WO2018190688A1 - 유무기 복합 과립 및 이의 제조방법 - Google Patents

유무기 복합 과립 및 이의 제조방법 Download PDF

Info

Publication number
WO2018190688A1
WO2018190688A1 PCT/KR2018/004363 KR2018004363W WO2018190688A1 WO 2018190688 A1 WO2018190688 A1 WO 2018190688A1 KR 2018004363 W KR2018004363 W KR 2018004363W WO 2018190688 A1 WO2018190688 A1 WO 2018190688A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
inorganic
granules
inorganic composite
solution
Prior art date
Application number
PCT/KR2018/004363
Other languages
English (en)
French (fr)
Inventor
윤희숙
박홍현
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2018190688A1 publication Critical patent/WO2018190688A1/ko
Priority to US16/598,299 priority Critical patent/US11801222B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0084Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/122Pulverisation by spraying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • C08J2207/10Medical applications, e.g. biocompatible scaffolds

Definitions

  • Bioceramic which is representative of calcium phosphate, is a bioceramic alone or a ceramic-biopolymer organic-inorganic composite, and is used as a bone graft material or a bone filler in various forms such as powder, granule, paste, and support.
  • granular form since it can be easily applied to the irregular defects alone or in the form of paste, it has been variously applied in the fields of dentistry and orthopedics.
  • it is also used to adsorb various drugs to ceramic or organic-inorganic composite granules.
  • Spray drying method has the advantage of producing a large amount of granules in a short time, but has a disadvantage in that the production yield in the required size is very low due to the large size distribution of the granules.
  • the chemical reaction method has the advantage of producing a relatively uniform size granules, but the mass production is difficult and the manufacturing process has a disadvantage.
  • Korean Laid-Open Patent Publication No. 10-2010-0026910 adds calcium phosphate microspheres carrying alendronate, a osteoporosis treatment, to bone fractures caused by osteoporosis. Filling materials are disclosed. However, this is difficult to mass production in a short time by obtaining a microsphere through the sol-gel process, there is a disadvantage that the size control of the produced microsphere is not easy.
  • Korean Patent Publication No. 10-2012-0021899 discloses a method for preparing a porous organic-inorganic hybrid, specifically, a crystal comprising a step of supporting an ionic compound or a polar compound on the porous organic-inorganic hybrid.
  • a method for producing a porous, organic-inorganic hybrid cannot obtain granules having a uniform particle size, and there is a problem in mass production of granules.
  • Electrostatic spraying is a method of atomizing a liquid by an electric force (electric field).
  • Liquid droplets formed by electrospray have attracted attention as a useful nanotechnology in recent years because they have a high chargeability and have the advantage of preventing aggregation by their own dispersion.
  • the electrospray technology is expected to be applied in a variety of fields because it is possible to deposit a fine and complex structure with low-cost equipment and easy operation in the air environment.
  • the microspray coater may be exemplified as the electrospray apparatus using the electrostatic charge method.
  • Microgranular coating machine is mainly applied to organic matter. That is, it is used in the fields of pharmaceuticals, chemistry, cosmetics, foodstuffs, agriculture, etc. for the purpose of delivering active ingredients by forming granules using polymers and hydrogels and forming core-shell granules containing oils and various drugs therein. It is becoming.
  • by providing an encapsulated microgranular coating machine has been applied to the food industry by realizing the effects of aging, storage stability, blocking harmful substances.
  • it is being applied to the pharmaceutical industry by realizing effects such as release control, solubility and osmoticity improvement.
  • a raw material may have a high viscosity, or in the case of a material having good aggregation, problems such as clogging of the nozzle may occur.
  • the inventors of the present invention can produce granules of uniform size in a short time and have high content of an inorganic member (for example, a ceramic member), which is highly applicable to bone graft materials and bone fillers, and a method for preparing organic-inorganic composite granules.
  • an inorganic member for example, a ceramic member
  • the present invention was completed by studying.
  • the present invention includes an organic member and an inorganic member, the weight ratio of the inorganic member to the organic member is 1 to 10, the size is 100 to 2000 ⁇ m, and the distribution range of the size is -20% to +20 relative to the size of the granules. It provides the organic-inorganic complex granules, characterized in that the range of%, hydrogel phase.
  • the present invention comprises the steps of preparing an organic member solution; Uniformly dispersing an inorganic member having a weight ratio of 1 to 10 with respect to the organic member in the organic member solution to form an organic-inorganic composite solution; Spraying the organic-inorganic composite solution in an electrostatic charge manner; It provides a method for producing an organic-inorganic composite granules comprising a; and forming a hydrogel phase by polymerizing the sprayed organic-inorganic composite solution.
  • the organic-inorganic composite granules of the present invention have an effect of having a uniform size, and also have an effect of sustained release when supporting a functional member. In addition, there is an advantage of easy cell culture. Furthermore, the production method of the present invention can produce a large amount of organic-inorganic composite granules of uniform size in a short time, there is an advantage that can be produced in a high yield granules. Therefore, the organic-inorganic composite granules and the manufacturing method thereof according to the present invention has an advantage that can be applied to various fields, such as pharmaceutical, medical, cosmetics, food.
  • FIG. 1 is a view showing a photograph and the size and size distribution of the composite granules prepared by the embodiments of the present invention
  • the organic member included in the raw material used in the production method of the present invention has a high viscosity and the inorganic member has a very high cohesiveness, it is generally not suitable for making granules by an electrostatic charge method.
  • the granules can be prepared in an electrostatic manner by adding a step of uniformly dispersing the inorganic member in the member solution, and further, if necessary, further dispersing the inorganic member with a post-coagulation mixer and stirring with an ultrasonic mixer.
  • the size of the spray nozzle of the microgranular coater is preferably 50 ⁇ m to 1000 ⁇ m.
  • the size is less than 50 ⁇ m, it is difficult to spray the organic-inorganic composite solution including the inorganic member through the nozzle due to nozzle clogging, etc., and when the size is more than 1000 ⁇ m, the size is easily applicable to the current clinical practice. There is a problem that the production of micro-sized particles is difficult.
  • the voltage is preferably 500V to 2,500V. If the voltage is less than 500 V, uniform spraying of the sprayed solution is difficult, making it difficult to form spherical particles.
  • a dispersing agent for the dispersion of an inorganic member.
  • dispersants are used for uniform dispersion due to the cohesiveness of the inorganic member. If the dispersant is included in the granules to be produced, problems may arise, for example, in the medical, pharmaceutical, food, and cosmetic fields. Therefore, in the production method of the present invention, there is an advantage that can greatly extend the field of application of the granules to be produced, without using a dispersant.
  • stirring and dispersion are performed through a co-rotating mixer or an ultrasonic mixer.
  • the production method of the present invention in the preparation of organic-inorganic composite granules having sustained release and cell transferability, by producing the granules by the electrostatic charge method, the yield is improved, and the advantage of producing a large amount of granules in a short time have.
  • it is possible to produce a granule of uniform size has the advantage that it is easy to apply to various fields.
  • the functional member or the cell can be easily supported, there is no need to use an organic solvent or dispersant in the manufacturing process, there is an advantage that can be greatly extended to the field of application, such as medical, pharmaceutical, food, cosmetics .
  • Dispersibility increased significantly with the mixing time, but after 30 minutes of ultrasonic mixer treatment, the temperature in solution reached about 40 °C, which was high for delivering bioactive substances such as cells and proteins after treatment. May be a constraint, the treatment time of the ultrasonic mixer was limited to 30 minutes.
  • Paste mixer was used as co-rotation mixer
  • Rotational sonicator was used as ultrasonic mixer, and each was performed for 6 minutes and 15 minutes.
  • An organic-inorganic composite granule on a hydrogel was prepared in the same manner as in Example 1, except that quercetin, which is a functional member, was mixed with the organic-inorganic composite solution in an amount of 1 wt% based on the weight of the organic-inorganic composite solution.
  • the organic-inorganic composite granules on the hydrogel were prepared in the same manner as in Example 1 except that the quoscetin, which is a functional member, was mixed with the organic-inorganic composite solution in an amount of 2.5 wt% based on the weight of the organic-inorganic composite solution.
  • the organic-inorganic composite granules on the hydrogel were prepared in the same manner as in Example 1, except that quercetin, which is a functional member, was mixed with the organic-inorganic composite solution in an amount of 5 wt% based on the weight of the organic-inorganic composite solution.
  • Alginate an organic member
  • a nano-apatite which is an inorganic member
  • a co-rotating mixer and an ultrasonic mixer were used at a weight ratio of 1: 4 (organic member: inorganic member) at a weight ratio of the organic member, using a co-rotating mixer and an ultrasonic mixer. And mixed to prepare an organic-inorganic complex solution.
  • Paste mixer was used as co-rotation mixer
  • Rotational sonicator was used as ultrasonic mixer, and each was performed for 6 minutes and 15 minutes.
  • the organic-inorganic composite solution prepared above was introduced into a microgranular coating machine (Buchi, B-395 pro), sprayed with a nozzle having a diameter of 150 ⁇ m, and dropped into a CaCl 2 solution to prepare organic-inorganic composite granules on a hydrogel. . After dropping, the mixture was crosslinked in CaCl 2 solution for 30 minutes, and then washed twice with PBS. In order to measure the size, a certain amount of organic / inorganic composite granules were transferred to a petri dish to obtain an image through an optical microscope, and the size of the particles was calculated using an ImageJ program to calculate the average size of the particles.
  • Organic member An organic-inorganic composite granule was prepared in the same manner as in Example 5 except that the inorganic member was 1: 6.
  • Organic member An organic-inorganic composite granule was prepared in the same manner as in Example 5 except that the inorganic member was 1: 8.
  • Organic member An organic-inorganic composite granule was prepared in the same manner as in Example 5 except that the inorganic member was 1:10.
  • Organic-inorganic composite granules were prepared in the same manner as in Examples 5 to 8 except that a nozzle having a diameter of 200 ⁇ m was used.
  • the organic-inorganic composite granules prepared in Examples 1 to 4 were confirmed the form of the granules through an optical microscope, and the size and distribution of the size were confirmed using ImageJ software, and the results are shown in FIG. 1.
  • the organic-inorganic composite granules according to the present invention are spherical, having a size range of about 250 to about 270 ⁇ m, and having a uniform size that does not deviate from ⁇ 20%.
  • Organic member Inorganic member Theoretical weight ratio Actual weight ratio 1: 0.1 0.1 0.124 1: 0.25 0.25 0.271 1: 1 One 0.962 1: 2.5 2.5 2.796 1:10 10 7.760
  • the inorganic member content of the actually prepared organic-inorganic composite granules is almost equal to the amount of the inorganic member introduced into the raw material, and thus, no precipitation or clogging of the inorganic member occurs in the manufacturing process, and thus a high yield. It can be seen that the composite granules can be prepared.
  • the organic-inorganic complex granules prepared in Examples 1 to 4 were placed in a phosphate buffer solution (PBS), and the PBS solution was taken using the total substitution method for each time, and then the concentration of the drug was released by measuring the absorbance using the spectroscopic analysis method. The release behavior was confirmed by calculating.
  • PBS phosphate buffer solution
  • the organic-inorganic complex granules prepared in Examples 1 to 4 were placed on the transwell, and the cells were attached to the well plate surface, and then cultured together in the culture medium.
  • the quercetin-sensing organic-inorganic complex granules were removed, and the culture solution was also removed. After washing with PBS, the culture solution containing the MTS assay was applied and then left in a cell culture incubator for 2 hours. The cultures were then taken and measured for absorbance at 495 nm using a plater reader to analyze cell proliferation trends.
  • the drug is gradually released over time
  • the degree of cell proliferation is increased by the released drug.
  • the organic-inorganic complex granules of the present invention can be used for drug delivery, and specifically, for example, it can be seen that it can be used for treating osteoporosis and the like in the body.
  • the degree of cell proliferation in the first week is almost the same, but in the second week through the fact that the cell proliferation occurs more if the quercetin content, the sustained-release characteristics of the organic-inorganic complex granules according to the present invention You can check it.
  • osteoblasts (MC3T3) is introduced into the complex solution at a concentration of 1.0 X 106 cells / ml and 5.0 X 106 cells / ml, and then slowly Stirred. Thereafter, the method was sprayed in the same manner as described in Example 5, and this was added dropwise to a CaCl 2 solution to prepare an organic-inorganic composite granule on a hydrogel. Thereafter, in order to confirm whether the cells were supported in the composite granules, staining was performed using a DAPI solution capable of discriminating cell nuclei, and confirmed through a fluorescence microscope, which is shown in FIG. 4. According to Figure 4, it can be seen that cells are uniformly supported in the organic-inorganic complex granules of the present invention.
  • Inorganic-inorganic composite solution was prepared by the same method as described in Example 5.
  • the prepared organic-inorganic composite solution was mixed for 6 minutes using a magnetic stirrer and 21 minutes of mixing.
  • the prepared organic-inorganic composite solution was mixed for 6 minutes with a co-rotating mixer, followed by an ultrasonic mixer for 15 minutes. Agitation was carried out, and then stained using an Alizarin red solution, and the result was confirmed through an optical microscope.
  • FIG. 5A it can be seen that when the stirring is performed with a general magnetic stirrer, the organic member and the inorganic member are not sufficiently mixed, and the inorganic members are heavily aggregated with each other.
  • the organic-inorganic composite granules prepared in Examples 5 to 16 were confirmed the form of the granules through an optical microscope, and the size and distribution of size were confirmed using ImageJ software, and the results are shown in FIG. 6.
  • the organic-inorganic composite granules according to the present invention have a spherical shape, have a size range of about 200 to about 500 ⁇ m, and the size distribution has a uniform size that does not deviate from ⁇ 15%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Transplantation (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명의 목적은 크기가 균일한 유무기 복합 과립 및 이의 제조방법을 제공하는데 있다. 이를 위하여 본 발명은 유기 부재 및 무기 부재를 포함하고, 유기 부재에 대한 무기 부재의 중량비는 1 ~ 10 이고, 크기는 100 내지 2000 μμ㎛이고, 크기의 분포 범위는 과립의 크기에 대하여 - 20 % 내지 + 20 % 범위이고, 하이드로겔상인 것을 특징으로 하는 유무기 복합과립을 제공한다. 또한, 본 발명은 유무기 복합과립의 제조방법을 제공한다. 본 발명의 유무기 복합과립은 크기가 균일한 효과가 있고, 또한 기능성 부재를 담지했을 때 서방성을 갖는 효과가 있다. 또한, 세포 배양이 용이한 장점이 있다. 나아가, 본 발명의 제조방법은 크기가 균일한 유무기 복합과립을 짧은 시간에 대량으로 제조할 수 있으며, 높은 수율로 과립을 제조할 수 있는 장점이 있다. 따라서, 본 발명에 따른 유무기 복합과립 및 이의 제조방법은 제약 분야, 의료 분야, 화장품 분야, 식품 분야 등 다양한 분야에 적용할 수 있는 장점이 있다.

Description

유무기 복합 과립 및 이의 제조방법
본 발명은 유무기 복합 과립 및 이의 제조방법에 관한 것이다.
인산칼슘계를 대표로 하는 생체세라믹은 생체세라믹 단독 혹은 세라믹-생체고분자 유무기 복합체로 분말, 과립, 패이스트 및 지지체 등의 다양한 형태로 골이식재 혹은 골충진재 등으로 활용되고 있다. 특히, 과립형태의 경우 부정형한 결손부위에 단독 혹은 패이스트 형태로 용이하게 적용 가능하므로 치과 및 정형외과 등의 분야에서 다양하게 적용되고 있다. 더불어, 과립의 생체기능성을 높이기 위하여 세라믹 혹은 유무기 복합 과립에 다양한 약물을 흡착시켜 사용하기도 한다.
이러한 세라믹 혹은 유무기 복합 과립을 제조하기 위해서는 일반적으로 분무건조방법과 화학반응법 (에멀전, 솔젤법 등) 등이 이용되고 있다. 분무건조방법은 짧은 시간에 다량의 과립을 제조할 수 있는 장점이 있으나 과립의 크기분포가 큰 관계로 필요한 크기에서의 제조 수율이 매우 낮은 단점이 있다. 한편, 화학반응법은 비교적 균일한 크기의 과립을 제조할 수 있는 장점이 있으나 대량제조가 어렵고 제조공정이 복잡한 단점을 가지고 있다.
서방형 골다공증치료제를 담지한 골충진재와 관련하여 한국공개특허 제10-2010-0026910호는 인체탈회골에 골다공증 치료제인 alendronate가 담지된 인산칼슘 마이크로스피어를 첨가하여 골다공증으로 인한 골절환자에게 사용하는 골충진재를 개시하였다. 다만, 이는 졸겔 공정을 통해 마이크로스피어를 획득하여 단시간내 대량생산이 어려우며, 생산되는 마이크로스피어의 크기 제어가 용이하지 않은 단점이 있다.
또한, 한국공개특허 제10-2012-0021899호는 다공성 유무기 혼성체를 제조하는 방법을 개시하고 있고, 구체적으로는 다공성 유무기 혼성체에 이온성 화합물 또는 극성 화합물을 담지시키는 단계를 포함하는 결정성의 다공성 유무기 혼성체의 제조방법을 개시하고 있다. 그러나, 상기 기술로는 균일한 입자 크기를 갖는 과립을 얻을 수 없고, 과립을 대량생산하는데 문제가 있다.
정전하 방식의 전기분무란 전기적인 힘(전기장)에 의해 액체를 분무화하는 방법이다. 전기분무에 의해 형성되는 액체방울은 높은 대전성을 가지므로 자체적인 분산에 의해 응집을 방지할 수 있는 이점이 있기 때문에 최근 유용한 나노기술로서 주목되고 있다. 특히, 전기분무 기술은 대기환경에서 저렴한 장비와 간편한 조작으로 미세하고 복잡한 구조의 퇴적이 가능하기 때문에 다양한 분야에서의 응용이 기대되고 있다.
전술한 바와 같이 정전하 방식을 이용한 전기분무장치로 미세과립코팅기를 예로 들 수 있다. 미세과립코팅기는 주로 유기물에 적용된다. 즉, 고분자 및 수화겔을 이용하여 과립을 만들고 내부에 오일이나 각종 약물 등을 포함하는 코어-쉘 과립을 형성하는 것으로써 유효성분의 전달목적으로 제약, 화학, 화장품, 식료품, 농업 등의 분야에서 응용되고 있다. 특히, 캡슐화가 가능한 미세과립코팅기를 제공하여 숙성 향상, 저장 안정성, 유해물질 차단 등의 효과를 구현하여 식료품 산업에 적용하고 있다. 또한, 방출 제어, 용해도 및 삼투성 향상 등의 효과를 구현하여 의약 산업에 적용하고 있다. 또한, 생체내 검사에서 다양한 효과를 구현하며 바이오-의약 산업에 적용하고 있다. 다만, 미세과립코팅기를 과립을 제조하는 경우, 원료물질이 점도가 높거나, 또는 응집을 잘하는 물질의 경우, 노즐 막힘 등의 문제가 발생할 수 있다.
이에 본 발명의 발명자들은 균일한 크기의 과립을 짧은 시간에 제조가능하고 무기 부재(예를 들어, 세라믹 부재)의 함량이 높여 골이식재 및 골충진재로서의 활용 가능성이 높은 유무기 복합과립 및 이의 제조방법을 연구하여 본 발명을 완성하였다.
<선행기술문헌>
한국공개특허 제 10-2010-0026910호
한국공개특허 제10-2012-0021899호
본 발명의 목적은 크기가 균일하고, 무기물을 포함하는 유무기 복합 과립 및 이의 제조방법을 제공하는데 있다.
이를 위하여
본 발명은 유기 부재 및 무기 부재를 포함하고, 유기 부재에 대한 무기 부재의 중량비는 1 ~ 10 이고, 크기는 100 내지 2000 μm이고, 크기의 분포 범위는 과립의 크기에 대하여 - 20 % 내지 + 20 % 범위이고, 하이드로겔상인 것을 특징으로 하는 유무기 복합과립을 제공한다.
또한, 본 발명은 유기 부재 용액을 제조하는 단계; 상기 유기 부재 용액에 중량비로 유기 부재 대비 1 내지 10의 무기 부재를 균일하게 분산시켜 유무기 복합 용액을 형성하는 단계; 상기 유무기 복합 용액을 정전하 방식으로 분사하는 단계; 및 상기 분사되는 유무기 복합 용액을 중합하여 하이드로겔상을 형성하는 단계;를 포함하는 것을 특징으로 하는 유무기 복합과립의 제조방법을 제공한다.
본 발명의 유무기 복합과립은 크기가 균일한 효과가 있고, 또한 기능성 부재를 담지했을 때 서방성을 갖는 효과가 있다. 또한, 세포 배양이 용이한 장점이 있다. 나아가, 본 발명의 제조방법은 크기가 균일한 유무기 복합과립을 짧은 시간에 대량으로 제조할 수 있으며, 높은 수율로 과립을 제조할 수 있는 장점이 있다. 따라서, 본 발명에 따른 유무기 복합과립 및 이의 제조방법은 제약 분야, 의료 분야, 화장품 분야, 식품 분야 등 다양한 분야에 적용할 수 있는 장점이 있다.
도 1은 본 발명의 실시예들에 의하여 제조된 복합과립의 사진과 크기 및 크기 분포를 보여주는 도면이고,
도 2는 본 발명의 실시예들에 의하여 제조된 복합과립의 약물 방출 특성을 보여주는 도면이고,
도 3은 본 발명의 실시예들에 의하여 제조된 복합과립에 의한 세포 증식 거동을 보여주는 그래프이고,
도 4는 본 발명의 실시예들에 의하여 제조된 복합과립의 세포 전달 능력을 보여주는 사진이고,
도 5는 혼합 방법에 따른 유기 부재 내 무기 부재의 분산정도를 보여주고 있는 사진이고, 및
도 6은 본 발명의 실시예들에 의하여 제조된 유무기 복합 과립의 형상, 크기 및 크기 분포를 보여주는 사진 및 그래프이다.
이하, 첨부된 도면들에 기재된 내용들을 참조하여 본 발명을 상세히 설명한다. 다만, 본 발명이 예시적 실시 예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일 참조부호는 실질적으로 동일한 기능을 수행하는 부재를 나타낸다.
본 발명의 목적 및 효과는 하기의 설명에 의해서 자연스럽게 이해되거나 보다 분명해 질 수 있으며, 하기의 기재만으로 본 발명의 목적 및 효과가 제한되는 것은 아니다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이, 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다.
본 발명에서 '크기'란 대상이 구형인 경우 직경을 의미하고, 타원형인 경우에는 장축의 길이를 의미한다.
본 발명은
유기 부재 및 무기 부재를 포함하고,
유기 부재에 대한 무기 부재의 중량비는 1 ~ 10 이고,
크기는 100 내지 2000 μm이고,
크기의 분포 범위는 과립의 크기에 대하여 - 20 % 내지 + 20 % 범위이고,
하이드로겔상인 것을 특징으로 하는 유무기 복합과립을 제공한다. 이하 본 발명에 따른 유무기 복합과립을 각 구성별로 구체적으로 설명한다.
본 발명에 따른 유무기 복합과립은 유기 부재 및 무기 부재를 포함한다. 이때 유기 부재는 자연 생체 고분자 또는 합성 생체 고분자일 수 있으며, 구체적으로는 알지네이트(alginate), 콜라겐, 젤라틴, 키토산, 셀룰로스, 하이알우로네이트 및 생체 고분자 중 적어도 하나일 수 있으며, 이들을 적절히 조합한 것일 수 있다. 또한, 본 발명의 무기 부재는 세라믹 부재일 수 있고, 구체적으로는 인산칼슘, 생체유리계, 알루미나계, 지르코니아계 및 이들의 복합체 중 어느 하나일 수 있다. 상기 인산칼슘계는 하이드록시아파타이트(HA: hydroxy apatite), 제이인산칼슘(DCP: dicalcium phosphate), 제삼인산칼슘(TCP: tricalcium phosphate), 제사인산칼슘(TTCP: tetracalcium phosphate) 및 제8인산칼슘(OCP: octacalcium phosphate) 중 어느 하나일 수 있으나 이에 제한하지 않는다.
본 발명에 따른 유무기 복합과립은 무기 부재가 유기 부재에 균일하게 분산된 구조를 가짐으로써 복합과립의 크기가 균일해 질 수 있고, 또한 추가되는 기능성 부재의 서방성, 세포의 효과적인 배양 등, 유무기 복합과립의 효용성을 크게 향상시키는 효과가 있다.
구체적으로 유기 부재 또는 무기 부재만으로 과립을 제조하는 경우, 과립의 속방성 때문에 기능성 부재의 담체로서 기능을 수행하기 어려운 문제점이 있다. 또한, 무기 부재만으로 과립을 제조하는 경우, 이에 더하여 과립 상에 세포를 배양하거나 전달할 수 없어, 예를 들어 의료 분야에 적용하는데 한계가 있는 문제점이 있다. 본 발명에 따른 유무기 복합과립은 기능성 부재를 담지했을 때 서방성의 특성을 갖고, 또한 세포의 배양 및 전달을 가능하게 하여 적용 분야를 크게 확장할 수 있는 장점이 있다.
이때, 본 발명의 유무기 복합과립은 유기 부재에 대한 무기 부재의 중량비가 1 ~ 10 이고, 5 ~ 10 인 것이 바람직하다. 본 발명은 이와 같이 과립 내 무기 부재의 함량을 많이 포함시킴으로써, 과립의 서방성을 더욱 향상시키는 장점이 있고, 또한, 과립이 골충진재 등으로 사용하는 경우, 골 형성 성분을 상대적으로 다량으로 포함하고 있게 되는 장점이 있다. 예를 들어, 무기 부재의 중량비가 1 미만인 경우에는 과립의 서방성을 향상시키는 효과가 미비할 수 있고, 또한 골충진재 등으로 사용되는 경우 골 형성 성분이 부족해지는 문제점이 있을 수 있다. 또한, 무기 부재의 중량비가 10을 초과하는 경우에는 무기 부재의 응집 등의 문제로 균일한 특성을 갖는 과립을 형성하기가 어려워질 수 있다.
본 발명에 따른 유무기 복합과립은 크기가 100 내지 2000 μm이고, 크기의 분포 범위가 과립의 크기에 대하여 -20 % 내지 + 20 %의 범위이다. 본 발명에 따른 유무기 복합과립은 상기와 같은 크기 범위와 크기의 분포 범위를 가짐으로써, 과립의 규격 안정성이 우수하여 다양한 적용분야에 대한 적용 용이성이 매우 뛰어난 장점이 있다.
또한, 본 발명에 따른 유무기 복합과립은 하이드로겔상이다. 이에 따라 본 발명의 복합과립은 단순 고상의 과립과 비교하여 세포, 약물, 단백질 등 생리활성 물질을 전달하기에 유리하다. 또한, 세포의 생존능을 유지하고 인체 내에 전달하기 유리하고, 단순 고상의 과립보다 더 높은 약물 등의 담지 효율을 기대할 수 있다. 또한, 하이드로겔상인 본 발명의 유무기 복합과립은 단순 고상의 과립과 비교하여, 약물 방출 거동을 서방성으로 조절/제어하기에 유리한 장점이 있다. 단순 고상의 과립은 약물 또는 단백질을 담지하기 위해 고상의 과립 표면에 흡착시켜 전달하게 된다. 이는 전달 후 약물 또는 단백질이 담지된 표면이 전달하고자 하는 부분에 직접 노출되기 때문에 초기 과량이 방출되는 현상이 존재하며, 그 후 긴 기간동안의 방출거동을 제어하기 어렵다. 반면, 하이드로겔 상의 복합과립의 경우 약물 등이 담지된 무기 부재가 하이드로겔 내에 담지되어 전달되기 때문에 초기 과량 방출 현상을 낮출 수 있으며 하이드로겔의 물리/화학적 특성을 이용하여 방출거동을 조절할 수 있다. 그리고, 하이드로겔 상의 복합 과립의 경우 세포 또는 약물을 하이드로겔 내에 담아 전달할 수 있기 때문에 두가지 기능성 약물 또는 성장인자와 같은 단백질을 동시에 전달할 수 있고 이들의 순차적 방출거동을 구현할 수도 있다. 또한, 고상의 과립은 인체 내에 전달하기 위해서는 전달하고자 하는 부위를 외부로 노출시키는 외과적 수술을 통해서 전달하거나 하이드로겔 상의 다른 전달체와 혼합하여 주사기로 전달하여야 하지만, 하이드로겔 상의 복합과립은 그 자체를 비침습적 방법을 통해 전달 할 수 있는 장점이 있다.
본 발명에 따른 유무기 복합과립은 기능성 부재 또는 세포를 더 포함할 수 있다. 이때 기능성 부재는 유무기 복합과립에 담지되어 전달되는 대상으로 비스포스포네이트계 약물, 또는 폴리페놀계 천연유래 물질 등일 수 있다.
보다 구체적으로, 기능성 부재는 골흡수 억제제로 사용되는 비스포스포네이트계 약물인 알렌드로네이트(alendronate), 리세드로네이트(risedronate), 에티드로네이트(etidronate), 클로드로네이트(clodronate), 네리드로네이트(neridronate), 이반드로네이트(ibandronate), 졸레드로네이트(zoledronate) 및 올파드로네이트(olpadronate)로 이루어지는 군으로부터 선택되는 1종 이상의 물질을 포함할 수 있다.
또한, 기능성 부재는 폴리페놀계 천연유래 물질인 쿼세틴(Quercetein), 제네스테인(Genistein), 커규민(Curcumin), 사우로락탐(Saurolactam), 사우치논(Sauchinone), 바이카린(Baicalin), 다이드제인(Daidzein), 루틴(Rutin), 안토시아니딘(Anthocyanidin), 피세틴(Fisetin), 이카린(Icariin), 캠퍼롤(Kaempferol), 코리아눔 나케이(E. Koreanum Nakei) 및 이쿠올(Equol)로 이루어지는 군으로부터 선택되는 1종 이상의 물질을 포함할 수 있다.
기능성 부재는 상기 물질에 제한되지 않으며, 필요한 기능성에 따라 선택하여 적용할 수 있다.
기능성 부재는 유기물질 또는 무기물질일 수 있다. 특히, 세포, 조직, 호르몬 및 골형성 촉진제로 골조직의 생성을 유도할 수 있는 BMP 등의 성장인자 등이 기능성 부재에 포함되어 체내에서 타겟 세포에 대해 기능성 부재의 방출이 발생함에 따라 골형성을 촉진할 수 있다.
본 발명에 따른 유무기 복합과립이 세포를 포함하는 경우는 예를 들어, 본 발명의 유무기 복합과립 상에 줄기 세포를 배양한 후, 이를 체내로 전달하는 경우에 적용될 수 있다.
본 발명에 따른 유무기 복합과립은 분산제를 포함하지 않을 수 있다. 본 발명에 따른 유무기 복합과립은 제약분야, 의료분야, 화장품분야 또는 식품분야 등에 사용될 수 있고, 이 경우, 분산제와 같은 화학물질을 포함하는 경우 적용에 제한이 있을 수 있다. 이를 고려하여, 본 발명에 따른 유무기 복합과립은 특히 상기 분야 등에 사용되는 경우에는 분산제를 포함하지 않을 수 있다. 구체적인 본발명에 따른 유무기 복합과립의 적용예로는 골충진재, 골이식재 및 필러를 들 수 있다. 해면골(spongy bone) 기공에 담지되어 골형성 촉진 등을 유도하는 골충진재, 미용 및 성형용 필러소재 및 미세플라스틱 소재가 사용되고 있는 분야에서 대체되어 사용될 수 있다.
또한 본 발명은
유기 부재 용액을 제조하는 단계;
상기 유기 부재 용액에 중량비로 유기 부재 대비 1 내지 10의 무기 부재를 균일하게 분산시켜 유무기 복합 용액을 형성하는 단계;
상기 유무기 복합 용액을 정전하 방식으로 분사하는 단계; 및
상기 분사되는 유무기 복합 용액을 중합하여 하이드로겔상을 형성하는 단계;
를 포함하는 것을 특징으로 하는 유무기 복합과립의 제조방법을 제공한다.
이하 본 발명의 제조방법을 각 단계별로 상세히 설명한다.
본 발명의 제조방법은 유기 부재 용액을 제조하는 단계를 포함한다. 이때 유기 부재는 자연 생체 고분자 또는 합성 생체 고분자일 수 있으며, 구체적으로는 알지네이트(alginate), 콜라겐, 젤라틴, 키토산, 셀룰로스, 하이알우로네이트 및 생체 고분자 중 적어도 하나일 수 있으며, 이들을 적절히 조합한 것일 수 있다. 상기 유기 부재를 예를 들어 인산염완충식염수(phosphate buffer saline)에 녹여 유기 부재 용액을 제조한다. 또는 물, 글리세린, 지질 오일 등에 녹여 분산시킬 수 있다.
이때 본 발명의 제조방법 중 유기 부재 용액을 제조하는 단계에서는 유기용매를 사용하지 않는 것이 바람직하다. 제조과정에서 유기용매를 사용하는 경우, 세포독성 등의 문제로, 그 결과물을 의료 분야 등에 사용하는데 한계가 발생할 수 있다. 따라서, 본 발명의 제조방법에서는 유기용매를 사용하지 않음으로써 본 발명에 따른 복합과립을 제약, 의료, 식품, 또는 화장품 분야에 적용함에 있어 발생할 수 있는 문제점을 제거할 수 있다.
다음으로, 본 발명의 제조방법은 상기 유기 부재 용액에 중량비로 유기 부재 대비 1 내지 10의 무기 부재를 균일하게 분산시켜 유무기 복합용액을 형성하는 단계를 포함한다.
상기 단계에서 분산되는 무기 부재는 세라믹 부재일 수 있고, 구체적으로는 인산칼슘, 생체유리계, 알루미나계, 지르코니아계 및 이들의 복합체 중 어느 하나일 수 있다. 상기 인산칼슘계는 하이드록시아파타이트(HA: hydroxy apatite), 제이인산칼슘(DCP: dicalcium phosphate), 제삼인산칼슘(TCP: tricalcium phosphate), 제사인산칼슘(TTCP: tetracalcium phosphate) 및 제8인산칼슘(OCP: octacalcium phosphate) 중 어느 하나일 수 있으나 이에 제한하지 않는다.
이때, 본 발명의 제조방법에서 분산되는 무기 부재는 기능성 부재를 포함할 수 있다. 기능성 부재는 흡착 등 다양한 방법으로 무기 부재에 포함될 수 있으며, 구체적인 기능성 부재는 상기한 바와 같이, 비스포스포네이트계 약물, 또는 폴리페놀계 천연유래 물질 등일 수 있다.
본 발명의 제조방법은 상기 유기 부재 용액에 중량비로 유기 부재 대비 1 내지 10의 무기 부재를 도입하고, 5 내지 10의 중량비로 도입하는 것이 바람직하다. 본 발명은 이와 같이 복합 용액 내에 무기 부재의 함량을 많이 포함시킴으로써, 과립의 서방성을 더욱 향상시키는 장점이 있고, 또한, 과립이 골충진재 등으로 사용하는 경우, 골 형성 성분을 상대적으로 다량으로 포함하고 있게 되는 장점이 있다. 예를 들어, 무기 부재의 중량비가 1 미만인 경우에는 과립의 서방성을 향상시키는 효과가 미비할 수 있고, 또한 골충진재 등으로 사용되는 경우 골 형성 성분이 부족해지는 문제점이 있을 수 있다. 또한, 무기 부재의 중량비가 10을 초과하는 경우에는 무기 부재의 응집 노즐 막힘 등의 문제로 과립을 형성하는 단계에서 문제가 발생하여 균일한 특성을 갖는 과립을 형성하기가 어려워질 수 있다.
한편, 무기 부재는 응집성이 강하고, 분산성이 매우 낮기 때문에 유기 부재 용액에 무기 부재를 균일하게 분산시키면서 도입하는 것이 반드시 필요하다. 예를 들어, 본 발명의 제조방법은 이와 같은 분산을 위하여 상기와 같이 유무기 복합 용액을 형성한 후, 공자전 믹서로 무기 부재를 분산시키고, 초음파 믹서로 교반하는 단계를 더 포함하는 것이 바람직하다.
이하 기재와 같이, 본 발명의 제조방법은 정전하 방식으로 분사하여 과립을 형성한다. 정전하 방식은 상대적으로 균일한 크기의 과립을 제조할 수 있는 장점이 있으나, 공정 과정 중 노즐이 막혀 과립 제조가 불가능하게 되는 문제가 발생할 수 있다. 특히, 본 발명과 같이 응집성이 매우 높은 무기 부재를 포함하는 유무기 복합 용액을 원료로 사용하는 경우, 원료 물질 중 무기 부재의 응집에 의하여 노즐이 매우 쉽게 막혀버리기 때문에, 무기 부재가 포함된 원료를 정전하 방식으로 분사하여 과립을 만드는 것을 고려하기는 쉽지 않다.
본 발명에서는 이와 같은 문제점을 해결하기 위하여, 정전하 방식 분사의 원료물질로 형성된 유무기 복합 용액을 상기한 바와 같이 공자전 믹서로 무기 부재를 분산시키고, 초음파 믹서로 교반하는 단계를 더 포함시키는 것이 바람직하다. 이와 같은 과정을 통하여 노즐이 막히는 것을 방지하고, 균일한 물성을 갖는 과립을 제조할 수 있게 된다.
다만, 공자전 믹서 및 초음파 믹서를 사용할 때, 지나치게 장시간 사용하는 경우 복합 용액 자체의 온도가 크게 올라가게 되고, 이는 복합 용액에 기능성 부재 또는 세포가 포함되는 경우에 문제가 될 수 있다. 즉, 복합 용액의 온도가 지나치게 올라가면 이에 포함될 수 있는 약물의 특성이 변하거나, 세포가 사멸할 수 있는 문제점이 있다. 이와 같은 점을 고려하여 공자전 믹서와 초음파 믹서를 사용한 혼합은 복합 용액의 온도가 40 ℃를 초과하지 않는 범위 내에서 수행되는 것이 바람직하고, 예를 들어 공자전 믹서는 6 분 이내로, 초음파 믹서는 30분 이내로 수행될 수 있다.
한편, 본 발명의 제조방법에서 형성되는 유무기 복합 용액에 기능성 부재 또는 세포를 담지하는 단계를 더 포함할 수 있다. 상기한 바와 같이 기능성 부재는 무기 부재에 포함된 상태에서 유기 부재 용액에 혼합될 수도 있고, 유무기 복합 용액을 제조한 이후에 포함될 수도 있다. 이처럼 유무기 복합 용액이 기능성 부재 또는 세포를 담지하는 경우, 상기한 바와 같이 공자전 믹서 또는 초음파 믹서를 사용할 때 담지된 기능성 부재 또는 세포에 악영향을 주지 않도록 공정 조건을 조절할 필요가 있다.
다음으로 본 발명의 제조방법은 유무기 복합 용액을 정전하 방식으로 분사하는 단계를 포함하며, 예를 들어 정전하 방식의 분사는 미세과립코팅기로 수행될 수 있다. 정전하 방식으로 과립을 제조하는 경우, 도입되는 원료 대부분을 과립으로 전환할 수 있어 수율이 뛰어나고, 짧은 시간에 다량의 과립을 제조할 수 있으며, 상대적으로 균일한 크기로 과립을 제조할 수 있는 장점이 있다. 다만, 원료가 점도가 높거나 응집도가 높은 경우 노즐이 막힐 수 있는 문제점이 있다. 본 발명의 제조방법에서 사용되는 원료에 포함되는 유기 부재가 점도가 높고, 무기 부재는 응집도가 매우 높아 일반적으로는 정전하 방식으로 과립을 만들기에 적절하지 않으나, 유무기 복합 용액을 형성할 때 유기 부재 용액에 무기 부재를 균일하게 분산시키고, 또한 필요한 경우 추가적으로 후 공자전 믹서로 무기 부재를 분산시키고, 초음파 믹서로 교반하는 단계를 추가함으로써, 정전하 방식으로 과립을 제조할 수 있다.
상기 단계가 미세과립코팅기로 수행되는 경우, 미세과립코팅기의 분사노즐의 크기는 50 μm 내지 1000 μm인 것이 바람직하다. 상기 크기가 50 μm 미만인 경우에는 무기 부재를 포함하는 유무기 복합 용액을 노즐 막힘 등의 문제로 노즐을 통해 분사하기 힘든 문제점이 있고, 1000 μm를 초과하는 경우에는 현재 임상에 적용하기 용이한 크기의 마이크로 크기의 입자 제조가 힘든 문제점이 있다. 또한, 전압은 500 V 내지 2,500 V인 것이 바람직하다. 상기 전압이 500 V 미만인 경우에는 분사되는 용액의 균일한 분사가 어려워 구형의 입자를 만들기 어려운 문제점이 있고, 2,500 V를 초과하는 경우에는 분사 후 구형으로 형성된 용액이 과도하게 펴진 형태로 분사되어 높은 수율로 과립을 제조하기 어려운 문제점이 있다. 또한, 압력은 100 mbar 내지 1500 mbar인 것이 바람직하다. 상기 압력이 100 mbar 미만인 경우에는 잦은 노즐 막힘이 원인이 되고 노즐을 통과한 용액이 과하게 넓게 퍼져 나오는 문제점이 있고, 1500 mbar를 초과하는 경우에는 구형으로 형성된 용액이 중합유도 용액(예를 들어, CaCl2 용액)에 적하될 시에 필요 이상의 큰 힘이 가해져 구형의 과립을 형성하기 어려운 문제점이 있다. 나아가, 진동 주파수는 100 Hz 내지 6,000 Hz인 것이 바람직하다. 상기 진동 주파수가 6,000 Hz를 초과하는 경우에는 꼬리가 달린 형태의 구형 과립이 형성되는 문제점이 있다.
본 발명에 따른 제조방법은 상기 방법으로 분사되는 유무기 복합 용액을 중합하여 하이드로겔상을 형성하는 단계를 포함한다. 중합 방법은 이온가교, 화학적가교, 광가교 중 어느 하나의 방법에 의해 수행될 수 있다. 이중 이온가교는 염화칼슘(CaCl2), 황산칼슘(CaSO4), 탄산칼슘(CaCO3) 중 적어도 하나의 중합유도 물질을 사용하여 수행될 수 있으며, 구체적으로 이 단계는 예를 들어 분사되는 유무기 복합 용액을 CaCl2 중합유도 용액으로 적하시키는 방법으로 수행될 수 있다. 본 발명의 제조방법에 따르면, 과립이 단순 고형이 아니라 하이드로겔상으로 형성되기 때문에 단순 고상의 과립과 비교하여 세포, 약물, 단백질 등 생리활성 물질을 전달하기에 유리하다. 또한, 세포의 생존능을 유지하고 인체 내에 전달하기 유리하고, 단순 고상의 과립보다 더 높은 약물 등의 담지 효율을 기대할 수 있다. 또한, 하이드로겔상인 본 발명의 유무기 복합과립은 단순 고상의 과립과 비교하여, 약물 방출 거동을 서방성으로 조절/제어하기에 유리한 장점이 있다. 단순 고상의 과립은 약물 또는 단백질을 담지하기 위해 고상의 과립 표면에 흡착시켜 전달하게 된다. 이는 전달 후 약물 또는 단백질이 담지된 표면이 전달하고자 하는 부분에 직접 노출되기 때문에 초기 과량이 방출되는 현상이 존재하며, 그 후 긴 기간동안의 방출거동을 제어하기 어렵다. 반면, 하이드로겔 상의 복합과립의 경우 약물 등이 담지된 무기 부재가 하이드로겔 내에 담지되어 전달되기 때문에 초기 과량 방출 현상을 낮출 수 있으며 하이드로겔의 물리/화학적 특성을 이용하여 방출거동을 조절할 수 있다. 그리고, 하이드로겔 상의 복합 과립의 경우 세포 또는 약물을 하이드로겔 내에 담아 전달할 수 있기 때문에 두가지 기능성 약물 또는 성장인자와 같은 단백질을 동시에 전달할 수 있고 이들의 순차적 방출거동을 구현할 수도 있다. 또한, 고상의 과립은 인체 내에 전달하기 위해서는 전달하고자 하는 부위를 외부로 노출시키는 외과적 수술을 통해서 전달하거나 하이드로겔 상의 다른 전달체와 혼합하여 주사기로 전달하여야 하지만, 하이드로겔 상의 복합과립은 그 자체를 비침습적 방법을 통해 전달 할 수 있는 장점이 있다.
본 발명의 제조방법에서 사용되는 유기 부재 용액의 농도는 0.5 내지 2.0 중량%인 것이 바람직하다. 만약 상기 농도가 0.5 중량% 미만인 경우에는 유기 부재의 농도가 너무 낮아 충분한 가교 밀도를 이루지 못해 제조된 과립의 충분한 기계적 물성을 유지하기 힘든 문제점이 있고, 2.0 중량%를 초과하는 경우에는 농도가 너무 높아 높은 점도의 용액이 형성되어 균일하게 복합 용액을 분산하기 힘들며, 분사 장비를 이용해 균일한 구형의 액적을 형성하기 힘든 문제점이 있다.
또한, 본 발명의 제조방법에서 사용되는 무기 부재의 크기는 50 nm 내지 50 μm의 범위인 것이 바람직하다. 만약 상기 크기가 50 nm 미만인 경우에는 무기 부재(예를 들어, 세라믹 분말)의 표면적이 증가하여 유기 부재(예를 들어, 알지네이트 용액) 내 고르게 분산시키는게 어려울 수 있으며, 하이드로겔 내부 기공을 통해 외부로 배출될 가능성이 존재하며, 또한, 세포가 담지되는 경우, 세포의 이물 흡수(endocytosis) 역시 무시할 수 없는 등의 문제점이 있고, 50 μm를 초과하는 경우에는 마이크로 크기의 노즐을 통과하기 어려워 입자 제조가 어려운 문제점이 있다.
본 발명의 제조방법에서는 무기 부재의 분산을 위하여 분산제를 사용하지 않는 것이 바람직하다. 일반적으로 무기 부재의 응집성때문에 균일 분산을 위하여 분산제를 사용하게 되는데 제조되는 과립에 분산제가 포함되는 경우 예를 들어, 의료, 제약, 식품, 화장품 분야에 적용함에 문제가 발생할 수 있다. 따라서, 본 발명의 제조방법에서는 분산제를 사용하지 않아, 제조되는 과립의 적용분야를 크게 확장시킬 수 있는 장점이 있다. 본 발명의 제조방법에서는 분산제를 사용하지 않는 대신, 무기 부재의 균일 분산을 위하여 공자전 믹서, 또는 초음파 믹서를 통하여 교반 및 분산을 수행한다.
본 발명의 제조방법에 따르면, 서방성과 세포 전달성을 갖는 유무기 복합 과립을 제조함에 있어, 정전하 방식으로 과립을 제조하여 수율이 향상되고, 짧은 시간에 다량으로 과립을 제조할 수 있는 장점이 있다. 또한, 균일한 크기의 과립을 제조할 수 있어 다양한 분야에 적용하기에 용이한 장점이 있다. 또한, 기능성 부재 또는 세포를 용이하게 담지할 수 있고, 제조 과정에서 유기용매나 분산제를 사용할 필요가 없어, 의료, 제약, 식품, 화장품 분야 등 다양한 분야로 적용분야를 크게 확장할 수 있는 장점이 있다.
이하 본 발명을 실시예, 비교예, 및 실험예를 바탕으로 보다 구체적으로 설명한다. 이하의 실시예, 비교예, 및 실험예는 본 발명을 설명하는 내용일 뿐, 이하의 내용에 의하여 본 발명의 권리범위가 한정되에 해석되는 것은 아니다.
이하의 실시예에서는 유무기 복합 과립을 제조함에 있어 정전하 방식을 이용하여 마이크로 크기의 노즐을 이용하여 제조할 경우 무기 부재를 유기 용액내 균일하게 분산시키는 공정이 가장 중요하기에, 공자전 믹서와 초음파 믹서를 이용하여 최대한 분산시켜 유무기 복합 과립을 제조하였다. 공자전 믹서의 시간을 증가시켜도 분산도가 크게 향상되지 않았고, 유기물을 이용하는 만큼 열에 의한 변성 우려가 있어 6분이하로 고정하여 사용하였다. 그 후, 초음파 믹서를 이용해 혼합하였다. 혼합 시간에 따라 분산도가 크게 증가함을 보였으나, 초음파 믹서 처리 시간이 30분을 경과하면 용액내 온도가 약 40 ℃에 도달하기에, 처리 후 세포 및 단백질 등 생리활성 물질을 전달하는데 높은 온도가 제약이 될 수 있어, 초음파 믹서의 처리 시간은 30분 이내로 한정하여 사용하였다.
<실시예 1>
유기 부재인 알지네이트를 3차 증류수에 녹여 1.0 중량% 알지네이트 용액을 제조하고, 이에 무기 부재인 나노 아파타이트를 유기 부재 대비 중량비로 1:1(유기 부재:무기 부재)로 공자전 믹서와 초음파 믹서를 이용하여 혼합하여 유무기 복합 용액을 제조하였다. 이때 공자전 믹서로는 Paste mixer를 사용하였고, 초음파 믹서로는 Rotational sonicator를 사용하였고, 각각은 6분, 15분 동안 수행되었다.
상기 제조된 유무기 복합 용액을 미세과립코팅기(Buchi 사, B-395 pro)에 도입하여 150 μm 직경의 노즐로 분사하고, 이를 CaCl2 용액에 적하하여 하이드로겔 상의 유무기 복합과립을 제조하였다. 적하 후 30 분 동안 CaCl2 용액 내에서 가교 시킨 후 PBS로 2회 세척하였다. 그리고 크기 측정을 위해 일정량의 유/무기 복합 과립을 페트리디쉬로 옮겨 광학현미경을 통해 이미지를 얻었으며, 입자의 크기는 ImageJ 프로그램을 이용해 분석 후 입자의 평균 크기를 계산하였다.
<실시예 2>
유무기 복합 용액에 기능성 부재인 쿼세틴을 유무기 복합 용액 중량 대비 1 중량%를 혼합한 것을 제외하고는 실시예 1과 동일한 방법으로 하이드로겔 상의 유무기 복합 과립을 제조하였다.
<실시예 3>
유무기 복합 용액에 기능성 부재인 쿼세틴을 유무기 복합 용액 중량 대비 2.5 중량%를 혼합한 것을 제외하고는 실시예 1과 동일한 방법으로 하이드로겔 상의 유무기 복합 과립을 제조하였다.
<실시예 4>
유무기 복합 용액에 기능성 부재인 쿼세틴을 유무기 복합 용액 중량 대비 5 중량%를 혼합한 것을 제외하고는 실시예 1과 동일한 방법으로 하이드로겔 상의 유무기 복합 과립을 제조하였다.
<실시예 5>
유기 부재인 알지네이트를 3차 증류수에 녹여 1.0 중량% 알지네이트 용액을 제조하고, 이에 무기 부재인 나노 아파타이트를 유기 부재 대비 중량비로 1:4(유기 부재:무기 부재)로 공자전 믹서와 초음파 믹서를 이용하여 혼합하여 유무기 복합 용액을 제조하였다. 이때 공자전 믹서로는 Paste mixer를 사용하였고, 초음파 믹서로는 Rotational sonicator를 사용하였고, 각각은 6분, 15분 동안 수행되었다.
상기 제조된 유무기 복합 용액을 미세과립코팅기(Buchi 사, B-395 pro)에 도입하여 직경이 150 ㎛인 노즐로 분사하고, 이를 CaCl2 용액에 적하하여 하이드로겔 상의 유무기 복합과립을 제조하였다. 적하 후 30 분 동안 CaCl2 용액 내에서 가교 시킨 후 PBS로 2회 세척하였다. 그리고 크기 측정을 위해 일정량의 유/무기 복합 과립을 페트리디쉬로 옮겨 광학현미경을 통해 이미지를 얻었으며, 입자의 크기는 ImageJ 프로그램을 이용해 분석 후 입자의 평균 크기를 계산하였다.
<실시예 6>
유기 부재:무기 부재를 1:6으로 한 것을 제외하고는 실시예 5와 동일한 방법으로 유무기 복합과립을 제조하였다.
<실시예 7>
유기 부재:무기 부재를 1:8으로 한 것을 제외하고는 실시예 5와 동일한 방법으로 유무기 복합과립을 제조하였다.
<실시예 8>
유기 부재:무기 부재를 1:10으로 한 것을 제외하고는 실시예 5와 동일한 방법으로 유무기 복합과립을 제조하였다.
<실시예 9 내지 12>
직경이 120 μm인 노즐을 사용한 것을 제외하고는 상기 실시예 5 내지 8과 동일한 방법으로 유무기 복합과립을 제조하였다.
<실시예 13 내지 16>
직경이 200 μm인 노즐을 사용한 것을 제외하고는 상기 실시예 5 내지 8과 동일한 방법으로 유무기 복합과립을 제조하였다.
<비교예 1>
무기 부재인 나노 아파타이트를 유기 부재 대비 중량비로 1:20(유기 부재:무기 부재)를 혼합한 것을 제외하고는 실시예 1과 동일한 방법으로 유무기 복합과립을 제조하기 위하여 실험을 수행하였다.
그러나, 공정 중에 미세과립코팅기의 노즐 막힘이 심각하게 발생하였고, 제조된 과립 내 세라믹 함량이 이론 함량 대비 크게 떨어져, 균일한 과립을 생산하는 것이 불가능하고, 이에 따라 생산 수율이 현저히 떨어지는 것을 확인하였다.
<실험예 1>
복합 과립 크기의 확인
본 발명에 따라 제조된 유무기 복합과립의 크기 및 크기 분포를 확인하기 위하여 다음과 같은 실험을 수행하였다.
상기 실시예 1 내지 실시예 4에서 제조된 유무기 복합과립을 광학현미경를 통하여 과립의 형태를 확인하고, ImageJ 소프트웨어를 이용해 각각의 크기 및 크기의 분포를 확인하였고 그 결과를 도 1에 나타내었다.
도 1에 따르면, 본 발명에 따른 유무기 복합과립은 구형이고, 약 250 내지 약 270 μm 크기 범위이며, 크기의 분포는 ±20%를 벗어나지 않는 균일한 크기를 갖는다는 것을 확인할 수 있다.
<실험예 2>
무기 부재의 담지량 확인
제조된 유무기 복합과립의 무기 부재 담지량을 확인하기 위하여 다음과 같은 실험을 수행하였다.
유기 부재와 무기 부재의 함량을 다음의 표 1과 같이 조절한 것을 제외하고는 실시예 1과 동일한 방법으로 제조된 유무기 복합과립에 대하여 실제 유기 부재와 무기 부재의 중량비를 측정하였고, 그 결과를 다음의 표 1에 나타내었다.
유기 부재:무기 부재 이론 중량비 실제 중량비
1:0.1 0.1 0.124
1:0.25 0.25 0.271
1:1 1 0.962
1:2.5 2.5 2.796
1:10 10 7.760
상기 표 1에 따르면 실제 제조되는 유무기 복합과립의 무기 부재 함량이 원료물질로 도입되는 무기 부재의 양과 거의 일치하고, 이를 통하여 제조과정에서 무기 부재의 침전 또는 노즐 막힘 등이 발생하지 않고, 높은 수율로 복합 과립을 제조할 수 있음을 알 수 있다.
<실험예 3>
약물 서방성 확인
본 발명의 유무기 복합과립의 약물 서방성을 확인하기 위하여 다음과 같은 실험을 수행하였다.
MC3T3 조골세포 상에 도 2b와 같이 본 발명의 실시예 1 내지 4에서 제조된 유무기 복합과립을 위치시키고, 시간에 따른 약물의 방출량과, 시간에 따른 세포의 증식 정도를 측정하고, 이를 각각 도 2a 및 도 2c에 나타내었다.
실시예 1 내지 4에서 제조된 유무기 복합과립을 인산완충용액(PBS)에 넣고 각 시간별로 PBS 용액을 전체치환 방법을 이용하여 취한 후 분광학 분석 방법을 이용하여 흡광도 측정을 통해 약물의 방출된 농도를 계산하여 방출 거동을 확인하였다.
또한, 실시예 1 내지 4에서 제조된 유무기 복합과립을 트랜스웰 위에 위치시키고, 웰플레이트 표면에 세포를 부착한 후, 배양액 내에서 함께 배양하였다. 세포의 증식 정도를 정량하기 위하여, 쿼세틴 감지 유무기 복합과립을 제거한 뒤, 배양액 역시 제거하였다. PBS로 세척 후, MTS 분석액이 포함된 배양액을 적용 후, 세포 배양 인큐베이터 내에서 2 시간동안 놓아 두었다. 그 후 배양액을 취해 플레이터 리더기를 이용해 495 nm에서 흡광도를 측정해 세포 증식 경향을 분석하였다.
도 2a에 따르면, 시간이 지남에 따라 약물이 서서히 방출되고 있는 것을 확인할 수 있고, 또한, 도 2c에 따르면, 방출된 약물에 의하여 세포 증식 정도가 증가하고 있는 것을 확인할 수 있다. 이를 통하여 실제로 본 발명의 유무기 복합 과립이 약물 전달을 위하여 사용될 수 있으며, 구체적으로는 예를 들어 체내에서 골다공증 등을 치료하는 용도로 사용될 수 있음을 알 수 있다.
<실험예 4>
세포 배양성을 통하여 약물 서방성 확인
본 발명의 유무기 복합과립의 세포 배양성을 확인하기 위하여 다음과 같은 실험을 수행하였다.
본 발명의 실시예 1 내지 4에서 제조된 각 농도별 쿼세틴을 함유한 유무기 복합과립에 대하여 트랜스웰을 이용하여 전달하고, 복합과립에서 방출된 쿼세틴에 대한 세포 증식 및 골분화 거동을 분석하는 방법으로 조골세포(MC3T3) 세포를 배양하고, Cell Lysis 방법을 통하여, 배양된 세포의 뼈 분화 정도는 이의 대표 인자인 ALP activity로 확인하고, 또한 DNA 정량을 수행하였으며, 그 결과를 각각 도 3a 및 도 3b에 나타내었다.
도 3에 따르면, 1주차의 경우 세포 증식 정도가 거의 비슷하나, 2주차에서는 쿼세틴 함량이 많은 경우 세포 증식이 더 많이 일어난다는 점을 통하여, 실제 본 발명에 따른 유무기 복합과립의 서방성 특성을 확인할 수 있다.
<실험예 5>
유무기 과립의 세포 담지 확인
상기 실시예 5에 기재된 방법과 동일한 방법으로 유무기 복합 용액을 제조한 후, 조골세포(MC3T3)를 1.0 X 106 cells/ml와 5.0 X 106 cells/ml의 농도로 복합 용액에 도입한 후, 천천히 교반하였다. 그 후, 실시예 5에 기재된 방법과 동일한 방법으로 분사하고, 이를 CaCl2 용액에 적하하여 하이드로겔 상의 유무기 복합과립을 제조하였다. 이후, 세포가 복합 과립 내에 담지 되었는지를 확인하기 위하여, 세포핵을 판별할 수 있는 DAPI 용액을 이용해 염색을 하고, 형광 현미경을 통해 확인하였고, 이를 도 4에 나타내었다. 도 4에 따르면, 본 발명의 유무기 복합 과립 내에 세포가 균일하게 담지되어 있음을 확인할 수 있다.
<실험예 6>
혼합 방법에 따른 균일 분산도 확인
유기 부재와 무기 부재의 혼합에 있어 혼합 방법에 따른 유무기 복합 용액의 균일 분산 정도를 확인하기 위하여 이하와 같은 실험을 수행하였다.
상기 실시예 5에 기재된 방법과 동일한 방법으로 유무기 복합 용액을 제조하였다. 제조된 유무기 복합 용액에 대하여 자기 교반기를 이용하여 6분 혼합, 21분 혼합을 수행하였고, 다른 한편으로는 제조된 유무기 복합 용액에 대하여 6분간 공자전 믹서로 혼합하고, 이어서 15분간 초음파 믹서로 교반을 수행하였고, 그 후 Alizarin red 용액을 이용하여 염색하여, 그 결과를 광학 현미경을 통하여 확인하였다. 그 결과를 도 5에 나타내었다. 도 5a를 보면, 일반 자기 교반기로 교반을 수행하는 경우 유기 부재와 무기 부재가 충분히 혼합되지 않고, 무기 부재는 서로 심하게 응집되어 있는 것을 확인할 수 있다. 또한, 일반 자기 교반기로 교반하는 경우에는 시간이 지날수록 응집 현상이 더욱 심해지고 있는 것을 확인할 수 있다. 반면, 도 5b를 보면 공자전 믹서와 초음파 믹서를 사용하여 혼합하는 경우에는 유기 부재와 무기 부재가 균일하게 혼합되어 무기 부재가 유기 부재 상에 균일하게 분산되는 것을 확인할 수 있다.
<실험예 7>
복합 과립 크기의 확인
본 발명에 따라 제조된 유무기 복합과립의 크기 및 크기 분포를 확인하기 위하여 다음과 같은 실험을 수행하였다.
상기 실시예 5 내지 실시예 16에서 제조된 유무기 복합과립을 광학현미경를 통하여 과립의 형태를 확인하고, ImageJ 소프트웨어를 이용해 각각의 크기 및 크기의 분포를 확인하였고 그 결과를 도 6에 나타내었다.
도 6에 따르면, 본 발명에 따른 유무기 복합과립은 구형이고, 약 200 내지 약 500 μm 크기 범위이며, 크기의 분포는 ±15%를 벗어나지 않는 균일한 크기를 갖는다는 것을 확인할 수 있다.

Claims (19)

  1. 유기 부재 및 무기 부재를 포함하고,
    유기 부재에 대한 무기 부재의 중량비는 1 ~ 10 이고,
    크기는 100 내지 2000 μm이고,
    크기의 분포 범위는 과립의 크기에 대하여 - 20 % 내지 + 20 % 범위이고,
    하이드로겔상인 것을 특징으로 하는 유무기 복합과립.
  2. 제1항에 있어서,
    상기 유기 부재에 대한 무기 부재의 중량비는 5 ~ 10 인 것을 특징으로 하는 유무기 복합과립.
  3. 제1항에 있어서.
    상기 유무기 복합과립은 기능성 부재 또는 세포를 더 포함하는 것을 특징으로 하는 유무기 복합과립.
  4. 제1항에 있어서,
    상기 유기 부재는 자연 생체 고분자 또는 합성 생체 고분자인 것을 특징으로 하는 유무기 복합과립.
  5. 제1항에 있어서,
    상기 무기 부재는 세라믹 부재인 것을 특징으로 하는 유무기 복합과립.
  6. 제3항에 있어서,
    상기 기능성 부재는 비스포네이트계 약물, 폴리페놀계 천연유래 물질 및 이들의 조합을 포함하는 것을 특징으로 하는 유무기 복합과립.
  7. 제1항에 있어서,
    상기 유무기 복합과립은 제약분야, 의료분야, 화장품분야 및 식품분야로 이루어진 군으로부터 선택되는 1종의 분야에 사용되는 것을 특징으로 하는 유무기 복합과립.
  8. 제1항에 있어서,
    분산제를 포함하지 않는 것을 특징으로 하는 유무기 복합과립.
  9. 유기 부재 용액을 제조하는 단계;
    상기 유기 부재 용액에 중량비로 유기 부재 대비 1 내지 10의 무기 부재를 균일하게 분산시켜 유무기 복합 용액을 형성하는 단계;
    상기 유무기 복합 용액을 정전하 방식으로 분사하는 단계; 및
    상기 분사되는 유무기 복합 용액을 중합하여 하이드로겔상을 형성하는 단계;
    를 포함하는 것을 특징으로 하는 유무기 복합과립의 제조방법.
  10. 제9항에 있어서,
    상기 유기 부재 용액에 분산되는 무기 부재는 중량비로 유기 부재 대비 5 내지 10인 것을 특징으로 하는 유무기 복합과립의 제조방법.
  11. 제9항에 있어서,
    상기 유무기 복합 용액을 형성한 후 공자전 믹서로 무기 부재를 분산시키고, 초음파 믹서로 교반하는 단계를 더 포함하는 것을 특징으로 하는 유무기 복합과립의 제조방법.
  12. 제9항에 있어서,
    상기 유무기 복합 용액을 중합하는 단계는 분사되는 과립을 중합유도 용액으로 적하시키는 방법으로 수행되는 것을 특징으로 하는 유무기 복합과립의 제조방법.
  13. 제9항에 있어서,
    상기 무기 부재는 기능성 부재를 포함하는 것을 특징으로 하는 유무기 복합과립의 제조방법.
  14. 제9항에 있어서,
    상기 형성된 유무기 복합 용액에 기능성 부재 또는 세포를 담지하는 단계를 더 포함하는 것을 특징으로 하는 유무기 복합 과립의 제조방법.
  15. 제9항에 있어서,
    상기 유기 부재 용액의 농도는 0.5 내지 5 중량%인 것을 특징으로 하는 유무기 복합 과립의 제조방법.
  16. 제9항에 있어서,
    상기 무기 부재의 크기는 20 nm 내지 10 μm인 것을 특징으로 하는 유무기 복합 과립의 제조방법.
  17. 제11항에 있어서,
    상기 공자전 믹서로 무기 부재를 분산시키고, 초음파 믹서로 교반하는 단계는 유무기 복합 용액의 온도가 40 ℃를 초과하지 않는 범위에서 수행되는 것을 특징으로 하는 유무기 복합 과립의 제조방법.
  18. 제9항에 있어서,
    상기 유무기 복합 용액을 정전하 방식으로 분사하는 단계는 미세과립코팅기에 의하여 수행될 수 있고,
    상기 미세과립코팅기의 분사노즐의 크기는 50 내지 1,000 μm의 범위이고, 전압은 500 내지 2,500 V의 범위이고, 압력은 100 내지 1,500 mbar의 범위이고, 진동 주파수는 100 내지 6,000 Hz의 범위인 것을 특징으로 하는 유무기 복합 과립의 제조방법.
  19. 제9항에 있어서,
    상기 유무기 복합겔은 분산제를 포함하지 않는 것을 특징으로 하는 유무기 복합 과립의 제조방법.
PCT/KR2018/004363 2017-04-14 2018-04-13 유무기 복합 과립 및 이의 제조방법 WO2018190688A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/598,299 US11801222B2 (en) 2017-04-14 2019-10-10 Manufacturing method for granule

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0048463 2017-04-14
KR20170048463 2017-04-14

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004362 Continuation-In-Part WO2018190687A1 (ko) 2017-04-14 2018-04-13 구형 세라믹 과립의 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/598,299 Continuation-In-Part US11801222B2 (en) 2017-04-14 2019-10-10 Manufacturing method for granule

Publications (1)

Publication Number Publication Date
WO2018190688A1 true WO2018190688A1 (ko) 2018-10-18

Family

ID=63793578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004363 WO2018190688A1 (ko) 2017-04-14 2018-04-13 유무기 복합 과립 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR102227720B1 (ko)
WO (1) WO2018190688A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639467A (en) * 1992-05-29 1997-06-17 The Regents Of The University Of California Electrostatic process for manufacturing coated transplants and product
US20050170012A1 (en) * 2001-03-02 2005-08-04 Stryker Corporation Porous beta-tricalcium phosphate granules for regeneration of bone tissue
KR20140007546A (ko) * 2012-07-09 2014-01-20 주식회사 메가젠임플란트 인산칼슘계 다공성 골 대체재의 제조 방법 및 이에 의하여 제조된 인산칼슘계 다공성 골 대체재
KR20160122657A (ko) * 2015-04-13 2016-10-24 서울대학교산학협력단 이중가교된 생분해성 고분자 하이드로겔-인산칼슘 복합체 및 이의 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101115964B1 (ko) 2008-08-29 2012-02-21 한스바이오메드 주식회사 서방형 골다공증치료제를 담지한 골충진재
KR101178204B1 (ko) * 2009-06-24 2012-08-30 단국대학교 산학협력단 다공성 마이크로스피어 및 이의 제조방법
CN101991593A (zh) * 2009-08-14 2011-03-30 张景元 槲皮苷在制药中的应用
KR20120021899A (ko) 2010-08-20 2012-03-09 한국화학연구원 다공성 유무기 혼성체, 그의 제조 방법, 그를 포함하는 흡착제 및 그의 응용
KR101299629B1 (ko) * 2011-04-12 2013-08-23 주식회사 바이오알파 성장인자 단백질을 담지한 마이크로스피어-하이드로겔 복합체의 제조방법
KR101647183B1 (ko) * 2014-03-04 2016-08-11 단국대학교 천안캠퍼스 산학협력단 치료약물 및 세포전달용 마이크로입자 및 이의 제조방법
KR101892731B1 (ko) * 2017-08-07 2018-08-29 한국기계연구원 구형 세라믹 과립 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639467A (en) * 1992-05-29 1997-06-17 The Regents Of The University Of California Electrostatic process for manufacturing coated transplants and product
US20050170012A1 (en) * 2001-03-02 2005-08-04 Stryker Corporation Porous beta-tricalcium phosphate granules for regeneration of bone tissue
KR20140007546A (ko) * 2012-07-09 2014-01-20 주식회사 메가젠임플란트 인산칼슘계 다공성 골 대체재의 제조 방법 및 이에 의하여 제조된 인산칼슘계 다공성 골 대체재
KR20160122657A (ko) * 2015-04-13 2016-10-24 서울대학교산학협력단 이중가교된 생분해성 고분자 하이드로겔-인산칼슘 복합체 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NEMETHOV A ET AL.: "Vibration technology for microencapsulation: the restrictive role of viscosity", BIOPROCESSING & BIOTECHNIQUES, vol. 5, no. 1, 1 May 2015 (2015-05-01), pages 199 - 201, XP055559413, Retrieved from the Internet <URL:doi:10.4172/2155-9821.1000199> *

Also Published As

Publication number Publication date
KR102227720B1 (ko) 2021-03-16
KR20180116162A (ko) 2018-10-24

Similar Documents

Publication Publication Date Title
WO2016209062A1 (en) Two-component bioink, 3d biomaterial comprising the same and method for preparing the same
Gentile et al. Composite scaffolds for controlled drug release: Role of the polyurethane nanoparticles on the physical properties and cell behaviour
Luginbuehl et al. Insulin-like growth factor i—releasing alginate-tricalciumphosphate composites for bone regeneration
US9889234B2 (en) Scaffold for hard tissue regeneration containing active ingredient for treating osteoporosis and preparing method thereof
Kim et al. Microspheres of collagen-apatite nanocomposites with osteogenic potential for tissue engineering
EP0314109A2 (en) Biodegradable collagen compositions for treatment of skin wounds
WO2018030612A1 (ko) 연부조직 질환의 예방 또는 치료용 다공성 고분자 마이크로스피어 및 이의 제조방법
CN1653112A (zh) 带有内部分布的沉积物的聚合物复合物
Dolci et al. Modulation of Alendronate release from a calcium phosphate bone cement: An in vitro osteoblast-osteoclast co-culture study
WO2014092239A1 (ko) 콜라겐과 피브린이 혼합된 조직 실란트 및 그 제조방법
WO2023027401A1 (ko) 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법
WO2016043547A1 (ko) 조직 수복용 조성물 및 이의 제조방법
Gaihre et al. Thermoresponsive injectable microparticle–gel composites with recombinant BMP-9 and VEGF enhance bone formation in rats
US20100143439A1 (en) Hybrid Biomimetic Particles, Methods of Making Same and Uses Therefor
KR101892731B1 (ko) 구형 세라믹 과립 및 이의 제조방법
WO2013103183A1 (ko) 조직공학용 다공성 스캐폴드 및 이의 제조방법
WO2018190688A1 (ko) 유무기 복합 과립 및 이의 제조방법
Li et al. Strontium and simvastatin dual loaded hydroxyapatite microsphere reinforced poly (ε-caprolactone) scaffolds promote vascularized bone regeneration
WO2011090255A2 (ko) 고주입성 칼슘계 골시멘트 조성물
von Boxberg et al. Macrophage polarization in vitro and in vivo modified by contact with fragmented chitosan hydrogel
WO2013012132A1 (ko) 인산 칼슘 시멘트의 다공성 스캐폴드 제조방법
Zhang et al. Controlled release of NELL-1 protein from chitosan/hydroxyapatite-modified TCP particles
Qin et al. Construction of a BMP‐2 gene delivery system for polyetheretherketone bone implant material and its effect on bone formation in vitro
WO2021040249A1 (ko) 유공충 유래의 골 이식재
SE510491C2 (sv) Cement för medicinskt bruk samt framställning och användning av cementet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18784272

Country of ref document: EP

Kind code of ref document: A1