WO2018198645A1 - Additive for lubricant, lubricant composition and sliding mechanism - Google Patents

Additive for lubricant, lubricant composition and sliding mechanism Download PDF

Info

Publication number
WO2018198645A1
WO2018198645A1 PCT/JP2018/012512 JP2018012512W WO2018198645A1 WO 2018198645 A1 WO2018198645 A1 WO 2018198645A1 JP 2018012512 W JP2018012512 W JP 2018012512W WO 2018198645 A1 WO2018198645 A1 WO 2018198645A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
lubricating oil
mass
additive
general formula
Prior art date
Application number
PCT/JP2018/012512
Other languages
French (fr)
Japanese (ja)
Inventor
八木下 和宏
直史 置塩
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017090498A external-priority patent/JP2018188521A/en
Priority claimed from JP2017090492A external-priority patent/JP2018188519A/en
Priority claimed from JP2017090496A external-priority patent/JP2018188520A/en
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Publication of WO2018198645A1 publication Critical patent/WO2018198645A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/12Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having a phosphorus-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons

Definitions

  • the present invention relates to an additive for lubricating oil, a lubricating oil composition, and a sliding mechanism.
  • Lubricating oil is used in industrial machines having mechanical elements such as hydraulic machines, compression machines, turbines, gear elements, and bearings. Industrial machines have been operated under more severe conditions as the speed, pressure, and size have been reduced. For this reason, the lubricating oil used in industrial machines is required to have excellent lubricating performance that can sufficiently guarantee the mechanical life for a long time even when used under high pressure, high speed, high load, and high temperature.
  • Patent Document 1 discloses a lubricating oil composition in which a phosphorus compound having a group in which hydroxyl groups are bonded to adjacent carbon atoms is blended with a base oil mainly composed of an oxygen-containing compound. .
  • the present invention has been made in view of such circumstances, has excellent lubricity, and has sufficient solubility even when applied to a hydrocarbon base oil.
  • the main purpose is to provide an agent.
  • the present invention provides an additive for lubricating oil shown in [1] below, a lubricating oil composition shown in [2] below, use (application) of a compound shown in [3] below, and production of a compound shown in [4] below Provides use (application) for.
  • R 1 represents an alkylene group, and R 2 and R 3 each independently represent a hydrocarbon group. m represents 0 or 1, and n represents 0 or 1. However, m + n is 1.
  • R 2 and R 3 each independently represent a hydrocarbon group. m represents 0 or 1, and n represents 0 or 1. However, m + n is 1.
  • R 1 represents an alkylene group
  • R 2 and R 3 each independently represent a hydrocarbon group
  • m represents 0 or 1
  • n represents 0 or 1.
  • m + n is 1.
  • the present invention also provides the lubricating oil composition shown in the following [5] and [6].
  • a lubricating oil composition comprising an ester base oil and an additive for lubricating oil represented by the following general formula (1) (the lubricating base oil is an ester base oil; [2 ] The lubricating oil composition as described in.].
  • R 1 represents an alkylene group, and R 2 and R 3 each independently represent a hydrocarbon group.
  • m represents 0 or 1
  • n represents 0 or 1.
  • m + n is 1.
  • the present invention provides a lubricating oil composition shown in the following [7] to [9], a sliding mechanism shown in the following [10], use (application) of the composition shown in the following [11], and the following [12].
  • a hydrocarbon base oil and an additive for a lubricating oil represented by the following general formula (1) are used for lubricating a pair of sliding members that move relative to each other,
  • a lubricating oil composition in which at least one of the sliding members has a sliding surface covered with a diamond-like carbon film (a pair of lubricating base oil is a hydrocarbon base oil and moves relatively oppositely)
  • R 1 represents an alkylene group
  • R 2 and R 3 each independently represent a hydrocarbon group.
  • m represents 0 or 1
  • n represents 0 or 1.
  • m + n is 1.
  • Use which has a sliding surface and the composition contains a hydrocarbon base oil and an additive for lubricating oil represented by the following general formula (1).
  • R 1 represents an alkylene group
  • R 2 and R 3 each independently represent a hydrocarbon group.
  • m represents 0 or 1
  • n represents 0 or 1.
  • m + n is 1.
  • Use which has a coated sliding surface and the composition contains a hydrocarbon base oil and an additive for lubricating oil represented by the following general formula (1).
  • R 1 represents an alkylene group
  • R 2 and R 3 each independently represent a hydrocarbon group.
  • m represents 0 or 1
  • n represents 0 or 1.
  • m + n is 1.
  • the 40 ° C. and 100 ° C. kinematic viscosity and the viscosity index mean values measured in accordance with JIS K2283: 2000 “Crude oil and petroleum products—Kinematic viscosity test method and viscosity index calculation method”, respectively.
  • an ashless lubricating oil additive which has excellent lubricity and has sufficient solubility even when applied to a hydrocarbon base oil.
  • the lubricating oil composition using such an additive for lubricating oil is provided.
  • the lubricating oil composition capable of reducing the friction torque of the sliding surface between the sliding members and the sliding using the same A mechanism is provided.
  • Example 2 is an IR spectrum of glyceryl (n-hexyl) phosphonate (n-hexyl) obtained in Example 1-1.
  • 3 is an IR spectrum of glyceryl (2-ethylhexyl) phosphonate (2-ethylhexyl) obtained in Example 1-2.
  • 3 is an IR spectrum of (glyceryl) phosphonic acid di (n-hexyl) obtained in Example 1-3.
  • the additive for lubricating oil according to the first embodiment is composed of a compound represented by the general formula (1).
  • the additive for lubricating oil according to the first embodiment has excellent lubricity and has sufficient solubility even when applied to a hydrocarbon base oil.
  • the additive for lubricating oils may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
  • R 1 represents an alkylene group
  • R 2 and R 3 each independently represent a hydrocarbon group
  • m represents 0 or 1
  • n represents 0 or 1.
  • m + n is 1.
  • the alkylene group as R 1 may be a linear or branched alkylene group having 1 to 10 carbon atoms.
  • the alkylene group may have 1 to 5, 1 to 3, 1 or 2, or 1.
  • the hydrocarbon group as R 2 and R 3 may be a linear, branched or cyclic alkyl group or alkenyl group. R 2 and R 3 may be the same as or different from each other.
  • Examples of the hydrocarbon group include n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, sec-pentyl group, neopentyl group, Examples include n-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, nonyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, hexanyl group, cyclohexyl group, and oleyl group.
  • the hydrocarbon group is a linear or branched alkyl group having 3 to 18 carbon atoms, a linear or branched alkyl group having 4 to 12 carbon atoms, or a linear or branched alkyl group. It may be an alkyl group having 6 to 10 carbon atoms.
  • the compound represented by the general formula (1) is a compound represented by the general formula (A) (a compound in which m is 1 and n is 0 in the general formula (1)) or the general formula (B). (A compound in which m in general formula (1) is 0 and n is 1).
  • R 1A , R 2A , and R 3A have the same meanings as R 1 , R 2 , and R 3 described above.
  • the additive for lubricating oil represented by the general formula (A) is obtained by, for example, reacting a compound represented by the general formula (A-1) with a compound represented by the general formula (A-2). Obtainable.
  • the compound represented by the general formula (A-1) and the compound represented by the general formula (A-2) can be used as they are for the compound represented by the general formula (A-1) and the compound represented by the general formula (A-2).
  • the ratio when the compound represented by the general formula (A-1) and the compound represented by the general formula (A-2) are reacted is 1 mol of the compound represented by the general formula (A-2).
  • the amount of the compound represented by the general formula (A-1) may be 0.8 mol or more, or 0.9 to 1 mol.
  • R 1B , R 2B , and R 3B have the same meanings as R 1 , R 2 , and R 3 described above.
  • the additive for lubricating oil represented by the general formula (B) is, for example, Bulletin de la Societye Chimique de France 1983-5-6, Pt. 2, 125-130. More specifically, an epoxy compound (B-3) is obtained by reacting a compound represented by the general formula (B-1) with a compound represented by the general formula (B-2). It can be obtained by ring-opening an epoxy compound by acid treatment or the like.
  • R 4B has the same meaning as R 2 and R 3 described above.
  • R 2B , R 3B , and R 4B may be the same as or different from each other.
  • the compound represented by the general formula (B-1) and the compound represented by the general formula (B-2) can be used as they are for the compound represented by the general formula (B-1) and the compound represented by the general formula (B-2).
  • the ratio when the compound represented by the general formula (B-1) and the compound represented by the general formula (B-2) are reacted is based on 1 mol of the compound represented by the general formula (B-2).
  • the amount of the compound represented by the general formula (B-1) may be 0.8 mol or more, or 0.9 to 1 mol.
  • reaction conditions for synthesizing the lubricant additive represented by the general formula (1) can be appropriately selected according to the raw materials used.
  • examples of the reaction conditions include stirring at 40 to 200 ° C. for 0.5 to 48 hours in the absence or presence of a solvent.
  • the lubricating oil composition according to the second embodiment contains a lubricating base oil and the lubricating oil additive represented by the general formula (1) according to the first embodiment.
  • the lubricating oil composition according to the second embodiment can reduce wear, seizure, and the like under severe conditions under high loads, and exhibits excellent lubricity.
  • a lubricating base oil used in a normal lubricating oil field can be used.
  • specific examples of the lubricating base oil include a mineral base oil, a synthetic base oil, or a mixture of both.
  • Mineral oil base oils include, for example, kerosene fractions obtained by distillation of paraffinic, naphthenic, or aromatic crude oils; normal paraffins obtained by extraction operations from kerosene fractions; and paraffinic, naphthenic, Or a Fischer-Tropsch wax obtained by a lubricating oil fraction obtained by distillation of an aromatic crude oil, or a wax such as slack wax obtained by a lubricating oil dewaxing process and / or a gas-to-liquid (GTL) process, etc.
  • kerosene fractions obtained by distillation of paraffinic, naphthenic, or aromatic crude oils
  • normal paraffins obtained by extraction operations from kerosene fractions
  • paraffinic, naphthenic or a Fischer-Tropsch wax obtained by a lubricating oil fraction obtained by distillation of an aromatic crude oil
  • a wax such as slack wax obtained by a lubricating oil dewaxing process and / or a gas-
  • Synthetic wax such as GTL wax is used as a raw material, and solvent purification, solvent extraction, hydrocracking, hydroisomerization, solvent dewaxing, catalytic dewaxing, hydrorefining, sulfuric acid washing, clay treatment, etc.
  • These mineral oil base oils may be used alone or in combination of two or more at any ratio.
  • Synthetic base oils include, for example, poly ⁇ -olefins or hydrides thereof; olefin oligomers such as propylene oligomers, isobutylene oligomers, polybutenes, 1-octene oligomers, 1-decene oligomers, ethylene-propylene oligomers or hydrides thereof; alkylbenzenes Alkyl naphthalene; diester (ditridecyl glutarate, di-2-ethylhexyl adipate, di-2-ethylhexyl azelate, diisodecyl adipate, ditridecyl adipate, di-2-ethylhexyl sebacate, etc.); polyol ester (trimethylolpropane capri) Rate, trimethylolpropane pelargonate, trimethylolpropane oleate, pentaerythritol 2-eth
  • the additive for lubricating oil according to the first embodiment is excellent in solubility even when applied to a hydrocarbon base oil, it can be suitably applied to a hydrocarbon base oil.
  • the hydrocarbon base oil include mineral oil hydrocarbon oil, synthetic hydrocarbon oil, or a mixture of both.
  • group base oil can be used for mineral oil type hydrocarbon oil.
  • Synthetic hydrocarbon oils include, for example, poly ⁇ -olefins or hydrides thereof; olefin oligomers such as propylene oligomers, isobutylene oligomers, polybutenes, 1-octene oligomers, 1-decene oligomers, ethylene-propylene oligomers, or hydrides thereof; Alkylbenzene; alkylnaphthalene. These synthetic hydrocarbon oils may be used alone or in combination of two or more at any ratio.
  • the sulfur content of the lubricating base oil may be 100 mass ppm or less, 50 mass ppm or less, or 10 mass ppm or less, based on the total amount of the base oil.
  • the sulfur content in the present specification means a value measured according to JIS K2541 “Crude oil and petroleum products—sulfur content test method”.
  • the kinematic viscosity at 40 ° C. of the lubricating base oil is not particularly limited, but may be 1 mm 2 / s or more, 10 mm 2 / s or more, or 15 mm 2 / s or more.
  • the kinematic viscosity at 40 ° C. of the lubricating base oil may be 100 mm 2 / s or less, 80 mm 2 / s or less, or 60 mm 2 / s or less.
  • the viscosity index of the lubricating base oil is not particularly limited, but may be 70 or more, 90 or more, or 110 or more. When the viscosity index is within the above range, the stability of the viscosity with respect to the external temperature is ensured, so that the oil film tends to be stably formed even with respect to the external temperature change during use.
  • the total aromatic content of the lubricating base oil is not particularly limited, but may be 30% by mass or less, 15% by mass or less, 5% by mass or less, or 2% by mass or less. When the total aromatic content of the lubricating base oil is 30% by mass or less, the oxidation stability tends to be superior.
  • the total aromatic content in this specification means the aromatic fraction content measured based on ASTMD2549. Usually, this aromatic fraction includes alkylbenzene, alkylnaphthalene, anthracene, phenanthrene, and alkylated products thereof, compounds in which four or more benzene rings are condensed, or pyridines, quinolines, phenols, naphthols, etc. Compounds having heteroaromatics and the like are included.
  • the content of the additive for lubricating oil represented by the general formula (1) is not particularly limited, but from the viewpoint of improving the wear resistance, 0.005% by mass in terms of phosphorus element based on the total amount of the composition. (50 mass ppm) or more, 0.01 mass% (100 mass ppm) or more, or 0.03 mass% (300 mass ppm) or more. Further, from the viewpoint of suppression of catalyst poisoning and suppression of corrosion of non-ferrous metals, 0.20 mass% (2000 mass ppm) or less and 0.10 mass% (1000 mass) in terms of phosphorus element based on the total amount of the composition. ppm) or less, or 0.08 mass% (800 mass ppm) or less.
  • the lubricating oil composition according to the second embodiment can further contain any commonly used additive depending on the purpose.
  • additives include viscosity modifiers, metal detergents, ashless dispersants, friction modifiers, and antiwear agents (extreme pressure agents) other than the lubricant additive represented by the general formula (1). ), Antioxidants, corrosion inhibitors, rust inhibitors, pour point depressants, demulsifiers, metal deactivators, antifoaming agents, and the like.
  • the viscosity modifier may be a non-dispersed or dispersed ester group-containing viscosity modifier.
  • the viscosity modifier include a non-dispersed or dispersed poly (meth) acrylate viscosity modifier, a non-dispersed or dispersed olefin- (meth) acrylate copolymer viscosity modifier, and a styrene-maleic anhydride copolymer. Examples thereof include a polymer system viscosity modifier and a mixture thereof.
  • the viscosity modifier may be a non-dispersed or dispersed poly (meth) acrylate viscosity modifier, or a non-dispersed or dispersed polymethacrylate viscosity modifier.
  • viscosity modifiers include non-dispersed or dispersed ethylene- ⁇ -olefin copolymers or hydrogenated products thereof, polyisobutylene or hydrogenated products thereof, styrene-diene hydrogenated copolymers, and polyalkylstyrenes. be able to.
  • metal detergents include sulfonate detergents, salicylate detergents, phenate detergents, and the like, neutral salts with alkali metals or alkaline earth metals, basic salts, and overbased salts. Any of them can be blended. In use, one kind or two or more kinds arbitrarily selected from these can be blended.
  • any ashless dispersant used in lubricating oils can be used, for example, a mono- or mono-chain alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule.
  • a bissuccinimide, a benzylamine having at least one alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule, a polyamine having at least one alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule examples include boron compounds, carboxylic acids, phosphoric acids, and the like. In use, one kind or two or more kinds arbitrarily selected from these can be blended.
  • the friction modifier examples include ashless friction modifiers such as fatty acid esters, aliphatic amines, and fatty acid amides, and metal friction modifiers such as molybdenum dithiocarbamate and molybdenum dithiophosphate.
  • the friction modifier is, for example, an amine compound, an imide compound having at least one alkyl group or alkenyl group having 6 to 30 carbon atoms, particularly a linear alkyl group or linear alkenyl group having 6 to 30 carbon atoms in the molecule, Fatty acid esters, fatty acid amides, fatty acid metal salts and the like may be used.
  • an anti-wear agent other than the additive for lubricating oil represented by the general formula (1)
  • a sulfur-based, phosphorus-based, sulfur-phosphorus-based extreme pressure agent and the like can be used.
  • antioxidants examples include ashless antioxidants such as phenols and amines, and metal antioxidants such as copper and molybdenum.
  • phenol-based ashless antioxidants include 4,4′-methylenebis (2,6-di-tert-butylphenol), 4,4′-bis (2,6-di-tert-
  • amine-based ashless antioxidants include phenyl- ⁇ -naphthylamine, alkylphenyl- ⁇ -naphthylamine, dialkyldiphenylamine, and diphenylamine.
  • corrosion inhibitor examples include benzotriazole, tolyltriazole, thiadiazole, and imidazole compounds.
  • rust preventive examples include petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkenyl succinic acid ester, and polyhydric alcohol ester.
  • pour point depressant for example, a polymethacrylate polymer compatible with the lubricating base oil to be used can be used.
  • demulsifier examples include polyalkylene glycol nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene alkyl naphthyl ether.
  • metal deactivator examples include imidazoline, pyrimidine derivatives, alkylthiadiazole, mercaptobenzothiazole, benzotriazole or derivatives thereof, 1,3,4-thiadiazole polysulfide, 1,3,4-thiadiazolyl-2,5-bis.
  • metal deactivator examples include dialkyldithiocarbamate, 2- (alkyldithio) benzimidazole, ⁇ - (o-carboxybenzylthio) propiononitrile.
  • antifoaming agents examples include silicone oils having a kinematic viscosity at 25 ° C. of 1,000 to 100,000 mm 2 / s, alkenyl succinic acid derivatives, esters of polyhydroxy aliphatic alcohols and long chain fatty acids, methyl salicylates and o-hydroxys. Examples include esters with benzyl alcohol.
  • each content may be 0.01 to 20% by mass based on the total amount of the composition.
  • the kinematic viscosity at 40 ° C. of the lubricating oil composition according to the second embodiment is not particularly limited, but may be 5 mm 2 / s or more, 10 mm 2 / s or more, or 20 mm 2 / s or more.
  • the kinematic viscosity at 40 ° C. of the lubricating oil composition may be 90 mm 2 / s or less, 70 mm 2 / s or less, or 50 mm 2 / s or less.
  • the lubricating oil composition according to the third embodiment contains an ester base oil and the lubricating oil additive represented by the general formula (1) according to the first embodiment.
  • the lubricating oil composition according to the third embodiment can reduce wear, seizure, and the like under severe conditions under high loads, and exhibits excellent lubricity.
  • ester base oil an ester base oil used in a normal lubricating oil field can be used.
  • Specific examples of the ester base oil include monoesters, diesters, and polyol esters.
  • the alcohol constituting the ester base oil may be a monohydric alcohol or a polyhydric alcohol.
  • the acid constituting the ester base oil may be a monobasic acid or a polybasic acid.
  • the ester base oil may be a complex ester composed of a mixed alcohol of a monohydric alcohol and a polyhydric alcohol and a mixed acid of a monobasic acid and a polybasic acid.
  • An ester base oil may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
  • the monohydric alcohol an alcohol having 1 to 24 carbon atoms or 1 to 12 carbon atoms is used. Such monohydric alcohols may be linear or branched, and may be saturated or unsaturated. Examples of such monohydric alcohols include methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, and tetradecanol.
  • polyhydric alcohol 2 to 10 or 2 to 6 alcohols are used.
  • examples of such polyhydric alcohols include ethylene glycol, propylene glycol, neopentyl glycol, glycerin, trimethylol ethane, trimethylol propane, pentaerythritol, and sorbitan.
  • the monobasic acid a fatty acid having 2 to 24 carbon atoms is usually used.
  • Such monobasic acids may be linear or branched, and may be saturated or unsaturated.
  • Examples of such monobasic acids include methanoic acid, ethanoic acid (acetic acid), propanoic acid (propionic acid), butanoic acid (butyric acid, isobutyric acid, etc.), pentanoic acid (valeric acid, isovaleric acid, pivalic acid, etc.) ), Hexanoic acid (such as caproic acid), heptanoic acid, octanoic acid (such as caprylic acid), nonanoic acid (such as pelargonic acid), decanoic acid, undecanoic acid, dodecanoic acid (such as lauric acid), tridecanoic acid, tetradecanoic acid (myristine) Acid), pentadecanoic acid, hexadecanoic acid (such
  • dibasic acids having 2 to 16 carbon atoms dibasic acids having 2 to 16 carbon atoms, benzenedicarboxylic acid, benzenetricarboxylic acid, and benzenetetracarboxylic acid are usually used.
  • dibasic acids may be linear or branched, and may be saturated or unsaturated.
  • dibasic acid having 2 to 16 carbon atoms examples include ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), butanedioic acid (succinic acid), pentanedioic acid (glutaric acid), hexanedioic acid ( Adipic acid), heptanedioic acid (pimelic acid), octanedioic acid (suberic acid), nonanedioic acid (azeleic acid), decanedioic acid (sebacic acid), undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanediic acid Acids, saturated basic acids such as heptadecanedioic acid, hexadecanedioic acid; hexenedioic acid, heptenedioic acid, octenedioic acid, nonened
  • ester of the following combination can be mentioned. These combinations of esters may be used singly or in combination of two or more.
  • (d) polyhydric alcohol (E) A mixture of a monohydric alcohol and a polyhydric alcohol and a monobasic acid
  • f) A mixture of a monohydric alcohol and a polyhydric alcohol and a polybasic acid (2) Mixed ester with basic acid)
  • the ester base oil may contain the polyol ester (b), (d), or (h), which is an ester with a polyhydric alcohol, and contains the polyol ester (b). May be.
  • the polyol ester may be a partial ester in which some of the hydroxyl groups of the polyhydric alcohol are not esterified, or may be a complete ester in which all of the hydroxyl groups of the polyhydric alcohol are esterified.
  • the kinematic viscosity at 40 ° C. of the ester base oil is not particularly limited, but may be 5 mm 2 / s or more, 10 mm 2 / s or more, or 20 mm 2 / s or more.
  • the kinematic viscosity at 40 ° C. of the ester base oil may be 1000 mm 2 / s or less, 500 mm 2 / s or less, or 350 mm 2 / s or less.
  • the additive for lubricating oil represented by the general formula (1) is the additive for lubricating oil according to the first embodiment.
  • the content of the additive for lubricating oil represented by the general formula (1) is not particularly limited, but is 0.005 in terms of phosphorus element, based on the total amount of the composition, from the viewpoint of improving frictional characteristics and wear characteristics. It may be not less than mass% (50 mass ppm), not less than 0.01 mass% (100 mass ppm), or not less than 0.02 mass% (200 mass ppm).
  • the content of the additive for lubricating oil represented by the general formula (1) is 0 in terms of phosphorus element, based on the total amount of the composition, from the viewpoint of suppression of catalyst poisoning and suppression of corrosion of nonferrous metals. .10 mass% (1000 mass ppm) or less, 0.08 mass% (800 mass ppm) or less, or 0.06 mass% (600 mass ppm) or less.
  • the lubricating oil composition according to the third embodiment can further contain any commonly used additive depending on the purpose.
  • additives include viscosity modifiers, metal detergents, ashless dispersants, friction modifiers, and antiwear agents (extreme pressure agents) other than the lubricant additive represented by the general formula (1). ), Antioxidants, corrosion inhibitors, rust inhibitors, pour point depressants, demulsifiers, metal deactivators, antifoaming agents, and the like.
  • Specific examples of these additives include the additives exemplified in the second embodiment. When these additives are contained in the lubricating oil composition, the respective contents may be 0.01 to 20% by mass based on the total amount of the composition.
  • the kinematic viscosity at 40 ° C. of the lubricating oil composition according to the third embodiment is not particularly limited, but may be 5 mm 2 / s or more, 10 mm 2 / s or more, or 20 mm 2 / s or more.
  • the kinematic viscosity at 40 ° C. of the lubricating oil composition may be 1000 mm 2 / s or less, 500 mm 2 / s or less, or 350 mm 2 / s or less.
  • the lubricating oil composition according to the fourth embodiment contains a hydrocarbon-based base oil and the additive for lubricating oil represented by the general formula (1) according to the first embodiment. Used to lubricate a pair of sliding members that move relatively. Here, at least one of the sliding members has a sliding surface covered with a diamond-like carbon film.
  • the lubricating oil composition according to the fourth embodiment is capable of reducing the friction torque of the sliding surface between the sliding members in the sliding member to which the diamond-like carbon material is applied, and has excellent lubricity. Indicates.
  • hydrocarbon base oil a hydrocarbon base oil used in a normal lubricating oil field can be used.
  • specific examples of the hydrocarbon base oil include mineral oil-based hydrocarbon oil, synthetic hydrocarbon oil, or a mixture of both.
  • mineral oil-based hydrocarbon oil and the synthetic hydrocarbon oil those similar to the mineral oil-based hydrocarbon oil and the synthetic hydrocarbon oil exemplified in the lubricating oil composition according to the second embodiment can be used.
  • the kinematic viscosity at 40 ° C. of the hydrocarbon base oil is not particularly limited, but may be 1 mm 2 / s or more, 10 mm 2 / s or more, or 15 mm 2 / s or more.
  • the kinematic viscosity at 40 ° C. may be 100 mm 2 / s or less, 80 mm 2 / s or less, or 60 mm 2 / s or less.
  • the kinematic viscosity at 100 ° C. of the hydrocarbon base oil is not particularly limited, but may be 1 mm 2 / s or more, 2 mm 2 / s or more, or 3 mm 2 / s or more.
  • the kinematic viscosity at 100 ° C. may be 20 mm 2 / s or less, 15 mm 2 / s or less, or 8 mm 2 / s or less.
  • the viscosity index of the hydrocarbon base oil is not particularly limited, but may be 70 or more, 100 or more, or 120 or more. When the viscosity index is within the above range, the stability of the viscosity with respect to the external temperature is ensured, so that the oil film tends to be stably formed even with respect to the external temperature change during use.
  • the total aromatic content of the hydrocarbon base oil is not particularly limited, but may be 10% by mass or less, 5% by mass or less, 3% by mass or less, or 1% by mass or less.
  • the total aromatic content in this specification means the aromatic fraction content measured based on ASTMD2549.
  • aromatic fractions include alkylbenzene, alkylnaphthalene, anthracene, phenanthrene, and alkylated products thereof, compounds in which four or more benzene rings are condensed, or pyridines, quinolines, phenols, naphthols, etc. Compounds having heteroaromatics and the like are included.
  • the lubricating oil composition according to the fourth embodiment may contain a synthetic base oil other than the hydrocarbon base oil.
  • a synthetic base oil other than the hydrocarbon base oil When using together the hydrocarbon base oil and a synthetic base oil other than the hydrocarbon base oil, the proportion of the hydrocarbon base oil in the mixed base oil is 50% by mass or more, 70% by mass or more, Or it may be 80 mass% or more.
  • Examples of synthetic base oils other than hydrocarbon base oils include diesters (ditridecyl glutarate, di-2-ethylhexyl adipate, di-2-ethylhexyl azelate, diisodecyl adipate, ditridecyl adipate, di-2-ethylhexyl).
  • Polyol ester (trimethylolpropane caprylate, trimethylolpropane pelargonate, trimethylolpropane oleate, pentaerythritol 2-ethylhexanoate, pentaerythritol pelargonate, etc.); polyoxyalkylene glycol, dialkyldiphenyl ether, poly And phenyl ether.
  • the additive for lubricating oil represented by the general formula (1) is the additive for lubricating oil according to the first embodiment.
  • the content of the additive for lubricating oil represented by the general formula (1) is not particularly limited, but is 0.005 in terms of phosphorus element, based on the total amount of the composition, from the viewpoint of improving frictional characteristics and wear characteristics. It may be not less than mass% (50 mass ppm), not less than 0.01 mass% (100 mass ppm), or not less than 0.03 mass% (300 mass ppm).
  • the content of the additive for lubricating oil represented by the general formula (1) is 0 in terms of phosphorus element, based on the total amount of the composition, from the viewpoint of suppression of catalyst poisoning and suppression of corrosion of nonferrous metals. 20 mass% (2000 mass ppm) or less, 0.15 mass% (1500 mass ppm) or less, or 0.12 mass% (1200 mass ppm) or less.
  • the lubricating oil composition according to the fourth embodiment may further contain an antioxidant.
  • the antioxidant examples include ashless antioxidants such as phenols and amines, and metal antioxidants such as copper and molybdenum.
  • the antioxidant may be an ashless antioxidant.
  • phenol-based ashless antioxidants include 4,4′-methylenebis (2,6-di-tert-butylphenol), 4,4′-bis (2,6-di-tert- Butylphenol), benzenepropanoic acid-3,5-bis (1,1-dimethyl-ethyl) -4-hydroxy-C7-C9 side chain alkyl ester, etc.
  • phenyl- ⁇ - examples thereof include naphthylamine, alkylphenyl- ⁇ -naphthylamine, alkylated diphenylamine, and diphenylamine.
  • the content of the antioxidant is not particularly limited, but from the viewpoint of oxidation stability, it is 0.3 mass% or more, 0.5 mass% or more, or 1.0 mass% or more based on the total amount of the composition. It's okay.
  • the content of the antioxidant may be 4.0% by mass or less, 3.0% by mass or less, or 2.0% by mass or less based on the total amount of the composition from the viewpoint of engine cleanliness.
  • the lubricating oil composition according to the fourth embodiment may further contain a viscosity modifier.
  • the viscosity modifier examples include a non-dispersed or dispersed ethylene- ⁇ -olefin copolymer or a hydride thereof, polyisobutylene or a hydride thereof, a styrene-diene hydrogenated copolymer, and a polyalkylstyrene. .
  • the viscosity modifier may be an ethylene- ⁇ -olefin copolymer or a hydride thereof.
  • non-dispersed or dispersed poly (meth) acrylate viscosity modifiers examples include a copolymer system viscosity modifier and a mixture thereof.
  • the content of the viscosity modifier is not particularly limited, but may be 3% by mass or more, 4% by mass or more, or 5% by mass or more based on the total amount of the composition from the viewpoint of improving the viscosity index. From the viewpoint of engine cleanliness, the content of the viscosity modifier may be 20% by mass or less, 15% by mass or less, or 10% by mass or less based on the total amount of the composition.
  • the lubricating oil composition according to the fourth embodiment can further contain any commonly used additive depending on the purpose.
  • additives include metal detergents, ashless dispersants, friction modifiers, anti-wear agents (extreme pressure agents) other than the lubricant additive represented by the general formula (1), and corrosion prevention.
  • Specific examples of these additives include the additives exemplified in the second embodiment. When these additives are contained in the lubricating oil composition, the respective contents may be 0.01 to 20% by mass based on the total amount of the composition.
  • the kinematic viscosity at 100 ° C. of the lubricating oil composition according to the fourth embodiment is not particularly limited, but may be 1 mm 2 / s or more, 2 mm 2 / s or more, or 3 mm 2 / s or more. Further, the kinematic viscosity at 100 ° C. of the lubricating oil composition according to the fourth embodiment may be 15 mm 2 / s or less, 12 mm 2 / s or less, or 10 mm 2 / s or less. When the kinematic viscosity at 100 ° C. of the lubricating oil composition is within the above range, an appropriate viscosity can be secured and the oil film retainability tends to be excellent.
  • the kinematic viscosity at 40 ° C. of the lubricating oil composition according to the fourth embodiment is not particularly limited, but may be 1 mm 2 / s or more, 10 mm 2 / s or more, or 15 mm 2 / s or more. Further, the kinematic viscosity at 40 ° C. of the lubricating oil composition according to the fourth embodiment may be 100 mm 2 / s or less, 80 mm 2 / s or less, or 60 mm 2 / s or less. When the kinematic viscosity at 40 ° C. of the lubricating oil composition is within the above range, an appropriate viscosity can be secured and the oil film retainability tends to be excellent.
  • the viscosity index of the lubricating oil composition according to the fourth embodiment is not particularly limited, but may be 70 or more, 100 or more, or 120 or more. When the viscosity index is within the above range, the stability of the viscosity with respect to the external temperature is ensured, so that the oil film tends to be stably formed even with respect to the external temperature change during use.
  • the friction coefficient can be reduced in the sliding member to which the diamond-like carbon material is applied.
  • it can be used with the form which does not mix
  • the sliding mechanism which concerns on 5th Embodiment is provided with a pair of sliding member which moves relatively facing, and the lubricating oil composition which concerns on 4th Embodiment which lubricates a sliding member.
  • At least one of the sliding members has a sliding surface covered with a diamond-like carbon film (DLC film).
  • the sliding member may have a sliding surface, both of which are covered with a DLC film.
  • DLC diamond-like carbon constituting the DLC film
  • DLC diamond-like carbon
  • the bonding form between carbons is a diamond structure (sp 3 bond structure) and a graphite bond (sp 2). Carbon).
  • aC amorphous carbon
  • ta-C tetrahedral amorphous carbon
  • H hydrogenated amorphous carbon
  • ta-C A film made of MeC (metal carbon) partially including metal atoms such as H (hydrogenated tetrahedral amorphous carbon), titanium (Ti), molybdenum (Mo), or DLC-Si partially including silicon atoms Is mentioned.
  • Examples of the base material for the sliding member include metal materials such as iron materials, aluminum materials, and magnesium materials.
  • iron-based materials not only high-purity iron, but also, for example, carbon, nickel, copper, zinc, chromium, cobalt, molybdenum, lead, silicon, titanium, or a combination of two or more of these with iron in any proportion
  • Various iron-based alloys may be used. More specifically, carburized steel SCM420, SCr420 (JIS), etc. are mentioned.
  • the aluminum-based material not only high-purity aluminum but also various aluminum-based alloys can be used, for example, 4 to 20% by mass of silicon (Si) and 1.0 to 5.0% by mass of copper (Cu). It may be a hypoeutectic aluminum alloy or a hypereutectic aluminum alloy. Examples of the aluminum alloy include AC2A, AC8A, ADC12, and ADC14 (JIS).
  • magnesium-based materials include magnesium-aluminum-zinc (Mg-Al-Zn), magnesium-aluminum-rare earth metal (Mg-Al-REM), and magnesium-aluminum-calcium (Mg-Al-Ca).
  • Magnesium-zinc-aluminum-calcium (Mg-Zn-Al-Ca), magnesium-aluminum-calcium-rare earth metal (Mg-Al-Ca-REM), magnesium-aluminum-strontium (Mg-Al-Sr) ,
  • Magnesium-aluminum-silicon (Mg-Al-Si), magnesium-rare earth metal-zinc (Mg-REM-Zn), magnesium-silver-rare earth metal (Mg-Ag-REM), magnesium-yttrium- Rare earth metal (Mg-Y-REM Systems; and a combination at any ratio thereof can be used.
  • Specific examples include AZ91, AE42, AX51, AXJ, ZAX85, AXE522, AJ52, AS21, QE22, or WE43 (ASTM).
  • Examples of the method for forming the DLC film on the sliding member include a known PVD (physical vapor deposition) method, CVD (chemical vapor deposition) method, and the like.
  • Examples of the base material of the sliding member having a sliding surface not covered with the DLC film include, for example, metal materials such as the iron-based material, aluminum-based material, and magnesium-based material described above, resin, plastic, and carbon. Examples thereof include metal materials. These base materials may have a sliding surface covered with various thin films such as TiN and CrN.
  • the sliding mechanism can lubricate the sliding member by supplying the above-described lubricating oil composition to the sliding surface according to the type of sliding mechanism such as a sealed type or a circulating type.
  • an internal combustion engine such as a 4-cycle, 2-cycle engine or the like can be cited. More specifically, at least one of the valve system, piston, piston ring, piston skirt, cylinder liner, connecting rod, crankshaft, bearing, bearing, metal gear, chain, belt, oil pump, etc. is covered with a DLC film.
  • An internal combustion engine provided with at least one sliding surface may be mentioned.
  • Example 1-1 ⁇ Glyceryl (n-hexyl) phosphonate (n-hexyl) (wherein m in the general formula (1) is 1, n is 0, R 1 is a methylene group, R 2 and R 3 are n- Synthesis of a compound having a hexyl group> 0.1 mol (25.0 g) of (n-hexyl) phosphonic acid (n-hexyl) (Johoku Chemical Co., Ltd.) and 0.1 mol (7.4 g) of glycidol (ALDRICH) were collected in a flask. By stirring this mixture at 50 ° C. for 60 minutes, 0.1 mol (32.0 g) of glyceryl (n-hexyl) phosphonate (n-hexyl) phosphonate was obtained.
  • the obtained (n-hexyl) glyceryl phosphonate (n-hexyl) was subjected to IR analysis (KBr sandwich method).
  • the IR spectrum is shown in FIG. In the IR spectrum, peaks attributed to the following were observed, confirming the synthesis of the target product.
  • Example 1-2 ⁇ Glyceryl (2-ethylhexyl) phosphonate (2-ethylhexyl) (wherein m in the above general formula (1) is 1, n is 0, R 1 is a methylene group, R 2 and R 3 are 2- Synthesis of a compound having an ethylhexyl group> 0.1 mol (30.6 g) of (2-ethylhexyl) phosphonic acid (2-ethylhexyl) (Tokyo Chemical Industry Co., Ltd.) and 0.1 mol (7.4 g) of glycidol (ALDRICH) were collected in a flask. The mixture was stirred at 50 ° C. for 60 minutes to obtain 0.1 mol (37.0 g) of the desired product, glyceryl (2-ethylhexyl) phosphonate (2-ethylhexyl).
  • Example 1-3 ⁇ (Glyceryl) phosphonic acid di (n-hexyl) (in the above general formula (1), m is 0, n is 1, R 1 is a methylene group, R 2 and R 3 are n-hexyl groups)
  • m is 0, n is 1, R 1 is a methylene group, R 2 and R 3 are n-hexyl groups
  • Synthesis of Compound> Epichlorohydrin (Tokyo Chemical Industry Co., Ltd.) 0.1 mol (9.2 g) and triphosphite (n-hexyl) phosphite (Tokyo Chemical Industry Co., Ltd.) 0.1 mol (33.4 g) were collected in a flask. The mixture was stirred under a nitrogen atmosphere at 130 ° C.
  • the obtained (glyceryl) phosphonic acid di (n-hexyl) was subjected to IR analysis (KBr sandwich method).
  • the IR spectrum is shown in FIG. In the IR spectrum, peaks attributed to the following were observed, confirming the synthesis of the target product.
  • the “phosphorus element conversion values” in Table 1 are the additives for lubricating oils 2-B-1 to 2-B-3 and 2-b-1 to 2-b— based on the total amount of the composition. 3 means phosphorus element equivalent content. “Phosphorus element conversion value” is the phosphorus content (theoretical value) contained in the additives 2-B-1 to 2-B-3 and 2-b-1 to 2-b-3 for lubricating oil and the respective preparations. It can be calculated from the quantity.
  • the wear characteristic test was conducted with a ball-on-disk (SRV) tester.
  • SRV ball-on-disk
  • SUJ-2 1/2 inch sphere
  • SUJ-2 24 ⁇ 6.9 mm
  • the SRV test was evaluated by measuring the wear scar diameter (mm) under conditions of a load of 34 N, an amplitude of 1.0 mm, a temperature of 80 ° C., and a test time of 0.5 hours. In this test, the smaller the wear scar diameter, the better the wear characteristics.
  • the lubricating oil compositions of Examples 2-1 to 2-6 containing the lubricating oil additives of Examples 1-1 to 1-3 are not turbid in the solubility test and have good wear characteristics. It was. On the other hand, in Comparative Example 2-1 using only the base oil, seizure occurred in the wear characteristic test. Further, the lubricating oil composition of Comparative Example 2-2 was observed to be turbid in the solubility test, was not sufficiently dissolved in the hydrocarbon base oil, and seizure occurred in the wear characteristic test. Further, the lubricating oil compositions of Comparative Examples 2-3 and 2-4 had larger wear scar diameters than the lubricating oil compositions of Examples 2-1 to 2-6.
  • the additive for lubricating oil of the present invention has sufficient solubility even when applied to a hydrocarbon base oil. Moreover, it was confirmed that the lubricating oil composition using the additive for lubricating oil of the present invention has excellent lubricity by reducing wear and seizure under severe conditions under high load.
  • the “phosphorus element conversion values” in Table 2 are the phosphorus element conversion values of the lubricating oil additives 3-B-1 to 3-B-3 and 3-b-1 based on the total amount of the composition. It means the total amount of content.
  • the “phosphorus element conversion value” can be calculated from the phosphorus content (theoretical value) contained in the lubricating oil additive and the respective charged amounts.
  • the wear characteristic test was conducted with a ball-on-disk (SRV) tester.
  • SRV ball-on-disk
  • SUJ-2 1/2 inch sphere
  • SUJ-2 24 ⁇ 6.9 mm
  • the SRV test was evaluated by measuring the wear scar diameter (mm) under conditions of a load of 25 N, an amplitude of 1.0 mm, a temperature of 80 ° C., and a test time of 0.5 hours. In this test, the smaller the wear scar diameter, the better the wear characteristics.
  • the lubricating oil compositions of Examples 3-1 to 3-6 containing the lubricating oil additives of Examples 1-1 to 1-3 are the same as the lubricating oil additives of Examples 1-1 to 1-3. Compared to the lubricating oil compositions of Comparative Examples 3-1 and 3-2 which do not contain, they had good wear characteristics. From these results, it was confirmed that the lubricating oil composition of the present invention reduced wear, seizure, and the like under severe conditions under high loads and had excellent lubricity.
  • the “phosphorus element conversion values” in Table 3 are the additives for lubricating oil 4-B-1 to 4-B-3 and 4-b-1, 4-b- It means the content of 2 in terms of phosphorus element.
  • “Phosphorus element equivalent value” is the phosphorus content (theoretical value) contained in additives 4-B-1 to 4-B-3, 4-b-1, and 4-b-2 for lubricating oil, and the respective preparations It can be calculated from the quantity.
  • the coefficient of friction was measured with a cylinder on disk (SRV) tester.
  • SRV cylinder on disk
  • a DLC-Si film formed on the surface of a cylinder (15 ⁇ 22 mm, induction hardening) and a disk (24 ⁇ 7.9 mm, carburizing and quenching) was used.
  • the film was formed in a chamber using tetramethylsilane (normal temperature liquid, gas at about 50 ° C.) as a source gas.
  • the DLC-Si film was formed by previously forming Ti as an intermediate layer on a Si (100) substrate at about 0.3 ⁇ m, and then forming a thin film at about 1.0 ⁇ m in the chamber.
  • the center line average roughness Ra was about 1.0 nm, and the maximum height roughness Ry was about 29.8 nm.
  • the cylinder and the disk were ultrasonically cleaned for 15 minutes using hexane and acetone before the friction characteristic test.
  • the friction characteristic test was performed under the conditions of a load of 400 N, an amplitude of 1.5 mm, a temperature of 80 ° C., a test time of 30 minutes, and a frequency of 50 Hz. The results are shown in Table 1.
  • the friction coefficient in Table 3 is an average value of the friction coefficients for a test time of 25 to 28 minutes. In this test, it means that it is excellent in a friction characteristic, so that a friction coefficient is small.
  • the lubricating oil compositions of Examples 4-1 to 4-8 containing the lubricating oil additive of Examples 1-1 to 1-3 are the sliding members to which the diamond-like carbon material is applied. The friction coefficient of the sliding surfaces between them was reduced.
  • the lubricating oil compositions of Comparative Examples 4-1 to 4-3 that do not contain the lubricating oil additive of Examples 1-1 to 1-3 are the lubricants of Examples 4-1 to 4-8. Compared to the oil composition, the friction coefficient was increased. From these results, the lubricating oil composition of the present invention can reduce the friction coefficient of the sliding surface between the sliding members in the sliding member to which the diamond-like carbon material is applied, and exhibits excellent lubricity. confirmed.

Abstract

Disclosed is an additive which is for a lubricant and is represented by general formula (1). Furthermore, disclosed is a lubricant composition containing: a lubricating base oil; and an additive which is for a lubricant and is represented by general formula (1). [In general formula (1), R1 represents an alkylene group, R2 and R3 each independently represent a hydrocarbon group, m represents 0 or 1, and n represents 0 or 1, where m+n is 1.]

Description

潤滑油用添加剤、潤滑油組成物、及び摺動機構Lubricating oil additive, lubricating oil composition, and sliding mechanism
 本発明は、潤滑油用添加剤、潤滑油組成物、及び摺動機構に関する。 The present invention relates to an additive for lubricating oil, a lubricating oil composition, and a sliding mechanism.
 油圧機械、圧縮機械、タービン、歯車要素、軸受等の機械要素を有する産業機械には、潤滑油が使用されている。産業機械は、高速化、高圧化、及び小型化に伴い、より過酷な条件下で運転されるようになっている。そのため、産業機械に使用される潤滑油には、高圧、高速、高荷重、及び高温度下で使用しても長時間にわたって充分に機械寿命を保証できる優れた潤滑性能が要求されている。 Lubricating oil is used in industrial machines having mechanical elements such as hydraulic machines, compression machines, turbines, gear elements, and bearings. Industrial machines have been operated under more severe conditions as the speed, pressure, and size have been reduced. For this reason, the lubricating oil used in industrial machines is required to have excellent lubricating performance that can sufficiently guarantee the mechanical life for a long time even when used under high pressure, high speed, high load, and high temperature.
 このような要求に応じて、ジアルキルジチオリン酸亜鉛(ZDTP)、リン酸トリクレジル(TCP)、酸性リン酸エステル等のリン系耐摩耗防止剤を、潤滑油に添加することが検討されている。例えば、特許文献1には、隣接する炭素原子に各々ヒドロキシル基が結合した基を有するリン化合物を、含酸素化合物を主成分とする基油に配合してなる潤滑油組成物が開示されている。 In response to such demands, it has been studied to add phosphorus-based antiwear agents such as zinc dialkyldithiophosphate (ZDTP), tricresyl phosphate (TCP), and acidic phosphate ester to the lubricating oil. For example, Patent Document 1 discloses a lubricating oil composition in which a phosphorus compound having a group in which hydroxyl groups are bonded to adjacent carbon atoms is blended with a base oil mainly composed of an oxygen-containing compound. .
国際公開第97/010319号International Publication No. 97/010319 英国特許出願公開第1415964号明細書British Patent Application No. 1415964 特開2010-260972号公報JP 2010-260972 A 特開2002-265971号公報JP 2002-265971 A 特開2006-036850号公報JP 2006-036850 A 特開2003-238982号公報Japanese Patent Laid-Open No. 2003-238882 特開2004-155891号公報Japanese Patent Application Laid-Open No. 2004-155891 特開2005-098495号公報JP 2005-098495 A 特開2013-216872号公報JP 2013-216872 A
 ところで、本発明者が鋭意検討した結果、特許文献1に記載のリン化合物は、溶解性が充分でないことが判明した。この傾向は、炭化水素系基油に適用した場合において、顕著に観測される。 By the way, as a result of intensive studies by the present inventors, it has been found that the phosphorus compound described in Patent Document 1 has insufficient solubility. This tendency is remarkably observed when applied to hydrocarbon base oils.
 本発明は、このような事情に鑑みてなされたものであり、優れた潤滑性を有し、炭化水素系基油に適用した場合においても充分な溶解性に有する、無灰の潤滑油用添加剤を提供することを主な目的とする。 The present invention has been made in view of such circumstances, has excellent lubricity, and has sufficient solubility even when applied to a hydrocarbon base oil. The main purpose is to provide an agent.
 本発明は、下記[1]に示す潤滑油用添加剤、下記[2]に示す潤滑油組成物、下記[3]に示す化合物の使用(応用)、及び下記[4]に示す化合物の製造のための使用(応用)を提供する。 The present invention provides an additive for lubricating oil shown in [1] below, a lubricating oil composition shown in [2] below, use (application) of a compound shown in [3] below, and production of a compound shown in [4] below Provides use (application) for.
[1]下記一般式(1)で表される潤滑油用添加剤。
Figure JPOXMLDOC01-appb-C000002
[一般式(1)中、Rはアルキレン基を示し、R及びRはそれぞれ独立に炭化水素基を示す。mは0又は1を示し、nは0又は1を示す。ただし、m+nは1である。]
[2]潤滑油基油と、[1]に記載の潤滑油用添加剤と、を含有する、潤滑油組成物。
[3]下記一般式(1)で表される化合物の、潤滑油に用いられる添加剤としての使用。
Figure JPOXMLDOC01-appb-C000003
[一般式(1)中、Rはアルキレン基を示し、R及びRはそれぞれ独立に炭化水素基を示す。mは0又は1を示し、nは0又は1を示す。ただし、m+nは1である。]
[4]下記一般式(1)で表される化合物の、潤滑油に用いられる添加剤の製造のための使用。
Figure JPOXMLDOC01-appb-C000004
[一般式(1)中、Rはアルキレン基を示し、R及びRはそれぞれ独立に炭化水素基を示す。mは0又は1を示し、nは0又は1を示す。ただし、m+nは1である。]
[1] An additive for lubricating oil represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
[In General Formula (1), R 1 represents an alkylene group, and R 2 and R 3 each independently represent a hydrocarbon group. m represents 0 or 1, and n represents 0 or 1. However, m + n is 1. ]
[2] A lubricating oil composition comprising a lubricating base oil and the lubricating oil additive according to [1].
[3] Use of a compound represented by the following general formula (1) as an additive used in lubricating oil.
Figure JPOXMLDOC01-appb-C000003
[In General Formula (1), R 1 represents an alkylene group, and R 2 and R 3 each independently represent a hydrocarbon group. m represents 0 or 1, and n represents 0 or 1. However, m + n is 1. ]
[4] Use of a compound represented by the following general formula (1) for the production of an additive used in a lubricating oil.
Figure JPOXMLDOC01-appb-C000004
[In General Formula (1), R 1 represents an alkylene group, and R 2 and R 3 each independently represent a hydrocarbon group. m represents 0 or 1, and n represents 0 or 1. However, m + n is 1. ]
 また、本発明は、下記[5]及び[6]に示す潤滑油組成物を提供する。 The present invention also provides the lubricating oil composition shown in the following [5] and [6].
[5]エステル系基油と、下記一般式(1)で表される潤滑油用添加剤と、を含有する、潤滑油組成物(潤滑油基油が、エステル系基油である、[2]に記載の潤滑油組成物。)。
Figure JPOXMLDOC01-appb-C000005
[一般式(1)中、Rはアルキレン基を示し、R及びRはそれぞれ独立に炭化水素基を示す。mは0又は1を示し、nは0又は1を示す。ただし、m+nは1である。]
[6]エステル系基油が、ポリオールエステルを含む、[5]に記載の潤滑油組成物。
[5] A lubricating oil composition comprising an ester base oil and an additive for lubricating oil represented by the following general formula (1) (the lubricating base oil is an ester base oil; [2 ] The lubricating oil composition as described in.].
Figure JPOXMLDOC01-appb-C000005
[In General Formula (1), R 1 represents an alkylene group, and R 2 and R 3 each independently represent a hydrocarbon group. m represents 0 or 1, and n represents 0 or 1. However, m + n is 1. ]
[6] The lubricating oil composition according to [5], wherein the ester base oil contains a polyol ester.
 さらに、本発明は、下記[7]~[9]に示す潤滑油組成物、下記[10]に示す摺動機構、下記[11]に示す組成物の使用(応用)、並びに下記[12]に示す組成物の製造のための使用(応用)を提供する。 Furthermore, the present invention provides a lubricating oil composition shown in the following [7] to [9], a sliding mechanism shown in the following [10], use (application) of the composition shown in the following [11], and the following [12]. The use (application) for the production of the composition shown in FIG.
[7]炭化水素系基油と、下記一般式(1)で表される潤滑油用添加剤と、を含有し、対向して相対的に運動する一対の摺動部材の潤滑に用いられ、摺動部材の少なくとも一方が、ダイヤモンドライクカーボン膜で被覆された摺動面を有する、潤滑油組成物(潤滑油基油が、炭化水素系基油であり、対向して相対的に運動する一対の摺動部材の潤滑に用いられ、摺動部材の少なくとも一方が、ダイヤモンドライクカーボン膜で被覆された摺動面を有する、[2]に記載の潤滑油組成物。)。
Figure JPOXMLDOC01-appb-C000006
[一般式(1)中、Rはアルキレン基を示し、R及びRはそれぞれ独立に炭化水素基を示す。mは0又は1を示し、nは0又は1を示す。ただし、m+nは1である。]
[8]酸化防止剤をさらに含有する、[7]に記載の潤滑油組成物。
[9]粘度調整剤をさらに含有する、[7]又は[8]に記載の潤滑油組成物。
[10]対向して相対的に運動する一対の摺動部材と、摺動部材を潤滑する[7]~[9]のいずれかに記載の潤滑油組成物と、を備え、摺動部材の少なくとも一方が、ダイヤモンドライクカーボン膜で被覆された摺動面を有する、摺動機構。
[11]組成物の、対向して相対的に運動する一対の摺動部材の潤滑に用いられる潤滑油としての使用であって、摺動部材の少なくとも一方が、ダイヤモンドライクカーボン膜で被覆された摺動面を有し、組成物が、炭化水素系基油と、下記一般式(1)で表される潤滑油用添加剤と、を含有する、使用。
Figure JPOXMLDOC01-appb-C000007
[一般式(1)中、Rはアルキレン基を示し、R及びRはそれぞれ独立に炭化水素基を示す。mは0又は1を示し、nは0又は1を示す。ただし、m+nは1である。]
[12]組成物の、対向して相対的に運動する一対の摺動部材の潤滑に用いられる潤滑油の製造のための使用であって、摺動部材の少なくとも一方が、ダイヤモンドライクカーボン膜で被覆された摺動面を有し、組成物が、炭化水素系基油と、下記一般式(1)で表される潤滑油用添加剤と、を含有する、使用。
Figure JPOXMLDOC01-appb-C000008
[一般式(1)中、Rはアルキレン基を示し、R及びRはそれぞれ独立に炭化水素基を示す。mは0又は1を示し、nは0又は1を示す。ただし、m+nは1である。]
[7] A hydrocarbon base oil and an additive for a lubricating oil represented by the following general formula (1) are used for lubricating a pair of sliding members that move relative to each other, A lubricating oil composition in which at least one of the sliding members has a sliding surface covered with a diamond-like carbon film (a pair of lubricating base oil is a hydrocarbon base oil and moves relatively oppositely) The lubricating oil composition according to [2], wherein at least one of the sliding members has a sliding surface covered with a diamond-like carbon film.
Figure JPOXMLDOC01-appb-C000006
[In General Formula (1), R 1 represents an alkylene group, and R 2 and R 3 each independently represent a hydrocarbon group. m represents 0 or 1, and n represents 0 or 1. However, m + n is 1. ]
[8] The lubricating oil composition according to [7], further containing an antioxidant.
[9] The lubricating oil composition according to [7] or [8], further comprising a viscosity modifier.
[10] A pair of sliding members that move relative to each other and the lubricating oil composition according to any one of [7] to [9] that lubricates the sliding members, A sliding mechanism having at least one sliding surface covered with a diamond-like carbon film.
[11] Use of the composition as a lubricating oil used for lubricating a pair of sliding members that move relative to each other, wherein at least one of the sliding members is coated with a diamond-like carbon film. Use which has a sliding surface and the composition contains a hydrocarbon base oil and an additive for lubricating oil represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000007
[In General Formula (1), R 1 represents an alkylene group, and R 2 and R 3 each independently represent a hydrocarbon group. m represents 0 or 1, and n represents 0 or 1. However, m + n is 1. ]
[12] Use of the composition for the production of a lubricating oil used for lubricating a pair of sliding members that move relative to each other, wherein at least one of the sliding members is a diamond-like carbon film. Use which has a coated sliding surface and the composition contains a hydrocarbon base oil and an additive for lubricating oil represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000008
[In General Formula (1), R 1 represents an alkylene group, and R 2 and R 3 each independently represent a hydrocarbon group. m represents 0 or 1, and n represents 0 or 1. However, m + n is 1. ]
 本明細書における40℃及び100℃動粘度並びに粘度指数は、それぞれJIS K2283:2000「原油及び石油製品-動粘度試験方法及び粘度指数算出方法」に準拠して測定される値を意味する。 In the present specification, the 40 ° C. and 100 ° C. kinematic viscosity and the viscosity index mean values measured in accordance with JIS K2283: 2000 “Crude oil and petroleum products—Kinematic viscosity test method and viscosity index calculation method”, respectively.
 本発明によれば、優れた潤滑性を有し、炭化水素系基油に適用した場合においても充分な溶解性に有する、無灰の潤滑油用添加剤が提供される。また、本発明によれば、このような潤滑油用添加剤を用いた潤滑油組成物が提供される。さらに、本発明によれば、ダイヤモンドライクカーボン材料が適用された摺動部材において、摺動部材同士の摺動面の摩擦トルクを低減することが可能な潤滑油組成物及びこれを用いた摺動機構が提供される。 According to the present invention, there is provided an ashless lubricating oil additive which has excellent lubricity and has sufficient solubility even when applied to a hydrocarbon base oil. Moreover, according to this invention, the lubricating oil composition using such an additive for lubricating oil is provided. Furthermore, according to the present invention, in the sliding member to which the diamond-like carbon material is applied, the lubricating oil composition capable of reducing the friction torque of the sliding surface between the sliding members and the sliding using the same A mechanism is provided.
実施例1-1で得られた(n-ヘキシル)ホスホン酸グリセリル(n-ヘキシル)のIRスペクトルである。2 is an IR spectrum of glyceryl (n-hexyl) phosphonate (n-hexyl) obtained in Example 1-1. 実施例1-2で得られた(2-エチルヘキシル)ホスホン酸グリセリル(2-エチルヘキシル)のIRスペクトルである。3 is an IR spectrum of glyceryl (2-ethylhexyl) phosphonate (2-ethylhexyl) obtained in Example 1-2. 実施例1-3で得られた(グリセリル)ホスホン酸ジ(n-ヘキシル)のIRスペクトルである。3 is an IR spectrum of (glyceryl) phosphonic acid di (n-hexyl) obtained in Example 1-3.
 以下、本発明の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
[第1の実施形態:潤滑油用添加剤]
 第1の実施形態に係る潤滑油用添加剤は、一般式(1)で表される化合物からなる。第1の実施形態に係る潤滑油用添加剤は、優れた潤滑性を有し、炭化水素系基油に適用した場合においても充分な溶解性に有する。潤滑油用添加剤は、一般式(1)で表される化合物であれば、1種を単独で使用してもよく、2種以上を任意の割合で組み合わせて使用してもよい。
[First Embodiment: Additive for Lubricating Oil]
The additive for lubricating oil according to the first embodiment is composed of a compound represented by the general formula (1). The additive for lubricating oil according to the first embodiment has excellent lubricity and has sufficient solubility even when applied to a hydrocarbon base oil. As long as it is a compound represented by General formula (1), the additive for lubricating oils may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(1)中、Rはアルキレン基を示し、R及びRはそれぞれ独立に炭化水素基を示す。mは0又は1を示し、nは0又は1を示す。ただし、m+nは1である。 In general formula (1), R 1 represents an alkylene group, and R 2 and R 3 each independently represent a hydrocarbon group. m represents 0 or 1, and n represents 0 or 1. However, m + n is 1.
 Rとしてのアルキレン基は、炭素数1~10の直鎖状又は分岐状のアルキレン基であってよい。アルキレン基の炭素数は、1~5、1~3、1若しくは2、又は1であってよい。 The alkylene group as R 1 may be a linear or branched alkylene group having 1 to 10 carbon atoms. The alkylene group may have 1 to 5, 1 to 3, 1 or 2, or 1.
 R及びRとしての炭化水素基は、直鎖状、分岐状若しくは環状のアルキル基又はアルケニル基であってよい。また、R及びRは互いに同一であっても異なっていてもよい。炭化水素基としては、例えば、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、ヘキサニル基、シクロヘキシル基、オレイル基等が挙げられる。これらの中で、炭化水素基は、直鎖状若しくは分岐状の炭素数3~18のアルキル基、直鎖状若しくは分岐状の炭素数4~12のアルキル基、又は直鎖状若しくは分岐状の炭素数6~10のアルキル基であってよい。 The hydrocarbon group as R 2 and R 3 may be a linear, branched or cyclic alkyl group or alkenyl group. R 2 and R 3 may be the same as or different from each other. Examples of the hydrocarbon group include n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, sec-pentyl group, neopentyl group, Examples include n-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, nonyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, hexanyl group, cyclohexyl group, and oleyl group. . Among these, the hydrocarbon group is a linear or branched alkyl group having 3 to 18 carbon atoms, a linear or branched alkyl group having 4 to 12 carbon atoms, or a linear or branched alkyl group. It may be an alkyl group having 6 to 10 carbon atoms.
 一般式(1)で表される化合物は、一般式(A)で表される化合物(一般式(1)のmが1であり、nが0である化合物)又は一般式(B)で表される化合物(一般式(1)のmが0であり、nが1である化合物)である。 The compound represented by the general formula (1) is a compound represented by the general formula (A) (a compound in which m is 1 and n is 0 in the general formula (1)) or the general formula (B). (A compound in which m in general formula (1) is 0 and n is 1).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(A)中、R1A、R2A、及びR3Aは、上述のR、R、及びRと同義である。 In General Formula (A), R 1A , R 2A , and R 3A have the same meanings as R 1 , R 2 , and R 3 described above.
 一般式(A)で表される潤滑油用添加剤は、例えば、一般式(A-1)で表される化合物と一般式(A-2)で表される化合物とを反応させることによって、得ることができる。 The additive for lubricating oil represented by the general formula (A) is obtained by, for example, reacting a compound represented by the general formula (A-1) with a compound represented by the general formula (A-2). Obtainable.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(A-1)で表される化合物及び一般式(A-2)で表される化合物は、市販品をそのまま用いることができる。一般式(A-1)で表される化合物と一般式(A-2)で表される化合物とを反応させるときの比率は、一般式(A-2)で表される化合物1モルに対して、一般式(A-1)で表される化合物0.8モル以上又は0.9~1モルであってよい。 Commercially available products can be used as they are for the compound represented by the general formula (A-1) and the compound represented by the general formula (A-2). The ratio when the compound represented by the general formula (A-1) and the compound represented by the general formula (A-2) are reacted is 1 mol of the compound represented by the general formula (A-2). In addition, the amount of the compound represented by the general formula (A-1) may be 0.8 mol or more, or 0.9 to 1 mol.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(B)中、R1B、R2B、及びR3Bは、上述のR、R、及びRと同義である。 In General Formula (B), R 1B , R 2B , and R 3B have the same meanings as R 1 , R 2 , and R 3 described above.
 一般式(B)で表される潤滑油用添加剤は、例えば、Bulletin de la Societe Chimique de France 1983,5-6,Pt.2,125-130に記載の方法に準じて合成することができる。より具体的には、一般式(B-1)で表される化合物と一般式(B-2)で表される化合物とを反応させることによってエポキシ化合物(B-3)を得た後、このエポキシ化合物を酸処理等によって開環させることによって、得ることができる。 The additive for lubricating oil represented by the general formula (B) is, for example, Bulletin de la Societye Chimique de France 1983-5-6, Pt. 2, 125-130. More specifically, an epoxy compound (B-3) is obtained by reacting a compound represented by the general formula (B-1) with a compound represented by the general formula (B-2). It can be obtained by ring-opening an epoxy compound by acid treatment or the like.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 なお、R4Bは、上述のR及びRと同義である。R2B、R3B、及びR4Bは互いに同一であっても異なっていてもよい。 R 4B has the same meaning as R 2 and R 3 described above. R 2B , R 3B , and R 4B may be the same as or different from each other.
 一般式(B-1)で表される化合物及び一般式(B-2)で表される化合物は、市販品をそのまま用いることができる。一般式(B-1)で表される化合物と一般式(B-2)で表される化合物とを反応させるときの比率は、一般式(B-2)で表される化合物1モルに対して、一般式(B-1)で表される化合物0.8モル以上又は0.9~1モルであってよい。 Commercially available products can be used as they are for the compound represented by the general formula (B-1) and the compound represented by the general formula (B-2). The ratio when the compound represented by the general formula (B-1) and the compound represented by the general formula (B-2) are reacted is based on 1 mol of the compound represented by the general formula (B-2). In addition, the amount of the compound represented by the general formula (B-1) may be 0.8 mol or more, or 0.9 to 1 mol.
 一般式(1)で表される潤滑油用添加剤を合成するときの反応条件は、用いる原料に合わせて適宜選択することができる。反応条件としては、例えば、無溶媒又は溶媒存在下、40~200℃で0.5~48時間撹拌することが挙げられる。 The reaction conditions for synthesizing the lubricant additive represented by the general formula (1) can be appropriately selected according to the raw materials used. Examples of the reaction conditions include stirring at 40 to 200 ° C. for 0.5 to 48 hours in the absence or presence of a solvent.
[第2の実施形態:潤滑油組成物]
 第2の実施形態に係る潤滑油組成物は、潤滑油基油と、第1の実施形態に係る一般式(1)で表される潤滑油用添加剤と、を含有する。第2の実施形態に係る潤滑油組成物は、高荷重の過酷な条件下における摩耗、焼き付き等を低減することが可能であり、優れた潤滑性を示す。
[Second Embodiment: Lubricating Oil Composition]
The lubricating oil composition according to the second embodiment contains a lubricating base oil and the lubricating oil additive represented by the general formula (1) according to the first embodiment. The lubricating oil composition according to the second embodiment can reduce wear, seizure, and the like under severe conditions under high loads, and exhibits excellent lubricity.
 潤滑油基油は、通常の潤滑油分野で使用される潤滑油基油を使用することができる。ここで、潤滑油基油としては、具体的には、鉱油系基油、合成系基油、又は両者の混合物が挙げられる。 As the lubricating base oil, a lubricating base oil used in a normal lubricating oil field can be used. Here, specific examples of the lubricating base oil include a mineral base oil, a synthetic base oil, or a mixture of both.
 鉱油系基油としては、例えば、パラフィン系、ナフテン系、又は芳香族系の原油の蒸留により得られる灯油留分;灯油留分からの抽出操作等により得られるノルマルパラフィン;及びパラフィン系、ナフテン系、又は芳香族系の原油の蒸留により得られる潤滑油留分、あるいは潤滑油脱ろう工程により得られる、スラックワックス等のワックス及び/又はガストゥリキッド(GTL)プロセス等により得られる、フィッシャートロプシュワックス、GTLワックス等の合成ワックスを原料とし、溶剤脱れき、溶剤抽出、水素化分解、水素化異性化、溶剤脱ろう、接触脱ろう、水素化精製、硫酸洗浄、白土処理等の精製処理を1つ又は2つ以上適宜組み合わせて精製したパラフィン系鉱油、ナフテン系鉱油、ノルマルパラフィン系基油、イソパラフィン系基油、芳香族系基油等が挙げられる。これらの鉱油系基油は単独で使用してもよく、2種以上を任意の割合で組み合わせて使用してもよい。 Mineral oil base oils include, for example, kerosene fractions obtained by distillation of paraffinic, naphthenic, or aromatic crude oils; normal paraffins obtained by extraction operations from kerosene fractions; and paraffinic, naphthenic, Or a Fischer-Tropsch wax obtained by a lubricating oil fraction obtained by distillation of an aromatic crude oil, or a wax such as slack wax obtained by a lubricating oil dewaxing process and / or a gas-to-liquid (GTL) process, etc. Synthetic wax such as GTL wax is used as a raw material, and solvent purification, solvent extraction, hydrocracking, hydroisomerization, solvent dewaxing, catalytic dewaxing, hydrorefining, sulfuric acid washing, clay treatment, etc. Or paraffinic mineral oil, naphthenic mineral oil, normal paraffinic base oil, isoparaffin base oil refined by appropriately combining two or more Paraffin base oil, and an aromatic base oils and the like. These mineral oil base oils may be used alone or in combination of two or more at any ratio.
 合成系基油としては、例えば、ポリα-オレフィン又はその水素化物;プロピレンオリゴマー、イソブチレンオリゴマー、ポリブテン、1-オクテンオリゴマー、1-デセンオリゴマー、エチレン-プロピレンオリゴマー等のオレフィンオリゴマー又はその水素化物;アルキルベンゼン;アルキルナフタレン;ジエステル(ジトリデシルグルタレート、ジ-2-エチルヘキシルアジペート、ジ-2-エチルヘキシルアゼレート、ジイソデシルアジペート、ジトリデシルアジペート、ジ-2-エチルヘキシルセバケート等);ポリオールエステル(トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、トリメチロールプロパンオレート、ペンタエリスリトール2-エチルヘキサノエート、ペンタエリスリトールペラルゴネート等);ポリオキシアルキレングリコール、ジアルキルジフェニルエーテル、ポリフェニルエーテル等が挙げられる。これらの合成系基油は単独で使用してもよく、2種以上を任意の割合で組み合わせて使用してもよい。 Synthetic base oils include, for example, poly α-olefins or hydrides thereof; olefin oligomers such as propylene oligomers, isobutylene oligomers, polybutenes, 1-octene oligomers, 1-decene oligomers, ethylene-propylene oligomers or hydrides thereof; alkylbenzenes Alkyl naphthalene; diester (ditridecyl glutarate, di-2-ethylhexyl adipate, di-2-ethylhexyl azelate, diisodecyl adipate, ditridecyl adipate, di-2-ethylhexyl sebacate, etc.); polyol ester (trimethylolpropane capri) Rate, trimethylolpropane pelargonate, trimethylolpropane oleate, pentaerythritol 2-ethylhexanoate, pentaerythritol Rugoneto etc.); polyoxyalkylene glycols, dialkyl ethers, polyphenyl ether, and the like. These synthetic base oils may be used alone or in combination of two or more at any ratio.
 第1の実施形態に係る潤滑油用添加剤は、炭化水素系基油に適用した場合においても溶解性に優れるため、炭化水素系基油に好適に適用することができる。炭化水素系基油としては、具体的に、鉱油系炭化水素油、合成系炭化水素油、又は両者の混合物が挙げられる。なお、鉱油系炭化水素油は、鉱油系基油で例示したものと同様のものを用いることができる。 Since the additive for lubricating oil according to the first embodiment is excellent in solubility even when applied to a hydrocarbon base oil, it can be suitably applied to a hydrocarbon base oil. Specific examples of the hydrocarbon base oil include mineral oil hydrocarbon oil, synthetic hydrocarbon oil, or a mixture of both. In addition, the thing similar to what was illustrated by the mineral oil type | system | group base oil can be used for mineral oil type hydrocarbon oil.
 合成系炭化水素油としては、例えば、ポリα-オレフィン又はその水素化物;プロピレンオリゴマー、イソブチレンオリゴマー、ポリブテン、1-オクテンオリゴマー、1-デセンオリゴマー、エチレン-プロピレンオリゴマー等のオレフィンオリゴマー又はその水素化物;アルキルベンゼン;アルキルナフタレンが挙げられる。これらの合成系炭化水素油は単独で使用してもよく、2種以上を任意の割合で組み合わせて使用してもよい。 Synthetic hydrocarbon oils include, for example, poly α-olefins or hydrides thereof; olefin oligomers such as propylene oligomers, isobutylene oligomers, polybutenes, 1-octene oligomers, 1-decene oligomers, ethylene-propylene oligomers, or hydrides thereof; Alkylbenzene; alkylnaphthalene. These synthetic hydrocarbon oils may be used alone or in combination of two or more at any ratio.
 潤滑油基油の硫黄分は、基油全量を基準として、100質量ppm以下、50質量ppm以下、又は10質量ppm以下であってよい。潤滑油基油の硫黄分が、基油全量を基準として、100質量ppm以下であると、得られる潤滑油組成物の耐摩耗性がより向上する傾向にある。なお、本明細書における硫黄分は、JIS K2541「原油及び石油製品-硫黄分試験方法」により測定された値を意味する。 The sulfur content of the lubricating base oil may be 100 mass ppm or less, 50 mass ppm or less, or 10 mass ppm or less, based on the total amount of the base oil. When the sulfur content of the lubricating base oil is 100 ppm by mass or less based on the total amount of the base oil, the wear resistance of the resulting lubricating oil composition tends to be further improved. The sulfur content in the present specification means a value measured according to JIS K2541 “Crude oil and petroleum products—sulfur content test method”.
 潤滑油基油の40℃における動粘度は、特に制限されないが、1mm/s以上、10mm/s以上、又は15mm/s以上であってよい。潤滑油基油の40℃における動粘度は、100mm/s以下、80mm/s以下、又は60mm/s以下であってよい。潤滑油基油の40℃における動粘度が上記の範囲内であると、潤滑油基油の適正な粘性を確保でき、実使用温度域において良好な油膜が得られる傾向にある。 The kinematic viscosity at 40 ° C. of the lubricating base oil is not particularly limited, but may be 1 mm 2 / s or more, 10 mm 2 / s or more, or 15 mm 2 / s or more. The kinematic viscosity at 40 ° C. of the lubricating base oil may be 100 mm 2 / s or less, 80 mm 2 / s or less, or 60 mm 2 / s or less. When the kinematic viscosity at 40 ° C. of the lubricating base oil is within the above range, an appropriate viscosity of the lubricating base oil can be secured, and a good oil film tends to be obtained in the actual use temperature range.
 潤滑油基油の粘度指数は、特に制限されないが、70以上、90以上、又は110以上であってよい。粘度指数が上記の範囲内であると、外部の温度に対して粘度の安定性が確保されるため、使用時における外部の温度変化に対しても安定的に油膜を形成できる傾向にある。 The viscosity index of the lubricating base oil is not particularly limited, but may be 70 or more, 90 or more, or 110 or more. When the viscosity index is within the above range, the stability of the viscosity with respect to the external temperature is ensured, so that the oil film tends to be stably formed even with respect to the external temperature change during use.
 潤滑油基油の全芳香族含有量は、特に制限されないが、30質量%以下、15質量%以下、5質量%以下、又は2質量%以下であってよい。潤滑油基油の全芳香族含有量が30質量%以下であると、酸化安定性により優れる傾向にある。なお、本明細書における全芳香族含有量は、ASTMD2549に準拠して測定した芳香族留分(aromatic fraction)含有量を意味する。通常この芳香族留分には、アルキルベンゼン、アルキルナフタレンの他、アントラセン、フェナントレン、及びこれらのアルキル化物、ベンゼン環が四環以上縮合した化合物、又はピリジン類、キノリン類、フェノール類、ナフトール類等のヘテロ芳香族を有する化合物等が含まれる。 The total aromatic content of the lubricating base oil is not particularly limited, but may be 30% by mass or less, 15% by mass or less, 5% by mass or less, or 2% by mass or less. When the total aromatic content of the lubricating base oil is 30% by mass or less, the oxidation stability tends to be superior. In addition, the total aromatic content in this specification means the aromatic fraction content measured based on ASTMD2549. Usually, this aromatic fraction includes alkylbenzene, alkylnaphthalene, anthracene, phenanthrene, and alkylated products thereof, compounds in which four or more benzene rings are condensed, or pyridines, quinolines, phenols, naphthols, etc. Compounds having heteroaromatics and the like are included.
 一般式(1)で表される潤滑油用添加剤の含有量は、特に制限されないが、耐摩耗性の向上の観点から、組成物全量を基準として、リン元素換算で、0.005質量%(50質量ppm)以上、0.01質量%(100質量ppm)以上、又は0.03質量%(300質量ppm)以上であってよい。また、触媒被毒の抑制及び非鉄金属の腐食の抑制の観点から、組成物全量を基準として、リン元素換算で、0.20質量%(2000質量ppm)以下、0.10質量%(1000質量ppm)以下、又は0.08質量%(800質量ppm)以下であってよい。 The content of the additive for lubricating oil represented by the general formula (1) is not particularly limited, but from the viewpoint of improving the wear resistance, 0.005% by mass in terms of phosphorus element based on the total amount of the composition. (50 mass ppm) or more, 0.01 mass% (100 mass ppm) or more, or 0.03 mass% (300 mass ppm) or more. Further, from the viewpoint of suppression of catalyst poisoning and suppression of corrosion of non-ferrous metals, 0.20 mass% (2000 mass ppm) or less and 0.10 mass% (1000 mass) in terms of phosphorus element based on the total amount of the composition. ppm) or less, or 0.08 mass% (800 mass ppm) or less.
 第2の実施形態に係る潤滑油組成物は、その目的に応じて、一般的に使用されている任意の添加剤をさらに含有することができる。このような添加剤としては、例えば、粘度調整剤、金属系清浄剤、無灰分散剤、摩擦調整剤、一般式(1)で表される潤滑油用添加剤以外の摩耗防止剤(極圧剤)、酸化防止剤、腐食防止剤、防錆剤、流動点降下剤、抗乳化剤、金属不活性化剤、消泡剤等を挙げることができる。 The lubricating oil composition according to the second embodiment can further contain any commonly used additive depending on the purpose. Examples of such additives include viscosity modifiers, metal detergents, ashless dispersants, friction modifiers, and antiwear agents (extreme pressure agents) other than the lubricant additive represented by the general formula (1). ), Antioxidants, corrosion inhibitors, rust inhibitors, pour point depressants, demulsifiers, metal deactivators, antifoaming agents, and the like.
 粘度調整剤は、非分散型又は分散型エステル基含有粘度調整剤であってよい。粘度調整剤としては、例えば、非分散型又は分散型ポリ(メタ)アクリレート系粘度調整剤、非分散型又は分散型オレフィン-(メタ)アクリレート共重合体系粘度調整剤、スチレン-無水マレイン酸エステル共重合体系粘度調整剤、及びこれらの混合物等が挙げられる。これらの中でも、粘度調整剤は、非分散型又は分散型ポリ(メタ)アクリレート系粘度調整剤であってよく、非分散型又は分散型ポリメタクリレート系粘度調整剤であってもよい。 The viscosity modifier may be a non-dispersed or dispersed ester group-containing viscosity modifier. Examples of the viscosity modifier include a non-dispersed or dispersed poly (meth) acrylate viscosity modifier, a non-dispersed or dispersed olefin- (meth) acrylate copolymer viscosity modifier, and a styrene-maleic anhydride copolymer. Examples thereof include a polymer system viscosity modifier and a mixture thereof. Among these, the viscosity modifier may be a non-dispersed or dispersed poly (meth) acrylate viscosity modifier, or a non-dispersed or dispersed polymethacrylate viscosity modifier.
 粘度調整剤としては、その他に、非分散型若しくは分散型エチレン-α-オレフィン共重合体又はその水素化物、ポリイソブチレン又はその水素化物、スチレン-ジエン水素化共重合体、ポリアルキルスチレン等を挙げることができる。 Other examples of viscosity modifiers include non-dispersed or dispersed ethylene-α-olefin copolymers or hydrogenated products thereof, polyisobutylene or hydrogenated products thereof, styrene-diene hydrogenated copolymers, and polyalkylstyrenes. be able to.
 金属系清浄剤としては、例えば、スルホネート系清浄剤、サリチレート系清浄剤、フェネート系清浄剤等が挙げられ、アルカリ金属又はアルカリ土類金属との中性塩、塩基性塩、過塩基性塩のいずれをも配合することができる。使用に際してはこれらの中から任意に選ばれる1種類又は2種類以上を配合することができる。 Examples of metal detergents include sulfonate detergents, salicylate detergents, phenate detergents, and the like, neutral salts with alkali metals or alkaline earth metals, basic salts, and overbased salts. Any of them can be blended. In use, one kind or two or more kinds arbitrarily selected from these can be blended.
 無灰分散剤としては、潤滑油に用いられる任意の無灰分散剤が使用でき、例えば、炭素数40以上400以下の直鎖若しくは分枝状のアルキル基又はアルケニル基を分子中に少なくとも1個有するモノ又はビスコハク酸イミド、炭素数40以上400以下のアルキル基又はアルケニル基を分子中に少なくとも1個有するベンジルアミン、炭素数40以上400以下のアルキル基又はアルケニル基を分子中に少なくとも1個有するポリアミン、これらのホウ素化合物、カルボン酸、リン酸等による変成品などが挙げられる。使用に際してはこれらの中から任意に選ばれる1種類又は2種類以上を配合することができる。 As the ashless dispersant, any ashless dispersant used in lubricating oils can be used, for example, a mono- or mono-chain alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule. Or a bissuccinimide, a benzylamine having at least one alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule, a polyamine having at least one alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule, Examples of these modified compounds include boron compounds, carboxylic acids, phosphoric acids, and the like. In use, one kind or two or more kinds arbitrarily selected from these can be blended.
 摩擦調整剤としては、例えば、脂肪酸エステル系、脂肪族アミン系、脂肪酸アミド系等の無灰摩擦調整剤、モリブデンジチオカーバメート、モリブデンジチオホスフェート等の金属系摩擦調整剤等が挙げられる。摩擦調整剤は、例えば、炭素数6~30のアルキル基又はアルケニル基、特に炭素数6~30の直鎖アルキル基又は直鎖アルケニル基を分子中に少なくとも1個有する、アミン化合物、イミド化合物、脂肪酸エステル、脂肪酸アミド、脂肪酸金属塩等を用いてもよい。 Examples of the friction modifier include ashless friction modifiers such as fatty acid esters, aliphatic amines, and fatty acid amides, and metal friction modifiers such as molybdenum dithiocarbamate and molybdenum dithiophosphate. The friction modifier is, for example, an amine compound, an imide compound having at least one alkyl group or alkenyl group having 6 to 30 carbon atoms, particularly a linear alkyl group or linear alkenyl group having 6 to 30 carbon atoms in the molecule, Fatty acid esters, fatty acid amides, fatty acid metal salts and the like may be used.
 一般式(1)で表される潤滑油用添加剤以外の摩耗防止剤(極圧剤)としては、例えば、硫黄系、リン系、硫黄-リン系の極圧剤等が使用でき、具体的には、亜リン酸エステル類、チオ亜リン酸エステル類、ジチオ亜リン酸エステル類、トリチオ亜リン酸エステル類、リン酸エステル類(ホスフェート)、チオリン酸エステル類(チオホスフェート)、ジチオリン酸エステル類(ジチオホスフェート)、トリチオリン酸エステル類(トリチオホスフェート)、これらのアミン塩、これらの金属塩、これらの誘導体、ジチオカーバメート、亜鉛ジチオカーバメート、ジサルファイド類、ポリサルファイド類、硫化オレフィン類、硫化油脂類等が挙げられる。 As an anti-wear agent (extreme pressure agent) other than the additive for lubricating oil represented by the general formula (1), for example, a sulfur-based, phosphorus-based, sulfur-phosphorus-based extreme pressure agent and the like can be used. Phosphites, thiophosphites, dithiophosphites, trithiophosphites, phosphates (phosphates), thiophosphates (thiophosphates), dithiophosphates (Dithiophosphate), trithiophosphates (trithiophosphate), amine salts thereof, metal salts thereof, derivatives thereof, dithiocarbamate, zinc dithiocarbamate, disulfides, polysulfides, sulfurized olefins, sulfurized fats and oils And the like.
 酸化防止剤としては、例えば、フェノール系、アミン系等の無灰酸化防止剤、銅系、モリブデン系等の金属系酸化防止剤などが挙げられる。具体的には、例えば、フェノール系無灰酸化防止剤としては、4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、4,4’-ビス(2,6-ジ-tert-ブチルフェノール)等が、アミン系無灰酸化防止剤としては、フェニル-α-ナフチルアミン、アルキルフェニル-α-ナフチルアミン、ジアルキルジフェニルアミン、ジフェニルアミン等が挙げられる。 Examples of the antioxidant include ashless antioxidants such as phenols and amines, and metal antioxidants such as copper and molybdenum. Specifically, for example, phenol-based ashless antioxidants include 4,4′-methylenebis (2,6-di-tert-butylphenol), 4,4′-bis (2,6-di-tert- Examples of amine-based ashless antioxidants include phenyl-α-naphthylamine, alkylphenyl-α-naphthylamine, dialkyldiphenylamine, and diphenylamine.
 腐食防止剤としては、例えば、ベンゾトリアゾール系、トリルトリアゾール系、チアジアゾール系、イミダゾール系化合物等が挙げられる。 Examples of the corrosion inhibitor include benzotriazole, tolyltriazole, thiadiazole, and imidazole compounds.
 防錆剤としては、例えば、石油スルホネート、アルキルベンゼンスルホネート、ジノニルナフタレンスルホネート、アルケニルコハク酸エステル、多価アルコールエステル等が挙げられる。 Examples of the rust preventive include petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkenyl succinic acid ester, and polyhydric alcohol ester.
 流動点降下剤としては、例えば、使用する潤滑油基油に適合するポリメタクリレート系のポリマー等が使用できる。 As the pour point depressant, for example, a polymethacrylate polymer compatible with the lubricating base oil to be used can be used.
 抗乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルナフチルエーテル等のポリアルキレングリコール系非イオン系界面活性剤などが挙げられる。 Examples of the demulsifier include polyalkylene glycol nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene alkyl naphthyl ether.
 金属不活性化剤としては、例えば、イミダゾリン、ピリミジン誘導体、アルキルチアジアゾール、メルカプトベンゾチアゾール、ベンゾトリアゾール又はその誘導体、1,3,4-チアジアゾールポリスルフィド、1,3,4-チアジアゾリル-2,5-ビスジアルキルジチオカーバメート、2-(アルキルジチオ)ベンゾイミダゾール、β-(o-カルボキシベンジルチオ)プロピオンニトリル等が挙げられる。 Examples of the metal deactivator include imidazoline, pyrimidine derivatives, alkylthiadiazole, mercaptobenzothiazole, benzotriazole or derivatives thereof, 1,3,4-thiadiazole polysulfide, 1,3,4-thiadiazolyl-2,5-bis. Examples thereof include dialkyldithiocarbamate, 2- (alkyldithio) benzimidazole, β- (o-carboxybenzylthio) propiononitrile.
 消泡剤としては、例えば、25℃における動粘度が1000~100000mm/sのシリコーンオイル、アルケニルコハク酸誘導体、ポリヒドロキシ脂肪族アルコールと長鎖脂肪酸とのエステル、メチルサリチレートとo-ヒドロキシベンジルアルコールとのエステル等が挙げられる。 Examples of antifoaming agents include silicone oils having a kinematic viscosity at 25 ° C. of 1,000 to 100,000 mm 2 / s, alkenyl succinic acid derivatives, esters of polyhydroxy aliphatic alcohols and long chain fatty acids, methyl salicylates and o-hydroxys. Examples include esters with benzyl alcohol.
 これらの添加剤を潤滑油組成物に含有させる場合、それぞれの含有量は組成物全量を基準として、0.01~20質量%であってよい。 When these additives are contained in the lubricating oil composition, each content may be 0.01 to 20% by mass based on the total amount of the composition.
 第2の実施形態に係る潤滑油組成物の40℃における動粘度は、特に制限されないが、5mm/s以上、10mm/s以上、又は20mm/s以上であってよい。潤滑油組成物の40℃における動粘度は、90mm/s以下、70mm/s以下、又は50mm/s以下であってよい。潤滑油組成物の40℃における動粘度が上記の範囲内であると、適正な粘性を確保でき、油膜保持性により優れる傾向にある。 The kinematic viscosity at 40 ° C. of the lubricating oil composition according to the second embodiment is not particularly limited, but may be 5 mm 2 / s or more, 10 mm 2 / s or more, or 20 mm 2 / s or more. The kinematic viscosity at 40 ° C. of the lubricating oil composition may be 90 mm 2 / s or less, 70 mm 2 / s or less, or 50 mm 2 / s or less. When the kinematic viscosity at 40 ° C. of the lubricating oil composition is within the above range, an appropriate viscosity can be secured and the oil film retainability tends to be excellent.
[第3の実施形態:潤滑油組成物]
 第3の実施形態に係る潤滑油組成物は、エステル系基油と、第1の実施形態に係る一般式(1)で表される潤滑油用添加剤と、を含有する。第3の実施形態に係る潤滑油組成物は、高荷重の過酷な条件下における摩耗、焼き付き等を低減することが可能であり、優れた潤滑性を示す。
[Third Embodiment: Lubricating Oil Composition]
The lubricating oil composition according to the third embodiment contains an ester base oil and the lubricating oil additive represented by the general formula (1) according to the first embodiment. The lubricating oil composition according to the third embodiment can reduce wear, seizure, and the like under severe conditions under high loads, and exhibits excellent lubricity.
 エステル系基油は、通常の潤滑油分野で使用されるエステル系基油を使用することができる。ここで、エステル系基油としては、具体的には、モノエステル、ジエステル、ポリオールエステル等が挙げられる。 As the ester base oil, an ester base oil used in a normal lubricating oil field can be used. Specific examples of the ester base oil include monoesters, diesters, and polyol esters.
 エステル系基油を構成するアルコールは、一価アルコールであってもよく、多価アルコールであってもよい。エステル系基油を構成する酸は、一塩基酸であってもよく、多塩基酸であってもよい。また、エステル系基油は、一価アルコールと多価アルコールとの混合アルコール及び一塩基酸と多塩基酸との混合酸によって構成される複合エステルであってもよい。エステル系基油は、1種を単独で使用してもよく、2種以上を任意の割合で組み合わせて使用してもよい。 The alcohol constituting the ester base oil may be a monohydric alcohol or a polyhydric alcohol. The acid constituting the ester base oil may be a monobasic acid or a polybasic acid. Further, the ester base oil may be a complex ester composed of a mixed alcohol of a monohydric alcohol and a polyhydric alcohol and a mixed acid of a monobasic acid and a polybasic acid. An ester base oil may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
 一価アルコールは、炭素数1~24又は炭素数1~12のアルコールが用いられる。このような一価アルコールは、直鎖状又は分岐状のものであってもよく、飽和又は不飽和のものであってもよい。このような一価アルコールとしては、例えば、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノールが挙げられる。 As the monohydric alcohol, an alcohol having 1 to 24 carbon atoms or 1 to 12 carbon atoms is used. Such monohydric alcohols may be linear or branched, and may be saturated or unsaturated. Examples of such monohydric alcohols include methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, and tetradecanol.
 多価アルコールは、2~10価又は2~6価のアルコールが用いられる。このような多価アルコールとしては、例えば、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビタンが挙げられる。 As the polyhydric alcohol, 2 to 10 or 2 to 6 alcohols are used. Examples of such polyhydric alcohols include ethylene glycol, propylene glycol, neopentyl glycol, glycerin, trimethylol ethane, trimethylol propane, pentaerythritol, and sorbitan.
 一塩基酸は、通常炭素数2~24の脂肪酸が用いられる。このような一塩基酸は、直鎖状又は分岐状のものであってもよく、飽和又は不飽和のものであってもよい。このような一塩基酸としては、例えば、メタン酸、エタン酸(酢酸)、プロパン酸(プロピオン酸)、ブタン酸(酪酸、イソ酪酸等)、ペンタン酸(吉草酸、イソ吉草酸、ピバル酸等)、ヘキサン酸(カプロン酸等)、ヘプタン酸、オクタン酸(カプリル酸等)、ノナン酸(ペラルゴン酸等)、デカン酸、ウンデカン酸、ドデカン酸(ラウリン酸等)、トリデカン酸、テトラデカン酸(ミリスチン酸等)、ペンタデカン酸、ヘキサデカン酸(パルミチン酸等)、ヘプタデカン酸、オクタデカン酸(ステアリン酸等)、ノナデカン酸、イコサン酸、ヘンイコサン酸、ドコサン酸、トリコサン酸、テトラコサン酸、ペンタコサン酸、ヘキサコサン酸、ヘプタコサン酸、オクタコサン酸、ノナコサン酸、トリアコンタン酸等の飽和脂肪酸;プロペン酸(アクリル酸等)、プロピン酸(プロピオール酸等)、ブテン酸(メタクリル酸、クロトン酸、イソクロトン酸等)、ペンテン酸、ヘキセン酸、へプテン酸、オクテン酸、ノネン酸、デセン酸、ウンデセン酸、ドデセン酸、トリデセン酸、テトラデセン酸、ペンタデセン酸、ヘキサデセン酸、ヘプタデセン酸、オクタデセン酸(オレイン酸等)、ノナデセン酸、イコセン酸、ヘンイコセン酸、ドコセン酸、トリコセン酸、テトラコセン酸、ペンタコセン酸、ヘキサコセン酸、ヘプタコセン酸、オクタコセン酸、ノナコセン酸、トリアコンテン酸等の不飽和脂肪酸が挙げられる。 As the monobasic acid, a fatty acid having 2 to 24 carbon atoms is usually used. Such monobasic acids may be linear or branched, and may be saturated or unsaturated. Examples of such monobasic acids include methanoic acid, ethanoic acid (acetic acid), propanoic acid (propionic acid), butanoic acid (butyric acid, isobutyric acid, etc.), pentanoic acid (valeric acid, isovaleric acid, pivalic acid, etc.) ), Hexanoic acid (such as caproic acid), heptanoic acid, octanoic acid (such as caprylic acid), nonanoic acid (such as pelargonic acid), decanoic acid, undecanoic acid, dodecanoic acid (such as lauric acid), tridecanoic acid, tetradecanoic acid (myristine) Acid), pentadecanoic acid, hexadecanoic acid (such as palmitic acid), heptadecanoic acid, octadecanoic acid (such as stearic acid), nonadecanoic acid, icosanoic acid, henicosanoic acid, docosanoic acid, tricosanoic acid, tetracosanoic acid, pentacosanoic acid, hexacosanoic acid, Saturated fatty acids such as heptacosanoic acid, octacosanoic acid, nonacosanoic acid, triacontanoic acid; propene (Acrylic acid etc.), propionic acid (propiolic acid etc.), butenoic acid (methacrylic acid, crotonic acid, isocrotonic acid etc.), pentenoic acid, hexenoic acid, heptenoic acid, octenoic acid, nonenoic acid, decenoic acid, undecenoic acid, Dodecenoic acid, tridecenoic acid, tetradecenoic acid, pentadecenoic acid, hexadecenoic acid, heptadecenoic acid, octadecenoic acid (such as oleic acid), nonadecenoic acid, icosenic acid, henicosenoic acid, docosenoic acid, tricosenoic acid, tetracosenoic acid, pentacosenoic acid, hexacosenoic acid, Examples include unsaturated fatty acids such as heptacocenoic acid, octacocenoic acid, nonacosenic acid, triacontenoic acid.
 多塩基酸は、通常炭素数2~16の二塩基酸及びベンゼンジカルボン酸、ベンゼントリカルボン酸、ベンゼンテトラカルボン酸が用いられる。このような二塩基酸は、直鎖状又は分岐状のものであってもよく、飽和又は不飽和のものであってもよい。炭素数2~16の二塩基酸としては、例えば、エタン二酸(シュウ酸)、プロパン二酸(マロン酸)、ブタン二酸(コハク酸)、ペンタン二酸(グルタル酸)、ヘキサン二酸(アジピン酸)、ヘプタン二酸(ピメリン酸)、オクタン二酸(スベリン酸)、ノナン二酸(アゼライン酸)、デカン二酸(セバシン酸)、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ヘプタデカン二酸、ヘキサデカン二酸等の飽和塩基酸;ヘキセン二酸、ヘプテン二酸、オクテン二酸、ノネン二酸、デセン二酸、ウンデセン二酸、ドデセン二酸、トリデセン二酸、テトラデセン二酸、ヘプタデセン二酸、ヘキサデセン二酸等の不飽和塩基酸が挙げられる。 As the polybasic acid, dibasic acids having 2 to 16 carbon atoms, benzenedicarboxylic acid, benzenetricarboxylic acid, and benzenetetracarboxylic acid are usually used. Such dibasic acids may be linear or branched, and may be saturated or unsaturated. Examples of the dibasic acid having 2 to 16 carbon atoms include ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), butanedioic acid (succinic acid), pentanedioic acid (glutaric acid), hexanedioic acid ( Adipic acid), heptanedioic acid (pimelic acid), octanedioic acid (suberic acid), nonanedioic acid (azeleic acid), decanedioic acid (sebacic acid), undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanediic acid Acids, saturated basic acids such as heptadecanedioic acid, hexadecanedioic acid; hexenedioic acid, heptenedioic acid, octenedioic acid, nonenedioic acid, decenedioic acid, undecenedioic acid, dodecenedioic acid, tridecenedioic acid, tetradecenedioic acid And unsaturated basic acids such as heptadecenedioic acid and hexadecenedioic acid.
 エステル系基油を構成するアルコールと酸との組み合わせとしては、特に制限されないが、例えば、下記の組み合わせのエステルを挙げることができる。これらの組み合わせのエステルは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(a)一価アルコールと一塩基酸とのエステル
(b)多価アルコールと一塩基酸とのエステル
(c)一価アルコールと多塩基酸(二塩基酸)とのエステル
(d)多価アルコールと多塩基酸(二塩基酸)とのエステル
(e)一価アルコール及び多価アルコールの混合物と一塩基酸との混合エステル
(f)一価アルコール及び多価アルコールの混合物と多塩基酸(二塩基酸)との混合エステル
(g)一価アルコールと一塩基酸及び多塩基酸の混合物との混合エステル
(h)多価アルコールと一塩基酸及び多塩基酸の混合物との混合エステル
(i)一価アルコール及び多価アルコールの混合物と一塩基酸及び多塩基酸の混合物との混合エステル
Although it does not restrict | limit especially as a combination of alcohol and acid which comprise ester base oil, For example, ester of the following combination can be mentioned. These combinations of esters may be used singly or in combination of two or more.
(A) ester of monohydric alcohol and monobasic acid (b) ester of polyhydric alcohol and monobasic acid (c) ester of monohydric alcohol and polybasic acid (dibasic acid) (d) polyhydric alcohol (E) A mixture of a monohydric alcohol and a polyhydric alcohol and a monobasic acid (f) A mixture of a monohydric alcohol and a polyhydric alcohol and a polybasic acid (2) Mixed ester with basic acid) (g) Mixed ester of monohydric alcohol with mixture of monobasic acid and polybasic acid (h) Mixed ester of polyhydric alcohol with mixture of monobasic acid and polybasic acid (i) Mixed esters of monohydric and polyhydric alcohol mixtures with monobasic and polybasic acid mixtures
 これらのうち、エステル系基油は、多価アルコールとのエステルである上記(b)、(d)、又は(h)のポリオールエステルを含んでいてよく、上記(b)のポリオールエステルを含んでいてもよい。 Among these, the ester base oil may contain the polyol ester (b), (d), or (h), which is an ester with a polyhydric alcohol, and contains the polyol ester (b). May be.
 ポリオールエステルは、多価アルコールの水酸基の一部がエステル化されていない部分エステルであってもよく、多価アルコールの水酸基の全部がエステル化されている完全エステルであってもよい。 The polyol ester may be a partial ester in which some of the hydroxyl groups of the polyhydric alcohol are not esterified, or may be a complete ester in which all of the hydroxyl groups of the polyhydric alcohol are esterified.
 エステル系基油の40℃における動粘度は、特に制限されないが、5mm/s以上、10mm/s以上、又は20mm/s以上であってよい。エステル系基油の40℃における動粘度は、1000mm/s以下、500mm/s以下、又は350mm/s以下であってよい。エステル系基油の40℃における動粘度が上記の範囲内であると、適正な粘性を確保でき、油膜保持性により優れる傾向にある。 The kinematic viscosity at 40 ° C. of the ester base oil is not particularly limited, but may be 5 mm 2 / s or more, 10 mm 2 / s or more, or 20 mm 2 / s or more. The kinematic viscosity at 40 ° C. of the ester base oil may be 1000 mm 2 / s or less, 500 mm 2 / s or less, or 350 mm 2 / s or less. When the kinematic viscosity at 40 ° C. of the ester base oil is within the above range, an appropriate viscosity can be secured and the oil film retainability tends to be excellent.
 一般式(1)で表される潤滑油用添加剤は、第1の実施形態に係る潤滑油用添加剤である。一般式(1)で表される潤滑油用添加剤の含有量は、特に制限されないが、摩擦特性及び摩耗特性の向上の観点から、組成物全量を基準として、リン元素換算で、0.005質量%(50質量ppm)以上、0.01質量%(100質量ppm)以上、又は0.02質量%(200質量ppm)以上であってよい。また、一般式(1)で表される潤滑油用添加剤の含有量は、触媒被毒の抑制及び非鉄金属の腐食の抑制の観点から、組成物全量を基準として、リン元素換算で、0.10質量%(1000質量ppm)以下、0.08質量%(800質量ppm)以下、又は0.06質量%(600質量ppm)以下であってよい。 The additive for lubricating oil represented by the general formula (1) is the additive for lubricating oil according to the first embodiment. The content of the additive for lubricating oil represented by the general formula (1) is not particularly limited, but is 0.005 in terms of phosphorus element, based on the total amount of the composition, from the viewpoint of improving frictional characteristics and wear characteristics. It may be not less than mass% (50 mass ppm), not less than 0.01 mass% (100 mass ppm), or not less than 0.02 mass% (200 mass ppm). In addition, the content of the additive for lubricating oil represented by the general formula (1) is 0 in terms of phosphorus element, based on the total amount of the composition, from the viewpoint of suppression of catalyst poisoning and suppression of corrosion of nonferrous metals. .10 mass% (1000 mass ppm) or less, 0.08 mass% (800 mass ppm) or less, or 0.06 mass% (600 mass ppm) or less.
 第3の実施形態に係る潤滑油組成物は、その目的に応じて、一般的に使用されている任意の添加剤をさらに含有することができる。このような添加剤としては、例えば、粘度調整剤、金属系清浄剤、無灰分散剤、摩擦調整剤、一般式(1)で表される潤滑油用添加剤以外の摩耗防止剤(極圧剤)、酸化防止剤、腐食防止剤、防錆剤、流動点降下剤、抗乳化剤、金属不活性化剤、消泡剤等を挙げることができる。これらの添加剤の具体例としては、第2実施形態で例示した添加剤が挙げられる。これらの添加剤を潤滑油組成物に含有させる場合、それぞれの含有量は組成物全量を基準として、0.01~20質量%であってよい。 The lubricating oil composition according to the third embodiment can further contain any commonly used additive depending on the purpose. Examples of such additives include viscosity modifiers, metal detergents, ashless dispersants, friction modifiers, and antiwear agents (extreme pressure agents) other than the lubricant additive represented by the general formula (1). ), Antioxidants, corrosion inhibitors, rust inhibitors, pour point depressants, demulsifiers, metal deactivators, antifoaming agents, and the like. Specific examples of these additives include the additives exemplified in the second embodiment. When these additives are contained in the lubricating oil composition, the respective contents may be 0.01 to 20% by mass based on the total amount of the composition.
 第3の実施形態に係る潤滑油組成物の40℃における動粘度は、特に制限されないが、5mm/s以上、10mm/s以上、又は20mm/s以上であってよい。潤滑油組成物の40℃における動粘度は、1000mm/s以下、500mm/s以下、350mm/s以下であってよい。潤滑油組成物の40℃における動粘度が上記の範囲内であると、適正な粘性を確保でき、油膜保持性により優れる傾向にある。 The kinematic viscosity at 40 ° C. of the lubricating oil composition according to the third embodiment is not particularly limited, but may be 5 mm 2 / s or more, 10 mm 2 / s or more, or 20 mm 2 / s or more. The kinematic viscosity at 40 ° C. of the lubricating oil composition may be 1000 mm 2 / s or less, 500 mm 2 / s or less, or 350 mm 2 / s or less. When the kinematic viscosity at 40 ° C. of the lubricating oil composition is within the above range, an appropriate viscosity can be secured and the oil film retainability tends to be excellent.
[第4の実施形態:潤滑油組成物]
 第4の実施形態に係る潤滑油組成物は、炭化水素系基油と、第1の実施形態に係る一般式(1)で表される潤滑油用添加剤と、を含有し、対向して相対的に運動する一対の摺動部材の潤滑に用いられる。ここで、当該摺動部材の少なくとも一方は、ダイヤモンドライクカーボン膜で被覆された摺動面を有する。第4の実施形態に係る潤滑油組成物は、ダイヤモンドライクカーボン材料が適用された摺動部材において、摺動部材同士の摺動面の摩擦トルクを低減することが可能であり、優れた潤滑性を示す。
[Fourth Embodiment: Lubricating Oil Composition]
The lubricating oil composition according to the fourth embodiment contains a hydrocarbon-based base oil and the additive for lubricating oil represented by the general formula (1) according to the first embodiment. Used to lubricate a pair of sliding members that move relatively. Here, at least one of the sliding members has a sliding surface covered with a diamond-like carbon film. The lubricating oil composition according to the fourth embodiment is capable of reducing the friction torque of the sliding surface between the sliding members in the sliding member to which the diamond-like carbon material is applied, and has excellent lubricity. Indicates.
 炭化水素系基油は、通常の潤滑油分野で使用される炭化水素系基油を使用することができる。炭化水素系基油としては、具体的には、鉱油系炭化水素油、合成系炭化水素油、又は両者の混合物が挙げられる。鉱油系炭化水素油及び合成系炭化水素油は、第2実施形態に係る潤滑油組成物で例示した鉱油系炭化水素油及び合成系炭化水素油と同様のものを使用することができる。 As the hydrocarbon base oil, a hydrocarbon base oil used in a normal lubricating oil field can be used. Specific examples of the hydrocarbon base oil include mineral oil-based hydrocarbon oil, synthetic hydrocarbon oil, or a mixture of both. As the mineral oil-based hydrocarbon oil and the synthetic hydrocarbon oil, those similar to the mineral oil-based hydrocarbon oil and the synthetic hydrocarbon oil exemplified in the lubricating oil composition according to the second embodiment can be used.
 炭化水素系基油の40℃における動粘度は、特に制限されないが、1mm/s以上、10mm/s以上、又は15mm/s以上であってよい。また、40℃における動粘度は、100mm/s以下、80mm/s以下、又は60mm/s以下であってよい。炭化水素系基油の40℃における動粘度が上記の範囲内であると、炭化水素系基油の適正な粘性を確保でき、実使用温度域において良好な油膜が得られる傾向にある。 The kinematic viscosity at 40 ° C. of the hydrocarbon base oil is not particularly limited, but may be 1 mm 2 / s or more, 10 mm 2 / s or more, or 15 mm 2 / s or more. The kinematic viscosity at 40 ° C. may be 100 mm 2 / s or less, 80 mm 2 / s or less, or 60 mm 2 / s or less. When the kinematic viscosity at 40 ° C. of the hydrocarbon base oil is within the above range, an appropriate viscosity of the hydrocarbon base oil can be secured, and a good oil film tends to be obtained in the actual use temperature range.
 炭化水素系基油の100℃における動粘度は、特に制限されないが、1mm/s以上、2mm/s以上、又は3mm/s以上であってよい。また、100℃における動粘度は、20mm/s以下、15mm/s以下、又は8mm/s以下であってよい。炭化水素系基油の100℃における動粘度が上記の範囲内であると、炭化水素系基油の適正な粘性を確保でき、実使用温度域において良好な油膜が得られる傾向にある。 The kinematic viscosity at 100 ° C. of the hydrocarbon base oil is not particularly limited, but may be 1 mm 2 / s or more, 2 mm 2 / s or more, or 3 mm 2 / s or more. The kinematic viscosity at 100 ° C. may be 20 mm 2 / s or less, 15 mm 2 / s or less, or 8 mm 2 / s or less. When the kinematic viscosity at 100 ° C. of the hydrocarbon base oil is within the above range, an appropriate viscosity of the hydrocarbon base oil can be secured, and a good oil film tends to be obtained in the actual use temperature range.
 炭化水素系基油の粘度指数は、特に制限されないが、70以上、100以上、又は120以上であってよい。粘度指数が上記の範囲内であると、外部の温度に対して粘度の安定性が確保されるため、使用時における外部の温度変化に対しても安定的に油膜を形成できる傾向にある。 The viscosity index of the hydrocarbon base oil is not particularly limited, but may be 70 or more, 100 or more, or 120 or more. When the viscosity index is within the above range, the stability of the viscosity with respect to the external temperature is ensured, so that the oil film tends to be stably formed even with respect to the external temperature change during use.
 炭化水素系基油の全芳香族含有量は、特に制限されないが、10質量%以下、5質量%以下、3質量%以下、又は1質量%以下であってよい。炭化水素系基油の全芳香族含有量が30質量%以下であると、酸化安定性により優れる傾向にある。なお、本明細書における全芳香族含有量は、ASTMD2549に準拠して測定した芳香族留分(aromatic fraction)含有量を意味する。通常、芳香族留分には、アルキルベンゼン、アルキルナフタレンの他、アントラセン、フェナントレン、及びこれらのアルキル化物、ベンゼン環が四環以上縮合した化合物、又はピリジン類、キノリン類、フェノール類、ナフトール類等のヘテロ芳香族を有する化合物等が含まれる。 The total aromatic content of the hydrocarbon base oil is not particularly limited, but may be 10% by mass or less, 5% by mass or less, 3% by mass or less, or 1% by mass or less. When the total aromatic content of the hydrocarbon base oil is 30% by mass or less, the oxidation stability tends to be excellent. In addition, the total aromatic content in this specification means the aromatic fraction content measured based on ASTMD2549. Usually, aromatic fractions include alkylbenzene, alkylnaphthalene, anthracene, phenanthrene, and alkylated products thereof, compounds in which four or more benzene rings are condensed, or pyridines, quinolines, phenols, naphthols, etc. Compounds having heteroaromatics and the like are included.
 第4の実施形態に係る潤滑油組成物は、炭化水素系基油以外の合成系基油を含有していてもよい。炭化水素系基油と炭化水素系基油以外の合成系基油とを併用する場合、それらの混合基油中に占める炭化水素系基油の割合は、50質量%以上、70質量%以上、又は80質量%以上であってよい。 The lubricating oil composition according to the fourth embodiment may contain a synthetic base oil other than the hydrocarbon base oil. When using together the hydrocarbon base oil and a synthetic base oil other than the hydrocarbon base oil, the proportion of the hydrocarbon base oil in the mixed base oil is 50% by mass or more, 70% by mass or more, Or it may be 80 mass% or more.
 炭化水素系基油以外の合成系基油としては、例えば、ジエステル(ジトリデシルグルタレート、ジ-2-エチルヘキシルアジペート、ジ-2-エチルヘキシルアゼレート、ジイソデシルアジペート、ジトリデシルアジペート、ジ-2-エチルヘキシルセバケート等);ポリオールエステル(トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、トリメチロールプロパンオレート、ペンタエリスリトール2-エチルヘキサノエート、ペンタエリスリトールペラルゴネート等);ポリオキシアルキレングリコール、ジアルキルジフェニルエーテル、ポリフェニルエーテル等が挙げられる。 Examples of synthetic base oils other than hydrocarbon base oils include diesters (ditridecyl glutarate, di-2-ethylhexyl adipate, di-2-ethylhexyl azelate, diisodecyl adipate, ditridecyl adipate, di-2-ethylhexyl). Polyol ester (trimethylolpropane caprylate, trimethylolpropane pelargonate, trimethylolpropane oleate, pentaerythritol 2-ethylhexanoate, pentaerythritol pelargonate, etc.); polyoxyalkylene glycol, dialkyldiphenyl ether, poly And phenyl ether.
 一般式(1)で表される潤滑油用添加剤は、第1の実施形態に係る潤滑油用添加剤である。一般式(1)で表される潤滑油用添加剤の含有量は、特に制限されないが、摩擦特性及び摩耗特性の向上の観点から、組成物全量を基準として、リン元素換算で、0.005質量%(50質量ppm)以上、0.01質量%(100質量ppm)以上、又は0.03質量%(300質量ppm)以上であってよい。また、一般式(1)で表される潤滑油用添加剤の含有量は、触媒被毒の抑制及び非鉄金属の腐食の抑制の観点から、組成物全量を基準として、リン元素換算で、0.20質量%(2000質量ppm)以下、0.15質量%(1500質量ppm)以下、又は0.12質量%(1200質量ppm)以下であってよい。 The additive for lubricating oil represented by the general formula (1) is the additive for lubricating oil according to the first embodiment. The content of the additive for lubricating oil represented by the general formula (1) is not particularly limited, but is 0.005 in terms of phosphorus element, based on the total amount of the composition, from the viewpoint of improving frictional characteristics and wear characteristics. It may be not less than mass% (50 mass ppm), not less than 0.01 mass% (100 mass ppm), or not less than 0.03 mass% (300 mass ppm). In addition, the content of the additive for lubricating oil represented by the general formula (1) is 0 in terms of phosphorus element, based on the total amount of the composition, from the viewpoint of suppression of catalyst poisoning and suppression of corrosion of nonferrous metals. 20 mass% (2000 mass ppm) or less, 0.15 mass% (1500 mass ppm) or less, or 0.12 mass% (1200 mass ppm) or less.
 第4の実施形態に係る潤滑油組成物は、酸化防止剤をさらに含有していてもよい。 The lubricating oil composition according to the fourth embodiment may further contain an antioxidant.
 酸化防止剤としては、例えば、フェノール系、アミン系等の無灰酸化防止剤、銅系、モリブデン系等の金属系酸化防止剤などが挙げられる。これらの中でも、酸化防止剤は、無灰酸化防止剤であってよい。具体的には、例えば、フェノール系無灰酸化防止剤としては、4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、4,4’-ビス(2,6-ジ-tert-ブチルフェノール)、ベンゼンプロパン酸-3,5-ビス(1,1-ジメチル-エチル)-4-ヒドロキシ-C7~C9側鎖アルキルエステル等が、アミン系無灰酸化防止剤としては、フェニル-α-ナフチルアミン、アルキルフェニル-α-ナフチルアミン、アルキル化ジフェニルアミン、ジフェニルアミン等が挙げられる。 Examples of the antioxidant include ashless antioxidants such as phenols and amines, and metal antioxidants such as copper and molybdenum. Among these, the antioxidant may be an ashless antioxidant. Specifically, for example, phenol-based ashless antioxidants include 4,4′-methylenebis (2,6-di-tert-butylphenol), 4,4′-bis (2,6-di-tert- Butylphenol), benzenepropanoic acid-3,5-bis (1,1-dimethyl-ethyl) -4-hydroxy-C7-C9 side chain alkyl ester, etc., as the amine-based ashless antioxidant, phenyl-α- Examples thereof include naphthylamine, alkylphenyl-α-naphthylamine, alkylated diphenylamine, and diphenylamine.
 酸化防止剤の含有量は、特に制限されないが、酸化安定性の観点から、組成物全量を基準として、0.3質量%以上、0.5質量%以上、又は1.0質量%以上であってよい。酸化防止剤の含有量は、エンジン清浄性の観点から、組成物全量を基準として、4.0質量%以下、3.0質量%以下、又は2.0質量%以下であってよい。 The content of the antioxidant is not particularly limited, but from the viewpoint of oxidation stability, it is 0.3 mass% or more, 0.5 mass% or more, or 1.0 mass% or more based on the total amount of the composition. It's okay. The content of the antioxidant may be 4.0% by mass or less, 3.0% by mass or less, or 2.0% by mass or less based on the total amount of the composition from the viewpoint of engine cleanliness.
 第4の実施形態に係る潤滑油組成物は、粘度調整剤をさらに含有していてもよい。 The lubricating oil composition according to the fourth embodiment may further contain a viscosity modifier.
 粘度調整剤としては、例えば、非分散型若しくは分散型エチレン-α-オレフィン共重合体又はその水素化物、ポリイソブチレン又はその水素化物、スチレン-ジエン水素化共重合体、ポリアルキルスチレン等を挙げられる。これらの中でも、粘度調整剤は、エチレン-α-オレフィン共重合体又はその水素化物であってよい。 Examples of the viscosity modifier include a non-dispersed or dispersed ethylene-α-olefin copolymer or a hydride thereof, polyisobutylene or a hydride thereof, a styrene-diene hydrogenated copolymer, and a polyalkylstyrene. . Among these, the viscosity modifier may be an ethylene-α-olefin copolymer or a hydride thereof.
 粘度調整剤としては、その他に、非分散型又は分散型ポリ(メタ)アクリレート系粘度調整剤、非分散型又は分散型オレフィン-(メタ)アクリレート共重合体系粘度調整剤、スチレン-無水マレイン酸エステル共重合体系粘度調整剤及びこれらの混合物等が挙げられる。 As other viscosity modifiers, non-dispersed or dispersed poly (meth) acrylate viscosity modifiers, non-dispersed or dispersed olefin- (meth) acrylate copolymer viscosity modifiers, styrene-maleic anhydride esters Examples thereof include a copolymer system viscosity modifier and a mixture thereof.
 粘度調整剤の含有量は、特に制限されないが、粘度指数向上の観点から、組成物全量を基準として、3質量%以上、4質量%以上、又は5質量%以上であってよい。粘度調整剤の含有量は、エンジン清浄性の観点から、組成物全量を基準として、20質量%以下、15質量%以下、又は10質量%以下であってよい。 The content of the viscosity modifier is not particularly limited, but may be 3% by mass or more, 4% by mass or more, or 5% by mass or more based on the total amount of the composition from the viewpoint of improving the viscosity index. From the viewpoint of engine cleanliness, the content of the viscosity modifier may be 20% by mass or less, 15% by mass or less, or 10% by mass or less based on the total amount of the composition.
 第4の実施形態に係る潤滑油組成物は、その目的に応じて、一般的に使用されている任意の添加剤をさらに含有することができる。このような添加剤としては、例えば、金属系清浄剤、無灰分散剤、摩擦調整剤、一般式(1)で表される潤滑油用添加剤以外の摩耗防止剤(極圧剤)、腐食防止剤、防錆剤、流動点降下剤、抗乳化剤、金属不活性化剤、消泡剤等を挙げることができる。これらの添加剤の具体例としては、第2実施形態で例示した添加剤が挙げられる。これらの添加剤を潤滑油組成物に含有させる場合、それぞれの含有量は組成物全量を基準として、0.01~20質量%であってよい。 The lubricating oil composition according to the fourth embodiment can further contain any commonly used additive depending on the purpose. Examples of such additives include metal detergents, ashless dispersants, friction modifiers, anti-wear agents (extreme pressure agents) other than the lubricant additive represented by the general formula (1), and corrosion prevention. Agents, rust inhibitors, pour point depressants, demulsifiers, metal deactivators, antifoaming agents, and the like. Specific examples of these additives include the additives exemplified in the second embodiment. When these additives are contained in the lubricating oil composition, the respective contents may be 0.01 to 20% by mass based on the total amount of the composition.
 第4の実施形態に係る潤滑油組成物の100℃における動粘度は、特に制限されないが、1mm/s以上、2mm/s以上、又は3mm/s以上であってよい。また、第4の実施形態に係る潤滑油組成物の100℃における動粘度は、15mm/s以下、12mm/s以下、又は10mm/s以下であってよい。潤滑油組成物の100℃における動粘度が上記の範囲内であると、適正な粘性を確保でき、油膜保持性により優れる傾向にある。 The kinematic viscosity at 100 ° C. of the lubricating oil composition according to the fourth embodiment is not particularly limited, but may be 1 mm 2 / s or more, 2 mm 2 / s or more, or 3 mm 2 / s or more. Further, the kinematic viscosity at 100 ° C. of the lubricating oil composition according to the fourth embodiment may be 15 mm 2 / s or less, 12 mm 2 / s or less, or 10 mm 2 / s or less. When the kinematic viscosity at 100 ° C. of the lubricating oil composition is within the above range, an appropriate viscosity can be secured and the oil film retainability tends to be excellent.
 第4の実施形態に係る潤滑油組成物の40℃における動粘度は、特に制限されないが、1mm/s以上、10mm/s以上、又は15mm/s以上であってよい。また、第4の実施形態に係る潤滑油組成物の40℃における動粘度は、100mm/s以下、80mm/s以下、又は60mm/s以下であってよい。潤滑油組成物の40℃における動粘度が上記の範囲内であると、適正な粘性を確保でき、油膜保持性により優れる傾向にある。 The kinematic viscosity at 40 ° C. of the lubricating oil composition according to the fourth embodiment is not particularly limited, but may be 1 mm 2 / s or more, 10 mm 2 / s or more, or 15 mm 2 / s or more. Further, the kinematic viscosity at 40 ° C. of the lubricating oil composition according to the fourth embodiment may be 100 mm 2 / s or less, 80 mm 2 / s or less, or 60 mm 2 / s or less. When the kinematic viscosity at 40 ° C. of the lubricating oil composition is within the above range, an appropriate viscosity can be secured and the oil film retainability tends to be excellent.
 第4の実施形態に係る潤滑油組成物の粘度指数は、特に制限されないが、70以上、100以上、又は120以上であってよい。粘度指数が上記の範囲内であると、外部の温度に対して粘度の安定性が確保されるため、使用時における外部の温度変化に対しても安定的に油膜を形成できる傾向にある。 The viscosity index of the lubricating oil composition according to the fourth embodiment is not particularly limited, but may be 70 or more, 100 or more, or 120 or more. When the viscosity index is within the above range, the stability of the viscosity with respect to the external temperature is ensured, so that the oil film tends to be stably formed even with respect to the external temperature change during use.
 第4の実施形態に係る本実施形態の潤滑油組成物によれば、ダイヤモンドライクカーボン材料が適用された摺動部材において、摩擦係数を低減することができる。なお、本実施形態においては、ZDTP又は無灰摩擦調整剤を配合しない形態で用いることができる。ZDTP又は無灰摩擦調整剤を配合しない場合でも、摩擦特性を向上できることは、これらを用いることを前提とする特許文献5~9の記載からみて、予想外の有利な効果であるといえる。 According to the lubricating oil composition of the present embodiment related to the fourth embodiment, the friction coefficient can be reduced in the sliding member to which the diamond-like carbon material is applied. In addition, in this embodiment, it can be used with the form which does not mix | blend ZDTP or an ashless friction modifier. Even if ZDTP or an ashless friction modifier is not blended, it can be said that the fact that the friction characteristics can be improved is an unexpected advantageous effect in view of the description of Patent Documents 5 to 9 on the assumption that these are used.
[第5の実施形態:摺動機構]
 第5の実施形態に係る摺動機構は、対向して相対的に運動する一対の摺動部材と、摺動部材を潤滑する第4の実施形態に係る潤滑油組成物と、を備える。
[Fifth Embodiment: Sliding Mechanism]
The sliding mechanism which concerns on 5th Embodiment is provided with a pair of sliding member which moves relatively facing, and the lubricating oil composition which concerns on 4th Embodiment which lubricates a sliding member.
 第5の実施形態に係る摺動機構は、摺動部材の少なくとも一方が、ダイヤモンドライクカーボン膜(DLC膜)で被覆された摺動面を有する。摺動部材は、その両方がDLC膜で被覆された摺動面を有していてもよい。 In the sliding mechanism according to the fifth embodiment, at least one of the sliding members has a sliding surface covered with a diamond-like carbon film (DLC film). The sliding member may have a sliding surface, both of which are covered with a DLC film.
 ここで、DLC膜を構成するDLC(ダイヤモンドライクカーボン)は、炭素元素を主として構成された非晶質カーボンを表し、炭素同士の結合形態がダイヤモンド構造(sp結合構造)及びグラファイト結合(sp結合)の両方からなるカーボンである。DLC膜としては、例えば、炭素元素のみからなるa-C(アモルファスカーボン)、ta-C(テトラへドラルアモルファスカーボン)、水素を含有するa-C:H(水素化アモルファスカーボン)、ta-C:H(水素化テトラへドラルアモルファスカーボン)、チタン(Ti)、モリブデン(Mo)等の金属原子を一部に含むMeC(メタルカーボン)、ケイ素原子を一部に含むDLC-Siなどからなる膜が挙げられる。 Here, DLC (diamond-like carbon) constituting the DLC film represents amorphous carbon mainly composed of carbon elements, and the bonding form between carbons is a diamond structure (sp 3 bond structure) and a graphite bond (sp 2). Carbon). As the DLC film, for example, aC (amorphous carbon) composed only of carbon element, ta-C (tetrahedral amorphous carbon), aC: H (hydrogenated amorphous carbon) containing hydrogen, ta-C : A film made of MeC (metal carbon) partially including metal atoms such as H (hydrogenated tetrahedral amorphous carbon), titanium (Ti), molybdenum (Mo), or DLC-Si partially including silicon atoms Is mentioned.
 摺動部材の基材としては、例えば、鉄系材料、アルミニウム系材料、マグネシウム系材料等の金属系材料などが挙げられる。 Examples of the base material for the sliding member include metal materials such as iron materials, aluminum materials, and magnesium materials.
 鉄系材料としては、高純度の鉄だけでなく、例えば、炭素、ニッケル、銅、亜鉛、クロム、コバルト、モリブデン、鉛、ケイ素、チタン、又はこれら2種以上を任意の割合で鉄と組み合わせた各種鉄系合金であってもよい。より具体的には、浸炭鋼SCM420、SCr420(JIS)等が挙げられる。 As iron-based materials, not only high-purity iron, but also, for example, carbon, nickel, copper, zinc, chromium, cobalt, molybdenum, lead, silicon, titanium, or a combination of two or more of these with iron in any proportion Various iron-based alloys may be used. More specifically, carburized steel SCM420, SCr420 (JIS), etc. are mentioned.
 アルミニウム系材料としては、高純度のアルミニウムだけでなく、各種のアルミニウム系合金が使用でき、例えば、ケイ素(Si)を4~20質量%及び銅(Cu)を1.0~5.0質量%含む亜共晶アルミニウム合金又は過共晶アルミニウム合金等であってもよい。アルミニウム合金としては、例えば、AC2A、AC8A、ADC12、ADC14(JIS)が挙げられる。 As the aluminum-based material, not only high-purity aluminum but also various aluminum-based alloys can be used, for example, 4 to 20% by mass of silicon (Si) and 1.0 to 5.0% by mass of copper (Cu). It may be a hypoeutectic aluminum alloy or a hypereutectic aluminum alloy. Examples of the aluminum alloy include AC2A, AC8A, ADC12, and ADC14 (JIS).
 マグネシウム系材料としては、例えば、マグネシウム-アルミニウム-亜鉛(Mg-Al-Zn)系、マグネシウム-アルミニウム-希土類金属(Mg-Al-REM)系、マグネシウム-アルミニウム-カルシウム(Mg-Al-Ca)系、マグネシウム-亜鉛-アルミニウム-カルシウム(Mg-Zn-Al-Ca)系、マグネシウム-アルミニウム-カルシウム-希土類金属(Mg-Al-Ca-REM)系、マグネシウム-アルミニウム-ストロンチウム(Mg-Al-Sr)系、マグネシウム-アルミニウム-ケイ素(Mg-Al-Si)系、マグネシウム-希土類金属-亜鉛(Mg-REM-Zn)系、マグネシウム-銀-希土類金属(Mg-Ag-REM)系、マグネシウム-イットリウム-希土類金属(Mg-Y-REM)系;及びこれらの任意の割合で組み合わせたものが使用できる。具体的には、AZ91、AE42、AX51、AXJ、ZAX85、AXE522、AJ52、AS21、QE22、又はWE43(ASTM)等が挙げられる。 Examples of magnesium-based materials include magnesium-aluminum-zinc (Mg-Al-Zn), magnesium-aluminum-rare earth metal (Mg-Al-REM), and magnesium-aluminum-calcium (Mg-Al-Ca). Magnesium-zinc-aluminum-calcium (Mg-Zn-Al-Ca), magnesium-aluminum-calcium-rare earth metal (Mg-Al-Ca-REM), magnesium-aluminum-strontium (Mg-Al-Sr) , Magnesium-aluminum-silicon (Mg-Al-Si), magnesium-rare earth metal-zinc (Mg-REM-Zn), magnesium-silver-rare earth metal (Mg-Ag-REM), magnesium-yttrium- Rare earth metal (Mg-Y-REM Systems; and a combination at any ratio thereof can be used. Specific examples include AZ91, AE42, AX51, AXJ, ZAX85, AXE522, AJ52, AS21, QE22, or WE43 (ASTM).
 摺動部材へのDLC膜の形成方法としては、例えば、公知のPVD(物理気相成長)法、CVD(化学気相蒸着)法等が挙げられる。 Examples of the method for forming the DLC film on the sliding member include a known PVD (physical vapor deposition) method, CVD (chemical vapor deposition) method, and the like.
 DLC膜で被覆されていない摺動面を有する摺動部材の基材としては、例えば、上述の鉄系材料、アルミニウム系材料、マグネシウム系材料等の金属系材料、樹脂、プラスティック、カーボン等の非金属系材料などが挙げられる。これらの基材は、TiN、CrN等の各種薄膜で被覆されている摺動面を有していてよい。 Examples of the base material of the sliding member having a sliding surface not covered with the DLC film include, for example, metal materials such as the iron-based material, aluminum-based material, and magnesium-based material described above, resin, plastic, and carbon. Examples thereof include metal materials. These base materials may have a sliding surface covered with various thin films such as TiN and CrN.
 摺動機構は、密閉式、循環式等の摺動機構の種類に応じて、摺動面に上述の潤滑油組成物を供給することによって、摺動部材を潤滑させることができる。 The sliding mechanism can lubricate the sliding member by supplying the above-described lubricating oil composition to the sliding surface according to the type of sliding mechanism such as a sealed type or a circulating type.
 摺動機構としては、例えば、4サイクル、2サイクルエンジン等の内燃機関が挙げられる。より具体的には、動弁系、ピストン、ピストンリング、ピストンスカート、シリンダライナ、コンロッド、クランクシャフト、ベアリング、軸受け、メタルギヤー、チェーン、ベルト、オイルポンプ等の少なくとも一方がDLC膜で被覆された摺動面を、少なくとも1か所備える内燃機関などが挙げられる。 As the sliding mechanism, for example, an internal combustion engine such as a 4-cycle, 2-cycle engine or the like can be cited. More specifically, at least one of the valve system, piston, piston ring, piston skirt, cylinder liner, connecting rod, crankshaft, bearing, bearing, metal gear, chain, belt, oil pump, etc. is covered with a DLC film. An internal combustion engine provided with at least one sliding surface may be mentioned.
 以下、本発明について実施例を挙げてより具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
[第1実施形態:潤滑油用添加剤の合成]
(実施例1-1)
<(n-ヘキシル)ホスホン酸グリセリル(n-ヘキシル)(上記一般式(1)のmが1であり、nが0であり、Rがメチレン基であり、R及びRがn-ヘキシル基である化合物)の合成>
 (n-ヘキシル)ホスホン酸(n-ヘキシル)(城北化学工業株式会社)0.1mol(25.0g)及びグリシドール(ALDRICH社)0.1mol(7.4g)をフラスコに採取した。この混合物を50℃で60分間撹拌することによって、目的物である(n-ヘキシル)ホスホン酸グリセリル(n-ヘキシル)0.1mol(32.0g)を得た。
[First Embodiment: Synthesis of Additive for Lubricating Oil]
Example 1-1
<Glyceryl (n-hexyl) phosphonate (n-hexyl) (wherein m in the general formula (1) is 1, n is 0, R 1 is a methylene group, R 2 and R 3 are n- Synthesis of a compound having a hexyl group>
0.1 mol (25.0 g) of (n-hexyl) phosphonic acid (n-hexyl) (Johoku Chemical Co., Ltd.) and 0.1 mol (7.4 g) of glycidol (ALDRICH) were collected in a flask. By stirring this mixture at 50 ° C. for 60 minutes, 0.1 mol (32.0 g) of glyceryl (n-hexyl) phosphonate (n-hexyl) phosphonate was obtained.
 得られた(n-ヘキシル)ホスホン酸グリセリル(n-ヘキシル)について、IR分析(KBrサンドイッチ法)を行った。IRスペクトルを図1に示す。IRスペクトルでは、以下に帰属されるピークが観察され、目的物の合成が確認された。 The obtained (n-hexyl) glyceryl phosphonate (n-hexyl) was subjected to IR analysis (KBr sandwich method). The IR spectrum is shown in FIG. In the IR spectrum, peaks attributed to the following were observed, confirming the synthesis of the target product.
<IRスペクトルデータ>
 3400~3200cm-1:アルコールのOH伸縮振動、2960cm-1:メチル基のH-CH-H逆対称伸縮振動、2960cm-1:メチレン基のH-C-H逆対称伸縮振動、2960cm-1:メチル基のH-CH-H逆対称伸縮振動、2925cm-1:メチレン基のH-C-H逆対称伸縮振動、2870cm-1:メチル基のH-CH-H対称伸縮振動、2850cm-1:メチレン基のH-C-H逆対称伸縮振動、1470cm-1:メチレン基のH-C-H変角振動、1460cm-1:メチル基のH-CH-H変角振動、1380cm-1:メチレン基のH-C-H変角振動、1250~1200cm-1:P=O伸縮振動、1120cm-1:二級アルコールのC-O伸縮振動、1060cm-1:一級アルコールのC-O伸縮振動、1100cm-1:C-O-P伸縮振動、720cm-1:P-C伸縮振動。
<IR spectrum data>
3400-3200 cm −1 : OH stretching vibration of alcohol, 2960 cm −1 : H—CH—H reverse symmetric stretching vibration of methyl group, 2960 cm −1 : H—C—H reverse symmetric stretching vibration of methylene group, 2960 cm −1 : H—CH—H reverse symmetrical stretching vibration of methyl group, 2925 cm −1 : H—C—H reverse symmetrical stretching vibration of methylene group, 2870 cm −1 : H—CH—H symmetrical stretching vibration of methyl group, 2850 cm −1 : H-CH antisymmetric stretching vibration of methylene group, 1470cm -1: H-CH bending vibration of methylene group, 1460cm -1: H-CH- H deformation vibration of a methyl group, 1380 cm -1: methylene H-C-H bending vibration of the base, 1250 ~ 1200cm -1: P = O stretching vibration, 1120cm -1: C-O stretching vibration of secondary alcohols, 1060 cm -1 C-O stretching vibration of the primary alcohol, 1100cm -1: C-O- P stretching vibration, 720cm -1: P-C stretching vibration.
(実施例1-2)
<(2-エチルヘキシル)ホスホン酸グリセリル(2-エチルヘキシル)(上記一般式(1)のmが1であり、nが0であり、Rがメチレン基であり、R及びRが2-エチルヘキシル基である化合物)の合成>
 (2-エチルヘキシル)ホスホン酸(2-エチルヘキシル)(東京化成工業株式会社)0.1mol(30.6g)及びグリシドール(ALDRICH社)0.1mol(7.4g)をフラスコに採取した。この混合物を50℃で60分間撹拌することによって、目的物である(2-エチルヘキシル)ホスホン酸グリセリル(2-エチルヘキシル)0.1mol(37.0g)を得た。
Example 1-2
<Glyceryl (2-ethylhexyl) phosphonate (2-ethylhexyl) (wherein m in the above general formula (1) is 1, n is 0, R 1 is a methylene group, R 2 and R 3 are 2- Synthesis of a compound having an ethylhexyl group>
0.1 mol (30.6 g) of (2-ethylhexyl) phosphonic acid (2-ethylhexyl) (Tokyo Chemical Industry Co., Ltd.) and 0.1 mol (7.4 g) of glycidol (ALDRICH) were collected in a flask. The mixture was stirred at 50 ° C. for 60 minutes to obtain 0.1 mol (37.0 g) of the desired product, glyceryl (2-ethylhexyl) phosphonate (2-ethylhexyl).
 得られた(2-エチルヘキシル)ホスホン酸グリセリル(2-エチルヘキシル)について、IR分析(KBrサンドイッチ法)を行った。IRスペクトルを図2に示す。IRスペクトルでは、以下に帰属されるピークが観察され、目的物の合成が確認された。 The obtained (2-ethylhexyl) glyceryl phosphonate (2-ethylhexyl) was subjected to IR analysis (KBr sandwich method). The IR spectrum is shown in FIG. In the IR spectrum, peaks attributed to the following were observed, confirming the synthesis of the target product.
<IRスペクトルデータ>
 3400~3200cm-1:アルコールのOH伸縮振動、2960cm-1:メチル基のH-CH-H逆対称伸縮振動、2960cm-1:メチレン基のH-C-H逆対称伸縮振動、2960cm-1:メチル基のH-CH-H逆対称伸縮振動、2925cm-1:メチレン基のH-C-H逆対称伸縮振動、2870cm-1:メチル基のH-CH-H対称伸縮振動、2850cm-1:メチレン基のH-C-H逆対称伸縮振動、1470cm-1:メチレン基のH-C-H変角振動、1460cm-1:メチル基のH-CH-H変角振動、1380cm-1:メチレン基のH-C-H変角振動、1250~1200cm-1:P=O伸縮振動、1120cm-1:二級アルコールのC-O伸縮振動、1060cm-1:一級アルコールのC-O伸縮振動、1100cm-1:C-O-P伸縮振動、720cm-1:P-C伸縮振動。
<IR spectrum data>
3400-3200 cm −1 : OH stretching vibration of alcohol, 2960 cm −1 : H—CH—H reverse symmetric stretching vibration of methyl group, 2960 cm −1 : H—C—H reverse symmetric stretching vibration of methylene group, 2960 cm −1 : H—CH—H reverse symmetrical stretching vibration of methyl group, 2925 cm −1 : H—C—H reverse symmetrical stretching vibration of methylene group, 2870 cm −1 : H—CH—H symmetrical stretching vibration of methyl group, 2850 cm −1 : H-CH antisymmetric stretching vibration of methylene group, 1470cm -1: H-CH bending vibration of methylene group, 1460cm -1: H-CH- H deformation vibration of a methyl group, 1380 cm -1: methylene H-C-H bending vibration of the base, 1250 ~ 1200cm -1: P = O stretching vibration, 1120cm -1: C-O stretching vibration of secondary alcohols, 1060 cm -1 C-O stretching vibration of the primary alcohol, 1100cm -1: C-O- P stretching vibration, 720cm -1: P-C stretching vibration.
(実施例1-3)
<(グリセリル)ホスホン酸ジ(n-ヘキシル)(上記一般式(1)のmが0であり、nが1であり、Rがメチレン基であり、R及びRがn-ヘキシル基である化合物)の合成>
 エピクロロヒドリン(東京化成工業株式会社)0.1mol(9.2g)及び亜リン酸トリ(n-ヘキシル)(東京化成工業株式会社)0.1mol(33.4g)をフラスコに採取した。この混合物を130℃の窒素雰囲気下で4時間撹拌することによって、純度80%の2,3-エポキシホスホン酸ジ(n-ヘキシル)を得た。このエポキシ化合物に対して1Nの酸性水を投入し、70℃で30分撹拌することによって、目的物である(グリセリル)ホスホン酸ジ(n-ヘキシル)を得た。なお、目的物と副生成物との分離は、シリカゲルクロマトグラフィーによって行った。
(Example 1-3)
<(Glyceryl) phosphonic acid di (n-hexyl) (in the above general formula (1), m is 0, n is 1, R 1 is a methylene group, R 2 and R 3 are n-hexyl groups) Synthesis of Compound>
Epichlorohydrin (Tokyo Chemical Industry Co., Ltd.) 0.1 mol (9.2 g) and triphosphite (n-hexyl) phosphite (Tokyo Chemical Industry Co., Ltd.) 0.1 mol (33.4 g) were collected in a flask. The mixture was stirred under a nitrogen atmosphere at 130 ° C. for 4 hours to obtain 80% pure 2,3-epoxyphosphonate di (n-hexyl). 1N acidic water was added to the epoxy compound, and the mixture was stirred at 70 ° C. for 30 minutes to obtain the target product (glyceryl) phosphonic acid di (n-hexyl). The target product and the by-product were separated by silica gel chromatography.
 得られた(グリセリル)ホスホン酸ジ(n-ヘキシル)について、IR分析(KBrサンドイッチ法)を行った。IRスペクトルを図3に示す。IRスペクトルでは、以下に帰属されるピークが観察され、目的物の合成が確認された。 The obtained (glyceryl) phosphonic acid di (n-hexyl) was subjected to IR analysis (KBr sandwich method). The IR spectrum is shown in FIG. In the IR spectrum, peaks attributed to the following were observed, confirming the synthesis of the target product.
<IRスペクトルデータ>
 3400~3200cm-1:アルコールのOH伸縮振動、2960cm-1:メチル基のH-CH-H逆対称伸縮振動、2960cm-1:メチレン基のH-C-H逆対称伸縮振動、2960cm-1:メチル基のH-CH-H逆対称伸縮振動、2925cm-1:メチレン基のH-C-H逆対称伸縮振動、2870cm-1:メチル基のH-CH-H対称伸縮振動、2850cm-1:メチレン基のH-C-H逆対称伸縮振動、1470cm-1:メチレン基のH-C-H変角振動、1460cm-1:メチル基のH-CH-H変角振動、1380cm-1:メチレン基のH-C-H変角振動、1250~1200cm-1:P=O伸縮振動、1060cm-1:二級アルコールのC-O伸縮振動、1040cm-1:一級アルコールのC-O伸縮振動、1040cm-1:C-O-P伸縮振動、720cm-1:P-C伸縮振動。
<IR spectrum data>
3400-3200 cm −1 : OH stretching vibration of alcohol, 2960 cm −1 : H—CH—H reverse symmetric stretching vibration of methyl group, 2960 cm −1 : H—C—H reverse symmetric stretching vibration of methylene group, 2960 cm −1 : H—CH—H reverse symmetrical stretching vibration of methyl group, 2925 cm −1 : H—C—H reverse symmetrical stretching vibration of methylene group, 2870 cm −1 : H—CH—H symmetrical stretching vibration of methyl group, 2850 cm −1 : H-CH antisymmetric stretching vibration of methylene group, 1470cm -1: H-CH bending vibration of methylene group, 1460cm -1: H-CH- H deformation vibration of a methyl group, 1380 cm -1: methylene H-C-H bending vibration of the base, 1250 ~ 1200cm -1: P = O stretching vibration, 1060cm -1: C-O stretching vibration of secondary alcohols, 1040 cm -1 C-O stretching vibration of the primary alcohol, 1040cm -1: C-O- P stretching vibration, 720cm -1: P-C stretching vibration.
(比較例1-1)
<リン酸グリセリルジ-(2-エチルヘキシル)の合成>
 リン酸ジ-(2-エチルヘキシル)(東京化成工業株式会社)0.1mol(38.2g)及びグリシドール(ALDRICH社)0.1mol(7.4g)をフラスコに採取した。この混合物を室温(25℃)で20分撹拌することによって、目的物であるリン酸グリセリルジ-(2-エチルヘキシル)0.1mol(45.2g)を得た。
(Comparative Example 1-1)
<Synthesis of glyceryl di- (2-ethylhexyl) phosphate>
Di- (2-ethylhexyl) phosphate (Tokyo Chemical Industry Co., Ltd.) 0.1 mol (38.2 g) and glycidol (ALDRICH) 0.1 mol (7.4 g) were collected in a flask. This mixture was stirred at room temperature (25 ° C.) for 20 minutes to obtain 0.1 mol (45.2 g) of glyceryl di- (2-ethylhexyl) phosphate as a target product.
[第2実施形態:潤滑油組成物の調製]
(実施例2-1~2-6及び比較例2-1~2-4)
 表1に示すように、実施例2-1~2-6及び比較例2-1~2-4の潤滑油組成物をそれぞれ調製した。得られた潤滑油組成物について、溶解特性及び高荷重条件下の摩耗特性を検討し、その結果を表1に併記した。
[Second Embodiment: Preparation of Lubricating Oil Composition]
(Examples 2-1 to 2-6 and Comparative Examples 2-1 to 2-4)
As shown in Table 1, lubricating oil compositions of Examples 2-1 to 2-6 and Comparative Examples 2-1 to 2-4 were prepared. The resulting lubricating oil composition was examined for dissolution characteristics and wear characteristics under high load conditions, and the results are also shown in Table 1.
 表1に示した各成分の詳細は以下のとおりである。
<潤滑油基油>
 2-A-1:水素化精製鉱油(全芳香族含有量:0質量%、硫黄分:0質量ppm、40℃動粘度:36.82mm/s、粘度指数:131)
 2-A-2:溶剤精製鉱油(全芳香族含有量:25質量%、硫黄分:1700質量ppm、40℃動粘度:47.25mm/s、粘度指数:102)
<潤滑油用添加剤>
 2-B-1:(n-ヘキシル)ホスホン酸グリセリル(n-ヘキシル)(実施例1-1の潤滑油用添加剤)[リン含有量(理論値):9.56質量%]
 2-B-2:(2-エチルヘキシル)ホスホン酸グリセリル(2-エチルヘキシル)(実施例1-2の潤滑油用添加剤)[リン含有量(理論値):8.15質量%]
 2-B-3:(グリセリル)ホスホン酸ジ(n-ヘキシル)(実施例1-3の潤滑油用添加剤)[リン含有量(理論値):9.56質量%]
 2-b-1:リン酸グリセリル(ジ-2-エチルヘキシル)(比較例1-1の潤滑油用添加剤)[リン含有量(理論値):7.82質量%]
 2-b-2:ジアルキルジチオリン酸亜鉛(ZDTP)(シェブロンジャパン株式会社、「OLOA 269R」)[リン含有量(理論値):6.3質量%、硫黄含有量:14.7質量%、亜鉛含有量:8.2質量%]
 2-b-3:リン酸トリクレジル(TCP)[第八化学工業株式会社、リン含有量(理論値):8.42質量%]
Details of each component shown in Table 1 are as follows.
<Lubricant base oil>
2-A-1: Hydrorefined mineral oil (total aromatic content: 0 mass%, sulfur content: 0 mass ppm, kinematic viscosity at 40 ° C .: 36.82 mm 2 / s, viscosity index: 131)
2-A-2: Solvent refined mineral oil (total aromatic content: 25 mass%, sulfur content: 1700 mass ppm, 40 ° C. kinematic viscosity: 47.25 mm 2 / s, viscosity index: 102)
<Additive for lubricating oil>
2-B-1: (n-hexyl) glyceryl phosphonate (n-hexyl) (additive for lubricating oil of Example 1-1) [phosphorus content (theoretical value): 9.56% by mass]
2-B-2: (2-ethylhexyl) phosphoric acid glyceryl (2-ethylhexyl) (additive for lubricating oil of Example 1-2) [phosphorus content (theoretical value): 8.15% by mass]
2-B-3: (Glyceryl) phosphonic acid di (n-hexyl) (additive for lubricating oil of Example 1-3) [phosphorus content (theoretical value): 9.56% by mass]
2-b-1: Glyceryl phosphate (di-2-ethylhexyl) (additive for lubricating oil of Comparative Example 1-1) [phosphorus content (theoretical value): 7.82% by mass]
2-b-2: zinc dialkyldithiophosphate (ZDTP) (Chevron Japan KK, “OLOA 269R”) [phosphorus content (theoretical value): 6.3 mass%, sulfur content: 14.7 mass%, zinc Content: 8.2% by mass]
2-b-3: tricresyl phosphate (TCP) [Eighth Chemical Industry Co., Ltd., phosphorus content (theoretical value): 8.42% by mass]
 なお、表1中の「リン元素換算値」は、組成物全量を基準としたときの潤滑油用添加剤2-B-1~2-B-3及び2-b-1~2-b-3のリン元素換算の含有量を意味する。「リン元素換算値」は、潤滑油用添加剤2-B-1~2-B-3及び2-b-1~2-b-3に含まれるリン含有量(理論値)とそれぞれの仕込み量とから算出することができる。 The “phosphorus element conversion values” in Table 1 are the additives for lubricating oils 2-B-1 to 2-B-3 and 2-b-1 to 2-b— based on the total amount of the composition. 3 means phosphorus element equivalent content. “Phosphorus element conversion value” is the phosphorus content (theoretical value) contained in the additives 2-B-1 to 2-B-3 and 2-b-1 to 2-b-3 for lubricating oil and the respective preparations. It can be calculated from the quantity.
(溶解特性試験)
 実施例2-1~2-6及び比較例2-1~2-4の潤滑油組成物の濁りの有無を目視で確認して評価した。
(Dissolution characteristics test)
The lubricating oil compositions of Examples 2-1 to 2-6 and Comparative Examples 2-1 to 2-4 were visually evaluated for the presence or absence of turbidity.
(摩耗特性試験)
 摩耗特性試験は、ボールオンディスク(SRV)試験機で行った。SRV試験においては、ボールとして1/2インチ球(SUJ-2)、ディスクとして24φ6.9mm(SUJ-2)をそれぞれ用いた。SRV試験は、荷重34N、振幅1.0mm、温度80℃、試験時間0.5時間の条件下での摩耗痕径(mm)を測定して評価した。本試験においては、摩耗痕径が小さいほど、摩耗特性に優れることを意味する。
(Abrasion characteristics test)
The wear characteristic test was conducted with a ball-on-disk (SRV) tester. In the SRV test, a 1/2 inch sphere (SUJ-2) was used as the ball and a 24φ6.9 mm (SUJ-2) was used as the disk. The SRV test was evaluated by measuring the wear scar diameter (mm) under conditions of a load of 34 N, an amplitude of 1.0 mm, a temperature of 80 ° C., and a test time of 0.5 hours. In this test, the smaller the wear scar diameter, the better the wear characteristics.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 実施例1-1~1-3の潤滑油用添加剤を含有する実施例2-1~2-6の潤滑油組成物は、溶解性試験において濁りがなく、良好な摩耗特性を有していた。これに対して、基油のみの比較例2-1は、摩耗特性試験において、焼付きが発生した。また、比較例2-2の潤滑油組成物は、溶解性試験において濁りが観測され、炭化水素系基油に充分に溶解せず、摩耗特性試験において焼付きが発生した。さらに、比較例2-3及び2-4の潤滑油組成物は、実施例2-1~2-6の潤滑油組成物に比べて、摩耗痕径が大きかった。これらの結果から、本発明の潤滑油用添加剤が、炭化水素系基油に適用した場合においても充分な溶解性に有することが確認された。また、本発明の潤滑油用添加剤を用いた潤滑油組成物が、高荷重の過酷な条件下における摩耗、焼き付き等を低減し、優れた潤滑性を有することが確認された。 The lubricating oil compositions of Examples 2-1 to 2-6 containing the lubricating oil additives of Examples 1-1 to 1-3 are not turbid in the solubility test and have good wear characteristics. It was. On the other hand, in Comparative Example 2-1 using only the base oil, seizure occurred in the wear characteristic test. Further, the lubricating oil composition of Comparative Example 2-2 was observed to be turbid in the solubility test, was not sufficiently dissolved in the hydrocarbon base oil, and seizure occurred in the wear characteristic test. Further, the lubricating oil compositions of Comparative Examples 2-3 and 2-4 had larger wear scar diameters than the lubricating oil compositions of Examples 2-1 to 2-6. From these results, it was confirmed that the additive for lubricating oil of the present invention has sufficient solubility even when applied to a hydrocarbon base oil. Moreover, it was confirmed that the lubricating oil composition using the additive for lubricating oil of the present invention has excellent lubricity by reducing wear and seizure under severe conditions under high load.
[第3実施形態:潤滑油組成物の調製]
(実施例3-1~3-6及び比較例3-1、3-2)
 表2に示すように、実施例3-1~3-6及び比較例3-1、3-2の潤滑油組成物をそれぞれ調製した。得られた潤滑油組成物について、摩耗特性を検討し、その結果を表2に併記した。
[Third Embodiment: Preparation of Lubricating Oil Composition]
(Examples 3-1 to 3-6 and Comparative Examples 3-1 and 3-2)
As shown in Table 2, lubricating oil compositions of Examples 3-1 to 3-6 and Comparative Examples 3-1 and 3-2 were prepared. The resulting lubricating oil composition was examined for wear characteristics, and the results are also shown in Table 2.
 表2に示した各成分の詳細は以下のとおりである。
<エステル系基油>
 3-A-1:エステル系基油(トリメチロールプロパンとオレイン酸とのエステル、40℃動粘度:46mm/s)
<潤滑油用添加剤>
 3-B-1:(n-ヘキシル)ホスホン酸グリセリル(n-ヘキシル)(実施例1-1の潤滑油用添加剤)[リン含有量(理論値):9.56質量%]
 3-B-2:(2-エチルヘキシル)ホスホン酸グリセリル(2-エチルヘキシル)(実施例1-2の潤滑油用添加剤)[リン含有量(理論値):8.15質量%]
 3-B-3:(グリセリル)ホスホン酸ジ(n-ヘキシル)(実施例1-3の潤滑油用添加剤)[リン含有量(理論値):9.56質量%]
 3-b-1:リン酸トリクレジル(TCP)[第八化学工業株式会社、リン含有量(理論値):8.42質量%]
The details of each component shown in Table 2 are as follows.
<Ester base oil>
3-A-1: Ester base oil (ester of trimethylolpropane and oleic acid, kinematic viscosity at 40 ° C .: 46 mm 2 / s)
<Additive for lubricating oil>
3-B-1: (n-hexyl) glyceryl phosphonate (n-hexyl) (additive for lubricating oil of Example 1-1) [phosphorus content (theoretical value): 9.56% by mass]
3-B-2: (2-ethylhexyl) glyceryl phosphonate (2-ethylhexyl) (additive for lubricating oil of Example 1-2) [phosphorus content (theoretical value): 8.15% by mass]
3-B-3: (Glyceryl) phosphonic acid di (n-hexyl) (additive for lubricating oil of Example 1-3) [phosphorus content (theoretical value): 9.56% by mass]
3-b-1: tricresyl phosphate (TCP) [Eighth Chemical Industry Co., Ltd., phosphorus content (theoretical value): 8.42% by mass]
 なお、表2中の「リン元素換算値」は、組成物全量を基準としたときの潤滑油用添加剤3-B-1~3-B-3及び3-b-1のリン元素換算の含有量の総量を意味する。「リン元素換算値」は、潤滑油用添加剤に含まれるリン含有量(理論値)とそれぞれの仕込み量とから算出することができる。 The “phosphorus element conversion values” in Table 2 are the phosphorus element conversion values of the lubricating oil additives 3-B-1 to 3-B-3 and 3-b-1 based on the total amount of the composition. It means the total amount of content. The “phosphorus element conversion value” can be calculated from the phosphorus content (theoretical value) contained in the lubricating oil additive and the respective charged amounts.
(摩耗特性試験)
 摩耗特性試験は、ボールオンディスク(SRV)試験機で行った。SRV試験においては、ボールとして1/2インチ球(SUJ-2)、ディスクとして24φ6.9mm(SUJ-2)をそれぞれ用いた。SRV試験は、荷重25N、振幅1.0mm、温度80℃、試験時間0.5時間の条件下での摩耗痕径(mm)を測定して評価した。本試験においては、摩耗痕径が小さいほど、摩耗特性に優れることを意味する。
(Abrasion characteristics test)
The wear characteristic test was conducted with a ball-on-disk (SRV) tester. In the SRV test, a 1/2 inch sphere (SUJ-2) was used as the ball and a 24φ6.9 mm (SUJ-2) was used as the disk. The SRV test was evaluated by measuring the wear scar diameter (mm) under conditions of a load of 25 N, an amplitude of 1.0 mm, a temperature of 80 ° C., and a test time of 0.5 hours. In this test, the smaller the wear scar diameter, the better the wear characteristics.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 実施例1-1~1-3の潤滑油用添加剤を含有する実施例3-1~3-6の潤滑油組成物は、実施例1-1~1-3の潤滑油用添加剤を含有しない比較例3-1、3-2の潤滑油組成物と比較して、良好な摩耗特性を有していた。これらの結果から、本発明の潤滑油組成物が、高荷重の過酷な条件下における摩耗、焼き付き等を低減し、優れた潤滑性を有することが確認された。 The lubricating oil compositions of Examples 3-1 to 3-6 containing the lubricating oil additives of Examples 1-1 to 1-3 are the same as the lubricating oil additives of Examples 1-1 to 1-3. Compared to the lubricating oil compositions of Comparative Examples 3-1 and 3-2 which do not contain, they had good wear characteristics. From these results, it was confirmed that the lubricating oil composition of the present invention reduced wear, seizure, and the like under severe conditions under high loads and had excellent lubricity.
[第4実施形態:潤滑油組成物の調製]
(実施例4-1~4-8及び比較例4-1~4-3)
 表3に示すように、実施例4-1~4-8及び比較例4-1~4-3の潤滑油組成物をそれぞれ調製した。得られた潤滑油組成物について、摩擦特性を検討し、その結果を表3に併記した。
[Fourth Embodiment: Preparation of Lubricating Oil Composition]
(Examples 4-1 to 4-8 and Comparative Examples 4-1 to 4-3)
As shown in Table 3, lubricating oil compositions of Examples 4-1 to 4-8 and Comparative Examples 4-1 to 4-3 were prepared. The resulting lubricating oil composition was examined for friction characteristics, and the results are also shown in Table 3.
 表3に示した各成分の詳細は以下のとおりである。
<潤滑油基油>
 4-A-1:水素化精製鉱油(全芳香族含有量:0質量%、硫黄分:0質量ppm、100℃動粘度:4.2mm/s、粘度指数:122)
 4-A-2:水素化精製鉱油(全芳香族含有量:0質量%、硫黄分:0質量ppm、100℃動粘度:6.5mm/s、粘度指数:128)
<潤滑油用添加剤>
 4-B-1:(n-ヘキシル)ホスホン酸グリセリル(n-ヘキシル)(製造例1の潤滑油用添加剤)[リン含有量(理論値):9.56質量%]
 4-B-2:(2-エチルヘキシル)ホスホン酸グリセリル(2-エチルヘキシル)(製造例2の潤滑油用添加剤)[リン含有量(理論値):8.15質量%]
 4-B-3:(グリセリル)ホスホン酸ジ(n-ヘキシル)(製造例3の潤滑油用添加剤)[リン含有量(理論値):9.56質量%]
 4-b-1:リン酸トリクレジル(TCP)[第八化学工業株式会社、リン含有量(理論値):8.42質量%]
 4-b-2:ジアルキルジチオリン酸亜鉛(ZDTP)(シェブロンジャパン株式会社、「OLOA 262」)[リン含有量(理論値):6.2質量%、硫黄含有量:14.9質量%、亜鉛含有量:7.2質量%]
 4-C-1(摩擦調整剤):グリセリンモノオレート(株式会社ADEKA、「キクルーブ FM-210」)
 4-D-1(酸化防止剤):フェノール系酸化防止剤(BASF社、「IRGANOX L135」)
 4-E-1(粘度調整剤):オレフィンコポリマー(非分散型のエチレン-プロピレン共重合体、シェブロンジャパン株式会社、「PARATONE 8057」)
The details of each component shown in Table 3 are as follows.
<Lubricant base oil>
4-A-1: Hydrorefined mineral oil (total aromatic content: 0 mass%, sulfur content: 0 mass ppm, 100 ° C. kinematic viscosity: 4.2 mm 2 / s, viscosity index: 122)
4-A-2: Hydrorefined mineral oil (total aromatic content: 0 mass%, sulfur content: 0 mass ppm, 100 ° C. kinematic viscosity: 6.5 mm 2 / s, viscosity index: 128)
<Additive for lubricating oil>
4-B-1: (n-hexyl) glyceryl phosphonate (n-hexyl) (additive for lubricating oil of Production Example 1) [phosphorus content (theoretical value): 9.56% by mass]
4-B-2: (2-Ethylhexyl) phosphoric acid glyceryl (2-ethylhexyl) (additive for lubricating oil of Production Example 2) [phosphorus content (theoretical value): 8.15% by mass]
4-B-3: (Glyceryl) phosphonic acid di (n-hexyl) (additive for lubricating oil of Production Example 3) [phosphorus content (theoretical value): 9.56% by mass]
4-b-1: tricresyl phosphate (TCP) [Eighth Chemical Industry Co., Ltd., phosphorus content (theoretical value): 8.42% by mass]
4-b-2: zinc dialkyldithiophosphate (ZDTP) (Chevron Japan KK, “OLOA 262”) [phosphorus content (theoretical value): 6.2% by mass, sulfur content: 14.9% by mass, zinc Content: 7.2% by mass]
4-C-1 (friction modifier): glycerin monooleate (ADEKA Corporation, “Kicrub FM-210”)
4-D-1 (antioxidant): phenolic antioxidant (BASF, “IRGANOX L135”)
4-E-1 (viscosity modifier): olefin copolymer (non-dispersed ethylene-propylene copolymer, Chevron Japan, “PARATONE 8057”)
 なお、表3中の「リン元素換算値」は、組成物全量を基準としたときの潤滑油用添加剤4-B-1~4-B-3及び4-b-1、4-b-2のリン元素換算の含有量を意味する。「リン元素換算値」は、潤滑油用添加剤4-B-1~4-B-3及び4-b-1、4-b-2に含まれるリン含有量(理論値)とそれぞれの仕込み量とから算出することができる。 The “phosphorus element conversion values” in Table 3 are the additives for lubricating oil 4-B-1 to 4-B-3 and 4-b-1, 4-b- It means the content of 2 in terms of phosphorus element. “Phosphorus element equivalent value” is the phosphorus content (theoretical value) contained in additives 4-B-1 to 4-B-3, 4-b-1, and 4-b-2 for lubricating oil, and the respective preparations It can be calculated from the quantity.
(摩擦特性試験)
 摩擦係数の測定は、シリンダーオンディスク(SRV)試験機で行った。SRV試験においては、シリンダー(15φ22mm、高周波焼入れ)及びディスク(24φ7.9mm、浸炭焼入れ)の表面にDLC-Si膜を製膜したものを用いた。成膜はテトラメチルシラン(常温液体、約50℃で気体)を原料ガスとして使用してチャンバ内で作製した。DLC-Si膜は、Si(100)基板上に予め中間層としてTiを約0.3μmで成膜し、その後チャンバ内で薄膜を約1.0μmで成膜した。表面粗さは、中心線平均粗さRaが約1.0nm、最大高さ粗さRyが約29.8nmであった。また、摩擦特性試験を行う前にヘキサン及びアセトンを用いて、シリンダー及びディスクを15分間超音波洗浄した。
(Frictional property test)
The coefficient of friction was measured with a cylinder on disk (SRV) tester. In the SRV test, a DLC-Si film formed on the surface of a cylinder (15φ22 mm, induction hardening) and a disk (24φ7.9 mm, carburizing and quenching) was used. The film was formed in a chamber using tetramethylsilane (normal temperature liquid, gas at about 50 ° C.) as a source gas. The DLC-Si film was formed by previously forming Ti as an intermediate layer on a Si (100) substrate at about 0.3 μm, and then forming a thin film at about 1.0 μm in the chamber. As for the surface roughness, the center line average roughness Ra was about 1.0 nm, and the maximum height roughness Ry was about 29.8 nm. In addition, the cylinder and the disk were ultrasonically cleaned for 15 minutes using hexane and acetone before the friction characteristic test.
 摩擦特性試験は、荷重400N、振幅1.5mm、温度80℃、試験時間30分、振動数50Hzの条件下で行った。結果を表1に示す。なお、表3の摩擦係数は、試験時間25~28分の摩擦係数の平均値である。本試験においては、摩擦係数が小さいほど、摩擦特性に優れることを意味する。 The friction characteristic test was performed under the conditions of a load of 400 N, an amplitude of 1.5 mm, a temperature of 80 ° C., a test time of 30 minutes, and a frequency of 50 Hz. The results are shown in Table 1. The friction coefficient in Table 3 is an average value of the friction coefficients for a test time of 25 to 28 minutes. In this test, it means that it is excellent in a friction characteristic, so that a friction coefficient is small.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 実施例1-1~1-3の潤滑油用添加剤を含有する実施例4-1~4-8の潤滑油組成物は、ダイヤモンドライクカーボン材料が適用された摺動部材において、摺動部材同士の摺動面の摩擦係数が低減されていた。これに対して、実施例1-1~1-3の潤滑油用添加剤を含有しない比較例4-1~4-3の潤滑油組成物は、実施例4-1~4-8の潤滑油組成物に比べて、摩擦係数が大きくなった。これらの結果から、本発明の潤滑油組成物が、ダイヤモンドライクカーボン材料が適用された摺動部材において、摺動部材同士の摺動面の摩擦係数を低減でき、優れた潤滑性を示すことが確認された。 The lubricating oil compositions of Examples 4-1 to 4-8 containing the lubricating oil additive of Examples 1-1 to 1-3 are the sliding members to which the diamond-like carbon material is applied. The friction coefficient of the sliding surfaces between them was reduced. In contrast, the lubricating oil compositions of Comparative Examples 4-1 to 4-3 that do not contain the lubricating oil additive of Examples 1-1 to 1-3 are the lubricants of Examples 4-1 to 4-8. Compared to the oil composition, the friction coefficient was increased. From these results, the lubricating oil composition of the present invention can reduce the friction coefficient of the sliding surface between the sliding members in the sliding member to which the diamond-like carbon material is applied, and exhibits excellent lubricity. confirmed.

Claims (8)

  1.  下記一般式(1)で表される潤滑油用添加剤。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)中、Rはアルキレン基を示し、R及びRはそれぞれ独立に炭化水素基を示す。mは0又は1を示し、nは0又は1を示す。ただし、m+nは1である。]
    An additive for lubricating oil represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In General Formula (1), R 1 represents an alkylene group, and R 2 and R 3 each independently represent a hydrocarbon group. m represents 0 or 1, and n represents 0 or 1. However, m + n is 1. ]
  2.  潤滑油基油と、請求項1に記載の潤滑油用添加剤と、を含有する、潤滑油組成物。 A lubricating oil composition comprising a lubricating base oil and the lubricating oil additive according to claim 1.
  3.  前記潤滑油基油が、エステル系基油である、請求項2に記載の潤滑油組成物。 The lubricating oil composition according to claim 2, wherein the lubricating base oil is an ester base oil.
  4.  前記エステル系基油が、ポリオールエステルを含む、請求項3に記載の潤滑油組成物。 The lubricating oil composition according to claim 3, wherein the ester base oil contains a polyol ester.
  5.  前記潤滑油基油が、炭化水素系基油であり、
     対向して相対的に運動する一対の摺動部材の潤滑に用いられ、
     前記摺動部材の少なくとも一方が、ダイヤモンドライクカーボン膜で被覆された摺動面を有する、請求項2に記載の潤滑油組成物。
    The lubricating base oil is a hydrocarbon base oil,
    Used to lubricate a pair of sliding members that move relative to each other,
    The lubricating oil composition according to claim 2, wherein at least one of the sliding members has a sliding surface covered with a diamond-like carbon film.
  6.  酸化防止剤をさらに含有する、請求項5に記載の潤滑油組成物。 The lubricating oil composition according to claim 5, further comprising an antioxidant.
  7.  粘度調整剤をさらに含有する、請求項5又は6に記載の潤滑油組成物。 The lubricating oil composition according to claim 5 or 6, further comprising a viscosity modifier.
  8.  対向して相対的に運動する一対の摺動部材と、
     前記摺動部材を潤滑する請求項5~7のいずれか一項に記載の潤滑油組成物と、
    を備え、
     前記摺動部材の少なくとも一方が、ダイヤモンドライクカーボン膜で被覆された摺動面を有する、摺動機構。
    A pair of sliding members that move relative to each other;
    The lubricating oil composition according to any one of claims 5 to 7, which lubricates the sliding member;
    With
    A sliding mechanism in which at least one of the sliding members has a sliding surface covered with a diamond-like carbon film.
PCT/JP2018/012512 2017-04-28 2018-03-27 Additive for lubricant, lubricant composition and sliding mechanism WO2018198645A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-090498 2017-04-28
JP2017-090496 2017-04-28
JP2017090498A JP2018188521A (en) 2017-04-28 2017-04-28 Lubricant oil composition
JP2017090492A JP2018188519A (en) 2017-04-28 2017-04-28 Additive for lubricant oil and lubricant oil composition
JP2017090496A JP2018188520A (en) 2017-04-28 2017-04-28 Additive for lubricant oil and sliding mechanism using the same
JP2017-090492 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018198645A1 true WO2018198645A1 (en) 2018-11-01

Family

ID=63918901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012512 WO2018198645A1 (en) 2017-04-28 2018-03-27 Additive for lubricant, lubricant composition and sliding mechanism

Country Status (1)

Country Link
WO (1) WO2018198645A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164192A (en) * 1973-10-04 1982-10-08 Lubrizol Corp Functional fluid
WO1997010319A1 (en) * 1995-09-13 1997-03-20 Kao Corporation Lubricating oil composition
JPH09165593A (en) * 1995-10-09 1997-06-24 Kao Corp Lubricating oil composition
JPH09194767A (en) * 1996-01-24 1997-07-29 Kao Corp Magnetic recording material
JP2011032429A (en) * 2009-08-05 2011-02-17 Toyota Central R&D Labs Inc Low-frictional sliding member
WO2016170707A1 (en) * 2015-04-24 2016-10-27 Jxエネルギー株式会社 Lubricating oil composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164192A (en) * 1973-10-04 1982-10-08 Lubrizol Corp Functional fluid
WO1997010319A1 (en) * 1995-09-13 1997-03-20 Kao Corporation Lubricating oil composition
JPH09165593A (en) * 1995-10-09 1997-06-24 Kao Corp Lubricating oil composition
JPH09194767A (en) * 1996-01-24 1997-07-29 Kao Corp Magnetic recording material
JP2011032429A (en) * 2009-08-05 2011-02-17 Toyota Central R&D Labs Inc Low-frictional sliding member
WO2016170707A1 (en) * 2015-04-24 2016-10-27 Jxエネルギー株式会社 Lubricating oil composition

Similar Documents

Publication Publication Date Title
EP1385926B1 (en) Lubricating oil composition comprising an additive combination of a carboxylic acid and an amine as ant-rust agent
JP5237562B2 (en) Lubricating oil composition for ceramic ball rolling bearing
WO2005093020A1 (en) Lubricating oil composition for industrial machinery and equipment
WO2006043527A1 (en) Lubricating oil composition
WO2014129032A1 (en) Lubricant oil composition for transmissions
WO2015194236A1 (en) Lubricating oil composition for transmission
JP5249683B2 (en) Lubricating oil composition in contact with silver-containing material
JP2016216653A (en) Lubricant composition and system using the same
JP2018111779A (en) Lubricant composition for drive transmission apparatus
WO2018181203A1 (en) Additive for lubricant oils, lubricant oil composition, and sliding mechanism
US20180066200A1 (en) Pib as high viscosity lubricant base stock
JP5551330B2 (en) Lubricating oil composition
JP7247171B2 (en) Transmission lubricant composition
JP6444219B2 (en) Lubricating oil composition for gear oil
JP4828850B2 (en) Lubricant and lubricating fluid composition
WO2018198645A1 (en) Additive for lubricant, lubricant composition and sliding mechanism
JP6832213B2 (en) Lubricating oil composition and sliding mechanism using it
JP2018188520A (en) Additive for lubricant oil and sliding mechanism using the same
JP5403970B2 (en) Lubricating oil composition for gas engine
US11680223B2 (en) Lubricating oil composition
WO2023190163A1 (en) Lubricating oil composition
JP5698470B2 (en) Lubricating oil composition
JP2018172509A (en) Lubricating oil composition
JP2018188521A (en) Lubricant oil composition
JP2019157034A (en) Additive for friction adjustment, and lubricating oil composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790353

Country of ref document: EP

Kind code of ref document: A1