WO2018196353A1 - 用于制造单模光纤的光纤预制棒及制造单模光纤的方法 - Google Patents

用于制造单模光纤的光纤预制棒及制造单模光纤的方法 Download PDF

Info

Publication number
WO2018196353A1
WO2018196353A1 PCT/CN2017/111854 CN2017111854W WO2018196353A1 WO 2018196353 A1 WO2018196353 A1 WO 2018196353A1 CN 2017111854 W CN2017111854 W CN 2017111854W WO 2018196353 A1 WO2018196353 A1 WO 2018196353A1
Authority
WO
WIPO (PCT)
Prior art keywords
tail pipe
optical fiber
quartz
quartz powder
powder filling
Prior art date
Application number
PCT/CN2017/111854
Other languages
English (en)
French (fr)
Inventor
罗文勇
戚卫
柯一礼
杜城
王涛
李伟
张洁
张涛
Original Assignee
烽火通信科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烽火通信科技股份有限公司 filed Critical 烽火通信科技股份有限公司
Priority to RU2019112021A priority Critical patent/RU2727989C1/ru
Publication of WO2018196353A1 publication Critical patent/WO2018196353A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms

Definitions

  • the present invention relates to the field of optical fiber preforms, and more particularly to an optical fiber preform for manufacturing single mode fibers and a method for manufacturing single mode fibers.
  • optical fibers The manufacture of optical fibers is divided into two steps: the manufacture of optical fiber preforms and the fabrication of optical fibers using optical fiber preforms.
  • conventional methods for manufacturing optical fiber preforms include PCVD (Plasma activated Chemical Vapour Deposition), MCVD (Modified Chemical Vapour Deposition), VAD (Vapour phase Axial Deposition), and VAD (Vapour phase Axial Deposition).
  • Process methods such as vapor phase deposition), OVD (Outside Chemical Vapour Deposition).
  • the above method usually requires the manufacture of an optical fiber core rod, and then the manufacture of the optical fiber cladding layer, and then the core rod and the cladding layer are combined to form an optical fiber preform which can be drawn into the final required optical fiber, and then The fiber preform is placed on a drawing tower and drawn into an optical fiber.
  • the above process has become a common practice for producing optical fibers.
  • the technical solution adopted by the present invention is: an optical fiber preform for manufacturing a single-mode optical fiber, the optical fiber preform including a core rod, a quartz thin sleeve sleeved outside the core rod, and a sleeve A quartz isolation tube between the core rod and the quartz thin sleeve; a gap between the quartz isolation tube and the quartz thin sleeve forms a quartz powder filling space.
  • the optical fiber preform further includes a tail pipe
  • the tail pipe includes a tail bar, a small tail pipe sleeved outside the tail bar, a large tail pipe sleeved outside the small tail pipe, and a tail pipe a sealing plug at the end of the rod
  • the small tail pipe and the big tail pipe the tail rod is connected to the mandrel at one end, and the sealing plug is connected at the other end, and the opening of one end of the small tail pipe is sealingly connected to the quartz isolation tube, and the other end is An opening seal is connected to the sealing plug, an opening of one end of the large tail pipe is sealingly connected to the quartz thin sleeve, and an opening of the other end is sealingly connected to the sealing plug;
  • the gap between the large tail pipe, the small tail pipe and the sealing plug is connected with the quartz powder filling space and forms a second interval together;
  • the sealing plug is provided with an external suction port, and the external suction port is in communication with the second interval.
  • a gap between the quartz isolation tube and the core rod forms a core rod gap; a gap between the small tail tube, the tail rod and the sealing plug communicates with the core rod gap and forms together a first interval; an inner suction port is disposed on the sealing plug, and the inner suction port is in communication with the first interval.
  • the optical fiber preform further includes a sealed rotating cover and a quartz powder filling tube, and the sealed rotating cover is sleeved outside the large tail pipe and rotatable around the large tail pipe, a sealing rotary connection between the sealing rotary cover and the tail pipe;
  • the sealing rotary cover is provided with an opening through which the quartz powder filling pipe passes, and between the outer wall of the quartz powder filling pipe and the opening Sealing contact
  • the large tail pipe is provided with the quartz powder for filling a circular opening through which the tube passes
  • the quartz powder filling tube is open at one end to the sealed rotating cover, and the other end sequentially passes through the opening and the annular opening and opens in the quartz powder filling space in.
  • the optical fiber preform comprises two quartz powder filling tubes, and the two quartz powder filling tubes are symmetrically disposed on the sealed rotating cover.
  • the quartz thin sleeve and the quartz isolation tube are each composed of high purity silica.
  • the invention also discloses a method for manufacturing a single-mode optical fiber by using the optical fiber preform, wherein the optical fiber preform is fixed on a drawing tower, and the quartz powder is filled with quartz powder while the quartz powder filling space is filled.
  • the optical fiber preform further includes a tail pipe
  • the tail pipe includes a tail bar, a small tail pipe sleeved outside the tail bar, a large tail pipe sleeved outside the small tail pipe, and a tail pipe a sealing plug at the end of the rod
  • the small tail pipe and the big tail pipe the tail rod is connected to the mandrel at one end, and the sealing plug is connected at the other end, and the opening of one end of the small tail pipe is sealingly connected to the quartz isolation tube, and the other end is An opening seal is connected to the sealing plug, an opening of one end of the large tail pipe is sealingly connected to the quartz thin sleeve, and an opening of the other end is sealingly connected to the sealing plug;
  • the gap between the large tail pipe, the small tail pipe and the sealing plug is connected with the quartz powder filling space and forms a second interval together;
  • the sealing plug is provided with an outer suction port, and the outer suction port is in communication with the second interval;
  • the optical fiber preform is fixed on the drawing tower, and the quartz powder filling space is filled with the quartz powder, and the air pressure is extracted outside the external air suction port to make the air pressure in the second interval reach the preset pressure value of the user, and the optical fiber is drawn at the same time.
  • a gap between the quartz isolation tube and the mandrel forms a core rod gap; a gap between the small tail tube, the tail rod and the sealing plug and a mandrel gap Connecting and jointly forming a first interval; the sealing plug is provided with an inner suction port, and the inner suction port is connected to the first interval;
  • the optical fiber preform further includes a sealed rotating cover and a quartz powder filling tube disposed on the sealed rotating cover, the sealed rotating cover is sleeved on the outer side of the large tail pipe and can be wound around The large tail pipe rotates, and the sealed rotating cover is sealed and rotationally connected with the tail pipe; the sealed rotating cover is provided with an opening through which the quartz powder filling pipe passes, and the quartz powder filling pipe The outer wall is in sealing contact with the opening, and the large tail pipe is provided with a ring-shaped opening through which the quartz powder filling pipe passes, and the quartz powder filling pipe is open at one end of the sealed rotating cover. The other end sequentially passes through the opening and the annular opening and opens in the quartz powder filling space; the quartz powder filling space is filled with quartz powder through the quartz powder filling tube.
  • the present invention directly places a combination of a mandrel and a quartz thin sleeve on a drawing tower, and draws the quartz powder between the mandrel and the quartz thin sleeve during the drawing process while the optical fiber is drawn.
  • Forming the fiber cladding layer eliminating the manufacturing process of the cladding layer in the manufacturing process of the optical fiber preform, and improving the manufacturing efficiency of the optical fiber; at the same time, designing an isolated quartz tube between the core rod and the quartz powder, effectively preventing the quartz powder from melting into a cladding layer It interferes with the mandrel and affects the performance of the fiber.
  • the end of the optical fiber preform of the present invention is provided with a combined tail pipe, and the gap between the large tail pipe, the small tail pipe and the sealing plug is connected with the quartz powder filling space to form a first interval;
  • the gas is pneumatically controlled so that the quartz powder and the quartz thin sleeve are well solid melted under high temperature melting to form a cladding.
  • FIG. 1 is a schematic view showing the structure of an optical fiber preform for manufacturing a single mode fiber according to an embodiment of the present invention.
  • an embodiment of the present invention provides an optical fiber preform for manufacturing a single-mode optical fiber.
  • the optical fiber preform includes a core rod 1 , a quartz thin sleeve 2 sleeved outside the core rod 1 , and a sleeve disposed on the core
  • the quartz isolation tube 3 between the rod 1 and the quartz thin sleeve 2, the quartz thin sleeve 2 and the quartz isolation tube 3 are all composed of high-purity silica; the gap between the quartz isolation tube 3 and the quartz thin sleeve 2 is formed. Quartz powder fills the space 4.
  • the combination of the mandrel 1 and the quartz thin sleeve 2 is directly placed on the drawing tower, and the fiber is pulled in the form of quartz powder filled between the mandrel 1 and the quartz thin sleeve 2 during the drawing process.
  • Forming a fiber cladding at the same time eliminating the need for an optical fiber preform manufacturing process
  • the manufacturing process of the cladding layer improves the manufacturing efficiency of the optical fiber; at the same time, an isolated quartz tube is designed between the mandrel 1 and the quartz powder, which effectively prevents the quartz powder from being disintegrated into a cladding and causing interference to the mandrel 1, affecting the attenuation of the optical fiber, etc. Performance.
  • the optical fiber preform further includes a tail pipe 6 including a tail bar 61, a small tail pipe 62 sleeved outside the tail bar 61, a large tail pipe 63 sleeved outside the small tail pipe 62, and a tail pipe 61 and a small tail pipe 62.
  • One end of the tail bar 61 is connected to the mandrel 1 and the other end is connected to the sealing plug 64.
  • the opening at one end of the small tail pipe 62 is sealed and connected to the quartz isolation pipe 3, and the opening at the other end is sealed and connected to the sealing plug 64.
  • the opening of one end of the large tail pipe 63 is sealed and connected to the quartz thin sleeve 2, and the opening of the other end is sealed and connected to the sealing plug 64; the gap between the large tail pipe 63, the small tail pipe 62 and the sealing plug 64 is connected with the quartz powder filling space 4.
  • the second section 8 is formed together; the sealing plug 64 is provided with an outer suction port 66, and the outer suction port 66 is in communication with the second section 8.
  • the gap between the quartz isolation tube 3 and the mandrel 1 forms a mandrel gap 5; the mandrel gap 5 is 0.5 mm to 1.5 mm.
  • the gap between the small tail pipe 62, the tail rod 61 and the sealing plug 64 communicates with the mandrel gap 5 to form a first interval 7; the sealing plug 64 is provided with an inner suction port 65, the inner suction port 65 and the first interval 7 Connected.
  • the optical fiber preform further includes a sealing rotary cover 9 and a quartz powder filling tube 10 disposed on the sealing rotary cover 9.
  • the sealing rotary cover 9 is sleeved outside the large tail pipe 63 and rotatable around the large tail pipe 63 to seal the rotating cover 9 and
  • the tail pipe 6 is sealed and rotatably connected;
  • the sealing rotary cover 9 is provided with an opening 91 through which the quartz powder filling pipe 10 passes, and between the outer wall of the quartz powder filling pipe 10 and the opening 91 Sealing contact,
  • the large tail pipe 63 is provided with a ring-shaped opening 67 through which the quartz powder filling pipe 10 passes, and one end of the quartz powder filling pipe 10 is opened on the sealing rotating cover 9, and the other end is in turn It passes through the opening 91 and the annular opening 67 and opens into the quartz powder filling space 4.
  • the optical fiber preform includes two quartz powder filling tubes 10, and the two quartz powder filling tubes 10 are symmetrically disposed on the sealing rotating cover 9. Thereby, the two quartz powder filling tubes 10 are circumferentially rotated around the mandrel 1, and the quartz powder filling space 4 is uniformly filled with the quartz powder.
  • the end of the optical fiber preform of the embodiment of the present invention is provided with a combined tail pipe 6, and the gap between the small tail pipe 62, the tail bar 61 and the sealing plug 64 communicates with the mandrel gap 5 to form a first interval 7;
  • the gap between the tube 63, the small tail pipe 62 and the sealing plug 64 communicates with the quartz powder filling space 4 and forms a second section 8 together; the first section 7 and the second section 8 are separately pumped to perform air pressure control, thereby realizing quartz.
  • the user preset pressure value of the second section 8 is 20-500 pa.
  • the user preset pressure value of the first section 7 is 100-1000 pa.
  • the manufacturing process of the core rod 1 of the optical fiber preform in the embodiment of the present invention may adopt a process of PCVD, MCVD, OVD, VAD, etc., and the core rod 1 is divided into two components of a core region and a first cladding layer, and constituent materials of the core region.
  • the material of the first cladding layer is silica;
  • the quartz separator tube 3 constitutes the second cladding layer, and the material composition is silicon dioxide, which is used for isolating the core of the quartz powder when molten The influence of the zone and the first cladding; the quartz powder and the quartz thin sleeve 2 constitute the third cladding.
  • the low loss single mode fiber fabricated by the optical fiber preform in the embodiment of the present invention has a cladding diameter of 80 micrometers or 125 micrometers.
  • a coating material may be applied to the periphery of the single mode fiber with a coating diameter of 200 microns or 245 microns.
  • the use of the optical fiber preform in the embodiment of the invention for manufacturing a low-loss single-mode optical fiber can realize the in-line drawing of a single-mode optical fiber preform with a diameter of more than 300 mm, the drawing speed can reach 3300 m/min, and has excellent attenuation performance.
  • the attenuation at 1550 nm is as small as 0.180 dBdB/km.
  • the embodiment of the invention also discloses a method for manufacturing a single-mode optical fiber by using an optical fiber preform for manufacturing a single-mode optical fiber: fixing the optical fiber preform on the drawing tower, and filling the quartz powder The charging space 4 is filled with quartz powder while the fiber is drawn.
  • the combination of the mandrel 1 and the quartz thin sleeve 2 is directly placed on the drawing tower, and the fiber is pulled in the form of quartz powder filled between the mandrel 1 and the quartz thin sleeve 2 during the drawing process.
  • the fiber cladding layer is formed, the manufacturing process of the cladding in the manufacturing process of the optical fiber preform is omitted, and the manufacturing efficiency of the optical fiber is improved.
  • an isolated quartz tube is designed between the core rod 1 and the quartz powder, thereby effectively preventing the melting of the quartz powder. After the cladding, the mandrel 1 is disturbed, which affects the performance of the fiber.
  • the optical fiber preform further includes a tail pipe 6, the tail pipe 6 includes a tail bar 61, a small tail pipe 62 sleeved outside the tail bar 61, a large tail pipe 63 sleeved outside the small tail pipe 62, and a tail pipe 61 and a small tail pipe 62.
  • One end of the tail bar 61 is connected to the mandrel 1 and the other end is connected to the sealing plug 64.
  • the opening at one end of the small tail pipe 62 is sealed and connected to the quartz isolation pipe 3, and the opening at the other end is sealed and connected to the sealing plug 64.
  • the opening of one end of the large tail pipe 63 is sealed and connected to the quartz thin sleeve 2, and the opening of the other end is sealed and connected to the sealing plug 64;
  • the gap between the large tail pipe 63, the small tail pipe 62 and the sealing plug 64 is in communication with the quartz powder filling space 4 and together form a second section 8;
  • the sealing plug 64 is provided with an outer suction port 66, and the outer suction port 66 is in communication with the second section 8;
  • the gap between the quartz isolation tube 3 and the mandrel 1 forms a mandrel gap 5; the mandrel gap 5 is 0.5 mm to 1.5 mm.
  • the gap between the small tail pipe 62, the tail rod 61 and the sealing plug 64 communicates with the mandrel gap 5 to form a first interval 7; the sealing plug 64 is provided with an inner suction port 65, the inner suction port 65 and the first interval 7 Connected
  • the external air suction port 66 and the inner air suction port 65 respectively draw air to make the air pressure of the second interval 8 and the first interval 7 respectively reach the preset air pressure value, and at the same time, the optical fiber is drawn.
  • the user preset pressure value of the second section 8 is 20-500 pa.
  • the user preset pressure value of the first section 7 is 100-1000 pa.
  • the optical fiber preform further includes a sealing rotary cover 9 and a quartz powder filling tube 10 disposed on the sealing rotary cover 9.
  • the sealing rotary cover 9 is sleeved outside the large tail pipe 63 and rotatable around the large tail pipe 63 to seal the rotating cover 9 and
  • the tail pipe 6 is sealed and connected in rotation;
  • the sealing rotary cover 9 is provided with an opening 91 through which the quartz powder filling pipe 10 passes, and the outer wall of the quartz powder filling pipe 10 is in sealing contact with the opening 91, and the large tail pipe 63 is disposed.
  • An annular opening 67 through which the quartz powder filling tube 10 passes is provided.
  • the quartz powder filling tube 10 has one end open to the sealing rotary cover 9, and the other end sequentially passes through the opening 91 and the annular opening 67 and is opened to the quartz powder.
  • the quartz powder filling space 4 is filled with quartz powder through the quartz powder filling tube 10.
  • the optical fiber preform comprises two quartz powder filling tubes 10, and the two quartz powder filling tubes 10 are symmetrically disposed on the sealing rotating cover 9, so that two quartz powder filling tubes 10 are circumferentially rotated around the mandrel 1 to fill the space of the quartz powder. Fill the quartz powder evenly.
  • the end of the optical fiber preform of the embodiment of the present invention is provided with a combined tail pipe 6, and the gap between the small tail pipe 62, the tail bar 61 and the sealing plug 64 communicates with the mandrel gap 5 to form a first interval 7;
  • the gap between the tube 63, the small tail pipe 62 and the sealing plug 64 communicates with the quartz powder filling space 4 and forms a second section 8 together; the first section 7 and the second section 8 are separately pumped to perform air pressure control, thereby realizing quartz.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

一种用于制造单模光纤的光纤预制棒及采用该光纤预制棒制造单模光纤的方法。该光纤预制棒包括芯棒(1)、套设在芯棒(1)外的石英薄套管(2)及套设于芯棒(1)与石英薄套管(2)之间的石英隔离管(3),石英薄套管(2)和石英隔离管(3)均由高纯二氧化硅组成,石英隔离管(3)和石英薄套管(2)之间的间隙形成石英粉填充空间(4)。采用本发明既能保持良好的光纤性能,又能简化光纤制造工艺过程,从而提升光纤制造效率。

Description

用于制造单模光纤的光纤预制棒及制造单模光纤的方法 技术领域
本发明涉及光纤预制棒技术领域,具体涉及一种用于制造单模光纤的光纤预制棒及制造单模光纤的方法。
背景技术
光纤的制造分为光纤预制棒的制造和利用光纤预制棒拉制成光纤两个步骤。目前通常的光纤预制棒的制造方法包括PCVD(Plasma activated Chemical Vapour Deposition,等离子体化学气相沉积法)、MCVD(Modified Chemical Vapour Deposition,改进的化学汽相沉积法)、VAD(Vapour phase Axial Deposition,轴向汽相沉积法)、OVD(Outside Chemical Vapour Deposition,外部化学汽相沉积法)等工艺方法。上述方法通常要先进行光纤芯棒的制造,然后再进行光纤包层的制造,之后再将芯棒和包层组合在一起,形成可拉制成最终所需要的光纤的光纤预制棒,再将该光纤预制棒放置在拉丝塔上拉制成光纤,上述工艺已成为生产光纤的普遍做法。
为应对日趋激烈的光纤市场的竞争要求,提高光纤的制造效率成为光纤制造领域的研发重点,亟需一种既能保持良好的光纤性能,又能简化光纤制造工艺过程以提升光纤制造效率的技术方案。
发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供一种用于制 造单模光纤的光纤预制棒及制造单模光纤的方法,既能保持良好的光纤性能,又能简化光纤制造工艺过程以提升光纤制造效率。
为达到以上目的,本发明采取的技术方案是:一种用于制造单模光纤的光纤预制棒,所述光纤预制棒包括芯棒、套设在芯棒外的石英薄套管及套设于芯棒与石英薄套管之间的石英隔离管;所述石英隔离管和石英薄套管之间的间隙形成石英粉填充空间。
在上述技术方案的技术上,所述光纤预制棒还包括尾管,所述尾管包括尾棒、套设于尾棒外的小尾管、套设于小尾管外的大尾管及设于尾棒、小尾管、大尾管末端的密封塞,所述尾棒一端连接所述芯棒,另一端连接所述密封塞,所述小尾管一端的开口密封连接所述石英隔离管,另一端的开口密封连接所述密封塞,所述大尾管一端的开口密封连接所述石英薄套管,另一端的开口密封连接所述密封塞;
所述大尾管、小尾管及密封塞之间的空隙与石英粉填充空间相连通并共同形成第二区间;
所述密封塞上设有外抽气口,所述外抽气口与所述第二区间相连通。
在上述技术方案的技术上,所述石英隔离管与所述芯棒之间的间隙形成芯棒间隙;所述小尾管、尾棒及密封塞之间的空隙与芯棒间隙相连通并共同形成第一区间;所述密封塞上设有内抽气口,所述内抽气口与所述第一区间相连通。
在上述技术方案的技术上,所述光纤预制棒还包括密封旋转盖和石英粉填充管,所述密封旋转盖套设于所述大尾管外侧且可绕所述大尾管旋转,所述密封旋转盖与所述尾管之间密封旋转连接;所述密封旋转盖上设有供所述石英粉填充管穿过的开孔,所述石英粉填充管的外壁与所述开孔之间密封接触,所述大尾管上设有供所述石英粉填充 管穿过的圆环型开口,所述石英粉填充管一端开口于所述密封旋转盖上,另一端依次穿过所述开孔及所述圆环型开口并开口于所述石英粉填充空间中。
在上述技术方案的技术上,所述光纤预制棒包括两根石英粉填充管,两所述石英粉填充管对称设置于所述密封旋转盖上。
在上述技术方案的技术上,所述石英薄套管和所述石英隔离管均由高纯二氧化硅组成。
本发明还公开了一种采用所述的的光纤预制棒制造单模光纤的方法,将所述光纤预制棒固定于拉丝塔上,向石英粉填充空间填充石英粉的同时进行光纤拉制。
在上述技术方案的技术上,所述光纤预制棒还包括尾管,所述尾管包括尾棒,套设于尾棒外的小尾管、套设于小尾管外的大尾管及设于尾棒、小尾管、大尾管末端的密封塞,所述尾棒一端连接所述芯棒,另一端连接所述密封塞,所述小尾管一端的开口密封连接所述石英隔离管,另一端的开口密封连接所述密封塞,所述大尾管一端的开口密封连接所述石英薄套管,另一端的开口密封连接所述密封塞;
所述大尾管、小尾管及密封塞之间的空隙与石英粉填充空间相连通并共同形成第二区间;
所述密封塞上设有和外抽气口,所述外抽气口与所述第二区间相连通;
将所述光纤预制棒固定于拉丝塔上,向石英粉填充空间填充石英粉的同时通过外抽气口向外抽气使第二区间的气压达到用户预设的气压值,同时进行光纤拉制。
在上述技术方案的技术上,所述石英隔离管与所述芯棒之间的间隙形成芯棒间隙;所述小尾管、尾棒及密封塞之间的空隙与芯棒间隙 相连通并共同形成第一区间;所述密封塞上设有内抽气口,所述内抽气口与所述第一区间相连通;
将所述光纤预制棒固定于拉丝塔上,向石英粉填充空间填充石英粉的同时分别通过所述外抽气口和内抽气口向外抽气使第二区间和第一区间的气压分别达到用户预设的气压值,同时进行光纤拉制。
在上述技术方案的技术上,所述光纤预制棒还包括密封旋转盖和设于所述密封旋转盖上的石英粉填充管,所述密封旋转盖套设于所述大尾管外侧且可绕所述大尾管旋转,所述密封旋转盖与所述尾管之间密封旋转连接;所述密封旋转盖上设有供所述石英粉填充管穿过的开孔,所述石英粉填充管的外壁与所述开孔之间密封接触,所述大尾管上设有供所述石英粉填充管穿过的圆环型开口,所述石英粉填充管一端开口于所述密封旋转盖上,另一端依次穿过所述开孔及所述圆环型开口并开口于所述石英粉填充空间中;通过所述石英粉填充管向石英粉填充空间填充石英粉。
与现有技术相比,本发明的优点在于:
(1)本发明直接将芯棒和石英薄套管的组合放置在拉丝塔上拉制,通过在拉丝过程中在芯棒和石英薄套管之间填充石英粉的形式在光纤拉制的同时形成光纤包层,省去光纤预制棒制造工艺中的包层的制造过程,提升光纤制造效率;同时,在芯棒和石英粉之间设计有隔离石英管,有效避免石英粉熔融成包层后对芯棒造成干扰,影响光纤的衰减等性能指标。
(2)本发明的光纤预制棒末端设有组合式的尾管,大尾管、小尾管及密封塞之间的空隙与石英粉填充空间相连通并共同形成第一区间;对第一区间抽气进行气压控制,从而石英粉和石英薄套管在高温熔融下的良好实心熔融形成包层。
(3)在制造本发明中的光纤预制棒的过程中,由于目前工艺的局限性,在石英隔离管与芯棒之间不可避免的形成芯棒间隙,芯棒间隙为0.5mm~1.5mm。为使石英隔离管与芯棒之间能实现良好的实心熔融,光纤拉制中对第一区间抽气进行气压控制时,同时对小尾管、尾棒及密封塞之间的空隙与芯棒间隙相连通并共同形成第二区间也进行抽气进行低压控制,从而石英隔离管和芯棒在高温熔融下的良好实心熔融形成包层。
附图说明
图1为本发明实施例中用于制造单模光纤的光纤预制棒的结构示意图。
图中:1-芯棒,2-石英薄套管,3-石英隔离管,4-石英粉填充空间,5-芯棒间隙,6-尾管,61-尾棒,62-小尾管,63-大尾管,64-密封塞,65-内抽气口,66-外抽气口,67-圆环型开口,7-第一区间,8-第二区间,9-密封旋转盖,91-开孔,10-石英粉填充管。
具体实施方式
以下结合附图及实施例对本发明作进一步详细说明。
参见图1所示,本发明实施例提供一种用于制造单模光纤的光纤预制棒,光纤预制棒包括芯棒1、套设在芯棒1外的石英薄套管2及套设于芯棒1与石英薄套管2之间的石英隔离管3,石英薄套管2和石英隔离管3均由高纯二氧化硅组成;石英隔离管3和石英薄套管2之间的间隙形成石英粉填充空间4。
本发明实施例直接将芯棒1和石英薄套管2的组合放置在拉丝塔上拉制,通过在拉丝过程中在芯棒1和石英薄套管2之间填充石英粉的形式在光纤拉制的同时形成光纤包层,省去光纤预制棒制造工艺中 的包层的制造过程,提升光纤制造效率;同时,在芯棒1和石英粉之间设计有隔离石英管,有效避免石英粉熔融成包层后对芯棒1造成干扰,影响光纤的衰减等性能指标。
光纤预制棒还包括尾管6,尾管6包括尾棒61、套设于尾棒61外的小尾管62、套设于小尾管62外的大尾管63及设于尾棒61、小尾管62、大尾管63末端的密封塞64,尾棒61一端连接芯棒1,另一端连接密封塞64,小尾管62一端的开口密封连接石英隔离管3,另一端的开口密封连接密封塞64,大尾管63一端的开口密封连接石英薄套管2,另一端的开口密封连接密封塞64;大尾管63、小尾管62及密封塞64之间的空隙与石英粉填充空间4相连通并共同形成第二区间8;密封塞64上设有外抽气口66,外抽气口66与第二区间8相连通。
石英隔离管3与芯棒1之间的间隙形成芯棒间隙5;芯棒间隙5为0.5mm~1.5mm。小尾管62、尾棒61及密封塞64之间的空隙与芯棒间隙5相连通并共同形成第一区间7;密封塞64上设有内抽气口65,内抽气口65与第一区间7相连通。
光纤预制棒还包括密封旋转盖9和设于密封旋转盖9上的石英粉填充管10,密封旋转盖9套设于大尾管63外侧且可绕大尾管63旋转,密封旋转盖9与尾管6之间密封旋转连接;所述密封旋转盖9上设有供所述石英粉填充管10穿过的开孔91,所述石英粉填充管10的外壁与所述开孔91之间密封接触,所述大尾管63上设有供所述石英粉填充管10穿过的圆环型开口67,所述石英粉填充管10一端开口于所述密封旋转盖9上,另一端依次穿过所述开孔91及所述圆环型开口67并开口于所述石英粉填充空间4中。光纤预制棒包括两根石英粉填充管10,两石英粉填充管10对称设置于密封旋转盖9上, 从而实现两根石英粉填充管10绕芯棒1进行圆周转动,向石英粉填充空间4均匀填充石英粉。
本发明实施例的光纤预制棒末端设有组合式的尾管6,小尾管62、尾棒61及密封塞64之间的空隙与芯棒间隙5相连通并共同形成第一区间7;大尾管63、小尾管62及密封塞64之间的空隙与石英粉填充空间4相连通并共同形成第二区间8;对第一区间7和第二区间8分别抽气进行气压控制,从而实现石英隔离管3与芯棒1、石英隔离管3与石英粉在高温熔融下的良好实心熔融以及石英粉和石英薄套管2在高温熔融下的良好实心熔融。第二区间8的用户预设的气压值为20-500pa。第一区间7的用户预设的气压值为100-1000pa。
本发明实施例中的光纤预制棒的芯棒1的制造工艺可采用PCVD、MCVD、OVD、VAD等工艺,芯棒1分为芯区和第1包层两个组成部分,芯区的组成材料为二氧化硅和二氧化锗的混合物,第1包层的材料组成为二氧化硅;石英隔离管3组成第2包层,材料组成为二氧化硅,其用于隔离石英粉熔融时对芯区和第1包层的影响;石英粉和石英薄套管2组成第3包层。
本发明实施例中的光纤预制棒制造的低损耗单模光纤其包层直径为80微米或125微米。可在单模光纤***涂上涂覆材料,涂层直径为200微米或245微米。
采用本发明实施例中的光纤预制棒制造低损耗单模光纤,可实现直径达300mm以上单模光纤预制棒的在线拉制,拉制速度可达到3300m/min,同时具有优良的衰减性能,在1550nm波长的衰减最小可达0.180dBdB/km。
本发明实施例还公开了一种采用用于制造单模光纤的光纤预制棒制造单模光纤的方法:将光纤预制棒固定于拉丝塔上,向石英粉填 充空间4填充石英粉的同时进行光纤拉制。
本发明实施例直接将芯棒1和石英薄套管2的组合放置在拉丝塔上拉制,通过在拉丝过程中在芯棒1和石英薄套管2之间填充石英粉的形式在光纤拉制的同时形成光纤包层,省去光纤预制棒制造工艺中的包层的制造过程,提升光纤制造效率;同时,在芯棒1和石英粉之间设计有隔离石英管,有效避免石英粉熔融成包层后对芯棒1造成干扰,影响光纤的衰减等性能指标。
光纤预制棒还包括尾管6,尾管6包括尾棒61,套设于尾棒61外的小尾管62、套设于小尾管62外的大尾管63及设于尾棒61、小尾管62、大尾管63末端的密封塞64,尾棒61一端连接芯棒1,另一端连接密封塞64,小尾管62一端的开口密封连接石英隔离管3,另一端的开口密封连接密封塞64,大尾管63一端的开口密封连接石英薄套管2,另一端的开口密封连接密封塞64;
大尾管63、小尾管62及密封塞64之间的空隙与石英粉填充空间4相连通并共同形成第二区间8;
密封塞64上设有和外抽气口66,外抽气口66与第二区间8相连通;
将光纤预制棒固定于拉丝塔上,向石英粉填充空间4填充石英粉的同时通过外抽气口66向外抽气使第二区间8的气压达到用户预设的气压值,同时进行光纤拉制。
石英隔离管3与芯棒1之间的间隙形成芯棒间隙5;芯棒间隙5为0.5mm~1.5mm。小尾管62、尾棒61及密封塞64之间的空隙与芯棒间隙5相连通并共同形成第一区间7;密封塞64上设有内抽气口65,内抽气口65与第一区间7相连通;
将光纤预制棒固定于拉丝塔上,向石英粉填充空间4填充石英粉 的同时分别通过外抽气口66和内抽气口65向外抽气使第二区间8和第一区间7的气压分别达到用户预设的气压值,同时进行光纤拉制。第二区间8的用户预设的气压值为20-500pa。第一区间7的用户预设的气压值为100-1000pa。
光纤预制棒还包括密封旋转盖9和设于密封旋转盖9上的石英粉填充管10,密封旋转盖9套设于大尾管63外侧且可绕大尾管63旋转,密封旋转盖9与尾管6之间密封旋转连接;密封旋转盖9上设有供石英粉填充管10穿过的开孔91,石英粉填充管10的外壁与开孔91之间密封接触,大尾管63上设有供石英粉填充管10穿过的圆环型开口67,石英粉填充管10一端开口于密封旋转盖9上,另一端依次穿过开孔91及圆环型开口67并开口于石英粉填充空间4中;通过石英粉填充管10向石英粉填充空间4填充石英粉。光纤预制棒包括两根石英粉填充管10,两石英粉填充管10对称设置于密封旋转盖9上,从而实现两根石英粉填充管10绕芯棒1进行圆周转动,向石英粉填充空间4均匀填充石英粉。
本发明实施例的光纤预制棒末端设有组合式的尾管6,小尾管62、尾棒61及密封塞64之间的空隙与芯棒间隙5相连通并共同形成第一区间7;大尾管63、小尾管62及密封塞64之间的空隙与石英粉填充空间4相连通并共同形成第二区间8;对第一区间7和第二区间8分别抽气进行气压控制,从而实现石英隔离管3与芯棒1、石英隔离管3与石英粉在高温熔融下的良好实心熔融以及石英粉和石英薄套管2在高温熔融下的良好实心熔融。
采用上述方式,分别进行多个实施例的光纤拉制,制成的光纤的相关性能指标如表1所示:
表1各类型光纤的实施例
Figure PCTCN2017111854-appb-000001
本发明不局限于上述实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围之内。本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (10)

  1. 一种用于制造单模光纤的光纤预制棒,其特征在于:所述光纤预制棒包括芯棒(1)、套设在芯棒(1)外的石英薄套管(2)及套设于芯棒(1)与石英薄套管(2)之间的石英隔离管(3);所述石英隔离管(3)和石英薄套管(2)之间的间隙形成石英粉填充空间(4)。
  2. 如权利要求1所述的一种用于制造单模光纤的光纤预制棒,其特征在于:
    所述光纤预制棒还包括尾管(6),所述尾管(6)包括尾棒(61)、套设于尾棒(61)外的小尾管(62)、套设于小尾管(62)外的大尾管(63)及设于尾棒(61)、小尾管(62)、大尾管(63)末端的密封塞(64),所述尾棒(61)一端连接所述芯棒(1),另一端连接所述密封塞(64),所述小尾管(62)一端的开口密封连接所述石英隔离管(3),另一端的开口密封连接所述密封塞(64),所述大尾管(63)一端的开口密封连接所述石英薄套管(2),另一端的开口密封连接所述密封塞(64);
    所述大尾管(63)、小尾管(62)及密封塞(64)之间的空隙与石英粉填充空间(4)相连通并共同形成第二区间(8);
    所述密封塞(64)上设有外抽气口(66),所述外抽气口(66)与所述第二区间(8)相连通。
  3. 如权利要求2所述的一种用于制造单模光纤的光纤预制棒,其特征在于:所述石英隔离管(3)与所述芯棒(1)之间的间隙形成芯棒间隙(5);所述小尾管(62)、尾棒(61)及密封塞(64)之间的空隙与芯棒间隙(5)相连通并共同形成第一区间(7);所述密封塞(64)上设有内抽气口(65),所述内抽气口(65)与所述第一区间(7)相连通。
  4. 如权利要求2所述的一种用于制造单模光纤的光纤预制棒,其特征在于:所述光纤预制棒还包括密封旋转盖(9)和石英粉填充管(10),所述密封旋转盖(9)套设于所述大尾管(63)外侧且可绕所述大尾管(63)旋转,所述密封旋转盖(9)与所述尾管(6)之间密封旋转连接;所述密封旋转盖(9)上设有供所述石英粉填充管(10)穿过的开孔(91),所述石英粉填充管(10)的外壁与所述开孔(91)之间密封接触,所述大尾管(63)上设有供所述石英粉填充管(10)穿过的圆环型开口(67),所述石英粉填充管(10)一端开口于所述密封旋转盖(9)上,另一端依次穿过所述开孔(91)及所述圆环型开口(67)并开口于所述石英粉填充空间(4)中。
  5. 如权利要求3所述的一种用于制造单模光纤的光纤预制棒,其特征在于:所述光纤预制棒包括两根石英粉填充管(10),两所述石英粉填充管(10)对称设置于所述密封旋转盖(9)上。
  6. 如权利要求1-5任意一项所述的一种用于制造单模光纤的光纤预制棒,其特征在于:所述石英薄套管(2)和所述石英隔离管(3)均由高纯二氧化硅组成。
  7. 一种采用如权利要求1所述的的光纤预制棒制造单模光纤的方法,其特征在于:
    将所述光纤预制棒固定于拉丝塔上,向石英粉填充空间(4)填充石英粉的同时进行光纤拉制。
  8. 如权利要求7所述的一种制造单模光纤的方法,其特征在于:
    所述光纤预制棒还包括尾管(6),所述尾管(6)包括尾棒(61),套设于尾棒(61)外的小尾管(62)、套设于小尾管(62)外的大尾管(63)及设于尾棒(61)、小尾管(62)、大尾管(63)末端的密封塞(64),所述尾棒(61)一端连接所述芯棒(1),另一端连接所述 密封塞(64),所述小尾管(62)一端的开口密封连接所述石英隔离管(3),另一端的开口密封连接所述密封塞(64),所述大尾管(63)一端的开口密封连接所述石英薄套管(2),另一端的开口密封连接所述密封塞(64);
    所述大尾管(63)、小尾管(62)及密封塞(64)之间的空隙与石英粉填充空间(4)相连通并共同形成第二区间(8);
    所述密封塞(64)上设有和外抽气口(66),所述外抽气口(66)与所述第二区间(8)相连通;
    将所述光纤预制棒固定于拉丝塔上,向石英粉填充空间(4)填充石英粉的同时通过外抽气口(66)向外抽气使第二区间(8)的气压达到用户预设的气压值,同时进行光纤拉制。
  9. 如权利要求8所述的一种制造单模光纤的方法,其特征在于:所述石英隔离管(3)与所述芯棒(1)之间的间隙形成芯棒间隙(5);所述小尾管(62)、尾棒(61)及密封塞(64)之间的空隙与芯棒间隙(5)相连通并共同形成第一区间(7);所述密封塞(64)上设有内抽气口(65),所述内抽气口(65)与所述第一区间(7)相连通;
    将所述光纤预制棒固定于拉丝塔上,向石英粉填充空间(4)填充石英粉的同时分别通过所述外抽气口(66)和内抽气口(65)向外抽气使第二区间(8)和第一区间(7)的气压分别达到用户预设的气压值,同时进行光纤拉制。
  10. 如权利要求8所述的一种制造单模光纤的方法,其特征在于:所述光纤预制棒还包括密封旋转盖(9)和设于所述密封旋转盖(9)上的石英粉填充管(10),所述密封旋转盖(9)套设于所述大尾管(63)外侧且可绕所述大尾管(63)旋转,所述密封旋转盖(9)与所述尾管(6)之间密封旋转连接;所述密封旋转盖(9)上设有供所述石英 粉填充管(10)穿过的开孔(91),所述石英粉填充管(10)的外壁与所述开孔(91)之间密封接触,所述大尾管(63)上设有供所述石英粉填充管(10)穿过的圆环型开口(67),所述石英粉填充管(10)一端开口于所述密封旋转盖(9)上,另一端依次穿过所述开孔(91)及所述圆环型开口(67)并开口于所述石英粉填充空间(4)中;通过所述石英粉填充管(10)向石英粉填充空间(4)填充石英粉。
PCT/CN2017/111854 2017-04-27 2017-11-20 用于制造单模光纤的光纤预制棒及制造单模光纤的方法 WO2018196353A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019112021A RU2727989C1 (ru) 2017-04-27 2017-11-20 Преформа оптического волокна для изготовления одномодового оптического волокна и способ изготовления одномодового оптического волокна

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710288764.9A CN107082558B (zh) 2017-04-27 2017-04-27 一种采用光纤预制棒制造单模光纤的方法
CN201710288764.9 2017-04-27

Publications (1)

Publication Number Publication Date
WO2018196353A1 true WO2018196353A1 (zh) 2018-11-01

Family

ID=59611484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111854 WO2018196353A1 (zh) 2017-04-27 2017-11-20 用于制造单模光纤的光纤预制棒及制造单模光纤的方法

Country Status (3)

Country Link
CN (1) CN107082558B (zh)
RU (1) RU2727989C1 (zh)
WO (1) WO2018196353A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107082558B (zh) * 2017-04-27 2019-12-03 烽火通信科技股份有限公司 一种采用光纤预制棒制造单模光纤的方法
CN107601843B (zh) * 2017-09-06 2023-08-18 通鼎互联信息股份有限公司 套管棒拉丝装置和拉丝***及其拉丝方法
CN111635127B (zh) * 2020-05-08 2023-06-09 江苏永鼎光纤科技有限公司 含有功能性石英包层的光纤预制棒及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1989078A (zh) * 2004-04-27 2007-06-27 达特怀勒光纤光学股份有限公司 用于制造光纤的方法、用于制造光纤的预制件、光纤和设备
EP2261181A1 (en) * 2009-05-21 2010-12-15 Silitec Fibers SA Method for fabricating and processing a preform, preform and optical fiber
CN102325730A (zh) * 2009-02-22 2012-01-18 西里特克光纤公司 用于生产和加工预制件的方法、预制件和光纤
US20160257599A1 (en) * 2015-03-06 2016-09-08 Ofs Fitel, Llc Easy removal of a thin-walled tube in a powder-in-tube (pit) process
CN107082558A (zh) * 2017-04-27 2017-08-22 烽火通信科技股份有限公司 用于制造单模光纤的光纤预制棒及制造单模光纤的方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU895012A1 (ru) * 1980-08-25 1996-02-27 Г.И. Шаповал Установка для вытягивания и упрочнения световодного волокна
SU1766854A1 (ru) * 1991-01-11 1992-10-07 Институт химии высокочистых веществ АН СССР Способ получени волоконных световодов
RU2187474C2 (ru) * 1997-03-27 2002-08-20 Самсунг Электроникс Ко., Лтд. Устройство и способ нанесения наружной оболочки на стержень заготовки оптического волокна
RU2235071C2 (ru) * 1998-04-10 2004-08-27 Фиберкор, Инк. Способ изготовления заготовки оптического волокна
US6460378B1 (en) * 2000-02-29 2002-10-08 Xiaoyuan Dong Collapsing a multitube assembly and subsequent optical fiber drawing in the same furnace
US6776012B2 (en) * 2001-06-26 2004-08-17 Fitel Usa Corp. Method of making an optical fiber using preform dehydration in an environment of chlorine-containing gas, fluorine-containing gases and carbon monoxide
CN1203330C (zh) * 2002-07-09 2005-05-25 长飞光纤光缆有限公司 石英光纤芯棒的制备方法
US7143611B2 (en) * 2003-09-19 2006-12-05 Fitel Usa Corp Rod-In-Tube optical fiber preform assembly and method having reduced movement
CN101585658A (zh) * 2009-06-23 2009-11-25 长飞光纤光缆有限公司 一种光纤预制棒及其制造方法
CN102730960B (zh) * 2012-06-11 2014-12-03 烽火通信科技股份有限公司 多孔光纤预制棒的制造方法
CN103086598B (zh) * 2013-02-26 2015-06-03 富通集团有限公司 采用套管法制造光纤预制棒外包层的方法
CN103864291B (zh) * 2014-01-27 2016-08-24 长飞光纤光缆股份有限公司 一种单模光纤预制棒及其制备方法
CN103951181B (zh) * 2014-04-17 2016-03-30 中天科技精密材料有限公司 一种结构改进型的套管预制棒及其制造方法
CN104355532A (zh) * 2014-10-30 2015-02-18 江苏通鼎光电股份有限公司 光纤预制棒的制造方法
CN104556672A (zh) * 2015-02-03 2015-04-29 中国电子科技集团公司第四十六研究所 一种掺氟预制棒的制备方法
US20160257600A1 (en) * 2015-03-06 2016-09-08 Ofs Fitel, Llc Manufacturing irregular-shaped preforms
CN105347666A (zh) * 2015-11-30 2016-02-24 中天科技精密材料有限公司 一种低损耗光纤预制棒的制造方法
CN106186664B (zh) * 2016-07-22 2018-07-27 北京玻璃研究院 一种用于拉制硫系玻璃红外光纤的双坩埚

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1989078A (zh) * 2004-04-27 2007-06-27 达特怀勒光纤光学股份有限公司 用于制造光纤的方法、用于制造光纤的预制件、光纤和设备
CN102325730A (zh) * 2009-02-22 2012-01-18 西里特克光纤公司 用于生产和加工预制件的方法、预制件和光纤
EP2261181A1 (en) * 2009-05-21 2010-12-15 Silitec Fibers SA Method for fabricating and processing a preform, preform and optical fiber
US20160257599A1 (en) * 2015-03-06 2016-09-08 Ofs Fitel, Llc Easy removal of a thin-walled tube in a powder-in-tube (pit) process
CN107082558A (zh) * 2017-04-27 2017-08-22 烽火通信科技股份有限公司 用于制造单模光纤的光纤预制棒及制造单模光纤的方法

Also Published As

Publication number Publication date
CN107082558B (zh) 2019-12-03
RU2727989C1 (ru) 2020-07-28
CN107082558A (zh) 2017-08-22

Similar Documents

Publication Publication Date Title
JP5054513B2 (ja) 光ファイバー製造法
WO2018196353A1 (zh) 用于制造单模光纤的光纤预制棒及制造单模光纤的方法
US6460378B1 (en) Collapsing a multitube assembly and subsequent optical fiber drawing in the same furnace
US4154591A (en) Fabrication of optical fibers with improved cross sectional circularity
CN109133607A (zh) 一种套管法制造特种光纤预制棒外包层的方法
CN102757179B (zh) 一种大规格光纤预制棒的制备方法
CN108585470A (zh) 一种vad制备高掺锗芯棒的装置及方法
WO2018196352A1 (zh) 用于制造多层结构光纤的光纤预制棒及制造光纤的方法
CN101328013A (zh) 大尺寸光纤预制棒拉制光纤的方法
CN109970335B (zh) 一种大规格低衰减的光纤预制棒及其制备方法
JPH07196332A (ja) 光ファイバ形成方法とその装置
RU2236386C2 (ru) Способ изготовления заготовки оптического волокна
CN109399910B (zh) 大芯径光纤预制棒和光纤的制备方法
US20040123630A1 (en) Preform fabrication process
WO2021223326A1 (zh) 含有功能性石英包层的光纤预制棒及其制备方法
CN105607182B (zh) 一种低损耗光子晶体光纤的制备方法
US10584055B2 (en) Rotary feed-through for mounting a rotating substrate tube in a lathe, a CVD lathe and a corresponding method using the CVD lathe
JP3900881B2 (ja) 光ファイバ母材の製造方法、及び製造装置
JPH04231336A (ja) 光ファイバ母材の製造方法
JP2005179179A (ja) 光ファイバプリフォームの製造方法、光ファイバプリフォームとそれに関連する光ファイバ
JP3788503B2 (ja) 光ファイバ用ガラス母材の製造方法および製造装置
JPH02149442A (ja) 光ファイバ用母材の製造方法
JPS59217635A (ja) ガラスパイプの製造方法
JPS58115037A (ja) 偏波面保存光フアイバ母材の製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908037

Country of ref document: EP

Kind code of ref document: A1