WO2018193974A1 - 熱サイクルシステム - Google Patents

熱サイクルシステム Download PDF

Info

Publication number
WO2018193974A1
WO2018193974A1 PCT/JP2018/015463 JP2018015463W WO2018193974A1 WO 2018193974 A1 WO2018193974 A1 WO 2018193974A1 JP 2018015463 W JP2018015463 W JP 2018015463W WO 2018193974 A1 WO2018193974 A1 WO 2018193974A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycle system
working medium
thermal cycle
condenser
pressure
Prior art date
Application number
PCT/JP2018/015463
Other languages
English (en)
French (fr)
Inventor
寿夫 若林
高木 洋一
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to EP18788204.8A priority Critical patent/EP3614076A4/en
Priority to CN201880024364.XA priority patent/CN110537062A/zh
Priority to JP2019513599A priority patent/JP7151704B2/ja
Publication of WO2018193974A1 publication Critical patent/WO2018193974A1/ja
Priority to US16/601,753 priority patent/US11009269B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle

Definitions

  • the present invention relates to a heat cycle system using a working medium containing trifluoroethylene.
  • HFO hydrofluoroolefin having a carbon-carbon double bond
  • a heat cycle system such as a latent heat transport device such as a heat pipe, a refrigerator, and an air conditioner.
  • the carbon-carbon double bond is easily decomposed by OH radicals in the atmosphere. From this, it can be said that HFO is a working medium with little influence on the ozone layer and global warming.
  • trifluoroethylene As a working medium using HFO, for example, one using trifluoroethylene is known. In order to improve nonflammability and cycle performance, an attempt has been made to use trifluoroethylene in combination with various hydrofluorocarbons (HFCs) as a working medium.
  • HFCs hydrofluorocarbons
  • trifluoroethylene self-decomposes when used alone when it has an ignition source at high temperature or high pressure. Therefore, measures are taken to suppress the self-decomposition reaction by mixing trifluoroethylene with other components such as vinylidene fluoride to reduce the content of trifluoroethylene.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a thermal cycle system that can suppress damage caused when a self-decomposition reaction of trifluoroethylene contained in a working medium occurs. .
  • the present invention provides a thermal cycle system having the configuration described in [1] to [13] below.
  • a thermal cycle system using a working medium containing trifluoroethylene comprising a compressor, a condenser, an expansion valve, an evaporator, the compressor, the condenser, and the expansion valve;
  • a circulation channel that connects the evaporator and circulates the working medium; and
  • a fragile portion and the fragile portion is provided in the circulation channel or the condenser, and the circulation channel and the Thermal cycle system with a pressure resistance lower than the pressure resistance of the condenser.
  • the fragile portion is provided in a circulation flow path that connects the compressor and the condenser, or a circulation flow path that connects the condenser and the expansion valve.
  • Thermal cycle system [3] A four-way valve is provided in a circulation flow path connecting the compressor and the condenser, and the weakened portion is provided in a circulation flow path connecting the compressor and the four-way valve. Item 3. The thermal cycle system according to Item 1 or 2. [4] The fragile portion is damaged by a pressure generated when a self-decomposition reaction of the trifluoroethylene occurs in the circulation channel and releases the pressure to the outside of the circulation channel. 4. The thermal cycle system according to any one of up to 3. [5] The pressure strength of the fragile portion is in the range of 70% or more and 90% or less, where the pressure resistance of the circulation channel and the condenser is 100%. The thermal cycle system according to claim 1.
  • the thermal cycle system according to claim 9 or 10 wherein the protection unit further includes a porous adsorption member.
  • the condenser and the fragile part are built in an outdoor unit, and the fragile part is selectively provided at a position facing the condenser.
  • the thermal cycle system described in. [13] The thermal cycle system according to any one of claims 1 to 12, wherein a content of trifluoroethylene in 100% by mass of the working medium is more than 50% by mass and 100% by mass or less.
  • thermo cycle system capable of suppressing damage caused when a self-decomposition reaction of trifluoroethylene contained in a working medium occurs.
  • FIG. 3 The figure which shows schematically the structure of the thermal cycle system which concerns on embodiment of this invention.
  • the thermal cycle system 10 of the present embodiment is an air conditioning system having an air conditioning function that applies a working medium (refrigerant) containing trifluoroethylene (also referred to as HFO-1123).
  • the heat cycle system 10 includes a compressor 20, an outdoor heat exchanger (condenser or evaporator) 14, an expansion valve 15, an indoor heat exchanger (evaporator or condenser) 12, a four-way valve 16, a circulation channel. 17 and the working medium 11 is enclosed.
  • the direction of the flow of the working medium 11 along the circulation flow path 17 during cooling is illustrated by an arrow line.
  • HFC hydrofluorocarbon which is a compound in which a part of hydrogen atoms of a saturated hydrocarbon is substituted with a fluorine atom
  • HFO hydrofluoroolefin
  • HFC may be described as a saturated hydrofluorocarbon.
  • the circulation channel 17 includes a compressor 20, an outdoor heat exchanger (condenser or evaporator) 14, an expansion valve 15, and an indoor heat exchanger (evaporator or condenser) 12.
  • the working medium 11 is circulated.
  • the four-way valve 16 is provided in a circulation channel 17 that connects the compressor 20, the outdoor heat exchanger 14, and the indoor heat exchanger 12.
  • the four-way valve 16 changes the flow direction of the working medium 11 that circulates in the circulation flow path 17.
  • the outdoor heat exchanger 14 functions as a condenser
  • the indoor heat exchanger 12 functions as an evaporator.
  • the outdoor heat exchanger 14 functions as an evaporator
  • the indoor heat exchanger 12 functions as a condenser.
  • the circulation flow path 17 sends the working medium 11 from the compressor 20 to the four-way valve 16, the outdoor heat exchanger (condenser) 14, the expansion valve 15, the indoor heat exchanger (evaporator) 12, and four-way. It circulates to the compressor 20 via the valve 16 in order.
  • the circulation flow path 17 sends the working medium 11 from the compressor 20 to the four-way valve 16, the indoor heat exchanger (condenser) 12, the expansion valve 15, the outdoor heat exchanger (evaporator) 14, and the four-way valve. It circulates to the compressor 20 via the valve 16 in order.
  • the compressor 20 sucks and compresses the working medium 11 in the state of steam A to form high-temperature and high-pressure steam B.
  • the working medium 11 that has become the steam B is led to the outdoor heat exchanger (condenser) 14 through the four-way valve 16, and dissipates heat to the surrounding air by the air blown by the outdoor fan 14a, and is cooled and liquefied.
  • the working medium 11 in the liquid state C that has flowed into the expansion valve 15 is subjected to the expansion / decompression action and becomes a low-temperature / low-pressure gas-liquid two-phase state D.
  • the working medium 11 (state D) guided to the indoor heat exchanger (evaporator) 12 absorbs heat from the ambient air by the air blown by the indoor fan 12a, and is heated and evaporated to become low-temperature and low-pressure steam A. To the compressor 20.
  • the hermetic compressor 20 with a built-in motor is a scroll compressor, and includes a hermetic container 21, a motor stator 22a, a motor rotor 22b, a scroll compression mechanism 23, an accumulator 24, and a suction pipe 25. , A discharge pipe 26, a power supply terminal 27, and a power supply path 28, and power is supplied from the illustrated external power source.
  • the scroll compression mechanism 23 makes two spiral structures (not shown) face each other and mesh with each other to form a space.
  • the scroll compression mechanism 23 is driven as the motor rotor 22b rotates, and the volume of the space changes to change the working medium 11.
  • the accumulator 24 and the suction pipe 25 are connected to the sealed container 21 and introduce (suction) the working medium 11 into the scroll compression mechanism 23.
  • the working medium 11 compressed by the scroll compression mechanism 23 is discharged into the hermetic container, the working medium 11 passes through the discharge pipe 26 and the four-way valve 16 and is connected to a condenser (the outdoor heat exchanger 14 for cooling and the indoor heat exchanger for heating). 12).
  • Power supply to the compressor 20 is supplied from an external power source to the motor stator 22a via the power supply terminal 27 and the power supply path 28.
  • the scroll type compressor was illustrated here, if it is a well-known compressor, it can apply, without being specifically limited.
  • the present invention can be applied in place of a scroll compressor such as a reciprocating compressor, a swash plate compressor, a rotary compressor, and a centrifugal compressor.
  • the working medium described above is a mixed medium containing HFO-1123 and other working media.
  • the global warming potential (100 years) of HFO-1123 is 0.3 as a value measured according to the IPCC (Intergovernmental Panel on climate Change) Fourth Assessment Report.
  • IPCC Intergovernmental Panel on climate Change
  • GWP uses this value unless otherwise specified.
  • the working medium contains HFO-1123 having an extremely low GWP of more than 50% by mass because the GWP value of the obtained working medium can be kept low.
  • the working medium includes an optional component described later, if the GWP of the optional component is higher than HFO-1123, for example, a saturated HFC described later, the lower the content ratio, the lower the GWP. it can.
  • HFO-1123 used in this working medium may cause a chain self-decomposition reaction when an ignition source is present at a high temperature or high pressure when the content of the working medium is high. Note that the self-decomposition reaction can be suppressed by lowering the content of HFO-1123 as the working medium. However, if the content is too low, the GWP increases depending on other working media to be mixed. Refrigeration capacity and coefficient of performance often decrease.
  • the content ratio of HFO-1123 in 100% by mass of the working medium is preferably more than 50% by mass, more than 60% by mass. Is more preferable, and it is more preferable to set it to more than 70 mass%. By setting it as such a content rate, GWP can be made low enough and favorable refrigerating capacity can be ensured.
  • the working medium may contain, as an optional component, a compound that is used as a normal working medium in addition to HFO-1123 within a range not impairing the effects of the present invention.
  • a compound that is used as a normal working medium in addition to HFO-1123 within a range not impairing the effects of the present invention.
  • HFO other than HFC and HFO-1123 is preferable.
  • HFC for example, an HFC having an action of reducing a temperature gradient, an action of improving ability, or an action of improving efficiency when used in a heat cycle in combination with HFO-1123 is used.
  • the working medium for heat cycle used in the present invention contains such an HFC, better cycle performance can be obtained.
  • HFC is known to have a higher GWP than HFO-1123. Therefore, in addition to improving the cycle performance as the working medium, the HFC is selected from the viewpoint of keeping the GWP within an allowable range.
  • an HFC having 1 to 5 carbon atoms is preferable as an HFC that has little influence on the ozone layer and has little influence on global warming.
  • the HFC may be linear, branched, or cyclic.
  • HFCs difluoromethane (HFC-32), difluoroethane, trifluoroethane, tetrafluoroethane, pentafluoroethane (HFC-125), pentafluoropropane, hexafluoropropane, heptafluoropropane, pentafluorobutane, heptafluorocyclo Examples include pentane.
  • HFC 1,1-difluoroethane
  • HFC-152a 1,1,1-trifluoroethane
  • HFC-125 1,1,2,2-tetrafluoroethane
  • HFC-134a and HFC-125 are more preferred.
  • One HFC may be used alone, or two or more HFCs may be used in combination.
  • the preferred HFC GWP is 675 for HFC-32, 1430 for HFC-134a, and 3500 for HFC-125. From the viewpoint of keeping the GWP of the obtained working medium low, the HFC-32 is most preferable as an optional HFC.
  • HFO other than HFO-1123 examples include 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), trans-1,2-difluoroethylene (HFO-1132 (E)), cis-1, 2-difluoroethylene (HFO-1132 (Z)), 2-fluoropropene (HFO-1261yf), 1,1,2-trifluoropropene (HFO-1243yc), trans-1,2,3,3,3- Pentafluoropropene (HFO-1225ye (E)), cis-1,2,3,3,3-pentafluoropropene (HFO-1225ye (Z)), trans-1,3,3,3-tetrafluoropropene ( HFO-1234ze (E)), cis-1,3,3,3-tetrafluoropropene (HFO-1234ze (Z)), 3,3,3 Trifluoropropene (HFO-1243zf), and the like.
  • HFO-1234yf 2,3,3,3-
  • HFOs other than HFO-1123 are preferably HFO-1234yf, HFO-1234ze (E), and HFO-1234ze (Z) because they have a high critical temperature and are excellent in safety and coefficient of performance.
  • HFOs other than HFO-1123 may be used alone, or two or more thereof may be used in combination.
  • the total content of HFC and HFO other than HFO-1123 in 100% by weight of the working medium is 50% by weight. Or less, more preferably greater than 0% by weight and less than or equal to 40% by weight, and most preferably greater than 0% by weight and less than or equal to 30% by weight.
  • the total content of HFO other than HFC and HFO-1123 in the working medium is appropriately adjusted within the above range depending on the type of HFO other than HFC and HFO-1123 used. At this time, when used in a thermal cycle in combination with HFO-1123, considering the viewpoint of reducing the temperature gradient, improving the capacity, further increasing the efficiency, and the global warming potential, adjust.
  • the working medium may contain carbon dioxide, hydrocarbon, chlorofluoroolefin (CFO), hydrochlorofluoroolefin (HCFO) and the like as other optional components in addition to the above optional components.
  • CFO chlorofluoroolefin
  • HCFO hydrochlorofluoroolefin
  • Other optional components are preferably components that have little influence on the ozone layer and little influence on global warming.
  • hydrocarbons examples include propane, propylene, cyclopropane, butane, isobutane, pentane, and isopentane.
  • a hydrocarbon may be used individually by 1 type and may be used in combination of 2 or more type.
  • the working medium contains a hydrocarbon
  • the content thereof is preferably 10% by weight or less, more preferably 1 to 10% by weight, still more preferably 1 to 7% by weight, based on 100% by weight of the working medium. 5% by mass is most preferred. If a hydrocarbon is more than a lower limit, the solubility of the mineral refrigeration oil to a working medium will become more favorable.
  • chlorofluoroolefin examples include chlorofluoroethylene and chlorofluoropropene.
  • 1,1-dichloro-2,3,3,3-tetrafluoropropene CFO
  • CFO-1214ya 1,3-dichloro-1,2,3,3-tetrafluoropropene
  • CFO-1112 1,2-dichloro-1,2-difluoroethylene
  • One type of CFO may be used alone, or two or more types may be used in combination.
  • the content ratio is preferably 50% by mass or less, more preferably 0% by mass to 40% by mass, more preferably 0% by mass to 30% by mass with respect to 100% by mass of the working medium. % Or less is most preferable. If the content ratio of CFO exceeds the lower limit value, it is easy to suppress the combustibility of the working medium. If the content ratio of CFO is not more than the upper limit value, good cycle performance is easily obtained.
  • HCFO examples include hydrochlorofluoropropene and hydrochlorofluoroethylene.
  • HCFO 1-chloro-2,3,3,3-tetrafluoropropene is used because it is easy to suppress the flammability of the working medium without greatly reducing the cycle performance of the working medium for heat cycle used in the present invention.
  • HCFO-1224yd and 1-chloro-1,2-difluoroethylene (HCFO-1122) are preferred.
  • HCFO may be used alone or in combination of two or more.
  • the content of HCFO in 100% by mass of the working medium is preferably 50% by mass or less, more preferably 0% by mass to 40% by mass or less, more preferably 0% by mass to 30% by mass. The following are most preferred. If the content ratio of HCFO exceeds the lower limit value, it is easy to suppress the combustibility of the working medium. If the content ratio of HCFO is not more than the upper limit value, good cycle performance is easily obtained.
  • the total content is preferably 50% by mass or less with respect to 100% by mass of the working medium.
  • the working medium described above is an HFO that has little influence on global warming and contains HFO-1123 that has excellent ability as a working medium, and is practical while suppressing the influence on global warming. It has cycle performance.
  • composition for thermal cycle system The above working medium is usually mixed with refrigeration oil to form a composition for a heat cycle system used for a heat cycle system.
  • This composition for a heat cycle system is used by being enclosed in a circulation channel of the heat cycle system.
  • the composition for a heat cycle system may further contain known additives such as a stabilizer and a leak detection substance in addition to the refrigerating machine oil.
  • refrigerating machine oil a known refrigerating machine oil used for a composition for a heat cycle system can be used without particular limitation, together with a working medium composed of a conventional halogenated hydrocarbon.
  • the refrigerating machine oil include an oxygen-containing refrigerating machine oil (such as an ester refrigerating machine oil and an ether refrigerating machine oil), a fluorine refrigerating machine oil, a mineral refrigerating machine oil, and a hydrocarbon refrigerating machine oil.
  • ester refrigerating machine oils include dibasic acid ester oils, polyol ester oils, complex ester oils, and polyol carbonate oils.
  • the dibasic acid ester oil includes a dibasic acid having 5 to 10 carbon atoms (glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc.) and a carbon number having a linear or branched alkyl group.
  • Esters with 1 to 15 monohydric alcohols methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, etc. are preferred.
  • dibasic ester oil examples include ditridecyl glutarate, di (2-ethylhexyl) adipate, diisodecyl adipate, ditridecyl adipate, di (3-ethylhexyl) sebacate and the like.
  • Polyol ester oils include diols (ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 1,5-pentadiol, neopentyl glycol, 1,7- Heptanediol, 1,12-dodecanediol, etc.) or a polyol having 3 to 20 hydroxyl groups (trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, glycerin, sorbitol, sorbitan, sorbitol glycerin condensate, etc.); Fatty acids having 6 to 20 carbon atoms (hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, eicosanoic acid
  • Polyol ester oils include esters of hindered alcohols (neopentyl glycol, trimethylol ethane, trimethylol propane, trimethylol butane, pentaerythritol, etc.) (trimethylol propane tripelargonate, pentaerythritol 2-ethylhexanoate). And pentaerythritol tetrapelargonate) are preferred.
  • hindered alcohols neopentyl glycol, trimethylol ethane, trimethylol propane, trimethylol butane, pentaerythritol, etc.
  • trimel propane tripelargonate pentaerythritol 2-ethylhexanoate
  • pentaerythritol tetrapelargonate are preferred.
  • Complex ester oil is an ester of fatty acid and dibasic acid, monohydric alcohol and polyol.
  • fatty acid, dibasic acid, monohydric alcohol, and polyol the same ones as described above can be used.
  • Polyol carbonate oil is an ester of carbonic acid and polyol.
  • examples of the polyol include the same diol as described above and the same polyol as described above.
  • the polyol carbonate oil may be a ring-opening polymer of cyclic alkylene carbonate.
  • ether refrigerating machine oil examples include polyvinyl ether oil and polyoxyalkylene oil.
  • examples of the polyvinyl ether oil include those obtained by polymerizing vinyl ether monomers such as alkyl vinyl ethers, and copolymers obtained by copolymerizing vinyl ether monomers and hydrocarbon monomers having an olefinic double bond.
  • a vinyl ether monomer may be used individually by 1 type, and may be used in combination of 2 or more type.
  • hydrocarbon monomers having an olefinic double bond examples include ethylene, propylene, various butenes, various pentenes, various hexenes, various heptenes, various octenes, diisobutylene, triisobutylene, styrene, ⁇ -methylstyrene, various alkyl-substituted styrenes, etc. Is mentioned.
  • the hydrocarbon monomer which has an olefinic double bond may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polyvinyl ether copolymer may be either a block or a random copolymer.
  • a polyvinyl ether oil may be used individually by 1 type, and may be used in combination of 2 or more type.
  • polyoxyalkylene oil examples include polyoxyalkylene monool, polyoxyalkylene polyol, alkyl etherified product of polyoxyalkylene monool and polyoxyalkylene polyol, and esterified product of polyoxyalkylene monool and polyoxyalkylene polyol.
  • Polyoxyalkylene monools and polyoxyalkylene polyols are used to open a C 2-4 alkylene oxide (ethylene oxide, propylene oxide, etc.) in an initiator such as water or a hydroxyl group-containing compound in the presence of a catalyst such as an alkali hydroxide. Examples thereof include those obtained by addition polymerization.
  • the oxyalkylene units in the polyalkylene chain may be the same in one molecule, or two or more oxyalkylene units may be included. It is preferable that at least an oxypropylene unit is contained in one molecule.
  • the initiator used for the reaction examples include water, monohydric alcohols such as methanol and butanol, and polyhydric alcohols such as ethylene glycol, propylene glycol, pentaerythritol, and glycerol.
  • the polyoxyalkylene oil is preferably an alkyl etherified product or an esterified product of polyoxyalkylene monool or polyoxyalkylene polyol.
  • the polyoxyalkylene polyol is preferably polyoxyalkylene glycol.
  • an alkyl etherified product of polyoxyalkylene glycol in which the terminal hydroxyl group of polyoxyalkylene glycol is capped with an alkyl group such as a methyl group, called polyglycol oil is preferable.
  • fluorine-based refrigerating machine oils include compounds in which hydrogen atoms of synthetic oils (mineral oils, poly ⁇ -olefins, alkylbenzenes, alkylnaphthalenes, etc. described later) are substituted with fluorine atoms, perfluoropolyether oils, fluorinated silicone oils, and the like. .
  • mineral-based refrigeration oils refrigeration oil fractions obtained by atmospheric or vacuum distillation of crude oil are subjected to solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, clay.
  • solvent removal solvent extraction
  • hydrocracking solvent dewaxing
  • catalytic dewaxing hydrorefining
  • clay examples thereof include paraffinic mineral oil and naphthenic mineral oil that are refined by appropriately combining purification treatments such as treatment.
  • hydrocarbon refrigerating machine oil examples include poly ⁇ -olefin, alkylbenzene, and alkylnaphthalene.
  • Refrigerating machine oil may be used alone or in combination of two or more.
  • the refrigerating machine oil is preferably at least one selected from polyol ester oil, polyvinyl ether oil, and polyglycol oil from the viewpoint of compatibility with the working medium.
  • the amount of the refrigerating machine oil may be within a range that does not significantly reduce the effect of the present invention, and is preferably 10 to 100 parts by mass, more preferably 20 to 50 parts by mass with respect to 100 parts by mass of the working medium.
  • a stabilizer is a component that improves the stability of the working medium against heat and oxidation.
  • a known stabilizer used in a heat cycle system for example, a working medium composed of a halogenated hydrocarbon, for example, an oxidation resistance improver, a heat resistance improver, a metal deactivator, etc. is not particularly limited. Can be adopted.
  • oxidation resistance improvers and heat resistance improvers examples include N, N′-diphenylphenylenediamine, p-octyldiphenylamine, p, p′-dioctyldiphenylamine, N-phenyl-1-naphthylamine, and N-phenyl-2-naphthylamine.
  • One type of oxidation resistance improver and heat resistance improver may be used alone, or two or more types may be used in combination.
  • Metal deactivators include imidazole, benzimidazole, 2-mercaptobenzthiazole, 2,5-dimethylcaptothiadiazole, salicyridin-propylenediamine, pyrazole, benzotriazole, toltriazole, 2-methylbenzamidazole, 3,5- Dimethylpyrazole, methylenebis-benzotriazole, organic acids or their esters, primary, secondary or tertiary aliphatic amines, amine salts of organic or inorganic acids, heterocyclic nitrogen-containing compounds, alkyl acid phosphates Amine salts thereof or derivatives thereof.
  • the addition amount of the stabilizer may be in a range that does not significantly reduce the effect of the present invention, and is preferably 5 parts by mass or less, more preferably 1 part by mass or less with respect to 100 parts by mass of the working medium.
  • leak detection material examples include ultraviolet fluorescent dyes, odorous gases and odor masking agents.
  • the ultraviolet fluorescent dyes are described in U.S. Pat. No. 4,249,412, JP-T-10-502737, JP-T 2007-511645, JP-T 2008-500437, JP-T 2008-531836.
  • odor masking agent examples include known fragrances used in heat cycle systems together with working media made of halogenated hydrocarbons, such as those described in JP-T 2008-500337 and JP-T 2008-531836. Can be mentioned.
  • a solubilizing agent that improves the solubility of the leak detection substance in the working medium may be used.
  • the solubilizer include those described in JP-T-2007-511645, JP-T-2008-500437, JP-T-2008-531836.
  • the addition amount of the leak detection substance may be in a range that does not significantly reduce the effect of the present invention, and is preferably 2 parts by mass or less, more preferably 0.5 parts by mass or less with respect to 100 parts by mass of the working medium.
  • This thermal cycle system is a system used as a working medium for thermal cycle including HFO-1123.
  • this working medium for heat cycle it is usually applied as a composition for a heat cycle system containing the working medium.
  • the heat cycle system of the present invention includes a basic heat cycle having the same configuration as a conventionally known heat cycle system, and may be a heat pump system that uses the heat obtained by the condenser, It may be a refrigeration cycle system that uses the cold energy obtained by the vessel.
  • the heat cycle system include refrigeration / refrigeration equipment, air conditioning equipment, power generation systems, heat transport devices, and secondary coolers.
  • the thermal cycle system of the present invention can stably exhibit thermal cycle performance even in a higher temperature operating environment, it is preferably used for an air conditioner that is often installed outdoors.
  • the thermal cycle system of the present invention is also preferably used for refrigeration / refrigeration equipment.
  • the air conditioner include room air conditioners, packaged air conditioners (store packaged air conditioners, building packaged air conditioners, facility packaged air conditioners, etc.), gas engine heat pumps, train air conditioners, automobile air conditioners, and the like.
  • refrigeration / refrigeration equipment examples include showcases (built-in showcases, separate showcases, etc.), commercial freezers / refrigerators, vending machines, ice makers, and the like.
  • a power generation system using a Rankine cycle system is preferable.
  • the working medium is heated in the evaporator by geothermal energy, solar heat, medium to high temperature waste heat of about 50 to 200 ° C, etc., and the working medium turned into high temperature and high pressure steam is expanded.
  • An example is a system in which power is generated by adiabatic expansion by a machine, and a generator is driven by work generated by the adiabatic expansion.
  • the heat cycle system of the present invention may be a heat transport device.
  • a latent heat transport device is preferable.
  • Examples of the latent heat transport device include a heat pipe and a two-phase sealed thermosiphon device that transport latent heat using phenomena such as evaporation, boiling, and condensation of a working medium enclosed in the device.
  • the heat pipe is applied to a relatively small cooling device such as a cooling device for a heat generating part of a semiconductor element or an electronic device. Since the two-phase sealed thermosyphon does not require a wig and has a simple structure, it is widely used for a gas-gas heat exchanger, for promoting snow melting on roads, and for preventing freezing.
  • ⁇ Moisture concentration> In the operation of the heat cycle system, it is preferable to provide means for suppressing such contamination in order to avoid the occurrence of problems due to the mixing of moisture and the mixing of non-condensable gases such as oxygen.
  • problems may occur especially when used at low temperatures. For example, problems such as freezing in the capillary tube, hydrolysis of the working medium and refrigerating machine oil, material deterioration due to acid components generated in the cycle, and generation of contamination occur.
  • the refrigerating machine oil is a polyglycol oil, a polyol ester oil, etc.
  • the hygroscopic property is extremely high, the hydrolysis reaction is liable to occur, the characteristics as the refrigerating machine oil deteriorates, and the long-term reliability of the compressor is impaired. It becomes a big cause. Therefore, in order to suppress hydrolysis of refrigeration oil, it is necessary to control the water concentration in the thermal cycle system.
  • a method for controlling the moisture concentration in the thermal cycle system a method using a moisture removing means such as a desiccant (for example, silica gel, activated alumina, zeolite, lithium chloride) can be mentioned.
  • a desiccant for example, silica gel, activated alumina, zeolite, lithium chloride
  • the desiccant is preferably brought into contact with a liquid working medium from the viewpoint of dehydration efficiency.
  • a desiccant at the inlet of the expansion valve 15 to contact the working medium.
  • a zeolitic desiccant is preferable from the viewpoint of the chemical reactivity between the desiccant and the working medium and the moisture absorption capacity of the desiccant.
  • a compound represented by the following formula [1] when using a refrigerating machine oil having a high moisture absorption compared to a conventional mineral refrigerating machine oil, a compound represented by the following formula [1] is used as a main component because it has a high hygroscopic capacity.
  • a zeolitic desiccant is preferred.
  • M is a Group 1 element such as Na or K or a Group 2 element such as Ca
  • n is a valence of M
  • x and y are values determined by a crystal structure.
  • the working medium When a desiccant having a pore size larger than the molecular diameter of the working medium is used, the working medium is adsorbed in the desiccant, resulting in a chemical reaction between the working medium and the desiccant, and generation of a non-condensable gas. Undesirable phenomena such as a decrease in the strength of the desiccant and a decrease in the adsorption ability will occur.
  • the molecular diameter of water is about 3 angstroms, and as the desiccant, it is preferable to use a zeolite desiccant having a pore diameter of about 3 to 4 angstroms, particularly sodium / potassium A type synthetic zeolite.
  • a zeolite desiccant having a pore diameter of about 3 to 4 angstroms, particularly sodium / potassium A type synthetic zeolite.
  • the physical size of the zeolitic desiccant is preferably about 0.5 to 5 mm because if it is too small, it will cause clogging of the valves and piping details of the heat cycle system, and if it is too large, the drying ability will decrease.
  • the shape is preferably granular or cylindrical.
  • the zeolitic desiccant can be formed into an arbitrary shape by solidifying powdered zeolite with a binder (such as bentonite). As long as the zeolitic desiccant is mainly used, other desiccants (silica gel, activated alumina, etc.) may be used in combination.
  • a binder such as bentonite
  • other desiccants silicon gel, activated alumina, etc.
  • the use ratio of the zeolitic desiccant with respect to the working medium is not particularly limited.
  • the water concentration in the heat cycle system is preferably less than 10,000 ppm, more preferably less than 1000 ppm, and particularly preferably less than 100 ppm in terms of mass ratio to the working medium for heat cycle.
  • Non-condensable gas concentration Furthermore, if a non-condensable gas is mixed in the heat cycle system, it has the adverse effect of poor heat transfer in the condenser or evaporator and the resulting increase in operating pressure, so mixing should be suppressed as much as possible.
  • oxygen which is one of non-condensable gases, reacts with the working medium and refrigerating machine oil to promote decomposition.
  • the non-condensable gas concentration is preferably less than 10,000 ppm, more preferably less than 1000 ppm, and particularly preferably less than 100 ppm in terms of mass ratio with respect to the working medium for heat cycle.
  • the presence of chlorine in the thermal cycle system has undesirable effects such as deposit formation due to reaction with metal, wear of the bearings of the compressor, decomposition of the thermal cycle working medium and refrigeration oil.
  • the chlorine concentration in the heat cycle system is preferably 100 ppm or less, and particularly preferably 50 ppm or less in terms of a mass ratio with respect to the heat cycle working medium.
  • Metal concentration in the heat cycle system is preferably 5 ppm or less, particularly preferably 1 ppm or less, in terms of a mass ratio with respect to the heat cycle working medium.
  • the presence of acid in the thermal cycle system has undesirable effects such as acceleration of oxidative decomposition and self-decomposition of HFO-1123.
  • the acid content concentration in the heat cycle system is preferably 1 ppm or less, particularly preferably 0.2 ppm or less, in terms of a mass ratio with respect to the heat cycle working medium.
  • the presence of metal powder, other oils other than refrigerating machine oil, and high-boiling residues in the heat cycle system has undesirable effects such as clogging of the vaporizer and increased resistance of the rotating part.
  • the residue concentration in the heat cycle system is preferably 1000 ppm or less, and particularly preferably 100 ppm or less in terms of mass ratio with respect to the heat cycle working medium.
  • the residue can be removed by filtering the working medium for the heat cycle system with a filter or the like.
  • each component (HFO-1123, HFO-1234yf, etc.) of the working medium for the heat cycle system is filtered to remove the residue, and then mixed. It is good also as a working medium for heat cycle systems.
  • the above-described thermal cycle system uses a thermal cycle working medium containing trifluoroethylene, so that practical cycle performance can be obtained while suppressing the influence on global warming, and the self-decomposition reaction of HFO-1123 can be achieved. Even if it happens, the damage to the equipment can be minimized.
  • the thermal cycle system 10 is provided with a fragile portion 31.
  • the weak part 31 should just be provided in the circulation flow path 17 or a condenser (the outdoor heat exchanger 14 or the indoor heat exchanger 12).
  • the fragile portion 31 includes a condenser and an expansion valve in the circulation passage 17 that connects the compressor 20 and the condenser (the outdoor heat exchanger 14 or the indoor heat exchanger 12), which are parts that are likely to be high pressure during operation. More preferably, it is provided in the circulation flow path 17 connecting 15. In the heat cycle system 10 of FIG.
  • the fragile portion 31 is provided in the circulation flow path 17 that connects the compressor 20 and the four-way valve 16, which are parts that are particularly likely to become high pressure during operation.
  • This part has a high pressure during both cooling and heating, and is the position where the highest pressure is provided in the circulation flow path 17. Therefore, this part is the most preferable position for providing the fragile portion 31.
  • the pressure resistance of the fragile portion 31 is lower than the pressure resistance of the circulation channel 17 and the condenser.
  • the maximum working pressure of the working medium in the heat cycle system (for example, the saturation pressure at a working medium temperature of 60 ° C) is used as the design pressure, and the heat cycle.
  • the pressure resistance of the system requires 1.5 times or more of the design pressure, and more than 3 times the strength of a pressure vessel such as a sealed vessel of a compressor.
  • the pressure-resistant strength of the fragile portion 31 is preferably in the range of 1.5 to 3 times the design pressure of the thermal cycle system 10 (the maximum pressure that allows the working medium 11 to operate). Further, the pressure resistance of the fragile portion 31 is more preferably about 10 to 30% lower than the pressure resistance of the upstream portion 17a and the downstream portion 17b of the circulation channel 17.
  • the weak part 31 can be damaged more reliably.
  • the design pressure saturated pressure at a temperature of 60 ° C.
  • the pressure resistance strength of the fragile portion 31 in this case is preferably 6.9 MPa or more and 13.8 MPa or less.
  • the pressure resistance of the fragile portion 31 is more preferably 10 to 30% lower than the pressure resistance of the circulation channel 17 and the condenser. That is, the pressure resistance strength of the fragile portion 31 is more preferably in the range of 70% or more and 90% or less when the pressure resistance strength of the circulation channel 17 and the condenser is 100%.
  • the vulnerable part 31 (the vulnerable part 31-1, the vulnerable part 31-2, the vulnerable part 31-3, and the vulnerable part 31-4 described later) will be exemplified.
  • the pressure resistance strength of the circulation channel 17 and the fragile portion 31-1 will be described with reference to FIG.
  • the weak part 31-1 provided in the circulation flow path 17 has an upstream part 17a and a downstream part as viewed from the weak part 31-1 in the flow direction of the working medium.
  • the pressure strength is lower than 17b. That is, the fragile portion 31-1 is configured by intentionally reducing the mechanical strength with respect to other portions on the circulation flow path 17. As shown in FIG.
  • the fragile portion 31-1 and the upstream and downstream portions 17a and 17b are obtained by joining pipes having the same diameter and thickness to each other by welding or brazing.
  • the fragile portion 31-1 is more mechanical than the constituent material of the circulation channel 17 in which the fragile portion 31-1 is provided (the constituent material of the upstream portion 17a and the downstream portion 17b). It is preferable that it consists of a constituent material with the small tensile strength which shows a property. Due to the difference in tensile strength due to such constituent materials, when a self-decomposition reaction of trifluoroethylene occurs in the circulation channel 17, the fragile portion 31-1 is damaged due to an increase in pressure accompanying the self-decomposition reaction, The pressure of the circulation channel 17 is released to the outside from this part (the pressure is released).
  • the fragile portion 31-1 composed of the pipe is damaged when the internal pressure is applied, the stress acting in the circumferential direction is larger than the radial direction of the pipe, and the processing characteristics (effect of drawing) are also added. In this case, cracks tend to occur in the axial direction, and the cracks expand at a stretch and lead to breakage. Therefore, the fragile portion 31-1 can concentrate the damaged portions, and can minimize damage caused by scattering of the damaged members.
  • FIG. 4 shows another weak part 31-2 having a different structure from the weak part 31-1.
  • the fragile portion 31-2 is made of the same material as the upstream and downstream portions 17a and 17b.
  • the thickness of the fragile part 31-2 is made thinner than the thickness of the circulation channel 17 (the upstream part 17a and the downstream part 17b) provided with the fragile part 31-2.
  • the same effect as that of the fragile portion 31-1 can be expected due to the difference in pressure resistance when receiving the internal pressure.
  • FIG. 5 shows the protective part 33 configured by arranging a mesh-like member 33a outside the fragile part 31-2.
  • the protection part 33 protects the surroundings by preventing scattering of damaged parts when the weak parts 31-1, 31-2, etc. are damaged.
  • the mesh-like member 33a needs to have air permeability so as to release the internal pressure of the circulation flow path 17 in addition to blocking the passage of damaged objects. Further, as the mesh member 33a, various materials such as a metal material and a resin material can be selected as long as the air permeability described above is obtained.
  • the protection unit 33 circulates the damaged material when the fragile portion 31-2 is damaged by the generated pressure. Large scattering to the outside of the flow path 17 can be prevented.
  • FIG. 6 shows a protective part 34 configured by disposing a porous adsorbing member 34a on the outer side of the mesh-like member 33a of FIG.
  • the protective part 34 prevents the damaged parts 31-1 and 31-2 and the like from being damaged and the scattering of fluid-like inorganic compounds in the circulation channel 17 and the like.
  • the porous adsorbing member 34 a included in the protection unit 34 adsorbs (captures) a fluid-like inorganic compound that can be generated in the circulation channel 17, such as hydrogen fluoride gas (HF). It is a member for. Therefore, even when the fragile portions 31-1, 31-2 and the like are damaged, the protective portion 34 can suppress the hydrogen fluoride gas and the like in the circulation channel 17 from being scattered to the outside.
  • HF hydrogen fluoride gas
  • FIG. 7 shows a T-type elbow (T-type joint) 38 including another weak part 31-3 having a different structure from the weak parts 31-1 and 31-2.
  • the fragile portion 31-3 has an opening 35 and a lid portion 36 that closes the opening 35.
  • the lid 36 is made of a material weaker than the pressure strength of the upstream and downstream portions 17a and 17b, and is generated when the working medium undergoes a self-decomposition reaction. The action of breaking under pressure is the same.
  • the difference between the fragile part 31-1 and the fragile part 31-2 is that the direction of the damage can be controlled by its shape (T-shaped elbow), and the direction of the damage can be controlled, and the accuracy of the pressure resistance can be stabilized. There are also manufacturing advantages.
  • the outdoor heat exchanger 14 cooling condenser
  • the fragile portion 31-3 in the thermal cycle system 10 are built in an outdoor unit 42 having an outdoor fan 14a.
  • the fragile portion 31-3 provided in the circulation channel 17 (the opening 35 when the fragile portion 31-3 is damaged) is located at a position (and the outdoor unit) facing the outdoor heat exchanger 14 that becomes a condenser during cooling. 42 is selectively provided at a position facing the house 41 where 42 is installed.
  • the fragile portion 31-3 is instantaneously broken due to a pressure increase caused by the self-decomposition reaction of trifluoroethylene in the working medium, and the pressure is released. It goes to the 14th side and the house 41 side. Thereby, in the circumference
  • the weakened portion 31-4 (thinned portion 37 with a reduced thickness) provided in the circulation flow path 17 is located at a position facing the outdoor heat exchanger 14 in the outdoor unit 42 (and By being selectively provided at a position facing the house 41 where the outdoor unit 42 is installed, the same effect as that of the fragile part 31-3 can be obtained.
  • the weak part is provided only in the position facing the outdoor heat exchanger 14.
  • thermal cycle system 10 of the present embodiment it is possible to suppress damage caused when a self-decomposition reaction of trifluoroethylene contained in the working medium occurs.
  • the present invention has been specifically described according to the embodiment.
  • the present invention is not limited to the embodiment as it is, and various modifications can be made without departing from the scope of the invention in the implementation stage.
  • some constituent elements may be deleted from all the constituent elements shown in the embodiment, or a plurality of constituent elements disclosed in the above embodiments may be combined as appropriate.
  • DESCRIPTION OF SYMBOLS 10 Thermal cycle system, 11 ... Working medium, 12 ... Indoor heat exchanger (evaporator / condenser), 12a ... Indoor fan, 14 ... Outdoor heat exchanger (condenser / evaporator), 14a ... Outdoor fan, 15 DESCRIPTION OF SYMBOLS ... Expansion valve, 16 ... Four-way valve, 17 ... Circulation flow path, 17a ... Upstream part, 17b ... Downstream part, 20 ... Compressor, 21 ... Sealed container, 22a ... Motor stator, 22b ... Motor rotor, 23 ... Scroll compression mechanism, 24 ... Accumulator, 25 ... Suction pipe, 26 ... Discharge pipe, 27 ...
  • Power supply terminal, 28 ... Power supply path, 31, 31-1, 31-2, 31-3, 31-4 ... Vulnerable part , 33, 34 ... protection part, 33 a ... mesh-like member, 34 a ... porous adsorption member, 35 ... opening, 36 ... lid part, 37 ... thin-walled part, 38 ... T-type elbow (T-type joint), 41 ... house, 42 ... outdoor unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Abstract

本発明の熱サイクルシステムは、トリフルオロエチレンを含む作動媒体を用いる熱サイクルシステムであって、圧縮機(20)と、凝縮器(14)と、膨張弁(15)と、蒸発器(12)と、に加え、循環流路(17)と、脆弱部(31)と、を備えている。循環流路(17)は、前記圧縮機(20)と、前記凝縮器(14)と、前記膨張弁(15)と、前記蒸発器(12)と、を連結して前記作動媒体を循環させる。脆弱部(31)は、前記循環流路(17)中又は前記凝縮器(14)に設けられ、前記循環流路(17)及び前記凝縮器(14)の耐圧強度よりも耐圧強度が低い。

Description

熱サイクルシステム
 本発明は、トリフルオロエチレンを含む作動媒体を用いる熱サイクルシステムに関する。
 近年、ヒートパイプなどの潜熱輸送装置、冷凍機、空調機器といった熱サイクルシステム用の作動媒体として、炭素-炭素二重結合を有するヒドロフルオロオレフィン(HFO)に期待が集まっている。HFOは、炭素-炭素二重結合が大気中のOHラジカルによって分解されやすい。このことから、HFOは、オゾン層への影響や地球温暖化への影響が少ない作動媒体であるといえる。
 HFOを使用する作動媒体としては、例えばトリフルオロエチレンを用いたものが知られている。不燃性やサイクル性能などを高める目的で、トリフルオロエチレンに、各種ヒドロフルオロカーボン(HFC)を組み合わせて作動媒体とする試みもなされている。
 また、トリフルオロエチレンは、単独で用いた場合に高温下又は高圧下で着火源があると、自己分解することが知られている。そこで、トリフルオロエチレンを、例えばフッ化ビニリデンなどの他の成分と混合し、トリフルオロエチレンの含有量を抑えた混合物とすることで自己分解反応を抑える対策などが講じられている。
国際公開第2012/157764号
 ここで、上記したトリフルオロエチレンの自己分解反応が起こり始める前であれば、例えば熱サイクルシステムにおける高圧や高温の状態を回避することができる。このため、膨張弁の開度を開いたり圧縮機の回転数を下げたりすることなどで、自己分解反応の発生を未然に防ぐことが可能である。さらに緊急の場合には、冷媒回路内の制御弁を全て開放する動作や電源をオフする動作を実行することで、自己分解反応の発生を未然に防ぐことが可能である。しかしながら、自己分解反応発生直後は、上記した冷媒回路内の圧力が通常の10倍程度まで瞬時に上昇してしまうため、熱サイクルシステムの大規模な破損が想定される。
 そこで、本発明は、上記課題を解決するためになされたものであり、作動媒体に含まれるトリフルオロエチレンの自己分解反応が生じた場合の発生被害を抑制できる熱サイクルシステムの提供を目的とする。
 本発明は、以下の[1]~[13]に記載の構成を有する熱サイクルシステムを提供する。
 [1]トリフルオロエチレンを含む作動媒体を用いる熱サイクルシステムであって、圧縮機と、凝縮器と、膨張弁と、蒸発器と、前記圧縮機と、前記凝縮器と、前記膨張弁と、前記蒸発器と、を連結して前記作動媒体を循環させる循環流路と、脆弱部と、を備え、前記脆弱部は、前記循環流路又は前記凝縮器に設けられ、前記循環流路及び前記凝縮器の耐圧強度よりも耐圧強度が低い、熱サイクルシステム。
 [2]前記脆弱部は、前記圧縮機と前記凝縮器とを連結する循環流路、又は前記凝縮器と前記膨張弁とを連結する循環流路に設けられている、請求項1に記載の熱サイクルシステム。
 [3]前記圧縮機と前記凝縮器とを連結する循環流路に四方弁が設けられ、前記脆弱部は、前記圧縮機と前記四方弁とを連結する循環流路に設けられている、請求項1又は2に記載の熱サイクルシステム。
 [4]前記脆弱部は、前記循環流路内で前記トリフルオロエチレンの自己分解反応が生じたときに発生する圧力により破損して前記循環流路の外部へ圧力を開放する、請求項1から3までのいずれか1項に記載の熱サイクルシステム。
 [5]前記脆弱部の耐圧強度は、前記循環流路及び前記凝縮器の耐圧強度を100%とした場合、70%以上、90%以下の範囲内にある、請求項1から4までのいずれか1項に記載の熱サイクルシステム。
 [6]前記脆弱部の耐圧強度は、前記熱サイクルシステムの設計圧力の1.5倍以上、3倍以下の範囲内にある、請求項1から5までのいずれか1項に記載の熱サイクルシステム。
 [7]前記脆弱部は、前記循環流路の構成材料よりも引張強さが小さい構成材料からなる、請求項1から6までのいずれか1項に記載の熱サイクルシステム。
 [8]前記脆弱部の厚さが、前記循環流路の厚さよりも薄い、請求項1から7までのいずれか1項に記載の熱サイクルシステム。
 [9]防護部をさらに備える、請求項1から8までのいずれか1項に記載の熱サイクルシステム。
 [10]前記防護部は、メッシュ状の部材を有する、請求項9に記載の熱サイクルシステム。
 [11]前記防護部は、多孔質の吸着部材をさらに有する、請求項9又は10に記載の熱サイクルシステム。
 [12]前記凝縮器と前記脆弱部は、室外機に内蔵され、前記脆弱部は、前記凝縮器と対向する位置に選択的に設けられている、請求項1から11までのいずれか1項に記載の熱サイクルシステム。
 [13]前記作動媒体100質量%中のトリフルオロエチレンの含有量は、50質量%を超え100質量%以下である、請求項1から12までのいずれか1項に記載の熱サイクルシステム。
 本発明によれば、作動媒体に含まれるトリフルオロエチレンの自己分解反応が生じた場合の発生被害を抑制できる熱サイクルシステムを提供することが可能である。
本発明の実施形態に係る熱サイクルシステムの構成を概略的に示す図。 図1の熱サイクルシステムが備える圧縮機の構成を示す図。 図1の熱サイクルシステムの循環流路に設けられた脆弱部を示す断面図。 図3の脆弱部とは構造が異なる他の脆弱部を示す断面図。 図4の脆弱部の外側にメッシュ状の部材を配置しで構成された防護部を示す断面図。 図5のメッシュ状の部材のさらに外側に多孔質の吸着部材を配置して構成された防護部を示す断面図。 図3及び図4の脆弱部とは構造が異なる他の脆弱部を示す断面図。 図7の脆弱部のレイアウトを概略的に示す図。 図3、図4及び図7の脆弱部とは構造が異なる他の脆弱部を示す断面図。
 以下、本発明の実施の形態を図面に基づき説明する。
 図1に示すように、本実施形態の熱サイクルシステム10は、トリフルオロエチレン(HFO-1123ともいう)を含む作動媒体(冷媒)を適用する冷暖房機能を備えた空調システムである。主に、熱サイクルシステム10は、圧縮機20、室外熱交換器(凝縮器又は蒸発器)14、膨張弁15、室内熱交換器(蒸発器又は凝縮器)12、四方弁16、循環流路17を備え、作動媒体11が封入されている。図1では、冷房時における循環流路17上に沿った作動媒体11の流れの向きを矢印線で図示している。
 上記した作動媒体11は、その全量中におけるトリフルオロエチレンの含有量が50質量%を超え100質量%以下であることが望ましい。なお、本明細書中においては、特に断りのない限り飽和炭化水素の水素原子の一部がフッ素原子に置換された化合物であるヒドロフルオロカーボンをHFCといい、炭素‐炭素二重結合を有し、炭素原子、水素原子およびフッ素原子から構成されるヒドロフルオロオレフィン(HFO)とは区別して用いる。また、HFCを飽和のヒドロフルオロカーボンと記載する場合もある。さらに、HFCやHFOのハロゲン化炭化水素については、化合物名の後の括弧内にその化合物の略称を記すが、本明細書では必要に応じて化合物名に代えてその略称を用いる。
 図1に示すように、循環流路17は、圧縮機20と、室外熱交換器(凝縮器又は蒸発器)14と、膨張弁15と、室内熱交換器(蒸発器又は凝縮器)12と、を連結して作動媒体11を循環させる。四方弁16は、圧縮機20と、室外熱交換器14及び室内熱交換器12と、を連結する循環流路17中に設けられている。四方弁16は、循環流路17を循環する作動媒体11の流れの向きを変更する。冷房時には、室外熱交換器14は凝縮器として機能し、室内熱交換器12は蒸発器として機能する。一方、暖房時には、室外熱交換器14は蒸発器として機能し、室内熱交換器12は凝縮器として機能する。
 つまり、冷房時には、循環流路17は、作動媒体11を、圧縮機20から、四方弁16、室外熱交換器(凝縮器)14、膨張弁15、室内熱交換器(蒸発器)12、四方弁16を順に経由して圧縮機20に循環させる。一方、暖房時には、循環流路17は、作動媒体11を、圧縮機20から、四方弁16、室内熱交換器(凝縮器)12、膨張弁15、室外熱交換器(蒸発器)14、四方弁16を順に経由して圧縮機20に循環させる。
 詳述すると、図1に示すように、冷房時においては、圧縮機20は、作動媒体11を蒸気Aの状態で吸入し圧縮して高温高圧の蒸気Bにする。蒸気Bとなった作動媒体11は四方弁16を介して室外熱交換器(凝縮器)14に導かれ、室外ファン14aの送風により周囲空気に放熱し冷却・液化して、低温高圧の液状態Cになる。膨張弁15に流入した液状態Cの作動媒体11は、膨張・減圧作用を受けて低温低圧の気液二相の状態Dになる。室内熱交換器(蒸発器)12に導かれた作動媒体11(状態D)は、室内ファン12aの送風により周囲空気より吸熱し加熱・蒸発して、低温低圧の蒸気Aとなり、四方弁16を介して圧縮機20に帰還する。
 図2に示すように、モータを内蔵する密閉型の圧縮機20は、スクロール式の圧縮機であって、密閉容器21、モータステータ22a、モータロータ22b、スクロール圧縮機構23、アキュムレータ24及び吸入管25、吐出管26、電力供給端子27、電力供給路28を備えており、電力は図示した外部電源から供給される。
 スクロール圧縮機構23は図示しない2枚の渦巻状構造体を互いに対向させ、噛み合わせて空間を形成し、モータロータ22bの回転に伴って駆動され、当該空間の容積が変化することにより作動媒体11を圧縮する。アキュムレータ24及び吸入管25は、密閉容器21に接続されており、作動媒体11をスクロール圧縮機構23内に導入(吸入)する。スクロール圧縮機構23で圧縮された作動媒体11は、密閉容器内に吐出された後、吐出管26、四方弁16を経由して凝縮器(冷房時には室外熱交換器14、暖房時には室内熱交換器12)へ流入する。圧縮機20への電力供給は、外部電源から、電力供給端子27及び電力供給路28を介してモータステータ22aに供給される。
 なお、ここでは、スクロール式の圧縮機を例示したが、公知の圧縮機であれば特に限定されずに適用することができる。例えば、レシプロ式圧縮機、斜板式圧縮機、ロータリ式圧縮機、遠心式圧縮機など、スクロール式の圧縮機に代えて、適用することが可能である。
 ここで、上記した作動媒体は、HFO-1123とその他の作動媒体を含有する混合媒体である。なお、HFO-1123の地球温暖化係数(100年)は、IPCC(気候変動に関する政府間パネル)第4次評価報告書に準じて測定された値として、0.3である。本明細書においてGWPは、特に断りのない限り、この値を用いている。
 このように、作動媒体としては、GWPの極めて低いHFO-1123を50質量%超含有することで、得られる作動媒体のGWPの値も低く抑えたものにできるため好ましい。作動媒体が後述の任意成分を含む場合、その任意成分のGWPが、例えば、後述の飽和HFCのように、HFO-1123よりも高い場合には、その含有割合が低いほどGWPを低く抑えることができる。
 この作動媒体に用いられるHFO-1123は、作動媒体中においてその含有割合が高い場合に、高温又は高圧下で着火源が存在すると、連鎖的な自己分解反応をおこすおそれがある。なお、作動媒体としてHFO-1123の含有量を低くすることで自己分解反応を抑えることができるが、その含有量が低くなりすぎると、混合する他の作動媒体にもよるが、GWPが上昇し、冷凍能力及び成績係数が低下する場合が多い。
 ここで、作動媒体を本実施形態の熱サイクルシステムに適用するにあたっては、作動媒体100質量%中のHFO-1123の含有割合を50質量%超とすることが好ましく、60質量%超とすることがより好ましく、70質量%超とすることがさらに好ましい。このような含有割合とすることで、GWPを十分に低くして、良好な冷凍能力を確保できる。
 <任意成分>
 作動媒体は、本発明の効果を損なわない範囲でHFO-1123以外に、任意成分として通常作動媒体として用いられる化合物を含有してもよい。任意成分としては、HFC、HFO-1123以外のHFOが好ましい。
 <HFC>
 HFCとしては、例えば、HFO-1123と組み合わせて熱サイクルに用いた際に、温度勾配を小さくする作用、能力を向上させる作用または効率をより高める作用を有するHFCが用いられる。本発明に使用される熱サイクル用の作動媒体がこのようなHFCを含むと、より良好なサイクル性能が得られる。
 なお、HFCは、HFO-1123に比べてGWPが高いことが知られている。したがって、上記作動媒体としてのサイクル性能の向上に加えて、GWPを許容の範囲にとどめる観点からHFCを選択する。
 オゾン層への影響が少なく、かつ地球温暖化への影響が小さいHFCとして具体的には炭素数1~5のHFCが好ましい。HFCは、直鎖状であっても、分岐状であってもよく、環状であってもよい。
 HFCとしては、ジフルオロメタン(HFC-32)、ジフルオロエタン、トリフルオロエタン、テトラフルオロエタン、ペンタフルオロエタン(HFC-125)、ペンタフルオロプロパン、ヘキサフルオロプロパン、ヘプタフルオロプロパン、ペンタフルオロブタン、ヘプタフルオロシクロペンタンなどが挙げられる。
 なかでも、HFCとしては、オゾン層への影響が少なく、かつ冷凍サイクル特性が優れる点から、HFC-32、1,1-ジフルオロエタン(HFC-152a)、1,1,1-トリフルオロエタン(HFC-143a)、1,1,2,2-テトラフルオロエタン(HFC-134)、1,1,1,2-テトラフルオロエタン(HFC-134a)、及びHFC-125が好ましく、HFC-32、HFC-134a、及びHFC-125がより好ましい。HFCは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 なお、上記好ましいHFCのGWPは、HFC-32については675であり、HFC-134aについては1430であり、HFC-125については3500である。得られる作動媒体のGWPを低く抑える観点から、任意成分のHFCとしては、HFC-32が最も好ましい。
 <HFO-1123以外のHFO>
 HFO-1123以外のHFOとしては、2,3,3,3-テトラフルオロ-1-プロペン(HFO-1234yf)、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、シス-1,2-ジフルオロエチレン(HFO-1132(Z))、2-フルオロプロペン(HFO-1261yf)、1,1,2-トリフルオロプロペン(HFO-1243yc)、トランス-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(E))、シス-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(Z))、トランス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、シス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))、3,3,3-トリフルオロプロペン(HFO-1243zf)などが挙げられる。
 なかでも、HFO-1123以外のHFOとしては、高い臨界温度を有し、安全性、成績係数が優れる点から、HFO-1234yf、HFO-1234ze(E)、HFO-1234ze(Z)が好ましい。これらのHFO-1123以外のHFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 作動媒体が、任意成分のHFC及び/又は、HFO-1123以外のHFOを含む場合、該作動媒体100質量%中のHFC、及び、HFO-1123以外のHFOの合計の含有割合は、50質量%以下が好ましく、0質量%より大きく40質量%以下がより好ましく、0質量%より大きく30質量%以下が最も好ましい。作動媒体におけるHFC及びHFO-1123以外のHFOの合計の含有割合は、用いるHFC及びHFO-1123以外のHFOの種類に応じて、上記範囲内で適宜調整される。このとき、HFO-1123と組み合わせて熱サイクルに用いた際に、温度勾配を小さくする、能力を向上させる、または、効率をより高める、などの観点、さらには地球温暖化係数を勘案して、調整する。
 <その他の任意成分>
 作動媒体は、上記任意成分以外に、二酸化炭素、炭化水素、クロロフルオロオレフィン(CFO)、ヒドロクロロフルオロオレフィン(HCFO)などをその他の任意成分として含有してもよい。その他の任意成分としては、オゾン層への影響が少なく、かつ地球温暖化への影響が小さい成分が好ましい。
 炭化水素としては、プロパン、プロピレン、シクロプロパン、ブタン、イソブタン、ペンタン、イソペンタンなどが挙げられる。炭化水素は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 作動媒体が炭化水素を含有する場合、その含有量は作動媒体の100質量%に対して10質量%以下が好ましく、1~10質量%がより好ましく、1~7質量%がさらに好ましく、2~5質量%が最も好ましい。炭化水素が下限値以上であれば、作動媒体への鉱物系冷凍機油の溶解性がより良好になる。
 クロロフルオロオレフィン(CFO)としては、クロロフルオロエチレン、クロロフルオロプロペンなどが挙げられる。本発明において熱サイクル用作動媒体のサイクル性能を大きく低下させることなく作動媒体の燃焼性を抑えやすい点から、CFOとしては、1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFO-1214ya)、1,3-ジクロロ-1,2,3,3-テトラフルオロプロペン(CFO-1214yb)、1,2-ジクロロ-1,2-ジフルオロエチレン(CFO-1112)が好ましい。CFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 作動媒体がCFOを含有する場合、その含有割合は該作動媒体の100質量%に対して50質量%以下が好ましく、0質量%より大きく40質量%以下がより好ましく、0質量%より大きく30質量%以下が最も好ましい。CFOの含有割合が下限値を超える値であれば、作動媒体の燃焼性を抑制しやすい。CFOの含有割合が上限値以下であれば、良好なサイクル性能が得られやすい。
 HCFOとしては、ヒドロクロロフルオロプロペン、ヒドロクロロフルオロエチレンなどが挙げられる。本発明に使用される熱サイクル用作動媒体のサイクル性能を大きく低下させることなく作動媒体の燃焼性を抑えやすい点から、HCFOとしては、1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd)、1-クロロ-1,2-ジフルオロエチレン(HCFO-1122)が好ましい。
 HCFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 作動媒体がHCFOを含む場合、該作動媒体100質量%中のHCFOの含有割合は、50質量%以下が好ましく、0質量%より大きく40質量%以下がより好ましく、0質量%より大きく30質量%以下が最も好ましい。HCFOの含有割合が下限値を超える値であれば、作動媒体の燃焼性を抑制しやすい。HCFOの含有割合が上限値以下であれば、良好なサイクル性能が得られやすい。
 作動媒体が上記のような任意成分及びその他の任意成分を含有する場合、その合計含有割合は、作動媒体100質量%に対して50質量%以下が好ましい。
 以上説明した作動媒体は、地球温暖化への影響が少ないHFOであって、作動媒体としての能力に優れるHFO-1123を含有するものであり、地球温暖化への影響を抑えつつ、実用的なサイクル性能を有するものである。
 <熱サイクルシステム用組成物>
 上記の作動媒体は、通常、冷凍機油と混合して熱サイクルシステムに使用される熱サイクルシステム用組成物とする。この熱サイクルシステム用組成物は、上記熱サイクルシステムの循環流路内に封入して使用される。この熱サイクルシステム用組成物は、冷凍機油以外にさらに、安定剤、漏れ検出物質などの公知の添加剤を含有してもよい。
 <冷凍機油>
 冷凍機油としては、従来のハロゲン化炭化水素からなる作動媒体と共に、熱サイクルシステム用組成物に用いられる公知の冷凍機油が特に制限なく採用できる。冷凍機油として具体的には、含酸素系冷凍機油(エステル系冷凍機油、エーテル系冷凍機油など)、フッ素系冷凍機油、鉱物系冷凍機油、炭化水素系冷凍機油などが挙げられる。
 エステル系冷凍機油としては、二塩基酸エステル油、ポリオールエステル油、コンプレックスエステル油、ポリオール炭酸エステル油などが挙げられる。
 二塩基酸エステル油としては、炭素数5~10の二塩基酸(グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸など)と、直鎖または分枝アルキル基を有する炭素数1~15の一価アルコール(メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノールなど)とのエステルが好ましい。この二塩基酸エステル油としては、具体的には、グルタル酸ジトリデシル、アジピン酸ジ(2-エチルヘキシル)、アジピン酸ジイソデシル、アジピン酸ジトリデシル、セバシン酸ジ(3-エチルヘキシル)などが挙げられる。
 ポリオールエステル油としては、ジオール(エチレングリコール、1,3-プロパンジオール、プロピレングリコール、1,4-ブタンジオール、1,2-ブタンジオール、1,5-ペンタジオール、ネオペンチルグリコール、1,7-ヘプタンジオール、1,12-ドデカンジオールなど)または水酸基を3~20個有するポリオール(トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ペンタエリスリトール、グリセリン、ソルビトール、ソルビタン、ソルビトールグリセリン縮合物など)と、炭素数6~20の脂肪酸(ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、エイコサン酸、オレイン酸などの直鎖または分枝の脂肪酸、もしくはα炭素原子が4級であるいわゆるネオ酸など)とのエステルが好ましい。なお、これらのポリオールエステル油は、遊離の水酸基を有していてもよい。
 ポリオールエステル油としては、ヒンダードアルコール(ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ペンタエリスルトールなど)のエステル(トリメチロールプロパントリペラルゴネート、ペンタエリスリトール2-エチルヘキサノエート、ペンタエリスリトールテトラペラルゴネートなど)が好ましい。
 コンプレックスエステル油とは、脂肪酸及び二塩基酸と、一価アルコール及びポリオールとのエステルである。脂肪酸、二塩基酸、一価アルコール、ポリオールとしては、上述と同様のものを用いることができる。
 ポリオール炭酸エステル油とは、炭酸とポリオールとのエステルである。ポリオールとしては、上述と同様のジオールや上述と同様のポリオールが挙げられる。また、ポリオール炭酸エステル油としては、環状アルキレンカーボネートの開環重合体であってもよい。
 エーテル系冷凍機油としては、ポリビニルエーテル油やポリオキシアルキレン油が挙げられる。ポリビニルエーテル油としては、アルキルビニルエーテルなどのビニルエーテルモノマーを重合して得られたものや、ビニルエーテルモノマーとオレフィン性二重結合を有する炭化水素モノマーとを共重合して得られた共重合体がある。ビニルエーテルモノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 オレフィン性二重結合を有する炭化水素モノマーとしては、エチレン、プロピレン、各種ブテン、各種ペンテン、各種ヘキセン、各種ヘプテン、各種オクテン、ジイソブチレン、トリイソブチレン、スチレン、α-メチルスチレン、各種アルキル置換スチレンなどが挙げられる。オレフィン性二重結合を有する炭化水素モノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ポリビニルエーテル共重合体は、ブロックまたはランダム共重合体のいずれであってもよい。ポリビニルエーテル油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ポリオキシアルキレン油としては、ポリオキシアルキレンモノオール、ポリオキシアルキレンポリオール、ポリオキシアルキレンモノオールやポリオキシアルキレンポリオールのアルキルエーテル化物、ポリオキシアルキレンモノオールやポリオキシアルキレンポリオールのエステル化物などが挙げられる。
 ポリオキシアルキレンモノオールやポリオキシアルキレンポリオールは、水酸化アルカリなどの触媒の存在下、水や水酸基含有化合物などの開始剤に炭素数2~4のアルキレンオキシド(エチレンオキシド、プロピレンオキシドなど)を開環付加重合させる方法などにより得られたものが挙げられる。また、ポリアルキレン鎖中のオキシアルキレン単位は、1分子中において同一であってもよく、2種以上のオキシアルキレン単位が含まれていてもよい。1分子中に少なくともオキシプロピレン単位が含まれることが好ましい。
 反応に用いる開始剤としては、水、メタノールやブタノールなどの1価アルコール、エチレングリコール、プロピレングリコール、ペンタエリスリトール、グリセロールなどの多価アルコールが挙げられる。
 ポリオキシアルキレン油としては、ポリオキシアルキレンモノオールやポリオキシアルキレンポリオールの、アルキルエーテル化物やエステル化物が好ましい。また、ポリオキシアルキレンポリオールとしては、ポリオキシアルキレングリコールが好ましい。特に、ポリグリコール油と呼ばれる、ポリオキシアルキレングリコールの末端水酸基がメチル基などのアルキル基でキャップされた、ポリオキシアルキレングリコールのアルキルエーテル化物が好ましい。
 フッ素系冷凍機油としては、合成油(後述する鉱物油、ポリα-オレフィン、アルキルベンゼン、アルキルナフタレンなど)の水素原子をフッ素原子に置換した化合物、ペルフルオロポリエーテル油、フッ素化シリコーン油などが挙げられる。
 鉱物系冷凍機油としては、原油を常圧蒸留または減圧蒸留して得られた冷凍機油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、白土処理等の精製処理を適宜組み合わせて精製したパラフィン系鉱物油、ナフテン系鉱物油などが挙げられる。
 炭化水素系冷凍機油としては、ポリα-オレフィン、アルキルベンゼン、アルキルナフタレンなどが挙げられる。
 冷凍機油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。冷凍機油としては、作動媒体との相溶性の点から、ポリオールエステル油、ポリビニルエーテル油及びポリグリコール油から選ばれる1種以上が好ましい。冷凍機油の添加量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体100質量部に対して、10~100質量部が好ましく、20~50質量部がより好ましい。
 <安定剤>
 安定剤は、熱及び酸化に対する作動媒体の安定性を向上させる成分である。安定剤としては、従来からハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の安定剤、例えば、耐酸化性向上剤、耐熱性向上剤、金属不活性剤などが特に制限なく採用できる。
 耐酸化性向上剤及び耐熱性向上剤としては、N,N’-ジフェニルフェニレンジアミン、p-オクチルジフェニルアミン、p,p’-ジオクチルジフェニルアミン、N-フェニル-1-ナフチルアミン、N-フェニル-2-ナフチルアミン、N-(p-ドデシル)フェニル-2-ナフチルアミン、ジ-1-ナフチルアミン、ジ-2-ナフチルアミン、N-アルキルフェノチアジン、6-(t-ブチル)フェノール、2,6-ジ-(t-ブチル)フェノール、4-メチル-2,6-ジ-(t-ブチル)フェノール、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)などが挙げられる。耐酸化性向上剤及び耐熱性向上剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 金属不活性剤としては、イミダゾール、ベンズイミダゾール、2-メルカプトベンズチアゾール、2,5-ジメチルカプトチアジアゾール、サリシリジン-プロピレンジアミン、ピラゾール、ベンゾトリアゾール、トルトリアゾール、2-メチルベンズアミダゾール、3,5-ジメチルピラゾール、メチレンビス-ベンゾトリアゾール、有機酸またはそれらのエステル、第1級、第2級または第3級の脂肪族アミン、有機酸または無機酸のアミン塩、複素環式窒素含有化合物、アルキル酸ホスフェートのアミン塩又はそれらの誘導体などが挙げられる。
 安定剤の添加量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体100質量部に対して、5質量部以下が好ましく、1質量部以下がより好ましい。
 <漏れ検出物質>
 漏れ検出物質としては、紫外線蛍光染料、臭気ガスや臭いマスキング剤などが挙げられる。
 紫外線蛍光染料としては、米国特許第4249412号明細書、特表平10-502737号公報、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたものなど、従来、ハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の紫外線蛍光染料が挙げられる。
 臭いマスキング剤としては、特表2008-500437号公報、特表2008-531836号公報に記載されたものなど、従来からハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の香料が挙げられる。
 漏れ検出物質を用いる場合には、作動媒体への漏れ検出物質の溶解性を向上させる可溶化剤を用いてもよい。可溶化剤としては、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたものなどが挙げられる。
 漏れ検出物質の添加量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体100質量部に対して、2質量部以下が好ましく、0.5質量部以下がより好ましい。
 <熱サイクルシステム>
 次に、上記の熱サイクル用作動媒体を適用する本発明の熱サイクルシステムについて説明する。この熱サイクルシステムは、HFO-1123を含む熱サイクル用作動媒体として用いたシステムである。この熱サイクル用作動媒体を熱サイクルシステムに適用するにあたっては、通常、作動媒体を含有する熱サイクルシステム用組成物として適用する。
 また、本発明の熱サイクルシステムは、基本的な熱サイクルは従来公知の熱サイクルシステムと同一の構成のものが挙げられ、凝縮器で得られる温熱を利用するヒートポンプシステムであってもよく、蒸発器で得られる冷熱を利用する冷凍サイクルシステムであってもよい。
 この熱サイクルシステムとして、具体的には、冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置及び二次冷却機などが挙げられる。なかでも、本発明の熱サイクルシステムは、より高温の作動環境でも安定して熱サイクル性能を発揮できるため、屋外などに設置されることが多い空調機器に用いられることが好ましい。また、本発明の熱サイクルシステムは、冷凍・冷蔵機器に用いられることも好ましい。
 空調機器として、具体的には、ルームエアコン、パッケージエアコン(店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコンなど)、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置などが挙げられる。
 冷凍・冷蔵機器として、具体的には、ショーケース(内蔵型ショーケース、別置型ショーケースなど)、業務用冷凍・冷蔵庫、自動販売機、製氷機などが挙げられる。
 発電システムとしては、ランキンサイクルシステムによる発電システムが好ましい。発電システムとして、具体的には、蒸発器において地熱エネルギー、太陽熱、50~200℃程度の中~高温度域廃熱などにより作動媒体を加熱し、高温高圧状態の蒸気となった作動媒体を膨張機にて断熱膨張させ、該断熱膨張によって発生する仕事によって発電機を駆動させ、発電を行うシステムが例示される。
 また、本発明の熱サイクルシステムは、熱輸送装置であってもよい。熱輸送装置としては、潜熱輸送装置が好ましい。
 潜熱輸送装置としては、装置内に封入された作動媒体の蒸発、沸騰、凝縮などの現象を利用して潜熱輸送を行うヒートパイプ及び二相密閉型熱サイフォン装置が挙げられる。ヒートパイプは、半導体素子や電子機器の発熱部の冷却装置など、比較的小型の冷却装置に適用される。二相密閉型熱サイフォンは、ウィッグを必要とせず構造が簡単であることから、ガス-ガス型熱交換器、道路の融雪促進及び凍結防止などに広く利用される。
 <水分濃度>
 なお、熱サイクルシステムの稼働に際しては、水分の混入や、酸素などの不凝縮性気体の混入による不具合の発生を避けるために、これらの混入を抑制する手段を設けることが好ましい。
 熱サイクルシステム内に水分が混入すると、特に低温で使用される際に問題が生じる場合がある。例えば、キャピラリーチューブ内での氷結、作動媒体や冷凍機油の加水分解、サイクル内で発生した酸成分による材料劣化、コンタミナンツの発生などの問題が発生する。特に、冷凍機油がポリグリコール油、ポリオールエステル油などである場合は、吸湿性が極めて高く、また、加水分解反応を生じやすく、冷凍機油としての特性が低下し、圧縮機の長期信頼性を損なう大きな原因となる。したがって、冷凍機油の加水分解を抑えるためには、熱サイクルシステム内の水分濃度を制御する必要がある。
 熱サイクルシステム内の水分濃度を制御する方法としては、乾燥剤(例えばシリカゲル、活性アルミナ、ゼオライト、塩化リチウム)などの水分除去手段を用いる方法が挙げられる。
 乾燥剤は、液状の作動媒体と接触させることが、脱水効率の点で好ましい。例えば、膨張弁15の入口に乾燥剤を配置して、作動媒体と接触させることが好ましい。乾燥剤としては、乾燥剤と作動媒体との化学反応性、乾燥剤の吸湿能力の点から、ゼオライト系乾燥剤が好ましい。
 ゼオライト系乾燥剤としては、従来の鉱物系冷凍機油に比べて吸湿量の高い冷凍機油を用いる場合には、吸湿能力に優れる点から、下記の式[1]で表される化合物を主成分とするゼオライト系乾燥剤が好ましい。
 M2/nO・Al23・xSiO2・yH2O … 式[1]
 ただし、Mは、Na、Kなどの1族の元素またはCaなどの2族の元素であり、nは、Mの原子価であり、x、yは、結晶構造にて定まる値である。Mを変化させることにより細孔径を調整できる。乾燥剤の選定においては、細孔径及び破壊強度が重要である。
 作動媒体の分子径よりも大きい細孔径を有する乾燥剤を用いた場合、作動媒体が乾燥剤中に吸着され、その結果、作動媒体と乾燥剤との化学反応が生じ、不凝縮性気体の生成、乾燥剤の強度の低下、吸着能力の低下などの好ましくない現象を生じることとなる。
 水の分子径は3オングストローム程度であり、乾燥剤としては、3~4オングストローム程度の細孔径を持つゼオライト系乾燥剤を用いることが好ましく、特にナトリウム・カリウムA型の合成ゼオライトが好ましい。これにより、作動媒体を吸着することなく、熱サイクルシステム内の水分のみを選択的に吸着除去できるため、作動媒体の熱分解が起こりにくくなり、その結果、熱サイクルシステムを構成する材料の劣化やコンタミナンツの発生を抑制できる。
 ゼオライト系乾燥剤の物理的な大きさは、小さすぎると熱サイクルシステムの弁や配管細部への詰まりの原因となり、大きすぎると乾燥能力が低下するため、約0.5~5mmが好ましい。形状としては、粒状または円筒状が好ましい。
 ゼオライト系乾燥剤は、粉末状のゼオライトを結合剤(ベントナイトなど)で固めることにより任意の形状とすることができる。ゼオライト系乾燥剤を主体とするかぎり、他の乾燥剤(シリカゲル、活性アルミナなど)を併用してもよい。作動媒体に対するゼオライト系乾燥剤の使用割合は、特に限定されない。
 熱サイクルシステム内の水分濃度は、熱サイクル用作動媒体に対する質量割合で、10000ppm未満が好ましく、1000ppm未満が更に好ましく、100ppm未満が特に好ましい。
 <不凝縮性気体濃度>
 さらに、熱サイクルシステム内に不凝縮性気体が混入すると、凝縮器や蒸発器における熱伝達の不良、これによる作動圧力の上昇という悪影響をおよぼすため、極力混入を抑制する必要がある。特に、不凝縮性気体の一つである酸素は、作動媒体や冷凍機油と反応し、分解を促進する。
 不凝縮性気体濃度は、熱サイクル用作動媒体に対する質量割合で、10000ppm未満が好ましく、1000ppm未満が更に好ましく、100ppm未満が特に好ましい。
 <塩素濃度>
 熱サイクルシステム内に塩素が存在すると、金属との反応による堆積物の生成、圧縮機の軸受け部の磨耗、熱サイクル用作動媒体や冷凍機油の分解など、好ましくない影響をおよぼす。熱サイクルシステム内の塩素濃度は、熱サイクル用作動媒体に対する質量割合で100ppm以下が好ましく、50ppm以下が特に好ましい。
 <金属濃度>
 熱サイクルシステム内にパラジウム、ニッケル、鉄などの金属が存在すると、HFO-1123の分解やオリゴマー化など、好ましくない影響をおよぼす。熱サイクルシステム内の金属濃度は、熱サイクル用作動媒体に対する質量割合で5ppm以下が好ましく、1ppm以下が特に好ましい。
 <酸分濃度>
 熱サイクルシステム内に酸分が存在すると、HFO-1123の酸化分解、自己分解反応が促進するなど、好ましくない影響を及ぼす。熱サイクルシステム内の酸分濃度は、熱サイクル用作動媒体に対する質量割合で1ppm以下が好ましく、0.2ppm以下が特に好ましい。
 また、熱サイクル組成物から酸分を除去する目的で、NaFなどの脱酸剤による酸分除去を行う手段を熱サイクルシステム内に設けることで、熱サイクル組成物から酸分を除去することが好ましい。
 <残渣濃度>
 熱サイクルシステム内に金属粉、冷凍機油以外の他の油、高沸分などの残渣が存在すると、気化器部分の詰まりや回転部の抵抗増加など、好ましくない影響を及ぼす。
 熱サイクルシステム内の残渣濃度は、熱サイクル用作動媒体に対する質量割合で1000ppm以下が好ましく、100ppm以下が特に好ましい。
 残渣は、熱サイクルシステム用作動媒体をフィルタなどでろ過することで除去することができる。また、熱サイクルシステム用作動媒体とする前に、熱サイクルシステム用作動媒体の各成分(HFO-1123、HFO-1234yfなど)ごとにフィルタでろ過を行って残渣を除去し、その後に混合して熱サイクルシステム用作動媒体としてもよい。
 上記した熱サイクルシステムは、トリフルオロエチレンを含む熱サイクル用作動媒体を用いることで、地球温暖化への影響を抑えつつ、実用的なサイクル性能が得られると共に、HFO-1123の自己分解反応が起きたとしても、機器の被害を最小限に抑えることができる。
 次に、熱サイクルシステム10の作動媒体に含まれるトリフルオロエチレンの自己分解反応が生じた場合の発生被害を抑制するための構成について説明する。図1に示すように、熱サイクルシステム10には、脆弱部31が設けられている。脆弱部31は、循環流路17中又は凝縮器(室外熱交換器14や室内熱交換器12)に設けられていればよい。さらに、脆弱部31は、運転時に高圧になりやすい部位である圧縮機20と凝縮器(室外熱交換器14若しくは室内熱交換器12)とを連結する循環流路17中、凝縮器と膨張弁15とを連結する循環流路17中に設けることがより好ましい。図1の熱サイクルシステム10では、運転時に特に高圧になりやすい部位である圧縮機20と四方弁16とを連結する循環流路17中に脆弱部31を設けている。この部位は、冷房時・暖房時ともに高圧となり、さらに、循環流路17内では最も高圧となる位置であるため、脆弱部31を設ける部位としては最も好ましい位置である。脆弱部31の耐圧強度は、循環流路17及び凝縮器の耐圧強度よりも低い。このような構成にすることにより、作動媒体11中のトリフルオロエチレンに自己分解反応が起こった場合でも、自己分解反応に伴う循環流路17中の圧力上昇により脆弱部31が破損し、この破損した脆弱部31から作動媒体11が迅速に外部に放出される。これにより、作動媒体11中のトリフルオロエチレンの自己分解反応に伴う熱サイクルシステム10の大規模な破損を回避して発生被害を抑制することができる。
 ここで、日本工業規格JIS B8620(小型冷凍装置の安全基準)によれば、熱サイクルシステムにおける作動媒体の最高使用圧力(例えば、作動媒体の温度60℃における飽和圧力)を設計圧力とし、熱サイクルシステムの耐圧強度は設計圧力の1.5倍以上、さらに圧縮機の密閉容器など圧力容器においては3倍以上の強度を必要としている。脆弱部31の耐圧強度は、熱サイクルシステム10の設計圧力(作動媒体11に作動を許す最高圧力)の1.5倍以上3倍以下の範囲内にあることが好ましい。さらに、脆弱部31の耐圧強度は、循環流路17の前記した上流側の部位17a及び下流側の部位17bの耐圧強度よりも10~30%程度低い耐圧強度とすることがより好ましい。これにより、より確実に脆弱部31を破損させることができる。具体的数値を例で示すと、作動媒体をHFO-1123(60質量%)とHFC-32(40質量%)の混合媒体とした場合、設計圧力(温度60℃での飽和圧力)は、4.6MPaとなる。したがって、この場合の脆弱部31の耐圧強度は、6.9MPa以上13.8MPa以下であることが好ましい。また、脆弱部31の耐圧強度は、上記した循環流路17及び凝縮器の耐圧強度よりも10~30%低い耐圧強度とすることがより好ましい。つまり、脆弱部31の耐圧強度は、循環流路17及び凝縮器の耐圧強度を100%とした場合、70%以上、90%以下の範囲内にあることがより好ましい。
 以下、脆弱部31の具体的構成(後記の脆弱部31-1、脆弱部31-2、脆弱部31-3、脆弱部31-4)を例示する。まず、図3を参照しつつ循環流路17と脆弱部31-1の耐圧強度について説明する。図3に示すように、循環流路17中に設けられている脆弱部31-1は、作動媒体の流れの方向において、当該脆弱部31-1からみて上流側の部位17a及び下流側の部位17bよりも、耐圧強度が低くなるように構成されている。つまり、脆弱部31-1は、循環流路17上の他の部位に対して、意図的に機械的強度を低下させて構成されている。図3に示すように、脆弱部31-1と上流側及び下流側の部位17a、17bとは、それぞれ、直径や肉厚が同じ配管どうしを溶接またはろう付けによって互いに接合されたものである。但し、脆弱部31-1は、当該脆弱部31-1が設けられている循環流路17の構成材料(前記した上流側の部位17a及び下流側の部位17bの構成材料)よりも、機械的性質を示す引張強さが小さい構成材料からなることが好ましい。このような構成材料による引張強さの違いにより、循環流路17内でトリフルオロエチレンの自己分解反応が起こったとき、自己分解反応に伴う圧力上昇を受けて脆弱部31-1が破損し、この部位から循環流路17の圧力を外部へ開放する(圧力を逃す)。
 上記のような集中的な圧力開放部を備えることにより、自己分解反応が生じた場合の熱サイクルシステム10における大規模な破損を回避することが可能となる。また、配管で構成された脆弱部31-1は、内圧を受ける場合、配管の半径方向よりも円周方向に働く応力が大きく、加工成形上の特性(引き抜き加工による影響)も加わり、破損する場合は軸方向に亀裂が発生しやすく、亀裂が一気に拡大して破損に至る。したがって、脆弱部31-1は、破損個所を集中させることができ、破損した部材の飛散などによる被害を最小限に抑えることができる。
 図4は、脆弱部31-1とは構造が異なる他の脆弱部31-2を示している。脆弱部31-2は、図4に示すように、前記した上流側及び下流側の部位17a、17bと同じ材料で構成されている。但し、脆弱部31-2の厚さは、当該脆弱部31-2が設けられている循環流路17(前記した上流側の部位17a及び下流側の部位17b)の厚さよりも薄くして構成されている。これにより、内圧を受ける場合の耐圧強度の違いにより、脆弱部31-1と同様の効果を期待することができる。
 図5は、脆弱部31-2の外側にメッシュ状の部材33aを配置して構成された防護部33を示している。防護部33は、脆弱部31-1、31-2などが破損したときの破損物の飛散を防ぎ、周囲を防護するものである。メッシュ状の部材33aは、破損物の通過を遮ることに加え、循環流路17の内圧を逃すための通気性が必要である。また、メッシュ状の部材33aは、前記の通気性が得られるのであれば、金属材料や樹脂材料など、種々のものを選択することができる。このように、防護部33は、循環流路17内で作動媒体11中のトリフルオロエチレンが自己分解反応を起こしたとき、その発生圧力により脆弱部31-2が破損したときの破損物が循環流路17の外部へ大きく飛散してしまうことを防ぐことができる。
 図6は、図5のメッシュ状の部材33aのさらに外側に多孔質の吸着部材34aを配置して構成された防護部34を示している。防護部34は、脆弱部31-1、31-2などが破損したときの破損物及び循環流路17内の流体状の無機化合物などの飛散を防ぐ。図6に示すように、防護部34が備える多孔質の吸着部材34aは、循環流路17内で発生し得る流体状の無機化合物、例えばフッ化水素ガス(HF)などを吸着(捕捉)するための部材である。したがって、脆弱部31-1、31-2などが破損した場合でも、防護部34により、循環流路17内のフッ化水素ガスなどが外部への飛散することを抑制できる。
 図7は、脆弱部31-1、31-2とは構造が異なる他の脆弱部31-3を含むT型エルボ(T型継ぎ手)38を示している。図7に示すように、脆弱部31-3は、開口部35と、この開口部35を閉塞している蓋部36と、を有している。蓋部36は、図3で示し説明したように、その上流側及び下流側の部位17a、17bの耐圧強度より弱い材料で構成されたもので、作動媒体が自己分解反応を起こした時の発生圧力を受けて、破損する動作は同じである。脆弱部31-1や脆弱部31-2との違いは、その形状(T型エルボ)により、破損の方向が明確なため破損方向を制御できることであり、また、耐圧強度の精度を安定化できる製造上の有利さもある。
 ここで、図8に示すように、熱サイクルシステム10における室外熱交換器14(冷房時の凝縮器)と脆弱部31-3は、室外ファン14aを有する室外機42に内蔵されている。循環流路17に備えられた脆弱部31-3(当該脆弱部31-3が破損したときの開口部35)は、冷房時に凝縮器となる室外熱交換器14と対向する位置(及び室外機42が設置されている家屋41と対向する位置)に選択的に設けられている。このような構成により、作動媒体中のトリフルオロエチレンの自己分解反応に伴う圧力上昇により脆弱部31-3が瞬時に破損して圧力を開放し、その時に発生する破損物は、室外熱交換器14側や家屋41側に向かうことになる。これにより、室外機が設置される周囲において、道路を通行する車や歩行者への影響を回避できる。なお、脆弱部は、室外熱交換器14と対向する位置のみに設けられていることが安全上好ましい。
 また、図9に示すように、循環流路17に備えられた脆弱部31-4(肉厚を薄くした薄肉部37)は、室外機42内の室外熱交換器14と対向する位置(及び室外機42が設置されている家屋41と対向する位置)に選択的に設けられていることで、脆弱部31-3と同様の効果を得ることができる。なお、脆弱部は、室外熱交換器14と対向する位置のみに設けられていることが安全上好ましい。
 既述したように、本実施形態の熱サイクルシステム10によれば、作動媒体に含まれるトリフルオロエチレンの自己分解反応が生じた場合の発生被害を抑制することができる。
 以上、本発明を実施の形態により具体的に説明したが、本発明はこの実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々変更可能である。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよいし、上記実施形態に開示されている複数の構成要素を適宜組み合わせることも可能である。
 10…熱サイクルシステム、11…作動媒体、12…室内熱交換器(蒸発器/凝縮器)、12a…室内ファン、14…室外熱交換器(凝縮器/蒸発器)、14a…室外ファン、15…膨張弁、16…四方弁、17…循環流路、17a…上流側の部位、17b…下流側の部位、20…圧縮機、21…密閉容器、22a…モータステータ、22b…モータロータ、23…スクロール圧縮機構、24…アキュムレータ、25…吸入管、26…吐出管、27…電力供給端子、28…電力供給路、31,31-1,31-2,31-3,31-4…脆弱部、33,34…防護部、33a…メッシュ状の部材、34a…多孔質の吸着部材、35…開口部、36…蓋部、37…薄肉部、38…T型エルボ(T型継ぎ手)、41…家屋、42…室外機。

Claims (13)

  1.  トリフルオロエチレンを含む作動媒体を用いる熱サイクルシステムであって、
     圧縮機と、凝縮器と、膨張弁と、蒸発器と、
     前記圧縮機と、前記凝縮器と、前記膨張弁と、前記蒸発器と、を連結して前記作動媒体を循環させる循環流路と、
     脆弱部と、
     を備え、
     前記脆弱部は、前記循環流路又は前記凝縮器に設けられ、前記循環流路及び前記凝縮器の耐圧強度よりも耐圧強度が低い、
     熱サイクルシステム。
  2.  前記脆弱部は、前記圧縮機と前記凝縮器とを連結する循環流路、又は前記凝縮器と前記膨張弁とを連結する循環流路に設けられている、
     請求項1に記載の熱サイクルシステム。
  3.  前記圧縮機と前記凝縮器とを連結する循環流路に四方弁が設けられ、
     前記脆弱部は、前記圧縮機と前記四方弁とを連結する循環流路に設けられている、
     請求項1又は2に記載の熱サイクルシステム。
  4.  前記脆弱部は、前記循環流路内で前記トリフルオロエチレンの自己分解反応が生じたときに発生する圧力により破損して前記循環流路の外部へ圧力を開放する、
     請求項1から3までのいずれか1項に記載の熱サイクルシステム。
  5.  前記脆弱部の耐圧強度は、前記循環流路及び前記凝縮器の耐圧強度を100%とした場合、70%以上、90%以下の範囲内にある、
     請求項1から4までのいずれか1項に記載の熱サイクルシステム。
  6.  前記脆弱部の耐圧強度は、前記熱サイクルシステムの設計圧力の1.5倍以上、3倍以下の範囲内にある、
     請求項1から5までのいずれか1項に記載の熱サイクルシステム。
  7.  前記脆弱部は、前記循環流路の構成材料よりも引張強さが小さい構成材料からなる、
     請求項1から6までのいずれか1項に記載の熱サイクルシステム。
  8.  前記脆弱部の厚さが、前記循環流路の厚さよりも薄い、
     請求項1から7までのいずれか1項に記載の熱サイクルシステム。
  9.  防護部をさらに備える、
     請求項1から8までのいずれか1項に記載の熱サイクルシステム。
  10.  前記防護部は、メッシュ状の部材を有する、
     請求項9に記載の熱サイクルシステム。
  11.  前記防護部は、多孔質の吸着部材をさらに有する、
     請求項9又は10に記載の熱サイクルシステム。
  12.  前記凝縮器と前記脆弱部は、室外機に内蔵され、
     前記脆弱部は、前記凝縮器と対向する位置に選択的に設けられている、
     請求項1から11までのいずれか1項に記載の熱サイクルシステム。
  13.  前記作動媒体100質量%中のトリフルオロエチレンの含有量は、50質量%を超え100質量%以下である、
     請求項1から12までのいずれか1項に記載の熱サイクルシステム。
PCT/JP2018/015463 2017-04-20 2018-04-13 熱サイクルシステム WO2018193974A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18788204.8A EP3614076A4 (en) 2017-04-20 2018-04-13 THERMODYNAMIC CYCLE SYSTEM
CN201880024364.XA CN110537062A (zh) 2017-04-20 2018-04-13 热循环***
JP2019513599A JP7151704B2 (ja) 2017-04-20 2018-04-13 熱サイクルシステム
US16/601,753 US11009269B2 (en) 2017-04-20 2019-10-15 Heat cycle system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-083580 2017-04-20
JP2017083580 2017-04-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/601,753 Continuation US11009269B2 (en) 2017-04-20 2019-10-15 Heat cycle system

Publications (1)

Publication Number Publication Date
WO2018193974A1 true WO2018193974A1 (ja) 2018-10-25

Family

ID=63856995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015463 WO2018193974A1 (ja) 2017-04-20 2018-04-13 熱サイクルシステム

Country Status (5)

Country Link
US (1) US11009269B2 (ja)
EP (1) EP3614076A4 (ja)
JP (1) JP7151704B2 (ja)
CN (1) CN110537062A (ja)
WO (1) WO2018193974A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020256131A1 (ja) * 2019-06-19 2020-12-24 ダイキン工業株式会社 ジフルオロエチレン(hfo-1132)を作動流体として含む冷凍機
US11525076B2 (en) 2019-01-30 2022-12-13 Daikin Industries, Ltd. Composition containing refrigerant, and refrigeration method using said composition, operating method for refrigeration device, and refrigeration device
US11827833B2 (en) 2019-02-06 2023-11-28 Daikin Industries, Ltd. Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition
US11834601B2 (en) 2019-01-30 2023-12-05 Daikin Industries, Ltd. Composition containing refrigerant, refrigeration method using said composition, method for operating refrigeration device, and refrigeration device
US11834602B2 (en) 2019-02-05 2023-12-05 Daikin Industries, Ltd. Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition
US11912922B2 (en) 2018-07-17 2024-02-27 Daikin Industries, Ltd. Refrigerant cycle apparatus
US11920077B2 (en) 2018-07-17 2024-03-05 Daikin Industries, Ltd. Refrigeration cycle device for vehicle
US11939515B2 (en) 2018-07-17 2024-03-26 Daikin Industries, Ltd. Refrigerant-containing composition, heat transfer medium, and heat cycle system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11453265B1 (en) * 2019-12-11 2022-09-27 Jeff Justice System for an attachment to existing A/C units in vehicles
CN111561733B (zh) * 2020-05-18 2021-11-12 瑞纳智能设备股份有限公司 基于gbdt的供暖户阀调节方法、***及设备

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4249412A (en) 1978-12-11 1981-02-10 Townsend Claude A Iii Fluorescent leak detection composition
JPH0620992U (ja) * 1992-04-22 1994-03-18 セイアス株式会社 配管の断熱材
JPH1047587A (ja) * 1996-07-29 1998-02-20 Seiasu Kk 配管の断熱部材とその施工方法
JPH10502737A (ja) 1994-08-29 1998-03-10 スペクトロニクス コーポレイション 漏洩検出用流体を導入する方法
JP2000097520A (ja) * 1998-09-21 2000-04-04 Sanyo Electric Co Ltd 冷媒配管並びに冷媒配管が配設されている冷却器および冷却貯蔵庫
JP2000130896A (ja) * 1998-10-29 2000-05-12 Sanden Corp 安全装置を備えた空調装置
JP2000346282A (ja) * 1999-04-02 2000-12-15 Ee T Giken Kk 保温カバー
JP2007511645A (ja) 2003-11-13 2007-05-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 紫外線蛍光染料および可溶化剤を含有する冷媒組成物
JP2008500437A (ja) 2004-05-26 2008-01-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ヒドロフルオロカーボンを含む1,1,1,2,2,4,5,5,5−ノナフルオロ−4−(トリフルオロメチル)−3−ペンタノン組成物およびその使用
JP2008531836A (ja) 2005-03-04 2008-08-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー フルオロオレフィンを含む組成物
WO2012157764A1 (ja) 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
US20140331704A1 (en) * 2011-12-12 2014-11-13 Carrier Corporation Pressure Relief Valve With Protective Cap
WO2015140876A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍サイクル装置
WO2015174054A1 (ja) * 2014-05-12 2015-11-19 パナソニックIpマネジメント株式会社 冷凍サイクル装置
WO2017168503A1 (ja) * 2016-03-28 2017-10-05 三菱電機株式会社 室外機
JP2018025372A (ja) * 2016-07-27 2018-02-15 パナソニック株式会社 冷凍サイクル装置
JP2018025326A (ja) * 2016-08-09 2018-02-15 パナソニックIpマネジメント株式会社 冷凍サイクル装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141170U (ja) * 1982-03-16 1983-09-22 三洋電機株式会社 冷凍装置
JPH0620992A (ja) 1992-06-01 1994-01-28 Fujitsu Ltd 気相成長方法および装置
DE102010014340B4 (de) * 2010-04-09 2013-02-21 Airbus Operations Gmbh Schutzvorrichtung für eine Druckleitung und Druckleitungsabschnitt
CZ2016565A3 (cs) * 2014-03-14 2017-01-25 Mitsubishi Electric Corporation Chladicí cyklické zařízení

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4249412A (en) 1978-12-11 1981-02-10 Townsend Claude A Iii Fluorescent leak detection composition
JPH0620992U (ja) * 1992-04-22 1994-03-18 セイアス株式会社 配管の断熱材
JPH10502737A (ja) 1994-08-29 1998-03-10 スペクトロニクス コーポレイション 漏洩検出用流体を導入する方法
JPH1047587A (ja) * 1996-07-29 1998-02-20 Seiasu Kk 配管の断熱部材とその施工方法
JP2000097520A (ja) * 1998-09-21 2000-04-04 Sanyo Electric Co Ltd 冷媒配管並びに冷媒配管が配設されている冷却器および冷却貯蔵庫
JP2000130896A (ja) * 1998-10-29 2000-05-12 Sanden Corp 安全装置を備えた空調装置
JP2000346282A (ja) * 1999-04-02 2000-12-15 Ee T Giken Kk 保温カバー
JP2007511645A (ja) 2003-11-13 2007-05-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 紫外線蛍光染料および可溶化剤を含有する冷媒組成物
JP2008500437A (ja) 2004-05-26 2008-01-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ヒドロフルオロカーボンを含む1,1,1,2,2,4,5,5,5−ノナフルオロ−4−(トリフルオロメチル)−3−ペンタノン組成物およびその使用
JP2008531836A (ja) 2005-03-04 2008-08-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー フルオロオレフィンを含む組成物
WO2012157764A1 (ja) 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
US20140331704A1 (en) * 2011-12-12 2014-11-13 Carrier Corporation Pressure Relief Valve With Protective Cap
WO2015140876A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍サイクル装置
WO2015174054A1 (ja) * 2014-05-12 2015-11-19 パナソニックIpマネジメント株式会社 冷凍サイクル装置
WO2017168503A1 (ja) * 2016-03-28 2017-10-05 三菱電機株式会社 室外機
JP2018025372A (ja) * 2016-07-27 2018-02-15 パナソニック株式会社 冷凍サイクル装置
JP2018025326A (ja) * 2016-08-09 2018-02-15 パナソニックIpマネジメント株式会社 冷凍サイクル装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11912922B2 (en) 2018-07-17 2024-02-27 Daikin Industries, Ltd. Refrigerant cycle apparatus
US11920077B2 (en) 2018-07-17 2024-03-05 Daikin Industries, Ltd. Refrigeration cycle device for vehicle
US11939515B2 (en) 2018-07-17 2024-03-26 Daikin Industries, Ltd. Refrigerant-containing composition, heat transfer medium, and heat cycle system
US11525076B2 (en) 2019-01-30 2022-12-13 Daikin Industries, Ltd. Composition containing refrigerant, and refrigeration method using said composition, operating method for refrigeration device, and refrigeration device
US11834601B2 (en) 2019-01-30 2023-12-05 Daikin Industries, Ltd. Composition containing refrigerant, refrigeration method using said composition, method for operating refrigeration device, and refrigeration device
US11840658B2 (en) 2019-01-30 2023-12-12 Daikin Industries, Ltd. Composition containing refrigerant, and refrigeration method using said composition, operating method for refrigeration device, and refrigeration device
US11834602B2 (en) 2019-02-05 2023-12-05 Daikin Industries, Ltd. Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition
US11827833B2 (en) 2019-02-06 2023-11-28 Daikin Industries, Ltd. Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition
WO2020256131A1 (ja) * 2019-06-19 2020-12-24 ダイキン工業株式会社 ジフルオロエチレン(hfo-1132)を作動流体として含む冷凍機
JP2021001722A (ja) * 2019-06-19 2021-01-07 ダイキン工業株式会社 ジフルオロエチレン(hfo−1132)を作動流体として含む冷凍機

Also Published As

Publication number Publication date
US20200041174A1 (en) 2020-02-06
US11009269B2 (en) 2021-05-18
EP3614076A1 (en) 2020-02-26
JPWO2018193974A1 (ja) 2020-02-27
EP3614076A4 (en) 2021-01-06
JP7151704B2 (ja) 2022-10-12
CN110537062A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
JP6891925B2 (ja) 作動媒体および熱サイクルシステム
JP6809566B2 (ja) 作動媒体含有組成物
JP7151704B2 (ja) 熱サイクルシステム
US10174971B2 (en) Heat cycle system
EP3121242B1 (en) Working fluid for heat cycle, composition for heat-cycle systems, and heat-cycle system
JP6493388B2 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2012157765A1 (ja) 作動媒体および熱サイクルシステム
WO2015133587A1 (ja) 熱サイクル用作動媒体および熱サイクルシステム
JP6540685B2 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2012157762A1 (ja) 作動媒体および熱サイクルシステム
WO2013015201A1 (ja) 熱サイクル用作動媒体および熱サイクルシステム
JP6260446B2 (ja) 熱サイクルシステム
WO2012157761A1 (ja) 作動媒体および熱サイクルシステム
US10830518B2 (en) Heat cycle system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513599

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018788204

Country of ref document: EP

Effective date: 20191120