WO2018198754A1 - アンテナモジュール及び通信装置 - Google Patents

アンテナモジュール及び通信装置 Download PDF

Info

Publication number
WO2018198754A1
WO2018198754A1 PCT/JP2018/015061 JP2018015061W WO2018198754A1 WO 2018198754 A1 WO2018198754 A1 WO 2018198754A1 JP 2018015061 W JP2018015061 W JP 2018015061W WO 2018198754 A1 WO2018198754 A1 WO 2018198754A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
patch antennas
interval
patch
antenna module
Prior art date
Application number
PCT/JP2018/015061
Other languages
English (en)
French (fr)
Inventor
史彦 成瀬
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019514359A priority Critical patent/JP6888671B2/ja
Priority to CN201880027806.6A priority patent/CN110574235B/zh
Publication of WO2018198754A1 publication Critical patent/WO2018198754A1/ja
Priority to US16/565,798 priority patent/US11264732B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • the present invention relates to an antenna module and a communication device, and more particularly to a configuration having a plurality of patch antennas.
  • a plurality of patch antennas are arranged on the first main surface side of the dielectric substrate, and the first main surface of the dielectric substrate is A configuration in which a high-frequency element (that is, a high-frequency circuit component) is mounted on the second main surface on the opposite side has been proposed (for example, see Patent Document 1).
  • the plurality of patch antennas are two-dimensionally arranged in the polarization direction and the direction perpendicular thereto (hereinafter, this arrangement is referred to as “orthogonal arrangement”).
  • ⁇ 0 is short (for example, 10 mm or less) as in the millimeter wave band
  • adjacent patch antennas are close to each other, and thus there is a possibility that isolation between patch antennas cannot be ensured. If the isolation is poor, there is a possibility that an unnecessary signal from another port wraps around the input / output port of the high-frequency circuit component, resulting in deterioration of communication quality.
  • Such a problem is particularly noticeable in a frequency band such as a millimeter wave band in which it is necessary to design a narrow interval between a plurality of patch antennas.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to improve communication quality of an antenna module and a communication device in which a plurality of patch antennas and high-frequency circuit components are integrated.
  • an antenna module includes a dielectric substrate, a plurality of patch antennas provided on a first main surface side of the dielectric substrate, and the dielectric substrate.
  • a high-frequency circuit component mounted on the second main surface side opposite to the first main surface and transmitting a high-frequency signal to and from the plurality of patch antennas, the high-frequency circuit component comprising the dielectric substrate
  • the plurality of patch antennas are arranged in a region where the plurality of patch antennas are arranged, the plurality of patch antennas are first in a first direction which is one of a polarization direction and a direction perpendicular to the polarization direction.
  • a plurality of antenna groups each composed of a plurality of patch antennas periodically arranged at intervals are provided, and the plurality of antenna groups is a second direction which is the other of the polarization direction and the direction perpendicular to the polarization direction. smell It is periodically arranged at a second interval, each of said plurality of sets of antenna groups, relative to other antenna groups adjacent in the second direction, are arranged offset fixed intervals in the first direction.
  • the arrangement of the plurality of patch antennas forming the plurality of sets of antenna groups is periodically repeated along the first direction and the second direction, and the arrangement of the plurality of patch antennas is periodically performed. If the minimum unit to be repeated is defined as a unit, the plurality of units may be arranged at equal intervals along the first direction and at equal intervals along the second direction.
  • One of the first direction and the second direction is a polarization direction, and the other is a direction perpendicular to the polarization direction. Therefore, the plurality of units are arranged at equal intervals along the first direction and at equal intervals along the second direction, so that the units are arranged in two dimensions in the polarization direction and the direction perpendicular thereto. It becomes the arranged orthogonal arrangement. Therefore, according to this aspect, when one unit is regarded as one wave source, a plurality of wave sources are arranged orthogonally as in the case where a plurality of patch antennas are arranged orthogonally. The lobe level can be suppressed. Therefore, according to this aspect, since the isolation can be improved while suppressing the side lobe level, the communication quality can be further improved.
  • each of the plurality of sets of antenna groups may be arranged so as to be shifted from the other adjacent antenna groups by approximately half of the first interval in the first direction.
  • the distance from the other patch antenna increases as the offset distance in the first direction increases.
  • the offset distance exceeds half of the first interval
  • another patch antenna appears that has an interval narrower than the interval with the other patch antenna. Therefore, the distance between the patch antennas constituting the adjacent antenna groups is determined by disposing each of the plurality of sets of antenna groups with respect to the other adjacent antenna groups by shifting by approximately half of the first interval in the first direction. Can be expanded the most. For this reason, since the isolation between the patch antennas constituting the adjacent antenna group can be most improved, the communication quality can be further improved.
  • the substantially half of the first interval may be within ⁇ 2% of the first interval with respect to the half of the first interval.
  • the distance shifted in the first direction is within ⁇ 2% of the first interval with respect to half of the first interval, it is possible to ensure the same isolation as when the distance is just half of the first interval. it can.
  • each of the plurality of patch antennas forming the antenna group is arranged at a certain interval in the second direction with respect to other adjacent patch antennas, The arrangement of the plurality of patch antennas forming a plurality of antenna groups may be periodically repeated along the first direction and the second direction.
  • each of the two patch antennas is arranged so as to be shifted in the first direction with respect to the patch antenna adjacent in the second direction when arranged orthogonally. That is, paying attention to one patch antenna, in the orthogonal arrangement, the interval between another patch antenna adjacent to the one patch antenna in the first direction and another patch antenna adjacent to the second direction is widened.
  • each of the plurality of patch antennas constituting the antenna module is isolated from other patch antennas adjacent in the first direction in the orthogonal arrangement, and other patch antennas adjacent in the second direction in the orthogonal arrangement. Since any isolation can be improved, the communication quality can be further improved.
  • each of the plurality of antenna groups is arranged with a deviation of approximately half of the first interval in the first direction with respect to other adjacent antenna groups, and for each of the plurality of antenna groups, Each of the plurality of patch antennas constituting the antenna group may be arranged so as to be shifted from the other adjacent patch antenna by approximately half of the second interval in the second direction.
  • the substantially half of the first interval is within ⁇ 2% of the first interval with respect to the half of the first interval, and the approximately half of the second interval is half of the second interval. On the other hand, it may be within ⁇ 2% of the second interval.
  • the distance shifted in the first direction is within ⁇ 2% of the first interval with respect to half of the first interval, and the distance shifted in the second direction is within ⁇ 2% of the second interval with respect to half of the second interval. If it is within 2%, it is possible to ensure the same isolation as in the case where these distances are just half of the first interval and just half of the second interval.
  • the plurality of patch antennas forming each of the plurality of antenna groups may be arranged on a straight line extending in the first direction.
  • first direction may be a direction perpendicular to the polarization direction
  • second direction may be the polarization direction
  • each of the plurality of sets of antenna groups is arranged at a certain interval in a direction perpendicular to the polarization direction with respect to other antenna groups adjacent to the polarization direction that is the second direction. Isolation between patch antennas adjacent to each other in the polarization direction in the orthogonal arrangement can be improved. Therefore, unnecessary signal wraparound to the input / output port of the high-frequency circuit component can be effectively suppressed, so that communication quality can be further improved.
  • the dielectric substrate has a plurality of feed lines that connect each of the plurality of patch antennas and the high-frequency circuit component, and the high-frequency circuit component includes a phase shifter that changes a phase of the high-frequency signal.
  • the length of each of the plurality of power supply lines may be substantially equal to any integer multiple of an electrical length corresponding to one step which is a minimum unit for changing the phase of the phase shifter.
  • the dielectric substrate may include a plurality of feed lines that connect each of the plurality of patch antennas and the high-frequency circuit component, and the lengths of the plurality of feed lines may be substantially equal to each other. .
  • the lengths of the plurality of feeder lines being substantially equal may mean that the difference is within 3% of the wavelength of the high-frequency signal in the dielectric substrate.
  • the high-frequency circuit component includes a 32-step phase shifter (that is, a 5-bit phase shifter)
  • one step of the phase shifter is the wavelength of the high-frequency signal in the dielectric substrate (so-called in-substrate wavelength ⁇ g ). 3. 125%. Therefore, by keeping the difference within 3% of the wavelength of the high-frequency signal in the dielectric substrate, the influence on the characteristics due to the length of the feeder line 22 can be significantly suppressed. Therefore, the communication quality can be further improved.
  • the high-frequency circuit component may be an RFIC that processes the high-frequency signal.
  • a communication apparatus includes the antenna module and a BBIC.
  • the RFIC transmits a signal input from the BBIC and outputs the signal to the plurality of patch antennas. At least one of system signal processing and reception system signal processing for down-converting high-frequency signals input from the plurality of patch antennas and outputting the signals to the BBIC is performed.
  • communication quality can be improved for an antenna module and a communication device in which a plurality of patch antennas and high-frequency circuit components are integrated.
  • FIG. 1 is an external perspective view of an antenna module according to an embodiment.
  • FIG. 2 is a top view of the antenna module according to the embodiment.
  • FIG. 3 is a cross-sectional view of a main part of the antenna module according to the embodiment.
  • FIG. 4 is a schematic diagram for explaining an arrangement mode of the antenna array in the embodiment.
  • FIG. 5 is a schematic diagram for explaining an arrangement mode of the antenna array in the first modification of the embodiment.
  • FIG. 6 is a schematic diagram for explaining an arrangement mode of the antenna array in the second modification of the embodiment.
  • FIG. 7 is a top view showing an antenna array arrangement in the first simulation model.
  • FIG. 8 is a top view showing an antenna array arrangement in the second simulation model.
  • FIG. 9 is a graph showing the isolation characteristics in the first simulation model.
  • FIG. 12 is a circuit block diagram illustrating a configuration of a communication device including the antenna module according to the embodiment.
  • FIG. 1 to 3 are diagrams showing a structure of an antenna module 1 according to an embodiment.
  • FIG. 1 is an external perspective view of the antenna module 1 according to the embodiment.
  • FIG. 2 is a top view of the antenna module 1 according to the embodiment.
  • FIG. 3 is a cross-sectional view of a main part of the antenna module 1.
  • FIG. 2 is a cross-sectional view of one of a plurality of patch antennas 10 constituting the antenna module 1 and its surroundings.
  • FIG. 1 and FIG. 2 for simplicity, the pattern electrodes constituting the patch antenna 10 are hatched with dots. The same applies to the following schematic diagrams. Further, in FIG. 2, for the sake of simplicity, a plurality of patch antennas 10 provided inside through the dielectric substrate 20 are illustrated. In FIG. 3, for the sake of simplicity, strictly speaking, components in different cross sections may be shown in the same drawing, or components in the same cross section may be omitted.
  • the thickness direction of the antenna module 1 will be described as the Z-axis direction, and the directions perpendicular to the Z-axis direction and perpendicular to each other will be described as the X-axis direction and the Y-axis direction. ) Side.
  • the thickness direction of the antenna module 1 may not be the vertical direction, so the upper surface side of the antenna module 1 is not limited to the upward direction.
  • the antenna module 1 includes a plurality of patch antennas 10, a dielectric substrate 20 provided with a plurality of patch antennas 10 on the first main surface side (here, the upper surface side), and the dielectric substrate 20.
  • RFIC30 provided in the 2nd main surface side (here lower surface side).
  • the plurality of patch antennas 10 constitute an antenna array 100.
  • each member constituting the antenna module 1 will be specifically described.
  • the plurality of patch antennas 10 are provided on the upper surface side (Z-axis plus side) which is the first main surface side of the dielectric substrate 20, and each radiates or receives a high-frequency signal.
  • the antenna module 1 includes 16 patch antennas 10 constituting an antenna array 100 of 4 rows and 4 columns.
  • the antenna array 100 is arranged with an offset distance Dx shifted from the reference position to the X axis plus side every other row as compared to the orthogonally arranged antenna array. Every other row is shifted from the reference position to the Y axis plus side by an offset distance Dy.
  • the same arrangement mode is repeated every two rows and two columns. That is, the arrangement of the plurality of patch antennas 10 is periodically repeated along the X-axis direction and the Y-axis direction.
  • orthogonal arrangement refers to an arrangement in which a plurality of patch antennas 10 are two-dimensionally arranged in the polarization direction and the direction perpendicular thereto, and in this embodiment, the pitch Px in the X-axis direction.
  • the “reference position” refers to an arrangement position when a plurality of patch antennas 10 are arranged orthogonally.
  • a row is configured by an antenna group including four patch antennas arranged along the X-axis direction in the orthogonal arrangement, and four pieces arranged along the X-axis direction in the orthogonal arrangement.
  • a row is constituted by an antenna group including patch antennas.
  • Each patch antenna 10 is constituted by a pattern conductor provided substantially parallel to the main surface of the dielectric substrate 20, and has a feeding point 10p on the lower surface of the pattern conductor.
  • the patch antenna 10 radiates a fed high-frequency signal into space or receives a high-frequency signal in space.
  • the patch antenna 10 radiates a high-frequency signal fed from the RFIC 30 to the feeding point 10p into the space, receives the high-frequency signal in the space, and outputs it from the feeding point 10p to the RFIC 30.
  • the patch antenna 10 is a radiating element that radiates a radio wave (a high-frequency signal that propagates in space) corresponding to a high-frequency signal transmitted to and from the RFIC 30 and a receiving element that receives the radio wave. .
  • the patch antenna 10 has a pair of sides and an X axis that extend in the Y axis direction and face each other in the X axis direction when the antenna module 1 is viewed in plan (when viewed from the Z axis plus side).
  • a rectangular shape surrounded by a pair of sides extending in the direction and facing in the Y-axis direction, and the feeding point 10p is provided at a position shifted to the Y-axis minus side from the center point of the rectangular shape.
  • the polarization direction of the radio wave radiated or received by the patch antenna 10 is the Y-axis direction.
  • the wavelength and specific bandwidth of the radio wave depend on the size of the patch antenna 10 (here, the size in the Y-axis direction and the size in the X-axis direction). For this reason, the size of the patch antenna 10 can be appropriately determined according to required specifications such as frequency.
  • the patch antenna 10 is built in the dielectric substrate 20, but may be exposed from the upper surface of the dielectric substrate 20. That is, the patch antenna 10 only needs to be provided on the upper surface side of the dielectric substrate 20.
  • the patch antenna 10 may be provided on the inner layer or the surface layer of the multilayer substrate. That's fine.
  • the shape of the patch antenna 10 is not limited to the above.
  • the antenna module 1 when the antenna module 1 is viewed in plan (when viewed from the Z-axis plus side), a pair of opposing corners of a rectangular shape are cut away.
  • the shape may be a circular shape or a circular shape.
  • upper surface side means above the center in the vertical direction. That is, in the dielectric substrate 20 having the first main surface and the second main surface opposite to the first main surface, “provided on the first main surface side” is closer to the first main surface than to the second main surface. Means to be provided. Hereinafter, the same applies to similar expressions of other members.
  • the patch antenna 10 has been described as a single pattern conductor having a feeding point 10p.
  • the patch antenna 10 is a feeding pattern that has a feeding point 10p.
  • the element 112 and the parasitic element 111 that does not have the feeding point 10p and is disposed on the upper surface side of the feeding element 112 and spaced from the feeding element 112 are included.
  • the configuration of the patch antenna 10 is not limited to this, and for example, the parasitic element 111 may not be provided.
  • the dielectric substrate 20 has a substantially rectangular flat plate shape having a pair of side surfaces facing in the X-axis direction and a pair of side surfaces facing in the Y-axis direction, as shown in FIGS. Further, as shown in FIG. 3, the dielectric substrate 20 is a multilayer substrate formed by laminating a plurality of dielectric layers, and includes a substrate body 21 made of a dielectric material and the patch antenna 10 described above. Etc., and various conductors constituting the same.
  • the dielectric substrate 20 is not limited to this, and may be, for example, a substantially circular flat plate shape or a single layer substrate.
  • the various conductors of the dielectric substrate 20 include conductors that form a circuit constituting the antenna module 1 together with the patch antenna 10 and the RFIC 30 in addition to the pattern conductors constituting the patch antenna 10.
  • the conductor includes a pattern conductor 121 and a via conductor 122 that constitute a feeder line 22 that transmits a high-frequency signal between the input / output terminal 131 of the RFIC 30 and the feeding point 10p of the patch antenna 10, and a pair of conductors.
  • a ground pattern conductor 123 is included.
  • the pattern conductor 121 is provided in the inner layer of the dielectric substrate 20 along the main surface of the dielectric substrate 20.
  • the via conductor 122 connected to the feeding point 10 p of the patch antenna 10 and the input / output terminal 131 of the RFIC 30 are provided.
  • the connected via conductor 122 is connected.
  • the via conductor 122 is provided along the thickness direction perpendicular to the main surface of the dielectric substrate 20, and is, for example, an interlayer connection conductor that connects pattern conductors provided in different layers.
  • the pair of ground pattern conductors 123 are disposed on the upper and lower layers of the pattern conductor 121 so as to face each other with the pattern conductor 121 interposed therebetween, and are provided, for example, over substantially the entire dielectric substrate 20. Of the pair of ground pattern conductors 123, for example, only the upper ground pattern conductor 123 of the pattern conductor 121 may be provided, and the lower ground pattern conductor 123 of the pattern conductor 121 may not be provided.
  • a dielectric substrate 20 for example, a low temperature co-fired ceramics (LTCC) substrate, a printed circuit board, or the like is used.
  • LTCC low temperature co-fired ceramics
  • the RFIC 30 is a high-frequency circuit component that is mounted on the lower surface side of the dielectric substrate 20 and transmits a high-frequency signal to and from the plurality of patch antennas 10, and constitutes an RF signal processing circuit that processes the high-frequency signal.
  • the RFIC 30 up-converts a signal input from a BBIC, which will be described later, and outputs the signal to a plurality of patch antennas 10 and down-converts a high-frequency signal input from the plurality of patch antennas 10 to a BBIC. At least one of output signal processing of the receiving system is performed.
  • the RFIC 30 has a plurality of input / output terminals 131 constituting a plurality of input / output ports corresponding to the plurality of patch antennas 10.
  • the RFIC 30 performs up-conversion and demultiplexing on the input signal and feeds power to the plurality of patch antennas 10 from the plurality of input / output terminals 131.
  • the RFIC 30 performs multiplexing, down-conversion, and the like on the signals received by the plurality of patch antennas 10 and input to the plurality of input / output terminals 131 as signal processing of the reception system, and outputs them to the BBIC.
  • the RFIC 30 is disposed at a position facing the plurality of patch antennas 10 as shown in FIG. That is, the RFIC 30 is disposed in the area of the antenna array 100 when the dielectric substrate 20 is viewed from above. That is, the RFIC 30 is disposed in a region where the plurality of patch antennas 10 are disposed in the top view. Thereby, the feed line which connects RFIC30 and each patch antenna 10 can be designed short.
  • the area of the antenna array 100 is a minimum area including the plurality of patch antennas 10 when the dielectric substrate 20 is viewed from above, and is a substantially rectangular area in the present embodiment.
  • the RFIC 30 being located in the area of the antenna array 100 means that at least a part of the RFIC 30 is located in the area of the antenna array 100. Specifically, the entire RFIC 30 is located in the area of the antenna array 100. It means to do. By arranging the RFIC 30 in this way, the feed line 22 can be designed to be short for any of the patch antennas 10.
  • Such an antenna module 1 is suitable as a millimeter-wave band antenna module having a large influence on the loss due to the length of the feeder line 22.
  • the lengths of the plurality of feed lines 22 that connect each of the plurality of patch antennas 10 and the RFIC 30 are substantially equal to each other.
  • the fact that the lengths of the plurality of power supply lines 22 are substantially equal is not limited to being completely equal, but may be substantially equal, and includes differences in error range.
  • “the lengths are substantially equal” means that the difference falls within 3% of the wavelength of the high-frequency signal in the dielectric substrate 20. That is, that the lengths of the plurality of power supply lines 22 are substantially equal to each other means that a difference that is a variation in the lengths of the plurality of power supply lines 22 falls within the above 3%.
  • the shape of the area of the antenna array 100 corresponds to the arrangement of the plurality of patch antennas 10 and is not limited to a substantially rectangular shape.
  • high-frequency circuit components are often arranged outside the area of the antenna array.
  • such an arrangement tends to make the feeder line longer, so in the frequency band such as the millimeter wave band where the influence on the loss due to the length of the feeder line is large, a plurality of patch antennas are provided in the area of the antenna array.
  • a configuration may be selected in which high-frequency circuit components are arranged on the back side of the dielectric substrate.
  • the length of the feed line is shortened, if isolation between the patch antennas is not ensured, unnecessary signals to the high-frequency circuit components are likely to circulate, so that communication quality is likely to deteriorate. Occurs.
  • Such a problem is particularly conspicuous in a frequency band such as a millimeter wave band in which it is necessary in principle to design a space between adjacent patch antennas in consideration of a beam pattern.
  • the inventor of the present application in an antenna module in which a plurality of patch antennas and high-frequency circuit components are integrated, increases the interval between adjacent patch antennas by shifting the arrangement form of the antenna array from the orthogonal arrangement.
  • the inventors have come up with a configuration that improves communication quality by improving isolation between the patch antennas.
  • FIG. 4 is a schematic diagram for explaining an arrangement mode of the antenna array 100 in the present embodiment.
  • an antenna array 100T serving as a reference for the antenna array 100 in the present embodiment is designed.
  • the antenna array 100T is composed of patch antennas 10 arranged in four rows and four columns arranged orthogonally.
  • the four antenna groups Row1 to Row4 constituting the antenna array 100T are each composed of four patch antennas 10 periodically arranged at a pitch Px in the X-axis direction. These four antenna groups Row1 to Row4 are periodically arranged with a pitch Py in the Y-axis direction.
  • each of the four antenna groups Col1 to Col4 constituting the antenna array 100T includes four patch antennas 10 that are periodically arranged with a pitch Py in the Y-axis direction. These four antenna groups Col1 to Col4 are periodically arranged at a pitch Px in the X-axis direction.
  • the patch antennas 10 of the odd-row antenna groups Row1 and Row3 are shifted to the X axis plus side by the offset distance Dx,
  • the patch antennas 10 of the odd-numbered antenna groups Col1 and Col3 are shifted to the Y axis plus side by the offset distance Dy.
  • every other row is shifted from the reference position to the X axis plus side by the offset distance Dx, and every other column is the reference position.
  • An antenna array 100 is formed that is offset by an offset distance Dy from Y to the Y axis plus side.
  • the antenna array 100 is an antenna composed of a plurality of patch antennas 10 (here, four patch antennas 10) periodically arranged at a pitch Px in the X-axis direction which is an example of the first direction.
  • a plurality of groups (four groups in this case) are provided for the groups Row1 to Row4.
  • a plurality of sets of antenna groups Row1 to Row4 are periodically arranged at a pitch Py in the Y-axis direction which is an example of the second direction.
  • each of the plurality of sets of antenna groups Row1 to Row4 is arranged with a certain interval (offset distance Dx) shifted in the X-axis direction with respect to other adjacent antenna groups.
  • the odd-numbered antenna groups Row1 and Row3 and the even-numbered antenna groups Row2 and Row4 are arranged so as to be shifted in the X-axis direction.
  • each patch antenna 10 of the antenna array 100 when attention is paid to each patch antenna 10 of the antenna array 100, the other patch antennas adjacent to each of the antenna groups Col1 to Col4 maintain the pitch Py in the Y-axis direction while maintaining the offset distance Dx in the X-axis direction. It will shift. Therefore, the distance between adjacent patch antennas in the same row is wider than in the orthogonal arrangement.
  • the antenna array 100 is configured such that, for each of a plurality of sets of antenna groups Row1 to Row4, each of the plurality of patch antennas 10 forming the antenna groups Row1 to Row4 is in the Y-axis direction with respect to the other adjacent patch antennas 10. Are offset from each other by an offset distance Dy.
  • the odd-numbered antenna groups Col1 and Col3 and the even-numbered antenna groups Col2 and Col4 are arranged so as to be shifted in the Y-axis direction.
  • each patch antenna 10 of the antenna array 100 when attention is paid to each patch antenna 10 of the antenna array 100, the other patch antennas adjacent in each of the antenna groups Row1 to Row4 maintain the pitch Px in the X-axis direction and are offset by an offset distance Dy in the Y-axis direction. It will shift. Therefore, the distance between adjacent patch antennas in the same row is wider than in the orthogonal arrangement.
  • the distance from the patch antenna 10 increases.
  • both the rows and the columns are shifted as compared with the orthogonal arrangement, but only one of the rows and the columns may be shifted.
  • FIG. 5 is a schematic diagram for explaining an arrangement mode of the antenna array 100A according to the first modification of the embodiment.
  • the patch antennas 10 of the odd-row antenna groups Row1 and Row3 are shifted to the X axis plus side by the offset distance Dx, and
  • the patch antennas 10 of any of the antenna groups Col1 to Col4 are not shifted in the Y axis direction.
  • an antenna array 100A is formed that is shifted from the reference position by the offset distance Dx from the reference position to the X axis plus side every other row. That is, in the antenna array 100A, the plurality of patch antennas 10 forming each of the plurality of sets of antenna groups Row1 to Row4 are arranged on a straight line extending in the X-axis direction, and a plurality of sets of the plurality of sets of antenna groups Col1 to Col4 are formed.
  • the patch antennas 10 are arranged so that adjacent patch antennas are shifted from each other in the X-axis direction.
  • FIG. 6 is a schematic diagram for explaining an arrangement mode of the antenna array 100B according to the second modification of the embodiment.
  • the patch antennas 10 of the odd-numbered antenna groups Col1 and Col3 are shifted to the Y axis plus side by the offset distance Dy, and The patch antennas 10 of any antenna group Row1 to Row4 are not shifted in the X-axis direction.
  • an antenna array 100B is formed that is shifted from the reference position by the offset distance Dy from the reference position to the Y axis plus side every other row. That is, in the antenna array 100B, the plurality of patch antennas 10 forming each of the plurality of sets of antenna groups Col1 to Col4 are arranged on a straight line extending in the Y-axis direction, and a plurality of sets of the plurality of sets of antenna groups Row1 to Row4 are formed.
  • the patch antennas 10 are arranged such that adjacent patch antennas are shifted from each other in the Y-axis direction.
  • FIG. 7 is a top view showing an antenna array arrangement in the first simulation model.
  • the first simulation model corresponds to a part of the orthogonally arranged antenna array 100T.
  • nine patch antennas 10A to 10G, 10X each corresponding to the patch antenna 10 in the present embodiment are arranged orthogonally.
  • each of the eight patch antennas 10A to 10G is disposed adjacent to the patch antenna 10X, and specifically has the following positional relationship with the patch antenna 10X.
  • Patch antenna 10A X-axis negative column and Y-axis positive row position
  • Patch antenna 10B X-axis negative column and same-row position
  • Patch antenna 10C X-axis negative column and Y-axis negative side
  • Patch antenna 10D Position in the same column and Y-axis negative row
  • Patch antenna 10E Position in the X-axis positive column and Y-axis negative row
  • Patch antenna 10F X-axis positive column and the same row
  • Patch antenna 10G Positioned in the X axis plus side column and Y axis plus side row
  • Patch antenna 10H Positioned in the same column and Y axis plus side row
  • FIG. 8 is a top view showing an arrangement mode of the antenna array in the second simulation model.
  • the second simulation model corresponds to a part of the antenna array in the present embodiment and its modifications 1 and 2 arranged by shifting from the orthogonal arrangement. Therefore, in the second simulation model, the arrangement positions of the patch antennas 10A to 10G when the patch antenna 10X is used as a reference are different from those in the first simulation model.
  • both the first simulation model and the second simulation model have the same conditions except for matters relating to the offset distances Dx and Dy from the reference position.
  • the polarization direction is the Y-axis direction
  • the pitch Px in the X-axis direction and the pitch Py in the Y-axis direction are 2.50 mm
  • the use band is 57 GHz to 66 GHz (60 GHz band).
  • # 2 is the isolation between the patch antenna 10X and the patch antenna 10B
  • # 4 is the isolation between the patch antenna 10X and the patch antenna 10D
  • # 6 is the isolation between the patch antenna 10X and the patch antenna 10F # 8 is the isolation between the patch antenna 10X and the patch antenna 10H. That is, in the orthogonal arrangement, it can be seen that the isolation between the patch antennas adjacent in the polarization direction or the direction orthogonal to the polarization direction is poor, and in particular, the isolation between the patch antennas adjacent in the polarization direction is poor.
  • # 4 and # 4 are isolations between patch antennas adjacent in the polarization direction. 8 is shown in Table 1. Note that when the offset distance Dx is changed to be larger than 1.25 mm, which is half the pitch Px in the X-axis direction, other isolations are worse than those of # 4 and # 8. The following describes # 4 and # 8 in the range of ⁇ 1.25.
  • the effect of improving the isolation within the use band is the same as when the offset distance Dx is just half the pitch Px even if the offset distance Dx is substantially half the pitch Px. It is done.
  • # 4 and # 8 when the offset distance Dy is fixed to Dy 0.00 mm and only the offset distance Dx is changed at an interval of 0.05 mm within a range of 1.10 ⁇ Dx ⁇ 1.25, It shows in Table 2.
  • the offset distance Dy of the offset in the Y-axis direction may be appropriately selected in consideration of the isolation of the entire antenna array.
  • the level of the first side lobe having the highest peak intensity is shown as the side lobe level. This first side lobe usually appears closest to the main lobe.
  • the side lobe level is the ratio of the peak intensity of the side lobe to the peak intensity of the main lobe.
  • the “Azimuth” column indicates the side lobe level in the XZ plane
  • the “Elevation” column indicates the side lobe level in the YZ plane.
  • the isolation can be improved while suppressing the side lobe level.
  • the offset distance Dx to approximately half of the pitch Px and the offset distance Dy to approximately half of the pitch Py, isolation can be most improved while suppressing the side lobe level.
  • the side lobes are suppressed below the theoretical side lobe in the orthogonal arrangement for the following reason.
  • the beam pattern of an antenna array is given by the product of “beam pattern per wave source” and “array factor”.
  • the first side lobe level of the array factor is a constant -13 dB regardless of the pitch of the wave source.
  • the antenna arrays in the present embodiment and Modifications 1 and 2 have a configuration in which a plurality of units are orthogonally arranged when two rows and two columns are defined as one unit. Therefore, in the antenna array according to the present embodiment and Modifications 1 and 2, when one unit is regarded as one wave source, a plurality of wave sources are arranged orthogonally as in the case where a plurality of patch antennas 10 are arranged orthogonally. It becomes the composition which was done. Therefore, the first side lobe level can be suppressed to ⁇ 13 dB or less for the beam pattern of the entire antenna array given by the product of “beam pattern per wave source” and “array factor”.
  • the arrangement of the plurality of patch antennas 10 is periodically repeated along the X-axis direction and the Y-axis direction.
  • the minimum unit in which the arrangement of the plurality of patch antennas 10 is periodically repeated is defined as a unit
  • the plurality of units are arranged at equal intervals along the X-axis direction and at equal intervals along the Y-axis direction.
  • the unit composed of the 2 ⁇ 2 patch antenna 10 is equally spaced along the X-axis direction at twice the interval of Px and twice of Py. Are arranged at equal intervals along the Y-axis direction.
  • the plurality of units are arranged at equal intervals along the X-axis direction and at equal intervals along the Y-axis direction, so that the units are arranged in two-dimensionally at equal intervals in the polarization direction and the direction perpendicular thereto. It becomes the arranged orthogonal arrangement. Therefore, as described above, when one unit is regarded as one wave source, a plurality of wave sources are arranged orthogonally as in the case where a plurality of normal patch antennas are arranged orthogonally. The level can be suppressed. Therefore, in the antenna arrays according to the present embodiment and the first and second modifications, the isolation can be improved while suppressing the side lobe level, so that the communication quality can be further improved.
  • the units composed of 2 ⁇ 1 patch antennas 10 are arranged at equal intervals along the X axis at intervals of Px and at equal intervals along the Y axis at intervals twice as large as Py. It can be said that it is done.
  • the units composed of the patch antennas 10 in one row and two columns are arranged at equal intervals along the X-axis direction at intervals twice as large as Px and at equal intervals along the Y-axis direction at intervals of Py. It can be said that it is done.
  • the first direction will be described by taking the X-axis direction perpendicular to the polarization direction of the plurality of patch antennas 10 as an example, and the second direction will be exemplified by the Y-axis direction being the polarization direction.
  • the correspondence relationship between the first direction and the second direction and the X-axis direction and the Y-axis direction may be interchanged. Therefore, when the correspondence relationship is changed, the matter described below is changed in the matter described in the following, but the same effect is obtained.
  • the plurality of patch antennas 10 are arranged in the first direction as compared to the case where the plurality of patch antennas 10 are arranged orthogonal to the first direction (for example, the X-axis direction) and the second direction (for example, the Y-axis direction).
  • Antenna groups (for example, antenna groups Row1 to Row4) of the patch antennas 10 are arranged with a certain interval (for example, offset distance Dx) shifted in the first direction with respect to other antenna groups adjacent in the second direction. .
  • one of the two patch antennas 10 is arranged to be shifted in the first direction with respect to the other. Therefore, when the interval between the two patch antennas 10 is increased, the isolation between the two patch antennas 10 is improved. Accordingly, unnecessary signal wraparound to the input / output port of the high-frequency circuit component (for example, RFIC 30) can be suppressed, so that communication quality can be improved.
  • the high-frequency circuit component for example, RFIC 30
  • each of the plurality of sets of antenna groups is an interval between the plurality of patch antennas 10 forming the same antenna group in the first direction with respect to other adjacent antenna groups.
  • the first interval (for example, pitch Px) is shifted by approximately half.
  • the other patch antenna 10 increases as the offset distance in the first direction increases.
  • another patch antenna 10 whose interval becomes narrower than the interval with the other patch antenna 10 appears. Therefore, by disposing each of the plurality of sets of antenna groups with approximately one half of the first interval in the first direction with respect to other adjacent antenna groups, between the patch antennas 10 constituting the adjacent antenna groups. The distance can be extended the most. For this reason, since the isolation between the patch antennas 10 constituting the adjacent antenna group can be most improved, the communication quality can be further improved.
  • substantially half of the first interval is within ⁇ 2% of the first interval with respect to half of the first interval.
  • the equivalent isolation is not only that the isolations are completely equal, but it is only necessary that they are almost equal, and an error range (for example, a range of 0.2 dB or less, more specifically a range of 0.1 dB or less). It also includes differences.
  • each of the plurality of patch antennas 10 forming the antenna group is spaced apart from each other adjacent patch antenna 10 in the second direction. (For example, the offset distance Dy) is shifted.
  • each of the two patch antennas 10 is arranged so as to be shifted in the first direction with respect to the patch antennas 10 adjacent in the second direction when arranged orthogonally. That is, when attention is paid to one patch antenna 10, in the orthogonal arrangement, the distance between the other patch antenna 10 adjacent to the one patch antenna 10 in the first direction and the other patch antenna 10 adjacent to the second direction is widened. become.
  • each of the plurality of antenna groups is arranged so as to be shifted by approximately half of the first interval in the first direction with respect to the other adjacent antenna groups, and the plurality of antenna groups are formed.
  • Each of the patch antennas 10 is arranged so as to be shifted from the other adjacent patch antennas 10 by approximately half of the second interval (for example, pitch Py) in the second direction.
  • approximately half of the first interval is within ⁇ 2% of the first interval with respect to half of the first interval
  • approximately half of the second interval is It is within ⁇ 2% of the second interval with respect to half of the second interval.
  • each of the plurality of antenna groups is arranged with a deviation of exactly half of the first interval in the first direction with respect to the other adjacent antenna groups
  • the plurality of sets for each of the antenna groups each of the plurality of patch antennas constituting the antenna group is equivalent to the case where each of the plurality of patch antennas is arranged with a deviation of exactly half of the second interval in the second direction with respect to the other adjacent patch antennas. Isolation can be ensured.
  • the lengths of the plurality of feed lines are equal to each other, the losses due to the plurality of feed lines are equal, so that deterioration of the antenna characteristics due to variations in the loss can be suppressed. .
  • the antenna module 1 in which a plurality of patch antennas 10 and the RFIC are integrated is described below. Communication quality is improved.
  • the plurality of patch antennas 10 forming each of the plurality of sets of antenna groups are arranged in the first direction (the X-axis direction in the first modification, the modification example). 2 are arranged on a straight line extending in the Y-axis direction).
  • the side lobe level can be suppressed as compared to the case where the plurality of patch antennas 10 forming each of the plurality of antenna groups are arranged not on a straight line but shifted.
  • the first direction is a direction perpendicular to the polarization direction
  • the second direction is the polarization direction
  • each of the plurality of sets of antenna groups is arranged at a certain interval in a direction perpendicular to the polarization direction with respect to other antenna groups adjacent to the polarization direction that is the second direction. Isolation between patch antennas 10 adjacent in the polarization direction in the orthogonal arrangement can be improved. Therefore, unnecessary signal wraparound to the input / output port of the high-frequency circuit component can be effectively suppressed, so that communication quality can be further improved.
  • the antenna module 1 according to the present embodiment can constitute a communication device together with a BBIC described later.
  • the antenna module 1 can realize sharp directivity by controlling the phase and signal intensity of the high-frequency signal radiated from each patch antenna 10.
  • Such an antenna module 1 can be used, for example, in a communication apparatus corresponding to Massive MIMO (Multiple Input Multiple Output), which is one of the promising wireless transmission technologies in 5G (5th generation mobile communication system).
  • Massive MIMO Multiple Input Multiple Output
  • FIG. 12 is a circuit block diagram illustrating a configuration of the communication device 5 including the antenna module 1 according to the embodiment.
  • the circuit blocks corresponding to four patch antennas 10 among the plurality of patch antennas 10 included in the antenna array 100 are illustrated as the circuit blocks of the RFIC 30, and the other circuit blocks are illustrated. Is omitted. In the following, circuit blocks corresponding to these four patch antennas 10 will be described, and description of other circuit blocks will be omitted.
  • the communication device 5 includes an antenna module 1 and a BBIC 40 constituting a baseband signal processing circuit.
  • the antenna module 1 includes the antenna array 100 and the RFIC 30 as described above.
  • the RFIC 30 includes switches 31A to 31D, 33A to 33D and 37, power amplifiers 32AT to 32DT, low noise amplifiers 32AR to 32DR, attenuators 34A to 34D, phase shifters 35A to 35D, and a signal synthesizer / demultiplexer. 36, a mixer 38, and an amplifier circuit 39.
  • Switches 31A to 31D and 33A to 33D are switch circuits that switch between transmission and reception in each signal path.
  • the signal transmitted from the BBIC 40 to the RFIC 30 is amplified by the amplifier circuit 39 and up-converted by the mixer 38.
  • the up-converted high-frequency signal is demultiplexed by the signal synthesizer / demultiplexer 36, passes through four transmission paths, and is fed to different patch antennas 10.
  • the directivity of the antenna array 100 can be adjusted by individually adjusting the degree of phase shift of the phase shifters 35A to 35D arranged in each signal path.
  • the high-frequency signals received by the patch antennas 10 included in the antenna array 100 pass through four different reception paths, are combined by the signal synthesizer / demultiplexer 36, are down-converted by the mixer 38, and are amplified. Amplified at 39 and transmitted to the BBIC 40.
  • the switches 31A to 31D, 33A to 33D and 37, the power amplifiers 32AT to 32DT, the low noise amplifiers 32AR to 32DR, the attenuators 34A to 34D, the phase shifters 35A to 35D, the signal synthesizer / demultiplexer 36, the mixer described above 38 and the amplifier circuit 39 may not be included in the RFIC 30.
  • the RFIC 30 may have only one of a transmission path and a reception path.
  • the communication device 5 according to the present embodiment can be applied not only to transmitting and receiving a high frequency signal of a single frequency band (band) but also to a system that transmits and receives high frequency signals of a plurality of frequency bands (multiband) It is.
  • the RFIC 30 includes the power amplifiers 32AT to 32DT for amplifying the high frequency signal, and the plurality of patch antennas 10 radiate signals amplified by the power amplifiers 32AT to 32DT.
  • the isolation between the patch antennas 10 is improved. For this reason, since unnecessary signal wraparound to the input / output port of the RFIC 30 is suppressed, communication quality can be improved.
  • the antenna array is arranged so as to be shifted every other row or every other column. That is, in the antenna array, for example, the same arrangement mode is repeated every 2 rows and 2 columns.
  • the arrangement form of the antenna array is not limited to this, and the same arrangement form may be repeated every m rows and n columns (m and n are integers of at least one of 3 or more).
  • the antenna array only needs to be configured by periodically moving and expanding m ⁇ n patch antennas 10 of m rows and n columns.
  • the pitch Px in the X-axis direction and the pitch Py in the Y-axis direction may be equal to or different from each other, and may be appropriately designed in consideration of a required beam pattern and the like.
  • the lengths of the plurality of power supply lines 22 are substantially equal to each other, but the plurality of power supply lines 22 may include power supply lines 22 having different lengths.
  • the lengths of the plurality of power supply lines 22 may be different from each other, and at least a part is different from the others. It does not matter.
  • the length of each of the plurality of power supply lines 22 may be approximately equal to any integer multiple of the electrical length corresponding to one step, which is the minimum unit for changing the phase of the phase shifters 35A to 35D.
  • the lengths are substantially equal means that the difference is within 3% of the wavelength of the high-frequency signal in the dielectric substrate 20 as described above. That is, that the length of each of the plurality of power supply lines 22 is substantially equal to the predetermined length means that the difference between the length of each power supply line 22 and the predetermined length falls within the above 3%.
  • one step is 3.125% of the wavelength of the high-frequency signal in the dielectric substrate 20. Therefore, by keeping the difference within 3% of the wavelength of the high-frequency signal in the dielectric substrate 20, the influence on the characteristics due to the length of the feeder line 22 can be greatly suppressed. Therefore, the communication quality can be further improved.
  • the RFIC 30 has been described by taking an example of a configuration that performs both signal processing of the transmission system and signal processing of the reception system.
  • the present invention is not limited to this, and only one of them may be performed.
  • the RFIC 30 is described as an example of the high-frequency circuit component, but the high-frequency circuit component is not limited to this.
  • the high-frequency circuit component is a power amplifier that amplifies a high-frequency signal, and the plurality of patch antennas 10 may radiate signals amplified by the power amplifier.
  • the high frequency circuit component may be a phase adjustment circuit that adjusts the phase of a high frequency signal transmitted between the plurality of patch antennas 10 and the high frequency circuit component.
  • the present invention can be widely used as an antenna module in which a plurality of patch antennas and high-frequency circuit components are integrated in communication devices such as a millimeter-wave mobile communication system and a Massive MIMO system.
  • Antenna module 5 Communication apparatus 10,10A-10H, 10X Patch antenna 10p Feeding point 20 Dielectric substrate 21 Substrate element body 22 Feeding line 30 RFIC 31A, 31B, 31C, 31D, 33A, 33B, 33C, 33D, 37 Switch 32AR, 32BR, 32CR, 32DR Low noise amplifier 32AT, 32BT, 32CT, 32DT Power amplifier 34A, 34B, 34C, 34D Attenuators 35A, 35B, 35C , 35D phase shifter 36 signal synthesizer / demultiplexer 38 mixer 39 amplifier circuit 40 BBIC 100, 100A, 100B, 100T Antenna array 111 Parasitic element 112 Feeding element 121 Pattern conductor 122 Via conductor 123 Ground pattern conductor 131 Input / output terminals Col1, Col2, Col3, Col4, Row1, Row2, Row3, Row4 Antenna group

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

アンテナモジュール(1)は、誘電体基板(20)と、誘電体基板(20)の第1主面側に設けられた複数のパッチアンテナ(10)と、誘電体基板(20)の第2主面側に実装されたRFIC(30)と、を備え、複数のパッチアンテナ(10)は、偏波方向及び当該偏波方向に垂直な方向のうち一方であるX軸方向においてピッチPxで周期的に配置された複数のパッチアンテナ(10)からなるアンテナ群を複数組備え、複数組のアンテナ群は、偏波方向及び当該偏波方向に垂直な方向のうち他方であるY軸方向においてピッチPyで周期的に配置され、複数組のアンテナ群の各々は、第2方向に隣り合う他のアンテナ群に対して、第1方向においてオフセット距離Dxずれて配置されている。

Description

アンテナモジュール及び通信装置
 本発明は、アンテナモジュール及び通信装置に関し、特に複数のパッチアンテナを有する構成に関する。
 無線通信用の複数のパッチアンテナと高周波回路部品とが一体化されたアンテナモジュールとして、誘電体基板の第1主面側に複数のパッチアンテナが配置され、誘電体基板の第1主面とは反対側の第2主面に高周波素子(すなわち高周波回路部品)が実装された構成が提案されている(例えば、特許文献1参照)。この構成において、複数のパッチアンテナは、偏波方向及びこれに垂直な方向に2次元状に並んで配置されている(以降、この配置を「直交配置」と称する)。
国際公開第2016/063759号
 上記直交配置された複数のパッチアンテナにおいて、ピッチ(すなわち、隣り合うパッチアンテナの中心間距離)の自由空間波長(=λ)に対する比は、原理上、ビームパターンを考慮してなるべく小さくする必要がある。
 特にミリ波帯のようにλが短い(例えば、10mm以下)周波数帯においては、隣り合うパッチアンテナ同士が近くなるため、パッチアンテナ間のアイソレーションが確保できないおそれがある。アイソレーションが悪いと、高周波回路部品の入出力ポートに別のポートからの不要な信号が回り込み、通信品質が劣化する等の問題が生じる可能性がある。このような問題は、複数のパッチアンテナの間隔を狭く設計する必要のあるミリ波帯等の周波数帯において、特に顕著である。
 本発明は、上記課題を解決するためになされたものであり、複数のパッチアンテナと高周波回路部品とが一体化されたアンテナモジュール及び通信装置について、通信品質の向上を図ることを目的とする。
 上記目的を達成するために、本発明の一態様に係るアンテナモジュールは、誘電体基板と、前記誘電体基板の第1主面側に設けられた複数のパッチアンテナと、前記誘電体基板の前記第1主面と反対側の第2主面側に実装され、前記複数のパッチアンテナとの間で高周波信号が伝達される高周波回路部品と、を備え、前記高周波回路部品は、前記誘電体基板の平面視において、前記複数のパッチアンテナが配置される領域内に配置され、前記複数のパッチアンテナは、偏波方向及び当該偏波方向に垂直な方向のうち一方である第1方向において第1間隔で周期的に配置された複数のパッチアンテナからなるアンテナ群を複数組備え、前記複数組のアンテナ群は、前記偏波方向及び当該偏波方向に垂直な方向のうち他方である第2方向において第2間隔で周期的に配置され、前記複数組のアンテナ群の各々は、前記第2方向に隣り合う他のアンテナ群に対して、前記第1方向において一定間隔ずれて配置されている。
 これにより、複数のパッチアンテナが第1方向及び第2方向に直交配置された場合に第2方向に隣り合う2つのパッチアンテナに着目すると、当該2つのパッチアンテナの一方が他方に対して第1方向にずれて配置される。よって、当該2つのパッチアンテナの間隔が広がることにより、当該2つのパッチアンテナ間のアイソレーションが向上する。したがって、高周波回路部品の入出力ポートへの不要な信号の回り込みを抑制することができるので、通信品質の向上が図られる。
 また、前記複数組のアンテナ群をなす複数のパッチアンテナの配置は、前記第1方向及び前記第2方向に沿って周期的に繰り返されており、当該複数のパッチアンテナについて、配置が周期的に繰り返される最小単位をユニットと定義すると、複数の前記ユニットは、前記第1方向に沿って等間隔かつ前記第2方向に沿って等間隔に配置されていることにしてもよい。
 第1方向及び第2方向は、一方が偏波方向であり、他方が当該偏波方向に垂直な方向である。よって、複数のユニットは、第1方向に沿って等間隔かつ第2方向に沿って等間隔に配置されることにより、偏波方向及びこれに垂直な方向に2次元状に等間隔に並んで配置された直交配置となる。したがって、本態様によれば、1つのユニットを1つの波源とみなした場合、通常の複数のパッチアンテナが直交配置された場合と同様に、複数の波源が直交配置されることになるので、サイドローブレベルを抑制することができる。よって、本態様によれば、サイドローブレベルを抑制しつつ、アイソレーションを向上させることができるので、通信品質のさらなる向上が図られる。
 また、前記複数組のアンテナ群の各々は、隣り合う他のアンテナ群に対して、前記第1方向において前記第1間隔の略半分ずれて配置されていることにしてもよい。
 複数のパッチアンテナが直交配置された場合に第2方向に隣り合う2つのパッチアンテナの一方のパッチアンテナに着目すると、第1方向におけるオフセット距離が大きいほど他方のパッチアンテナとの間隔が広がる。一方で、当該オフセット距離が第1間隔の半分を超えると、他方のパッチアンテナとの間隔よりも間隔が狭くなる他のパッチアンテナが出現する。そこで、複数組のアンテナ群の各々を、隣り合う他のアンテナ群に対して、第1方向において第1間隔の略半分ずれて配置することにより、隣り合うアンテナ群を構成するパッチアンテナ間の距離を最も広げることができる。このため、隣り合うアンテナ群を構成するパッチアンテナ間のアイソレーションを最も向上させることができるので、通信品質のさらなる向上が図られる。
 また、前記第1間隔の略半分とは、当該第1間隔の半分に対して当該第1間隔の±2%以内であることにしてもよい。
 第1方向においてずらした距離が第1間隔の半分に対して当該第1間隔の±2%以内であれば、当該距離が第1間隔の丁度半分の場合と同等のアイソレーションを確保することができる。
 また、前記複数組のアンテナ群の各々について、当該アンテナ群をなす複数のパッチアンテナの各々は、隣り合う他のパッチアンテナに対して、前記第2方向において一定間隔ずれて配置されており、前記複数組のアンテナ群をなす複数のパッチアンテナの配置は、前記第1方向及び前記第2方向に沿って周期的に繰り返されていることにしてもよい。
 これにより、複数のパッチアンテナが直交配置された場合に第1方向に隣り合う2つのパッチアンテナに着目すると、当該2つパッチアンテナの一方が他方に対して第2方向にずれて配置される。ここで、当該2つのパッチアンテナの各々は、直交配置された場合に第2方向に隣り合うパッチアンテナに対して、第1方向にずれて配置されている。つまり、一のパッチアンテナに着目すると、直交配置において当該一のパッチアンテナに第1方向に隣り合う他のパッチアンテナ及び第2方向に隣り合う他のパッチアンテナとの間隔が広がることになる。したがって、アンテナモジュールを構成する複数のパッチアンテナの各々について、直交配置において第1方向に隣り合う他のパッチアンテナとのアイソレーション、及び、直交配置において第2方向に隣り合う他のパッチアンテナとのアイソレーションのいずれについても向上させることができるので、通信品質のさらなる向上が図られる。
 また、前記複数組のアンテナ群の各々は、隣り合う他のアンテナ群に対して、前記第1方向において前記第1間隔の略半分ずれて配置され、前記複数組のアンテナ群の各々について、当該アンテナ群をなす複数のパッチアンテナの各々は、隣り合う他のパッチアンテナに対して、前記第2方向において前記第2間隔の略半分ずれて配置されていることにしてもよい。
 これにより、アンテナモジュールを構成する複数のパッチアンテナの各々について、直交配置において第1方向に隣り合う他のパッチアンテナとのアイソレーション、及び、直交配置において第2方向に隣り合う他のパッチアンテナとのアイソレーションのいずれについても最も向上させることができるので、通信品質のさらなる向上が図られる。
 また、前記第1間隔の略半分とは、当該第1間隔の半分に対して当該第1間隔の±2%以内であり、前記第2間隔の略半分とは、当該第2間隔の半分に対して当該第2間隔の±2%以内であることにしてもよい。
 第1方向においてずらした距離が第1間隔の半分に対して当該第1間隔の±2%以内であり、第2方向においてずらした距離が第2間隔の半分に対して当該第2間隔の±2%以内であれば、これらの距離がそれぞれ第1間隔の丁度半分かつ第2間隔の丁度半分の場合と同等のアイソレーションを確保することができる。
 また、前記複数組のアンテナ群の各々をなす複数のパッチアンテナは、前記第1方向に延びる直線上に配置されていることにしてもよい。
 これにより、複数組のアンテナ群の各々をなす複数のパッチアンテナが直線上に配置されずにずれて配置される場合に比べて、サイドローブレベルを抑制することができる。
 また、前記第1方向は前記偏波方向に垂直な方向であり、前記第2方向は前記偏波方向であることにしてもよい。
 直交配置において偏波方向に隣り合うパッチアンテナ間のアイソレーションは、他のパッチアンテナ間のアイソレーションよりも、特に悪い。このため、複数組のアンテナ群の各々が、第2方向である偏波方向に隣り合う他のアンテナ群に対して、偏波方向に垂直な方向において一定間隔ずれて配置されていることにより、直交配置において偏波方向に隣り合うパッチアンテナ間のアイソレーションを向上させることができる。したがって、高周波回路部品の入出力ポートへの不要な信号の回り込みを効果的に抑制することができるので、通信品質のさらなる向上が図られる。
 また、前記誘電体基板は、前記複数のパッチアンテナの各々と前記高周波回路部品とを接続する複数の給電線を有し、前記高周波回路部品は、前記高周波信号の位相を変化させる移相器を含み、前記複数の給電線の各々の長さは、前記移相器の位相を変化させる最小単位である1ステップに対応する電気長の任意の整数倍に略等しいことにしてもよい。
 これにより、移相器による位相補正を行う場合に、複数のパッチアンテナ全てに対して所望の位相で給電することが可能となる。
 また、前記誘電体基板は、前記複数のパッチアンテナの各々と前記高周波回路部品とを接続する複数の給電線を有し、前記複数の給電線の長さは、互いに略等しいことにしてもよい。
 これにより、複数の給電線によるロスが同等となるため、当該ロスのばらつきによるアンテナ特性の劣化を抑制することができる。
 また、前記複数の給電線について、長さが略等しいとは、前記高周波信号の前記誘電体基板内における波長の3%以内に差分が収まることであることにしてもよい。
 例えば、高周波回路部品に32ステップの移相器(すなわち5bitの移相器)が含まれる場合、移相器の1ステップは誘電体基板内における高周波信号の波長(いわゆる基板内波長λ)の3.125%となる。よって、上記差分を誘電体基板内における高周波信号の波長の3%以内に収めることにより、給電線22の長さによる特性への影響を大幅に抑制することができる。したがって、通信品質のさらなる向上が図られる。
 また、前記高周波回路部品は、前記高周波信号を処理するRFICであることにしてもよい。
 これにより、複数のパッチアンテナとRFICとが一体化されたアンテナモジュールについて、通信品質の向上が図られる。
 また、本発明の一態様に係る通信装置は、上記のアンテナモジュールと、BBICと、を備え、前記RFICは、前記BBICから入力された信号をアップコンバートして前記複数のパッチアンテナに出力する送信系の信号処理、及び、前記複数のパッチアンテナから入力された高周波信号をダウンコンバートして前記BBICに出力する受信系の信号処理、の少なくとも一方を行う。
 このような通信装置によれば、上記のアンテナモジュールを備えることにより、通信品質の向上が図られる。
 本発明によれば、複数のパッチアンテナと高周波回路部品とが一体化されたアンテナモジュール及び通信装置について、通信品質の向上が図られる。
図1は、実施の形態に係るアンテナモジュールの外観斜視図である。 図2は、実施の形態に係るアンテナモジュールの上面図である。 図3は、実施の形態に係るアンテナモジュールの要部の断面図である。 図4は、実施の形態におけるアンテナアレーの配置態様を説明するための模式図である。 図5は、実施の形態の変形例1におけるアンテナアレーの配置態様を説明するための模式図である。 図6は、実施の形態の変形例2におけるアンテナアレーの配置態様を説明するための模式図である。 図7は、第1のシミュレーションモデルにおけるアンテナアレーの配置態様を示す上面図である。 図8は、第2のシミュレーションモデルにおけるアンテナアレーの配置態様を示す上面図である。 図9は、第1のシミュレーションモデルにおけるアイソレーション特性を示すグラフである。 図10は、Dx=1.25mm、Dy=0.00mmとした場合の、第2のシミュレーションモデルにおけるアイソレーション特性を示すグラフである。 図11Aは、Dx=1.25mm、Dy=1.25mmとした場合の、第2のシミュレーションモデルにおけるアイソレーション特性を示すグラフである。 図11Bは、Dx=1.25mm、Dy=0.75mmとした場合の、第2のシミュレーションモデルにおけるアイソレーション特性を示すグラフである。 図12は、実施の形態に係るアンテナモジュールを備える通信装置の構成を示す回路ブロック図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ、または大きさの比は、必ずしも厳密ではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する場合がある。
 (実施の形態)
 [1. アンテナモジュール]
 図1~図3は、実施の形態に係るアンテナモジュール1の構造を示す図である。具体的には、図1は、実施の形態に係るアンテナモジュール1の外観斜視図である。図2は、実施の形態に係るアンテナモジュール1の上面図である。図3は、アンテナモジュール1の要部の断面図である。具体的には、同図は、アンテナモジュール1を構成する複数のパッチアンテナ10の1つ及びその周囲の断面図である。
 なお、図1及び図2では、簡明のため、パッチアンテナ10を構成するパターン電極にドットのハッチングを施している。このことは、以降の模式図においても同様である。また、図2では、簡明のため、誘電体基板20を透視して内部に設けられた複数のパッチアンテナ10を図示している。また、図3では、簡明のため、厳密には別断面にある構成要素を同一図面内に示している場合、あるいは、同一断面にある構成要素の図示を省略している場合がある。
 以降、アンテナモジュール1の厚さ方向をZ軸方向、Z軸方向に垂直かつ互いに直交する方向をそれぞれX軸方向及びY軸方向として説明し、Z軸プラス側をアンテナモジュール1の上面(天面)側として説明する。しかし、実際の使用態様においては、アンテナモジュール1の厚さ方向が上下方向とはならない場合もあるため、アンテナモジュール1の上面側は上方向に限らない。
 図1に示すように、アンテナモジュール1は、複数のパッチアンテナ10と、第1主面側(ここでは上面側)に複数のパッチアンテナ10が設けられた誘電体基板20と、誘電体基板20の第2主面側(ここでは下面側)に設けられたRFIC30と、を備える。複数のパッチアンテナ10は、アンテナアレー100を構成する。
 以下、これらアンテナモジュール1を構成する各部材について、具体的に説明する。
 複数のパッチアンテナ10は、誘電体基板20の第1主面側である上面側(Z軸プラス側)に設けられ、各々が高周波信号を放射または受信する。本実施の形態では、アンテナモジュール1は、4行4列のアンテナアレー100を構成する16個のパッチアンテナ10を備える。
 具体的には、図2に示すように、アンテナアレー100は、直交配置のアンテナアレーに比べて、1行おきに基準位置からX軸プラス側へオフセット距離Dx分ずれて配置され、かつ、1列おきに基準位置からY軸プラス側へオフセット距離Dy分ずれて配置されている。このため、本実施の形態におけるアンテナアレー100では、2行2列ごとに同じ配置態様が繰り返される。つまり、複数のパッチアンテナ10の配置は、X軸方向及びY軸方向に沿って周期的に繰り返されている。
 ここで、「直交配置」とは、複数のパッチアンテナ10が偏波方向及びこれに垂直な方向に2次元状に配置されている配置を言い、本実施の形態では、X軸方向においてピッチPx(第1間隔)で周期的に配置され、かつ、Y軸方向においてピッチPy(第2間隔)で周期的に配置されている配置を言う。また、「基準位置」とは、複数のパッチアンテナ10が直交配置された場合の配置位置を言う。つまり、本実施の形態では、直交配置においてX軸方向に沿って配置された4個のパッチアンテナからなるアンテナ群により行が構成され、直交配置においてX軸方向に沿って配置された4個のパッチアンテナからなるアンテナ群により列が構成されている。
 なお、アンテナアレー100の配置態様の詳細については、後述する。
 各パッチアンテナ10は、誘電体基板20の主面に略平行に設けられたパターン導体によって構成され、当該パターン導体の下面に給電点10pを有する。このパッチアンテナ10は、給電された高周波信号を空間中に放射する、または、空間中の高周波信号を受信する。本実施の形態では、パッチアンテナ10は、RFIC30から給電点10pに給電された高周波信号を空間中に放射し、空間中の高周波信号を受信して給電点10pからRFIC30に出力する。つまり、本実施の形態におけるパッチアンテナ10は、RFIC30との間で伝達される高周波信号に相当する電波(空間伝搬する高周波信号)を放射する放射素子でもあり、当該電波を受信する受信素子でもある。
 本実施の形態では、パッチアンテナ10は、アンテナモジュール1を平面視した場合(Z軸プラス側から見た場合)に、Y軸方向に延びてX軸方向に対向する1対の辺とX軸方向に延びてY軸方向に対向する1対の辺とで囲まれる矩形形状であり、給電点10pが当該矩形形状の中心点からY軸マイナス側にずれた位置に設けられている。このため、本実施の形態において、パッチアンテナ10によって放射または受信される電波の偏波方向はY軸方向となる。
 当該電波の波長及び比帯域幅等は、パッチアンテナ10のサイズ(ここでは、Y軸方向の大きさ及びX軸方向の大きさ)に依存する。このため、パッチアンテナ10のサイズは、周波数等の要求仕様に応じて適宜決定され得る。
 なお、本実施の形態では、パッチアンテナ10は、誘電体基板20に内蔵されているが、誘電体基板20の上面から露出していてもかまわない。つまり、パッチアンテナ10は、誘電体基板20の上面側に設けられていればよく、例えば、誘電体基板20が多層基板で構成された場合には、多層基板の内層または表層に設けられていればよい。
 また、パッチアンテナ10の形状は、上記に限らず、例えば、アンテナモジュール1を平面視した場合(Z軸プラス側から見た場合)に、矩形形状の対向する一対の角部が切り欠かれた形状であってもかまわないし、円形形状であってもかまわない。
 ここで、「上面側」とは、上下方向の中心よりも上側であることを意味する。すなわち、第1主面とこれと反対側の第2主面とを有する誘電体基板20において、「第1主面側に設けられる」とは、第2主面よりも第1主面の近くに設けられることを意味する。以降、他の部材の同様の表現についても、同様である。
 ここまで、簡明のために、パッチアンテナ10について給電点10pを有する1つのパターン導体のように説明したが、図3に示すように、パッチアンテナ10は、給電点10pを有するパターン導体である給電素子112と、給電点10pを有さず給電素子112の上面側に給電素子112と離間して配置された無給電素子111と、を有する。なお、パッチアンテナ10の構成はこれに限らず、例えば、無給電素子111を有さなくてもかまわない。
 誘電体基板20は、本実施の形態では、図1及び図2に示すように、X軸方向に対向する一対の側面及びY軸方向に対向する一対の側面を有する略矩形平板形状である。また、誘電体基板20は、図3に示すように、複数の誘電体層が積層されることで構成された多層基板であり、誘電体材料からなる基板素体21と、上記のパッチアンテナ10等を構成する各種導体と、で構成されている。なお、誘電体基板20は、これに限らず、例えば、略円形平板形状であってもかまわないし、あるいは、単層基板であってもかまわない。
 誘電体基板20の各種導体には、パッチアンテナ10を構成するパターン導体の他に、パッチアンテナ10及びRFIC30とともにアンテナモジュール1を構成する回路を形成する導体が含まれる。当該導体には、具体的には、RFIC30の入出力端子131とパッチアンテナ10の給電点10pとの間で高周波信号を伝達する給電線22を構成するパターン導体121及びビア導体122と、一対のグランドパターン導体123が含まれる。
 パターン導体121は、誘電体基板20の主面に沿って誘電体基板20の内層に設けられ、例えば、パッチアンテナ10の給電点10pに接続されたビア導体122と、RFIC30の入出力端子131に接続されたビア導体122とを接続する。
 ビア導体122は、誘電体基板20の主面に垂直な厚さ方向に沿って設けられ、例えば、互いに異なる層に設けられたパターン導体同士を接続する層間接続導体である。
 一対のグランドパターン導体123は、パターン導体121の上層及び下層に、パターン導体121を挟んで対向して配置され、例えば、誘電体基板20の略全体にわたって設けられる。なお、当該一対のグランドパターン導体123のうち、例えば、パターン導体121の上層のグランドパターン導体123のみ設けられ、パターン導体121の下層のグランドパターン導体123は設けられていなくてもかまわない。
 このような誘電体基板20としては、例えば、低温同時焼成セラミックス(Low Temperature Co-fired Ceramics:LTCC)基板、または、プリント基板等が用いられる。
 RFIC30は、誘電体基板20の下面側に実装され、複数のパッチアンテナ10との間で高周波信号が伝達される高周波回路部品であり、当該高周波信号を処理するRF信号処理回路を構成する。RFIC30は、後述するBBICから入力された信号をアップコンバートして複数のパッチアンテナ10に出力する送信系の信号処理、及び、複数のパッチアンテナ10から入力された高周波信号をダウンコンバートしてBBICに出力する受信系の信号処理、の少なくとも一方を行う。
 本実施の形態では、RFIC30は、複数のパッチアンテナ10に対応する複数の入出力ポートを構成する複数の入出力端子131を有する。例えば、RFIC30は、送信系の信号処理として、入力された信号についてアップコンバート及び分波等を行い、複数の入出力端子131から複数のパッチアンテナ10に給電する。また、例えば、RFIC30は、受信系の信号処理として、複数のパッチアンテナ10で受信されて複数の入出力端子131に入力された信号について合波及びダウンコンバート等を行い、BBICに出力する。
 なお、RFIC30における信号処理の一例については、アンテナモジュール1を用いた通信装置の構成と合わせて後述する。
 このRFIC30は、図1に示すように、複数のパッチアンテナ10と対向する位置に配置される。つまり、RFIC30は、誘電体基板20の上面視において、アンテナアレー100の領域内に配置されている。つまり、RFIC30は、当該上面視において、複数のパッチアンテナ10が配置される領域内に配置されている。これにより、RFIC30と各パッチアンテナ10とを接続する給電線を短く設計することができる。
 ここで、アンテナアレー100の領域とは、誘電体基板20を上面視した場合に、複数のパッチアンテナ10を包含する最小の領域であり、本実施の形態では略矩形形状の領域である。また、RFIC30がアンテナアレー100の領域に位置するとは、RFIC30の少なくとも一部がアンテナアレー100の領域内に位置することを意味し、特定的には、RFIC30全体がアンテナアレー100の領域内に位置することを意味する。このようにRFIC30を配置することにより、いずれのパッチアンテナ10についても、給電線22を短く設計することができる。
 これにより、給電線22によって生じるロスが低減され、高性能なアンテナモジュール1を実現することができる。このようなアンテナモジュール1は、給電線22の長さによるロスへの影響が大きいミリ波帯のアンテナモジュールとして好適である。
 これに関し、本実施の形態では、複数のパッチアンテナ10の各々とRFIC30とを接続する複数の給電線22の長さは、互いに略等しい。ここで、複数の給電線22の長さが略等しいとは、完全に等しいことだけでなく、ほぼ等しければよく、誤差の範囲で異なることも含まれる。具体的には、「長さが略等しい」とは、高周波信号の誘電体基板20内における波長の3%以内に差分が収まることである。つまり、複数の給電線22の長さが互いに略等しいとは、複数の給電線22の長さのばらつきである差分が上記3%以内に収まることである。
 なお、アンテナアレー100の領域の形状は、複数のパッチアンテナ10の配置態様に対応し、略矩形形状には限らない。
 [1-2. アンテナアレーの配置態様]
 [1-2-1. 本発明に至った経緯]
 次いで、本実施の形態におけるアンテナアレー100の配置態様について、これに至った経緯も含めて説明する。
 本願発明者は、複数のパッチアンテナと高周波回路部品とが一体化されたアンテナモジュールの開発を進めていくうちに、隣り合うパッチアンテナ間のアイソレーションが悪いことにより、通信品質が劣化する場合があることに気付いた。
 具体的には、通常、高周波回路部品はアンテナアレーの領域外に配置されることが多い。しかし、このような配置は給電線が長くなりやすいため、給電線の長さによるロスへの影響が大きいミリ波帯等の周波数帯では、アンテナアレーの領域内かつ複数のパッチアンテナが設けられた誘電体基板の裏面側に高周波回路部品を配置する構成が選択され得る。一方で、給電線の長さが短くなると、パッチアンテナ間のアイソレーションが確保されない場合に、高周波回路部品への不要な信号が回り込みやすくなるため、通信品質の劣化が生じやすくなるという別の問題が生じる。このような問題は、原理上、ビームパターンを考慮し、隣り合うパッチアンテナの間隔を狭く設計する必要のあるミリ波帯等の周波数帯において、特に顕著である。
 そこで、本願発明者は、複数のパッチアンテナと高周波回路部品とが一体化されたアンテナモジュールにおいて、アンテナアレーの配置態様を直交配置からずらすことにより、隣り合うパッチアンテナの間隔を広げ、これにより、当該パッチアンテナ間のアイソレーションを向上させることで通信品質の向上を図る構成を想到するに至った。
 [1-2-2. 実施の形態における設計]
 図4は、本実施の形態におけるアンテナアレー100の配置態様を説明するための模式図である。
 まず、同図の(a)に示すように、本実施の形態におけるアンテナアレー100の基準となるアンテナアレー100Tを設計する。アンテナアレー100Tは、直交配置された4行4列のパッチアンテナ10によって構成される。
 つまり、アンテナアレー100Tを構成する4つのアンテナ群Row1~Row4は、それぞれ、X軸方向においてピッチPxで周期的に配置された4個のパッチアンテナ10からなる。これら4つのアンテナ群Row1~Row4は、Y軸方向においてピッチPyで周期的に配置されている。
 言い換えると、アンテナアレー100Tを構成する4つのアンテナ群Col1~Col4は、それぞれ、Y軸方向においてピッチPyで周期的に配置された4個のパッチアンテナ10からなる。これら4つのアンテナ群Col1~Col4は、X軸方向においてピッチPxで周期的に配置されている。
 このように配置された直交配置のアンテナアレー100Tにおいて、同図の(b)に示すように、奇数行目のアンテナ群Row1,Row3のパッチアンテナ10をX軸プラス側にオフセット距離Dx分ずらし、かつ、奇数列目のアンテナ群Col1,Col3のパッチアンテナ10をY軸プラス側にオフセット距離Dy分ずらす。
 これにより、同図の(c)に示すように、直交配置のアンテナアレー100Tに比べて、1行おきに基準位置からX軸プラス側へオフセット距離Dx分ずれ、かつ、1列おきに基準位置からY軸プラス側へオフセット距離Dy分ずれたアンテナアレー100が構成される。
 つまり、本実施の形態におけるアンテナアレー100は、第1方向の一例であるX軸方向においてピッチPxで周期的に配置された複数のパッチアンテナ10(ここでは4個のパッチアンテナ10)からなるアンテナ群Row1~Row4を複数組(ここでは4組)備える。また、複数組のアンテナ群Row1~Row4は、第2方向の一例であるY軸方向においてピッチPyで周期的に配置される。ここで、複数組のアンテナ群Row1~Row4の各々は、隣り合う他のアンテナ群に対して、X軸方向において一定間隔(オフセット距離Dx)ずれて配置される。具体的には、本実施の形態では、奇数行目のアンテナ群Row1,Row3と偶数行目のアンテナ群Row2,Row4とが、X軸方向にずれて配置される。
 これにより、アンテナアレー100の各パッチアンテナ10に着目すると、アンテナ群Col1~Col4の各々において隣り合う他のパッチアンテナは、Y軸方向におけるピッチPyが維持されつつ、X軸方向においてオフセット距離Dx分ずれることになる。よって、直交配置に比べて、同一列において隣り合うパッチアンテナ間の距離が広がることになる。
 また、アンテナアレー100は、複数組のアンテナ群Row1~Row4の各々について、当該アンテナ群Row1~Row4をなす複数のパッチアンテナ10の各々は、隣り合う他のパッチアンテナ10に対して、Y軸方向においてオフセット距離Dyずれて配置される。具体的には、本実施の形態では、奇数列目のアンテナ群Col1,Col3と偶数列目のアンテナ群Col2,Col4とが、Y軸方向にずれて配置される。
 これにより、アンテナアレー100の各パッチアンテナ10に着目すると、アンテナ群Row1~Row4の各々において隣り合う他のパッチアンテナは、X軸方向におけるピッチPxが維持されつつ、Y軸方向においてオフセット距離Dy分ずれることになる。よって、直交配置に比べて、同一行において隣り合うパッチアンテナ間の距離が広がることになる。
 このように、本実施の形態におけるアンテナアレー100の各パッチアンテナ10に着目すると、直交配置に比べて、同一行において隣り合う他のパッチアンテナ10との距離、及び、同一列において隣り合う他のパッチアンテナ10との距離のいずれについても広がることになる。
 なお、本実施の形態におけるアンテナアレー100では、直交配置に比べて、行及び列のいずれもずれていたが、行及び列の一方のみがずれていてもかまわない。
 図5は、実施の形態の変形例1におけるアンテナアレー100Aの配置態様を説明するための模式図である。
 同図の(a)及び(b)に示すように、直交配置のアンテナアレー100Tにおいて、奇数行目のアンテナ群Row1,Row3のパッチアンテナ10をX軸プラス側にオフセット距離Dx分ずらし、かつ、いずれのアンテナ群Col1~Col4のパッチアンテナ10についてもY軸方向にはずらさない。
 これにより、同図の(c)に示すように、直交配置のアンテナアレー100Tに比べて、1行おきに基準位置からX軸プラス側へオフセット距離Dx分ずれたアンテナアレー100Aが構成される。つまり、アンテナアレー100Aでは、複数組のアンテナ群Row1~Row4の各々をなす複数のパッチアンテナ10は、X軸方向に延びる直線上に配置され、複数組のアンテナ群Col1~Col4の各々をなす複数のパッチアンテナ10は隣り合うパッチアンテナ同士がX軸方向に互いにずれて配置される。
 図6は、実施の形態の変形例2におけるアンテナアレー100Bの配置態様を説明するための模式図である。
 同図の(a)及び(b)に示すように、直交配置のアンテナアレー100Tにおいて、奇数列目のアンテナ群Col1,Col3のパッチアンテナ10をY軸プラス側にオフセット距離Dy分ずらし、かつ、いずれのアンテナ群Row1~Row4のパッチアンテナ10についてもX軸方向にはずらさない。
 これにより同図の(c)に示すように、直交配置のアンテナアレー100Tに比べて、1列おきに基準位置からY軸プラス側へオフセット距離Dy分ずれたアンテナアレー100Bが構成される。つまり、アンテナアレー100Bでは、複数組のアンテナ群Col1~Col4の各々をなす複数のパッチアンテナ10は、Y軸方向に延びる直線上に配置され、複数組のアンテナ群Row1~Row4の各々をなす複数のパッチアンテナ10は隣り合うパッチアンテナ同士がY軸方向に互いにずれて配置される。
 [1-2-3. シミュレーションによる比較]
 次いで、本実施の形態及びその変形例1,2におけるアンテナアレーによって奏される効果について、第1のシミュレーションモデル及び第2のシミュレーションモデルを用いて説明する。
 図7は、第1のシミュレーションモデルにおけるアンテナアレーの配置態様を示す上面図である。
 同図に示すように、第1のシミュレーションモデルは、直交配置されたアンテナアレー100Tの一部に相当する。このため、第1のシミュレーションモデルでは、各々が本実施の形態におけるパッチアンテナ10に相当する9個のパッチアンテナ10A~10G,10Xが直交配置されている。ここで、8個のパッチアンテナ10A~10Gの各々は、パッチアンテナ10Xに隣り合って配置されており、具体的にはパッチアンテナ10Xに対して次の位置関係を有する。
  パッチアンテナ10A:X軸マイナス側の列かつY軸プラス側の行に位置
  パッチアンテナ10B:X軸マイナス側の列かつ同一行に位置
  パッチアンテナ10C:X軸マイナス側の列かつY軸マイナス側の行に位置
  パッチアンテナ10D:同一列かつY軸マイナス側の行に位置
  パッチアンテナ10E:X軸プラス側の列かつY軸マイナス側の行に位置
  パッチアンテナ10F:X軸プラス側の列かつ同一行に位置
  パッチアンテナ10G:X軸プラス側の列かつY軸プラス側の行に位置
  パッチアンテナ10H:同一列かつY軸プラス側の行に位置
 図8は、第2のシミュレーションモデルにおけるアンテナアレーの配置態様を示す上面図である。
 同図に示すように、第2のシミュレーションモデルは、直交配置からずらして配置された本実施の形態及びその変形例1,2におけるアンテナアレーの一部に相当する。このため、第2のシミュレーションモデルでは、第1のシミュレーションモデルに比べて、パッチアンテナ10Xを基準とした場合のパッチアンテナ10A~10Gの配置位置が異なる。
 図9は、第1のシミュレーションモデルにおけるアイソレーション特性を示すグラフである。つまり、同図には、Dx=0.00mm、Dy=0.00mmである直交配置の場合のアイソレーションが示されている。図10は、Dx=1.25mm、Dy=0.00mmとした場合の、第2のシミュレーションモデルにおけるアイソレーション特性を示すグラフである。図11Aは、Dx=1.25mm、Dy=1.25mmとした場合の、第2のシミュレーションモデルにおけるアイソレーション特性を示すグラフである。図11Bは、Dx=1.25mm、Dy=0.75mmとした場合の、第2のシミュレーションモデルにおけるアイソレーション特性を示すグラフである。
 これらの図については、いずれも、パッチアンテナ10Xとパッチアンテナ10A~G各々とのアイソレーションである♯1~♯8が示されており、より具体的には、パッチアンテナ10Xから放射された高周波信号に対するパッチアンテナ10A~G各々に伝搬した当該高周波信号の強度比の絶対値が示されている。
 また、第1のシミュレーションモデル及び第2のシミュレーションモデルのいずれについても、基準位置からのオフセット距離Dx,Dyに関する事項を除いて同一の条件とした。具体的には、偏波方向をY軸方向とし、X軸方向のピッチPx及びY軸方向のピッチPyを2.50mmとし、使用帯域を57GHz~66GHz(60GHz帯)とした。
 図9から明らかなように、直交配置では、使用帯域である60GHz帯において、♯2,♯4,♯6及び♯8が悪く、特に♯2及び♯6が悪い。ここで、♯2は、パッチアンテナ10Xとパッチアンテナ10Bとのアイソレーションであり、♯4は、パッチアンテナ10Xとパッチアンテナ10Dとのアイソレーションであり、♯6、パッチアンテナ10Xとパッチアンテナ10Fとのアイソレーションであり、♯8は、パッチアンテナ10Xとパッチアンテナ10Hとのアイソレーションである。つまり、直交配置では、偏波方向または偏波方向に直交する方向において隣り合うパッチアンテナ間のアイソレーションが悪く、特に偏波方向において隣り合うパッチアンテナ間のアイソレーションが悪いことがわかる。
 これに関し、オフセット距離DyをDy=0.00mmに固定し、オフセット距離Dxのみを0.25mm間隔で変化させた場合について、偏波方向において隣り合うパッチアンテナ間のアイソレーションである♯4及び♯8を、表1に示す。なお、オフセット距離DxをX軸方向のピッチPxの半分である1.25mmよりも大きく変化させた場合には他のアイソレーションが♯4及び♯8よりも悪化するため、以下では、0≦Dx≦1.25の範囲における♯4及び♯8について説明する。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、偏波方向において隣り合うパッチアンテナ間のアイソレーションである♯4及び♯8については、偏波方向に直交する方向においてずらしたオフセット距離Dxが大きいほど向上し、Dx=1.25mmのときに最も向上する。
 また、図9及び図10を比較して明らかなように、Dx=0.00mm、Dy=0.00mmの場合に比べてDx=1.25mm、Dy=0.00mmとした場合には、使用帯域内の全体にわたって隣り合うアイソレーションを最も向上することができる。つまり、オフセット距離DxをX軸方向のピッチPxの半分とした場合に、使用帯域内における♯1~♯8のワースト値を最も改善することができる。
 ここで、使用帯域内におけるアイソレーションの改善効果については、オフセット距離DxをピッチPxの略半分とした場合であっても、オフセット距離DxをピッチPxの丁度半分とした場合と同等の効果が得られる。
 これに関し、オフセット距離DyをDy=0.00mmに固定し、オフセット距離Dxのみを1.10≦Dx≦1.25の範囲において0.05mm間隔で変化させた場合の♯4及び♯8を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、Dx=1.20mmとした場合であっても、Dx=1.25mmとした場合と同等のアイソレーションを確保することができる。すなわち、オフセット距離DxをピッチPxの略半分とすることで、使用帯域内におけるアイソレーションを最も向上することができる。ここで、ピッチPxの略半分とは、ピッチPxの半分に対してピッチPxの±2%の範囲内であり、例えば、Px=2.5mmの場合には1.25±0.05mmの範囲内である。
 次いで、オフセット距離DxをDx=1.25mmに固定し、オフセット距離Dyのみを0.25mm間隔で変化させた場合について、偏波方向に直交する方向において隣り合うパッチアンテナ間のアイソレーションである♯2及び♯6を、表3に示す。なお、オフセット距離DyをY軸方向のピッチPyの半分である1.25mmよりも大きく変化させた場合には他のアイソレーションが♯2及び♯6よりも悪化するため、以下では、0≦Dy≦1.25の範囲における♯2及び♯6について説明する。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、偏波方向に直交する方向において隣り合うパッチアンテナ間のアイソレーションである♯2及び♯6については、偏波方向においてずらしたオフセット距離Dyが大きいほど向上し、Dy=1.25mmのときに最も向上する。
 また、図9及び図11Aを比較して明らかなように、直交配置の場合に比べてDx=1.25mm、Dy=1.25mmとした場合には、使用帯域内の全体にわたって隣り合うパッチアンテナ間のアイソレーションを概ね向上することができる。
 ただし、この場合、直交配置において偏波方向に対して斜めに隣り合うパッチアンテナ間のアイソレーションである♯1,♯3,♯5,♯7の少なくとも1つが、直交配置におけるアイソレーションのワースト値よりも悪化し得る。図11Aに示すように、第2のシミュレーションモデルでは、パッチアンテナ10Xとパッチアンテナ10Eとのアイソレーションである♯5が直交配置におけるアイソレーションのワースト値よりも悪化する。
 これに対して、図11Bに示すように、Dx=1.25mm、Dy=0.75mmとした場合には、直交配置の場合に比べて、使用帯域内の全体にわたって隣り合うパッチアンテナ間のアイソレーションを最も向上することができる。したがって、Y軸方向におけるオフセットのオフセット距離Dyについては、アンテナアレー全体のアイソレーションを勘案して適宜選択されればよい。
 ここで、使用帯域内におけるアイソレーションの改善効果については、オフセット距離DyをピッチPyの略半分とした場合であっても、オフセット距離DyをピッチPyの丁度半分とした場合と同等の効果が得られる。
 これに関し、オフセット距離DxをDx=1.20,1.25mmとし、オフセット距離DyをDy=1.20,1.25mmとした場合の♯2及び♯6を、表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、Dx=1.20mmかつDy=1.20mmとした場合、Dx=1.20mmかつDy=1.25mmとした場合、または、Dx=1.25mmかつDy=1.20mmとした場合であっても、Dx=1.25mmかつDy=1.25mmとした場合と同等のアイソレーションを確保することができる。すなわち、オフセット距離DxをピッチPxの略半分とし、オフセット距離DyをピッチPyの略半分することで、使用帯域内におけるアイソレーションを最も向上することができる。ここで、ピッチPxの略半分とは、ピッチPxの半分に対してピッチPxの±2%の範囲内であり、例えば、Py=2.5mmの場合には、1.25±0.05mmの範囲内である。また、ピッチPyの略半分とは、ピッチPyの半分に対してピッチPyの±2%の範囲内であり、例えば、Py=2.5mmの場合には、1.25±0.05mmの範囲内である。
 ここまで、第1のシミュレーションモデル及び第2のシミュレーションモデルを用いて、アンテナアレーの配置態様による隣り合うパッチアンテナ間のアイソレーションへの影響について説明した。続いて、アンテナアレーの配置態様による放射特性への影響について、説明する。
 まず、オフセット距離DyをDy=0.00mmに固定し、オフセット距離Dxのみを変化させた場合について、ビームパターンにおけるサイドローブレベルを表5に示す。次いで、オフセット距離DxをDx=1.20,1.25mmに固定し、オフセット距離Dyを変化させた場合について、ビームパターンにおけるサイドローブレベルを表6に示す。ここで、これらのいずれの表についても、サイドローブレベルとして、最もピーク強度の高いファーストサイドローブのレベルが示されている。このファーストサイドローブは、通常、メインローブの最も近くに出現する。また、サイドローブのレベルとは、メインローブのピーク強度に対するサイドローブのピーク強度比である。また、表中において、「Azimuth」欄にはX-Z平面におけるサイドローブレベルが示され、「Elevation」欄にはY-Z平面におけるサイドローブレベルが示されている。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 これらの表から明らかなように、オフセット距離Dx,DyがDx>0かつDy=0の場合、及び、オフセット距離Dx,DyがDx>0かつDy>0の場合のいずれについても、サイドローブレベルが直交配置における原理上のサイドローブレベルである-13dB以下に抑制される。特に、表5に示したように、オフセット距離Dx,DyがDx>0かつDy=0の場合には、図4に示したオフセット距離Dx,DyがDx>0かつDy>0の場合に比べてサイドローブレベルが概ね抑制される。
 以上説明したアンテナアレーの配置態様による(i)隣り合うパッチアンテナ間のアイソレーションへの影響及び(ii)放射特性への影響を併せて考慮すると、次のことが言える。すなわち、本実施の形態及び変形例1,2におけるアンテナアレーによれば、サイドローブレベルを抑制しつつ、アイソレーションを向上することができる。特に、オフセット距離DxをピッチPxの略半分とし、オフセット距離DyをピッチPyの略半分とすることにより、サイドローブレベルを抑制しつつ、アイソレーションを最も向上することができる。
 ここで、複数のパッチアンテナ10が直交配置されていないにも関わらず、直交配置における原理上のサイドローブ以下にサイドローブが抑制されることは、次の理由による。
 一般に、アンテナアレーのビームパターンは、「1波源あたりのビームパターン」と「アレーファクタ」の積で与えられる。特に、波源が直交かつ等ピッチで配置されている場合、原理上、アレーファクタのファーストサイドローブレベルは、波源のピッチによらずに一定の-13dBとなる。
 本実施の形態及び変形例1,2におけるアンテナアレーは、2行2列を1つのユニットとして定義した場合に、複数のユニットが直交配置された構成となる。したがって、本実施の形態及び変形例1,2におけるアンテナアレーは、1つのユニットを1つの波源とみなした場合、複数のパッチアンテナ10が直交配置された場合と同様に、複数の波源が直交配置された構成となる。したがって、「1波源あたりのビームパターン」と「アレーファクタ」の積で与えられるアンテナアレー全体のビームパターンについて、ファーストサイドローブレベルを-13dB以下に抑制することができる。
 言い換えると、本実施の形態及び変形例1,2におけるアンテナアレーにおいて、複数のパッチアンテナ10の配置は、X軸方向及びY軸方向に沿って周期的に繰り返されている。これら複数のパッチアンテナ10について、配置が周期的に繰り返される最小単位をユニットと定義すると、複数のユニットは、X軸方向に沿って等間隔かつY軸方向に沿って等間隔に配置されている。具体的には、本実施の形態及び変形例1,2では、2行2列のパッチアンテナ10からなるユニットが、Pxの2倍の間隔でX軸方向に沿って等間隔かつPyの2倍の間隔でY軸方向に沿って等間隔に配置されている。
 ここで、X軸方向及びY軸方向は、一方が偏波方向であり、他方が当該偏波方向に垂直な方向である。よって、複数のユニットは、X軸方向に沿って等間隔かつY軸方向に沿って等間隔に配置されることにより、偏波方向及びこれに垂直な方向に2次元状に等間隔に並んで配置された直交配置となる。したがって、上述したように、1つのユニットを1つの波源とみなした場合、通常の複数のパッチアンテナが直交配置された場合と同様に、複数の波源が直交配置されることになるので、サイドローブレベルを抑制することができる。よって、本実施の形態及び変形例1,2におけるアンテナアレーでは、サイドローブレベルを抑制しつつ、アイソレーションを向上させることができるので、通信品質のさらなる向上が図られる。
 なお、変形例1では、2行1列のパッチアンテナ10からなるユニットが、Pxの間隔でX軸方向に沿って等間隔かつPyの2倍の間隔でY軸方向に沿って等間隔に配置されているとも言える。また、変形例2では、1行2列のパッチアンテナ10からなるユニットが、Pxの2倍の間隔でX軸方向に沿って等間隔かつPyの間隔でY軸方向に沿って等間隔に配置されているとも言える。
 [1-2-4. まとめ]
 これら第1のシミュレーションモデル及び第2のシミュレーションモデルの比較結果からも明らかなように、本実施の形態によれば、次のような効果が奏される。
 なお、以下では、第1方向として、複数のパッチアンテナ10の偏波方向に垂直な方向であるX軸方向を例に説明し、第2方向として、当該偏波方向であるY軸方向を例に説明する。しかし、特に言及しない限り、第1方向及び第2方向とX軸方向及びY軸方向との対応関係は、入れ替わってもかまわない。したがって、当該対応関係が入れ替わる場合には、以下で説明する事項においても、この対応関係の入れ替えに伴う事項が変わるものの、同様の効果が奏されるため、詳細な説明については省略する。
 本実施の形態によれば、複数のパッチアンテナ10が第1方向(例えばX軸方向)及び第2方向(例えばY軸方向)に直交配置された場合に比べ、第1方向に配置された複数のパッチアンテナ10からなるアンテナ群(例えば、アンテナ群Row1~Row4)が、第2方向に隣り合う他のアンテナ群に対して、第1方向において一定間隔(例えばオフセット距離Dx)ずれて配置される。
 これにより、第2方向に隣り合う2つのパッチアンテナ10に着目すると、当該2つのパッチアンテナ10の一方が他方に対して第1方向にずれて配置される。よって、当該2つのパッチアンテナ10の間隔が広がることにより、当該2つのパッチアンテナ10間のアイソレーションが向上する。したがって、高周波回路部品(例えばRFIC30)の入出力ポートへの不要な信号の回り込みを抑制することができるので、通信品質の向上が図られる。
 また、本実施の形態によれば、複数組の上記アンテナ群の各々は、隣り合う他のアンテナ群に対して、第1方向において、同一のアンテナ群をなす複数のパッチアンテナ10の間隔である第1間隔(例えばピッチPx)の略半分ずれて配置されている。
 ここで、複数のパッチアンテナ10が直交配置された場合に第2方向に隣り合う2つのパッチアンテナ10の一方のパッチアンテナ10に着目すると、第1方向におけるオフセット距離が大きいほど他方のパッチアンテナ10との間隔が広がる。一方で、当該オフセット距離が第1間隔の半分を超えると、他方のパッチアンテナ10との間隔よりも間隔が狭くなる他のパッチアンテナ10が出現する。そこで、複数組のアンテナ群の各々を、隣り合う他のアンテナ群に対して、第1方向において第1間隔の略半分ずれて配置することにより、隣り合うアンテナ群を構成するパッチアンテナ10間の距離を最も広げることができる。このため、隣り合うアンテナ群を構成するパッチアンテナ10間のアイソレーションを最も向上させることができるので、通信品質のさらなる向上が図られる。
 これに関し、本実施の形態によれば、第1間隔の略半分とは、当該第1間隔の半分に対して当該第1間隔の±2%以内である。これにより、複数組のアンテナ群の各々が、隣り合う他のアンテナ群に対して、第1方向において第1間隔の丁度半分ずれて配置されている場合、と同等のアイソレーションを確保することができる。同等のアイソレーションとは、完全にアイソレーションが等しいことだけでなく、ほぼ等しければよく、誤差の範囲(例えば、0.2dB以下の範囲であり、より限定的には0.1dB以下の範囲)で異なることも含まれる。
 また、本実施の形態によれば、複数組のアンテナ群の各々について、当該アンテナ群をなす複数のパッチアンテナ10の各々は、隣り合う他のパッチアンテナ10に対して、第2方向において一定間隔(例えばオフセット距離Dy)ずれて配置されている。
 これにより、複数のパッチアンテナ10が直交配置された場合に第1方向に隣り合う2つのパッチアンテナ10に着目すると、当該2つパッチアンテナ10の一方が他方に対して第2方向にずれて配置される。ここで、当該2つのパッチアンテナ10の各々は、直交配置された場合に第2方向に隣り合うパッチアンテナ10に対して、第1方向にずれて配置されている。つまり、一のパッチアンテナ10に着目すると、直交配置において当該一のパッチアンテナ10に第1方向に隣り合う他のパッチアンテナ10及び第2方向に隣り合う他のパッチアンテナ10との間隔が広がることになる。したがって、アンテナモジュール1を構成する複数のパッチアンテナ10の各々について、直交配置において第1方向に隣り合う他のパッチアンテナ10とのアイソレーション、及び、直交配置において第2方向に隣り合う他のパッチアンテナ10とのアイソレーションのいずれについても向上させることができるので、通信品質のさらなる向上が図られる。
 また、本実施の形態によれば、複数組のアンテナ群の各々は、隣り合う他のアンテナ群に対して、第1方向において第1間隔の略半分ずれて配置され、アンテナ群をなす複数のパッチアンテナ10の各々は、隣り合う他のパッチアンテナ10に対して、第2方向において第2間隔(例えばピッチPy)の略半分ずれて配置されている。
 これにより、アンテナモジュール1を構成する複数のパッチアンテナ10の各々について、直交配置において第1方向に隣り合う他のパッチアンテナ10とのアイソレーション、及び、直交配置において第2方向に隣り合う他のパッチアンテナ10とのアイソレーションのいずれについても最も向上させることができるので、通信品質のさらなる向上が図られる。
 これに関し、本実施の形態によれば、第1間隔の略半分とは、当該第1間隔の半分に対して当該第1間隔の±2%以内であり、第2間隔の略半分とは、当該第2間隔の半分に対して当該第2間隔の±2%以内である。これにより、(i)複数組のアンテナ群の各々が、隣り合う他のアンテナ群に対して、第1方向において第1間隔の丁度半分ずれて配置されており、かつ、(ii)複数組のアンテナ群の各々について、当該アンテナ群をなす複数のパッチアンテナの各々が、隣り合う他のパッチアンテナに対して、第2方向において第2間隔の丁度半分ずれて配置されている場合、と同等のアイソレーションを確保することができる。
 また、本実施の形態によれば、複数の給電線の長さが互いに等しいことにより、複数の給電線によるロスが同等となるため、当該ロスのばらつきによるアンテナ特性の劣化を抑制することができる。
 また、本実施の形態によれば、誘電体基板の第2主面側に実装された高周波回路部品はRFICであるため、複数のパッチアンテナ10とRFICとが一体化されたアンテナモジュール1について、通信品質の向上が図られる。
 また、変形例1及び変形例2におけるアンテナアレーを備えるアンテナモジュールによれば、複数組のアンテナ群の各々をなす複数のパッチアンテナ10は、第1方向(変形例1ではX軸方向、変形例2ではY軸方向)に延びる直線上に配置されている。
 これにより、複数組のアンテナ群の各々をなす複数のパッチアンテナ10が直線上に配置されずにずれて配置される場合に比べて、サイドローブレベルを抑制することができる。
 また、変形例1におけるアンテナアレーを備えるアンテナモジュールによれば、上記第1方向は偏波方向に垂直な方向であり、第2方向は偏波方向である。
 直交配置において偏波方向に隣り合うパッチアンテナ10間のアイソレーションは、他のパッチアンテナ10間のアイソレーションよりも、特に悪い。このため、複数組のアンテナ群の各々が、第2方向である偏波方向に隣り合う他のアンテナ群に対して、偏波方向に垂直な方向において一定間隔ずれて配置されていることにより、直交配置において偏波方向に隣り合うパッチアンテナ10間のアイソレーションを向上させることができる。したがって、高周波回路部品の入出力ポートへの不要な信号の回り込みを効果的に抑制することができるので、通信品質のさらなる向上が図られる。
 [2. 通信装置]
 本実施の形態に係るアンテナモジュール1は、後述するBBICとともに通信装置を構成することができる。
 これに関し、本実施の形態に係るアンテナモジュール1は、各パッチアンテナ10から放射される高周波信号の位相および信号強度を制御することにより鋭い指向性を実現することができる。このようなアンテナモジュール1は、例えば、5G(第5世代移動通信システム)で有望な無線伝送技術の1つであるMassive MIMO(Multiple Input Multiple Output)に対応する通信装置に用いることができる。
 そこで、以下では、このような通信装置について、アンテナモジュール1のRFIC30の処理についても述べつつ説明する。
 図12は、実施の形態に係るアンテナモジュール1を備える通信装置5の構成を示す回路ブロック図である。なお、同図では、簡明のため、RFIC30の回路ブロックとして、アンテナアレー100が有する複数のパッチアンテナ10のうち4つのパッチアンテナ10に対応する回路ブロックついてのみ図示し、他の回路ブロックについては図示を省略する。また、以下では、これら4つのパッチアンテナ10に対応する回路ブロックについて説明し、他の回路ブロックについては説明を省略する。
 同図に示すように、通信装置5は、アンテナモジュール1と、ベースバンド信号処理回路を構成するBBIC40とを備える。
 アンテナモジュール1は、上述したように、アンテナアレー100と、RFIC30とを備える。
 RFIC30は、スイッチ31A~31D,33A~33Dおよび37と、パワーアンプ32AT~32DTと、ローノイズアンプ32AR~32DRと、減衰器34A~34Dと、移相器35A~35Dと、信号合成/分波器36と、ミキサ38と、増幅回路39とを備える。
 スイッチ31A~31Dおよび33A~33Dは、各信号経路における送信および受信を切り替えるスイッチ回路である。
 BBIC40からRFIC30に伝達された信号は、増幅回路39で増幅され、ミキサ38でアップコンバートされる。アップコンバートされた高周波信号は、信号合成/分波器36で4分波され、4つの送信経路を通過して、それぞれ異なるパッチアンテナ10に給電される。このとき、各信号経路に配置された移相器35A~35Dの移相度が個別に調整されることにより、アンテナアレー100の指向性を調整することが可能となる。
 また、アンテナアレー100が有する各パッチアンテナ10で受信した高周波信号は、それぞれ、異なる4つの受信経路を経由し、信号合成/分波器36で合波され、ミキサ38でダウンコンバートされ、増幅回路39で増幅されてBBIC40へ伝達される。
 なお、上述した、スイッチ31A~31D,33A~33Dおよび37、パワーアンプ32AT~32DT、ローノイズアンプ32AR~32DR、減衰器34A~34D、移相器35A~35D、信号合成/分波器36、ミキサ38、ならびに増幅回路39のいずれかは、RFIC30が備えていなくてもよい。また、RFIC30は、送信経路および受信経路のいずれかのみを有していてもよい。また、本実施の形態に係る通信装置5は、単一の周波数帯域(バンド)の高周波信号を送受信するだけでなく、複数の周波数帯域(マルチバンド)の高周波信号を送受信するシステムにも適用可能である。
 このように、RFIC30は、高周波信号を増幅するパワーアンプ32AT~32DTを含み、複数のパッチアンテナ10はパワーアンプ32AT~32DTで増幅された信号を放射する。
 このような通信装置5によれば、本実施の形態に係るアンテナモジュール1を備えることにより、パッチアンテナ10間のアイソレーションが向上する。このため、RFIC30の入出力ポートに対する不要な信号の回り込みが抑制されるので、通信品質の向上が図られる。
 (変形例)
 以上、本発明の実施の形態およびその実施例に係るアンテナモジュールおよび通信装置について説明したが、本発明は上記実施の形態およびその実施例に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本開示のアンテナモジュールおよび通信装置を内蔵した各種機器も本発明に含まれる。
 例えば、上記説明では、アンテナアレーは、1行おき、または、1列おき、にずらして配置されるとした。つまり、アンテナアレーでは、例えば2行2列ごとに同じ配置態様が繰り返されるとした。しかし、アンテナアレーの配置態様は、これに限らず、m行n列(m及びnは、少なくとも一方が3以上の整数)ごとに同じ配置態様が繰り返される構成であってもかまわない。言い換えると、アンテナアレーは、m行n列のm×n個のパッチアンテナ10を周期的に平行移動させて広げていくことにより構成されていればよい。
 また、X軸方向のピッチPxとY軸方向のピッチPyとは、等しくても異なっていてもよく、要求されるビームパターン等を勘案して適宜設計されればよい。
 また、上記説明では、複数の給電線22の長さは互いに略等しいとしたが、複数の給電線22は互いに長さの異なる給電線22を含んでいてもかまわない。例えば、高周波回路部品が高周波信号の位相を変化させる移相器35A~35Dを含む場合には、複数の給電線22の長さは、互いに異なっていてもかまわないし、少なくとも一部が他と異なっていてもかまわない。具体的には、複数の給電線22の各々の長さは、移相器35A~35Dの位相を変化させる最小単位である1ステップに対応する電気長の任意の整数倍に略等しければよい。これにより、移相器35A~35Dによる位相補正を行う場合に、複数のパッチアンテナ10全てに対して所望の位相で給電することが可能となる。
 給電線22について、「長さが略等しい」とは、上記説明したように、高周波信号の誘電体基板20内における波長の3%以内に差分が収まることである。つまり、複数の給電線22の各々の長さが所定の長さに略等しいとは、各給電線22の長さと所定の長さとの差分が上記3%以内に収まることである。
 これに関し、32ステップ(すなわち5bit)の移相器35A~35Dでは、1ステップが誘電体基板20内における高周波信号の波長の3.125%となる。よって、上記差分を誘電体基板20内における高周波信号の波長の3%以内に収めることにより、給電線22の長さによる特性への影響を大幅に抑制することができる。したがって、通信品質のさらなる向上が図られる。
 また、例えば、上記説明では、RFIC30は、送信系の信号処理および受信系の信号処理の両方を行う構成を例に説明したが、これに限らず、いずれか一方のみを行ってもかまわない。
 また、上記説明では、高周波回路部品としてRFIC30を例に説明したが、高周波回路部品はこれに限らない。例えば、高周波回路部品は、高周波信号を増幅するパワーアンプであり、複数のパッチアンテナ10は、当該パワーアンプで増幅された信号を放射してもかまわない。あるいは、例えば、高周波回路部品は、複数のパッチアンテナ10と当該高周波回路部品との間で伝達される高周波信号の位相を調整する位相調整回路であってもかまわない。
 本発明は、複数のパッチアンテナと高周波回路部品とが一体化されたアンテナモジュールとして、ミリ波帯移動体通信システムおよびMassive MIMOシステムなどの通信機器に広く利用できる。
 1  アンテナモジュール
 5  通信装置
 10,10A~10H,10X  パッチアンテナ
 10p  給電点
 20  誘電体基板
 21  基板素体
 22  給電線
 30  RFIC
 31A,31B,31C,31D,33A,33B,33C,33D,37  スイッチ
 32AR,32BR,32CR,32DR  ローノイズアンプ
 32AT,32BT,32CT,32DT  パワーアンプ
 34A,34B,34C,34D  減衰器
 35A,35B,35C,35D  移相器
 36  信号合成/分波器
 38  ミキサ
 39  増幅回路
 40  BBIC
 100,100A,100B,100T  アンテナアレー
 111  無給電素子
 112  給電素子
 121  パターン導体
 122  ビア導体
 123  グランドパターン導体
 131  入出力端子
 Col1,Col2,Col3,Col4,Row1,Row2,Row3,Row4  アンテナ群

Claims (14)

  1.  誘電体基板と、
     前記誘電体基板の第1主面側に設けられた複数のパッチアンテナと、
     前記誘電体基板の前記第1主面と反対側の第2主面側に実装され、前記複数のパッチアンテナとの間で高周波信号が伝達される高周波回路部品と、
     を備え、
     前記高周波回路部品は、前記誘電体基板の平面視において、前記複数のパッチアンテナが配置される領域内に配置され、
     前記複数のパッチアンテナは、偏波方向及び当該偏波方向に垂直な方向のうち一方である第1方向において第1間隔で周期的に配置された複数のパッチアンテナからなるアンテナ群を複数組備え、
     前記複数組のアンテナ群は、前記偏波方向及び当該偏波方向に垂直な方向のうち他方である第2方向において第2間隔で周期的に配置され、
     前記複数組のアンテナ群の各々は、前記第2方向に隣り合う他のアンテナ群に対して、前記第1方向において一定間隔ずれて配置されている、
     アンテナモジュール。
  2.  前記複数組のアンテナ群をなす複数のパッチアンテナの配置は、前記第1方向及び前記第2方向に沿って周期的に繰り返されており、
     当該複数のパッチアンテナについて、配置が周期的に繰り返される最小単位をユニットと定義すると、複数の前記ユニットは、前記第1方向に沿って等間隔かつ前記第2方向に沿って等間隔に配置されている、
     請求項1に記載のアンテナモジュール。
  3.  前記複数組のアンテナ群の各々は、隣り合う他のアンテナ群に対して、前記第1方向において前記第1間隔の略半分ずれて配置されている、
     請求項1または2に記載のアンテナモジュール。
  4.  前記第1間隔の略半分とは、当該第1間隔の半分に対して当該第1間隔の±2%以内である、
     請求項3に記載のアンテナモジュール。
  5.  前記複数組のアンテナ群の各々について、当該アンテナ群をなす複数のパッチアンテナの各々は、隣り合う他のパッチアンテナに対して、前記第2方向において一定間隔ずれて配置されており、
     前記複数組のアンテナ群をなす複数のパッチアンテナの配置は、前記第1方向及び前記第2方向に沿って周期的に繰り返されている、
     請求項1~4のいずれか1項に記載のアンテナモジュール。
  6.  前記複数組のアンテナ群の各々は、隣り合う他のアンテナ群に対して、前記第1方向において前記第1間隔の略半分ずれて配置され、
     前記複数組のアンテナ群の各々について、当該アンテナ群をなす複数のパッチアンテナの各々は、隣り合う他のパッチアンテナに対して、前記第2方向において前記第2間隔の略半分ずれて配置されている、
     請求項5に記載のアンテナモジュール。
  7.  前記第1間隔の略半分とは、当該第1間隔の半分に対して当該第1間隔の±2%以内であり、
     前記第2間隔の略半分とは、当該第2間隔の半分に対して当該第2間隔の±2%以内である、
     請求項6に記載のアンテナモジュール。
  8.  前記複数組のアンテナ群の各々をなす複数のパッチアンテナは、前記第1方向に延びる直線上に配置されている、
     請求項1~3のいずれか1項に記載のアンテナモジュール。
  9.  前記第1方向は前記偏波方向に垂直な方向であり、前記第2方向は前記偏波方向である、
     請求項8に記載のアンテナモジュール。
  10.  前記誘電体基板は、前記複数のパッチアンテナの各々と前記高周波回路部品とを接続する複数の給電線を有し、
     前記高周波回路部品は、前記高周波信号の位相を変化させる移相器を含み、
     前記複数の給電線の各々の長さは、前記移相器の位相を変化させる最小単位である1ステップに対応する電気長の任意の整数倍に略等しい、
     請求項1~9のいずれか1項に記載のアンテナモジュール。
  11.  前記誘電体基板は、前記複数のパッチアンテナの各々と前記高周波回路部品とを接続する複数の給電線を有し、
     前記複数の給電線の長さは、互いに略等しい、
     請求項1~10のいずれか1項に記載のアンテナモジュール。
  12.  前記複数の給電線について、長さが略等しいとは、前記高周波信号の前記誘電体基板内における波長の3%以内に差分が収まることである、
     請求項10または11に記載のアンテナモジュール。
  13.  前記高周波回路部品は、前記高周波信号を処理するRFICである、
     請求項1~12のいずれか1項に記載のアンテナモジュール。
  14.  請求項13に記載のアンテナモジュールと、
     BBICと、を備え、
     前記RFICは、前記BBICから入力された信号をアップコンバートして前記複数のパッチアンテナに出力する送信系の信号処理、及び、前記複数のパッチアンテナから入力された高周波信号をダウンコンバートして前記BBICに出力する受信系の信号処理、の少なくとも一方を行う、
     通信装置。
PCT/JP2018/015061 2017-04-26 2018-04-10 アンテナモジュール及び通信装置 WO2018198754A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019514359A JP6888671B2 (ja) 2017-04-26 2018-04-10 アンテナモジュール及び通信装置
CN201880027806.6A CN110574235B (zh) 2017-04-26 2018-04-10 天线模块和通信装置
US16/565,798 US11264732B2 (en) 2017-04-26 2019-09-10 Antenna module and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-087446 2017-04-26
JP2017087446 2017-04-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/565,798 Continuation US11264732B2 (en) 2017-04-26 2019-09-10 Antenna module and communication apparatus

Publications (1)

Publication Number Publication Date
WO2018198754A1 true WO2018198754A1 (ja) 2018-11-01

Family

ID=63918385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015061 WO2018198754A1 (ja) 2017-04-26 2018-04-10 アンテナモジュール及び通信装置

Country Status (4)

Country Link
US (1) US11264732B2 (ja)
JP (1) JP6888671B2 (ja)
CN (1) CN110574235B (ja)
WO (1) WO2018198754A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112055918B (zh) * 2018-04-26 2024-03-26 株式会社村田制作所 天线模块
JP6777273B1 (ja) * 2019-01-25 2020-10-28 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置
KR20210158199A (ko) * 2020-06-23 2021-12-30 삼성전자주식회사 Uwb 안테나를 포함하는 전자 장치 및 방법
KR20230074581A (ko) * 2020-09-28 2023-05-30 후아웨이 테크놀러지 컴퍼니 리미티드 안테나 어레이, 장치, 및 무선 통신 디바이스
WO2023158572A1 (en) * 2022-02-16 2023-08-24 Massachusetts Institute Of Technology Terahertz beam steering antenna arrays

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100053025A1 (en) * 2008-08-28 2010-03-04 Thales Nederland B.V. Array antenna comprising means to suppress the coupling effect in the dielectric gaps between its radiator elements without establishing galvanic contacts
JP2011519517A (ja) * 2008-04-14 2011-07-07 インターナショナル・ビジネス・マシーンズ・コーポレーション リング・キャビティ及び/又はオフセット・キャビティにおける集積開口部結合型パッチ・アンテナを有する無線周波数(rf)集積回路(ic)パッケージ
JP2012147105A (ja) * 2011-01-07 2012-08-02 Honda Elesys Co Ltd アンテナ装置及びレーダ装置
JP2014195232A (ja) * 2013-03-29 2014-10-09 Mitsubishi Electric Corp アンテナ装置
JP2016152502A (ja) * 2015-02-17 2016-08-22 日本電信電話株式会社 アンテナ、無線基地局装置及びアンテナ素子の配置方法
WO2016174931A1 (ja) * 2015-04-30 2016-11-03 古野電気株式会社 アンテナ装置および姿勢算出装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178002A (ja) * 1983-03-29 1984-10-09 Radio Res Lab 円偏波アンテナ
DE4239597C2 (de) * 1991-11-26 1999-11-04 Hitachi Chemical Co Ltd Ebene Antenne mit dualer Polarisation
JP3481481B2 (ja) * 1998-12-24 2003-12-22 日本電気株式会社 フェーズドアレイアンテナおよびその製造方法
US6211824B1 (en) * 1999-05-06 2001-04-03 Raytheon Company Microstrip patch antenna
DE10356511A1 (de) * 2003-12-03 2005-07-07 Siemens Ag Antennenanordnung für mobile Kommunikationsendgeräte
CN101577369B (zh) * 2008-05-07 2016-06-15 中兴通讯股份有限公司 一种直线定向智能天线阵
US9196951B2 (en) * 2012-11-26 2015-11-24 International Business Machines Corporation Millimeter-wave radio frequency integrated circuit packages with integrated antennas
JP5952233B2 (ja) * 2013-01-30 2016-07-13 株式会社日本自動車部品総合研究所 アンテナ装置
JP6402962B2 (ja) * 2013-07-17 2018-10-10 パナソニックIpマネジメント株式会社 高周波モジュール
CN105612660B (zh) * 2014-02-27 2019-10-22 华为技术有限公司 一种共口径天线及基站
WO2016063759A1 (ja) 2014-10-20 2016-04-28 株式会社村田製作所 無線通信モジュール
US10158173B2 (en) * 2015-05-29 2018-12-18 Huawei Technologies Co., Ltd. Orthogonal-beam-space spatial multiplexing radio communication system and associated antenna array
CN204732534U (zh) * 2015-07-18 2015-10-28 浙江佳源通讯技术有限公司 应用于无线通信***的四频双极化电调板状天线
US10511100B2 (en) * 2016-02-02 2019-12-17 Georgia Tech Research Corporation Inkjet printed flexible Van Atta array sensor
WO2018186226A1 (ja) * 2017-04-07 2018-10-11 株式会社村田製作所 アンテナモジュールおよび通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519517A (ja) * 2008-04-14 2011-07-07 インターナショナル・ビジネス・マシーンズ・コーポレーション リング・キャビティ及び/又はオフセット・キャビティにおける集積開口部結合型パッチ・アンテナを有する無線周波数(rf)集積回路(ic)パッケージ
US20100053025A1 (en) * 2008-08-28 2010-03-04 Thales Nederland B.V. Array antenna comprising means to suppress the coupling effect in the dielectric gaps between its radiator elements without establishing galvanic contacts
JP2012147105A (ja) * 2011-01-07 2012-08-02 Honda Elesys Co Ltd アンテナ装置及びレーダ装置
JP2014195232A (ja) * 2013-03-29 2014-10-09 Mitsubishi Electric Corp アンテナ装置
JP2016152502A (ja) * 2015-02-17 2016-08-22 日本電信電話株式会社 アンテナ、無線基地局装置及びアンテナ素子の配置方法
WO2016174931A1 (ja) * 2015-04-30 2016-11-03 古野電気株式会社 アンテナ装置および姿勢算出装置

Also Published As

Publication number Publication date
CN110574235B (zh) 2021-05-14
US20200006864A1 (en) 2020-01-02
CN110574235A (zh) 2019-12-13
JP6888671B2 (ja) 2021-06-16
JPWO2018198754A1 (ja) 2019-12-19
US11264732B2 (en) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2018198754A1 (ja) アンテナモジュール及び通信装置
US11011843B2 (en) Antenna element, antenna module, and communication apparatus
US10374309B2 (en) Switched beam antenna system and hand held electronic device
US11211720B2 (en) High-frequency module and communication device
US11211718B2 (en) Radio frequency module and communication device
WO2018173750A1 (ja) アンテナモジュール及び通信装置
US11171421B2 (en) Antenna module and communication device equipped with the same
US10886630B2 (en) Antenna module and communication device
WO2019130771A1 (ja) アンテナアレイおよびアンテナモジュール
JP6777273B1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2019188413A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2022224650A1 (ja) アンテナモジュール
WO2017085871A1 (ja) 給電回路及びアンテナ装置
US11411315B2 (en) Antenna module and antenna device
JP7358880B2 (ja) 偏波共用アレイアンテナ及びその製造方法
JP5267063B2 (ja) アレイアンテナ
EP4046240A1 (en) Mitigating beam squint in multi-beam forming networks
WO2023090182A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US11909119B2 (en) Circular polarization array antenna device
US11621755B2 (en) Beamforming antennas that share radio ports across multiple columns
WO2024004283A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2023037805A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2024034188A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2023090139A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2022264765A1 (ja) アンテナモジュールおよびそれを搭載した通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514359

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791881

Country of ref document: EP

Kind code of ref document: A1