WO2018192516A1 - 改良型柴油加氢裂化催化剂载体及其制备方法 - Google Patents

改良型柴油加氢裂化催化剂载体及其制备方法 Download PDF

Info

Publication number
WO2018192516A1
WO2018192516A1 PCT/CN2018/083493 CN2018083493W WO2018192516A1 WO 2018192516 A1 WO2018192516 A1 WO 2018192516A1 CN 2018083493 W CN2018083493 W CN 2018083493W WO 2018192516 A1 WO2018192516 A1 WO 2018192516A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
hydrocracking catalyst
catalyst carrier
alumina
improved diesel
Prior art date
Application number
PCT/CN2018/083493
Other languages
English (en)
French (fr)
Inventor
明卫星
赖波
杨伟光
徐田
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Publication of WO2018192516A1 publication Critical patent/WO2018192516A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Definitions

  • the invention relates to a catalyst carrier, in particular to an improved diesel hydrocracking catalyst carrier and a preparation method thereof.
  • the conventional preparation methods of the hydrocracking catalyst mainly include a dipping method, a coprecipitation method, a kneading method, etc., wherein the preparation process of the kneading method is the simplest, and the requirements for the process and the catalyst compound are not high, but the preparation process is relatively extensive, the catalyst The dispersibility of each component is not good, and some metal hydrogenation active centers are covered, which can not exert its activity better. It is usually used for catalysts with less hydrogenation performance; the preparation process of coprecipitation method is the most complicated.
  • the impregnation method is the most widely used method for preparing hydrocracking catalysts. Firstly, a carrier having a shape, mechanical strength, specific surface and acidity, etc., which meets the performance requirements of the catalyst, is prepared, and then the metal component is supported by a saturated or supersaturated impregnation method. The components are enriched in the catalyst to make the catalyst have higher mechanical strength and fully exert its hydrogenation performance.Therefore, the carrier plays a vital role in the catalyst.
  • the mechanical function of the carrier is as the skeleton of the active component, which acts to disperse the active component and increase the strength and thermal stability of the catalyst. It is important that it acts on the catalyst. Activity and selectivity have a large impact.
  • U.S. Patent No. 4,738,767 discloses a hydrocracking catalyst, the main acidic component of which is amorphous silica-alumina, and the amorphous silicon-aluminum used for the carrier is prepared by precipitating aluminum into a silica gel, which results in a specific surface area of the silica-alumina.
  • the pore volume is small, the acidity is low and the distribution is uneven, and the catalyst activity is not high.
  • CN1351121A discloses a hydrocracking catalyst containing modified ⁇ molecular sieve and amorphous silicon aluminum and a preparation method thereof, wherein the modified ⁇ molecular sieve directly exchanges the synthesized molecular sieve slurry with ammonium, and then roasts deammonium and acid.
  • the modified ⁇ molecular sieve is obtained by treatment and hydrothermal treatment. Since a large amount of non-skeletal aluminum is retained in the pores of the molecular sieve, the acidity and diffusion property of the modified molecular sieve are affected, which ultimately affects the yield and properties of the diesel product.
  • CN1393521A discloses a medium oil type hydrocracking catalyst and a preparation method thereof, wherein the carrier used for the catalyst is amorphous silica alumina, composite molecular sieve of alumina and Y and ⁇ molecular sieve, wherein the composite molecular sieve is used to burn the original molecular sieve of the zeolite molecular sieve.
  • the catalytic activity of the catalyst is not high, and the product quality of the middle distillate of aviation coal and diesel oil is generally required to be further improved.
  • hydrocracking catalyst carrier components are simply mechanically mixed, and the components in the catalyst are easily agglomerated into secondary particles, so that the dispersibility of the active components is poor, and the prepared catalyst is difficult to exert optimal performance. .
  • the object of the present invention is to provide an improved diesel hydrocracking catalyst carrier and a preparation method thereof, and the hydrocracking catalyst prepared by using the catalyst carrier has high catalytic activity, and can obviously reduce diesel oil under the premise of ensuring diesel oil yield.
  • the pour point of the fraction increases the cetane number of the diesel.
  • an improved diesel hydrocracking catalyst carrier comprising the following components and their weight percentages: 3 to 35% molecular sieve, 5 to 75% ⁇ -Al 2 O 3 , 15 to 75% amorphous silicon aluminum and 7 to 40% binder; the carrier has a specific surface area of 200 to 450 m 2 /g, and a total pore volume of 0.35 to 0.75 cm 3 /g .
  • the carrier raw material comprises the following components and their weight percentages: 3.4 to 7.6% of molecular sieves, 27.3 to 47.7% of ⁇ -Al 2 O 3 , 28.3 to 46.9% of amorphous silica alumina and 18 to 20% of a binder; the carrier has a specific surface area of 362 to 383 m 2 /g, and a total pore volume of 0.52 to 0.63 cm 3 /g; the carrier has a columnar shape and a length of 3 to 8 mm.
  • the molecular sieve is one or more of a ⁇ molecular sieve, a Y molecular sieve, a MOR molecular sieve, a ZSM-5 molecular sieve, a ZSM-22 molecular sieve, and a ZSM-23 molecular sieve.
  • the amorphous silicon aluminum has a pore volume of 0.5 to 1.0 cm 3 /g and a specific surface area of 300 to 500 m 2 /g.
  • the binder contains 10 to 40% by mass of small-pore alumina, and the rest is acid;
  • the small-pore alumina has a pore volume of 0.3 to 0.5 cm 3 /g and a specific surface area of 200 to 350 m. 2 / g, the mass ratio of the acid to the small pore alumina is 0.1 to 0.5.
  • the ⁇ molecular sieve has a specific surface area of 624 to 643 m 2 /g and a total pore volume of 0.32 to 0.35 cm 3 /g.
  • a method for preparing the above improved diesel hydrocracking catalyst carrier comprises the following steps:
  • the molecular sieve obtained in the step 2) is added to a mixed solution of aluminum salt and ammonia water for precipitation, and after fully precipitating, the slurry is sequentially subjected to evaporation, drying and calcination to obtain a molecular sieve and an alumina composite material;
  • the molecular sieve obtained in the step 3) is mixed with the alumina composite material, the amorphous silica alumina and the binder according to the ratio of the raw materials, and the hydrocracking catalyst carrier can be obtained after molding.
  • the silicon source, the aluminum source, the sodium hydroxide, the tetraethylammonium bromide solution and the water are mixed in a molar ratio of SiO 2 :Al 2 O 3 :Na 2 O:tetraethyl bromide.
  • Ammonium:H 2 O is added in a ratio of 50 to 70: 1 : 5 to 8:15 to 20:1000 to 1200.
  • the aluminum salt is 0.5 to 3.0 mol/L of aluminum chloride, and the concentration of the ammonia water is 0.5 to 4 mol/L.
  • the molecular sieve and the alumina composite have a pore volume of 0.4 to 0.9 cm 3 /g and a specific surface area of 350 to 500 m 2 /g.
  • the molecular sieve is a ⁇ molecular sieve
  • the crystallization temperature is 135 to 145 ° C
  • the water is washed until the pH of the washing liquid is 6.5 to 7.5
  • the drying temperature is 90 to 110 ° C
  • the drying time is 22 to 26 hours.
  • the temperature is 60-80 ° C
  • the pH is 3-7
  • the drying temperature is 90-120 ° C
  • the drying time is 2 to 3 hours
  • the baking temperature is 300-600 ° C.
  • the baking time is 2 to 8 hours.
  • drying and activation treatment are sequentially performed after the molding, the drying temperature is 100 to 120 ° C, the drying time is 18 to 22 hours, the activation temperature is 450 to 600 ° C, and the activation time is 4 to 6 hours. .
  • the concentration of the ammonia water is 1.0 to 2.0 mol/L.
  • the aluminum source is one or more of pseudoboehmite, aluminum sulfate and sodium metaaluminate
  • the silicon source is one of white carbon black, silica sol and water glass. kind or several.
  • the present invention has the following advantages:
  • the molecular sieve is added without removing the template, and the NH 4 + formed by the reaction of the aluminum salt with the ammonia water is exchanged with the alkali Na + which is negatively charged by the equilibrium molecular sieve skeleton.
  • the organic templating agent and NH 4 + in the molecular sieve are simultaneously removed, and the templating agent removed is mainly filled with TEA + filling the inside of the pore and balancing the molecular sieve skeleton, and NH 4 + is NH 3
  • the form is removed to obtain the H- ⁇ molecular sieve, thereby completing the ammonium exchange and the stripping agent of the zeolite molecular sieve in the process of preparing the composite material, without separately removing the template from the template and ammonium exchange, which not only simplifies the preparation process, but also the template
  • the agent has the support and protection effect on the molecular sieve pore structure, so that the molecular sieve pore structure is not easily damaged, and the mechanical strength of the catalyst carrier is greatly improved.
  • the molecular sieve of the catalyst carrier of the invention has high dispersity, the carrier has a more uniform acidity, and the alumina is more closely contacted with the molecular sieve, which is beneficial to the rapid transfer and reaction between the reactant and the product molecule between the acid center and the cracking center.
  • the components and the hydrogenation component are optimally coordinated, and the hydrocracking catalyst prepared by the same has a good synergistic effect on the hydrogenation activity and the cracking activity.
  • the hydrocracking catalyst prepared by the carrier of the present invention has suitable cracking action and good isomerization effect on long-chain alkyl groups of long-chain alkanes, aromatic hydrocarbons and cycloalkanes, and hydrogenation active centers and cracking active centers.
  • the matching is more reasonable, and the hydrocracking catalyst prepared by using the middle distillate has good selectivity, can produce high-quality middle distillate products, and has high catalytic activity, and can obviously reduce the diesel fraction under the premise of ensuring high yield of diesel oil.
  • the freezing point which increases the cetane number of diesel, is suitable for the catalytic process of hydrocracking the high-quality diesel oil for the treatment of vacuum distillate.
  • the specific surface area and pore volume were determined by low temperature N 2 physical adsorption method.
  • the molar ratio of silicon to aluminum was determined by chemical method.
  • the amount of infrared acid, B acid and L acid were determined by pyridine adsorption infrared spectroscopy. The degree is determined by the XRD method.
  • the crystallized molecular sieve slurry is directly filtered, washed, dried, and dried without de- templating agent treatment, and the SiO 2 /Al 2 O 3 (molar ratio) is 20-60; the aluminum salt solution and the alkali precipitant are mixed.
  • stirring the temperature is controlled at 60-80 ° C, the pH is controlled at 3-7, the evaporation is carried out at a temperature of 50-90 ° C, the drying is performed at 100 ° C, and the precipitate is baked.
  • the calcination temperature is 300-600 ° C, the calcination time is 2-6 hours, and the molecular sieve and the alumina composite material are obtained; according to the mixing ratio of the catalyst carrier, the molecular sieve and the alumina composite material, the amorphous silicon aluminum and the binder (the viscosity
  • the pore volume of the small pore alumina in the preparation is 0.3-0.5 cm 3 /g, the specific surface area is 200-350 m 2 /g, the ratio of acid to alumina in the binder is 0.1-0.5, and the acid is HNO 3 or H 3 PO.
  • the silica-alumina gel was dynamically crystallized at 145 ° C for 7 days, and subjected to solid-liquid separation and After washing and drying, a ⁇ molecular sieve is obtained, which is numbered B1, and the main properties of the ⁇ molecular sieve are shown in Table 1.
  • the silica-alumina gel was dynamically crystallized at 145 ° C for 7 days, and subjected to solid-liquid separation and After washing and drying, a ⁇ molecular sieve is obtained, which is numbered B1, and the main properties of the ⁇ molecular sieve are shown in Table 1.
  • Example 3 and Example 4 The catalyst supports obtained in Example 3 and Example 4 were subjected to supersaturated impregnation to carry the hydrogenation of the metal, and the hydrogenation metal was a tungsten-nickel system.
  • the catalyst numbers were respectively CZ-3 and CZ-4, and their properties are shown in Table 2. .
  • the catalytic activities of the catalysts CZ-3 and CZ-4 prepared by the carriers obtained in Example 3 and Example 4 were evaluated on a fixed bed hydrogenation experimental apparatus under the following conditions: a total reaction pressure of 10 MPa and a hydrogen oil volume ratio of 1000.
  • the volumetric space velocity is 1.0 h -1
  • vacuum distillate (VGO) is used as the raw material oil.
  • the properties of the raw material oil are shown in Table 3.
  • Catalysts CZ-3 and CZ-4 were evaluated under the same process conditions, and the evaluation results are shown in Table 4.
  • Raw material oil Vacuum distillate Density (20 ° C), kg / m 3 912.3 Distillation range, °C IBP/10% 315/403 30%/50% 442/461 70%/90% 495/526 95%/EBP 532/544 Freezing point, °C 32 Nitrogen, ⁇ g/g 1568 Carbon, wt% 84.53 Hydrogen, wt% 11.72 Carbon residue, wt% 0.32 BMCI value 43

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

一种改良型柴油加氢裂化催化剂载体及其制备方法,载体原料包括以下组分及重量百分比:3~35%的分子筛,5~75%的γ‑Al 2O 3,15~75%的无定形硅铝及7~40%的粘结剂;载体的比表面积为200~450m 2/g,总孔容为0.35~0.75cm 3/g。在制备分子筛与氧化铝复合材料的过程中加入不脱模板剂的分子筛,混合液中,铝盐与氨水反应生成的NH 4+与平衡分子筛骨架负电荷的碱Na +交换,在焙烧过程中,将分子筛中的有机模板剂及NH 4+脱除,从而在制备复合材料过程中完成了沸石分子筛的铵交换及脱模板剂,不用单独对分子筛进行脱模板剂和铵交换,模板剂对分子筛孔道结构具有支撑和保护作用,用本载体制备的加氢裂化催化剂可在保证柴油高收率的前提下,明显地降低柴油馏分的凝点,提高柴油的十六烷值。

Description

改良型柴油加氢裂化催化剂载体及其制备方法 技术领域
本发明涉及催化剂载体,具体地指一种改良型柴油加氢裂化催化剂载体及其制备方法。
背景技术
随着经济的高速发展,石油产品的需求快速增长,我国加氢裂化加工能力也获得迅猛的发展。然而随着我国加工原料油质量逐渐变重、变差,高硫原油的加工量逐年增加,环保对炼油工艺本身及石油产品质量要求日趋严格,这对加氢裂化技术水平提出了更高的要求,而催化剂在加氢裂化反应中起核心作用,加氢裂化技术的关键在于催化剂的研制和改进。
加氢裂化催化剂常规的制备方法主要有浸渍法、共沉淀法、混捏法等,其中混捏法的制备工艺最简单,对工艺及催化剂配料的要求都不高,但由于其制备过程较粗放,催化剂中各组分的分散性不好,部分金属加氢活性中心被覆盖,不能更好的发挥其活性,通常为加氢性能要求不是很高的催化剂所采用;共沉淀法制备技术制备过程最为复杂,但催化剂中各组分的分散度很好,各组分之间的匹配关系好,加氢和裂化活性中心在催化剂中均匀分布,使催化剂加氢与裂化活性中心具有更高的协同作用;浸渍法是制备加氢裂化催化剂最广泛的使用方法,首先需制备出形状,机械强度,比表面及酸性等符合催化剂性能要求的载体,然后通过饱和或过饱和浸渍方法进行负载金属组分,金属组分富集于催化剂中,使催化剂具有更高的机械强度,充分发挥其加氢性能。因此,载体对催化剂起着至关重要的作用,载体的机械功能是作为活性组分的骨架,起着分散活性组分的作用,并增加催化剂的强度和热稳定性,重要的是它对催化剂活性及选择性有很大影响。
美国专利US4738767公开了一种加氢裂化催化剂,主要酸性组分是无定形硅铝,载体所用的无定形硅铝的制备方法是将铝沉淀到硅凝胶中,这就造成硅铝的比表面积和孔容都较小,酸量低且分布不均匀等特点,催化剂活性不高。CN1351121A公布了一种含改性β分子筛和无定型硅铝的加氢裂化催化剂及其制备方法,该方法中改性β分子筛是将合成后的分子筛浆液直接进行铵交换,然后焙烧脱铵、酸处理和水热处理得到改性β 分子筛,由于大量非骨架铝滞留在分子筛孔道中,影响了改性分子筛的酸性及其扩散性能,最终影响了柴油产品的产率和性质。CN1393521A公开了一种中油型加氢裂化催化剂及其制备方法,催化剂所用载体为无定形硅铝,氧化铝与Y及β分子筛的复合型分子筛,其中复合分子筛是将β分子筛原粉烧去模板剂后与改性Y分子筛混合后,再进行铵交换处理而得,该催化剂的催化活性不高,航煤和柴油的中间馏分油的产品质量一般,需进一步提高。然而,上述加氢裂化催化剂载体组分之间都是简单的机械混合,催化剂中各组分容易团聚为二次粒子,使得活性组分分散性较差,进而制备得到的催化剂难以发挥最佳性能。
发明内容
本发明的目的就是要提供一种改良型柴油加氢裂化催化剂载体及其制备方法,使用该催化剂载体制备的加氢裂化催化剂催化活性高,可在保证柴油收率的前提下,明显地降低柴油馏分的凝点,提高柴油的十六烷值。
为实现上述目的,本发明采用的技术方案是:一种改良型柴油加氢裂化催化剂载体,所述载体原料包括以下组分及其重量百分比:3~35%的分子筛,5~75%的γ-Al 2O 3,15~75%的无定形硅铝及7~40%的粘结剂;所述载体的比表面积为200~450m 2/g,总孔容为0.35~0.75cm 3/g。
进一步地,所述载体原料包括以下组分及其重量百分比:3.4~7.6%的分子筛,27.3~47.7%的γ-Al 2O 3,28.3~46.9%的无定形硅铝及18~20%的粘结剂;所述载体的比表面积为362~383m 2/g,总孔容为0.52~0.63cm 3/g;所述载体呈柱状,长度为3~8mm。
进一步地,所述分子筛为β分子筛、Y型分子筛、MOR分子筛、ZSM-5分子筛、ZSM-22分子筛及ZSM-23分子筛中的一种或几种。
进一步地,所述无定形硅铝孔容为0.5~1.0cm 3/g,比表面积为300~500m 2/g。
进一步地,所述粘结剂中含质量百分数为10~40%的小孔氧化铝,其余为酸;所述小孔氧化铝孔容为0.3~0.5cm 3/g,比表面积为200~350m 2/g,所述酸与所述小孔氧化铝质量比例为0.1~0.5。
更进一步地,所述β分子筛比表面积为624~643m 2/g,总孔容为0.32~0.35cm 3/g。
一种上述改良型柴油加氢裂化催化剂载体的制备方法,包括以下步骤:
1)将四乙基溴化铵溶液、氢氧化钠、铝源和水混合并搅拌至澄清溶液,然后加入硅 源,继续搅拌得到硅铝凝胶;
2)将步骤1)所得硅铝凝胶进行晶化,然后经水洗和干燥处理,得分子筛;
3)将步骤2)得到的分子筛加入铝盐和氨水的混合溶液中进行沉淀,充分沉淀后取浆液依次进行蒸发、干燥和焙烧处理,得分子筛与氧化铝复合材料;
4)将步骤3)所得分子筛与氧化铝复合材料、无定形硅铝及粘结剂按所述原料比例进行混合,成型后即可得所述加氢裂化催化剂载体。
进一步地,所述步骤1)中,硅源、铝源、氢氧化钠、四乙基溴化铵溶液及水按配料摩尔比SiO 2∶Al 2O 3∶Na 2O∶四乙基溴化铵∶H 2O为50~70∶1∶5~8∶15~20∶1000~1200的比例加入。
进一步地,所述步骤3)中,铝盐为0.5~3.0mol/L的氯化铝,氨水的浓度为0.5~4mol/L。
进一步地,所述步骤3)中,分子筛与氧化铝复合材料的孔容为0.4~0.9cm 3/g,比表面积为350~500m 2/g。
进一步地,所述步骤2)中,分子筛为β分子筛,晶化温度为135~145℃;水洗至洗涤液pH为6.5~7.5;干燥温度为90~110℃,干燥时间为22~26h。
进一步地,所述步骤3)中,沉淀过程中,温度为60~80℃,pH为3~7;干燥温度为90~120℃,干燥时间为2~3小时;焙烧温度为300~600℃,焙烧时间为2~8小时。
进一步地,所述步骤4)中,成型后依次进行干燥和活化处理,干燥温度为100~120℃,干燥时间为18~22小时,活化温度为450~600℃,活化时间为4~6小时。
进一步地,所述步骤3)中,氨水的浓度为1.0~2.0mol/L。
更进一步地,所述步骤1)中,铝源为拟薄水铝石、硫酸铝和偏铝酸钠中的一种或几种;硅源为白炭黑、硅溶胶和水玻璃中的一种或几种。
与现有技术相比,本发明具有以下优点:
其一,本发明在制备分子筛与氧化铝复合材料的过程中加入不脱模板剂的分子筛,混合液中,铝盐与氨水反应生成的NH 4 +与平衡分子筛骨架负电荷的碱Na +进行交换,在焙烧过程中,同时将分子筛中的有机模板剂及NH 4 +脱除,脱除的模板剂主要为填充孔道内部及平衡分子筛骨架负电荷的TEA +,而NH 4 +则以NH 3的形式被除掉,得到H-β分子筛,从而在制备复合材料过程中完成了沸石分子筛的铵交换及脱模板剂,不用单独对分子筛进行脱模板剂和铵交换,不但简化了制备工艺,而且模板剂对分子筛孔道结构具有 支撑和保护作用,从而分子筛孔道结构不易被破坏,大幅提升了催化剂载体的机械强度。
其二,本发明催化剂载体中分子筛分散度高,载体具有更加均匀的酸性位,氧化铝与分子筛接触得更加紧密,有利于反应物及产物分子在酸性中心与裂化中心之间的快速转移,裂化组分和加氢组分得到了优化配合,使用其制备的加氢裂化催化剂其加氢活性与裂化活性具有很好的协同作用。
其三,用本发明载体制备的加氢裂化催化剂对长链烷烃、芳烃及环烷烃的长侧链烷基有适宜的裂化作用和很好的异构作用,其加氢活性中心和裂化活性中心匹配更加合理,使用其制备的加氢裂化催化剂中间馏分油选择性好,可多产优质中间馏分油产品,且催化活性很高,可在保证柴油高收率的前提下,明显地降低柴油馏分的凝点,提高柴油的十六烷值,适合于处理减压馏分油的加氢裂化生产优质柴油的催化过程。
具体实施方式
下面结合具体实施例对本发明作进一步的详细说明,便于更清楚地了解本发明,但它们不对本发明构成限定。
以下实施例中,比表面积和孔容采用低温N 2物理吸附法测定,硅铝摩尔比采用化学法测定,红外酸量、B酸量和L酸量采用吡啶吸附红外光谱法测定,分子筛相对结晶度采用XRD方法测定。
以下实施例中加氢裂化催化剂载体的制备按如下步骤进行:
晶化后的分子筛浆液直接进行过滤、洗涤、干燥,干燥后不进行脱模板剂处理,其SiO 2/Al 2O 3(摩尔比)为20~60;将铝盐溶液和碱沉淀剂混合,把上述不脱模板剂的分子筛加入混合溶液中,搅拌,温度控制在60~80℃,pH值控制在3~7,于50~90℃温度条件下进行蒸发,100℃干燥,将沉淀进行焙烧,焙烧温度为300~600℃,焙烧时间为2~6小时,得到分子筛与氧化铝复合材料;按照催化剂载体混合比例,将分子筛与氧化铝复合材料,无定形硅铝及粘结剂(该粘结剂中小孔氧化铝孔容为0.3~0.5cm 3/g,比表面积为200~350m 2/g,粘结剂中酸与氧化铝比值为0.1~0.5,酸为HNO 3或H 3PO 4)进行混合,在轮碾机中进行碾压20~60分钟,挤条成柱状,载体长度为3~8mm,再将条状载体于100~120℃干燥10~20小时,450~600℃下焙烧4~6小时,得到加氢裂化催化剂载体。
实施例1
称取201.3g四乙基溴化铵(98wt%,工业级),27.39g氢氧化钠,7.2g拟薄水铝石 (70wt%,工业级),870g水混合并搅拌至澄清溶液,然后在不断搅拌下向溶液中加入180g白炭黑(98wt%,工业级),并继续搅拌以得到均匀的硅铝凝胶,将硅铝凝胶于145℃动态晶化7天,经固液分离和洗涤干燥后得到β分子筛,编号为B1,该β分子筛的主要性质见表1。
将3000ml氯化铝溶液(浓度为1.5mol/L)加入5000ml烧杯中,将19g B1分子筛(干基99%)加入混合液中,恒温70℃,不断加入2mol/L的氨水直至pH值为4,于80℃下蒸发(蒸发温度可为50~90℃),将吸出的白色固体于100℃下干燥3小时,500℃下焙烧4小时得到分子筛与氧化铝复合材料273.7g(干基93%),转化率为72.5%,编号为C1。
将183.7g(干基93%)C1、无定形硅铝172.7g(干基88%)、粘结剂240g(干基30%)进行混合,在轮碾机中进行碾压40分钟,碾压为可挤膏状,挤条成型,载体形状为柱状,长度为3~8mm,再将条状载体于120℃干燥20小时,550℃下焙烧5~6小时,得到催化剂载体Z-1,其性质见表2。
实施例2
称取201.3g四乙基溴化铵(98wt%,工业级),27.39g氢氧化钠,7.2g拟薄水铝石(70wt%,工业级),870g水混合并搅拌至澄清溶液,然后在不断搅拌下向溶液中加入180g白炭黑(98wt%,工业级),并继续搅拌以得到均匀的硅铝凝胶,将硅铝凝胶于145℃动态晶化7天,经固液分离和洗涤干燥后得到β分子筛,编号为B1,该β分子筛的主要性质见表1。
将3000ml氯化铝溶液(浓度为1.5mol/L)加入5000ml烧杯中,将28g B1分子筛(干基99%)加入混合液中,恒温70℃,不断加入2mol/L的氨水直至pH值为4.3,于85℃下蒸发,将吸出的白色固体于100℃下干燥3小时,500℃下焙烧4小时得到分子筛与氧化铝复合材料276.2g(干基93%),转化率为73%,编号为C2。
将225.1g(干基93%)C2、无定形硅铝126.8g(干基88%)、粘结剂240g(干基30%)进行混合,在轮碾机中进行碾压40分钟,碾压为可挤膏状,挤条成型,载体形状为柱状,长度为3~8mm,再将条状载体于120℃干燥20小时,550℃下焙烧5~6小时,得到催化剂载体Z-2,其性质见表2。
实施例3
称取185.3g四乙基溴化铵(98wt%,工业级),22.65g氢氧化钠,10.3g拟薄水铝石(70wt%,工业级),870g水混合并搅拌至澄清溶液,然后在不断搅拌下向溶液中加入180g白炭黑(工业级),并继续搅拌以得到均匀的硅铝凝胶,将硅铝凝胶于145℃动态晶化7天,经固液分离和洗涤干燥后得到β分子筛,编号为B2,该β分子筛得主要性质见表1。
将3000ml氯化铝溶液(浓度为1.5mol/L)加入5000ml烧杯中,将60.5g B2分子筛(干基99%)加入混合液中,恒温70℃,不断加入2mol/L的氨水直至pH值为4,于85℃下蒸发,将吸出的白色固体于100℃下干燥3小时,500℃下焙烧4小时得到分子筛与氧化铝复合材料296.4g(干基93%),转化率为78.4%,编号为C3。
将145.7g(干基93%)C3、无定形硅铝210.7g(干基88%)、粘结剂240g(干基30%)进行混合,在轮碾机中进行碾压40分钟,碾压为可挤膏状,挤条成型,载体形状为柱状,长度为3~8mm,再将条状载体于120℃干燥20小时,550℃下焙烧5~6小时,得到催化剂载体Z-3,其性质见表2。
实施例4
称取185.3g四乙基溴化铵(98wt%,工业级),22.65g氢氧化钠,10.3g拟薄水铝石(70wt%,工业级),870g水混合并搅拌至澄清溶液,然后在不断搅拌下向溶液中加入180g白炭黑(工业级),并继续搅拌以得到均匀的硅铝凝胶,将硅铝凝胶于145℃动态晶化7天,经固液分离和洗涤干燥后得到β分子筛,编号为B2,该β分子筛得主要性质见表1。
将3000ml氯化铝溶液(浓度为1.5mol/L)加入5000ml烧杯中,将34.3g B2分子筛(干基99%)加入混合液中,恒温70℃,不断加入2mol/L的氨水直至pH值为4.8,于85℃下蒸发,将吸出的白色固体于100℃下干燥3小时,500℃下焙烧4小时得到分子筛与氧化铝复合材料285.3g(干基93%),转化率为75.6%,编号为C4。
将196.4g(干基93%)C4、无定形硅铝159.6g(干基88%)、粘结剂240g(干基30%)进行混合,在轮碾机中进行碾压40分钟,碾压为可挤膏状,挤条成型,载体形状为柱状,长度为3~8mm,再将条状载体于120℃干燥20小时,550℃下焙烧5~6小时,得到催化剂载体Z-4,其性质见表2。
实施例3和实施例4所得催化剂载体采用过饱和浸渍的方法进行负载加氢金属,加 氢金属采用钨-镍体系,制备的催化剂编号分别为CZ-3、CZ-4,其性质见表2。
对实施例3和实施例4所得载体制备的催化剂CZ-3和CZ-4的催化活性在固定床加氢实验装置上进行评价,评价条件为:反应总压为10MPa,氢油体积比为1000,体积空速1.0h -1,使用减压馏分油(VGO)为原料油,该原料油性质见表3。将催化剂CZ-3、CZ-4在相同的工艺条件下进行评价,评价结果见表4。从表4数据可以看出,在相同的工艺条件下,本发明载体制备的催化剂中间馏分油选择性好,保证柴油收率的前提下,明显地降低柴油馏分的凝点,提高柴油的十六烷值。
表1
分子筛 B1 B2
硅铝摩尔比(Si/Al) 31.5 22.6
相对结晶度,% 96 105
比表面,m 2/g 624 643
总孔容,ml/g 0.32 0.35
红外酸量,mmol/g 0.29 0.31
B酸/L酸 0.56 0.48
表2
Figure PCTCN2018083493-appb-000001
表3
原料油 减压馏分油
密度(20℃),kg/m 3 912.3
馏程,℃  
IBP/10% 315/403
30%/50% 442/461
70%/90% 495/526
95%/EBP 532/544
凝点,℃ 32
氮,μg/g 1568
碳,wt% 84.53
氢,wt% 11.72
残炭,wt% 0.32
BMCI值 43
表4
Figure PCTCN2018083493-appb-000002

Claims (15)

  1. 一种改良型柴油加氢裂化催化剂载体,其特征在于:所述载体原料包括以下组分及其重量百分比:3~35%的分子筛,5~75%的γ-Al 2O 3,15~75%的无定形硅铝及7~40%的粘结剂;所述载体的比表面积为200~450m 2/g,总孔容为0.35~0.75cm 3/g。
  2. 根据权利要求1所述改良型柴油加氢裂化催化剂载体,其特征在于:所述载体原料包括以下组分及其重量百分比:3.4~7.6%的分子筛,27.3~47.7%的γ-Al 2O 3,28.3~46.9%的无定形硅铝及18~20%的粘结剂;所述载体的比表面积为362~383m 2/g,总孔容为0.52~0.63cm 3/g;所述载体呈柱状,长度为3~8mm。
  3. 根据权利要求1所述改良型柴油加氢裂化催化剂载体,其特征在于:所述分子筛为β分子筛、Y型分子筛、MOR分子筛、ZSM-5分子筛、ZSM-22分子筛及ZSM-23分子筛中的一种或几种。
  4. 根据权利要求1或2或3所述改良型柴油加氢裂化催化剂载体,其特征在于:所述无定形硅铝孔容为0.5~1.0cm 3/g,比表面积为300~500m 2/g。
  5. 根据权利要求1或2或3所述改良型柴油加氢裂化催化剂载体,其特征在于:所述粘结剂中含质量百分数为10~40%的小孔氧化铝,其余为酸;所述小孔氧化铝孔容为0.3~0.5cm 3/g,比表面积为200~350m 2/g,所述酸与所述小孔氧化铝质量比例为0.1~0.5。
  6. 根据权利要求3所述改良型柴油加氢裂化催化剂载体,其特征在于:所述β分子筛比表面积为624~643m 2/g,总孔容为0.32~0.35cm 3/g。
  7. 一种权利要求1所述改良型柴油加氢裂化催化剂载体的制备方法,其特征在于:包括以下步骤:
    1)将四乙基溴化铵溶液、氢氧化钠、铝源和水混合并搅拌至澄清溶液,然后加入硅源,继续搅拌得到硅铝凝胶;
    2)将步骤1)所得硅铝凝胶进行晶化,然后经水洗和干燥处理,得分子筛;
    3)将步骤2)得到的分子筛加入铝盐和氨水的混合溶液中进行沉淀,充分沉淀后取浆液依次进行蒸发、干燥和焙烧处理,得分子筛与氧化铝复合材料;
    4)将步骤3)所得分子筛与氧化铝复合材料、无定形硅铝及粘结剂按所述原料比例进行混合,成型后即可得所述加氢裂化催化剂载体。
  8. 根据权利要求7所述改良型柴油加氢裂化催化剂载体的制备方法,其特征在于:所述步骤1)中,硅源、铝源、氢氧化钠、四乙基溴化铵溶液及水按配料摩尔比SiO 2∶Al 2O 3∶Na 2O∶四乙基溴化铵∶H 2O为50~70∶1∶5~8∶15~20∶1000~1200的比例加入。
  9. 根据权利要求7所述改良型柴油加氢裂化催化剂载体的制备方法,其特征在于:所述步骤3)中,铝盐为0.5~3.0mol/L的氯化铝,氨水的浓度为0.5~4mol/L。
  10. 根据权利要求7或8或9所述改良型柴油加氢裂化催化剂载体的制备方法,其特征在于:所述步骤3)中,分子筛与氧化铝复合材料的孔容为0.4~0.9cm 3/g,比表面积为350~500m 2/g。
  11. 根据权利要求7或8或9所述改良型柴油加氢裂化催化剂载体的制备方法,其特征在于:所述步骤2)中,分子筛为β分子筛,晶化温度为135~145℃;水洗至洗涤液pH为6.5~7.5;干燥温度为90~110℃,干燥时间为22~26h。
  12. 根据权利要求7或8或9所述改良型柴油加氢裂化催化剂载体的制备方法,其特征在于:所述步骤3)中,沉淀过程中,温度为60~80℃,pH为3~7;干燥温度为90~120℃,干燥时间为2~3小时;焙烧温度为300~600℃,焙烧时间为2~8小时。
  13. 根据权利要求7或8或9所述改良型柴油加氢裂化催化剂载体的制备方法,其特征在于:所述步骤4)中,成型后依次进行干燥和活化处理,干燥温度为100~120℃,干燥时间为18~22小时,活化温度为450~600℃,活化时间为4~6小时。
  14. 根据权利要求7或8或9所述改良型柴油加氢裂化催化剂载体的制备方法,其特征在于:所述步骤3)中,氨水的浓度为1.0~2.0mol/L。
  15. 根据权利要求7或8或9所述改良型柴油加氢裂化催化剂载体的制备方法,其特征在于:所述步骤1)中,铝源为拟薄水铝石、硫酸铝和偏铝酸钠中的一种或几种;硅源为白炭黑、硅溶胶和水玻璃中的一种或几种。
PCT/CN2018/083493 2017-04-21 2018-04-18 改良型柴油加氢裂化催化剂载体及其制备方法 WO2018192516A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710264312.7 2017-04-21
CN201710264312.7A CN107008509B (zh) 2017-04-21 2017-04-21 改良型柴油加氢裂化催化剂载体及其制备方法

Publications (1)

Publication Number Publication Date
WO2018192516A1 true WO2018192516A1 (zh) 2018-10-25

Family

ID=59448198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083493 WO2018192516A1 (zh) 2017-04-21 2018-04-18 改良型柴油加氢裂化催化剂载体及其制备方法

Country Status (2)

Country Link
CN (1) CN107008509B (zh)
WO (1) WO2018192516A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116020527A (zh) * 2021-10-25 2023-04-28 中国石油化工股份有限公司 一种加氢裂化催化剂的预处理方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107008509B (zh) * 2017-04-21 2020-02-07 武汉凯迪工程技术研究总院有限公司 改良型柴油加氢裂化催化剂载体及其制备方法
CN106925342B (zh) * 2017-04-21 2020-02-07 武汉凯迪工程技术研究总院有限公司 改良型柴油加氢裂化催化剂及其制备方法
RU2732243C1 (ru) * 2020-03-19 2020-09-14 Акционерное общество «Газпромнефть - Омский НПЗ» (АО «Газпромнефть - ОНПЗ») Способ приготовления катализатора гидроочистки дизельного топлива
RU2738076C1 (ru) * 2020-03-19 2020-12-07 Акционерное общество «Газпромнефть - Омский НПЗ» (АО «Газпромнефть - ОНПЗ») Способ приготовления носителя для катализатора гидроочистки
RU2738080C1 (ru) * 2020-03-19 2020-12-07 Акционерное общество «Газпромнефть - Омский НПЗ» (АО «Газпромнефть - ОНПЗ») Носитель для катализатора гидроочистки

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030780A (en) * 1990-07-26 1991-07-09 Union Oil Company Of California Aromatic saturation process with a silica-alumina and zeolite catalyst
CN101380588A (zh) * 2007-09-04 2009-03-11 中国石油化工股份有限公司 一种加氢裂化催化剂载体及其制备方法
CN101450319A (zh) * 2007-12-04 2009-06-10 中国石油化工股份有限公司 一种中油型加氢裂化催化剂及其制备方法
CN102049283A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 加氢裂化催化剂及其制备方法
CN103100437A (zh) * 2011-11-11 2013-05-15 中国石油化工股份有限公司 催化剂载体材料的制备方法
CN106925342A (zh) * 2017-04-21 2017-07-07 武汉凯迪工程技术研究总院有限公司 改良型柴油加氢裂化催化剂及其制备方法
CN107008509A (zh) * 2017-04-21 2017-08-04 武汉凯迪工程技术研究总院有限公司 改良型柴油加氢裂化催化剂载体及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1026216C (zh) * 1992-07-30 1994-10-19 中国石油化工总公司 重油催化裂化催化剂及其制备方法
US6756029B2 (en) * 1999-08-11 2004-06-29 Petroleo Brasileiro S.A.-Petrobras Molecular sieves of faujasite structure
US9187702B2 (en) * 2009-07-01 2015-11-17 Chevron U.S.A. Inc. Hydroprocessing catalyst and method of making the same
CN103100410B (zh) * 2011-11-11 2015-05-13 中国石油化工股份有限公司 含分子筛的加氢催化剂的制备方法
CN104492472B (zh) * 2014-12-09 2017-01-04 华东师范大学 一种具有低焦炭产率的流化催化裂化催化助剂及制备方法
CN106311319B (zh) * 2015-06-29 2019-03-12 中国石油天然气股份有限公司 一种含微-介孔复合分子筛的加氢裂化催化剂及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030780A (en) * 1990-07-26 1991-07-09 Union Oil Company Of California Aromatic saturation process with a silica-alumina and zeolite catalyst
CN101380588A (zh) * 2007-09-04 2009-03-11 中国石油化工股份有限公司 一种加氢裂化催化剂载体及其制备方法
CN101450319A (zh) * 2007-12-04 2009-06-10 中国石油化工股份有限公司 一种中油型加氢裂化催化剂及其制备方法
CN102049283A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 加氢裂化催化剂及其制备方法
CN103100437A (zh) * 2011-11-11 2013-05-15 中国石油化工股份有限公司 催化剂载体材料的制备方法
CN106925342A (zh) * 2017-04-21 2017-07-07 武汉凯迪工程技术研究总院有限公司 改良型柴油加氢裂化催化剂及其制备方法
CN107008509A (zh) * 2017-04-21 2017-08-04 武汉凯迪工程技术研究总院有限公司 改良型柴油加氢裂化催化剂载体及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116020527A (zh) * 2021-10-25 2023-04-28 中国石油化工股份有限公司 一种加氢裂化催化剂的预处理方法

Also Published As

Publication number Publication date
CN107008509A (zh) 2017-08-04
CN107008509B (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2018192516A1 (zh) 改良型柴油加氢裂化催化剂载体及其制备方法
WO2018192520A1 (zh) 优化型柴油加氢裂化催化剂及其制备方法
WO2018192519A1 (zh) 优化型柴油加氢裂化催化剂载体及其制备方法
CN106925342B (zh) 改良型柴油加氢裂化催化剂及其制备方法
CN103100417B (zh) 一种加氢裂化催化剂及其制备方法
CN101172260B (zh) 一种加氢催化剂的制备方法
KR20120004935A (ko) 수소화 분해 촉매, 그의 제조 방법 및 용도
WO2016023523A1 (zh) 一种具有晶内多级孔的y型沸石及其制备方法与应用
CN103100429A (zh) 一种柴油加氢改质催化剂载体及其制备方法
CN103101923B (zh) 一种β分子筛及其制备方法
CN103100416A (zh) 一种柴油加氢改质催化剂及其制备方法
CN101618347B (zh) 一种含y分子筛的加氢裂化催化剂载体及其制备方法
CN104646073B (zh) 一种加氢催化剂载体
CN1052290A (zh) 含稀土的五元环结构高硅沸石及合成
CN1147574C (zh) 一种多产喷气燃料和柴油的加氢裂化催化剂
CN107971031B (zh) 一种提高汽油辛烷值桶的催化裂化助剂及其制备方法
CN103449465A (zh) 高岭土微球原位晶化β分子筛及其制备方法
CN116251615A (zh) 一种重油型原位晶化催化剂及其制备方法
CN111744541A (zh) 一种含高硅择形分子筛的催化裂化催化剂及其制备方法
CN107233927B (zh) 中油型加氢裂化催化剂载体及其制备方法
CN116060103B (zh) 一种改性β分子筛及其制备方法和应用
EP0119709A2 (en) Process for the dewaxing of hydrocarbon fractions
JPH0626673B2 (ja) 水素化脱硫・水素化分解能を有する触媒
CN107971032B (zh) 一种提高汽油辛烷值桶的催化裂化助剂及其制备方法
CN116174023A (zh) 一种多产高辛烷值汽油助剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787927

Country of ref document: EP

Kind code of ref document: A1