheral portion 221 extends from the end surface 213 to the end surface 123 of the partition wall portion 120. The inner peripheral end 221 a of the inner peripheral portion 221 is generally flush with the inner peripheral surface of the parallel portion 211 b of the mounting member 200 and the inner peripheral surface of the large diameter portion 122 a of the partition wall portion 120. However, the inner peripheral end 221a of the inner peripheral portion 221 may be positioned radially outward from the inner peripheral surface of the parallel portion 211b of the mounting member 200 and the inner peripheral surface of the large diameter portion 122a of the partition wall portion 120. . The outer peripheral portion 222 extends to the left side (compressor impeller 9 side) in FIG. 2 from the inner peripheral portion 221. The outer peripheral portion 222 projects into the gap between the outer peripheral surface of the partition wall portion 120 and the inner peripheral surface of the housing hole 110.
 主流路10は、取付孔211、隔壁孔122、突出孔132を含んで構成される。副流路300は、主流路10の径方向外側に形成される。副流路300は、突出部130の外周面および隔壁部120の外周面と、ハウジング穴110の内周面との間隙を含んで構成される。副流路300は、環状に延在する。副流路300は、下流連通路310と上流連通路320を有する。下流連通路310は、隔壁部120の端面121と、突出部130の端面131によって形成される。上流連通路320は、隔壁部120の端面123と、取付部材200の端面213と、周方向に隣り合うフィン220(内周部221)によって形成される。したがって、上流連通路320は、周方向に離隔して複数形成される。 The main channel 10 includes an attachment hole 211, a partition hole 122, and a protruding hole 132. The sub flow channel 300 is formed on the radially outer side of the main flow channel 10. The sub-flow channel 300 includes a gap between the outer peripheral surface of the protruding portion 130 and the outer peripheral surface of the partition wall portion 120 and the inner peripheral surface of the housing hole 110. The sub flow channel 300 extends in an annular shape. The sub flow path 300 has a downstream communication path 310 and an upstream communication path 320. The downstream communication path 310 is formed by the end surface 121 of the partition wall 120 and the end surface 131 of the protrusion 130. The upstream communication path 320 is formed by the end surface 123 of the partition wall portion 120, the end surface 213 of the mounting member 200, and the fins 220 (inner peripheral portion 221) adjacent in the circumferential direction. Therefore, a plurality of upstream communication paths 320 are formed apart from each other in the circumferential direction.
 上流連通路320は、主流路10に連通する。下流連通路310は、上流連通路320よりも、図2中、左側(コンプレッサインペラ9側、主流路10の流れ方向の下流側)で、主流路10に連通する。 The upstream communication path 320 communicates with the main flow path 10. The downstream communication path 310 communicates with the main flow path 10 on the left side (compressor impeller 9 side, downstream in the flow direction of the main flow path 10) in FIG.
 上記のように、取付部材200の端面213がテーパ面となっている。すなわち、上流連通路320のうち、図2中、右側(コンプレッサインペラ9から離隔する側、端面100a側)の内壁面321は、主流路10に近いほど(径方向内側に向うほど)、コンプレッサインペラ9に近づく向きに(端面123に向かって)傾斜する。内壁面321は、図2に示す断面形状が直線形状であってもよいし、湾曲形状であってもよい。内壁面321が傾斜しているため、上流連通路320を逆流する空気は、主流路10を流れる空気に沿って合流する。これにより、圧力損失が低減する。ただし、内壁面321は、径方向に平行に延在してもよい。内壁面321は、主流路10に近いほど(径方向内側に向うほど)、コンプレッサインペラ9から離隔する向きに(端面123から離れる向きに)傾斜してもよい。 As described above, the end surface 213 of the mounting member 200 is a tapered surface. That is, in the upstream communication path 320, the inner wall surface 321 on the right side (the side away from the compressor impeller 9 and the end face 100a side) in FIG. 2 is closer to the main flow path 10 (as it goes radially inward), the compressor impeller. 9 is inclined toward the end face 123 (toward the end face 123). The inner wall surface 321 may have a cross-sectional shape shown in FIG. Since the inner wall surface 321 is inclined, the air flowing backward in the upstream communication path 320 joins along the air flowing through the main flow path 10. Thereby, pressure loss is reduced. However, the inner wall surface 321 may extend parallel to the radial direction. The inner wall surface 321 may be inclined in a direction away from the compressor impeller 9 (in a direction away from the end surface 123) as it is closer to the main flow path 10 (inward in the radial direction).
 リブ140は、副流路300のうち、下流連通路310側に設けられる。下流連通路310は、周方向に離隔する複数のリブ140の間に開口する。下流連通路310のうち、径方向外側の端部は、複数のリブ140の間に開口する。例えば、リブ140が底面111からフィン220側に離隔して配され、下流連通路310がリブ140よりも、図2中、左側に開口する場合、下流連通路310から逆流する空気が、リブ140のうち、底面111側の端部に衝突して、剥離が生じるおそれがある。下流連通路310のうち、径方向外側の端部が、複数のリブ140の間に開口することで、このような剥離が回避される。ただし、他の設計条件によって剥離の影響が問題にならない範囲に抑えられるのであれば、下流連通路310がリブ140よりも、図2中、左側に開口してもよい。 The rib 140 is provided on the downstream communication path 310 side in the sub flow path 300. The downstream communication path 310 opens between the plurality of ribs 140 that are spaced apart in the circumferential direction. Of the downstream communication path 310, the radially outer end opens between the plurality of ribs 140. For example, when the rib 140 is spaced apart from the bottom surface 111 to the fin 220 side and the downstream communication path 310 opens to the left in FIG. 2 relative to the rib 140, the air flowing backward from the downstream communication path 310 is Among them, there is a possibility of peeling by colliding with the end portion on the bottom surface 111 side. In the downstream communication path 310, the radially outer end opens between the plurality of ribs 140, thereby avoiding such peeling. However, the downstream communication path 310 may be opened to the left in FIG. 2 rather than the rib 140 as long as the influence of peeling does not become a problem due to other design conditions.
 下流連通路310は、コンプレッサインペラ9に対向する。下流連通路310のうち、径方向内側の端部は、コンプレッサハウジング100のうち、コンプレッサインペラ9に径方向に対向する内周面に開口する。 The downstream communication path 310 faces the compressor impeller 9. An end portion on the radially inner side of the downstream communication passage 310 opens on an inner peripheral surface of the compressor housing 100 that faces the compressor impeller 9 in the radial direction.
 下流連通路310は、例えば、径方向に平行に延在する。ただし、下流連通路310は、径方向に対して傾斜してもよい。下流連通路310は、径方向外側に向うにしたがって、図2中、右側(上流連通路320側)となる向きに傾斜してもよい。下流連通路310は、径方向外側に向うにしたがって、図2中、左側(上流連通路320と反対側)となる向きに傾斜してもよい。 The downstream communication path 310 extends, for example, parallel to the radial direction. However, the downstream communication path 310 may be inclined with respect to the radial direction. The downstream communication path 310 may be inclined in a direction toward the right side (upstream communication path 320 side) in FIG. 2 as it goes outward in the radial direction. The downstream communication path 310 may be inclined in the direction of the left side (the side opposite to the upstream communication path 320) in FIG. 2 as it goes outward in the radial direction.
 フィン220は、副流路300のうち、上流連通路320側に設けられる。フィン220のうち、外周部222は、副流路300内に位置する。内周部221は、上流連通路320に位置する。 The fin 220 is provided on the upstream communication path 320 side in the sub flow path 300. Out of the fins 220, the outer peripheral portion 222 is located in the sub-flow channel 300. The inner peripheral part 221 is located in the upstream communication path 320.
 副流路300は、リブ140およびフィン220によって、周方向に仕切られる。すなわち、リブ140およびフィン220が配された領域では、副流路300は、周方向に離隔する複数の流路に区画される。 The secondary flow path 300 is partitioned in the circumferential direction by the ribs 140 and the fins 220. That is, in the region where the ribs 140 and the fins 220 are arranged, the sub flow channel 300 is partitioned into a plurality of flow channels that are separated in the circumferential direction.
 図3は、主流路10の流量と副流路300の流量との関係を説明するための図である。図3に示すように、主流路10の流量が多い領域では、空気は副流路300を順流する(空気は主流路10と同じ方向に流れる。空気は上流連通路320側から下流連通路310側に流れる)。主流路10の流量が多いほど、副流路300を順流する流量が多くなる。 FIG. 3 is a diagram for explaining the relationship between the flow rate of the main flow channel 10 and the flow rate of the sub flow channel 300. As shown in FIG. 3, in the region where the flow rate of the main flow path 10 is large, air flows forward in the sub flow path 300 (air flows in the same direction as the main flow path 10. Air flows from the upstream communication path 320 side to the downstream communication path 310. To the side). The greater the flow rate of the main channel 10, the greater the flow rate of forward flow through the sub-channel 300.
 主流路10の流量が小さい領域では、コンプレッサインペラ9で圧縮された高圧の空気は、副流路300を逆流する(空気は主流路10の流れ方向に対して逆方向に流れる。空気は下流連通路310側から上流連通路320側に流れる)。主流路10の流量が小さいほど、副流路300を逆流する流量が多くなる。副流路300を逆流した空気は、上流連通路320から主流路10に還流する。これにより、見かけ上の流量が増加するため、小流量側の作動領域が拡大する。 In a region where the flow rate of the main flow path 10 is small, the high-pressure air compressed by the compressor impeller 9 flows backward in the sub flow path 300 (air flows in a direction opposite to the flow direction of the main flow path 10. The air is connected downstream. It flows from the passage 310 side to the upstream communication passage 320 side). The smaller the flow rate of the main flow channel 10, the greater the flow rate of back flow through the sub flow channel 300. The air that has flowed back through the sub-flow path 300 returns to the main flow path 10 from the upstream communication path 320. As a result, the apparent flow rate increases, and the operating region on the small flow rate side is expanded.
 下流連通路310から副流路300に逆流する空気は、コンプレッサインペラ9の回転の影響を受け、旋回流となっている。旋回流は、コンプレッサインペラ9の回転方向と同方向の流れである。リブ140およびフィン220によって、副流路300が仕切られると、上流連通路320から主流路10に還流する空気の旋回速度成分が抑制される。コンプレッサインペラ9の吸気側の圧力が上昇し、小流量側の作動領域がさらに拡大する。 The air flowing backward from the downstream communication path 310 to the sub-flow path 300 is swirled by the influence of the rotation of the compressor impeller 9. The swirling flow is a flow in the same direction as the rotation direction of the compressor impeller 9. When the sub-flow channel 300 is partitioned by the ribs 140 and the fins 220, the swirl velocity component of the air returning from the upstream communication path 320 to the main flow path 10 is suppressed. The pressure on the intake side of the compressor impeller 9 increases, and the operating area on the small flow rate side further expands.
 図4(a)は、図2のIVa-IVa線における断面図である。図4(b)は、図2のIVb-IVb線における断面図である。図4(a)では、コンプレッサハウジング100のうち、径方向外側の部位、および、コンプレッサインペラ9は、図示を省略する。 FIG. 4A is a sectional view taken along line IVa-IVa in FIG. FIG. 4B is a cross-sectional view taken along line IVb-IVb in FIG. In FIG. 4A, the radially outer portion of the compressor housing 100 and the compressor impeller 9 are not shown.
 図4(a)に示す一例では、リブ140は3個形成される。リブ140は、隔壁部120の周方向に離隔して等間隔に配される。ただし、リブ140は、等間隔に配されずとも(間隔が異なっていても)よい。図4(b)に示す一例では、フィン220は4個形成される。フィン220は、隔壁部120の周方向に離隔して等間隔に配される。ただし、フィン220は、等間隔に配されずとも(間隔が異なっていても)よい。 In the example shown in FIG. 4A, three ribs 140 are formed. The ribs 140 are spaced apart from each other in the circumferential direction of the partition wall 120 and are equally spaced. However, the ribs 140 may not be arranged at equal intervals (the intervals may be different). In the example shown in FIG. 4B, four fins 220 are formed. The fins 220 are spaced apart at equal intervals in the circumferential direction of the partition wall 120. However, the fins 220 may not be arranged at equal intervals (the intervals may be different).
 リブ140の周方向の配置に対して、フィン220の周方向の相対的な配置は、図4(a)、図4(b)に示される位置関係に限られない。フィン220の少なくとも1つが、リブ140に対して回転軸方向に対向してもよい。すべてのフィン220は、いずれのリブ140に対しても回転軸方向に対向しなくてもよい。 The relative arrangement of the fins 220 in the circumferential direction with respect to the arrangement of the ribs 140 in the circumferential direction is not limited to the positional relationship shown in FIGS. 4 (a) and 4 (b). At least one of the fins 220 may face the rib 140 in the rotation axis direction. All the fins 220 need not face any rib 140 in the direction of the rotation axis.
 リブ140の回転方向の厚みLaは、フィン220の回転方向の厚みLbの5倍以下である。リブ140の回転方向の厚みLaが、フィン220の回転方向の厚みLbの5倍を超えると、隣り合うリブ140の隙間が狭くなる。隣り合うリブ140の隙間を流れる空気の流速が速くなる。後述するフィン220における剥離の影響が大きくなる。ここで、空気の流速が速くなることでフィン220の回転方向側壁面にはく離が形成される。詳細には、はく離流れがフィン220壁面に付着せず、はく離泡が回転軸方向に延在することとなる。はく離泡が回転軸方向に延在すると、はく離の規模拡大により損失が増加する。これに対して、リブ140の回転方向の厚みLaが、フィン220の回転方向の厚みLbの5倍以下である場合、剥離の影響が抑えられ、圧縮効率が向上する。ただし、他の設計条件によって剥離の影響が問題にならない範囲に抑えられるのであれば、リブ140の回転方向の厚みLaが、フィン220の回転方向の厚みLbの5倍を超えてもよい。 The thickness La of the rib 140 in the rotational direction is not more than 5 times the thickness Lb of the fin 220 in the rotational direction. When the thickness La in the rotational direction of the rib 140 exceeds five times the thickness Lb in the rotational direction of the fin 220, the gap between the adjacent ribs 140 becomes narrow. The flow velocity of the air flowing through the gaps between the adjacent ribs 140 is increased. The influence of peeling on the fins 220 described later is increased. Here, separation is formed on the side wall surface in the rotation direction of the fin 220 by increasing the flow velocity of the air. Specifically, the separation flow does not adhere to the wall surfaces of the fins 220, and the separation bubbles extend in the rotation axis direction. When the peeling bubbles extend in the direction of the rotation axis, the loss increases due to the expansion of the peeling scale. On the other hand, when the thickness La in the rotation direction of the rib 140 is not more than 5 times the thickness Lb in the rotation direction of the fin 220, the influence of peeling is suppressed and the compression efficiency is improved. However, the thickness La in the rotational direction of the ribs 140 may exceed five times the thickness Lb in the rotational direction of the fins 220 as long as the influence of peeling does not become a problem due to other design conditions.
 フィン220は、コンプレッサインペラ9の径方向に平行に(径方向に沿って、放射状に)延在している。ただし、フィン220は、コンプレッサインペラ9の径方向に対して、傾斜していてもよい。例えば、フィン220のうち、外周端が内周端に対して回転方向にずれていてもよい。リブ140は、コンプレッサインペラ9の径方向に平行に(径方向に沿って、放射状に)延在している。ただし、リブ140は、コンプレッサインペラ9の径方向に対して、傾斜していてもよい。例えば、リブ140のうち、外周端が内周端に対して回転方向にずれていてもよい。 The fins 220 extend parallel to the radial direction of the compressor impeller 9 (radially along the radial direction). However, the fin 220 may be inclined with respect to the radial direction of the compressor impeller 9. For example, the outer peripheral end of the fin 220 may be displaced in the rotational direction with respect to the inner peripheral end. The ribs 140 extend parallel to the radial direction of the compressor impeller 9 (radially along the radial direction). However, the rib 140 may be inclined with respect to the radial direction of the compressor impeller 9. For example, the outer peripheral end of the rib 140 may be displaced in the rotational direction with respect to the inner peripheral end.
 図5は、リブ140の数およびフィン220の数に応じた圧縮効率の測定結果の一例である。図6は、図5に示す測定結果に基づく第1のグラフである。図5、図6では、リブ140の数(リブ数)が3個、フィン220の数(フィン数)が8個の場合を基準値とした圧縮効率の増減率(%)が示される。 FIG. 5 is an example of measurement results of compression efficiency according to the number of ribs 140 and the number of fins 220. FIG. 6 is a first graph based on the measurement results shown in FIG. 5 and 6 show the increase / decrease rate (%) of the compression efficiency based on the case where the number of ribs 140 (the number of ribs) is 3 and the number of fins 220 (the number of fins) is 8.
 図6に示すように、リブ140が3個の場合、フィン220は、第1範囲X(7個以下)とすると、基準値よりも圧縮効率が高い。リブ140が6個の場合、フィン220は、第1範囲Y(2個以上10個以下)とすると、基準値よりも圧縮効率が高い。リブ140が9個の場合、フィン220は、第1範囲Z(5個以上13個以下)とすると、基準値よりも圧縮効率が高い。 As shown in FIG. 6, when the number of the ribs 140 is three, the fin 220 has a higher compression efficiency than the reference value in the first range X (7 or less). When the number of ribs 140 is six, the fin 220 has a higher compression efficiency than the reference value in the first range Y (2 or more and 10 or less). When the number of ribs 140 is nine, the fin 220 has a higher compression efficiency than the reference value in the first range Z (5 or more and 13 or less).
 図5、図6に基づいて、リブ140の数に対するフィン220の数の適正範囲が求められる。すなわち、リブ140がN個配され、フィン220は、M個配されているとする。N、Mは自然数とする。このとき、N-4≦M≦N+4となるように、リブ140およびフィン220が配される。 5 and 6, an appropriate range of the number of fins 220 with respect to the number of ribs 140 is obtained. That is, it is assumed that N ribs 140 are arranged and M fins 220 are arranged. N and M are natural numbers. At this time, the ribs 140 and the fins 220 are arranged so that N-4 ≦ M ≦ N + 4.
 上記のように、リブ140およびフィン220によって、副流路300が仕切られると、上流連通路320から主流路10に還流する空気の旋回速度成分が抑制される。コンプレッサインペラ9の吸気側の圧力が上昇し、小流量側の作動領域が拡大する。しかし、リブ140の数に対してフィン220の数が多すぎると、フィン220のうち、リブ140側の端部223(図2参照)において生じる剥離の影響により、圧力損失が大きくなってしまう。N個のリブ140に対して、M個(ただし、N-4≦M≦N+4)のフィン220を配することで、空気の旋回速度成分を抑制しつつ、圧力損失が抑制され、圧縮効率が向上する。 As described above, when the sub flow path 300 is partitioned by the rib 140 and the fin 220, the swirl speed component of the air returning from the upstream communication path 320 to the main flow path 10 is suppressed. The pressure on the intake side of the compressor impeller 9 increases, and the operating area on the small flow rate side is expanded. However, if the number of the fins 220 is too large with respect to the number of the ribs 140, the pressure loss will increase due to the influence of peeling that occurs in the end portion 223 (see FIG. 2) of the fins 220 on the rib 140 side. By arranging M fins 220 (N-4 ≦ M ≦ N + 4) for the N ribs 140, the pressure loss is suppressed and the compression efficiency is reduced while suppressing the swirl velocity component of the air. improves.
 図7は、図5に示す測定結果に基づく第2のグラフである。図7では、図6に比べて、フィン220の数の範囲(第1範囲X’、Y’、Z’)が狭く設定される。 FIG. 7 is a second graph based on the measurement results shown in FIG. In FIG. 7, the range of the number of fins 220 (first range X ′, Y ′, Z ′) is set narrower than in FIG. 6.
 図7に示すように、リブ140が3個の場合、フィン220は、第1範囲X’(1個以上5個以下)とすると、圧縮効率が特に高い。リブ140が6個の場合、フィン220は、第2範囲Y’(4個以上8個以下)とすると、圧縮効率が特に高い。リブ140が9個の場合、フィン220は、第2範囲Z’(7個以上11個以下)とすると、圧縮効率が特に高い。 As shown in FIG. 7, when the number of ribs 140 is three, the fin 220 has a particularly high compression efficiency in the first range X ′ (1 to 5). When the number of ribs 140 is 6, the fin 220 has a particularly high compression efficiency in the second range Y ′ (4 or more and 8 or less). When the number of the ribs 140 is nine, the fin 220 has a particularly high compression efficiency in the second range Z ′ (7 to 11).
 すなわち、N個のリブ140に対して、M個(ただし、N-2≦M≦N+2)のフィン220を配することで、空気の旋回速度成分を抑制しつつ、圧力損失がさらに抑制され、圧縮効率がさらに向上する。ここで、リブ140の配置個数Nとフィン220の配置個数Mとの配置個数差を小さくするとよい。この場合、リブ140とフィン220を通過する空気(流体)の流路面積の変化が小さくなる。その結果、副流路300内での空気の加減速に起因する損失を抑制し得る。例えば、空気が加速すると前述のはく離の影響が大きくなる。このはく離の影響による損失の抑制が期待できる。また、例えば、空気が減速すると周方向速度成分の割合が大きくなる。その結果、上流連通路320から主流へ流入する流れと、主流流れの合流による混合損失が増加することが予測される。この混合損失の抑制が期待できる。 That is, by arranging M fins 220 (where N−2 ≦ M ≦ N + 2) with respect to the N ribs 140, the pressure loss is further suppressed while suppressing the swirl velocity component of the air, The compression efficiency is further improved. Here, the arrangement number difference between the arrangement number N of the ribs 140 and the arrangement number M of the fins 220 may be reduced. In this case, the change in the flow area of the air (fluid) passing through the rib 140 and the fin 220 is reduced. As a result, loss due to air acceleration / deceleration in the sub-channel 300 can be suppressed. For example, when the air accelerates, the influence of the above-described separation increases. Loss suppression due to the effect of this peeling can be expected. Further, for example, when the air decelerates, the ratio of the circumferential speed component increases. As a result, it is predicted that the mixing loss due to the flow flowing into the main flow from the upstream communication path 320 and the merge of the main flow increases. The suppression of this mixing loss can be expected.
 以上、添付図面を参照しながら本開示の一実施形態について説明したが、本開示はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。 As mentioned above, although one embodiment of this indication was described referring to an accompanying drawing, it cannot be overemphasized that this indication is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made in the scope described in the claims, and these are naturally within the technical scope of the present disclosure. Is done.
 本開示は、主流路と連通する副流路が形成された遠心圧縮機に利用することができる。 The present disclosure can be used for a centrifugal compressor in which a sub-flow path communicating with the main flow path is formed.
9:コンプレッサインペラ(インペラ) 10:主流路 140:リブ(第1仕切部) 220:フィン(第2仕切部) 300:副流路 310:下流連通路 320:上流連通路 321:内壁面 C:過給機(遠心圧縮機) 9: Compressor impeller (impeller) 10: Main flow path 140: Rib (first partition) 220: Fin (second partition) 300: Sub-flow path 310: Downstream communication path 320: Upstream communication path 321: Inner wall surface C: Supercharger (centrifugal compressor)

Claims (5)

  1.  インペラと、
     前記インペラが配され、前記インペラの回転軸方向に延在する主流路と、
     前記主流路に連通する上流連通路および前記上流連通路よりも前記インペラ側で前記主流路に連通する下流連通路を有する副流路と、
     前記副流路に固定され、前記インペラの回転方向に互いに離隔して配されるN個の第1仕切部と、
     前記副流路のうち、前記第1仕切部より前記上流連通路側に固定され、前記回転方向に互いに離隔して配されるM個(ただし、N-4≦M≦N+4)の第2仕切部と、
    を備える遠心圧縮機。
    Impeller,
    A main flow path in which the impeller is arranged and extends in a rotation axis direction of the impeller;
    A sub-flow path having an upstream communication path communicating with the main flow path and a downstream communication path communicating with the main flow path on the impeller side than the upstream communication path;
    N first partitions fixed to the sub-flow channel and spaced apart from each other in the rotation direction of the impeller;
    Of the sub-flow channels, M (where N-4 ≦ M ≦ N + 4) second partitions are fixed to the upstream communication path side from the first partition and are spaced apart from each other in the rotational direction. And
    A centrifugal compressor.
  2.  前記第1仕切部の前記回転方向の厚みは、前記第2仕切部の前記回転方向の厚みの5倍以内である請求項1に記載の遠心圧縮機。 The centrifugal compressor according to claim 1, wherein the thickness of the first partition portion in the rotational direction is within five times the thickness of the second partition portion in the rotational direction.
  3.  前記下流連通路は、複数の前記第1仕切部の間に開口する請求項1または2に記載の遠心圧縮機。 The centrifugal compressor according to claim 1 or 2, wherein the downstream communication path opens between a plurality of the first partition portions.
  4.  前記上流連通路のうち、前記インペラから離隔する側の内壁面は、前記主流路に近いほど、前記インペラに近づく向きに傾斜する請求項1から3のいずれか1項に記載の遠心圧縮機。 The centrifugal compressor according to any one of claims 1 to 3, wherein an inner wall surface of the upstream communication path that is separated from the impeller is inclined toward the impeller as it is closer to the main flow path.
  5.  前記第2仕切部は、前記インペラの径方向に延在している請求項1から4のいずれか1項に記載の遠心圧縮機。 The centrifugal compressor according to any one of claims 1 to 4, wherein the second partition portion extends in a radial direction of the impeller.
PCT/JP2018/015851 2017-04-25 2018-04-17 Centrifugal compressor WO2018198879A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112018002168.8T DE112018002168T5 (en) 2017-04-25 2018-04-17 RADIAL COMPRESSOR
CN201880024680.7A CN110520629A (en) 2017-04-25 2018-04-17 Centrifugal compressor
JP2019514413A JP6798613B2 (en) 2017-04-25 2018-04-17 Centrifugal compressor
US16/597,160 US20200040899A1 (en) 2017-04-25 2019-10-09 Centrifugal compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017086557 2017-04-25
JP2017-086557 2017-04-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/597,160 Continuation US20200040899A1 (en) 2017-04-25 2019-10-09 Centrifugal compressor

Publications (1)

Publication Number Publication Date
WO2018198879A1 true WO2018198879A1 (en) 2018-11-01

Family

ID=63919748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015851 WO2018198879A1 (en) 2017-04-25 2018-04-17 Centrifugal compressor

Country Status (5)

Country Link
US (1) US20200040899A1 (en)
JP (1) JP6798613B2 (en)
CN (1) CN110520629A (en)
DE (1) DE112018002168T5 (en)
WO (1) WO2018198879A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242199A (en) * 1988-06-29 1990-02-13 Asea Brown Boveri Ag Device for enlarging characteristic of radial compressor
JP2001289197A (en) * 2000-04-07 2001-10-19 Ishikawajima Harima Heavy Ind Co Ltd Method and device for increasing operating area of centrifugal compressor
JP2004144029A (en) * 2002-10-25 2004-05-20 Toyota Central Res & Dev Lab Inc Centrifugal compressor for turbocharger
JP2006342682A (en) * 2005-06-07 2006-12-21 Ishikawajima Harima Heavy Ind Co Ltd Operation range expanding method and device of centrifugal compressor
JP2013224584A (en) * 2012-04-19 2013-10-31 Ihi Corp Centrifugal compressor and turbocharger
US20160305453A1 (en) * 2013-12-06 2016-10-20 Borgwarner Inc. Reduced noise compressor recirculation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5479021B2 (en) * 2009-10-16 2014-04-23 三菱重工業株式会社 Exhaust turbocharger compressor
JP5948892B2 (en) * 2012-01-23 2016-07-06 株式会社Ihi Centrifugal compressor
EP3018361B1 (en) * 2013-07-04 2020-09-23 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242199A (en) * 1988-06-29 1990-02-13 Asea Brown Boveri Ag Device for enlarging characteristic of radial compressor
JP2001289197A (en) * 2000-04-07 2001-10-19 Ishikawajima Harima Heavy Ind Co Ltd Method and device for increasing operating area of centrifugal compressor
JP2004144029A (en) * 2002-10-25 2004-05-20 Toyota Central Res & Dev Lab Inc Centrifugal compressor for turbocharger
JP2006342682A (en) * 2005-06-07 2006-12-21 Ishikawajima Harima Heavy Ind Co Ltd Operation range expanding method and device of centrifugal compressor
JP2013224584A (en) * 2012-04-19 2013-10-31 Ihi Corp Centrifugal compressor and turbocharger
US20160305453A1 (en) * 2013-12-06 2016-10-20 Borgwarner Inc. Reduced noise compressor recirculation

Also Published As

Publication number Publication date
CN110520629A (en) 2019-11-29
DE112018002168T5 (en) 2020-02-13
JPWO2018198879A1 (en) 2020-05-14
JP6798613B2 (en) 2020-12-09
US20200040899A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
US6540481B2 (en) Diffuser for a centrifugal compressor
US6834501B1 (en) Turbocharger compressor with non-axisymmetric deswirl vanes
CN102221016A (en) Compressor gas flow deflector and compressor incorporating the same
KR101743376B1 (en) Centrifugal compressor
EP3176442B1 (en) Axial flow device with casing treatment and jet engine
WO2011034044A1 (en) Discharge scroll and turbomachine
US8251649B2 (en) Blade row of axial flow type compressor
US20160177728A1 (en) Vane structure for axial flow turbomachine and gas turbine engine
US20140105723A1 (en) Gas turbine diffuser blowing method and corresponding diffuser
US20180017069A1 (en) Side-channel blower for an internal combustion engine
CN112334665B (en) Mixed-flow compressor configuration for refrigeration system
JP2009133267A (en) Impeller of compressor
JP7374078B2 (en) Diffuser for centrifugal compressor
US11136897B2 (en) Seal device and turbomachine
WO2018198879A1 (en) Centrifugal compressor
JP6806243B2 (en) Centrifugal compressor
US11268536B1 (en) Impeller exducer cavity with flow recirculation
JP7445004B2 (en) Compressor housing and centrifugal compressor
US11808156B2 (en) Secondary flow suppression structure
JP7123029B2 (en) centrifugal compressor
US11821432B2 (en) Centrifugal compressor and turbocharger
WO2023203813A1 (en) Centrifugal compressor
JP7445005B2 (en) Compressor housing and centrifugal compressor
WO2020039919A1 (en) Centrifugal compressor
JP2022077115A (en) Centrifugal compressor and supercharger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18792140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514413

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18792140

Country of ref document: EP

Kind code of ref document: A1