WO2018193711A1 - タッチセンサ式電子デバイス、及びセンサ制御方法 - Google Patents

タッチセンサ式電子デバイス、及びセンサ制御方法 Download PDF

Info

Publication number
WO2018193711A1
WO2018193711A1 PCT/JP2018/006475 JP2018006475W WO2018193711A1 WO 2018193711 A1 WO2018193711 A1 WO 2018193711A1 JP 2018006475 W JP2018006475 W JP 2018006475W WO 2018193711 A1 WO2018193711 A1 WO 2018193711A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
proximity
touch
contact
capacitance
Prior art date
Application number
PCT/JP2018/006475
Other languages
English (en)
French (fr)
Inventor
正史 田端
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to EP18788635.3A priority Critical patent/EP3614241B1/en
Priority to JP2019513246A priority patent/JP6833981B2/ja
Priority to CN201880025843.3A priority patent/CN110520831B/zh
Publication of WO2018193711A1 publication Critical patent/WO2018193711A1/ja
Priority to US16/654,128 priority patent/US11216135B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • G06F3/041661Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving using detection at multiple resolutions, e.g. coarse and fine scanning; using detection within a limited area, e.g. object tracking window
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/041012.5D-digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface and also measures the distance of the input means within a short range in the Z direction, possibly with a separate measurement setup
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04108Touchless 2D- digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface without distance measurement in the Z direction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a touch sensor type electronic device and its control technology.
  • touch panel type user interfaces such as portable terminals, tablet terminals, and notebook personal computers (PCs) have become widespread.
  • touch sensors There are various types of touch sensors.
  • the capacitance method detects an input operation based on a change in capacitance caused by a user's fingertip that is in contact with or close to the operation surface.
  • a configuration is known in which non-contact detection means is provided in addition to the touch sensor type surface to determine the touch position and the non-contact position simultaneously and / or alternately (see, for example, Patent Document 1).
  • a method has been proposed in which a proximity sensor electrode pair is provided in addition to the touch sensor electrode pair to detect that the user has approached the display panel (see, for example, Patent Document 2).
  • An object of the present invention is to provide a touch sensor type electronic device capable of detecting a proximity state and a touch state with the same sensor means, and accurately detecting both the proximity state and the touch state, and a control method thereof. .
  • the operation states of the proximity sense and the touch sense are switched according to the transition of the operation section, and the number of proximity senses and the number of touch senses per unit time are increased.
  • the touch-sensitive electronic device comprises: A sensor unit that detects a capacitance that varies according to contact or proximity of the operation body to the operation surface; A storage unit that stores a reference value that is a calculation reference for the change amount of the capacitance, and a threshold value that is used for detection of contact and proximity; A determination unit that compares the amount of change in capacitance calculated based on the reference value and the threshold value to determine a state of contact or proximity to the operation surface; While the proximity of the operation body to the operation surface is not detected by the determination unit, the contact detection operation of the sensor unit is stopped, and while the contact of the operation body to the operation surface is detected, A control unit for stopping the proximity detection operation of the sensor unit; Is provided.
  • the touch-sensitive electronic device comprises: A sensor unit that detects a capacitance that varies according to contact or proximity of the operation body to the operation surface; A storage unit that stores a reference value that is a calculation reference for the change amount of the capacitance, and a threshold value that is used for detection of contact and proximity; A determination unit that compares the amount of change in capacitance calculated based on the reference value and the threshold value to determine a state of contact or proximity to the operation surface; While the proximity of the operation body to the operation surface is detected by the determination unit, the contact detection operation and the proximity detection operation of the sensor unit are performed, and the contact of the operation body to the operation surface is detected. A control unit for stopping the proximity detection operation of the sensor unit; Is provided.
  • both the proximity state and the touch state can be accurately detected.
  • FIG. 1 is a diagram for explaining the basic operation of the touch-sensitive electronic device according to the embodiment.
  • the user performs an input operation from the operation surface 111 using an operation tool such as a finger 90.
  • the operation surface 111 is the surface of a touch panel used for mobile terminals such as smartphones and tablets, in-vehicle navigation devices, ATMs, home appliances, and the like.
  • the touch panel is a touch sensor type user interface, and there are various types such as a resistive film type, an infrared type, and an ultrasonic type.
  • a capacitive type touch sensor is used. The capacitive sensor detects a contact position or a proximity position based on a change in capacitance due to contact or proximity of the operating body.
  • FIG. 2 is a diagram for explaining a change in capacitance in a capacitive sensor.
  • a capacitance Cs is generated between the electrode Lx and the electrode Ly, and the capacitive sensor element 12 is formed.
  • a plurality of electrodes Lx and a plurality of electrodes Ly that are orthogonal to each other are used, a plurality of sensor elements are formed in a matrix.
  • One electrode, for example, electrode Lx can be used as a drive electrode, and the other electrode, for example, electrode Ly can be used as a detection electrode.
  • the potential of the sensor element 12 changes and charging / discharging occurs.
  • the electrostatic capacitance in the sensor element 12 is detected by detecting the amount of charge with the electrode Ly.
  • FIG. 2 (a) shows a state in which no operating body is present near the operation panel 11, and neither a touch nor a proximity state is detected.
  • a section in which the operating body is not close and neither touch nor proximity is detected is referred to as a “non-detection section” in the embodiment.
  • the capacitance Cs in the non-detection section is a reference for calculating the capacitance change, but the capacitance Cs itself varies according to the environmental change. Therefore, the capacitance Cs of each sensor element 12 is detected in the cycle of driving and sensing the capacitance type sensor, and the reference value is updated based on the detected value. This reference value is also called “baseline”.
  • the state where the finger 90 is in contact with the operation surface 111 of the operation panel 11 is referred to as “touch”. Due to capacitive coupling between the finger 90 and the electrode Ly, the capacitance Cs of the sensor element 12 changes (increases) greatly. In contrast, in FIG. 2C, the finger 90 is close to the operation surface 111 of the operation panel 11 but is not in contact therewith.
  • a state in which an operating body such as the finger 90 is floating in the vicinity of the operation panel 11 is referred to as a “hover”.
  • “proximity” refers to a “hover” state.
  • the capacitance Cs of the sensor element 12 changes due to capacitive coupling between the finger 90 and the electrode Ly. Since an air layer is present during hover, the amount of change in capacitance is small compared to the amount of change in touch capacitance. Therefore, by setting different levels of threshold values, it is possible to detect hover and touch using the same sensor matrix.
  • the capacitive sensor is driven to alternately detect the hover and the touch, and each sensor element has a reference value ( Update the (baseline).
  • Update the (baseline) The driving and sensing cycles for each of the hover and touch are repeated a predetermined number of times to set the reference value of the capacitance to the current value, and then the touch detection operation is turned off.
  • the section A is a “non-detection section” in which neither hover nor touch is detected.
  • the hover detection operation is exclusively performed, and the touch detection operation is stopped.
  • the hover reference value is updated every time the hover is driven / sensed, and the amount of change in capacitance of each sensor element is calculated using the updated reference value.
  • the reference value for hover corresponds to the “first reference value” described in “Claims”, and indicates the capacitance when the operating body is neither in the touch detection section nor in the hover detection section.
  • the operation of touch detection is stopped, and the reference value for touch is fixed to the value set when the sensor is started up. Since only hover detection is performed in one cycle, the number of hover detections per unit time can be increased, and the detection accuracy of the hover can be increased. In particular, since hover detection data can be averaged within one cycle, the detection distance can be extended by increasing the S / N ratio of hover detection. Since one cycle can be used only for hover detection, the detection timing of hover can be advanced.
  • ⁇ Section B> When the amount of change in capacitance reaches the threshold Th1, detection of “hover” is output and the operation of touch detection is turned on. A section B from when the hover is detected until a touch is detected is referred to as a “hover detection section”.
  • the reference value for touch corresponds to the “second reference value” described in “Claims”, and the capacitance when the operating body does not touch the operation surface 111 but is in the hover detection area. Point to.
  • the reference value for touching reaches the touch detection threshold Th2
  • detection of “touch” is output.
  • the detection of the hover stops the update of the hover reference value, but the hover detection operation is continued. By stopping the update of the reference value, it is possible to prevent the reference value from being changed and another detection result being output even though the operating body such as the finger 90 is at the same position.
  • both touch operation and hover operation are performed.
  • the section B there are a case where the operating body quickly moves to the operating surface 111 and a case where the operating body wanders in the vicinity of the operating surface 111 without being touched. The latter is a case where the user is searching for a desired input item such as an icon or is wondering which input item to select.
  • both the hover detection operation and the touch detection operation are turned on, and the reference value for touch is updated for accurate touch detection.
  • touch detection becomes necessary the reference value fixed in the initial setting is updated to the reference value for the current drive / sense cycle, and no special processing for switching operation is required.
  • ⁇ Section C> When the amount of change in capacitance reaches a threshold Th2 that is greater than the threshold Th1, detection of “touch” is output and the hover operation is stopped.
  • the section C from the touch detection to the touch release detection is a “touch detection section” in which the touch is exclusively detected.
  • the update of the reference value for touch is stopped.
  • the reference value for hover remains fixed at the value immediately after hover detection. This prevents erroneous detection due to fluctuations in the reference value during touch.
  • hover detection is not performed and one cycle can be used only for touch detection, so that touch detection can be performed with fine timing.
  • ⁇ Section D> After the touch detection, when the capacitance change amount becomes smaller than the threshold value Th3 for touch release detection, “touch release” is output. At the same time, the hover detection operation is turned on, and the update of the reference value for touch is resumed.
  • touch release means that an operating body such as a finger once contacts the operation surface 111 and then leaves the contact surface, and “contact release” described in “Claims”. It is synonymous with.
  • a section D from the detection of the touch release to the detection of the hover release is a “hover detection section” in which the hover state is detected.
  • the reference value for hover is fixed in order to prevent erroneous detection due to fluctuation of the reference value with respect to hover operation.
  • the touch release detection threshold Th3 is smaller than the touch detection threshold Th2 and larger than the hover detection threshold Th1.
  • the operation body such as the finger 90 may leave the operation surface 111 as it is or may return to the operation surface 111, so that the touch detection operation and the hover detection operation are performed within one drive / sense cycle. Is called.
  • the reference value for touch is updated for touch detection in this cycle, and no special processing for switching operation is required.
  • ⁇ Section E> When the amount of change in capacitance becomes smaller than the threshold value Th4 for hover release detection, “hover release” is output, the touch detection operation is turned off, and the update of the hover reference value is resumed. As the touch detection operation is turned off, the update at the reference time for touch is also stopped. “Hover release” means that the operating body existing in the hover detection area is separated from the outside of the hover detection area, and is synonymous with “proximity release” described in “Claims”. is there. After the detection of the hover release, the operation body such as the finger 90 is not close to the operation surface 111, and the section E is a “non-detection section”.
  • the threshold value Th4 for hover release detection is smaller than the threshold value Th3 of the touch release detection amount and smaller than the threshold value Th1 for hover detection.
  • the “non-detection section” continues until the amount of change in capacitance becomes larger than the threshold value Th1, and in the section E, hover detection is performed exclusively. Since only hover detection is performed in one cycle, the number of hover detection operations per unit time is increased, and hover detection accuracy can be increased. In particular, by averaging the detection data, it is possible to increase the S / N ratio of hover detection and extend the detection distance. Further, since one cycle can be used only for hover detection, the detection timing of hover can be advanced.
  • FIG. 3 is a diagram for explaining a touch and hover detection method which is a premise of the operation of FIG.
  • FIG. 3A shows a data collection method during a touch detection operation
  • FIG. 3B shows a data collection method during a hover detection operation.
  • the detection points 15 are arranged in a matrix.
  • the matrix detection points 15 correspond to intersections of the plurality of electrodes Lx extending in the X direction and the plurality of electrodes Ly extending in the Y direction in FIG. 2, and the capacitive sensor element 12 is formed at each detection point 15.
  • data is collected independently at each detection point 15.
  • data that is, capacitance is collected at 12 ⁇ 16 points.
  • the reference value for determining the amount of change in capacitance at each detection point is a reference value set at each detection point in a non-detected state.
  • a plurality of detection points 15 are combined to form a region 17 having a predetermined area, and driving and sensing are performed for each region 17.
  • the user's fingertip or operating body is separated from the surface of the operation panel within a certain range, so that the area covered by the fingertip becomes wide, and collective detection as shown in FIG. 3B is effective. is there.
  • a reference value serving as a reference for calculating the amount of change in capacitance in hover detection is set for each region 17.
  • the number of areas 17 is significantly smaller than the number of detection points 15, and the speed of driving / sensing the entire operation surface, in other words, the detection rate per unit time is greatly improved.
  • an average value of detection values of detection points (sensor elements) included in the region 17 may be used. Smoothing processing becomes possible by increasing the hover detection rate, and the S / N ratio can be improved and the detection distance can be extended. Further, by detecting the hover state for each area 17, it is possible to narrow down the points targeted by the user on the operation panel.
  • the hover detection operation is performed in FIG. 1, driving and detection are performed by the method of FIG. 3B, and when the touch detection operation is performed, driving and detection are performed by the method of FIG.
  • the hover detection operation is performed exclusively, and the detection rate can be increased by occupying the entire time of one cycle by the hover detection.
  • the touch detection operation is performed exclusively, and the entire time of one cycle can be occupied by the touch detection. The time required for touch detection of the entire operation screen is shortened, and the touch position can be detected with fine timing.
  • the hover detection operation and the touch detection operation are performed alternately (for example, in a time division manner), but the hover detection cycle is significantly shorter than the touch detection cycle, and the number of hover detections is increased. be able to.
  • FIG. 4 is a diagram showing the operation of the electrostatic sensor according to the embodiment in comparison with switching of a general time division method.
  • the sensing classification based on the user's operation is the section A to the section E defined by any of the “non-detection section”, the “hover detection section”, and the “touch detection section” as in FIG.
  • the hover detection operation and the touch detection operation are alternately performed for each drive / sense cycle. Therefore, both the hover detection operation and the touch detection operation are turned on over the sections A to E.
  • the reference value for hover is updated, and in other sections B to D, the reference value for hover is fixed.
  • the reference value for touch is updated in the non-detection section and the hover detection section (sections A to B and sections D to E), and is fixed only in the touch detection section (section C).
  • the hover detection operation is performed exclusively in the sections A and E, which are non-detection sections, and the touch detection operation is stopped.
  • the touch detection section C the touch detection operation is exclusively performed and the hover detection operation is stopped. Both hover detection and touch detection are performed in one cycle only in the hover detection section (sections B and D).
  • the division ratio between the time used for touch detection and the time used for hover detection in one cycle can be designed as appropriate. When the division ratio is 1: 1, since the number of hover detection points covering the entire operation surface is small as shown in FIG. 3, detection can be performed with fine timing by increasing the number of hover detections. By smoothing the detection data, the S / N ratio can be improved, and the hover state in which the change in capacitance is small compared to the touch can be detected more accurately.
  • FIG. 5 is a diagram showing an output state in the general time division method of FIG.
  • the non-detection interval between the interval A and the interval E neither a hover nor a touch is detected, so that no detection result is output.
  • Information indicating the detection of hover continues to be output through the hover detection section and the touch detection section in the sections B to D. This is because the hover detection value always exceeds the threshold Th1 in the touch detection section.
  • touch detection is output. In this section, touch detection output and hover detection output overlap. The input detection process in section C requires only the touch detection result, and the hover detection information is wasted.
  • FIG. 6 shows a configuration example of the touch sensor type electronic device 1 of the embodiment.
  • the touch sensor electronic device 1 includes a sensor unit 10, a processing unit 20, a storage unit 30, and an interface unit 40.
  • the touch-sensitive electronic device 1 can be applied to any device having a touch panel as a user input interface.
  • the interface unit 40 is a circuit that transmits and receives data between the touch sensor type electronic device 1 and another control device (for example, a control IC of a device incorporating the touch sensor type electronic device 1). Part or all of the information stored in the storage unit 30 may be output to another control device by the processing unit 20 via the interface unit 40.
  • the sensor unit 10 includes an operation panel 11, a detection data generation unit 13, and a drive unit 14.
  • the operation panel 11 is used as an input user interface.
  • the operation panel 11 includes a plurality of electrodes Lx extending in a first direction (for example, the X direction) and a plurality of electrodes Ly extending in a second direction (for example, the Y direction) orthogonal to the first direction.
  • the electrode Lx and the electrode Ly intersect with each other while being insulated from each other, and a capacitive sensor element 12 is formed in the vicinity of the intersection.
  • the electrodes Lx and Ly are not limited to a stripe shape, and any shape that can take an intersection, such as a diamond pattern (rhombus pattern), can be used.
  • the driving unit 14 applies a driving voltage to each sensor element 12.
  • the drive unit 14 sequentially selects the plurality of electrodes Lx under the control of the processing unit 20 and applies a periodically changing voltage to the selected electrodes Lx.
  • the electrode Ly supplies the detection data generation unit 13 with charges at each intersection of the corresponding row.
  • the detection data generation unit 13 generates detection data corresponding to the charge amount for each intersection.
  • the detection data is, for example, digital data obtained by digitally sampling a voltage value corresponding to the capacitance at each intersection.
  • the detection data is supplied to the processing unit 20.
  • the processing unit 20 includes a sensor control unit 21, a two-dimensional data generation unit 22, a hover / touch detection operation control unit 23, a reference value update unit 24, and a determination unit 25.
  • the sensor control unit 21 controls the sensor unit 10 such that the driving and detection of the hover and the touch are periodically performed at each detection position of the operation panel 11 (intersection where the capacitive sensor element is formed).
  • This control includes control of the timing and voltage level of voltage application to the electrode Lx by the drive unit 14, and control of the detection timing of detection data from the electrode Ly by the detection data generation unit 13.
  • the two-dimensional data generation unit 22 Based on the detection data output from the sensor unit 10, the two-dimensional data generation unit 22 generates two-dimensional data 31 in a matrix format including the capacitance change amount at each detection position of the operation panel 11, and the storage unit 30. Save to. The amount of change in capacitance is calculated based on the reference value stored in the storage unit 30. The reference value is updated from the previous value by driving and sensing the sensor unit 10 each time the touch sensor electronic device 1 is started up, and is written in the storage unit 30 as a part of the coordinate / threshold value / reference value data 32.
  • the thresholds included in the coordinate / threshold / reference value data 32 there are a threshold Th1 for hover detection, a threshold Th2 for touch detection, a threshold Th3 for touch release detection, a threshold Th4 for hover release detection, and the like.
  • the reference value update unit 24 updates the reference value for hover in the non-detection section where neither hover nor touch is detected, and updates the reference value for touch in the hover detection section.
  • the hover detection section refers to a section from detection of hover to detection of touch and a section from detection of touch release to detection of hover release.
  • the updated reference value is stored in the storage unit 30 as coordinates / threshold value / reference value data 32.
  • the determination unit 25 compares the amount of change in capacitance at each point of the current cycle generated by the two-dimensional data generation unit 22 with a threshold value stored in the storage unit 30 to determine whether hover is detected, The presence / absence of touch detection, touch release detection, and hover release detection are determined.
  • the hover / touch detection operation control unit 23 Based on the determination result of the determination unit 25, the hover / touch detection operation control unit 23 performs the hover detection operation exclusively in the non-detection section even if the touch detection operation is stopped.
  • the hover detection operation as shown in FIG. 3B, a change in capacitance is detected for each region 17 in which a plurality of detection points are collected (first detection mode), and the detection cycle can be advanced.
  • the hover / touch detection operation control unit 23 turns on the touch detection operation and performs both the touch detection operation and the hover detection operation. Further, when a touch is detected by the determination result of the determination unit 25, the hover detection operation is stopped and the touch detection operation is performed exclusively.
  • the touch detection operation as shown in FIG. 3A, a change in capacitance is detected for each detection point of the operation panel 11 (second detection mode), and one cycle is used only for touch detection. As a result, the detection cycle can be accelerated.
  • the hover / touch detection operation control unit 23 turns on the hover detection operation and performs both the touch detection operation and the hover detection operation.
  • hover release is detected by the determination result of the determination unit 25, the touch detection operation is stopped and the hover detection operation is performed exclusively.
  • touch detection with a low frequency is performed, and the touch detection reference value is updated as appropriate to compensate for a reference value change accompanying an environmental change such as a temperature change. it can.
  • the storage unit 30 stores constant data and variable data used for processing by the processing unit 20 in addition to the two-dimensional data 31 and the coordinate / threshold / reference value data 32.
  • the sensor control program may be stored in the storage unit 30.
  • the storage unit 30 may include a volatile memory such as a DRAM or SRAM, a nonvolatile memory such as a flash memory, and an auxiliary storage device such as a hard disk drive (HDD) or a solid state drive (SDD).
  • the processing amount and power consumption of the touch-sensitive electronic device 1 can be suppressed, and hover and touch can be detected with high accuracy.
  • FIG. 7 is a flowchart of the sensor control method of the embodiment. This control flow is performed by the processing unit 20 of the touch sensor type electronic device 1, and the operation period of the touch sensor type electronic device 1 is repeatedly performed. First, when the touch sensor electronic device 1 is started up (or when the power is turned on), the driving and detection of the sensor unit 10 are repeated for a predetermined period, and the reference values for hover and touch are updated from the last stored values. (S10).
  • the touch detection operation is stopped and the hover is detected in a predetermined cycle (S11). Until the hover is detected (non-detection section), it is determined whether or not the amount of change in capacitance of each sensor element exceeds the threshold Th1 (S12). If the amount of change in capacitance does not exceed the threshold Th1 (NO in S12), the hover reference value is updated based on the detection result of each sensor element (S13). Thereafter, the process returns to step S12, and S12 and S13 are repeated until the amount of change exceeds the threshold Th1.
  • step S12 If the amount of change in capacitance exceeds the threshold Th1 (YES in S12), information indicating that the hover has been detected is output, the touch detection operation is turned on, and the reference value for hover is fixed ( S14).
  • the touch detection operation is started (S15), and it is determined whether or not the amount of change in capacitance at each sensor element exceeds the threshold Th2 (S16). If the change amount of the capacitance does not exceed the threshold value Th2 (NO in S16), the process proceeds to step S25, and it is determined whether or not the change amount of the capacitance is smaller than the threshold value Th4.
  • the reference value for touch is updated based on the detection result of each sensor element (S17). Thereafter, the process returns to step S16. In this case, since it is a hover detection section, the loop of S16, S25, and S17 is repeated until the amount of change exceeds the threshold Th2.
  • step S23 If the amount of change in capacitance exceeds the threshold Th4 in step S25 (YES in S25), the process jumps to step S23 and outputs hover release detection (see arrow A).
  • This hover detection indicates that the finger has moved away from the operation surface 111 once the hover has been detected.
  • a hover release is output and operation is performed in the non-detection section. That is, the touch detection operation is turned off, the reference value for touch is fixed, and the reference value for hover is updated (S23).
  • step S16 If the amount of change in capacitance exceeds the threshold Th2 in step S16 (YES in S16), information indicating that a touch has been detected is output, the hover detection operation is stopped, and the same as the reference value for hover. The reference value for touch is also fixed (S18). Thereafter, it is determined whether or not the amount of change in capacitance at each sensor element has become smaller than the threshold Th3 (S19). The process of S19 is repeated until the amount of change in capacitance becomes smaller than the threshold value Th3. When the amount of change in capacitance is smaller than the threshold Th3 (YES in S19), information indicating that touch release has been detected is output, the hover detection operation is turned on, and the reference value for touch is updated. Is resumed (S20). Thereafter, it is determined whether or not the amount of change in capacitance is smaller than the threshold value Th4 (S21).
  • step S26 determines whether or not the amount of change in capacitance is greater than the threshold value Th2.
  • the process returns to step S18 to output touch detection (see arrow B).
  • This touch detection is a touch detection again after the touch release. In this case, it indicates that the finger has touched the operation surface 111 again, and the processes after S18 are performed. If the change amount of the capacitance does not exceed Th2, the touch reference value is updated (S22), and the loop of steps S21, S26, and S22 is repeated until the change amount becomes smaller than the threshold value Th4.
  • a non-operation period is provided for hover detection and touch detection, respectively, and when one is inactive, the number of senses per unit time of the other can be increased. Detection accuracy is improved.
  • an operation method in which the number of detection points for hover detection is smaller than the number of detection points for touch detection is used to increase the number of hover detections and improve the S / N ratio. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)
  • Electronic Switches (AREA)

Abstract

同一のセンサ手段で近接状態とタッチ状態を検出し、近接状態とタッチ状態の双方を精度良く検出する。タッチセンサ式電子デバイスは、操作体の操作面に対する接触または近接に応じて変動する静電容量を検出するセンサ部と、前記静電容量の変化量の算出基準となる基準値と接触及び近接の検出に用いられる閾値を記憶する記憶部と、前記基準値に基づいて算出された静電容量の変化量と前記閾値を比較して、前記操作面に対する接触または近接の状態を判定する判定部と、前記判定部により前記操作体の前記操作面に対する近接が検出されていない間は前記センサ部の接触検出動作を停止し、前記操作体の前記操作面に対する接触が検出されている間は前記センサ部の近接検出動作を停止する制御部と、を備える。

Description

タッチセンサ式電子デバイス、及びセンサ制御方法
 本発明は、タッチセンサ式電子デバイスとその制御技術に関する。
 近年、携帯端末、タブレット端末、ノート型パーソナルコンピュータ(PC)など、タッチパネル式のユーザインターフェースが普及している。タッチセンサには種々の方式があるが、このうち静電容量方式は、操作面に接触または近接するユーザの指先等による静電容量の変化に基づいて、入力操作を検出する。タッチセンサ式表面の他に非接触検出手段を設けてタッチ位置と非接触位置を同時および/または交互に判定する構成が知られている(たとえば、特許文献1参照)。また、タッチセンサ用の電極ペアに加えて近接センサ用の電極ペアを設けて、ユーザがディスプレイパネルに近接したことを検出する方法が提案されている(たとえば、特許文献2参照)。
特表2015-505393号公報 特許第5632854号(国際公開第2011/055534号)
 上述した公知の構成では、タッチ検出用のセンサとは別に、近接状態または非接触位置を検出するための手段が設けられており、構成が複雑かつコストが高くなる。一般に、同一のセンサで近接状態とタッチ状態を検出する場合、1回のセンス時間を時分割して、近接センスとタッチセンスを交互に行うことが考えられる。この場合、駆動及びセンシングのサイクルごとに近接状態の検出動作とタッチ状態の検出動作が交互に行われる。このような時分割方式では、信号対雑音比(S/N比)が悪化しやすい近接センスの回数が限られ、検出精度を高く維持することが難しい。
 本発明は、同一のセンサ手段で近接状態とタッチ状態を検出し、近接状態とタッチ状態の双方を精度良く検出することのできるタッチセンサ式電子デバイスとその制御方法を提供することを目的とする。
 上記課題を解決するために、操作区間の遷移に従って近接センスとタッチセンスの各々の動作状態を切り替え、単位時間あたりの近接センスの回数とタッチセンスの回数を増加させる。
 本発明の第1の態様では、タッチセンサ式電子デバイスは、
 操作体の操作面に対する接触または近接に応じて変動する静電容量を検出するセンサ部と、
 前記静電容量の変化量の算出基準となる基準値と、接触及び近接の検出に用いられる閾値を記憶する記憶部と、
 前記基準値に基づいて算出された静電容量の変化量と前記閾値を比較して、前記操作面に対する接触または近接の状態を判定する判定部と、
 前記判定部により前記操作体の前記操作面に対する近接が検出されていない間は、前記センサ部の接触検出動作を停止し、前記操作体の前記操作面に対する接触が検出されている間は、前記センサ部の近接検出動作を停止する制御部と、
を備える。
 本発明の第2の態様では、タッチセンサ式電子デバイスは、
 操作体の操作面に対する接触または近接に応じて変動する静電容量を検出するセンサ部と、
 前記静電容量の変化量の算出基準となる基準値と、接触及び近接の検出に用いられる閾値を記憶する記憶部と、
 前記基準値に基づいて算出された静電容量の変化量と前記閾値を比較して、前記操作面に対する接触または近接の状態を判定する判定部と、
 前記判定部により前記操作体の前記操作面に対する近接が検出されている間は、前記センサ部の接触検出動作と近接検出動作を行い、前記操作体の前記操作面に対する接触が検出されている間は、前記センサ部の近接検出動作を停止する制御部と、
を備える。
 上記の構成により、同一のセンサ手段で近接状態とタッチ状態を検出するときに、近接状態とタッチ状態の双方を精度良く検出することができる。
実施形態で用いる静電タッチセンサの基本的な動作を説明する図である。 静電容量方式のセンサにおける静電容量の変化を説明する図である。 タッチとホバーの検出方式を説明する図である。 実施形態のセンサの動作を一般的に考えられる時分割方式の動作と比較して示す図である。 一般的な時分割動作における出力状態を示す図である。 実施形態のタッチセンサ式電子デバイスの構成例を示す図である。 実施形態のセンサ制御方法のフローチャートである。
 図1は、実施形態のタッチセンサ式電子デバイスの基本的な動作を説明する図である。ユーザは指90などの操作体を用いて、操作面111から入力動作を行う。操作面111は、スマートフォンやタブレット等の携帯端末、車載ナビゲーション装置、ATM、家電などに用いられるタッチパネルの表面である。タッチパネルはタッチセンサ方式のユーザインターフェースであり、抵抗膜方式、赤外線方式、超音波方式など種々の方式があるが、実施形態では静電容量方式のタッチセンサを用いる。静電容量方式のセンサは、操作体の接触または近接による静電容量の変化に基づいて接触位置または近接位置を検出するものである。
 図2は、静電容量方式のセンサにおける静電容量の変化を説明する図である。X方向に延びる電極Lxと、Y方向に延びる電極Lyの交差点において、電極Lxと電極Lyの間に静電容量Csが生成され、容量性のセンサ素子12が形成される。互いに直交する複数の電極Lxと複数の電極Lyを用いる場合、複数のセンサ素子がマトリクス状に形成される。一方の電極、たとえば電極Lxを駆動電極として用い、他方の電極、たとえば電極Lyを検出電極として用いることができる。電極Lxに周期的に変化する電圧を印加することでセンサ素子12の電位が変化し、充放電が起きる。電極Lyで電荷量を検出することでセンサ素子12における静電容量が検出される。
 図2(a)は、操作パネル11の近傍に操作体が存在せず、タッチも近接状態も検出されていない状態を示す。操作体が近接しておらずタッチも近接も検出されない区間を、実施例では「非検出区間」と呼ぶ。非検出区間での静電容量Csは容量変化を算出するための基準となるが、環境の変化に応じて静電容量Cs自体が変動する。そのため、静電容量様式のセンサの駆動及びセンシングのサイクルで各センサ素子12の静電容量Csが検出され、検出値に基づいて基準値が更新される。この基準値は「ベースライン」とも呼ばれる。
 図2(b)のように、指90が操作パネル11の操作面111に接触している状態を「タッチ」と呼ぶ。指90と電極Lyとの間の容量結合により、センサ素子12の静電容量Csが大きく変化(増大)する。これに対し、図2(c)では指90は操作パネル11の操作面111に近接しているが接触していない。以下の実施形態では、指90などの操作体が操作パネル11に近接して浮遊している状態を「ホバー(hover)」と呼ぶ。本明細書及び特許請求の範囲で「近接」というときは、「ホバー」状態を指すものとする。ホバーのときも、指90と電極Lyの間の容量結合によりセンサ素子12の静電容量Csが変化する。ホバー時には空気層が介在するので、その静電容量の変化量はタッチの静電容量の変化量と比較して小さい。したがって、異なるレベルの閾値を設定することで、同じセンサマトリクスを用いてホバーとタッチを検出することができる。
 図1に戻って、タッチセンサ式電子デバイスの立ち上げ時、あるいは電源投入時に静電容量方式のセンサを駆動して、ホバーの検出とタッチの検出を交互に行い、各センサ素子で基準値(ベースライン)の更新を行っておく。ホバーとタッチの各々について駆動及びセンシングのサイクルを所定回数繰り返して静電容量の基準値を現在の値に設定した後、タッチ検出動作をオフにする。
 <区間A>
 区間Aは、ホバーもタッチも検出されない「非検出区間」である。実施形態の特徴として、区間Aで静電容量の変化量がホバー検出の閾値Th1に達するまでは、もっぱらホバーの検出動作が行われ、タッチ検出の動作は停止されている。区間Aで、ホバーの駆動/センス動作のたびにホバー用の基準値は更新され、更新後の基準値を用いて各センサ素子の静電容量の変化量が計算される。ホバー用の基準値は、「特許請求の範囲」に記載される「第1の基準値」に対応し、操作体がタッチ検出区間にもホバー検出区間にもないときの静電容量を指す。この間、タッチ検出の動作は停止されており、タッチ用の基準値はセンサの立ち上げ時に設定された値に固定されている。1つのサイクル内でホバー検出だけが行われているので、単位時間当たりのホバー検出の回数を増やすことができ、ホバーの検出精度を上げることができる。特に、1サイクル内でホバーの検出データを平均化することができるので、ホバー検出のS/N比を上げて検出距離を伸ばすことができる。1つのサイクルをホバー検出だけに使用できるので、ホバーの検出タイミングを早めることができる。
 <区間B>
 静電容量の変化量が閾値Th1に達したら、「ホバー」の検出が出力されるとともに、タッチ検出の動作がオンになる。ホバー検出後、タッチが検出されるまでの区間Bを「ホバー検出区間」とする。タッチ検出の動作がオンにされたことで、タッチ用の基準値の更新が開始される。タッチ用の基準値は、「特許請求の範囲」に記載される「第2の基準値」に対応し、操作体が操作面111に触れていないがホバー検出領域にあるときの静電容量を指す。タッチ用の基準値がタッチ検出の閾値Th2に達したら、「タッチ」の検出が出力される。ホバーの検出により、ホバー用の基準値の更新は停止されるが、ホバー検出の動作は継続される。基準値の更新を停止することで、指90などの操作体が同じ位置にあるにもかかわらず基準値が変わって別の検出結果が出力されることを防止できる。
 区間Bでは、タッチ動作とホバー動作の両方が行われている。区間Bでは、操作体が速やかに操作面111まで移動する場合と、操作体がタッチに至らない状態で操作面111の近傍をさまよう場合があり得る。後者は、ユーザがアイコン等の所望の入力項目を探している、あるいはどの入力項目を選択するか迷っている等の場合である。このため、ホバー検出動作とタッチ検出動作の両方をオンにし、正確なタッチ検出のためにタッチ用の基準値を更新する。タッチ検出が必要になった時点で、初期設定で固定されていた基準値から今回の駆動/センスサイクルのための基準値に更新され、動作切り替えのための特別な処理は不要である。
 <区間C>
 静電容量の変化量が、閾値Th1よりも大きい閾値Th2に達したら、「タッチ」の検出が出力されるとともに、ホバー動作が停止される。タッチの検出からタッチリリースの検出までの区間Cは、もっぱらタッチが検出される「タッチ検出区間」である。タッチが検出されたことにより、タッチ用の基準値の更新が停止される。ホバー用の基準値はホバー検出直後の値に固定されたままである。これにより、タッチ中に基準値が変動することによる誤検出を防止する。区間Cでは、ホバー検出が実施されず1サイクルをタッチの検出だけに用いることができるので、細かいタイミングでタッチ検出を行うことができる。
 <区間D>
 タッチ検出後、静電容量の変化量がタッチリリース検出用の閾値Th3よりも小さくなったら、「タッチリリース」が出力される。これと同時に、ホバー検出動作がオンになり、かつタッチ用の基準値の更新が再開される。ここで、「タッチリリース」とは、指等の操作体がいったん操作面111に接触したあとに、接触面から離れることを意味し、「特許請求の範囲」に記載される「接触のリリース」と同義である。タッチリリースの検出からホバーリリースの検出までの区間Dは、ホバー状態が検出されている「ホバー検出区間」である。ホバー動作に関して基準値の変動による誤検出がなされることを防止するため、ホバー用の基準値は固定されている。
 タッチリリース検出用の閾値Th3は、タッチ検出の閾値Th2よりも小さく、ホバー検出の閾値Th1よりも大きい。区間Dでは指90などの操作体がそのまま操作面111から離れていく場合と、操作面111に戻る場合があり得えるので、1つの駆動/センスサイクル内でタッチ検出動作とホバー検出動作が行われる。今回のサイクルでのタッチ検出のためにタッチ用の基準値は更新され、動作切り替えのための特別な処理は不要である。
 <区間E>
 静電容量の変化量が、ホバーリリース検出のための閾値Th4よりも小さくなったら、「ホバーリリース」を出力するとともに、タッチ検出動作をオフにして、ホバー用の基準値の更新を再開する。タッチ検出動作のオフにともなって、タッチ用の基準時の更新も停止される。「ホバーリリース」とは、ホバー検出領域内に存在していた操作体が、ホバー検出領域の外部に離れることを意味し、「特許請求の範囲」に記載される「近接のリリース」と同義である。ホバーリリースの検出後は、指90などの操作体は操作面111に近接しておらず、区間Eは「非検出区間」となる。
 ホバーリリース検出用の閾値Th4は、タッチリリース検出量の閾値Th3よりも小さく、かつ、ホバー検出用の閾値Th1よりも小さい。静電容量の変化量が次に閾値Th1よりも大きくなるまでは「非検出区間」が続き、区間Eでは、もっぱらホバー検出が行われる。1つのサイクル内でホバー検出だけが行われているので、単位時間当たりのホバー検出動作の回数が増え、ホバーの検出精度を上げることができる。特に、検出データを平均化することで、ホバー検出のS/N比を上げて検出距離を伸ばすことができる。また、1つのサイクルをホバー検出だけに使用できるので、ホバーの検出タイミングを早めることができる。
 図3は、図1の動作の前提となるタッチとホバーの検出方式を説明する図である。図3(A)はタッチ検出動作時のデータ収集方式、図3(B)はホバー検出動作時のデータ収集方式である。静電容量方式のセンサを用いた操作パネル11で、検出点15はマトリクス状に配置されている。マトリクス状の検出点15は、図2のX方向に延びる複数の電極Lxと、Y方向に延びる複数の電極Lyの交点に対応し、各検出点15に容量性のセンサ素子12が形成される。図3(A)のタッチ検出モードでは、各検出点15で独立してデータが採取される。この例では12×16点でデータ、すなわち静電容量が採取される。各検出点での静電容量の変化量を求めるための基準値は、非検出の状態で各検出点に設定された基準値である。
 図3(B)のホバー検出モードでは、複数の検出点15をまとめて所定の面積の領域17を形成し、領域17ごとに駆動及びセンシングを行う。この構成例によると、4×3点のデータを採取するだけでよく、ホバー検出モードでの駆動/センス回数は、タッチ検出モードでの駆動/センス回数の1/16になる。ホバー状態では、ユーザの指先または操作体は操作パネルの表面から一定の範囲内で離隔しているため、指先でカバーされる領域が広くなり、図3(B)のような一括検出が有効である。
 ホバー検出での静電容量の変化量の算出の基準となる基準値は、領域17ごとに設定される。領域17の数は、検出点15の数と比較して格段に少なくなり、操作面の全面を駆動/センスする速度、換言すると単位時間あたりの検出レートが大幅に向上する。各領域17の検出値としては、領域17に含まれる検出点(センサ素子)の検出値の平均値を用いてもよい。ホバーの検出レートが上がることで平滑化処理が可能になり、S/N比を改善して検出距離を伸ばすことができる。また、領域17ごとにホバー状態を検出することで、操作パネル上でユーザが狙いとするポイントを絞り込むことができる。
 図1でホバー検出動作が行われるときは図3(B)の方式で駆動と検出が行われ、タッチ検出動作が行われるときは図3(A)の方式で駆動と検出が行われる。特に、区間Aと区間Eでは、もっぱらホバー検出動作が行われ、1サイクルの時間全体をホバー検出で占有して検出レートを上げることができる。区間Cは、もっぱらタッチ検出動作が行われ、1サイクルの時間全体をタッチ検出で占有することができる。操作画面全体のタッチ検出にかかる時間が短縮され、細かいタイミングでタッチ位置を検出することができる。区間Bと区間Dでは、ホバー検出動作とタッチ検出動作が交互に(たとえば時分割で)行われるが、ホバー検出のサイクルがタッチ検出のサイクルと比較して格段に短く、ホバー検出の回数を増やすことができる。
 図4は、実施形態の静電センサの動作を、一般的な時分割方式の切り替えと比較して示す図である。ユーザの操作に基づくセンシングの区分けは、図1と同じく「非検出区間」、「ホバー検出区間」、及び「タッチ検出区間」のいずれかで規定される区間A~区間Eである。一般的な時分割方式では、センサの動作中、駆動/センスサイクルごとにホバー検出動作とタッチ検出動作が交互に行われる。そのため、区間A~区間Eにわたって、ホバー検出動作とタッチ検出動作の双方がオンになっている。非検出区間A及びEでは、ホバー用の基準値が更新され、それ以外の区間B~Dでは、ホバー用の基準値は固定される。タッチ用の基準値は、非検出区間とホバー検出区間(区間A~B、及び区間D~E)で更新され、タッチ検出区間(区間C)においてだけ固定される。
 これに対し、本発明の動作では、非検出区間である区間Aと区間Eは、もっぱらホバー検出の動作が行われ、タッチ検出動作は停止されている。一方、タッチ検出区間Cでは、もっぱらタッチ検出の動作が行われ、ホバー検出動作は停止されている。1サイクル内でホバー検出とタッチ検出の両方が行われるのは、ホバー検出区間(区間BとD)だけである。1サイクルの中でタッチ検出に使用する時間とホバー検出に使用する時間の分割比は適宜設計することができる。分割比を1:1とする場合は、図3のように操作面全体をカバーするホバーの検出点数が少ないため、ホバー検出の回数を増やして細かいタイミングで検出することができる。検出データを平滑化することでS/N比を向上し、タッチと比較して静電容量の変化が少ないホバー状態をより正確に検出することができる。
 また、非検出区間では、ホバー用の基準値だけが更新され、タッチ用の基準値は固定にされているので、演算処理量を低減し、ホバー用の基準値更新の計算速度を上げることができる。区間全体を通して、必要な区間で必要な動作だけが行われるので、消費電力を低減することができる。また、ホバー検出のS/Nが十分高い場合、ホバー検出頻度を減らすことによっても消費電力の削減を行うことができる。
 図5は、図4の一般的な時分割方式における出力状態を示す図である。区間Aと区間Eの非検出区間では、ホバーもタッチも検出されないので、検出結果の出力はない。区間B~区間Dのホバー検出区間とタッチ検出区間を通して、ホバーの検出を示す情報が出力され続ける。タッチ検出区間ではホバー検出値は常に閾値Th1を超えるからである。区間Cではタッチの検出が出力されるが、この区間で、タッチ検出の出力とホバー検出の出力が重複する。区間Cでの入力検知処理で必要なのはタッチの検出結果だけであり、ホバーの検出情報は無駄になる。
 これに対し、実施形態の方法では、タッチ検出区間(区間C)ではホバーの検出動作は停止されているので、不要なホバー検出情報は出力されない。これにより、処理負荷と消費電力を低減することができる。
 図6は、実施形態のタッチセンサ式電子デバイス1の構成例を示す。タッチセンサ式電子デバイス1は、センサ部10、処理部20、記憶部30、及びインターフェース部40を有する。タッチセンサ式電子デバイス1は、ユーザ入力インターフェースとしてタッチパネルを有する任意の機器に適用可能である。
 インターフェース部40は、タッチセンサ式電子デバイス1と他の制御装置(たとえばタッチセンサ式電子デバイス1を組み込んだ機器の制御ICなど)の間でデータの送受信を行う回路である。記憶部30に記憶された情報の一部または全部が、処理部20によりインターフェース部40を介して他の制御装置へ出力されてもよい。
 センサ部10は、操作パネル11と、検出データ生成部13と、駆動部14を有する。操作パネル11は、入力用のユーザインターフェースとして使用される。操作パネル11は、第1方向(たとえばX方向)に延設置される複数の電極Lxと、第1方向と直交する第2方向(たとえばY方向)に延設される複数の電極Lyを有する。電極Lxと電極Lyは互いに絶縁された状態で交差し、交差点の近傍に容量性のセンサ素子12が形成されている。電極LxとLyはストライプ状の形状に限定されず、ダイヤモンドパターン(菱形パターン)など、交差点をとることのできる任意の形状を用いることができる。
 駆動部14は、各センサ素子12に駆動電圧を印加する。駆動部14は、たとえば処理部20の制御にしたがって、複数の電極Lxを順次選択して、選択した電極Lxに周期的に変化する電圧を印加する。電極Lyは、対応する行の各交点での電荷を検出データ生成部13に供給する。検出データ生成部13は交点ごとに電荷量に応じた検出データを生成する。検出データは、たとえば各交点の静電容量に応じた電圧値をデジタルサンプリングしたデジタルデータである。検出データは、処理部20へ供給される。
 処理部20は、センサ制御部21、2次元データ生成部22、ホバー/タッチ検出動作制御部23、基準値更新部24、及び判定部25を有する。
 センサ制御部21は、操作パネル11の各検出位置(容量性のセンサ素子が形成される交点)で、ホバー及びタッチの駆動と検出が周期的に行われるようにセンサ部10を制御する。この制御には、駆動部14による電極Lxへの電圧印加のタイミングと電圧レベルの制御、及び検出データ生成部13による電極Lyからの検出データの読み取りタイミングの制御が含まれる。
 2次元データ生成部22は、センサ部10から出力される検出データに基づいて、操作パネル11の各検出位置の静電容量変化量を含む行列形式の2次元データ31を生成し、記憶部30に保存する。静電容量の変化量は、記憶部30に記憶された基準値に基づいて算出される。基準値は、タッチセンサ式電子デバイス1の立ち上げのたびに、センサ部10の駆動及びセンシングにより前回値から更新され、座標・閾値・基準値データ32の一部として記憶部30に書き込まれる。座標・閾値・基準値データ32に含まれる閾値として、ホバー検出用の閾値Th1、タッチ検出用の閾値Th2、タッチリリース検出用の閾値Th3、ホバーリリース検出用の閾値Th4などがある。
 基準値更新部24は、ホバーもタッチも検出されない非検出区間にホバー用の基準値を更新し、ホバー検出区間にタッチ用の基準値を更新する。ホバー検出区間とは、ホバーの検出からタッチの検出までの区間、及びタッチリリースの検出からホバーリリースの検出までの区間を指す。更新された基準値は、座標・閾値・基準値データ32として記憶部30に記憶される。
 判定部25は、2次元データ生成部22により生成された今回のサイクルの各点の静電容量の変化量を、記憶部30に記憶されている閾値と比較して、ホバーの検出の有無、タッチの検出の有無、タッチリリースの検出の有無、及びホバーリリースの検出の有無を判定する。
 ホバー/タッチ検出動作制御部23は、判定部25の判定結果に基づき、非検出区間ではタッチ検出動作を停止してもっぱらホバー検出動作を行わせる。ホバー検出動作では、図3(B)に示すように、複数の検出点をまとめた領域17ごとに静電容量の変化が検出され(第1検出モード)、検出サイクルを早めることができる。判定部25の判定結果によりホバーが検出されたときは、ホバー/タッチ検出動作制御部23はタッチ検出動作をオンにして、タッチ検出動作とホバー検出動作の両方を行わせる。さらに、判定部25の判定結果によりタッチが検出されたときは、ホバー検出動作を停止して、もっぱらタッチ検出動作を行わせる。タッチ検出動作では、図3(A)に示すように、操作パネル11の検出点ごとに静電容量の変化が検出されるが(第2検出モード)、1サイクルをタッチ検出だけに使うことができるので、検出サイクルを早めることができる。
 判定部25の判定結果によりタッチリリースが検出されたときは、ホバー/タッチ検出動作制御部23は、ホバー検出動作をオンにして、タッチ検出動作とホバー検出動作の両方を行わせる。判定部25の判定結果によりホバーリリースが検出されたときは、タッチ検出動作を停止して、もっぱらホバー検出動作を行わせる。
また、非検出区間でもっぱらホバー検出を行う中で、頻度を少なくしたタッチ検出を行い、タッチ検出基準値の更新を、温度変化等の環境変化に伴う基準値変化を補う程度に適宜行うことができる。
 記憶部30は、2次元データ31と座標・閾値・基準値データ32の他に、処理部20の処理に使用される定数データや変数データを記憶する。処理部20の動作がコンピュータプログラムによって実現される場合は、センサ制御プログラムが記憶部30に記憶されてもよい。記憶部30は、DRAMやSRAMなどの揮発性メモリ、フラッシュメモリななどの不揮発性メモリ、ハードディスクドライブ(HDD)やソリッドステートドライブ(SDD)などの補助記憶装置を含んでもよい。
 図6の構成により、タッチセンサ式電子デバイス1の処理量と消費電力を抑制し、精度良くホバーとタッチを検出することができる。
 図7は、実施形態のセンサ制御方法のフローチャートである。この制御フローは、タッチセンサ式電子デバイス1の処理部20で行われ、タッチセンサ式電子デバイス1の動作期間は繰り返し行われるので、ループになっている。まず、タッチセンサ式電子デバイス1の立ち上げ時(または電源投入時)、センサ部10の駆動と検出を所定期間繰り返して、ホバー用とタッチ用の基準値を最後に保存された値から更新する(S10)。
 基準値が現在の値に更新されたなら、タッチ検出動作を停止して、所定のサイクルでホバーの検出を行う(S11)。ホバーが検出されるまでの間(非検出区間)、各センサ素子の静電容量の変化量が閾値Th1を超えたか否かが判断される(S12)。静電容量の変化量が閾値Th1を超えない場合は(S12でNO)、各センサ素子での検出結果に基づいてホバー用の基準値を更新する(S13)。その後ステップS12に戻り、変化量が閾値Th1を超えるまでS12とS13を繰り返す。
 静電容量の変化量が閾値Th1を超えたならば(S12でYES)、ホバーが検出されたことを示す情報を出力し、タッチ検出動作をオンにし、ホバー用の基準値を固定にする(S14)。タッチ検出動作を開始し(S15)、各センサ素子での静電容量の変化量が閾値Th2を超えたか否かが判断される(S16)。静電容量の変化量が閾値Th2を超えない場合は(S16でNO)、ステップS25に進んで、静電容量の変化量が閾値Th4よりも小さくなったか否かが判断される。静電容量の変化量が閾値Th4以上の場合は(S25でNO)、各センサ素子での検出結果に基づいてタッチ用の基準値を更新する(S17)。その後ステップS16に戻る。この場合は、ホバー検出区間になるので変化量が閾値Th2を超えるまでS16、S25、及びS17のループを繰り返す。
 ステップS25で静電容量の変化量が閾値Th4を超えた場合は(S25でYES)、ステップS23に飛んで、ホバーリリースの検出を出力する(矢印A参照)。このホバー検出は、いったんホバーが検出された後に指が操作面111から遠ざかったことを示す。この場合は、ホバーリリースを出力して非検出区間での動作となる。すなわち、タッチ検出動作をオフにしてタッチ用の基準値を固定し、ホバー用の基準値を更新する(S23)。
 ステップS16で静電容量の変化量が閾値Th2を超えたならば(S16でYES)、タッチが検出されたことを示す情報を出力し、ホバー検出動作を停止し、ホバー用の基準値と同じくタッチ用の基準値も固定にする(S18)。その後、各センサ素子での静電容量の変化量が閾値Th3よりも小さくなったか否かを判断する(S19)。S19の処理は、静電容量の変化量が閾値Th3よりも小さくなるまで繰り返される。静電容量の変化量が閾値Th3よりも小さくなったときは(S19でYES)、タッチリリースが検出されたことを示す情報を出力し、ホバー検出動作をオンにし、タッチ用の基準値の更新を再開する(S20)。その後、静電容量の変化量が閾値Th4よりも小さくなったか否かを判断する(S21)。
 静電容量の変化量が閾値Th4以上であれば(S21でNO)、ステップS26に進んで静電容量の変化量が閾値Th2よりも大きくなったか否かを判断する。静電容量の変化量が閾値Th2を超えた場合は(S26でYES)、ステップS18に戻って、タッチの検出を出力する(矢印B参照)。このタッチの検出はタッチリリース後の再度のタッチ検出である。この場合は、指が再度操作面111に触れたことを示し、S18以降の処理が行われる。静電容量の変化量がTh2を超えない場合は、タッチ用の基準値を更新して(S22)、変化量が閾値Th4よりも小さくなるまで、ステップS21、S26、及びS22のループを繰り返す。静電容量の変化量が閾値Th4よりも小さくなったときは(S21でYES)、ホバーリリースが検出されたことを示す情報を出力して、タッチ検出動作を停止するとともに、ホバー用の基準値の更新を再開する(S22)。その後、S12へ戻って、非検出区間でのホバー検出動作を行う。
 図7のセンサ制御方法によると、ホバーの検出とタッチの検出にそれぞれ非動作期間を設け、一方が非動作のときに他方の単位時間あたりのセンス回数を増やすことができるので、ホバー、タッチともに検出精度が向上する。ホバー検出とタッチ検出の両方を行う区間では、ホバー検出の検出点数がタッチ検出の検出点数よりも少なくなる動作方法を採用することで、ホバー検出の回数を増やしてS/N比を向上することができる。
 この出願は、2017年4月20日に日本国特許庁に出願された特許出願第2017-083946号に基づき、その全内容を含むものである。
1 タッチセンサ式電子デバイス
10 センサ部
11 操作パネル
12 センサ素子
13 検出データ生成部
14 駆動部
20 処理部
21 センサ制御部
22 2次元データ生成部
23 ホバー/タッチ検出動作制御部
24 基準値更新部
25 判定部
30 記憶部

Claims (10)

  1.  操作体の操作面に対する接触または近接に応じて変動する静電容量を検出するセンサ部と、
     前記静電容量の変化量の算出基準となる基準値と、接触及び近接の検出に用いられる閾値を記憶する記憶部と、
     前記基準値に基づいて算出された静電容量の変化量と前記閾値を比較して、前記操作面に対する接触または近接の状態を判定する判定部と、
     前記判定部により前記操作体の前記操作面に対する近接が検出されていない間は、前記センサ部の接触検出動作を停止し、前記操作体の前記操作面に対する接触が検出されている間は、前記センサ部の近接検出動作を停止する制御部と、
    を備えたことを特徴とするタッチセンサ式電子デバイス。
  2.  操作体の操作面に対する接触または近接に応じて変動する静電容量を検出するセンサ部と、
     前記静電容量の変化量の算出基準となる基準値と、接触及び近接の検出に用いられる閾値を記憶する記憶部と、
     前記基準値に基づいて算出された静電容量の変化量と前記閾値を比較して、前記操作面に対する接触または近接の状態を判定する判定部と、
     前記判定部により前記操作体の前記操作面に対する近接が検出されている間は、前記センサ部の接触検出動作と近接検出動作を行い、前記操作体の前記操作面に対する接触が検出されている間は、前記センサ部の近接検出動作を停止する制御部と、
    を備えたことを特徴とするタッチセンサ式電子デバイス。
  3.  前記センサ部は、複数の検出点を有し、
     前記制御部は、前記センサ部の近接検出動作として、前記複数の検出点を複数のブロックに分けてブロックごとに静電容量の変化を検出する第1検出モードを有し、前記センサ部の接触検出動作として、前記複数の検出点の各々について静電容量の変化を検出する第2検出モードを有することを特徴とする請求項1または2に記載のタッチセンサ式電子デバイス。
  4.  前記制御部は、前記判定部により前記操作体の前記操作面に対する近接が検出されている間は、前記第1検出モードと前記第2検出モードを交互に動作させることを特徴とする請求項3に記載のタッチセンサ式電子デバイス。
  5.  前記制御部は、前記判定部により前記操作体の前記操作面に対する近接が検出されていない間は、近接を検出するための第1の基準値を更新し、前記操作体の前記操作面に対する近接が検出されたときに、前記第1の基準値の更新を停止することを特徴とする請求項1~4のいずれか1項に記載のタッチセンサ式電子デバイス。
  6.  前記制御部は、前記判定部により前記操作体の前記操作面に対する近接が検出されていない間は、近接を検出するための第1の基準値を更新し、前記操作体の前記操作面に対する近接が検出されたときに、前記第1の基準値の更新を停止して、接触を検出するための第2の基準値を更新することを特徴とする請求項1~4のいずれか1項に記載のタッチセンサ式電子デバイス。
  7.  前記制御部は、前記判定部により前記操作体の前記操作面に対する接触のリリースが検出されたときは、前記センサ部の近接検出動作を再開することを特徴とする請求項1~6のいずれか1項に記載のタッチセンサ式電子デバイス。
  8.  前記制御部は、前記判定部により前記操作体の前記操作面に対する近接のリリースが検出されたときは、前記センサ部の接触検出動作を停止することを特徴とする請求項1~7のいずれか1項に記載のタッチセンサ式電子デバイス。
  9.  操作面を有するタッチセンサ式電子デバイスにおいて、
     前記操作面に対する操作体の接触または近接に応じて変動する静電容量を検出し、
     前記静電容量の変化量を所定の閾値と比較して前記操作面に対する接触または近接の状態を判定し、
     前記判定により前記操作体の前記操作面に対する近接が検出されていない間は、前記操作面に対する接触検出動作を停止し、前記操作体の前記操作面に対する接触が検出されている間は、前記操作面に対する近接検出動作を停止する、
    ことを特徴とするセンサ制御方法。
  10.  操作面を有するタッチセンサ式電子デバイスにおいて、
     前記操作面に対する操作体の接触または近接に応じて変動する静電容量を検出し、
     前記静電容量の変化量を所定の閾値と比較して前記操作面に対する接触または近接の状態を判定し、
     前記判定により前記操作体の前記操作面に対する近接が検出されている間は、前記操作面に対する接触検出動作と近接検出動作を行い、前記操作体の前記操作面に対する接触が検出されている間は、前記操作面に対する近接検出動作を停止する、
    ことを特徴とするセンサ制御方法。
PCT/JP2018/006475 2017-04-20 2018-02-22 タッチセンサ式電子デバイス、及びセンサ制御方法 WO2018193711A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18788635.3A EP3614241B1 (en) 2017-04-20 2018-02-22 Touch sensor-type electronic device and sensor control method
JP2019513246A JP6833981B2 (ja) 2017-04-20 2018-02-22 タッチセンサ式電子デバイス、及びセンサ制御方法
CN201880025843.3A CN110520831B (zh) 2017-04-20 2018-02-22 触摸传感器式电子器件以及传感器控制方法
US16/654,128 US11216135B2 (en) 2017-04-20 2019-10-16 Touch-sensitive electronic device and sensor control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-083946 2017-04-20
JP2017083946 2017-04-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/654,128 Continuation US11216135B2 (en) 2017-04-20 2019-10-16 Touch-sensitive electronic device and sensor control method

Publications (1)

Publication Number Publication Date
WO2018193711A1 true WO2018193711A1 (ja) 2018-10-25

Family

ID=63856282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006475 WO2018193711A1 (ja) 2017-04-20 2018-02-22 タッチセンサ式電子デバイス、及びセンサ制御方法

Country Status (6)

Country Link
US (1) US11216135B2 (ja)
EP (1) EP3614241B1 (ja)
JP (1) JP6833981B2 (ja)
CN (1) CN110520831B (ja)
TW (1) TWI659342B (ja)
WO (1) WO2018193711A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110865488A (zh) * 2019-11-27 2020-03-06 京东方科技集团股份有限公司 背光模组、显示面板及显示装置
EP3654155A1 (en) * 2018-11-14 2020-05-20 Alpine Electronics, Inc. Electronic device equipped with touch panel and update method of base line value
WO2021100348A1 (ja) * 2019-11-19 2021-05-27 アルプスアルパイン株式会社 静電容量式センサ、静電容量検出方法、及び、静電容量検出プログラム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110851018A (zh) * 2019-11-11 2020-02-28 业成科技(成都)有限公司 触控结构、触控方法及触控显示装置
JP7436275B2 (ja) * 2020-04-17 2024-02-21 株式会社東海理化電機製作所 タッチ検出装置
JP7402750B2 (ja) * 2020-06-05 2023-12-21 株式会社東海理化電機製作所 静電センサ、制御装置、およびコンピュータプログラム
JP2022002169A (ja) * 2020-06-19 2022-01-06 株式会社東海理化電機製作所 静電センサ、制御装置、およびコンピュータプログラム
US11679678B2 (en) * 2021-06-28 2023-06-20 Sigmasense, Llc. Vehicle system for detecting and visually conveying vehicle button interaction
KR20230131321A (ko) * 2022-03-03 2023-09-13 삼성디스플레이 주식회사 표시 장치
JP2024003281A (ja) * 2022-06-27 2024-01-15 アルプスアルパイン株式会社 タッチパネル装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632854B2 (ja) 1972-05-25 1981-07-30
JP2008117371A (ja) * 2006-10-13 2008-05-22 Sony Corp 近接検知型情報表示装置およびこれを使用した情報表示方法
JP2010257046A (ja) * 2009-04-22 2010-11-11 Mitsubishi Electric Corp 近接検知装置
JP2011047774A (ja) * 2009-08-26 2011-03-10 Seiko Instruments Inc 近接検出装置と近接検出方法
WO2011055534A1 (ja) 2009-11-09 2011-05-12 ローム株式会社 タッチセンサ付きディスプレイ装置およびそれを用いた電子機器ならびにタッチセンサ付きディスプレイモジュールの制御回路
WO2012090405A1 (ja) * 2010-12-28 2012-07-05 Necカシオモバイルコミュニケーションズ株式会社 入力装置、入力制御方法、プログラム及び電子機器
JP2015505393A (ja) 2011-12-09 2015-02-19 マイクロチップ テクノロジー ジャーマニー ツー ゲーエ 3自由度以上を有するユーザインターフェースを伴う電子デバイスであって、前記ユーザインターフェースが、タッチセンサ式表面および非接触検出手段を含む、電子デバイス
JP2017083946A (ja) 2015-10-23 2017-05-18 京セラドキュメントソリューションズ株式会社 画像形成装置、画像形成システム、及びプリンタードライバー

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8284165B2 (en) 2006-10-13 2012-10-09 Sony Corporation Information display apparatus with proximity detection performance and information display method using the same
US8054300B2 (en) * 2008-06-17 2011-11-08 Apple Inc. Capacitive sensor panel having dynamically reconfigurable sensor size and shape
JP2010282539A (ja) * 2009-06-08 2010-12-16 Sanyo Electric Co Ltd 静電容量型タッチセンサ用の信号処理回路
KR101144724B1 (ko) * 2009-12-17 2012-05-24 이성호 터치패널의 터치셀 구조
JP2011150414A (ja) * 2010-01-19 2011-08-04 Sony Corp 情報処理装置、操作入力決定方法及び操作入力決定プログラム
US20120038586A1 (en) * 2010-08-13 2012-02-16 Samsung Electronics Co., Ltd. Display apparatus and method for moving object thereof
JP4955116B1 (ja) * 2010-12-28 2012-06-20 シャープ株式会社 タッチパネルシステムおよび電子機器
US9389716B2 (en) * 2011-09-23 2016-07-12 Sony Corporation Mobile terminal apparatus
KR20130113181A (ko) * 2012-04-05 2013-10-15 삼성전자주식회사 터치 감지 장치 및 그것의 제어 방법
KR102159789B1 (ko) * 2013-10-28 2020-09-25 삼성전자주식회사 전자 장치 및 이의 사용자 제스처 인식방법
JP6532128B2 (ja) * 2015-09-14 2019-06-19 株式会社東海理化電機製作所 操作検出装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632854B2 (ja) 1972-05-25 1981-07-30
JP2008117371A (ja) * 2006-10-13 2008-05-22 Sony Corp 近接検知型情報表示装置およびこれを使用した情報表示方法
JP2010257046A (ja) * 2009-04-22 2010-11-11 Mitsubishi Electric Corp 近接検知装置
JP2011047774A (ja) * 2009-08-26 2011-03-10 Seiko Instruments Inc 近接検出装置と近接検出方法
WO2011055534A1 (ja) 2009-11-09 2011-05-12 ローム株式会社 タッチセンサ付きディスプレイ装置およびそれを用いた電子機器ならびにタッチセンサ付きディスプレイモジュールの制御回路
WO2012090405A1 (ja) * 2010-12-28 2012-07-05 Necカシオモバイルコミュニケーションズ株式会社 入力装置、入力制御方法、プログラム及び電子機器
JP2015505393A (ja) 2011-12-09 2015-02-19 マイクロチップ テクノロジー ジャーマニー ツー ゲーエ 3自由度以上を有するユーザインターフェースを伴う電子デバイスであって、前記ユーザインターフェースが、タッチセンサ式表面および非接触検出手段を含む、電子デバイス
JP2017083946A (ja) 2015-10-23 2017-05-18 京セラドキュメントソリューションズ株式会社 画像形成装置、画像形成システム、及びプリンタードライバー

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7120725B2 (ja) 2018-11-14 2022-08-17 アルパイン株式会社 タッチパネルを備えた電子装置、ベースライン値の更新方法および更新プログラム
EP3654155A1 (en) * 2018-11-14 2020-05-20 Alpine Electronics, Inc. Electronic device equipped with touch panel and update method of base line value
CN111190507A (zh) * 2018-11-14 2020-05-22 阿尔派株式会社 具备触摸面板的电子装置及基线值的更新方法
JP2020080076A (ja) * 2018-11-14 2020-05-28 アルパイン株式会社 タッチパネルを備えた電子装置、ベースライン値の更新方法および更新プログラム
US10866677B2 (en) 2018-11-14 2020-12-15 Alpine Electronics, Inc. Electronic device equipped with touch panel and update method of base line value
CN111190507B (zh) * 2018-11-14 2024-05-10 阿尔派株式会社 具备触摸面板的电子装置及基线值的更新方法
JPWO2021100348A1 (ja) * 2019-11-19 2021-05-27
KR20220054409A (ko) * 2019-11-19 2022-05-02 알프스 알파인 가부시키가이샤 정전 용량식 센서, 정전 용량 검출 방법, 및 정전 용량 검출 프로그램
KR102566581B1 (ko) * 2019-11-19 2023-08-11 알프스 알파인 가부시키가이샤 정전 용량식 센서, 정전 용량 검출 방법, 및 정전 용량 검출 프로그램
US11782556B2 (en) 2019-11-19 2023-10-10 Alps Alpine Co., Ltd. Capacitive sensor, capacitance detection method, and capacitance detection program
WO2021100348A1 (ja) * 2019-11-19 2021-05-27 アルプスアルパイン株式会社 静電容量式センサ、静電容量検出方法、及び、静電容量検出プログラム
JP7506088B2 (ja) 2019-11-19 2024-06-25 アルプスアルパイン株式会社 静電容量式センサ、静電容量検出方法、及び、静電容量検出プログラム
CN110865488A (zh) * 2019-11-27 2020-03-06 京东方科技集团股份有限公司 背光模组、显示面板及显示装置
CN110865488B (zh) * 2019-11-27 2022-09-09 京东方科技集团股份有限公司 背光模组、显示面板及显示装置

Also Published As

Publication number Publication date
EP3614241B1 (en) 2024-04-03
CN110520831A (zh) 2019-11-29
JPWO2018193711A1 (ja) 2020-05-14
US11216135B2 (en) 2022-01-04
TW201839576A (zh) 2018-11-01
CN110520831B (zh) 2023-06-20
US20200050341A1 (en) 2020-02-13
TWI659342B (zh) 2019-05-11
EP3614241A1 (en) 2020-02-26
EP3614241A4 (en) 2021-01-06
JP6833981B2 (ja) 2021-02-24

Similar Documents

Publication Publication Date Title
WO2018193711A1 (ja) タッチセンサ式電子デバイス、及びセンサ制御方法
AU2018282404B2 (en) Touch-sensitive button
JP5832784B2 (ja) タッチパネルシステムおよびそれを用いた電子機器
US9886131B2 (en) Determining what input to accept by a touch sensor after intentional and accidental lift-off and slide-off when gesturing or performing a function
US10969857B2 (en) Touch sensor mode transitioning
US10254873B2 (en) System and method for determining user input using dual baseline modes
US10073564B2 (en) Input device, control method of input device, and program
CN105117078A (zh) 用于电容性触摸检测的***和方法
JP6255321B2 (ja) 情報処理装置とその指先操作識別方法並びにプログラム
JP6410693B2 (ja) 入力装置とその制御方法及びプログラム
JP6704754B2 (ja) 判定装置及び判定方法
US20160320884A1 (en) Deflection-based and/or proximity-based switching of component state
JP2013250828A (ja) 入力装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788635

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513246

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018788635

Country of ref document: EP

Effective date: 20191120