WO2018198451A1 - Variable capacity pump and control system - Google Patents

Variable capacity pump and control system Download PDF

Info

Publication number
WO2018198451A1
WO2018198451A1 PCT/JP2018/002133 JP2018002133W WO2018198451A1 WO 2018198451 A1 WO2018198451 A1 WO 2018198451A1 JP 2018002133 W JP2018002133 W JP 2018002133W WO 2018198451 A1 WO2018198451 A1 WO 2018198451A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable displacement
pump chamber
opening
discharge
displacement pump
Prior art date
Application number
PCT/JP2018/002133
Other languages
French (fr)
Japanese (ja)
Inventor
竹花 憲夫
Original Assignee
株式会社ミクニ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミクニ filed Critical 株式会社ミクニ
Publication of WO2018198451A1 publication Critical patent/WO2018198451A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/24Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member

Definitions

  • the present invention relates to a variable displacement pump that can inhale, pressurize, and discharge a fluid and change the discharge amount, and more particularly, to an internal gear type variable displacement pump including an inner rotor and an outer rotor, and a control system.
  • a trochoid pump including a housing, an inner rotor, and an outer rotor is known (see, for example, Patent Document 1).
  • the discharge (capacity) characteristics of the pump are determined in accordance with the high load operation region where the most discharge amount is required, such as high-speed rotation. Therefore, in the low load operation region such as medium speed rotation, the oil discharge amount becomes excessive, and the driving force is lost correspondingly.
  • a conventional variable displacement pump in a trochoid pump including a housing, an inner rotor, and an outer rotor, a control space (hydraulic chamber) provided in the housing and an outer rotor to be rotationally displaced by the hydraulic pressure in the control space.
  • a control space hydroaulic chamber
  • an outer rotor to be rotationally displaced by the hydraulic pressure in the control space.
  • a variable capacity mechanism including an adjustment ring disposed on the outer periphery and an OCV disposed outside the housing (see, for example, Patent Document 2).
  • the hydraulic pressure in the control space is appropriately controlled by the OCV, the rotation angle of the adjustment ring is adjusted, and the outer rotor is displaced with respect to the housing, so that the pump capacity is increased according to the engine speed. It is something to change.
  • variable capacity mechanism requires a larger adjustment ring than the outer rotor, the structure becomes complicated, large, and expensive.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a variable displacement pump and a control system capable of changing the discharge amount by solving the above-described problems of the conventional technology. There is.
  • variable displacement pump of the present invention exerts suction, pressurization, and discharge pumping action on the suction passage for sucking fluid, the suction port located downstream of the suction passage, and the fluid guided to the suction port.
  • variable displacement pump configured as described above includes a housing having a suction passage and a communication passage, and an inner rotor and an outer rotor disposed in the housing so as to define a pump chamber, and the flow control valve is located in the middle of the communication passage. You may employ
  • the housing may adopt a configuration including the suction port and the discharge port on the wall surface on which the side surfaces of the inner rotor and the outer rotor slide.
  • the housing may adopt a configuration in which the opening is provided on the wall surface on which the side surfaces of the inner rotor and the outer rotor slide.
  • variable displacement pump configured as described above, a configuration may be adopted in which the opening is disposed at a position closed by the side surface of the inner rotor when the inner rotor is in a predetermined rotation angle region.
  • the opening is disposed at a position where the opening is blocked by the side surface of the inner rotor from the middle of the discharge operation by the pump chamber and blocked from the pump chamber during the discharge operation. May be.
  • the opening is disposed at an approximately intermediate angular position in an angular range that defines a partition region in a state immediately before the pump chamber completes the suction action and starts the discharge action.
  • a configuration may be adopted.
  • the inner rotor and the outer rotor may be configured to be trochoidal.
  • a control system of the present invention is a control system for controlling a variable displacement pump having any one of the above-described configurations mounted on an engine to supply oil as a fluid, wherein the oil in the engine or the operation of the engine Based on information relating to the state, it includes a control means for driving and controlling the flow control valve.
  • variable displacement pump and control system configured as described above, it is necessary to appropriately control the flow control valve from fully closed to fully open while achieving simplification, miniaturization, cost reduction, etc.
  • the fluid can be discharged with a discharge amount according to the above. Therefore, it is possible to prevent the discharge of an excessive amount, and it is possible to reduce the loss of driving force accordingly.
  • FIG. 1 is an external perspective view showing an embodiment of a variable displacement pump according to the present invention. It is a disassembled perspective view of the variable displacement pump shown in FIG. It is sectional drawing of the variable displacement pump shown in FIG. It is a block diagram of the variable displacement pump shown in FIG. It is a schematic diagram of the variable displacement pump shown in FIG. It is a block diagram which shows the control system which controls a flow control valve, when the variable displacement pump which concerns on this invention is applied to an engine.
  • FIG. 2 is a view for explaining the operation of the variable displacement pump shown in FIG.
  • FIG. 8 is a view for explaining the operation of the variable displacement pump shown in FIG. 1, and is an operation diagram at a position where the inner rotor is rotated counterclockwise by 15 degrees from the position shown in FIG. 7.
  • FIG. 9 illustrates the operation of the variable displacement pump shown in FIG. 1, and is an operation diagram at a position where the inner rotor rotates 15 degrees counterclockwise from the position shown in FIG. 8.
  • FIG. 10 illustrates the operation of the variable displacement pump shown in FIG. 1, and is an operation diagram at a position where the inner rotor is rotated counterclockwise by 15 degrees from the position shown in FIG. 9.
  • FIG. 11 is a diagram for explaining the operation of the variable displacement pump shown in FIG. 1, and is an operation diagram at a position where the inner rotor is rotated counterclockwise by 15 degrees from the position shown in FIG. 10.
  • FIG. 12 is a view for explaining the operation of the variable displacement pump shown in FIG.
  • FIG. 13 is a diagram for explaining the operation of the variable displacement pump shown in FIG. 1, and is an operation diagram at a position where the inner rotor is rotated counterclockwise by 15 degrees from the position shown in FIG. 12.
  • FIG. 14 illustrates the operation of the variable displacement pump shown in FIG. 1, and is an operation diagram at a position where the inner rotor is rotated counterclockwise by 15 degrees from the position shown in FIG.
  • FIG. 15 is a view for explaining the operation of the variable displacement pump shown in FIG. 1 and is an operation diagram at a position where the inner rotor is rotated 15 degrees counterclockwise from the position shown in FIG. 14.
  • FIG. 16 is a view for explaining the operation of the variable displacement pump shown in FIG. 1, and is an operation diagram at a position where the inner rotor is rotated counterclockwise by 15 degrees from the position shown in FIG. 15.
  • FIG. 17 illustrates the operation of the variable displacement pump shown in FIG. 1, and is an operation diagram at a position where the inner rotor is rotated counterclockwise by 15 degrees from the position shown in FIG. 16. It is a graph which shows the discharge characteristic in the fixed rotation of the variable displacement pump which concerns on this invention. 6 is a graph showing hydraulic characteristics when the flow control valve is controlled in accordance with the engine speed when the variable displacement pump according to the present invention is applied to an engine.
  • variable displacement pump is a trochoidal variable displacement pump VP that supplies oil as a fluid in an application object such as an engine.
  • the variable displacement pump VP includes a housing H, a drive shaft 40 that rotates about an axis S in the direction of arrow R (counterclockwise in FIG. 5), an inner rotor 50, and an outer rotor 60.
  • the flow control valve 70 is provided.
  • the housing H is formed by a three-part structure of the base 10, the rotor case 20, and the cover 30.
  • the variable displacement pump VP includes an introduction passage 1 a and an oil pan 2 connected to a supply destination 1 such as a lubrication region in the engine E in the engine E to be applied.
  • the oil is disposed between the outlet passages 2a connected to the outlet, and the oil guided from the outlet passage 2a is sucked, pressurized and discharged, and supplied from the introduction passage 1a to the supply destination 1.
  • the discharge oil discharged from the discharge port 14 of the variable displacement pump VP is returned to the oil pan 2 through the return passage 3 and the relief valve 4 when an overpressure state of a predetermined level or higher is reached. It is like that.
  • the base 10 is formed in a flat plate shape that defines a joint surface 10a joined to the engine E and a joint surface 10b joined to the rotor case 20 using a material such as steel, cast iron, sintered steel, and an aluminum alloy. Yes.
  • the joint surface 10b also functions as a wall surface on which the side surface 51 of the inner rotor 50 and the side surface 61 of the outer rotor 60 slide.
  • the base 10 includes a bearing hole 11, a suction passage 12, a suction port 13, a discharge port 14, a discharge passage 15, a communication passage 16, a positioning hole 17 for fitting a positioning pin D, and a fastening bolt (not fixed) when fastened to the engine E. It is provided with a circular hole 18 through which it is shown.
  • the bearing hole 11 is formed to support the drive shaft 40 so as to be rotatable about the axis S.
  • the suction passage 12 is formed in a groove shape on the joint surface 10 a so as to connect the outlet passage 2 a of the engine E and the suction port 13.
  • the suction port 13 is formed so as to penetrate from the joint surface 10a to the joint surface 10b so as to face the suction passage 12 and the lead-out passage 2a and to form a substantially crescent-shaped outline indicated by a two-dot chain line in FIG.
  • the discharge port 14 is formed to penetrate from the joint surface 10a to the joint surface 10b so as to face the discharge passage 15 and the introduction passage 1a and to form a substantially crescent-shaped outline indicated by a two-dot chain line in FIG.
  • the discharge passage 15 is formed in a groove shape on the joint surface 10 a so as to connect the introduction passage 1 a of the engine E and the discharge port 14.
  • the communication path 16 forms a part of the communication path that allows the pump chamber PC and the suction path 12 to communicate with each other.
  • the communication path 16 is formed in a cylindrical shape extending in parallel with the axis S, and is connected to the bonding surface 10a side from the bonding surface 10b. It is formed so as to penetrate to the suction passage 12.
  • the rotor case 20 is made of a material such as steel, cast iron, sintered steel, aluminum alloy or the like, and has a substantially annular shape that defines a joining surface 20a joined to the joining surface 10b of the base 10 and a joining surface 20b joined to the cover 30. Is formed.
  • the rotor case 20 has an inner wall 21, a communication path 22, a fitting hole for fitting the positioning pin D, and a screw hole / positioning hole 23 in which a screw hole for screwing the screw B is formed on the same axis, and a fastening bolt.
  • a circular hole 24 is provided.
  • the inner wall surface 21 is a cylindrical surface centered on the center line L2 so as to rotatably support the outer peripheral surface 63 of the outer rotor 60 about the center line L2 deviated from the center line L1 of the inner rotor 50 by a predetermined amount. Is formed.
  • the communication path 22 forms a part of the communication path that allows the pump chamber PC and the suction path 12 to communicate with each other.
  • the communication path 22 extends in parallel with the axis S and is formed in a cylindrical shape coaxially with the communication path 16. It is formed so as to penetrate from the surface 20b to the joint surface 20a.
  • the cover 30 is made of a material such as steel, cast iron, sintered steel, or aluminum alloy, and protrudes like a bowl on the joint surface 30a, the outer surface 30b, and the outer surface 30b that are joined to the joint surface 20b of the rotor case 20. It is formed in a substantially flat plate shape that defines the portion 30c.
  • the joint surface 30a also functions as a wall surface on which the side surface 52 of the inner rotor 50 and the side surface 62 of the outer rotor 60 slide.
  • the cover 30 includes an opening 31, a communication path 32 (32 a, 32 b, 32 c), a fitting recess 33 formed in the middle of the communication path 32, a circular hole 34 for passing a screw B, and a circular hole 35 for passing a fastening bolt. ing.
  • the opening 31 is a joint surface so as to open a communication path 32 a that forms a part of the communication path 32 toward the pump chamber PC defined by the inner rotor 50 and the outer rotor 60. 30a.
  • the opening 31 is formed so as to open to the pump chamber PC in the region of the joint surface 30 a removed from the suction port 13 and the discharge port 14 in the rotational direction.
  • the opening 31 is disposed at a position that is opened from the side surface 52 of the inner rotor 50 when the inner rotor 50 is in a predetermined rotation angle region. Further, the opening 31 starts to be blocked by the side surface 52 of the inner rotor 50 in the middle of the discharge action by the pump chamber PC as shown in FIG. 15, and from the pump chamber PC during the discharge action as shown in FIGS. As shown in FIGS.
  • the position where the inner rotor 50 is located is blocked by the side surface 52 of the inner rotor 50 when the inner rotor 50 is in a predetermined rotation angle region.
  • the opening part 31 is an area
  • the opening 31 By arranging the opening 31 at the position as described above, the oil in the pump chamber PC is opened before the oil sucked into the pump chamber PC is discharged by appropriately controlling the flow rate control valve 70. It is possible to efficiently return to the suction passage 12 via the portion 31 and the communication passages 32, 22, 16. Therefore, it is possible to prevent excessive oil from being discharged, and it is possible to reduce loss of useless driving force.
  • the opening 31 has an angular region that defines the partition region of the pump chamber PC in the partition region immediately before the pump chamber PC completes the suction action and starts the discharge action. It may be arranged at a substantially intermediate angular position.
  • the partition region means that the pump chamber PC is connected to the suction port 13 and the discharge port by the joint surfaces 10 b and 30 a of the housing H, the outer peripheral wall surface of the inner rotor 50, and the inner peripheral wall surface of the outer rotor 60.
  • 14 is a region (geometric partition section) that is in a state of being partitioned from 14 and blocked.
  • the opening 31 By arranging the opening 31 at the position as described above, even if the flow rate control valve 70 malfunctions and stops in the open state, when the discharge amount in the closed state is 100%, A discharge amount of 60% or more can be secured.
  • the circular hole was shown as a shape of the opening part 31, as long as it is a shape which opens the communicating path 32 to the pump chamber PC, it is not limited to this, Other shapes and forms are employ
  • the communication path 32 forms part of a communication path that allows the pump chamber PC and the suction path 12 to communicate with each other, and as shown in FIG. 3, the communication path 32 includes a communication path 32a, a communication path 32b, and a communication path 32c.
  • the communication path 32a is formed in a cylindrical shape that extends parallel to the axis S from the joint surface 30a toward the protrusion 30c.
  • the communication path 32b is formed in a cylindrical shape that extends perpendicular to the axis S in the protrusion 30c.
  • the communication path 32c extends in parallel with the axis S from the protrusion 30c toward the joint surface 30a and is formed in a cylindrical shape coaxially with the communication paths 22 and 16.
  • the fitting recess 33 is for fitting and fixing the flow control valve 70, and is formed in the projecting portion 30c at the intersection region of the communication path 32b and the communication path 32c. Then, by fitting the fitting convex portion 72 of the flow control valve 70 into the fitting concave portion 33, the passage area of the communication passage 32 is adjusted in a range from fully closed to fully open according to the operation of the valve body 76. It has come to be.
  • the housing H includes the base 10, the rotor case 20, and the cover 30, and the suction passage 12, the suction port 13, the discharge port 14, and the discharge passage 15 are provided to the base 10.
  • a simple structure in which the communication passage 22 is provided in 20 and the fitting recess 33 for attaching the communication passage 32 and the flow control valve 70 to the cover 30 is provided.
  • a communication path that connects the pump chamber PC and the suction path 12 is formed by the communication path 32 of the cover 30, the communication path 22 of the rotor case 20, and the communication path 16 of the base 10.
  • the communication passages are divided into separate members, that is, the base 10, the rotor case 20, and the cover 30, so that drilling of the communication passages 16, 22, 32 a, 32 b, and 32 c is easy. Can be done.
  • the drive shaft 40 is formed by extending in the axis S direction using steel or the like, and is a fitting portion that is fitted into the coupling portion 41 to which the driving force from the engine E is transmitted and the fitting hole 53 of the inner rotor 50. 42, a through hole 43 provided in the fitting portion 42 and fitted with the detent pin F is provided.
  • the inner rotor 50 is formed in a substantially star shape that defines a side surface 51 that slides on the joint surface 10b of the base 10 and a side surface 52 that slides on the joint surface 30a of the cover 30 using a material such as steel or sintered steel.
  • the inner rotor 50 includes a fitting hole 53, a pin groove 54, four convex portions (ridges) 55, and four concave portions (valleys) 56, and is formed as an external gear having a tooth shape with a trochoidal curve.
  • the fitting hole 53 is formed so that the fitting portion 42 of the drive shaft 40 is fitted.
  • the pin groove 54 is formed so as to fit both side portions of the detent pin F inserted into the through hole 43 of the drive shaft 40.
  • the inner rotor 50 rotates integrally with the drive shaft 40 in the counterclockwise direction in FIG. 5 with the center line L1 coaxial with the axis S as the center of rotation.
  • the outer rotor 60 is formed in an annular shape that defines a side surface 61 that slides on the joint surface 10b of the base 10 and a side surface 62 that slides on the joint surface 30a of the cover 30 using a material such as steel or sintered steel. ing.
  • the outer rotor 60 includes a circular outer peripheral surface 63 centering on the center line L2, five convex portions 64, and five concave portions 65, and is formed as an internal gear having a tooth shape that can mesh with the inner rotor 50.
  • the outer peripheral surface 63 is formed so as to be rotatably supported in contact with the inner wall surface 21 of the rotor case 20.
  • the five convex portions 64 and the five concave portions 65 are formed so as to partially mesh with the four convex portions 55 and the four concave portions 56 of the inner rotor 50.
  • the outer rotor 60 rotates counterclockwise in FIG. 5 with the center line L2 as the rotation center at a slower speed than the inner rotor 50 while interlocking with the rotation of the inner rotor 50 rotating about the center line L1. Rotate. Further, when the inner rotor 50 and the outer rotor 60 are partially meshed with each other, a pump chamber PC that continuously exerts suction, pressurization, and discharge actions is defined between them.
  • the flow control valve 70 includes a case 71, a fitting convex portion 72 continuous with the case 71, an exciting coil 73, an iron core 74, a rod 75 connected to the iron core 74, and a rod 75.
  • the connected valve body 76 and a spring 77 that biases the valve body 76 in the valve closing direction are provided.
  • the case 71 is formed in a cylindrical shape covering the whole with a magnetic metal material or the like.
  • the fitting convex portion 72 is formed in a cylindrical shape with a diameter smaller than that of the case 71, and is firmly fitted into the fitting concave portion 33 of the cover 30.
  • the fitting projection 72 includes a valve seat 72a in which the valve element 76 is seated, an opening 72b communicating with the communication passage 32b on the outer peripheral surface, and an opening 72c communicating with the communication passage 32c on the end surface.
  • the flow control valve 70 configured as described above is an electromagnetic valve that operates the iron core 74 using the magnetomotive force of the exciting coil 73 as a drive source.
  • the flow control valve 70 operates as follows by appropriately controlling the energization of the coil 73. That is, when the coil 73 is not energized, the urging force of the spring 77 causes the valve body 76 to be seated on the valve seat 72a and shut off the communication passages 32b and 32c. On the other hand, in a state where the coil 73 is appropriately energized, the valve element 76 separates from the valve seat 72a and opens the communication passages 32b and 32c against the urging force of the spring 77.
  • the lift amount of the valve body 76 is appropriately adjusted, and the flow rate of oil flowing through the communication passage 32 is adjusted.
  • the flow control valve 70 is a normally closed electromagnetic valve that is set to a closed state that fully closes the communication path 32 when the coil 73 is not energized, the closed state is maintained even if energization failure occurs. The required maximum discharge amount can be satisfied.
  • a normally open solenoid valve that maintains a valve open state in the case of poor energization may be employed.
  • the attachment method of the flow rate control valve 70 is not limited to the method of firmly fitting and fixing the fitting convex portion 72 to the fitting concave portion 33, and the method of fixing the flange or the like provided in the case 71 to the cover 30 with screws. Other techniques can be employed. Further, the mounting direction of the flow control valve 70 is not limited to the direction protruding from the cover 30 in the direction of the axis S, but can be changed together with the path of the communication path 32 so as to satisfy the layout constraint.
  • variable displacement pump VP having the above configuration
  • a base 10 a rotor case 20, a cover 30, a drive shaft 40, an inner rotor 50, an outer rotor 60, a flow control valve 70, three screws B, three positioning pins D, and one detent pin F are prepared.
  • the rotor case 20 is joined to the base 10 while the positioning pins D are press-fitted into the positioning holes 17 and the screw holes / positioning holes 23.
  • the inner rotor 50 and the outer rotor 60 are fitted inside the rotor case 20.
  • the rotation prevention pin F is inserted into the through hole 43 of the drive shaft 40, and the fitting portion 42 is fitted into the fitting hole 53 while the driving shaft 40 is passed through the fitting hole 53 and the bearing hole 11.
  • the stop pin F is fitted into the pin groove 54.
  • the drive shaft 40 is rotated integrally with the inner rotor 50.
  • the connection part 41 of the drive shaft 40 is larger than a shaft diameter, the procedure in which the drive shaft 40 is inserted from the joint surface 10a side of the base 10 and then the detent pin F is inserted may be used.
  • the cover 30 is joined to the joint surface 20 b of the rotor case 20, and the three screws B are screwed into the screw hole / positioning hole 24 while passing through the circular hole 34. Then, the flow control valve 70 is fitted into the fitting recess 33 of the cover 30 and fixed. Thus, the assembly of the variable displacement pump VP is completed.
  • the above assembling procedure is an example, and other procedures can be adopted.
  • variable displacement pump VP when the variable displacement pump VP is attached to the engine E as an application object, the joint surface 10a of the base 10 is attached to the engine E while the connecting portion 41 of the drive shaft 40 is connected to the rotational drive portion of the engine E. Contact the joint surface. Thereafter, the fastening bolt is passed through the circular holes 35, 24, and 18 and screwed into the screw holes of the engine E, whereby the mounting operation is completed.
  • the variable displacement pump VP having the above configuration is driven and controlled by a control system as shown in FIG.
  • the control system includes a control unit 100 as control means, an ECU 110 mounted on a vehicle to control the entire system, a battery 120, and a detection circuit 130.
  • the control unit 100 includes a microcomputer 101 that performs control, a drive circuit 102 that drives a flow control valve 70 based on a control signal of the microcomputer 101, and an I / F (interface) that transmits and receives signals between the microcomputer 101 and the ECU 110 by communication. )
  • a circuit 103 and a power supply circuit 104 for guiding the power supply to the microcomputer 101 are provided.
  • the microcomputer 101 appropriately calculates the magnitude of the energization current of the coil 73 in order to control the opening / closing operation of the flow control valve 70 based on detection information of the detection circuit 130, for example, oil pressure, oil temperature, engine speed, and the like. It is supposed to be.
  • the detection circuit 130 detects the pressure and temperature of oil in the lubrication region, the rotation speed of the engine E, and the like based on output signals from the hydraulic sensor E1, the oil temperature sensor E2, the engine rotation sensor E3, and the like.
  • the flow control valve 70 is appropriately driven and controlled by the control unit 100 via the ECU 110. That is, the control unit 100 controls the drive of the flow control valve 70 based on the oil in the engine E or information related to the operating state of the engine E.
  • the oil pressure and the oil temperature are shown as the information related to the oil, but the present invention is not limited to this, and the viscosity of the oil, the dirt state of the oil, and the like can be applied as the information.
  • the engine speed is shown as information related to the operating state of the engine E, the present invention is not limited to this, and it is possible to apply information specifying the throttle opening, the coolant temperature, and other operating states. it can.
  • FIGS. 7 to 17 show time-series operation states when the drive shaft 40 rotates counterclockwise every 15 degrees.
  • a description will be given focusing on the front side in the rotation direction R of one convex portion 55 (with a black circle mark) of the inner rotor 50.
  • the opening 31 is completely closed by the side surface 52. That is, in the process from the state shown in FIG. 15 to the state shown in FIG. 16, the opening 31 is closed by the side surface 52 of the inner rotor 50 in the middle of the pressurizing and discharging action by the pump chamber PC, and the pressurizing and discharging action. It will be in the state where it was cut off from inside pump room PC. Therefore, after the opening 31 is completely closed, only the oil discharge operation from the pump chamber PC toward the discharge port 14 is performed even if the flow control valve 70 is in the open state.
  • the opening 31 is open from the side surface 52 of the inner rotor 52 when it is in the rotation angle region as shown in FIGS. 11 to 15, and the state shown in FIG.
  • the opening 31 is in a state of being closed by the side surface 52 of the inner rotor 52 when it is in the rotation angle region.
  • the flow rate control valve is in a state where the opening 31 is opened and in the rotation angle region of suction action to pressurization and discharge action.
  • the valve 70 By appropriately opening the valve 70, it is possible to efficiently return the unfilled oil filled in the pump chamber PC to the suction passage 12. Thereby, the loss of the driving force for discharging excess oil can be reduced.
  • the flow control valve 70 is appropriately controlled to open the oil, and the oil is directly sucked into the pump chamber PC from the suction passage 12. Can do. Thereby, generation
  • the flow control valve 70 is appropriately controlled to be opened and closed in a use region where the discharge amount set as the fixed discharge performance is not required, so that the pump before discharge By returning the fluid (oil) sucked into the chamber PC to the suction passage 12 through the communication passages 32, 22, and 16, the discharge pressure can be lowered and the driving load can be reduced as shown in FIG. .
  • the flow rate control valve 70 is set by the control unit 100 when the engine E is in the medium speed rotation region as shown in FIG.
  • the drive can be controlled so that the valve is opened at a predetermined opening.
  • the control unit 100 performs drive control to open the flow rate control valve 70 with a predetermined opening, thereby It is possible to suppress or prevent the occurrence of cavitation by suppressing the negative pressure of the chamber PC.
  • the flow control valve 70 is appropriately controlled between fully closed and fully opened while achieving simplification of structure, size reduction, cost reduction, and the like.
  • the fluid can be discharged with a discharge amount as required. Therefore, an excessive amount of discharge can be prevented, and the loss of driving force can be reduced accordingly, and the negative pressure in the pump chamber PC can be suppressed to suppress or prevent the occurrence of cavitation.
  • the trochoid pump containing the inner rotor 50 and the outer rotor 60 which make a trochoid tooth profile was shown as a pump action member which demarcates the pump chamber PC, it is not limited to this.
  • the present invention may be applied to a configuration including an inner rotor and an outer rotor having involute teeth, or an inner rotor and an outer rotor having other tooth shapes.
  • the inner rotor 50 and the outer rotor 60 are configured with the trochoidal four-leaf five-node, but the present invention is not limited to this, and a configuration with other numbers may be adopted. .
  • a trochoid pump is shown as a pump.
  • the present invention is not limited to this, and a vane pump or other positive displacement type may be used as long as it defines a pump chamber that exerts suction, pressurization, and discharge. You may employ
  • the flow control valve 70 including the valve body 76 that reciprocates in the axial direction is shown as the flow control valve.
  • the flow control valve 70 is not limited to this, and is not limited to this. You may employ
  • the present invention is adopted in the configuration in which the housing H is separated into the base 10, the rotor case 20, and the cover 30 is shown.
  • the present invention is not limited to this.
  • a configuration having a body shape may be adopted, and in this portion, a communication path that allows the pump chamber and the suction path to communicate with each other, and an opening that opens the communication path in the pump chamber may be provided.
  • variable displacement pump VP is applied to an engine mounted on an automobile or the like.
  • the present invention is not limited to this and is applied to a transmission and other lubrication systems.
  • the present invention may be applied to an apparatus using a fluid other than oil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

This variable capacity pump is provided with the following: an intake passage (12) that takes in a fluid; an intake opening (13) that is located downstream of the intake passage; a pump chamber (PC) that pumps the fluid guided into the intake opening by taking in, pressurizing, and discharging the fluid; a discharge opening (14) that is located downstream of the pump chamber; a communication path (32, 22, 16) that has an opening (31) formed in the pump chamber, in a region away from the intake opening and discharge opening in order to connect the pump chamber and the intake passage; and a flow rate control valve (70) that controls the flow rate of the fluid in the communication paths. Due to this configuration, by appropriately controlling the flow rate control valve between being completely closed and completely open, it is possible to discharge the fluid at the necessary discharge rate and prevent excessive discharge of fluid, thereby correspondingly suppressing loss of drive power, while achieving a simplified structure, miniaturization, lower cost, and the like.

Description

可変容量型ポンプ及び制御システムVariable displacement pump and control system
 本発明は、流体を吸入、加圧及び吐出すると共に吐出量を変更可能な可変容量型ポンプに関し、特に、インナーロータ及びアウターロータを備えた内接ギヤ式の可変容量型ポンプ及び制御システムに関する。 The present invention relates to a variable displacement pump that can inhale, pressurize, and discharge a fluid and change the discharge amount, and more particularly, to an internal gear type variable displacement pump including an inner rotor and an outer rotor, and a control system.
 従来の固定容量型ポンプとしては、ハウジング、インナーロータ及びアウターロータを備えたトロコイドポンプが知られている(例えば、特許文献1参照)。
 このトロコイドポンプは、例えば車両のエンジンにおいてオイルを供給するために適用される場合、高速回転等の最も吐出量が必要とされる高負荷運転領域に合わせてポンプの吐出(容量)特性が決定されるため、中速回転等の低負荷運転領域ではオイルの吐出量が余剰になり、その分だけ駆動力の損失を招くことになる。
As a conventional fixed displacement pump, a trochoid pump including a housing, an inner rotor, and an outer rotor is known (see, for example, Patent Document 1).
When this trochoid pump is applied, for example, to supply oil in a vehicle engine, the discharge (capacity) characteristics of the pump are determined in accordance with the high load operation region where the most discharge amount is required, such as high-speed rotation. Therefore, in the low load operation region such as medium speed rotation, the oil discharge amount becomes excessive, and the driving force is lost correspondingly.
 一方、従来の可変容量型ポンプとしては、ハウジング、インナーロータ及びアウターロータを含むトロコイドポンプにおいて、ハウジング内に設けられた制御空間(油圧室)、制御空間内の油圧によって回転変位するべくアウターロータの外周に配置された調整リング、ハウジングの外側に配置されたOCVを含む容量可変機構を備えたものが知られている(例えば、特許文献2を参照)。 On the other hand, as a conventional variable displacement pump, in a trochoid pump including a housing, an inner rotor, and an outer rotor, a control space (hydraulic chamber) provided in the housing and an outer rotor to be rotationally displaced by the hydraulic pressure in the control space. There is known one having a variable capacity mechanism including an adjustment ring disposed on the outer periphery and an OCV disposed outside the housing (see, for example, Patent Document 2).
 この容量可変機構では、OCVにより制御空間内の油圧を適宜制御して、調整リングの回転角度を調整し、ハウジングに対してアウターロータを変位させることにより、エンジンの回転数に応じてポンプ容量を変化させるものである。 In this capacity variable mechanism, the hydraulic pressure in the control space is appropriately controlled by the OCV, the rotation angle of the adjustment ring is adjusted, and the outer rotor is displaced with respect to the housing, so that the pump capacity is increased according to the engine speed. It is something to change.
 しかしながら、上記の容量可変機構は、アウターロータよりも大きい調整リングを必要とするため、構造の複雑化、大型化、高コスト化等を招くものである。 However, since the variable capacity mechanism requires a larger adjustment ring than the outer rotor, the structure becomes complicated, large, and expensive.
特開2001-182669号公報JP 2001-182669 A 特開2014-139420号公報JP 2014-139420 A
 本発明は、上記の事情に鑑みて成されたものであり、その目的とするところは、上記従来技術の課題等を解消して吐出量を変更可能な可変容量型ポンプ及び制御システムを提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a variable displacement pump and a control system capable of changing the discharge amount by solving the above-described problems of the conventional technology. There is.
 本発明の可変容量型ポンプは、流体を吸入する吸入通路と、吸入通路の下流に位置する吸入口と、吸入口に導かれた流体に対して、吸入、加圧及び吐出のポンプ作用を及ぼすポンプ室と、ポンプ室の下流に位置する吐出口と、ポンプ室と吸入通路とを連通させるべく、吸入口及び吐出口から外れた領域においてポンプ室に開口する開口部を有する連通路と、連通路を流れる流体の流量を制御する流量制御弁とを含む、構成となっている。 The variable displacement pump of the present invention exerts suction, pressurization, and discharge pumping action on the suction passage for sucking fluid, the suction port located downstream of the suction passage, and the fluid guided to the suction port. A pump chamber, a discharge port located downstream of the pump chamber, a communication passage having an opening that opens to the pump chamber in a region away from the suction port and the discharge port, and a communication path; And a flow rate control valve that controls the flow rate of the fluid flowing through the passage.
 上記構成の可変容量型ポンプにおいて、吸入通路及び連通路を有するハウジングと、ポンプ室を画定するべくハウジング内に配置されたインナーロータ及びアウターロータとを備え、流量制御弁は、連通路の途中に介在するようにハウジングに設けられている、構成を採用してもよい。 The variable displacement pump configured as described above includes a housing having a suction passage and a communication passage, and an inner rotor and an outer rotor disposed in the housing so as to define a pump chamber, and the flow control valve is located in the middle of the communication passage. You may employ | adopt the structure provided in the housing so that it may interpose.
 上記構成の可変容量型ポンプにおいて、ハウジングは、インナーロータ及びアウターロータの側面が摺動する壁面において、上記吸入口及び吐出口を含む、構成を採用してもよい。 In the variable displacement pump having the above configuration, the housing may adopt a configuration including the suction port and the discharge port on the wall surface on which the side surfaces of the inner rotor and the outer rotor slide.
 上記構成の可変容量型ポンプにおいて、ハウジングは、インナーロータ及びアウターロータの側面が摺動する壁面において、上記開口部を有する、構成を採用してもよい。 In the variable displacement pump having the above-described configuration, the housing may adopt a configuration in which the opening is provided on the wall surface on which the side surfaces of the inner rotor and the outer rotor slide.
 上記構成の可変容量型ポンプにおいて、開口部は、インナーロータが所定の回転角度領域にあるとき、インナーロータの側面により閉塞される位置に配置されている、構成を採用してもよい。 In the variable displacement pump configured as described above, a configuration may be adopted in which the opening is disposed at a position closed by the side surface of the inner rotor when the inner rotor is in a predetermined rotation angle region.
 上記構成の可変容量型ポンプにおいて、開口部は、ポンプ室による吐出作用の途中からインナーロータの側面により閉塞されて吐出作用中のポンプ室から遮断される位置に配置されている、構成を採用してもよい。 In the variable displacement pump having the above configuration, the opening is disposed at a position where the opening is blocked by the side surface of the inner rotor from the middle of the discharge operation by the pump chamber and blocked from the pump chamber during the discharge operation. May be.
 上記構成の可変容量型ポンプにおいて、開口部は、ポンプ室が吸入作用を完了しかつ吐出作用を開始する直前の状態にある仕切り領域を画定する角度範囲において、略中間の角度位置に配置されている、構成を採用してもよい。 In the variable displacement pump configured as described above, the opening is disposed at an approximately intermediate angular position in an angular range that defines a partition region in a state immediately before the pump chamber completes the suction action and starts the discharge action. A configuration may be adopted.
 上記構成の可変容量型ポンプにおいて、インナーロータ及びアウターロータは、トロコイド式である、構成を採用いてもよい。 In the variable displacement pump configured as described above, the inner rotor and the outer rotor may be configured to be trochoidal.
 本発明の制御システムは、流体としてのオイルを供給するべくエンジンに搭載された上記構成のいずれか一つをなす可変容量型ポンプを制御する制御システムであって、エンジン内のオイル又はエンジンの運転状態に係る情報に基づいて、流量制御弁を駆動制御する制御手段を含む、構成となっている。 A control system of the present invention is a control system for controlling a variable displacement pump having any one of the above-described configurations mounted on an engine to supply oil as a fluid, wherein the oil in the engine or the operation of the engine Based on information relating to the state, it includes a control means for driving and controlling the flow control valve.
 上記構成をなす可変容量型ポンプ及び制御システムによれば、構造の簡略化、小型化、低コスト化等を達成しつつ、流量制御弁を全閉~全開の間で適宜制御することにより、必要に応じた吐出量にて流体を吐出することができる。それ故に、余剰量の吐出を防止でき、その分だけ駆動力の損失を低減できる。 According to the variable displacement pump and control system configured as described above, it is necessary to appropriately control the flow control valve from fully closed to fully open while achieving simplification, miniaturization, cost reduction, etc. The fluid can be discharged with a discharge amount according to the above. Therefore, it is possible to prevent the discharge of an excessive amount, and it is possible to reduce the loss of driving force accordingly.
本発明に係る可変容量型ポンプの一実施形態を示す外観斜視図である。1 is an external perspective view showing an embodiment of a variable displacement pump according to the present invention. 図1に示す可変容量型ポンプの分解斜視図である。It is a disassembled perspective view of the variable displacement pump shown in FIG. 図1に示す可変容量型ポンプの断面図である。It is sectional drawing of the variable displacement pump shown in FIG. 図1に示す可変容量型ポンプのブロック図である。It is a block diagram of the variable displacement pump shown in FIG. 図1に示す可変容量型ポンプの模式図である。It is a schematic diagram of the variable displacement pump shown in FIG. 本発明に係る可変容量型ポンプをエンジンに適用した場合において、流量制御弁を制御する制御システムを示すブロック図である。It is a block diagram which shows the control system which controls a flow control valve, when the variable displacement pump which concerns on this invention is applied to an engine. 図1に示す可変容量型ポンプの動作を説明するものであり、吸入行程の開始側の回転位置における動作図である。FIG. 2 is a view for explaining the operation of the variable displacement pump shown in FIG. 図1に示す可変容量型ポンプの動作を説明するものであり、図7に示す位置からインナーロータが15度反時計回りに回転した位置における動作図である。FIG. 8 is a view for explaining the operation of the variable displacement pump shown in FIG. 1, and is an operation diagram at a position where the inner rotor is rotated counterclockwise by 15 degrees from the position shown in FIG. 7. 図1に示す可変容量型ポンプの動作を説明するものであり、図8に示す位置からインナーロータが15度反時計回りに回転した位置における動作図である。FIG. 9 illustrates the operation of the variable displacement pump shown in FIG. 1, and is an operation diagram at a position where the inner rotor rotates 15 degrees counterclockwise from the position shown in FIG. 8. 図1に示す可変容量型ポンプの動作を説明するものであり、図9に示す位置からインナーロータが15度反時計回りに回転した位置における動作図である。FIG. 10 illustrates the operation of the variable displacement pump shown in FIG. 1, and is an operation diagram at a position where the inner rotor is rotated counterclockwise by 15 degrees from the position shown in FIG. 9. 図1に示す可変容量型ポンプの動作を説明するものであり、図10に示す位置からインナーロータが15度反時計回りに回転した位置における動作図である。FIG. 11 is a diagram for explaining the operation of the variable displacement pump shown in FIG. 1, and is an operation diagram at a position where the inner rotor is rotated counterclockwise by 15 degrees from the position shown in FIG. 10. 図1に示す可変容量型ポンプの動作を説明するものであり、図11に示す位置からインナーロータが15度反時計回りに回転した位置における動作図である。FIG. 12 is a view for explaining the operation of the variable displacement pump shown in FIG. 1, and is an operation diagram at a position where the inner rotor is rotated 15 degrees counterclockwise from the position shown in FIG. 11. 図1に示す可変容量型ポンプの動作を説明するものであり、図12に示す位置からインナーロータが15度反時計回りに回転した位置における動作図である。FIG. 13 is a diagram for explaining the operation of the variable displacement pump shown in FIG. 1, and is an operation diagram at a position where the inner rotor is rotated counterclockwise by 15 degrees from the position shown in FIG. 12. 図1に示す可変容量型ポンプの動作を説明するものであり、図13に示す位置からインナーロータが15度反時計回りに回転した位置における動作図である。FIG. 14 illustrates the operation of the variable displacement pump shown in FIG. 1, and is an operation diagram at a position where the inner rotor is rotated counterclockwise by 15 degrees from the position shown in FIG. 図1に示す可変容量型ポンプの動作を説明するものであり、図14に示す位置からインナーロータが15度反時計回りに回転した位置における動作図である。FIG. 15 is a view for explaining the operation of the variable displacement pump shown in FIG. 1 and is an operation diagram at a position where the inner rotor is rotated 15 degrees counterclockwise from the position shown in FIG. 14. 図1に示す可変容量型ポンプの動作を説明するものであり、図15に示す位置からインナーロータが15度反時計回りに回転した位置における動作図である。FIG. 16 is a view for explaining the operation of the variable displacement pump shown in FIG. 1, and is an operation diagram at a position where the inner rotor is rotated counterclockwise by 15 degrees from the position shown in FIG. 15. 図1に示す可変容量型ポンプの動作を説明するものであり、図16に示す位置からインナーロータが15度反時計回りに回転した位置における動作図である。FIG. 17 illustrates the operation of the variable displacement pump shown in FIG. 1, and is an operation diagram at a position where the inner rotor is rotated counterclockwise by 15 degrees from the position shown in FIG. 16. 本発明に係る可変容量型ポンプの一定回転における吐出特性を示すグラフである。It is a graph which shows the discharge characteristic in the fixed rotation of the variable displacement pump which concerns on this invention. 本発明に係る可変容量型ポンプをエンジンに適用した場合において、エンジン回転数に応じて流量制御弁を制御した際の油圧特性を示すグラフである。6 is a graph showing hydraulic characteristics when the flow control valve is controlled in accordance with the engine speed when the variable displacement pump according to the present invention is applied to an engine.
 以下、本発明の実施形態について、添付図面を参照しつつ説明する。
 この実施形態に係る可変容量型ポンプは、エンジン等の適用対象物において、流体としてのオイルを供給するトロコイド式の可変容量型ポンプVPである。
 可変容量型ポンプVPは、図1ないし図3に示すように、ハウジングH、軸線Sを中心として矢印R方向(図5において反時計回り)に回転する駆動軸40、インナーロータ50、アウターロータ60、流量制御弁70を備えている。
 ここで、ハウジングHは、ベース10、ロータケース20、カバー30の三分割構造により形成されている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
The variable displacement pump according to this embodiment is a trochoidal variable displacement pump VP that supplies oil as a fluid in an application object such as an engine.
As shown in FIGS. 1 to 3, the variable displacement pump VP includes a housing H, a drive shaft 40 that rotates about an axis S in the direction of arrow R (counterclockwise in FIG. 5), an inner rotor 50, and an outer rotor 60. The flow control valve 70 is provided.
Here, the housing H is formed by a three-part structure of the base 10, the rotor case 20, and the cover 30.
 そして、可変容量型ポンプVPは、図4及び図5に示すように、適用対象物であるエンジンEにおいて、エンジンE内の潤滑領域等の供給先1に接続された導入通路1aとオイルパン2に接続された導出通路2aの間に配置され、導出通路2aから導かれたオイルを吸入,加圧及び吐出して、導入通路1aから供給先1に向けて供給する。
 尚、このオイル供給系において、可変容量型ポンプVPの吐出口14から吐出された吐出オイルは、所定レベル以上の過圧状態になると、戻し通路3及び逃し弁4を経てオイルパン2に戻されるようになっている。
As shown in FIGS. 4 and 5, the variable displacement pump VP includes an introduction passage 1 a and an oil pan 2 connected to a supply destination 1 such as a lubrication region in the engine E in the engine E to be applied. The oil is disposed between the outlet passages 2a connected to the outlet, and the oil guided from the outlet passage 2a is sucked, pressurized and discharged, and supplied from the introduction passage 1a to the supply destination 1.
In this oil supply system, the discharge oil discharged from the discharge port 14 of the variable displacement pump VP is returned to the oil pan 2 through the return passage 3 and the relief valve 4 when an overpressure state of a predetermined level or higher is reached. It is like that.
 ベース10は、鋼、鋳鉄、焼結鋼、アルミニウム合金等の材料を用いて、エンジンEに接合される接合面10a及びロータケース20に接合される接合面10bを画定する平板状に形成されている。
 接合面10bは、インナーロータ50の側面51及びアウターロータ60の側面61が摺動する壁面としても機能する。
 ベース10は、軸受孔11、吸入通路12、吸入口13、吐出口14、吐出通路15、連通路16、位置決めピンDを嵌合させる位置決め孔17、エンジンEに締結する際の締結ボルト(不図示)を通す円孔18を備えている。
The base 10 is formed in a flat plate shape that defines a joint surface 10a joined to the engine E and a joint surface 10b joined to the rotor case 20 using a material such as steel, cast iron, sintered steel, and an aluminum alloy. Yes.
The joint surface 10b also functions as a wall surface on which the side surface 51 of the inner rotor 50 and the side surface 61 of the outer rotor 60 slide.
The base 10 includes a bearing hole 11, a suction passage 12, a suction port 13, a discharge port 14, a discharge passage 15, a communication passage 16, a positioning hole 17 for fitting a positioning pin D, and a fastening bolt (not fixed) when fastened to the engine E. It is provided with a circular hole 18 through which it is shown.
 軸受孔11は、駆動軸40を軸線S回りに回動自在に支持するように形成されている。
 吸入通路12は、図3に示すように、エンジンEの導出通路2aと吸入口13を接続するように、接合面10aにおいて溝状に形成されている。
 吸入口13は、吸入通路12及び導出通路2aに臨むと共に図5において二点鎖線で示す略三ケ月状の輪郭をなすように、接合面10aから接合面10bまで貫通して形成されている。
 吐出口14は、吐出通路15及び導入通路1aに臨むと共に図5において二点鎖線で示す略三ケ月状の輪郭をなすように、接合面10aから接合面10bまで貫通して形成されている。
 吐出通路15は、エンジンEの導入通路1aと吐出口14を接続するように、接合面10aにおいて溝状に形成されている。
 連通路16は、ポンプ室PCと吸入通路12とを連通させる連通路の一部をなすものであり、軸線Sと平行に伸長する円筒状に形成されて、接合面10bから接合面10a側の吸入通路12まで貫通して形成されている。
The bearing hole 11 is formed to support the drive shaft 40 so as to be rotatable about the axis S.
As shown in FIG. 3, the suction passage 12 is formed in a groove shape on the joint surface 10 a so as to connect the outlet passage 2 a of the engine E and the suction port 13.
The suction port 13 is formed so as to penetrate from the joint surface 10a to the joint surface 10b so as to face the suction passage 12 and the lead-out passage 2a and to form a substantially crescent-shaped outline indicated by a two-dot chain line in FIG.
The discharge port 14 is formed to penetrate from the joint surface 10a to the joint surface 10b so as to face the discharge passage 15 and the introduction passage 1a and to form a substantially crescent-shaped outline indicated by a two-dot chain line in FIG.
The discharge passage 15 is formed in a groove shape on the joint surface 10 a so as to connect the introduction passage 1 a of the engine E and the discharge port 14.
The communication path 16 forms a part of the communication path that allows the pump chamber PC and the suction path 12 to communicate with each other. The communication path 16 is formed in a cylindrical shape extending in parallel with the axis S, and is connected to the bonding surface 10a side from the bonding surface 10b. It is formed so as to penetrate to the suction passage 12.
 ロータケース20は、鋼、鋳鉄、焼結鋼、アルミニウム合金等の材料を用いて、ベース10の接合面10bに接合される接合面20a及びカバー30に接合される接合面20bを画定する略環状に形成されている。
 ロータケース20は、内壁面21、連通路22、位置決めピンDを嵌合させる嵌合孔及びネジBを捩じ込むネジ孔が同軸上に形成されたネジ孔兼位置決め孔23、締結ボルトを通す円孔24を備えている。
The rotor case 20 is made of a material such as steel, cast iron, sintered steel, aluminum alloy or the like, and has a substantially annular shape that defines a joining surface 20a joined to the joining surface 10b of the base 10 and a joining surface 20b joined to the cover 30. Is formed.
The rotor case 20 has an inner wall 21, a communication path 22, a fitting hole for fitting the positioning pin D, and a screw hole / positioning hole 23 in which a screw hole for screwing the screw B is formed on the same axis, and a fastening bolt. A circular hole 24 is provided.
 内壁面21は、インナーロータ50の中心線L1から所定量偏倚した中心線L2を回転中心としてアウターロータ60の外周面63を回動自在に支持するべく、中心線L2を中心とする円筒面として形成されている。
 連通路22は、ポンプ室PCと吸入通路12とを連通させる連通路の一部をなすものであり、軸線Sと平行に伸長すると共に連通路16と同軸上において円筒状に形成されて、接合面20bから接合面20aまで貫通して形成されている。
The inner wall surface 21 is a cylindrical surface centered on the center line L2 so as to rotatably support the outer peripheral surface 63 of the outer rotor 60 about the center line L2 deviated from the center line L1 of the inner rotor 50 by a predetermined amount. Is formed.
The communication path 22 forms a part of the communication path that allows the pump chamber PC and the suction path 12 to communicate with each other. The communication path 22 extends in parallel with the axis S and is formed in a cylindrical shape coaxially with the communication path 16. It is formed so as to penetrate from the surface 20b to the joint surface 20a.
 カバー30は、鋼、鋳鉄、焼結鋼、アルミニウム合金等の材料を用いて、ロータケース20の接合面20bに接合される接合面30a、外側面30b、外側面30bにおいて畝状に突出する突出部30cを画定する略平板状に形成されている。
 接合面30aは、インナーロータ50の側面52及びアウターロータ60の側面62が摺動する壁面としても機能する。
The cover 30 is made of a material such as steel, cast iron, sintered steel, or aluminum alloy, and protrudes like a bowl on the joint surface 30a, the outer surface 30b, and the outer surface 30b that are joined to the joint surface 20b of the rotor case 20. It is formed in a substantially flat plate shape that defines the portion 30c.
The joint surface 30a also functions as a wall surface on which the side surface 52 of the inner rotor 50 and the side surface 62 of the outer rotor 60 slide.
 カバー30は、開口部31、連通路32(32a,32b,32c)、連通路32の途中に形成された嵌合凹部33、ネジBを通す円孔34、締結ボルトを通す円孔35を備えている。
 開口部31は、図3及び図5に示すように、インナーロータ50及びアウターロータ60により画定されるポンプ室PCに向けて連通路32の一部をなす連通路32aを開口させるように接合面30aに形成されている。
The cover 30 includes an opening 31, a communication path 32 (32 a, 32 b, 32 c), a fitting recess 33 formed in the middle of the communication path 32, a circular hole 34 for passing a screw B, and a circular hole 35 for passing a fastening bolt. ing.
As shown in FIGS. 3 and 5, the opening 31 is a joint surface so as to open a communication path 32 a that forms a part of the communication path 32 toward the pump chamber PC defined by the inner rotor 50 and the outer rotor 60. 30a.
 具体的には、開口部31は、図7ないし図17に示すように、回転方向において、吸入口13及び吐出口14から外れた接合面30aの領域において、ポンプ室PCに開口するように形成されている。
 そして、開口部31は、図11ないし図14に示すように、インナーロータ50が所定の回転角度領域にあるとき、インナーロータ50の側面52から開放される位置に配置されている。
 また、開口部31は、図15に示すようにポンプ室PCによる吐出作用の途中からインナーロータ50の側面52により閉塞され始め、図16及び図17に示すように吐出作用中のポンプ室PCから遮断される位置、すなわち、図15ないし図17に示すように、インナーロータ50が所定の回転角度領域にあるとき、インナーロータ50の側面52により閉塞される位置に配置されている。
 尚、開口部31は、吸入口13及び吐出口14から外れた領域でポンプ室PCに開口する領域であれば、要求特性に応じて、吸入口13側寄りの位置あるいは吐出口14側よりの位置に配置されてもよい。
Specifically, as shown in FIGS. 7 to 17, the opening 31 is formed so as to open to the pump chamber PC in the region of the joint surface 30 a removed from the suction port 13 and the discharge port 14 in the rotational direction. Has been.
As shown in FIGS. 11 to 14, the opening 31 is disposed at a position that is opened from the side surface 52 of the inner rotor 50 when the inner rotor 50 is in a predetermined rotation angle region.
Further, the opening 31 starts to be blocked by the side surface 52 of the inner rotor 50 in the middle of the discharge action by the pump chamber PC as shown in FIG. 15, and from the pump chamber PC during the discharge action as shown in FIGS. As shown in FIGS. 15 to 17, the position where the inner rotor 50 is located is blocked by the side surface 52 of the inner rotor 50 when the inner rotor 50 is in a predetermined rotation angle region.
In addition, if the opening part 31 is an area | region which opens to the pump chamber PC in the area | region which remove | deviated from the suction inlet 13 and the discharge outlet 14, depending on a required characteristic, the position near the suction inlet 13 side or the discharge outlet 14 side. It may be arranged in a position.
 上記のような位置に開口部31が配置されることにより、流量制御弁70を適宜制御することで、ポンプ室PCに吸入されたオイルが吐出される前に、ポンプ室PC内のオイルを開口部31及び連通路32,22,16を介して吸入通路12に効率良く戻すことができる。それ故に、余剰なオイルが吐出されるのを防止でき、無駄な駆動力の損失を低減できる。 By arranging the opening 31 at the position as described above, the oil in the pump chamber PC is opened before the oil sucked into the pump chamber PC is discharged by appropriately controlling the flow rate control valve 70. It is possible to efficiently return to the suction passage 12 via the portion 31 and the communication passages 32, 22, 16. Therefore, it is possible to prevent excessive oil from being discharged, and it is possible to reduce loss of useless driving force.
 特に、開口部31は、図13に示すように、ポンプ室PCが吸入作用を完了しかつ吐出作用を開始する直前の状態にある仕切り領域において、ポンプ室PCの仕切り領域を画定する角度領域の略中間の角度位置に配置されてもよい。
 ここで、仕切り領域とは、図13に示すように、ハウジングHの接合面10b,30a及びインナーロータ50の外周壁面及びアウターロータ60の内周壁面により、ポンプ室PCが吸入口13及び吐出口14から仕切られて遮断された状態にある領域(幾何学的な仕切り区間)を意味するものである。
 上記のような位置に開口部31が配置されることにより、仮に流量制御弁70が作動不良になり開弁状態にて停止した場合でも、閉弁状態の吐出量を100%としたとき、約60%以上の吐出量を確保することができる。
 尚、開口部31の形状としては、円形孔を示したが、これに限定されるものではなく、連通路32をポンプ室PCに開口させる形状であれば、それ以外の形状及び形態を採用することができる。
In particular, as shown in FIG. 13, the opening 31 has an angular region that defines the partition region of the pump chamber PC in the partition region immediately before the pump chamber PC completes the suction action and starts the discharge action. It may be arranged at a substantially intermediate angular position.
Here, as shown in FIG. 13, the partition region means that the pump chamber PC is connected to the suction port 13 and the discharge port by the joint surfaces 10 b and 30 a of the housing H, the outer peripheral wall surface of the inner rotor 50, and the inner peripheral wall surface of the outer rotor 60. 14 is a region (geometric partition section) that is in a state of being partitioned from 14 and blocked.
By arranging the opening 31 at the position as described above, even if the flow rate control valve 70 malfunctions and stops in the open state, when the discharge amount in the closed state is 100%, A discharge amount of 60% or more can be secured.
In addition, although the circular hole was shown as a shape of the opening part 31, as long as it is a shape which opens the communicating path 32 to the pump chamber PC, it is not limited to this, Other shapes and forms are employ | adopted. be able to.
 連通路32は、ポンプ室PCと吸入通路12とを連通させる連通路の一部をなすものであり、図3に示すように、連通路32a、連通路32b、連通路32cにより構成されている。
 連通路32aは、接合面30aから突出部30cに向けて軸線Sに平行に伸長する円筒状に形成されている。
 連通路32bは、突出部30cにおいて、軸線Sに垂直に伸長する円筒状に形成されている。
 連通路32cは、突出部30cから接合面30aに向けて軸線Sに平行に伸長すると共に連通路22,16と同軸上において円筒状に形成されている。
The communication path 32 forms part of a communication path that allows the pump chamber PC and the suction path 12 to communicate with each other, and as shown in FIG. 3, the communication path 32 includes a communication path 32a, a communication path 32b, and a communication path 32c. .
The communication path 32a is formed in a cylindrical shape that extends parallel to the axis S from the joint surface 30a toward the protrusion 30c.
The communication path 32b is formed in a cylindrical shape that extends perpendicular to the axis S in the protrusion 30c.
The communication path 32c extends in parallel with the axis S from the protrusion 30c toward the joint surface 30a and is formed in a cylindrical shape coaxially with the communication paths 22 and 16.
 嵌合凹部33は、流量制御弁70を嵌合して固定するものであり、突出部30cにおいて、連通路32bと連通路32cの交差領域に形成されている。
 そして、流量制御弁70の嵌合凸部72が嵌合凹部33に嵌合されることにより、連通路32は、弁体76の動作に応じて全閉~全開の範囲で、通路面積が調整されるようになっている。
The fitting recess 33 is for fitting and fixing the flow control valve 70, and is formed in the projecting portion 30c at the intersection region of the communication path 32b and the communication path 32c.
Then, by fitting the fitting convex portion 72 of the flow control valve 70 into the fitting concave portion 33, the passage area of the communication passage 32 is adjusted in a range from fully closed to fully open according to the operation of the valve body 76. It has come to be.
 上記のように、ハウジングHが、ベース10、ロータケース20、カバー30により構成され、ベース10に対して、吸入通路12、吸入口13、吐出口14、吐出通路15が設けられるため、ロータケース20に連通路22、カバー30に連通路32及び流量制御弁70を取り付ける嵌合凹部33を設けるような簡単な構造にすることができる。 As described above, the housing H includes the base 10, the rotor case 20, and the cover 30, and the suction passage 12, the suction port 13, the discharge port 14, and the discharge passage 15 are provided to the base 10. A simple structure in which the communication passage 22 is provided in 20 and the fitting recess 33 for attaching the communication passage 32 and the flow control valve 70 to the cover 30 is provided.
 また、上記ハウジングHにおいては、カバー30の連通路32、ロータケース20の連通路22、ベース10の連通路16により、ポンプ室PCと吸入通路12とを連通させる連通路が形成されている。
 このように、連通路を別々の部材、すなわち、ベース10、ロータケース20、及びカバー30に分けて形成したことにより、それぞれの連通路16,22,32a,32b,32cのドリル加工等を容易に行うことができる。
In the housing H, a communication path that connects the pump chamber PC and the suction path 12 is formed by the communication path 32 of the cover 30, the communication path 22 of the rotor case 20, and the communication path 16 of the base 10.
As described above, the communication passages are divided into separate members, that is, the base 10, the rotor case 20, and the cover 30, so that drilling of the communication passages 16, 22, 32 a, 32 b, and 32 c is easy. Can be done.
 駆動軸40は、鋼等を用いて軸線S方向に伸長して形成され、エンジンEからの駆動力が伝達される連結部41、インナーロータ50の嵌合孔53に嵌合される嵌合部42、嵌合部42に設けられて回り止めピンFが嵌合される貫通孔43を備えている。 The drive shaft 40 is formed by extending in the axis S direction using steel or the like, and is a fitting portion that is fitted into the coupling portion 41 to which the driving force from the engine E is transmitted and the fitting hole 53 of the inner rotor 50. 42, a through hole 43 provided in the fitting portion 42 and fitted with the detent pin F is provided.
 インナーロータ50は、鋼又は焼結鋼等の材料を用いて、ベース10の接合面10bを摺動する側面51、カバー30の接合面30aを摺動する側面52を画定する略星形状に形成されている。
 インナーロータ50は、嵌合孔53、ピン溝54、4つの凸部(山)55及び4つの凹部(谷)56を備え、トロコイド曲線による歯形をもつ外歯車として形成されている。
The inner rotor 50 is formed in a substantially star shape that defines a side surface 51 that slides on the joint surface 10b of the base 10 and a side surface 52 that slides on the joint surface 30a of the cover 30 using a material such as steel or sintered steel. Has been.
The inner rotor 50 includes a fitting hole 53, a pin groove 54, four convex portions (ridges) 55, and four concave portions (valleys) 56, and is formed as an external gear having a tooth shape with a trochoidal curve.
 嵌合孔53は、駆動軸40の嵌合部42が嵌合されるように形成されている。
 ピン溝54は、駆動軸40の貫通孔43に挿入された回り止めピンFの両側部分を嵌め込むように形成されている。
 そして、インナーロータ50は、軸線Sと同軸上の中心線L1を回転中心として、駆動軸40と一体的に図5において反時計回りに回転する。
The fitting hole 53 is formed so that the fitting portion 42 of the drive shaft 40 is fitted.
The pin groove 54 is formed so as to fit both side portions of the detent pin F inserted into the through hole 43 of the drive shaft 40.
The inner rotor 50 rotates integrally with the drive shaft 40 in the counterclockwise direction in FIG. 5 with the center line L1 coaxial with the axis S as the center of rotation.
 アウターロータ60は、鋼又は焼結鋼等の材料を用いて、ベース10の接合面10bを摺動する側面61、カバー30の接合面30aを摺動する側面62を画定する円環状に形成されている。
 アウターロータ60は、中心線L2を中心とする円形の外周面63、5つの凸部64及び5つの凹部65を備え、インナーロータ50に噛合し得る歯形をもつ内歯車として形成されている。
The outer rotor 60 is formed in an annular shape that defines a side surface 61 that slides on the joint surface 10b of the base 10 and a side surface 62 that slides on the joint surface 30a of the cover 30 using a material such as steel or sintered steel. ing.
The outer rotor 60 includes a circular outer peripheral surface 63 centering on the center line L2, five convex portions 64, and five concave portions 65, and is formed as an internal gear having a tooth shape that can mesh with the inner rotor 50.
 外周面63は、ロータケース20の内壁面21に接触して回動自在に支持されるように形成されている。
 5つの凸部64及び5つの凹部65は、インナーロータ50の4つの凸部55及び4つの凹部56と部分的に噛み合うように形成されている。
The outer peripheral surface 63 is formed so as to be rotatably supported in contact with the inner wall surface 21 of the rotor case 20.
The five convex portions 64 and the five concave portions 65 are formed so as to partially mesh with the four convex portions 55 and the four concave portions 56 of the inner rotor 50.
 そして、アウターロータ60は、中心線L1を回転中心として回転するインナーロータ50の回転に連動しつつ、インナーロータ50よりも遅い速度で、中心線L2を回転中心として、図5において反時計回りに回転する。
 また、インナーロータ50とアウターロータ60とが部分的に噛合うことにより、両者の間において、吸入、加圧及び吐出作用を連続的に及ぼすポンプ室PCが画定されるようになっている。
The outer rotor 60 rotates counterclockwise in FIG. 5 with the center line L2 as the rotation center at a slower speed than the inner rotor 50 while interlocking with the rotation of the inner rotor 50 rotating about the center line L1. Rotate.
Further, when the inner rotor 50 and the outer rotor 60 are partially meshed with each other, a pump chamber PC that continuously exerts suction, pressurization, and discharge actions is defined between them.
 流量制御弁70は、図3に示すように、ケース71、ケース71に連続する嵌合凸部72、励磁用のコイル73、鉄芯74、鉄芯74に連結されたロッド75、ロッド75に連結された弁体76、弁体76を閉弁方向に付勢するスプリング77を備えている。 As shown in FIG. 3, the flow control valve 70 includes a case 71, a fitting convex portion 72 continuous with the case 71, an exciting coil 73, an iron core 74, a rod 75 connected to the iron core 74, and a rod 75. The connected valve body 76 and a spring 77 that biases the valve body 76 in the valve closing direction are provided.
 ケース71は、磁性金属材料等により全体を覆う円筒状に形成されている。
 嵌合凸部72は、ケース71よりも縮径して円筒状に形成され、カバー30の嵌合凹部33に堅固に嵌め込まれるようになっている。
 また、嵌合凸部72は、その内部において弁体76が着座する弁座72a、外周面において連通路32bと通じる開口部72b、端面において連通路32cと通じる開口部72cを備えている。
The case 71 is formed in a cylindrical shape covering the whole with a magnetic metal material or the like.
The fitting convex portion 72 is formed in a cylindrical shape with a diameter smaller than that of the case 71, and is firmly fitted into the fitting concave portion 33 of the cover 30.
The fitting projection 72 includes a valve seat 72a in which the valve element 76 is seated, an opening 72b communicating with the communication passage 32b on the outer peripheral surface, and an opening 72c communicating with the communication passage 32c on the end surface.
 上記構成をなす流量制御弁70は、励磁用のコイル73の起磁力を駆動源として鉄芯74を作動させる電磁弁である。
 そして、流量制御弁70は、コイル73の通電を適宜制御することにより、以下のように作動する。
 すなわち、コイル73が非通電の状態においては、スプリング77の付勢力により、弁体76が、弁座72aに着座して連通路32b,32cを遮断する。
 一方、コイル73が適宜通電される状態においては、スプリング77の付勢力に抗して、弁体76が、弁座72aから離れて連通路32b,32cを開放する。
The flow control valve 70 configured as described above is an electromagnetic valve that operates the iron core 74 using the magnetomotive force of the exciting coil 73 as a drive source.
The flow control valve 70 operates as follows by appropriately controlling the energization of the coil 73.
That is, when the coil 73 is not energized, the urging force of the spring 77 causes the valve body 76 to be seated on the valve seat 72a and shut off the communication passages 32b and 32c.
On the other hand, in a state where the coil 73 is appropriately energized, the valve element 76 separates from the valve seat 72a and opens the communication passages 32b and 32c against the urging force of the spring 77.
 そして、コイル73の通電電流の大きさを適宜制御することにより、弁体76のリフト量が適宜調整されて、連通路32を流れるオイルの流量が調整されるようになっている。
 流量制御弁70は、コイル73の非通電の状態において連通路32を全閉する閉弁状態に設定されたノーマルクローズの電磁弁であるため、仮に通電不良になっても閉弁状態が維持され、要求される最大吐出量を満たすことができる。
 尚、流量制御弁としては、通電不良の場合に開弁状態が維持されるノーマルオープンの電磁弁を採用してもよい。
Then, by appropriately controlling the magnitude of the energization current of the coil 73, the lift amount of the valve body 76 is appropriately adjusted, and the flow rate of oil flowing through the communication passage 32 is adjusted.
Since the flow control valve 70 is a normally closed electromagnetic valve that is set to a closed state that fully closes the communication path 32 when the coil 73 is not energized, the closed state is maintained even if energization failure occurs. The required maximum discharge amount can be satisfied.
As the flow rate control valve, a normally open solenoid valve that maintains a valve open state in the case of poor energization may be employed.
 流量制御弁70の取付け手法は、嵌合凸部72を嵌合凹部33に堅固に嵌合して固定する手法に限らず、ケース71に設けられたフランジ等をカバー30にネジで固定する手法、その他の手法を採用することができる。
 また、流量制御弁70の取付け方向は、カバー30から軸線S方向に突出する方向に限らず、レイアウトの制約を満たすように、連通路32の経路と一緒に変更することができる。
The attachment method of the flow rate control valve 70 is not limited to the method of firmly fitting and fixing the fitting convex portion 72 to the fitting concave portion 33, and the method of fixing the flange or the like provided in the case 71 to the cover 30 with screws. Other techniques can be employed.
Further, the mounting direction of the flow control valve 70 is not limited to the direction protruding from the cover 30 in the direction of the axis S, but can be changed together with the path of the communication path 32 so as to satisfy the layout constraint.
 上記構成をなす可変容量型ポンプVPの組付け作業について説明する。
 先ず、ベース10、ロータケース20、カバー30、駆動軸40、インナーロータ50、アウターロータ60、流量制御弁70、3つのネジB、3つの位置決めピンD、一つの回り止めピンFが準備される。
 続いて、位置決めピンDを位置決め孔17及びネジ孔兼位置決め孔23に圧入しつつ、ベース10にロータケース20が接合される。
The assembly work of the variable displacement pump VP having the above configuration will be described.
First, a base 10, a rotor case 20, a cover 30, a drive shaft 40, an inner rotor 50, an outer rotor 60, a flow control valve 70, three screws B, three positioning pins D, and one detent pin F are prepared. .
Subsequently, the rotor case 20 is joined to the base 10 while the positioning pins D are press-fitted into the positioning holes 17 and the screw holes / positioning holes 23.
 続いて、インナーロータ50及びアウターロータ60がロータケース20の内側に嵌め込まれる。
 続いて、駆動軸40の貫通孔43に回り止めピンFが挿入され、駆動軸40が嵌合孔53及び軸受孔11に通されつつ、嵌合部42が嵌合孔53に嵌め込まれる共に回り止めピンFがピン溝54に嵌め込まれる。
 これにより、駆動軸40がインナーロータ50と一体的に回転する状態となる。
 尚、駆動軸40の連結部41が軸径よりも大きい場合は、駆動軸40がベース10の接合面10a側から挿入され、その後、回り止めピンFが挿入される手順でもよい。
Subsequently, the inner rotor 50 and the outer rotor 60 are fitted inside the rotor case 20.
Subsequently, the rotation prevention pin F is inserted into the through hole 43 of the drive shaft 40, and the fitting portion 42 is fitted into the fitting hole 53 while the driving shaft 40 is passed through the fitting hole 53 and the bearing hole 11. The stop pin F is fitted into the pin groove 54.
As a result, the drive shaft 40 is rotated integrally with the inner rotor 50.
In addition, when the connection part 41 of the drive shaft 40 is larger than a shaft diameter, the procedure in which the drive shaft 40 is inserted from the joint surface 10a side of the base 10 and then the detent pin F is inserted may be used.
 最後に、カバー30をロータケース20の接合面20bに接合して、3つのネジBを円孔34に通しつつネジ孔兼位置決め孔24に捩じ込む。
 そして、カバー30の嵌合凹部33に対して、流量制御弁70が嵌め込まれて固定される。以上により、可変容量型ポンプVPの組付けが完了する。
 尚、上記の組付け手順は、一例であって、他の手順を採用することもできる。
Finally, the cover 30 is joined to the joint surface 20 b of the rotor case 20, and the three screws B are screwed into the screw hole / positioning hole 24 while passing through the circular hole 34.
Then, the flow control valve 70 is fitted into the fitting recess 33 of the cover 30 and fixed. Thus, the assembly of the variable displacement pump VP is completed.
The above assembling procedure is an example, and other procedures can be adopted.
 また、可変容量型ポンプVPを適用対象物としてのエンジンEに取り付ける場合は、駆動軸40の連結部41をエンジンEの回転駆動部に連結しつつ、ベース10の接合面10aをエンジンEの取付け接合面に当接させる。
 その後、締結ボルトを円孔35,24,18に通しつつ、エンジンEのネジ穴に捩じ込むことにより、その取付け作業が完了する。
Further, when the variable displacement pump VP is attached to the engine E as an application object, the joint surface 10a of the base 10 is attached to the engine E while the connecting portion 41 of the drive shaft 40 is connected to the rotational drive portion of the engine E. Contact the joint surface.
Thereafter, the fastening bolt is passed through the circular holes 35, 24, and 18 and screwed into the screw holes of the engine E, whereby the mounting operation is completed.
 上記構成をなす可変容量型ポンプVPは、車両のエンジンEに搭載された状態において、図6に示すような制御システムにより駆動制御される。
 制御システムは、制御手段としての制御ユニット100、全体の制御を司るべく車両に搭載されたECU110、バッテリ120、検出回路130を備えている。
The variable displacement pump VP having the above configuration is driven and controlled by a control system as shown in FIG.
The control system includes a control unit 100 as control means, an ECU 110 mounted on a vehicle to control the entire system, a battery 120, and a detection circuit 130.
 制御ユニット100は、制御を司るマイコン101、マイコン101の制御信号に基づいて流量制御弁70を駆動する駆動回路102、マイコン101とECU110との間で通信により信号の送受信を行うI/F(インターフェース)回路103、マイコン101に電源を導く電源回路104を備えている。 The control unit 100 includes a microcomputer 101 that performs control, a drive circuit 102 that drives a flow control valve 70 based on a control signal of the microcomputer 101, and an I / F (interface) that transmits and receives signals between the microcomputer 101 and the ECU 110 by communication. ) A circuit 103 and a power supply circuit 104 for guiding the power supply to the microcomputer 101 are provided.
 マイコン101は、検出回路130の検出情報、例えば、油圧、油温、エンジン回転数等に基づいて、流量制御弁70の開閉動作を制御するべく、コイル73の通電電流の大きさ等を適宜算出するようになっている。 The microcomputer 101 appropriately calculates the magnitude of the energization current of the coil 73 in order to control the opening / closing operation of the flow control valve 70 based on detection information of the detection circuit 130, for example, oil pressure, oil temperature, engine speed, and the like. It is supposed to be.
 検出回路130は、油圧センサE1、油温センサE2、エンジン回転センサE3等の出力信号に基づいて、潤滑領域等のオイルの圧力及び温度、エンジンEの回転数等を検出するものである。
 そして、検出回路130により、種々の情報が検出されると、ECU110を介して、制御ユニット100により、流量制御弁70が適宜駆動制御されるようになっている。
 すなわち、制御ユニット100は、エンジンE内のオイル又はエンジンEの運転状態に係る情報に基づいて、流量制御弁70を駆動制御するようになっている。
The detection circuit 130 detects the pressure and temperature of oil in the lubrication region, the rotation speed of the engine E, and the like based on output signals from the hydraulic sensor E1, the oil temperature sensor E2, the engine rotation sensor E3, and the like.
When various information is detected by the detection circuit 130, the flow control valve 70 is appropriately driven and controlled by the control unit 100 via the ECU 110.
That is, the control unit 100 controls the drive of the flow control valve 70 based on the oil in the engine E or information related to the operating state of the engine E.
 ここでは、オイルに係る情報として、油圧、油温を示したが、これに限定されるものではなく、オイルの粘度、オイルの汚れ状態等も情報として適用することができる。
 また、エンジンEの運転状態に係る情報として、エンジン回転数を示したが、これに限定されるものではなく、スロットル開度、冷却水温度、その他の運転状態を特定する情報を適用することができる。
Here, the oil pressure and the oil temperature are shown as the information related to the oil, but the present invention is not limited to this, and the viscosity of the oil, the dirt state of the oil, and the like can be applied as the information.
Moreover, although the engine speed is shown as information related to the operating state of the engine E, the present invention is not limited to this, and it is possible to apply information specifying the throttle opening, the coolant temperature, and other operating states. it can.
 次に、可変容量型ポンプVPの動作について、図7ないし図17を参照しつつ説明する。尚、図7~図17は、駆動軸40が反時計回りに15度毎に回転した時の時系列ごとの動作状態を示す。
 ここでは、インナーロータ50の一つの凸部55(黒丸印を付したもの)の回転方向Rにおける前側に着目して説明する。
Next, the operation of the variable displacement pump VP will be described with reference to FIGS. FIGS. 7 to 17 show time-series operation states when the drive shaft 40 rotates counterclockwise every 15 degrees.
Here, a description will be given focusing on the front side in the rotation direction R of one convex portion 55 (with a black circle mark) of the inner rotor 50.
 駆動軸40が、図7に示す位置まで回転したとき、凸部55の前側では、吸入口13からポンプ室PCにオイルが吸入される途中状態にある(吸入行程)。
 続いて、駆動軸40が、図8ないし図10に示す吸入行程の状態を経て、45度反時計回りに回転すると、図11に示す位置において、凸部55の前側では、吸入口13からポンプ室PCへのオイルの吸入作用(吸入行程)が維持されると共に、開口部31がインナーロータ50の側面52から開放された状態になる。
 この状態において、流量制御弁70が開弁駆動されると、開口部31及び連通路32,22,16を介して、ポンプ室PCと吸入通路12を連通させることができる。
When the drive shaft 40 is rotated to the position shown in FIG. 7, the front side of the convex portion 55 is in a state where oil is sucked into the pump chamber PC from the suction port 13 (suction stroke).
Subsequently, when the drive shaft 40 rotates 45 degrees counterclockwise through the state of the suction stroke shown in FIGS. 8 to 10, the pump shaft 40 extends from the suction port 13 to the front side of the convex portion 55 at the position shown in FIG. 11. The oil suction action (suction stroke) to the chamber PC is maintained, and the opening 31 is opened from the side surface 52 of the inner rotor 50.
In this state, when the flow control valve 70 is driven to open, the pump chamber PC and the suction passage 12 can be communicated with each other via the opening 31 and the communication passages 32, 22, and 16.
 続いて、駆動軸40が、15度反時計回りに回転すると、図12に示す位置において、凸部55の前側では、吸入口13からポンプ室PCへのオイルの吸入作用が完了する直前の状態になり、又、開口部31が側面52から開放された状態が維持されている。
 この状態でも同様に、流量制御弁70が開弁駆動されると、開口部31及び連通路32,22,16を介して、ポンプ室PCと吸入通路12とを連通させることができる。
Subsequently, when the drive shaft 40 rotates counterclockwise by 15 degrees, the state immediately before the oil suction operation from the suction port 13 to the pump chamber PC is completed at the position shown in FIG. In addition, the state where the opening 31 is opened from the side surface 52 is maintained.
Similarly, in this state, when the flow control valve 70 is driven to open, the pump chamber PC and the suction passage 12 can be communicated with each other via the opening 31 and the communication passages 32, 22, and 16.
 続いて、駆動軸40が、15度反時計回りに回転すると、図13に示す位置において、凸部55の前側では、吸入口13からポンプ室PC内へのオイルの吸入作用が完了した状態になり、開口部31が側面52から開放された状態が維持されており、又、ポンプ室PCから吐出口14へ向けてオイルの加圧及び吐出作用、すなわち、加圧及び吐出行程が開始される直前の状態になる。
 このとき、開口部31は、ポンプ室PCの回転方向Rにおける略中間位置に位置した状態となる。
 この状態でも同様に、流量制御弁70が開弁駆動されると、開口部31及び連通路32,22,16を介して、ポンプ室PCと吸入通路12とを連通させることができる。
Subsequently, when the drive shaft 40 rotates counterclockwise by 15 degrees, at the position shown in FIG. 13, the suction of oil from the suction port 13 into the pump chamber PC is completed on the front side of the convex portion 55. Thus, the state in which the opening 31 is opened from the side surface 52 is maintained, and the pressurization and discharge action of oil from the pump chamber PC toward the discharge port 14, that is, the pressurization and discharge stroke, is started. It will be in the previous state.
At this time, the opening 31 is located at a substantially intermediate position in the rotation direction R of the pump chamber PC.
Similarly, in this state, when the flow control valve 70 is driven to open, the pump chamber PC and the suction passage 12 can be communicated with each other via the opening 31 and the communication passages 32, 22, and 16.
 続いて、駆動軸40が、15度反時計回りに回転すると、図14に示す位置において、凸部55の前側では、ポンプ室PCから吐出口14に向けてオイルの加圧及び吐出作用が開始され始めた状態になり、又、開口部31が側面52から開放された状態が維持されている。
 この状態でも同様に、流量制御弁70が開弁駆動されると、開口部31及び連通路32,22,16を介して、ポンプ室PCと吸入通路12とを連通させることができる。
Subsequently, when the drive shaft 40 rotates counterclockwise by 15 degrees, at the position shown in FIG. 14, on the front side of the convex portion 55, the pressurization and discharge action of oil from the pump chamber PC toward the discharge port 14 starts. In this state, the state where the opening 31 is opened from the side surface 52 is maintained.
Similarly, in this state, when the flow control valve 70 is driven to open, the pump chamber PC and the suction passage 12 can be communicated with each other via the opening 31 and the communication passages 32, 22, and 16.
 続いて、駆動軸40が、15度反時計回りに回転すると、図15に示す位置において、凸部55の前側では、ポンプ室PCから吐出口14に向けてオイルの加圧及び吐出作用が維持され、又、開口部31が側面52により閉塞され始めた状態になる。
 この状態でも同様に、流量制御弁70が開弁駆動されると、開口部31及び連通路32,22,16を介して、ポンプ室PCと吸入通路12とを連通させることができる。
Subsequently, when the drive shaft 40 rotates counterclockwise by 15 degrees, at the position shown in FIG. 15, the pressurization and discharge action of oil from the pump chamber PC toward the discharge port 14 is maintained on the front side of the convex portion 55. In addition, the opening 31 starts to be blocked by the side surface 52.
Similarly, in this state, when the flow control valve 70 is driven to open, the pump chamber PC and the suction passage 12 can be communicated with each other via the opening 31 and the communication passages 32, 22, and 16.
 続いて、駆動軸40が、15度反時計回りに回転すると、図16に示す位置において、凸部55の前側では、ポンプ室PCから吐出口14に向けてオイルの加圧及び吐出作用が維持され、又、開口部31が側面52により完全に閉塞された状態になる。
 すなわち、図15に示す状態から図16に示す状態に至る過程において、開口部31は、ポンプ室PCによる加圧及び吐出作用の途中からインナーロータ50の側面52により閉塞されて加圧及び吐出作用中のポンプ室PCから遮断された状態となる。
 したがって、開口部31が完全に閉塞された後は、流量制御弁70が開弁状態にあっても、ポンプ室PCから吐出口14に向けてオイルの吐出動作のみが行われる。
Subsequently, when the drive shaft 40 rotates counterclockwise by 15 degrees, the pressurization and discharge action of oil from the pump chamber PC toward the discharge port 14 is maintained on the front side of the convex portion 55 at the position shown in FIG. In addition, the opening 31 is completely closed by the side surface 52.
That is, in the process from the state shown in FIG. 15 to the state shown in FIG. 16, the opening 31 is closed by the side surface 52 of the inner rotor 50 in the middle of the pressurizing and discharging action by the pump chamber PC, and the pressurizing and discharging action. It will be in the state where it was cut off from inside pump room PC.
Therefore, after the opening 31 is completely closed, only the oil discharge operation from the pump chamber PC toward the discharge port 14 is performed even if the flow control valve 70 is in the open state.
 続いて、駆動軸40が、15度反時計回りに回転すると、図17に示す位置において、凸部55の前側では、ポンプ室PCから吐出口14に向けてオイルの加圧及び吐出作用が維持され、又、開口部31が加圧及び吐出作用中のポンプ室PCから遮断された状態が維持されている。
 その後、駆動軸40が、反時計回りに回転すると、凸部55の前側では、加圧及び吐出作用が終了して、図7に示す状態に戻る。
Subsequently, when the drive shaft 40 rotates counterclockwise by 15 degrees, at the position shown in FIG. 17, the oil pressurization and discharge action from the pump chamber PC toward the discharge port 14 is maintained on the front side of the convex portion 55. In addition, the state in which the opening 31 is blocked from the pump chamber PC during pressurizing and discharging is maintained.
Thereafter, when the drive shaft 40 rotates counterclockwise, the pressurizing and discharging action is finished on the front side of the convex portion 55, and the state returns to the state shown in FIG.
 ここでは、一つの凸部55に着目して説明したが、実際には、4つの凸部55がそれぞれ同様の動作(ポンプ作用)を行う。したがって、駆動軸40が一回転する間に、4回の吐出動作が行われることになる。 Here, the description has been made by paying attention to one convex portion 55, but actually, the four convex portions 55 each perform the same operation (pump action). Therefore, four discharge operations are performed while the drive shaft 40 makes one rotation.
 上記一連のポンプ作用が行われる過程において、図11ないし図15に示すような回転角度領域にあるとき、開口部31はインナーロータ52の側面52から開放された状態にあり、図16に示す状態の回転角度領域にあるとき、開口部31はインナーロータ52の側面52により閉塞された状態にある。 In the process of performing the series of pump actions, the opening 31 is open from the side surface 52 of the inner rotor 52 when it is in the rotation angle region as shown in FIGS. 11 to 15, and the state shown in FIG. The opening 31 is in a state of being closed by the side surface 52 of the inner rotor 52 when it is in the rotation angle region.
 すなわち、開口部31が、上記のような配置関係をなす位置に配置されることにより、開口部31が開放された状態でかつ吸入作用~加圧及び吐出作用の回転角度領域において、流量制御弁70を適宜開弁制御することにより、ポンプ室PCに充填された吐出される前のオイルを効率良く吸入通路12に戻すことができる。これにより、余剰のオイルを吐出させるための駆動力の損失を低減できる。
 また、ポンプ室PC内の圧力が所定レベル以下に低下する運転状態のときは、流量制御弁70を適宜開弁制御することにより、吸入通路12から直接的にポンプ室PCにオイルを吸入することができる。これにより、キャビテーションの発生等を抑制ないし防止することができる。
That is, by arranging the opening 31 at a position having the above-described arrangement relationship, the flow rate control valve is in a state where the opening 31 is opened and in the rotation angle region of suction action to pressurization and discharge action. By appropriately opening the valve 70, it is possible to efficiently return the unfilled oil filled in the pump chamber PC to the suction passage 12. Thereby, the loss of the driving force for discharging excess oil can be reduced.
Further, when the pressure in the pump chamber PC is reduced to a predetermined level or less, the flow control valve 70 is appropriately controlled to open the oil, and the oil is directly sucked into the pump chamber PC from the suction passage 12. Can do. Thereby, generation | occurrence | production of a cavitation etc. can be suppressed thru | or prevented.
 すなわち、上記構成をなす可変容量型ポンプVPによれば、固定型の吐出性能として設定された吐出量を必要としない使用領域において、流量制御弁70を適宜開閉制御することにより、吐出前のポンプ室PCに吸入された流体(オイル)を、連通路32,22,16を介して吸入通路12に戻すことにより、図18に示すように、吐出圧を下げて駆動負荷を低減することができる。 That is, according to the variable displacement pump VP having the above-described configuration, the flow control valve 70 is appropriately controlled to be opened and closed in a use region where the discharge amount set as the fixed discharge performance is not required, so that the pump before discharge By returning the fluid (oil) sucked into the chamber PC to the suction passage 12 through the communication passages 32, 22, and 16, the discharge pressure can be lowered and the driving load can be reduced as shown in FIG. .
 特に、上記構成をなす可変容量型ポンプVPがエンジンEに適用された場合において、制御ユニット100により、図19に示すように、エンジンEが中速回転の領域にあるとき、流量制御弁70を所定開度の開弁状態とするべく駆動制御することができる。
 これにより、中速回転領域での余剰量のオイルの吐出を防止でき、その分だけ駆動力の損失を低減できる。
 また、ポンプ室PC内の圧力が所定レベル以下に低下するような運転状態のときは、制御ユニット100により、流量制御弁70を所定開度の開弁状態とする駆動制御を行うことで、ポンプ室PCの負圧を抑制してキャビテーションの発生を抑制ないし防止できる。
In particular, when the variable displacement pump VP having the above configuration is applied to the engine E, the flow rate control valve 70 is set by the control unit 100 when the engine E is in the medium speed rotation region as shown in FIG. The drive can be controlled so that the valve is opened at a predetermined opening.
As a result, discharge of an excessive amount of oil in the medium speed rotation region can be prevented, and loss of driving force can be reduced accordingly.
Further, in an operation state in which the pressure in the pump chamber PC drops below a predetermined level, the control unit 100 performs drive control to open the flow rate control valve 70 with a predetermined opening, thereby It is possible to suppress or prevent the occurrence of cavitation by suppressing the negative pressure of the chamber PC.
 以上述べたように、上記構成をなす可変容量型ポンプVPによれば、構造の簡略化、小型化、低コスト化等を達成しつつ、流量制御弁70を全閉~全開の間で適宜制御することにより、必要に応じた吐出量にて流体を吐出することができる。
 それ故に、余剰量の吐出を防止でき、その分だけ駆動力の損失を低減でき、又、ポンプ室PCの負圧を抑制してキャビテーションの発生を抑制ないし防止できる。
As described above, according to the variable displacement pump VP having the above configuration, the flow control valve 70 is appropriately controlled between fully closed and fully opened while achieving simplification of structure, size reduction, cost reduction, and the like. By doing so, the fluid can be discharged with a discharge amount as required.
Therefore, an excessive amount of discharge can be prevented, and the loss of driving force can be reduced accordingly, and the negative pressure in the pump chamber PC can be suppressed to suppress or prevent the occurrence of cavitation.
 上記実施形態においては、ポンプ室PCを画定するポンプ作用部材として、トロコイド歯形をなすインナーロータ50及びアウターロータ60を含むトロコイドポンプを示したが、これに限定されるものではない。
 例えば、インボリュート歯形のインナーロータ及びアウターロータ、あるいはその他の歯形をなすインナーロータ及びアウターロータ等を備えた構成において、本発明を適用してもよい。
In the said embodiment, although the trochoid pump containing the inner rotor 50 and the outer rotor 60 which make a trochoid tooth profile was shown as a pump action member which demarcates the pump chamber PC, it is not limited to this.
For example, the present invention may be applied to a configuration including an inner rotor and an outer rotor having involute teeth, or an inner rotor and an outer rotor having other tooth shapes.
 上記実施形態においては、インナーロータ50及びアウターロータ60がトロコイド式の4葉5節からなる構成を示したが、これに限定されるものではなく、その他の個数からなる構成を採用してもよい。 In the above-described embodiment, the inner rotor 50 and the outer rotor 60 are configured with the trochoidal four-leaf five-node, but the present invention is not limited to this, and a configuration with other numbers may be adopted. .
 上記実施形態においては、ポンプとして、トロコイドポンプを示したが、これに限定されるものではなく、吸入、加圧及び吐出作用を及ぼすポンプ室を画定するものであれば、ベーンポンプ、その他の容積型ポンプにおいて、本発明を採用してもよい。 In the above embodiment, a trochoid pump is shown as a pump. However, the present invention is not limited to this, and a vane pump or other positive displacement type may be used as long as it defines a pump chamber that exerts suction, pressurization, and discharge. You may employ | adopt this invention in a pump.
 上記実施形態においては、流量制御弁として、軸線方向に往復動する弁体76を含む流量制御弁70を示したが、これに限定されるものではなく、ロータリ式の流量制御弁、あるいはその他の形態をなす流量制御弁を採用してもよい。 In the above embodiment, the flow control valve 70 including the valve body 76 that reciprocates in the axial direction is shown as the flow control valve. However, the flow control valve 70 is not limited to this, and is not limited to this. You may employ | adopt the flow control valve which makes a form.
 上記実施形態においては、ハウジングHをベース10及びロータケース20並びにカバー30に分離した構成において、本発明を採用した場合を示したが、これに限定されるものではなく、ベースとロータケースを一体型とした構成を採用し、この部分において、ポンプ室と吸入通路とを連通させる連通路、及びポンプ室に連通路を開口させる開口部を設けてもよい。 In the above embodiment, the case where the present invention is adopted in the configuration in which the housing H is separated into the base 10, the rotor case 20, and the cover 30 is shown. However, the present invention is not limited to this. A configuration having a body shape may be adopted, and in this portion, a communication path that allows the pump chamber and the suction path to communicate with each other, and an opening that opens the communication path in the pump chamber may be provided.
 上記実施形態においては、インナーロータ50の側面52が開口部31を閉塞する構成を示したが、これに限定されるものではなく、開口部31の配置位置によっては、アウターロータ60の側面62が開口部31を閉塞する構成を採用してもよい。 In the above embodiment, the configuration in which the side surface 52 of the inner rotor 50 closes the opening 31 is shown, but the present invention is not limited to this, and the side surface 62 of the outer rotor 60 may vary depending on the position of the opening 31. You may employ | adopt the structure which obstruct | occludes the opening part 31. FIG.
 上記実施形態においては、本発明に係る可変容量型ポンプVPを、自動車等に搭載されるエンジンに適用する場合を示したが、これに限定されるものではなく、トランスミッション、その他の潤滑系に適用してもよく、又、オイル以外の流体を用いる装置に適用してもよい。 In the above embodiment, the variable displacement pump VP according to the present invention is applied to an engine mounted on an automobile or the like. However, the present invention is not limited to this and is applied to a transmission and other lubrication systems. Alternatively, the present invention may be applied to an apparatus using a fluid other than oil.
VP 可変容量型ポンプ
E エンジン
H ハウジング
10 ベース(ハウジング)
10a,10b 接合面(壁面)
12 吸入通路
13 吸入口
14 吐出口
16 連通路
22 連通路
30 カバー(ハウジング)
30a 接合面(壁面)
31 開口部
32(32a,32b,32c) 連通路
40 駆動軸
PC ポンプ室
50 インナーロータ
52 側面
60 アウターロータ
70 流量制御弁
100 制御ユニット(制御手段)
 
VP Variable displacement pump E Engine H Housing 10 Base (housing)
10a, 10b Joint surface (wall surface)
12 suction passage 13 suction port 14 discharge port 16 communication path 22 communication path 30 cover (housing)
30a Joint surface (wall surface)
31 Opening 32 (32a, 32b, 32c) Communication passage 40 Drive shaft PC Pump chamber 50 Inner rotor 52 Side surface 60 Outer rotor 70 Flow rate control valve 100 Control unit (control means)

Claims (9)

  1.  流体を吸入する吸入通路と、
     前記吸入通路の下流に位置する吸入口と、
     前記吸入口に導かれた流体に対して、吸入、加圧及び吐出のポンプ作用を及ぼすポンプ室と、
     前記ポンプ室の下流に位置する吐出口と、
     前記ポンプ室と前記吸入通路とを連通させるべく、前記吸入口及び吐出口から外れた領域において前記ポンプ室に開口する開口部を有する連通路と、
     前記連通路を流れる流体の流量を制御する流量制御弁と、
    を含む、可変容量型ポンプ。
    A suction passage for sucking fluid;
    A suction port located downstream of the suction passage;
    A pump chamber that exerts suction, pressurization, and discharge pumping action on the fluid guided to the suction port;
    A discharge port located downstream of the pump chamber;
    A communication path having an opening that opens to the pump chamber in a region away from the suction port and the discharge port in order to communicate the pump chamber and the suction passage;
    A flow rate control valve for controlling the flow rate of the fluid flowing through the communication path;
    Including variable displacement pump.
  2.  前記吸入通路及び連通路を有するハウジングと、
     前記ポンプ室を画定するべく前記ハウジング内に配置されたインナーロータ及びアウターロータと、を備え、
     前記流量制御弁は、前記連通路の途中に介在するように前記ハウジングに設けられている、
    ことを特徴とする請求項1に記載の可変容量型ポンプ。
    A housing having the suction passage and the communication passage;
    An inner rotor and an outer rotor disposed in the housing to define the pump chamber,
    The flow control valve is provided in the housing so as to be interposed in the middle of the communication path.
    The variable displacement pump according to claim 1.
  3.  前記ハウジングは、前記インナーロータ及びアウターロータの側面が摺動する壁面において、前記吸入口と、前記吐出口を含む、
    ことを特徴とする請求項2に記載の可変容量型ポンプ。
    The housing includes the suction port and the discharge port on a wall surface on which side surfaces of the inner rotor and the outer rotor slide.
    The variable displacement pump according to claim 2, wherein:
  4.  前記ハウジングは、前記インナーロータ及びアウターロータの側面が摺動する壁面において、前記開口部を有する、
    ことを特徴とする請求項2又は3に記載の可変容量型ポンプ。
    The housing has the opening on a wall surface on which side surfaces of the inner rotor and outer rotor slide.
    The variable displacement pump according to claim 2 or 3, wherein
  5.  前記開口部は、前記インナーロータが所定の回転角度領域にあるとき、前記インナーロータの側面により閉塞される位置に配置されている、
    ことを特徴とする請求項4に記載の可変容量型ポンプ。
    The opening is disposed at a position closed by a side surface of the inner rotor when the inner rotor is in a predetermined rotation angle region.
    The variable displacement pump according to claim 4, wherein:
  6.  前記開口部は、前記ポンプ室による吐出作用の途中から前記インナーロータの側面により閉塞されて前記吐出作用中のポンプ室から遮断される位置に配置されている、
    ことを特徴とする請求項5に記載の可変容量型ポンプ。
    The opening is disposed at a position that is blocked by the side surface of the inner rotor from the middle of the discharge operation by the pump chamber and is blocked from the pump chamber during the discharge operation.
    The variable displacement pump according to claim 5.
  7.  前記開口部は、前記ポンプ室が吸入作用を完了しかつ吐出作用を開始する直前の状態にある仕切り領域を画定する角度範囲において、略中間の角度位置に配置されている、
    ことを特徴とする請求項4又は5に記載の可変容量型ポンプ。
    The opening is disposed at a substantially intermediate angular position in an angular range that defines a partition region in a state immediately before the pump chamber completes the suction action and starts the discharge action.
    6. The variable displacement pump according to claim 4 or 5, wherein:
  8.  前記インナーロータ及びアウターロータは、トロコイド式である、
    ことを特徴とする請求項1ないし7いずれか一つに記載の可変容量型ポンプ。
    The inner rotor and outer rotor are trochoidal.
    The variable displacement pump according to any one of claims 1 to 7, wherein the variable displacement pump is provided.
  9.  流体としてのオイルを供給するべくエンジンに搭載された請求項1ないし8いずれか一つに記載の可変容量型ポンプを制御する制御システムであって、
     前記エンジン内のオイル又は前記エンジンの運転状態に係る情報に基づいて、前記流量制御弁を駆動制御する制御手段を含む、
    ことを特徴とする制御システム。
     
    A control system for controlling a variable displacement pump according to any one of claims 1 to 8, wherein the control system is mounted on an engine to supply oil as fluid.
    Control means for driving and controlling the flow rate control valve based on the oil in the engine or information on the operating state of the engine;
    A control system characterized by that.
PCT/JP2018/002133 2017-04-28 2018-01-24 Variable capacity pump and control system WO2018198451A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017090198A JP2018189001A (en) 2017-04-28 2017-04-28 Variable capacity type pump and control system
JP2017-090198 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018198451A1 true WO2018198451A1 (en) 2018-11-01

Family

ID=63918222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002133 WO2018198451A1 (en) 2017-04-28 2018-01-24 Variable capacity pump and control system

Country Status (2)

Country Link
JP (1) JP2018189001A (en)
WO (1) WO2018198451A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220341419A1 (en) * 2021-04-26 2022-10-27 Mikuni Corporation Pump device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123483U (en) * 1984-07-17 1986-02-12 株式会社 山田製作所 Trochoid pump for engine lubrication
JPH08114186A (en) * 1994-08-25 1996-05-07 Aisin Seiki Co Ltd Oil pump device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123483U (en) * 1984-07-17 1986-02-12 株式会社 山田製作所 Trochoid pump for engine lubrication
JPH08114186A (en) * 1994-08-25 1996-05-07 Aisin Seiki Co Ltd Oil pump device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220341419A1 (en) * 2021-04-26 2022-10-27 Mikuni Corporation Pump device
US11795945B2 (en) * 2021-04-26 2023-10-24 Mikuni Corporation Pump device with air introduction hole that opens into pump chamber at predetermined opening time immediately before suction stroke

Also Published As

Publication number Publication date
JP2018189001A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP6154386B2 (en) Variable displacement oil pump and oil supply system using the same
JP6289943B2 (en) Variable displacement pump
JP6706690B2 (en) Oil pump and oil pump integrated balancer device
JP5679958B2 (en) Variable displacement pump
JP6004919B2 (en) Variable displacement oil pump
JP5084536B2 (en) Oil pump
JP2007292005A (en) Pump device and power steering device
JP5897945B2 (en) Vane pump
EP1800007B1 (en) Pump with selectable outlet pressure
US9291163B2 (en) Pump having fitting portions
JP2019504957A (en) Pump with a control system including a control system for managing the supply of pressurized lubricant
WO2018198451A1 (en) Variable capacity pump and control system
JP5014841B2 (en) Variable displacement pump
WO2019013110A1 (en) Pump
JP4209653B2 (en) Oil pump for automatic transmission
JP6039831B2 (en) Variable displacement pump
US6045338A (en) Compound gear pumps and engine hydraulic circuits using same
JP5478453B2 (en) Hydraulic device
JP2009008003A (en) Valve lift actuator
JPH032716Y2 (en)
JP6567678B2 (en) Variable displacement oil pump
JP4009455B2 (en) Variable displacement vane pump
JPS637278B2 (en)
WO2020189008A1 (en) Oil pump
JP2020033983A (en) Pump device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791127

Country of ref document: EP

Kind code of ref document: A1