WO2018190405A1 - FeNi ORDERED ALLOY, FeNi ORDERED ALLOY MAGNET, AND METHOD FOR MANUFACTURING FeNi ORDERED ALLOY - Google Patents

FeNi ORDERED ALLOY, FeNi ORDERED ALLOY MAGNET, AND METHOD FOR MANUFACTURING FeNi ORDERED ALLOY Download PDF

Info

Publication number
WO2018190405A1
WO2018190405A1 PCT/JP2018/015436 JP2018015436W WO2018190405A1 WO 2018190405 A1 WO2018190405 A1 WO 2018190405A1 JP 2018015436 W JP2018015436 W JP 2018015436W WO 2018190405 A1 WO2018190405 A1 WO 2018190405A1
Authority
WO
WIPO (PCT)
Prior art keywords
feni
alloy
ordered alloy
feni ordered
treatment
Prior art date
Application number
PCT/JP2018/015436
Other languages
French (fr)
Japanese (ja)
Inventor
翔 後藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112018002014.2T priority Critical patent/DE112018002014T5/en
Priority to CN201880024767.4A priority patent/CN110506313B/en
Publication of WO2018190405A1 publication Critical patent/WO2018190405A1/en
Priority to US16/574,514 priority patent/US11427895B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/08Extraction of nitrogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/068Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder having a L10 crystallographic structure, e.g. [Co,Fe][Pt,Pd] (nano)particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • L1 0 type FeNi ordered alloy having an L1 0 type ordered structure
  • FeNi ordered alloy magnet which is constructed by using such a L1 0 type FeNi ordered alloy
  • L1 0 type (Eruwanzero type) of FeNi (iron - nickel) ordered alloy is expected as a magnet material and magnetic recording material uses no rare earth and precious metals.
  • the L1 0 type ordered structure is a crystal structure in which Fe and Ni are arranged in layers in the (001) direction based on a face-centered cubic lattice.
  • Such L1 0 ordered structure is, FePt, FePd, seen in alloys such AuCu, usually, a disordered alloy rules - heat treatment at below disorder transition temperature t [lambda, obtained by prompting diffusion.
  • the transition temperature T ⁇ to obtain L1 0 type FeNi ordered alloy is 320 ° C. and cold, it is difficult at this temperature following synthesizing only the heat treatment for diffusion is very slow. Therefore, conventionally, various attempts to synthesize the L1 0 type FeNi ordered alloy have been made.
  • MBE molecular beam epitaxy
  • the present disclosure aims to provide an FeNi ordered alloy that can be used also as a magnet material and a magnetic recording material, and to provide an FeNi ordered alloy magnet constituted by using the FeNi ordered alloy.
  • FeNi ordered alloy of the first aspect of the present disclosure includes an L1 0 type ordered structure, the average degree of order of the overall material is 0.4 or more and a coercive force 87.5kA / m or more and Has been.
  • a FeNi ordered alloy having a degree of order of 0.4 or more and a coercive force of 87.5 kA / m or more
  • a FeNi ordered alloy that can also be used as a magnet material or a magnetic recording material is obtained.
  • an FeNi ordered alloy magnet can be obtained using such an FeNi ordered alloy.
  • a nitriding process for nitriding the FeNi disordered alloy (100) and a denitrification process for removing nitrogen from the nitridated FeNi disordered alloy are performed.
  • L1 0 type FeNi ordered alloy is 87.5kA / m or more
  • the treatment temperature is 300 ° C. or more and 500 ° C. or less, and the treatment time is 10 hours or more.
  • the method of manufacturing such a FeNi ordered alloy, the overall average degree of order of 0.4 or more materials, and the L1 0 type FeNi ordered alloy coercivity is 87.5kA / m or more, easily Can be synthesized.
  • the method comprising synthesizing the compound of Fe and Ni are aligned in the same lattice structure as the L1 0 type FeNi ordered structure, Fe and Ni from compound anda generating an L1 0 type FeNi ordered alloy by removing unnecessary elements other than, by combining the compound, the process temperature of 200 ° C. or higher 500 ° C. or less, the treatment time over 10 hours
  • FeNiN as an intermediate product is synthesized as a compound by nitriding the FeNi disordered alloy.
  • Degree of order S is a diagram showing a simulation result of X-ray diffraction pattern of the L1 0 type FeNi ordered alloy is 1. It is a figure which shows the simulation result of the X-ray diffraction pattern of a FeNi disordered alloy. It is a figure which shows the measurement result of the X-ray-diffraction pattern of the FeNi ordered alloy in comparative example S0, S2, S3. It is a figure which shows the measurement result of the X-ray-diffraction pattern of the FeNi ordered alloy in comparative example S1, S3. It is a figure which shows the measurement result of the X-ray-diffraction pattern of the FeNi ordered alloy in comparative example S3, S4, S5.
  • Degree of order S is a diagram showing an X-ray diffraction pattern of the powder of L1 0 type FeNi ordered alloy when it is 1. It is the graph which showed the relationship between the regularity S and diffraction intensity ratio. Is a graph showing measurement results of X-ray diffraction pattern of the L1 0 type FeNi ordered alloy manufactured by the manufacturing method of the second embodiment.
  • L1 0 type FeNi ordered alloy according to the present embodiment i.e. FeNi superlattice is intended to be applied to a magnetic material such as magnetic materials and magnetic recording materials, in the degree of order S is 0.4 or more, the coercive force Hc Is as large as 87.5 kA / m or more and has excellent magnetic properties.
  • the degree of order S indicates the degree of ordering in the FeNi superlattice.
  • L1 0 ordered structure is a basic structure of the face-centered cubic lattice has a lattice structure as shown in FIG.
  • the uppermost layer in the [001] plane laminated structure of the face-centered cubic lattice is the I site
  • the intermediate layer located between the uppermost layer and the lowermost layer is the II site.
  • the ratio of the presence of metal A at the I site is x and the ratio of the presence of metal B is 1-x
  • the ratio of the presence of metal A and metal B at the I site is expressed as A x B 1-x.
  • the ratio of the presence of metal B at the II site is x and the ratio of the presence of metal A is 1-x
  • the ratio of the presence of metal A and metal B at the II site is expressed as A 1-x B x.
  • x satisfies 0.5 ⁇ x ⁇ 1.
  • the white and black ones indicate that Ni is 50% and Fe is 50%.
  • the regularity S expressed in this way is, for example, biased toward Ni serving as metal A at the I site and biased toward Fe serving as metal B at the II site, and the overall average regularity S as in the present embodiment.
  • the degree of order S needs to be high on average throughout the material, and good magnetic properties cannot be obtained even if the value is locally high.
  • the regularity S needs to be equal to or higher than a predetermined value in all the lattices of the face-centered cubic lattice formed by the L1 0 type regular structure, and the regularity S is locally high in some lattices. Even if the apparent regularity S is the same, the magnetic properties are not improved. For this reason, even if it is a locally high value, the average average regularity S here is not included in 0.4 or more.
  • the coercive force Hc is obtained as the strength of the magnetic field when a magnetic field is applied to the obtained FeNi ordered alloy and the magnetization direction of the FeNi ordered alloy is switched by the influence of the magnetic field.
  • FIG. 3A it has a bottomed cylindrical container portion 1a having an inner diameter of 2 mm and a height of 7 mm, and a columnar rod-like portion 1b having an outer diameter of 2 mm and a height of 15 mm.
  • a sample holder 1 is prepared. Then, as shown in (b) of FIG. 3, while 10 mg of FeNi ordered alloy particles are filled in the container 1a, as shown in (c) of FIG. 3, from the opening side of the container 1a.
  • the FeNi ordered alloy is pressed by the rod-like portion 1 b of another sample holder 1.
  • the sample 2 whose shape is fixed in a cylindrical shape in the container portion 1a is created.
  • a sufficiently large magnetic field is applied to the FeNi ordered alloy sample 2 to bring it to a saturation state where the magnetization of the sample 2 does not increase any more.
  • a magnetic field in the opposite direction to the previous one is applied, and the timing at which the magnetization of the sample 2 becomes zero is detected.
  • the strength of the magnetic field at that time is defined as a coercive force Hc.
  • Hc coercive force
  • the FeNi ordered alloy has a degree of order S of 0.4 or more and a coercive force Hc of 87.5 kA / m or more. It was also found that the coercive force Hc of the FeNi ordered alloy depends on the grain size of the FeNi ordered alloy and the manufacturing method. In order to obtain a higher coercive force Hc, it is desirable to make the grain size and manufacturing method of the FeNi ordered alloy more suitable as described later.
  • Such L1 0 type FeNi ordered alloy for example, after the nitriding process of nitriding the FeNi disordered alloy, by performing a denitrification treatment for removing nitrogen from nitriding treated FeNi disordered alloy, obtained It is done.
  • An irregular alloy is an alloy in which the arrangement of atoms is random without regularity.
  • a powder sample of an FeNi disordered alloy produced by a thermal plasma method, a flame spray method, or a coprecipitation method is processed under the nitriding conditions and the denitrifying conditions shown in FIG. is there. Then, the alloy after these processes, subjected to X-ray diffraction measurement, is obtained by evaluating whether L1 0 ordered structure is formed.
  • the composition ratio is the atomic weight ratio of Fe: Ni, and the particle diameter is the volume average particle diameter (unit: nm). It is shown. Moreover, about the nitriding treatment condition and the denitrification treatment condition, the treatment temperature (unit: ° C.) and the treatment time (unit: h) are shown.
  • Nitriding treatment and denitrification treatment are performed using, for example, a manufacturing apparatus shown in FIG.
  • the manufacturing apparatus includes a tubular furnace 10 as a heating furnace heated by a heater 11 and a glove box 20 for installing a sample in the tubular furnace 10.
  • this manufacturing apparatus switches Ar (argon) as a purge gas, NH 3 (ammonia) for nitriding treatment, and H 2 (hydrogen) for denitrification treatment, and switches the tube.
  • Ar argon
  • NH 3 ammonia
  • H 2 hydrogen
  • the manufacturing method of this embodiment using such a manufacturing apparatus is as follows. First, a powder sample of the FeNi disordered alloy 100 is placed in the tubular furnace 10. In the nitriding treatment, NH 3 gas is introduced into the tubular furnace 10 to make the inside of the tubular furnace 10 an NH 3 atmosphere, and the FeNi disordered alloy is heated and nitrided at a predetermined temperature for a predetermined time.
  • H 2 gas is introduced into the heating furnace to make the inside of the tubular furnace 10 into an H 2 atmosphere, and the FeNi disordered alloy that has been nitrided at a predetermined temperature for a predetermined time is heated to remove nitrogen.
  • Hc in average degree of order S of the whole material is 0.4 or more, and, L1 0 type FeNi ordered alloy coercive force Hc is 87.5kA / m or more is obtained.
  • Comparative Example S1 the same FeNi disordered alloy as in Comparative Example S0 was used, nitriding was performed at 300 ° C. for 4 hours, denitrification was not performed, and evaluation was performed by X-ray diffraction.
  • Comparative Example S2 the same FeNi disordered alloy as in Comparative Example S0 was used, nitriding was not performed, denitrification was performed at 300 ° C. for 4 hours, and evaluation was performed by X-ray diffraction.
  • Comparative Example S3 the same FeNi disordered alloy as in Comparative Example S0 was used, subjected to nitriding treatment at 300 ° C. for 4 hours, denitrification treatment at 300 ° C. for 4 hours, and evaluated by X-ray diffraction.
  • Comparative Example S4 a FeNi disordered alloy produced by the flame spray method was used, and nitriding treatment and denitrogenating treatment were performed in the same manner as in Comparative Example S3, and evaluated by X-ray diffraction.
  • Comparative Example S5 a FeNi disordered alloy produced by a coprecipitation method was used, and nitriding treatment and denitrification treatment were performed in the same manner as in Comparative Example S3, and evaluation was performed by X-ray diffraction.
  • Comparative Examples S6, S7, S8, and S9 were performed in the same manner as Comparative Example S3, except that the nitriding treatment temperature was changed to 325 ° C, 350 ° C, 400 ° C, and 500 ° C. Further, in Comparative Examples S10, S11, S12, S13, S14, S15, and S16, the denitrification treatment temperature was changed to 150 ° C., 200 ° C., 250 ° C., 350 ° C., 400 ° C., 450 ° C., and 500 ° C. Except for this, the same procedure as in Comparative Example S3 was performed.
  • Comparative Example S17 Examples S18, S19, S20, S21, S22, S23, and S24, those having a volume average particle diameter of 30 nm to 140 nm were used, and the nitriding treatment was performed at a temperature of 300 ° C. for 50 hours for a long time. Nitrogen treatment is performed at 300 ° C. for 1 hour. The other conditions are the same as in Comparative Example S3.
  • the basic diffraction P2 appears, but the superlattice diffraction P1 does not appear. 6 and 7, the X-ray is assumed to be an Fe k ⁇ ray (wavelength: 1.7565365).
  • the estimate of the order parameter S were based on the method described in Patent Document 1. Estimates of the order parameter S can be estimated by estimated expression rules of S in L1 0 type FeNi ordered alloy shown in Equation 1 below.
  • Equation 1 “I sup ” is the integrated intensity of the peak of the superlattice diffraction P1 and “I fund ” is the integrated intensity of the peak of the basic diffraction P2. “(I sup / I fund ) obs ” is a ratio between the integrated intensity of the superlattice diffraction P1 and the integrated intensity of the basic diffraction P2 in the X-ray diffraction patterns measured in the examples and comparative examples. “(I sup / I fund ) cal ” is a ratio between the integrated intensity of the superlattice diffraction P1 and the integrated intensity of the basic diffraction P2 in the X-ray diffraction pattern of FIG. Then, as shown in Equation 1, the square root of both ratios is obtained as the regularity S.
  • FIGS. 8, 9, 10, and 11 For each of the examples and comparative examples, some of typical examples of measured X-ray diffraction patterns are shown in FIGS. 8, 9, 10, and 11.
  • FIG. Together it explained whether L1 0 type FeNi ordered alloy on the basis of the X-ray diffraction pattern is obtained, a description will be given of the relationship between the degree of order S and coercivity Hc.
  • the degree of order S is 0 because Comparative Examples S0 and S2 are not FeNi ordered alloys, and the coercive force Hc is 10.2 kA / m and 4.0 kA, respectively. The value was as small as / m.
  • Comparative Example S3 the regularity S was a relatively large value of 0.52, but the coercive force Hc could not be as large as 33.3 kA / m.
  • Comparative Example S3 in which both nitriding treatment and denitrification treatment were performed, peaks of superlattice diffraction P1 at 28 ° and 40 ° clearly appear. This superlattice diffraction P1 did not appear in Comparative Example S1 where no treatment was performed.
  • the peak marked with a black circle in Comparative Example S1 appears at a position different from superlattice diffraction P1, but this is FeNi nitride, not superlattice diffraction P1.
  • Comparative Example S1 is a nitride of FeNi that is subjected to nitriding treatment but not denitrifying treatment. As shown in FIG. 4, in Comparative Example S1, since the FeNi ordered alloy was not used, the degree of order was 0 and the coercive force Hc was a small value of 4.0 kA / m.
  • Comparative Examples S3, S4, and S5 are different from each other in the preparation method of the powder sample of FeNi disordered alloy and the volume average particle diameter, but in both cases, it exceeds 28 ° and 40 °.
  • the peak of the grating diffraction P1 appears clearly.
  • the difference in volume average particle diameter can be easily confirmed by observation with an electron microscope. In this way, by performing the nitriding treatment and denitrification treatment in a sample preparation method and the particle size is different, it can be produced L1 0 type FeNi ordered alloy.
  • FIG. 10 Comparative Examples S3, S4, and S5 are different from each other in the preparation method of the powder sample of FeNi disordered alloy and the volume average particle diameter, but in both cases, it exceeds 28 ° and 40 °.
  • the peak of the grating diffraction P1 appears clearly.
  • the difference in volume average particle diameter can be easily confirmed by observation with an electron microscope. In this way, by performing the nitriding treatment and denitrification
  • Example S21 the method for preparing the FeNi disordered alloy powder sample was substantially the same as Comparative Example S3, the nitriding time was 50 hours, and the denitrification time was 1 hour. Is. In Example S21, peaks of the superlattice diffraction P1 at 28 ° and 40 ° clearly appear. The volume average particle diameter is also relatively large at 140 nm. On the other hand, as shown in FIG. 4, the regularity S of Example S21 is a large value of 0.64, and the coercive force Hc is a large value of 150.6 kA / m. .
  • Comparative Examples S3 ⁇ S17 by performing the nitriding treatment and denitrification treatment, it is possible to produce the L1 0 type FeNi ordered alloy.
  • a certain degree of order S can be obtained, but a sufficient value cannot be obtained for the coercive force Hc.
  • too temperature of denitrification is low as in Comparative Example S10, when the temperature of the denitrification as in Comparative Example S15, S16 is too high, that the production of L1 0 type FeNi ordered alloy The degree of order S was 0 and the coercive force Hc was small.
  • FIG. 12 shows the relationship between the regularity S and the denitrification treatment temperature for the same sample and the comparative examples S6 and S10 to S16 subjected to the nitridation treatment except for the denitrification treatment temperature.
  • the treatment temperature for the denitrification treatment is preferably 250 ° C. or more and 400 ° C. or less.
  • the degree of order S was achieved to be 0.4 or more.
  • the regularity S is 0.5 or more, which is larger.
  • the degree of order S was 0.4 or more in Comparative Example S17 and Examples S18 to S24 in which the treatment temperature of the denitrification treatment was 250 ° C. or more and 400 ° C. or less. .
  • the denitrification treatment time may be as short as one hour or less.
  • Comparative Examples S3, S4, S6 to S9, S12 to S14, S17 and Examples S18 to S24 in FIG. 4 it is desirable whether it is performed for 4 hours or 1 hour.
  • the degree of regularity S can be obtained.
  • the coercive force Hc could be 87.5 kA / m or more even if the denitrification time was short.
  • the coercive force Hc may not exceed 87.5 kA / m regardless of the time of denitrification. From these, it was confirmed that from the viewpoint of the degree of order S and the coercive force Hc, the time for the denitrification treatment may be short if the denitrification treatment can be performed to produce the FeNi ordered alloy. .
  • the results shown in FIG. 4 indicate that the nitriding treatment temperature is preferably 300 ° C. or more and 500 ° C. or less.
  • the nitriding treatment temperature is in the range of 300 ° C. or more and 500 ° C. or less, the FeNi ordered alloy is obtained in any case. It was. For this reason, it can be said that an FeNi ordered alloy can be obtained within this temperature range.
  • the nitriding treatment time was not sufficient if it was short. That is, as in the comparative examples S12 to S14 in FIG. 4, when the processing temperature of nitriding is 325 ° C., the order S is 0.4 or more even when the processing time is 4 hours, but the coercive force Hc was less than 87.5 kA / m. On the other hand, as in Examples S18 to S24, when the processing temperature of nitriding is 300 ° C. and the processing time is 50 hours, the degree of order S is 0.4 or more and the coercive force Hc is 87. It was as large as 0.5 kA / m or more, and the magnetic properties were excellent.
  • the nitriding treatment time is an important factor in achieving a high coercive force Hc.
  • the coercive force Hc was 87.5 kA / m or more. This time slightly changes depending on the temperature of the nitriding treatment, and the processing time can be slightly shortened as the processing temperature is higher, but the processing time is set to 10 hours or more at 300 ° C. which is the lowest suitable temperature range for nitriding treatment. A large coercive force Hc could be obtained. For this reason, at a temperature higher than 300 ° C., the coercive force Hc can be 87.5 kA / m or more if the treatment time is at least 10 hours or more.
  • examples of nitriding treatment temperatures are 300 ° C., 325 ° C., 350 ° C., 400 ° C., and 500 ° C.
  • the nitriding treatment temperature is However, it is not limited to these examples.
  • the temperature of the nitriding treatment may be at least 300 ° C. or more and 500 ° C. or less, and may be a wider temperature range.
  • the coercive force Hc is also affected by the volume average particle diameter. Specifically, the coercive force Hc increases as the volume average particle size increases. As shown in FIG. 4, as shown in Comparative Example S17 and Examples S18 to S24, the coercive force Hc increases as the volume average particle size increases. When the volume average particle size is 30 nm as in Comparative Example S17, the coercive force Hc is 58.1 kA / m, which is a relatively large value, but it can be used as a magnet material or a magnetic recording material. It wasn't.
  • the coercive force Hc can be a large value of 87.5 kA / m or more.
  • the volume average particle diameter basically, the larger the coercive force Hc, the larger the coercive force Hc.
  • the coercive force Hc decreases thereafter. For example, when the thickness exceeds 250 nm, some of the coercive force Hc is reduced. For this reason, it is desirable that the volume average particle diameter is not too large.
  • the volume average particle diameter may exceed 250 nm, but for example, if the volume average particle diameter is 60 nm or more and 250 nm or less, the desired coercive force Hc can be realized more reliably.
  • the degree of order S and the coercive force Hc are also closely related. That is, as the degree of order S increases, the coercive force Hc also increases.
  • the degree of order S when the regularity S is 0.4 or more, it is possible to manufacture a coercive force Hc of 87.5 kA / m.
  • the degree of order S is 0.6 or more, a product having a coercive force Hc of 87.5 kA / m or more can be manufactured.
  • the desired coercive force Hc may not be obtained if the regularity S is large, but basically the larger the regularity S, the larger the coercive force Hc. Is possible.
  • the degree of order S when the degree of order S is 0.7 or more, the coercive force Hc can be 95.5 kA / m (1200 [Oe]) or more.
  • the FeNi ordered alloy has a degree of order S of 0.4 or more and a coercive force Hc of 87.5 kA / m or more, it is also used as a magnet material or a magnetic recording material. be able to.
  • the degree of order S is 0.7 or more and the coercive force Hc is 95.5 kA / m, it is possible to obtain a good magnetic material or magnetic recording material having a higher coercive force Hc.
  • particles of L1 0 type FeNi ordered alloy having such a high degree of order S and coercive force Hc as a magnetic powder it is possible to obtain a FeNi ordered alloy magnet by the magnet shape compacted the magnetic particles.
  • the FeNi ordered alloy magnet formed in this way can be applied as a magnet for a motor mounted on a vehicle, for example.
  • a magnetic tape serving as a magnetic recording medium can be constituted by applying FeNi ordered alloy particles to a tape-like film. Since the FeNi ordered alloy obtained as in the present embodiment has a high coercive force Hc, when it is used as a magnetic body of a magnetic recording medium, it is suppressed that stored data is rewritten by an environmental magnetic field. it can.
  • a nitriding treatment for nitriding the FeNi disordered alloy 100 may be performed, followed by a denitrification treatment for removing nitrogen from the nitridated FeNi disordered alloy.
  • the treatment temperature is set to 300 ° C. to 500 ° C.
  • the treatment time is set to 10 hours or more
  • the treatment temperature is set to 250 ° C. to 400 ° C.
  • a composition tends to form an L1 0 type FeNi ordered alloy.
  • high ordering with an order S of 0.4 or more is realized in an alloy having a composition range of Fe: 55 to 47 atomic%. .
  • the sample shape of the FeNi disordered alloy is not specified, it is desirable to be a powder sample as described above in order to shorten the nitriding treatment and the denitrification treatment.
  • the FeNi disordered alloy is a nanoparticle sample in order to perform these processes quickly.
  • an FeNi ordered alloy with higher coercive force Hc can be obtained by setting the volume average particle size to 45 nm or more.
  • the ordering of the powders of FeNi disordered alloys having different production methods is confirmed.
  • the production method of the disordered alloy is not limited to the above-described thermal plasma method, flame spray method, and coprecipitation method.
  • nitriding treatment conditions and removal are performed using irregular alloys produced by flame spraying methods other than the thermal plasma method and coprecipitation methods. Even when the nitrogen conditions are the conditions of Examples S18 to S24, the same results as those of these Examples are obtained.
  • the nitrogen concentration in the nitride treated nitride, Fe about 33 atomic% to 20 atomic% as atomic weight ratio to the total amount of Ni and nitrogen is preferable.
  • L1 can be performed without mixing impurities by performing nitridation with ammonia gas and denitrification with hydrogen gas.
  • a zero- type FeNi ordered alloy can be obtained.
  • Hc can be the L1 0 type FeNi ordered alloy of high as or higher 87.5kA / m. This is a simple method both in terms of apparatus and process as compared with the conventional laminating method by molecular beam epitaxy and the method of heat treatment while irradiating with neutrons. Therefore, according to the present embodiment, the L1 0 type FeNi ordered alloy having a desired degree of order S and coercivity Hc, it can be easily synthesized.
  • the present embodiment when forming the L1 0 type FeNi ordered alloy from FeNi disordered alloy, further increasing the degree of order S by generating an intermediate product.
  • nitriding and denitrifying are performed, but in this embodiment, FeNiN is generated as an intermediate product when nitriding is completed.
  • the oxide film formed on the surface of the FeNi disordered alloy is removed prior to the nitriding treatment so that the intermediate product is accurately generated by the nitriding treatment.
  • FeNi disordered alloy is subjected to nitriding treatment, and nitrogen is taken into the II site shown in FIG. 1 to form FeNiN as an intermediate product containing a large amount of Ni at the II site. To do. Then, a denitrification, by releasing nitrogen from II site, constituting the L1 0 type FeNi ordered alloy.
  • an FeNi irregular alloy is prepared. Since the oxide film is formed on the surface of the FeNi disordered alloy, a removal process for removing the oxide film on the surface of the FeNi disordered alloy is performed prior to the nitriding process. Thereafter, a nitriding process is performed following the removal process.
  • a heat treatment is performed at 300 ° C. to 450 ° C., for example, in an oxide film etching atmosphere.
  • the oxide film on the surface of the FeNi disordered alloy is removed, and the surface state is easily nitrided.
  • heat treatment is performed in an atmosphere containing N, for example, at 200 ° C. to 400 ° C.
  • the FeNi disordered alloy that has been easily nitrided by removing the oxide film can be precisely nitrided, and FeNiN as an intermediate product is formed.
  • the nitriding treatment here is performed after removing the oxide film, so that the nitriding reaction is easier, and the temperature may be lower than in the case of the first embodiment. For this reason, the temperature of the nitriding treatment is set to 200 ° C. to 400 ° C., but this temperature may be exceeded, and it may be set to 500 ° C. or less as in the first embodiment.
  • denitrification treatment is performed on FeNiN as an intermediate product.
  • heat treatment is performed at 200 to 400 ° C. in a denitrification atmosphere, for example.
  • L1 0 type FeNi ordered alloy it is possible to form an L1 0 type FeNi ordered alloy.
  • the above-mentioned removal treatment is performed nitridation treatment and denitrification, a specific example of when forming an L1 0 type FeNi ordered alloy.
  • the removal process and the nitriding process were performed according to the profile shown in FIG. 15A.
  • a heating furnace such as the tubular furnace 10 or the muffle furnace described above was prepared, and a FeNi irregular alloy nanoparticle sample having an average particle diameter of 30 nm was placed in the heating furnace. Then, the heating furnace was heated from room temperature to a temperature at the time of removal treatment for removing the oxide film, here 400 ° C. At this time, in order to suppress the oxidation of the nanoparticle sample due to oxygen present in the heating furnace, an inert gas was introduced. Here, the temperature raising step was performed while introducing N 2 (nitrogen). .
  • N 2 that can be used in the subsequent nitriding treatment is used.
  • an inert gas other than N 2 such as Ar (argon) or He (helium), is used. Also good.
  • the time required for removing the oxide film is arbitrary, but it has been confirmed that the oxide film can be removed to some extent by performing, for example, a time of 10 minutes or more.
  • the temperature for removing the oxide film may be at least between 300 ° C. and 450 ° C.
  • the lower limit of the temperature for removing the oxide film is set to 300 ° C. because it has been confirmed that the oxide film can be removed if it is at least 300 ° C. or higher. However, even if it is less than 300 ° C., it is considered that the oxide film can be removed over time.
  • the upper limit value of the temperature for removing the oxide film is defined in order to facilitate the subsequent nitriding of the FeNi disordered alloy. That is, when the temperature for removing the oxide film is higher than 450 ° C., the surface of the FeNi disordered alloy from which the oxide film has been removed is sintered and is not easily nitrided. Accordingly, the temperature is set to 450 ° C.
  • the rate of introduction of the etching gas into the heating furnace is also arbitrary.
  • the oxide film can be removed if it is in the range of at least 0.3 to 5 L / min.
  • the nitriding process was continuously performed in the same heating furnace. Specifically, the gas introduced into the heating furnace was switched from the etching gas to the nitriding gas, the atmosphere inside the heating furnace was made to contain N, and the temperature necessary for nitriding was maintained. In this experiment, NH 3 (ammonia) was used as the nitriding gas, which was introduced into the heating furnace at a rate of 5 L / min, and the heating furnace was maintained at 300 ° C. for 50 hours. Thereby, the nanoparticle sample was nitrided, and FeNiN as an intermediate product was formed.
  • NH 3 ammonia
  • the time required for the nitriding treatment is arbitrary, for example, it has been confirmed that FeNiN as an intermediate product can be synthesized by performing for 10 hours.
  • the nitriding temperature may be at least between 200 ° C. and 400 ° C.
  • the introduction rate of the nitriding gas into the heating furnace for generating the atmosphere containing N is also arbitrary.
  • the nanoparticle sample is nitrided at least in the range of 0.1 to 10 L / min. did it.
  • the nitridation process was performed subsequently to the oxide film removal process. By doing so, it is possible to suppress the formation of an oxide film again on the surface of the FeNi disordered alloy from which the oxide film has been removed, and it is not necessary to perform the temperature raising process again, simplifying the heat treatment and shortening the time. Can be achieved.
  • denitrification was performed.
  • the process according to the profile shown to FIG. 15B was performed.
  • denitrification is performed after a nitridation process, but it is also possible to perform these continuously.
  • a heating furnace such as the tubular furnace 10 or the muffle furnace described above was prepared, and FeNiN as an intermediate product generated according to the profile of FIG. 15A was placed in the heating furnace. And the heating furnace was heated up from room temperature to the temperature at the time of a denitrification process, 300 degreeC here. In this case, in order to FeNiN an intermediate product by oxygen present in the heating furnace is prevented from being oxidized, and introducing an inert gas, subjected to heated process while introducing N 2 here It was.
  • the temperature of the denitrification treatment may be at least between 200 ° C. and 400 ° C.
  • an arbitrary even the introduction rate of the gas into the heating furnace to generate an atmosphere denitrification can be performed, for example, in the case of H 2, denitrification treatment be in the range of at least 0.1 ⁇ 5L / min Was done.
  • L1 0 type FeNi ordered alloy By performing the denitrification treatment as described above, we were able to generate L1 0 type FeNi ordered alloy.
  • This so-formed L1 0 type FeNi ordered alloy was determined an average order parameter S of the whole material. Specifically, the regularity S was determined from the powder X-ray diffraction pattern.
  • X-ray diffraction pattern of the powder of L1 0 type FeNi ordered alloy when the degree of order S is 1, is represented as shown in FIG. 16.
  • the regularity S is the integrated intensity of the diffraction peak from the (001) plane that is the superlattice reflection, that is, the peak of the superlattice diffraction, and the diffraction peak from the (111) plane, that is, the fundamental diffraction of the X-ray diffraction pattern.
  • FIG. 17 shows the relationship with the diffraction intensity ratio, which is the ratio with the integrated intensity of the peak. Therefore, for the FeNi ordered alloy on to the generated L1 0 type and as in this embodiment, obtaining the X-ray diffraction pattern, it is possible to obtain a degree of order S from the result.
  • FeNi irregular after performing removal processing of oxide film from the alloy subjected to nitriding treatment to generate a FeNiN an intermediate product, L1 0 type further performing denitrification X-ray diffraction pattern was obtained when an FeNi ordered alloy was produced.
  • FIG. 18 shows the result.
  • the L1 0 type FeNi ordered alloy produced by the production method of the present embodiment it was possible to obtain a high degree of order S. Furthermore, this L1 0 type FeNi ordered alloy, where also performed magnetic characterization, it was possible to obtain a relatively high value of 1120kA / m as anisotropy field.
  • the present embodiment generates a FeNi an intermediate product by performing a nitriding process on disordered alloy Fenin, it generates an L1 0 type FeNi ordered alloy further subjected to denitrification ing.
  • the average degree of order S of the whole it is possible to easily generate an L1 0 type FeNi ordered alloy as a high as 0.7 or more.
  • an intermediate product can be generated more accurately by performing a nitriding process after performing a removing process for removing the oxide film formed on the surface of the FeNi disordered alloy. . Therefore, by performing the removal processing, it is possible to obtain L1 0 type FeNi ordered alloy having a higher degree of order S.
  • the removal of the oxide film, the obtaining of an intermediate product by nitriding treatment, and the lowering of the nitriding treatment temperature can be made different from the first embodiment.
  • Other matters, such as the time for denitrification, the volume average particle diameter, etc., can be said to be the same as in the first embodiment.
  • the first embodiment an example of the conditions for nitriding and denitrifying has been described.
  • the degree of order S is 0.4 or more, and, if the coercive force Hc can be obtained FeNi ordered alloy of the above L1 0 type 87.5kA / m, these processes
  • the processing temperature and processing time are not limited to the above example.
  • examples of the conditions for the oxide film removal process, the nitriding process, and the denitrifying process have been described. However, these are merely examples of the respective conditions.
  • the degree of order S is 0.4 or more, and, if it is possible to coercive force Hc obtain 87.5kA / m or more L1 0 type FeNi ordered alloy, processing temperatures of these processes, the processing time, the It is not limited to the example.
  • the L1 0 type by performing the nitriding treatment and denitrification treatment, to obtain an L1 0 type FeNi ordered alloy
  • the L1 0 type by a method other than the nitriding treatment and denitrification
  • An FeNi ordered alloy may be obtained. That is, after performing the process of the Fe and Ni to synthesize compounds that are aligned in the same lattice structure as the L1 0 type FeNi ordered structure, by performing a process of removing unnecessary elements other than Fe and Ni from the compound in may be obtained an L1 0 type FeNi ordered alloy.
  • L1 0 type FeNi ordered alloy according to the embodiment is applied to a magnetic material such as magnetic materials and magnetic recording materials, the scope of the FeNi ordered alloy is not limited to a magnetic material .

Abstract

A FeNi ordered alloy having an L10-type ordered structure, the degree of order being at least 0.4, and the coercive force being at least 87.5 kA/m. For example, a FeNi disordered alloy is subjected to a nitriding treatment and then a denitrification treatment to thereby obtain an L10-type FeNi ordered alloy. With regard to the FeNi disordered alloy, the volume-average grain diameter is, e.g., at least 45 nm, and with regard to the nitriding treatment, the treatment temperature is, e.g., 300-500°C and the treatment time is at least 10 hours.

Description

FeNi規則合金、FeNi規則合金磁石およびFeNi規則合金の製造方法FeNi ordered alloy, FeNi ordered alloy magnet and method for producing FeNi ordered alloy 関連出願への相互参照Cross-reference to related applications
 本出願は、2017年4月13日に出願された日本特許出願番号2017-80025号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2017-80025 filed on Apr. 13, 2017, the contents of which are incorporated herein by reference.
 本開示は、L1型の規則構造を有するL1型のFeNi規則合金、および、このようなL1型のFeNi規則合金を用いて構成したFeNi規則合金磁石に関する。 The present disclosure, L1 0 type FeNi ordered alloy having an L1 0 type ordered structure, and to a FeNi ordered alloy magnet which is constructed by using such a L1 0 type FeNi ordered alloy.
 L1型(エルワンゼロ型)のFeNi(鉄-ニッケル)規則合金は、レアアースや貴金属を全く使用しない磁石材料および磁気記録材料として期待されている。ここで、L1型規則構造とは、面心立方格子を基本としてFeとNiとが(001)方向に層状に配列した結晶構造である。このようなL1型規則構造は、FePt、FePd、AuCuなどの合金にみられ、通常、不規則合金を規則-不規則転移温度Tλ以下で熱処理し、拡散を促すことで得られる。 L1 0 type (Eruwanzero type) of FeNi (iron - nickel) ordered alloy is expected as a magnet material and magnetic recording material uses no rare earth and precious metals. Here, the L1 0 type ordered structure is a crystal structure in which Fe and Ni are arranged in layers in the (001) direction based on a face-centered cubic lattice. Such L1 0 ordered structure is, FePt, FePd, seen in alloys such AuCu, usually, a disordered alloy rules - heat treatment at below disorder transition temperature t [lambda, obtained by prompting diffusion.
 しかし、L1型のFeNi規則合金を得るための転移温度Tλは320℃と低温であり、この温度以下では拡散が極めて遅いため熱処理のみで合成することは困難である。そこで、従来より、L1型のFeNi規則合金を合成するための様々な試みがなされている。 However, the transition temperature Tλ to obtain L1 0 type FeNi ordered alloy is 320 ° C. and cold, it is difficult at this temperature following synthesizing only the heat treatment for diffusion is very slow. Therefore, conventionally, various attempts to synthesize the L1 0 type FeNi ordered alloy have been made.
 具体的に、従来では、非特許文献1に記載のような、分子線エピタキシー(略称:MBE)を用いてFeとNiの単原子膜を交互に積層する手法や、その他、中性子を照射しながら磁場中で熱処理を行う手法等も提案されている。 Specifically, conventionally, as described in Non-Patent Document 1, molecular beam epitaxy (abbreviation: MBE) is used to alternately stack Fe and Ni monoatomic films, and in addition, while irradiating with neutrons A method of performing heat treatment in a magnetic field has also been proposed.
 しかしながら、上記非特許文献1のような分子線エピタキシーを用いた方法や中性子照射を用いた方法といった従来の方法で得られるL1のFeNi規則合金の規則度は、最大で0.4程度と全体的には小さいものとなっている。また、FeNi規則合金の材料の全体において規則度が最大となるのではなく、局所的に規則度が高くなる部分があるだけである。さらに、得られたFeNi規則合金の保磁力については、FeNi規則合金を磁石材料や磁気記録材料として用いることができる程度に大きなものではない。例えば、磁気記録材料としては、環境磁場によって保存データが書き換えられてしまわない程度の保磁力が要求される。 However, rules of the above non-patent conventional methods L1 0 of FeNi ordered alloy obtained by such methods such using methods and neutron irradiation using molecular beam epitaxy as document 1, 0.4 degree and a total of up to In fact, it is small. In addition, the degree of ordering is not maximized in the entire material of the FeNi ordered alloy, but there is only a portion where the degree of ordering is locally high. Further, the coercive force of the obtained FeNi ordered alloy is not so large that the FeNi ordered alloy can be used as a magnet material or a magnetic recording material. For example, a magnetic recording material is required to have a coercive force that does not rewrite stored data by an environmental magnetic field.
 本開示は、磁石材料や磁気記録材料としても用いることができるFeNi規則合金を提供することや、それを用いて構成されるFeNi規則合金磁石を提供することを目的とする。 The present disclosure aims to provide an FeNi ordered alloy that can be used also as a magnet material and a magnetic recording material, and to provide an FeNi ordered alloy magnet constituted by using the FeNi ordered alloy.
 本開示の第1の観点におけるFeNi規則合金は、L1型の規則構造を有し、材料の全体の平均的な規則度が0.4以上、かつ、保磁力が87.5kA/m以上とされている。 FeNi ordered alloy of the first aspect of the present disclosure includes an L1 0 type ordered structure, the average degree of order of the overall material is 0.4 or more and a coercive force 87.5kA / m or more and Has been.
 このように、規則度が0.4以上、かつ、保磁力が87.5kA/m以上のFeNi規則合金とすることで、磁石材料や磁気記録材料としても用いることが可能なFeNi規則合金とすることができる。例えば、このようなFeNi規則合金を用いて、FeNi規則合金磁石とすることができる。 Thus, by using a FeNi ordered alloy having a degree of order of 0.4 or more and a coercive force of 87.5 kA / m or more, a FeNi ordered alloy that can also be used as a magnet material or a magnetic recording material is obtained. be able to. For example, an FeNi ordered alloy magnet can be obtained using such an FeNi ordered alloy.
 本開示の第2の観点におけるFeNi規則合金の製造方法では、FeNi不規則合金(100)を窒化する窒化処理を行うことと、窒化処理されたFeNi不規則合金から窒素を除去する脱窒素処理を行うことにより、規則度が0.4以上、かつ、保磁力が87.5kA/m以上であるL1型のFeNi規則合金を得ることと、を含み、窒化処理を行うことでは、窒化処理の処理温度を300℃以上500℃以下とし、処理時間を10時間以上とする。 In the method for producing an FeNi ordered alloy according to the second aspect of the present disclosure, a nitriding process for nitriding the FeNi disordered alloy (100) and a denitrification process for removing nitrogen from the nitridated FeNi disordered alloy are performed. by performing, rule of 0.4 or more, and includes a possible coercive force obtain L1 0 type FeNi ordered alloy is 87.5kA / m or more, and is by performing nitriding treatment, the nitriding The treatment temperature is 300 ° C. or more and 500 ° C. or less, and the treatment time is 10 hours or more.
 このようなFeNi規則合金の製造方法により、材料の全体の平均的な規則度が0.4以上、かつ、保磁力が87.5kA/m以上となるL1型のFeNi規則合金を、容易に合成することができる。 The method of manufacturing such a FeNi ordered alloy, the overall average degree of order of 0.4 or more materials, and the L1 0 type FeNi ordered alloy coercivity is 87.5kA / m or more, easily Can be synthesized.
 本開示の第3の観点におけるに記載のFeNi規則合金の製造方法では、FeとNiとがL1型のFeNi規則構造と同じ格子構造で整列した化合物を合成することと、化合物からFeとNi以外の不要な元素を除去することでL1型のFeNi規則合金を生成することと、を含み、化合物を合成することでは、処理温度を200℃以上500℃以下とし、処理時間を10時間以上として、FeNi不規則合金を窒化処理することで化合物として中間生成物となるFeNiNを合成する。 In the manufacturing method of the FeNi ordered alloy according to definitive to a third aspect of the present disclosure, the method comprising synthesizing the compound of Fe and Ni are aligned in the same lattice structure as the L1 0 type FeNi ordered structure, Fe and Ni from compound anda generating an L1 0 type FeNi ordered alloy by removing unnecessary elements other than, by combining the compound, the process temperature of 200 ° C. or higher 500 ° C. or less, the treatment time over 10 hours As a compound, FeNiN as an intermediate product is synthesized as a compound by nitriding the FeNi disordered alloy.
 このように、FeとNiとがL1型のFeNi規則構造と同じ格子構造で整列した化合物を合成し、この化合物からL1型のFeNi規則合金を生成する。このような製造方法により、材料の全体の平均的な規則度が0.4以上、かつ、保磁力が87.5kA/m以上となるL1型のFeNi規則合金を、容易に合成することができる。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
Thus, to synthesize a compound of Fe and Ni are aligned in the same lattice structure as the L1 0 type FeNi ordered structure, and generates an L1 0 type FeNi ordered alloy from this compound. By such a manufacturing method, the average degree of order of the overall material is 0.4 or more, and an L1 0 type FeNi ordered alloy coercivity is 87.5kA / m or more, it can be readily synthesized it can.
Reference numerals in parentheses attached to each component and the like indicate an example of a correspondence relationship between the component and the like and specific components described in the embodiments described later.
L1型のFeNi規則構造の格子構造を示した模式図である。L1 is a schematic diagram showing a 0-type lattice structure of FeNi ordered structure of. 規則度S=0となるFeNi不規則合金から規則度S=1となるFeNi超格子にかけて規則度S毎のFeNi合金の格子構造の様子を示した模式図である。It is the schematic diagram which showed the mode of the lattice structure of the FeNi alloy for every degree of order S from the FeNi disordered alloy in which degree of order S = 0 to the FeNi superlattice in which degree of order S = 1. 保磁力Hcの測定用サンプル成形の様子を示した斜視図である。It is the perspective view which showed the mode of the sample shaping | molding for the measurement of the coercive force Hc. 第1実施形態にかかる実施例および比較例の製造条件および評価結果を示す図表である。It is a graph which shows the manufacture conditions and evaluation result of the Example concerning 1st Embodiment, and a comparative example. 第1実施形態にかかる実施例および比較例におけるFeNi規則合金の製造に用いた製造装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the manufacturing apparatus used for manufacture of the FeNi ordered alloy in the Example concerning 1st Embodiment, and a comparative example. 規則度Sが1であるL1型のFeNi規則合金のX線回折パターンのシミュレーション結果を示す図である。Degree of order S is a diagram showing a simulation result of X-ray diffraction pattern of the L1 0 type FeNi ordered alloy is 1. FeNi不規則合金のX線回折パターンのシミュレーション結果を示す図である。It is a figure which shows the simulation result of the X-ray diffraction pattern of a FeNi disordered alloy. 比較例S0、S2、S3におけるFeNi規則合金のX線回折パターンの測定結果を示す図である。It is a figure which shows the measurement result of the X-ray-diffraction pattern of the FeNi ordered alloy in comparative example S0, S2, S3. 比較例S1、S3におけるFeNi規則合金のX線回折パターンの測定結果を示す図である。It is a figure which shows the measurement result of the X-ray-diffraction pattern of the FeNi ordered alloy in comparative example S1, S3. 比較例S3、S4、S5におけるFeNi規則合金のX線回折パターンの測定結果を示す図である。It is a figure which shows the measurement result of the X-ray-diffraction pattern of the FeNi ordered alloy in comparative example S3, S4, S5. 実施例S21におけるFeNi規則合金のX線回折パターンの測定結果を示す図である。It is a figure which shows the measurement result of the X-ray-diffraction pattern of the FeNi ordered alloy in Example S21. 上記の実施例および比較例におけるFeNi規則合金について、規則度Sと脱窒素処理の処理温度との関係を示すグラフである。It is a graph which shows the relationship between the order degree S and the processing temperature of a denitrification process about the FeNi ordered alloy in said Example and a comparative example. 図4に示す実施例および比較例について、規則度Sと保磁力Hcとの関係をプロットした図である。It is the figure which plotted the relationship between the regularity S and the coercive force Hc about the Example and comparative example which are shown in FIG. FeNi不規則合金を窒化処理を行って中間生成物を生成してから脱窒素処理を行う場合の格子構造の様子を示した模式図である。It is the schematic diagram which showed the mode of the grating | lattice structure in the case of performing a denitrification process after producing | generating an intermediate product by nitriding a FeNi irregular alloy. 酸化膜の除去処理と窒化処理のプロファイルを示したタイムチャートである。It is the time chart which showed the profile of the removal process of an oxide film, and the nitriding process. 脱窒素処理のプロファイルを示したタイムチャートである。It is the time chart which showed the profile of the denitrification process. 規則度Sが1である場合におけるL1型のFeNi規則合金の粉末のX線回折パターンを示す図である。Degree of order S is a diagram showing an X-ray diffraction pattern of the powder of L1 0 type FeNi ordered alloy when it is 1. 規則度Sと回折強度比との関係を示したグラフである。It is the graph which showed the relationship between the regularity S and diffraction intensity ratio. 第2実施形態の製造方法によって製造したL1型のFeNi規則合金のX線回折パターンの測定結果を示す図である。Is a graph showing measurement results of X-ray diffraction pattern of the L1 0 type FeNi ordered alloy manufactured by the manufacturing method of the second embodiment.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 第1実施形態について説明する。本実施形態にかかるL1型のFeNi規則合金、すなわちFeNi超格子は、磁石材料および磁気記録材料等の磁性材料に適用されるものであり、規則度Sが0.4以上で、保磁力Hcが87.5kA/m以上と大きく、磁性特性に優れたものである。
(First embodiment)
A first embodiment will be described. L1 0 type FeNi ordered alloy according to the present embodiment, i.e. FeNi superlattice is intended to be applied to a magnetic material such as magnetic materials and magnetic recording materials, in the degree of order S is 0.4 or more, the coercive force Hc Is as large as 87.5 kA / m or more and has excellent magnetic properties.
 ここでいう規則度Sとは、FeNi超格子における規則化の度合を示している。上記したように、L1型規則構造は、面心立方格子を基本とした構造となっており、図1に示すような格子構造を有している。この図において、面心立方格子の[001]面の積層構造における最も上面側の層をIサイト、最も上面側の層と最も下面側の層との間に位置している中間層をIIサイトとする。この場合、Iサイトに金属Aが存在する割合をx、金属Bが存在する割合を1-xとすると、Iサイトにおける金属Aと金属Bが存在する割合はA1-xと表される。同様に、IIサイトに金属Bが存在する割合をx、金属Aが存在する割合を1-xとすると、IIサイトにおける金属Aと金属Bが存在する割合はA1-xと表される。なお、xは、0.5≦x≦1を満たす。そして、この場合において、規則度Sは、S=2x-1で定義される。 Here, the degree of order S indicates the degree of ordering in the FeNi superlattice. As described above, L1 0 ordered structure is a basic structure of the face-centered cubic lattice has a lattice structure as shown in FIG. In this figure, the uppermost layer in the [001] plane laminated structure of the face-centered cubic lattice is the I site, and the intermediate layer located between the uppermost layer and the lowermost layer is the II site. And In this case, if the ratio of the presence of metal A at the I site is x and the ratio of the presence of metal B is 1-x, the ratio of the presence of metal A and metal B at the I site is expressed as A x B 1-x. The Similarly, when the ratio of the presence of metal B at the II site is x and the ratio of the presence of metal A is 1-x, the ratio of the presence of metal A and metal B at the II site is expressed as A 1-x B x. The Note that x satisfies 0.5 ≦ x ≦ 1. In this case, the regularity S is defined as S = 2x-1.
 このため、例えば、金属AをNi、金属BをFeとし、Niを白色、Feを黒色で表すと、FeNi合金における規則度Sは、規則度S=0となるFeNi不規則合金から規則度S=1となるFeNi超格子にかけて図2のように表わされる。なお、すべて白色となっているものは、Niが100%、Feが0%となっていることを示し、すべて黒色となっているものは、Niが0%、Feが100%となっていることを示している。また、白色と黒色が半々のものはNiが50%、Feが50%となっていることを示している。 Therefore, for example, when the metal A is Ni, the metal B is Fe, Ni is white, and Fe is black, the order S in the FeNi alloy is the order S from the FeNi disordered alloy in which the order S = 0. FIG. 2 shows the FeNi superlattice where = 1. In addition, when all are white, it indicates that Ni is 100% and Fe is 0%, and when all is black, Ni is 0% and Fe is 100%. It is shown that. In addition, the white and black ones indicate that Ni is 50% and Fe is 50%.
 このように表される規則度Sについて、例えばIサイトでは金属AとなるNiに偏り、IIサイトでは金属BとなるFeに偏るようにし、本実施形態のように全体の平均的な規則度Sが0.4以上になると良好な磁気特性を得ることが可能となる。ただし、規則度Sについては、材料全体において平均的に値が高くなっている必要があり、局所的に値が高くなっていても良好な磁気特性を得ることはできない。例えば、L1型規則構造が構成する面心立方格子の各格子のすべてで規則度Sが所定値以上になっている必要があり、一部の格子が局所的に規則度Sが高いことによって見かけ上の規則度Sが同じになっても、磁気特性は良好にならない。このため、局所的に高い値であったとしても、ここでいう全体の平均的な規則度Sが0.4以上には含まれない。 The regularity S expressed in this way is, for example, biased toward Ni serving as metal A at the I site and biased toward Fe serving as metal B at the II site, and the overall average regularity S as in the present embodiment. When the value is 0.4 or more, good magnetic properties can be obtained. However, the degree of order S needs to be high on average throughout the material, and good magnetic properties cannot be obtained even if the value is locally high. For example, the regularity S needs to be equal to or higher than a predetermined value in all the lattices of the face-centered cubic lattice formed by the L1 0 type regular structure, and the regularity S is locally high in some lattices. Even if the apparent regularity S is the same, the magnetic properties are not improved. For this reason, even if it is a locally high value, the average average regularity S here is not included in 0.4 or more.
 また、保磁力Hcとは、得られたFeNi規則合金に対して磁場を印加し、FeNi規則合金の磁化方向が磁場の影響で切り替わるときの磁場の強さとして求められる。具体的には、図3中の(a)に示すように、内径2mm、高さ7mmの有底円筒状の容器部1aと外径2mm、高さ15mmの円柱状の棒状部1bとを有するサンプルホルダー1を用意する。そして、図3中の(b)に示すように、容器部1a内にFeNi規則合金の粒子を10mg充填しつつ、図3中の(c)に示すように、容器部1aの開口部側から別のサンプルホルダー1の棒状部1bでFeNi規則合金を押さえる。このようにして、容器部1a内において円柱形状に形状を固定したサンプル2を作成する。そして、そのFeNi規則合金のサンプル2に対して、十分大きな磁場を印加しサンプル2の磁化がそれ以上大きくならないような飽和状態まで持っていく。その後先ほどとは逆方向の磁場を印加し、サンプル2の磁化がゼロになるタイミングを検出する。そのときの磁場の強さを保磁力Hcとしている。例えば、Quantum Desighn社製の小型無冷媒型PPMS VersaLabを用い、磁場掃引速度10[Oe]として磁場の強さを求めている。 Further, the coercive force Hc is obtained as the strength of the magnetic field when a magnetic field is applied to the obtained FeNi ordered alloy and the magnetization direction of the FeNi ordered alloy is switched by the influence of the magnetic field. Specifically, as shown in FIG. 3A, it has a bottomed cylindrical container portion 1a having an inner diameter of 2 mm and a height of 7 mm, and a columnar rod-like portion 1b having an outer diameter of 2 mm and a height of 15 mm. A sample holder 1 is prepared. Then, as shown in (b) of FIG. 3, while 10 mg of FeNi ordered alloy particles are filled in the container 1a, as shown in (c) of FIG. 3, from the opening side of the container 1a. The FeNi ordered alloy is pressed by the rod-like portion 1 b of another sample holder 1. In this way, the sample 2 whose shape is fixed in a cylindrical shape in the container portion 1a is created. Then, a sufficiently large magnetic field is applied to the FeNi ordered alloy sample 2 to bring it to a saturation state where the magnetization of the sample 2 does not increase any more. Thereafter, a magnetic field in the opposite direction to the previous one is applied, and the timing at which the magnetization of the sample 2 becomes zero is detected. The strength of the magnetic field at that time is defined as a coercive force Hc. For example, a small refrigerant-free PPMS VersaLab manufactured by Quantum Desighn is used, and the strength of the magnetic field is obtained at a magnetic field sweep rate of 10 [Oe].
 なお、保磁力Hcは、SI単位ではkA/mで表されるが、OGS単位ではOe[エルステッド]で表され、1A/m=4π×10-3[Oe]であるため、87.5kA/m=1100[Oe]である。 The coercive force Hc is expressed in kA / m in SI units, but is expressed in Oe [Oersted] in OGS units, and is 1A / m = 4π × 10 −3 [Oe], so 87.5 kA / m = 1100 [Oe].
 磁石材料や磁気記録材料としても用いることができるFeNi規則合金であるためには、それらの材料に要求される保磁力Hcを有していることが求められる。この保磁力Hcについて本発明者らが鋭意検討を行ったところ、磁石材料や磁気記録材料としても用いるためには、FeNi規則合金の保磁力Hcが87.5kA/m以上であることが必要であることが確認された。また、規則度Sと保磁力Hcとは相関関係があり、FeNi規則合金の保磁力Hcが87.5kA/m以上となるためにはFeNi規則合金の全体の平均的な規則度Sが0.4以上であることが必要になることが確認された。 In order to be an FeNi ordered alloy that can also be used as a magnet material or a magnetic recording material, it is required to have a coercive force Hc required for these materials. As a result of extensive studies by the present inventors on the coercive force Hc, in order to use it as a magnet material or a magnetic recording material, it is necessary that the coercive force Hc of the FeNi ordered alloy is 87.5 kA / m or more. It was confirmed that there was. Further, there is a correlation between the degree of order S and the coercive force Hc. In order for the coercive force Hc of the FeNi ordered alloy to be 87.5 kA / m or more, the average order degree S of the entire FeNi ordered alloy is 0. It was confirmed that it was necessary to be 4 or more.
 このため、本実施形態では規則度Sが0.4以上、かつ、保磁力Hcが87.5kA/m以上のFeNi規則合金としている。また、FeNi規則合金の保磁力Hcは、FeNi規則合金の粒径や製造方法にも依存していることも判った。より高い保磁力Hcを得るためには、後述するように、FeNi規則合金の粒径や製造方法をより適したものとすることが望ましい。 Therefore, in this embodiment, the FeNi ordered alloy has a degree of order S of 0.4 or more and a coercive force Hc of 87.5 kA / m or more. It was also found that the coercive force Hc of the FeNi ordered alloy depends on the grain size of the FeNi ordered alloy and the manufacturing method. In order to obtain a higher coercive force Hc, it is desirable to make the grain size and manufacturing method of the FeNi ordered alloy more suitable as described later.
 このようなL1型のFeNi規則合金は、例えば、FeNi不規則合金を窒化する窒化処理を行った後、窒化処理されたFeNi不規則合金から窒素を除去する脱窒素処理を行うことにより、得られる。なお、不規則合金とは、原子の配列が規則性を持たずにランダムなものである。 Such L1 0 type FeNi ordered alloy, for example, after the nitriding process of nitriding the FeNi disordered alloy, by performing a denitrification treatment for removing nitrogen from nitriding treated FeNi disordered alloy, obtained It is done. An irregular alloy is an alloy in which the arrangement of atoms is random without regularity.
 本実施形態にかかるL1型のFeNi規則合金の製造方法について、図4に示される比較例S0~S17および実施例S18~S24を参照して、具体的に説明する。 A method of manufacturing the L1 0 type FeNi ordered alloy according to the present embodiment, with reference to Comparative Examples S0 ~ S17 and Examples S18 ~ S24 shown in FIG. 4, specifically described.
 これら実施例および比較例は、熱プラズマ法、火炎噴霧法あるいは共沈法により作製されたFeNi不規則合金の粉末試料を、図4に示される窒化処理条件、脱窒素処理条件で処理したものである。そして、これら処理後の合金について、X線回折測定を行い、L1型規則構造が形成されているか否かを評価したものである。 In these examples and comparative examples, a powder sample of an FeNi disordered alloy produced by a thermal plasma method, a flame spray method, or a coprecipitation method is processed under the nitriding conditions and the denitrifying conditions shown in FIG. is there. Then, the alloy after these processes, subjected to X-ray diffraction measurement, is obtained by evaluating whether L1 0 ordered structure is formed.
 ここで、図4中に示される実施例および比較例のFeNi不規則合金の粉末試料について、組成比はFe:Niの原子量比であり、粒径は体積平均粒径(単位:nm)にて示してある。また、窒化処理条件および脱窒素処理条件については、処理温度(単位:℃)と処理時間(単位:h)を示している。 Here, with respect to the FeNi disordered alloy powder samples of the example and comparative example shown in FIG. 4, the composition ratio is the atomic weight ratio of Fe: Ni, and the particle diameter is the volume average particle diameter (unit: nm). It is shown. Moreover, about the nitriding treatment condition and the denitrification treatment condition, the treatment temperature (unit: ° C.) and the treatment time (unit: h) are shown.
 窒化処理および脱窒素処理は、例えば図5に示される製造装置を用いて行われる。この製造装置は、ヒータ11により加熱される加熱炉としての管状炉10と、管状炉10内に試料を設置するためのグローブボックス20と、を備える。 Nitriding treatment and denitrification treatment are performed using, for example, a manufacturing apparatus shown in FIG. The manufacturing apparatus includes a tubular furnace 10 as a heating furnace heated by a heater 11 and a glove box 20 for installing a sample in the tubular furnace 10.
 また、図5に示されるように、この製造装置は、パージガスとしてのAr(アルゴン)、窒化処理用のNH(アンモニア)、および、脱窒素処理用のH(水素)を、切り替えて管状炉10へ導入するガス導入部30を備えている。 Further, as shown in FIG. 5, this manufacturing apparatus switches Ar (argon) as a purge gas, NH 3 (ammonia) for nitriding treatment, and H 2 (hydrogen) for denitrification treatment, and switches the tube. A gas introduction part 30 for introduction into the furnace 10 is provided.
 このような製造装置を用いた本実施形態の製造方法は次の通りである。まず、管状炉10中にFeNi不規則合金100の粉末試料を設置しておく。窒化処理では、NHガスを管状炉10に導入して管状炉10内をNH雰囲気とし、所定温度で所定時間、FeNi不規則合金を加熱して窒化する。 The manufacturing method of this embodiment using such a manufacturing apparatus is as follows. First, a powder sample of the FeNi disordered alloy 100 is placed in the tubular furnace 10. In the nitriding treatment, NH 3 gas is introduced into the tubular furnace 10 to make the inside of the tubular furnace 10 an NH 3 atmosphere, and the FeNi disordered alloy is heated and nitrided at a predetermined temperature for a predetermined time.
 その後、脱窒素処理では、Hガスを加熱炉に導入して管状炉10内をH雰囲気とし、所定温度で所定時間、窒化処理されたFeNi不規則合金を加熱して窒素を除去する。こうして、材料全体の平均的な規則度Sが0.4以上で、かつ、保磁力Hcが87.5kA/m以上であるL1型のFeNi規則合金が得られる。 Thereafter, in the denitrification treatment, H 2 gas is introduced into the heating furnace to make the inside of the tubular furnace 10 into an H 2 atmosphere, and the FeNi disordered alloy that has been nitrided at a predetermined temperature for a predetermined time is heated to remove nitrogen. Thus, in average degree of order S of the whole material is 0.4 or more, and, L1 0 type FeNi ordered alloy coercive force Hc is 87.5kA / m or more is obtained.
 なお、図4に示される実施例および比較例において、熱プラズマ法により作製されたFeNi不規則合金の粉末試料は、日清エンジニアリング株式会社製の特注品であり、組成比Fe:Ni=50:50、体積平均粒径:30nm~140nmのものである。 In the examples and comparative examples shown in FIG. 4, the FeNi disordered alloy powder sample produced by the thermal plasma method is a custom-made product manufactured by Nissin Engineering Co., Ltd., and the composition ratio Fe: Ni = 50: 50, volume average particle diameter: 30 nm to 140 nm.
 また、火炎噴霧法により作製されたFeNi不規則合金の粉末試料は、シグマアルドリッチジャパン合同会社製の型番677426-5Gであり、組成比Fe:Ni=55:45、体積平均粒径:50nmのものである。 Also, the FeNi disordered alloy powder sample produced by the flame spray method is model number 6774426-5G manufactured by Sigma-Aldrich Japan G.K., with a composition ratio of Fe: Ni = 55: 45 and volume average particle size: 50 nm. It is.
 また、共沈法により作製されたFeNi不規則合金の粉末試料は、FeNi酸化物を水素還元したものであり、組成比Fe:Ni=47:53、体積平均粒径:200nmのものである。 Further, the FeNi disordered alloy powder sample produced by the coprecipitation method is obtained by hydrogen reduction of FeNi oxide, and has a composition ratio of Fe: Ni = 47: 53 and a volume average particle size: 200 nm.
 図4に示されるように、比較例S0では、熱プラズマ法で作製された体積平均粒径:104nm、組成比Fe:Ni=50:50のFeNi不規則合金を、窒化処理も脱窒素処理も行わず、X線回折で評価した。 As shown in FIG. 4, in Comparative Example S0, a FeNi disordered alloy having a volume average particle size of 104 nm and a composition ratio of Fe: Ni = 50: 50 produced by a thermal plasma method is subjected to nitriding treatment and denitrifying treatment. No evaluation was performed by X-ray diffraction.
 比較例S1では、比較例S0と同じFeNi不規則合金を用い、300℃、4時間で窒化処理を行い、脱窒素処理は行わず、X線回折で評価した。比較例S2では、比較例S0と同じFeNi不規則合金を用い、窒化処理は行わず、300℃、4時間で脱窒素処理を行い、X線回折で評価した。 In Comparative Example S1, the same FeNi disordered alloy as in Comparative Example S0 was used, nitriding was performed at 300 ° C. for 4 hours, denitrification was not performed, and evaluation was performed by X-ray diffraction. In Comparative Example S2, the same FeNi disordered alloy as in Comparative Example S0 was used, nitriding was not performed, denitrification was performed at 300 ° C. for 4 hours, and evaluation was performed by X-ray diffraction.
 比較例S3では、比較例S0と同じFeNi不規則合金を用い、300℃、4時間で窒化処理を行い、300℃、4時間で脱窒素処理を行い、X線回折で評価した。比較例S4では、火炎噴霧法で作製されたFeNi不規則合金を用い、比較例S3と同様に窒化処理、脱窒素処理を行い、X線回折で評価した。比較例S5では、共沈法で作製されたFeNi不規則合金を用い、比較例S3と同様に窒化処理、脱窒素処理を行い、X線回折で評価した。 In Comparative Example S3, the same FeNi disordered alloy as in Comparative Example S0 was used, subjected to nitriding treatment at 300 ° C. for 4 hours, denitrification treatment at 300 ° C. for 4 hours, and evaluated by X-ray diffraction. In Comparative Example S4, a FeNi disordered alloy produced by the flame spray method was used, and nitriding treatment and denitrogenating treatment were performed in the same manner as in Comparative Example S3, and evaluated by X-ray diffraction. In Comparative Example S5, a FeNi disordered alloy produced by a coprecipitation method was used, and nitriding treatment and denitrification treatment were performed in the same manner as in Comparative Example S3, and evaluation was performed by X-ray diffraction.
 比較例S6、S7、S8、S9は、窒化処理の処理温度を325℃、350℃、400℃、500℃と変えたこと以外は、比較例S3と同様に行われたものである。また、比較例S10、S11、S12、S13、S14、S15、S16は、脱窒素処理の処理温度を150℃、200℃、250℃、350℃、400℃、450℃、500℃と変えたこと以外は、比較例S3と同様に行われたものである。比較例S17、実施例S18、S19、S20、S21、S22、S23、S24は、体積平均粒径:30nm~140nmのものを用いて、窒化処理を温度300℃、50時間と長時間とし、脱窒素処理を300℃、1時間としている。それ以外の条件は、比較例S3と同様としている。 Comparative Examples S6, S7, S8, and S9 were performed in the same manner as Comparative Example S3, except that the nitriding treatment temperature was changed to 325 ° C, 350 ° C, 400 ° C, and 500 ° C. Further, in Comparative Examples S10, S11, S12, S13, S14, S15, and S16, the denitrification treatment temperature was changed to 150 ° C., 200 ° C., 250 ° C., 350 ° C., 400 ° C., 450 ° C., and 500 ° C. Except for this, the same procedure as in Comparative Example S3 was performed. In Comparative Example S17, Examples S18, S19, S20, S21, S22, S23, and S24, those having a volume average particle diameter of 30 nm to 140 nm were used, and the nitriding treatment was performed at a temperature of 300 ° C. for 50 hours for a long time. Nitrogen treatment is performed at 300 ° C. for 1 hour. The other conditions are the same as in Comparative Example S3.
 X線回折によるL1型規則構造の形成可否の評価は、図6に示される規則度Sが1である理想的なFeNi規則合金のX線回折パターンとの比較により行える。L1型のFeNi規則合金では、図6中に示されるように、基本回折P2のピークに加えて、矢印で示される位置に超格子回折P1と呼ばれるピークが現れる。 Evaluation of formation whether L1 0 ordered structure by X-ray diffraction, the degree of order S shown in FIG. 6 can be performed by comparing the ideal FeNi ordered alloy X-ray diffraction pattern is 1. L1 In 0 type FeNi ordered alloy, as shown in FIG. 6, in addition to the peak of the fundamental diffraction P2, peak appears called superlattice diffraction P1 to the position indicated by the arrow.
 一方、図7に示されるように、FeNi不規則合金では、基本回折P2は現れるが、超格子回折P1は現れない。なお、これら図6、図7において、X線はFeのkβ線(波長:1.75653Å)を想定した。 On the other hand, as shown in FIG. 7, in the FeNi disordered alloy, the basic diffraction P2 appears, but the superlattice diffraction P1 does not appear. 6 and 7, the X-ray is assumed to be an Fe kβ ray (wavelength: 1.7565365).
 このことから、上記した実施例および比較例においては、X線回折測定を行い、測定されたパターンにて超格子回折P1が現れれば、L1型規則構造が形成されており、超格子回折P1が現れていなければ、L1型規則構造が形成されていないと判断される。ここでは、超格子回折P1のなかでも、特にわかりやすい28°と40°のピークが明確に現れているかどうかにより、判断を行った。 Therefore, in the examples and comparative examples described above, subjected to X-ray diffraction measurement, if at measured pattern superlattice diffraction P1 icon that appears, L1 0 ordered structure is formed, a superlattice diffraction P1 If it does not appear, it is determined that the L1 0 type ordered structure is not formed. Here, the determination was made based on whether or not peaks of 28 ° and 40 ° that are particularly easy to understand clearly appear in the superlattice diffraction P1.
 これにより、図4では、L1型規則構造が形成されているものは、「あり」とし、形成されていないものは、「なし」とした。図4に示されるように、「あり」は、比較例S3~S9、S11~S14、S17、および、実施例S18~S24であり、「なし」は、比較例S0~S2、S10、S15、S16であった。 Thus, in FIG. 4, it is intended to L1 0 ordered structure is formed, and that "there", which not formed, was evaluated as "None." As shown in FIG. 4, “present” is Comparative Examples S3 to S9, S11 to S14, S17, and Examples S18 to S24, and “None” is Comparative Examples S0 to S2, S10, S15, S16.
 また、上記した実施例および比較例のうち、L1型規則構造が形成されているものについて、規則度Sの見積もりは、上記特許文献1に記載の方法に基づいて行った。この規則度Sの見積もりは、次の数式1に示されるL1型のFeNi規則合金における規則度Sの見積もり式により見積もることができる。 Further, among the examples and comparative examples described above, for those L1 0 ordered structure is formed, the estimate of the order parameter S, were based on the method described in Patent Document 1. Estimates of the order parameter S can be estimated by estimated expression rules of S in L1 0 type FeNi ordered alloy shown in Equation 1 below.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、数式1中、「Isup」は超格子回折P1のピークの積分強度であり、「Ifund」は基本回折P2のピークの積分強度である。そして、「(Isup/Ifundobs」は、各実施例および比較例における測定されたX線回折パターンにおける超格子回折P1の積分強度と基本回折P2の積分強度との比である。また、「(Isup/Ifundcal」は、図7のX線回折パターンにおける超格子回折P1の積分強度と基本回折P2の積分強度との比である。そして、数式1に示されるように、これら両比の平方根が規則度Sとして求められる。 In Equation 1, “I sup ” is the integrated intensity of the peak of the superlattice diffraction P1, and “I fund ” is the integrated intensity of the peak of the basic diffraction P2. “(I sup / I fund ) obs ” is a ratio between the integrated intensity of the superlattice diffraction P1 and the integrated intensity of the basic diffraction P2 in the X-ray diffraction patterns measured in the examples and comparative examples. “(I sup / I fund ) cal ” is a ratio between the integrated intensity of the superlattice diffraction P1 and the integrated intensity of the basic diffraction P2 in the X-ray diffraction pattern of FIG. Then, as shown in Equation 1, the square root of both ratios is obtained as the regularity S.
 各実施例および比較例について、測定されたX線回折パターンの典型例の一部が、図8,図9、図10、図11に示されている。このX線回折パターンに基づいてL1型のFeNi規則合金が得られているか否かについて説明すると共に、規則度Sや保磁力Hcとの関係について説明する。 For each of the examples and comparative examples, some of typical examples of measured X-ray diffraction patterns are shown in FIGS. 8, 9, 10, and 11. FIG. Together it explained whether L1 0 type FeNi ordered alloy on the basis of the X-ray diffraction pattern is obtained, a description will be given of the relationship between the degree of order S and coercivity Hc.
 図8に示すように、窒化処理および脱窒素処理を共に行った比較例S3では、28°と40°の超格子回折P1のピークが明確に現れている。しかしながら、窒化処理および脱窒素処理を行っていない比較例S0や、窒化処理を行わずに脱窒素処理のみ行った比較例S2では、この超格子回折P1は現れなかった。なお、図8中、比較例S0の逆三角を記したピークは、酸化FeNiであり、超格子回折P1ではない。これにより、窒化処理および脱窒素処理の両処理を行うことによって、L1型のFeNi規則合金が得られていることがわかる。 As shown in FIG. 8, in the comparative example S3 in which both the nitriding treatment and the denitrifying treatment are performed, the peaks of the superlattice diffraction P1 of 28 ° and 40 ° clearly appear. However, this superlattice diffraction P1 did not appear in Comparative Example S0 in which nitriding treatment and denitrification treatment were not performed and in Comparative Example S2 in which only nitriding treatment was performed without performing nitriding treatment. In FIG. 8, the peak marked with the inverted triangle in Comparative Example S0 is oxidized FeNi and not superlattice diffraction P1. Thus, by performing both the processing of nitriding treatment and denitrification treatment, it can be seen that the L1 0 type FeNi ordered alloy is obtained.
 また、図4に示すように、規則度Sについては、比較例S0、S2はFeNi規則合金になっていないことから0であり、保磁力Hcについては、それぞれ10.2kA/mと4.0kA/mと小さい値であった。一方、比較例S3は、規則度Sが0.52と比較的大きな値となったが、保磁力Hcについては、33.3kA/mと大きな値を得ることができなかった。 Further, as shown in FIG. 4, the degree of order S is 0 because Comparative Examples S0 and S2 are not FeNi ordered alloys, and the coercive force Hc is 10.2 kA / m and 4.0 kA, respectively. The value was as small as / m. On the other hand, in Comparative Example S3, the regularity S was a relatively large value of 0.52, but the coercive force Hc could not be as large as 33.3 kA / m.
 図9に示すように、窒化処理および脱窒素処理を共に行った比較例S3では、28°と40°の超格子回折P1のピークが明確に現れているが、窒化処理のみを行って脱窒素処理を行っていない比較例S1では、この超格子回折P1は現れなかった。図9中、比較例S1において黒丸を記したピークが、超格子回折P1とは異なる位置に現れているが、これは窒化FeNiであり、超格子回折P1ではない。比較例S1は、窒化処理を行ったが脱窒素処理は行わないものであり、FeNiの窒化物である。なお、図4に示すように、比較例S1については、FeNi規則合金になっていないことから規則度が0であり、保磁力Hcも4.0kA/mと小さい値であった。 As shown in FIG. 9, in Comparative Example S3 in which both nitriding treatment and denitrification treatment were performed, peaks of superlattice diffraction P1 at 28 ° and 40 ° clearly appear. This superlattice diffraction P1 did not appear in Comparative Example S1 where no treatment was performed. In FIG. 9, the peak marked with a black circle in Comparative Example S1 appears at a position different from superlattice diffraction P1, but this is FeNi nitride, not superlattice diffraction P1. Comparative Example S1 is a nitride of FeNi that is subjected to nitriding treatment but not denitrifying treatment. As shown in FIG. 4, in Comparative Example S1, since the FeNi ordered alloy was not used, the degree of order was 0 and the coercive force Hc was a small value of 4.0 kA / m.
 図10に示すように、比較例S3、S4、S5は、FeNi不規則合金の粉末試料の作製法および体積平均粒径が異なるもの同士であるが、いずれにおいても、28°と40°の超格子回折P1のピークが明確に現れている。なお、体積平均粒径の差異は、電子顕微鏡観察により容易に確認できる。このように、作製法および粒径が異なる試料においても窒化処理および脱窒素処理を行うことで、L1型のFeNi規則合金を製造できる。ただし、図4に示すように、比較例S4については、規則度Sが0.41と比較的大きな値であるものの保磁力Hcが29.9kA/mと小さな値であった。また、比較例S5については、規則度Sが0.37と小さな値で、保磁力Hcも27.6kA/mと小さな値であった。 As shown in FIG. 10, Comparative Examples S3, S4, and S5 are different from each other in the preparation method of the powder sample of FeNi disordered alloy and the volume average particle diameter, but in both cases, it exceeds 28 ° and 40 °. The peak of the grating diffraction P1 appears clearly. The difference in volume average particle diameter can be easily confirmed by observation with an electron microscope. In this way, by performing the nitriding treatment and denitrification treatment in a sample preparation method and the particle size is different, it can be produced L1 0 type FeNi ordered alloy. However, as shown in FIG. 4, in Comparative Example S4, the coercive force Hc was a small value of 29.9 kA / m, although the regularity S was a relatively large value of 0.41. Further, for Comparative Example S5, the degree of order S was as small as 0.37, and the coercive force Hc was as small as 27.6 kA / m.
 図11に示すように、実施例S21は、FeNi不規則合金の粉末試料の作製法については比較例S3とほぼ同様としつつ、窒化処理の時間を50時間とし、脱窒素処理を1時間としたものである。実施例S21では、28°と40°の超格子回折P1のピークが明確に現れている。また、体積平均粒径についても140nmと比較的大きなものとされている。一方、図4に示すように、実施例S21の規則度Sについては、0.64と大きな値となっており、保磁力Hcについても、150.6kA/mと大きな値を得ることができた。 As shown in FIG. 11, in Example S21, the method for preparing the FeNi disordered alloy powder sample was substantially the same as Comparative Example S3, the nitriding time was 50 hours, and the denitrification time was 1 hour. Is. In Example S21, peaks of the superlattice diffraction P1 at 28 ° and 40 ° clearly appear. The volume average particle diameter is also relatively large at 140 nm. On the other hand, as shown in FIG. 4, the regularity S of Example S21 is a large value of 0.64, and the coercive force Hc is a large value of 150.6 kA / m. .
 これらより、比較例S0~S2のように、窒化処理および脱窒素処理の少なくとも一方でも行わなかった場合には、L1型のFeNi規則合金を製造することができず、規則度Sも小さく、保磁力も小さな値となった。 From these, as in Comparative Examples S0 ~ S2, if not carried out in at least one of nitriding treatment and denitrification treatment is not able to produce L1 0 type FeNi ordered alloy, degree of order S is also small, The coercive force was also small.
 一方、比較例S3~S17に示すように、窒化処理および脱窒素処理を行うことで、L1型のFeNi規則合金を製造することができる。しかしながら、窒化処理の時間が短い場合、ある程度の規則度Sを得ることができるようになるものの、保磁力Hcについては十分な値を得ることができなかった。また、比較例S10のように脱窒素処理の温度が低すぎたり、比較例S15、S16のように脱窒素処理の温度が高すぎる場合には、L1型のFeNi規則合金を製造することができず、規則度Sが0で、保磁力Hcも小さな値となった。 On the other hand, as shown in Comparative Examples S3 ~ S17, by performing the nitriding treatment and denitrification treatment, it is possible to produce the L1 0 type FeNi ordered alloy. However, when the nitriding time is short, a certain degree of order S can be obtained, but a sufficient value cannot be obtained for the coercive force Hc. Also, too temperature of denitrification is low as in Comparative Example S10, when the temperature of the denitrification as in Comparative Example S15, S16 is too high, that the production of L1 0 type FeNi ordered alloy The degree of order S was 0 and the coercive force Hc was small.
 ここで、上記のFeNi規則合金について、各種パラメータと規則度Sや保磁力Hcとの関係について説明する。 Here, regarding the above-mentioned FeNi ordered alloy, the relationship between various parameters and the degree of order S and the coercive force Hc will be described.
 まず、規則度Sや保磁力Hcと脱窒素処理条件もしくは窒化処理条件との関係、保磁力Hcと体積平均粒径との関係、および、規則度Sと保磁力Hcとの関係について、より詳細に述べる。 First, the relationship between the degree of order S and the coercive force Hc and the denitrification or nitriding conditions, the relationship between the coercive force Hc and the volume average particle diameter, and the relationship between the degree of order S and the coercive force Hc are more detailed. In the following.
 図12は、脱窒素処理の処理温度以外は、同一の試料および窒化処理を行った比較例S6、S10~S16について、規則度Sと脱窒素処理の処理温度当該関係を表したものである。 FIG. 12 shows the relationship between the regularity S and the denitrification treatment temperature for the same sample and the comparative examples S6 and S10 to S16 subjected to the nitridation treatment except for the denitrification treatment temperature.
 まず、図12に示される結果より、脱窒素処理の処理温度については、250℃以上400℃以下が望ましいことが判る。図12に示されるように、脱窒素処理の処理温度が250℃以上400℃以下である比較例S12、S6、S13、S14では、規則度Sが0.4以上であることが達成されていた。これらの例では、規則度Sがより大きな0.5以上となっていた。また、図12中には示していないが、脱窒素処理の処理温度が250℃以上400℃以下である比較例S17や実施例S18~S24についても、規則度Sが0.4以上であった。しかし、当該処理温度が250℃未満である比較例S10、S11では、規則度Sは0.4未満であり、当該処理温度が450℃以上である比較例S15、S16では、処理温度が高すぎて超格子が分解していた。 First, from the results shown in FIG. 12, it is found that the treatment temperature for the denitrification treatment is preferably 250 ° C. or more and 400 ° C. or less. As shown in FIG. 12, in Comparative Examples S12, S6, S13, and S14 in which the treatment temperature of the denitrification treatment is 250 ° C. or more and 400 ° C. or less, the degree of order S was achieved to be 0.4 or more. . In these examples, the regularity S is 0.5 or more, which is larger. Further, although not shown in FIG. 12, the degree of order S was 0.4 or more in Comparative Example S17 and Examples S18 to S24 in which the treatment temperature of the denitrification treatment was 250 ° C. or more and 400 ° C. or less. . However, in Comparative Examples S10 and S11 where the processing temperature is less than 250 ° C., the regularity S is less than 0.4, and in Comparative Examples S15 and S16 where the processing temperature is 450 ° C. or more, the processing temperature is too high. The superlattice was disassembled.
 また、図4に示される結果より、脱窒素処理の時間については、1時間以下の短い時間でも良いことが判る。図4中の比較例S3、S4、S6~S9、S12~S14、S17および実施例S18~S24に示されるように、4時間実施した場合であっても1時間実施した場合であっても所望の規則度Sを得ることができていた。また、図4中の実施例S18~S24に示されるように、脱窒素処理の時間が短くても、保磁力Hcを87.5kA/m以上とすることができた。その反面、比較例S2~S17に示すように、脱窒素処理の時間にかかわらず保磁力Hcが87.5kA/m以上にならない場合もあった。これらのことから、規則度Sおよび保磁力Hcの観点からは、脱窒素処理を行ってFeNi規則合金を製造できていれば、脱窒素処理の時間については短くても良いということが確認された。 Further, from the results shown in FIG. 4, it can be seen that the denitrification treatment time may be as short as one hour or less. As shown in Comparative Examples S3, S4, S6 to S9, S12 to S14, S17 and Examples S18 to S24 in FIG. 4, it is desirable whether it is performed for 4 hours or 1 hour. The degree of regularity S can be obtained. Further, as shown in Examples S18 to S24 in FIG. 4, the coercive force Hc could be 87.5 kA / m or more even if the denitrification time was short. On the other hand, as shown in Comparative Examples S2 to S17, the coercive force Hc may not exceed 87.5 kA / m regardless of the time of denitrification. From these, it was confirmed that from the viewpoint of the degree of order S and the coercive force Hc, the time for the denitrification treatment may be short if the denitrification treatment can be performed to produce the FeNi ordered alloy. .
 一方、図4に示される結果より、窒化処理の処理温度については、300℃以上500℃以下が望ましいことが判る。図4の比較例S3~S9、S11~S14に示したように、窒化処理の処理温度を300℃以上500℃以下の範囲内とした場合、いずれの場合についても、FeNi規則合金が得られていた。このため、この温度範囲内であれば、FeNi規則合金を得ることができると言える。 On the other hand, the results shown in FIG. 4 indicate that the nitriding treatment temperature is preferably 300 ° C. or more and 500 ° C. or less. As shown in Comparative Examples S3 to S9 and S11 to S14 in FIG. 4, when the nitriding treatment temperature is in the range of 300 ° C. or more and 500 ° C. or less, the FeNi ordered alloy is obtained in any case. It was. For this reason, it can be said that an FeNi ordered alloy can be obtained within this temperature range.
 ただし、窒化処理の処理時間については、短いと十分ではないという結果が得られた。すなわち、図4の比較例S12~S14のように、窒化処理の処理温度を325℃とした場合に、処理時間を4時間としても、規則度Sは0.4以上になるものの、保磁力Hcが87.5kA/m未満となった。これに対して、実施例S18~S24のように、窒化処理の処理温度を300℃とした場合に、処理時間を50時間とすると、規則度Sが0.4以上で、保磁力Hcが87.5kA/m以上と大きく、磁性特性に優れたものとすることができた。このように、窒化処理の処理時間については高い保磁力Hcを達成する上で重要な要素となっている。様々な実験を行った結果、処理時間を10時間以上に設定すると、保磁力Hcが87.5kA/m以上となった。この時間は、窒化処理の温度によって多少変化し、処理温度が高いほど若干処理時間を短くできるが、窒化処理の適正温度範囲として最も低い300℃においては処理時間を10時間以上にすることで、大きな保磁力Hcを得ることができた。このため、300℃より高い温度においては、処理時間を少なくとも10時間以上にしていれば、保磁力Hcを87.5kA/m以上にすることができる。 However, it was obtained that the nitriding treatment time was not sufficient if it was short. That is, as in the comparative examples S12 to S14 in FIG. 4, when the processing temperature of nitriding is 325 ° C., the order S is 0.4 or more even when the processing time is 4 hours, but the coercive force Hc Was less than 87.5 kA / m. On the other hand, as in Examples S18 to S24, when the processing temperature of nitriding is 300 ° C. and the processing time is 50 hours, the degree of order S is 0.4 or more and the coercive force Hc is 87. It was as large as 0.5 kA / m or more, and the magnetic properties were excellent. Thus, the nitriding treatment time is an important factor in achieving a high coercive force Hc. As a result of various experiments, when the treatment time was set to 10 hours or more, the coercive force Hc was 87.5 kA / m or more. This time slightly changes depending on the temperature of the nitriding treatment, and the processing time can be slightly shortened as the processing temperature is higher, but the processing time is set to 10 hours or more at 300 ° C. which is the lowest suitable temperature range for nitriding treatment. A large coercive force Hc could be obtained. For this reason, at a temperature higher than 300 ° C., the coercive force Hc can be 87.5 kA / m or more if the treatment time is at least 10 hours or more.
 なお、上記の図4に示した各例では、窒化処理の処理温度として、300℃、325℃、350℃、400℃、500℃の例が挙げているが、勿論、窒化処理の処理温度は、これらの例に限定されるものではない。本実施形態の製造方法の場合には、窒化処理の温度を少なくとも300℃以上500℃以下の範囲としていれば良く、より広い温度範囲にもなり得る。 In each example shown in FIG. 4, examples of nitriding treatment temperatures are 300 ° C., 325 ° C., 350 ° C., 400 ° C., and 500 ° C. Of course, the nitriding treatment temperature is However, it is not limited to these examples. In the case of the manufacturing method of the present embodiment, the temperature of the nitriding treatment may be at least 300 ° C. or more and 500 ° C. or less, and may be a wider temperature range.
 さらに、保磁力Hcについては、体積平均粒径にも影響を受けることが確認された。具体的には、体積平均粒径が大きいほど保磁力Hcが大きくなる。図4に示すように、比較例S17および実施例S18~S24に示すように、体積平均粒径が大きくなるに連れて保磁力Hcが大きくなっている。比較例S17のように体積平均粒径が30nmのときには、保磁力Hcが58.1kA/mと比較的大きな値になっていたものの、磁石材料や磁気記録材料としても用いることができる程の値ではなかった。しかしながら、実施例S18~S24のように、それぞれ体積平均粒径が45nm、60nm、80nm、120nm、140nm、130n、100nmのときには、保磁力Hcがいずれも87.5kA/m以上となっていた。 Furthermore, it was confirmed that the coercive force Hc is also affected by the volume average particle diameter. Specifically, the coercive force Hc increases as the volume average particle size increases. As shown in FIG. 4, as shown in Comparative Example S17 and Examples S18 to S24, the coercive force Hc increases as the volume average particle size increases. When the volume average particle size is 30 nm as in Comparative Example S17, the coercive force Hc is 58.1 kA / m, which is a relatively large value, but it can be used as a magnet material or a magnetic recording material. It wasn't. However, as in Examples S18 to S24, when the volume average particle diameter was 45 nm, 60 nm, 80 nm, 120 nm, 140 nm, 130 n, and 100 nm, the coercive force Hc was 87.5 kA / m or more.
 このように、体積平均粒径を45nm以上とすることで、規則度Sを0.4以上にできるだけでなく、保磁力Hcについても87.5kA/m以上の大きな値を得ることが可能となる。なお、体積平均粒径については、基本的には大きくなるほど保磁力Hcが大きくなるが、単磁区サイズを超える大きさとなるとその後保磁力Hcが低下していく。例えば、250nmを超えると保磁力Hcが低下するものも発生している。このため、体積平均粒径が大き過ぎないようにすることが望ましい。体積平均粒径が250nmを超えていても勿論構わないが、例えば体積平均粒径を60nm以上かつ250nm以下にすれば、より確実に所望の保磁力Hcを実現することができる。 Thus, by setting the volume average particle size to 45 nm or more, not only can the degree of order S be 0.4 or more, but also the coercive force Hc can be a large value of 87.5 kA / m or more. . As for the volume average particle diameter, basically, the larger the coercive force Hc, the larger the coercive force Hc. However, when the size exceeds the single magnetic domain size, the coercive force Hc decreases thereafter. For example, when the thickness exceeds 250 nm, some of the coercive force Hc is reduced. For this reason, it is desirable that the volume average particle diameter is not too large. Of course, the volume average particle diameter may exceed 250 nm, but for example, if the volume average particle diameter is 60 nm or more and 250 nm or less, the desired coercive force Hc can be realized more reliably.
 さらに、規則度Sと保磁力Hcとについても、密接な関係がある。すなわち、規則度Sが大きくなるほど保磁力Hcも大きくなる。そして、図13に示したように、規則度Sが0.4以上になると保磁力Hcが87.5kA/mのものも製造可能になってくる。そして、規則度Sが0.6以上になると、より保磁力Hcが87.5kA/m以上のものを製造できるようになる。勿論、図13に示されるように、規則度Sが大きいだけでは所望の保磁力Hcが得られないこともあるが、基本的には規則度Sが大きいほど保磁力Hcを大きな値にすることが可能となる。特に、規則度Sが0.7以上になると、保磁力Hcを95.5kA/m(1200[Oe])以上にすることが可能となる。 Furthermore, the degree of order S and the coercive force Hc are also closely related. That is, as the degree of order S increases, the coercive force Hc also increases. As shown in FIG. 13, when the regularity S is 0.4 or more, it is possible to manufacture a coercive force Hc of 87.5 kA / m. When the degree of order S is 0.6 or more, a product having a coercive force Hc of 87.5 kA / m or more can be manufactured. Of course, as shown in FIG. 13, the desired coercive force Hc may not be obtained if the regularity S is large, but basically the larger the regularity S, the larger the coercive force Hc. Is possible. In particular, when the degree of order S is 0.7 or more, the coercive force Hc can be 95.5 kA / m (1200 [Oe]) or more.
 以上説明したように、本実施形態では、規則度Sが0.4以上、かつ、保磁力Hcが87.5kA/m以上のFeNi規則合金としていることから、磁石材料や磁気記録材料としても用いることができる。特に、規則度Sが0.7以上、かつ、保磁力Hcが95.5kA/mのものとすることで、より保磁力Hcが高く良好な磁石材料や磁気記録材料とすることが可能となる。例えば、このような高い規則度Sおよび保磁力Hcを有するL1型のFeNi規則合金の粒子を磁粉として、この磁粉を押し固めて磁石形状にすることでFeNi規則合金磁石を得ることができる。 As described above, in this embodiment, since the FeNi ordered alloy has a degree of order S of 0.4 or more and a coercive force Hc of 87.5 kA / m or more, it is also used as a magnet material or a magnetic recording material. be able to. In particular, when the degree of order S is 0.7 or more and the coercive force Hc is 95.5 kA / m, it is possible to obtain a good magnetic material or magnetic recording material having a higher coercive force Hc. . For example, particles of L1 0 type FeNi ordered alloy having such a high degree of order S and coercive force Hc as a magnetic powder, it is possible to obtain a FeNi ordered alloy magnet by the magnet shape compacted the magnetic particles.
 このように形成したFeNi規則合金磁石は、例えば車両等に搭載されるモータ用の磁石として適用することができる。また、テープ状のフィルムに対してFeNi規則合金の粒子を塗布すること等により、磁気記録媒体となる磁気テープを構成することもできる。本実施形態のようにして得たFeNi規則合金については、高い保磁力Hcを有していることから、磁気記録媒体の磁性体として用いたときに、環境磁場によって保存データが書き換えられることを抑制できる。 The FeNi ordered alloy magnet formed in this way can be applied as a magnet for a motor mounted on a vehicle, for example. In addition, a magnetic tape serving as a magnetic recording medium can be constituted by applying FeNi ordered alloy particles to a tape-like film. Since the FeNi ordered alloy obtained as in the present embodiment has a high coercive force Hc, when it is used as a magnetic body of a magnetic recording medium, it is suppressed that stored data is rewritten by an environmental magnetic field. it can.
 また、このようなFeNi規則合金を得るには、FeNi不規則合金100を窒化する窒化処理を行った後、窒化処理されたFeNi不規則合金から窒素を除去する脱窒素処理を行えば良い。そして、窒化処理については、処理温度を300℃以上500℃以下、処理時間を10時間以上とし、脱窒素処理については、処理温度を250℃以上400℃以下とすれば良い。 In order to obtain such an FeNi ordered alloy, a nitriding treatment for nitriding the FeNi disordered alloy 100 may be performed, followed by a denitrification treatment for removing nitrogen from the nitridated FeNi disordered alloy. For the nitriding treatment, the treatment temperature is set to 300 ° C. to 500 ° C., the treatment time is set to 10 hours or more, and for the denitrification treatment, the treatment temperature is set to 250 ° C. to 400 ° C.
 また、Feの組成については50原子%の近傍が、L1型のFeNi規則合金を形成しやすい組成である。そして、本実施形態では、上記の実施例および比較例に示されるように、組成範囲Fe:55~47原子%の合金において、規則度Sが0.4以上の高い規則化が実現されている。 Further, the vicinity of 50 atomic% for the composition of Fe, a composition tends to form an L1 0 type FeNi ordered alloy. In the present embodiment, as shown in the above-described examples and comparative examples, high ordering with an order S of 0.4 or more is realized in an alloy having a composition range of Fe: 55 to 47 atomic%. .
 また、FeNi不規則合金については、試料形状は特定しないが、窒化処理および脱窒素処理の短時間化のために、上述のように、粉末状試料であることが望ましい。特に、窒化処理に関しては時間を要することから、これらの処理を迅速に行うためには、FeNi不規則合金はナノ粒子試料であることが望ましい。そして、体積平均粒径を45nm以上とすることで、より保磁力Hcの高いFeNi規則合金を得ることができる。 Further, although the sample shape of the FeNi disordered alloy is not specified, it is desirable to be a powder sample as described above in order to shorten the nitriding treatment and the denitrification treatment. In particular, since the nitriding process takes time, it is desirable that the FeNi disordered alloy is a nanoparticle sample in order to perform these processes quickly. And an FeNi ordered alloy with higher coercive force Hc can be obtained by setting the volume average particle size to 45 nm or more.
 また、本実施形態では、上述のように、作製法の異なるFeNi不規則合金の粉末について規則化を確認している。さらに言えば、この不規則合金の作製方法は、上記した熱プラズマ法、火炎噴霧法、共沈法の各方法に限定されるものではない。なお、図4中には示していないが、不規則合金の作成方法として、熱プラズマ法以外の火炎噴霧法や共沈法の各方法で作成した不規則合金を用いて、窒化処理条件や脱窒素条件を実施例S18~S24の条件とした場合でも、これら各実施例と同様の結果が得られる。 Further, in this embodiment, as described above, the ordering of the powders of FeNi disordered alloys having different production methods is confirmed. Furthermore, the production method of the disordered alloy is not limited to the above-described thermal plasma method, flame spray method, and coprecipitation method. Although not shown in FIG. 4, as a method for producing an irregular alloy, nitriding treatment conditions and removal are performed using irregular alloys produced by flame spraying methods other than the thermal plasma method and coprecipitation methods. Even when the nitrogen conditions are the conditions of Examples S18 to S24, the same results as those of these Examples are obtained.
 また、L1型のFeNi規則合金を形成するためには、窒化処理された窒化物における窒素濃度は、Fe、Niおよび窒素の総量に対する原子量比として20原子%から33原子%程度が望ましい。 Also, L1 to form a 0 type FeNi ordered alloy, the nitrogen concentration in the nitride treated nitride, Fe, about 33 atomic% to 20 atomic% as atomic weight ratio to the total amount of Ni and nitrogen is preferable.
 また、窒化法、脱窒素法について限定するものではないが、本実施形態によれば、上記のように、アンモニアガスによる窒化、水素ガスによる脱窒素を行うことで不純物を混入させることなく、L1型のFeNi規則合金を得ることができる。 Further, although not limited to the nitridation method and the denitrification method, according to the present embodiment, as described above, L1 can be performed without mixing impurities by performing nitridation with ammonia gas and denitrification with hydrogen gas. A zero- type FeNi ordered alloy can be obtained.
 なお、上記実施例および比較例に代表されるように、FeNi不規則合金に窒化処理を行った後、窒素を除去する脱窒素処理を行うことにより、規則度Sが0.4以上で保磁力Hcが87.5kA/m以上という高い値のL1型のFeNi規則合金にできる。これは、上記した従来のような分子線エピタキシーによる積層方法や、中性子照射しながら熱処理する方法に比べて、装置的にも工程的にも簡易な方法である。よって、本実施形態によれば、所望の規則度Sおよび保磁力Hcを有するL1型のFeNi規則合金を、容易に合成することができる。 As represented by the above examples and comparative examples, after performing nitriding treatment on the FeNi disordered alloy, denitrification treatment for removing nitrogen is performed, so that the degree of order S is 0.4 or more and the coercive force. Hc can be the L1 0 type FeNi ordered alloy of high as or higher 87.5kA / m. This is a simple method both in terms of apparatus and process as compared with the conventional laminating method by molecular beam epitaxy and the method of heat treatment while irradiating with neutrons. Therefore, according to the present embodiment, the L1 0 type FeNi ordered alloy having a desired degree of order S and coercivity Hc, it can be easily synthesized.
 (第2実施形態)
 第2実施形態について説明する。本実施形態は、第1実施形態に対して更に規則度Sを高くできるようにするものである。本実施形態においても、基本的な製造工程については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Second Embodiment)
A second embodiment will be described. In this embodiment, the regularity S can be further increased as compared with the first embodiment. Also in the present embodiment, the basic manufacturing process is the same as that of the first embodiment, and therefore only the parts different from the first embodiment will be described.
 本実施形態では、FeNi不規則合金からL1型のFeNi規則合金を形成する際に、中間生成物を生成することによって規則度Sを更に高くする。上記第1実施形態においても、窒化処理と脱窒素処理を行っているが、本実施形態では、窒化処理を終えたときに中間生成物としてFeNiNが生成されるようにする。このとき、窒化処理によって的確に中間生成物が生成されるように、窒化処理に先立ち、FeNi不規則合金の表面に形成されている酸化膜の除去処理を行うようにしている。そして、中間生成物となるFeNiNから脱窒素処理を行うことで、L1型のFeNi規則合金を形成する。 In the present embodiment, when forming the L1 0 type FeNi ordered alloy from FeNi disordered alloy, further increasing the degree of order S by generating an intermediate product. In the first embodiment as well, nitriding and denitrifying are performed, but in this embodiment, FeNiN is generated as an intermediate product when nitriding is completed. At this time, the oxide film formed on the surface of the FeNi disordered alloy is removed prior to the nitriding treatment so that the intermediate product is accurately generated by the nitriding treatment. By performing the denitrification process from FeNiN which is an intermediate product, to form an L1 0 type FeNi ordered alloy.
 具体的には、図14に示すように、FeNi不規則合金を窒化処理を行い、図1に示したIIサイトに窒素を取り込むことでIIサイトにNiを多く含む中間生成物となるFeNiNを形成する。そして、脱窒素処理を行い、IIサイトから窒素を放出させることで、L1型のFeNi規則合金を構成する。 Specifically, as shown in FIG. 14, FeNi disordered alloy is subjected to nitriding treatment, and nitrogen is taken into the II site shown in FIG. 1 to form FeNiN as an intermediate product containing a large amount of Ni at the II site. To do. Then, a denitrification, by releasing nitrogen from II site, constituting the L1 0 type FeNi ordered alloy.
 まず、FeNi不規則合金を用意する。そして、FeNi不規則合金の表面に酸化膜が形成されていることから、窒化処理に先立ち、FeNi不規則合金の表面の酸化膜を除去する除去処理を行う。その後、除去処理に連続して窒化処理を行う。 First, an FeNi irregular alloy is prepared. Since the oxide film is formed on the surface of the FeNi disordered alloy, a removal process for removing the oxide film on the surface of the FeNi disordered alloy is performed prior to the nitriding process. Thereafter, a nitriding process is performed following the removal process.
 除去処理としては、酸化膜のエッチング雰囲気において、例えば300℃~450℃の間での熱処理を行う。これにより、FeNi不規則合金の表面の酸化膜が除去され、窒化され易い表面状態となる。窒化処理としては、Nを含む雰囲気において、例えば200℃~400℃の間での熱処理を行う。これにより、酸化膜除去によって窒化され易くなったFeNi不規則合金を的確に窒化することが可能となり、中間生成物となるFeNiNが形成される。なお、ここでの窒化処理については、酸化膜を除去してから行っているため、より窒化反応し易くなっており、第1実施形態の場合よりも低温度であっても良くなる。このため、窒化処理の温度を200℃~400℃としているが、この温度を超えても良く、第1実施形態のように500℃以下としていれば良い。 As the removal treatment, a heat treatment is performed at 300 ° C. to 450 ° C., for example, in an oxide film etching atmosphere. As a result, the oxide film on the surface of the FeNi disordered alloy is removed, and the surface state is easily nitrided. As the nitriding treatment, heat treatment is performed in an atmosphere containing N, for example, at 200 ° C. to 400 ° C. As a result, the FeNi disordered alloy that has been easily nitrided by removing the oxide film can be precisely nitrided, and FeNiN as an intermediate product is formed. Note that the nitriding treatment here is performed after removing the oxide film, so that the nitriding reaction is easier, and the temperature may be lower than in the case of the first embodiment. For this reason, the temperature of the nitriding treatment is set to 200 ° C. to 400 ° C., but this temperature may be exceeded, and it may be set to 500 ° C. or less as in the first embodiment.
 次に、中間生成物となるFeNiNに対して脱窒素処理を行う。脱窒素処理としては、脱窒素雰囲気において、例えば200~400℃の間での熱処理を行う。これにより、中間生成物から窒素が脱離し、L1型のFeNi規則合金を形成することができる。このように、中間生成物となるFeNiNを形成してから、L1型のFeNi規則合金を形成することで、より高い規則度Sを得ることが可能となる。 Next, denitrification treatment is performed on FeNiN as an intermediate product. As the denitrification treatment, heat treatment is performed at 200 to 400 ° C. in a denitrification atmosphere, for example. Thus, apart nitrogen from the intermediate product removed, it is possible to form an L1 0 type FeNi ordered alloy. Thus, after forming a FeNiN as the intermediate product, by forming the L1 0 type FeNi ordered alloy, it is possible to obtain a higher degree of order S.
 実際に、上記した除去処理、窒化処理および脱窒素処理を行い、L1型のFeNi規則合金を形成したときの具体例について説明する。 Indeed, the above-mentioned removal treatment is performed nitridation treatment and denitrification, a specific example of when forming an L1 0 type FeNi ordered alloy.
 まず、除去処理および窒化処理について、図15Aに示すプロファイルに従った処理を行った。 First, the removal process and the nitriding process were performed according to the profile shown in FIG. 15A.
 具体的には、上記した管状炉10もしくはマッフル炉などの加熱炉を用意し、加熱炉内に平均粒径30nmのFeNi不規則合金のナノ粒子試料を配置した。そして、加熱炉を室温から酸化膜の除去のための除去処理時の温度、ここでは400℃まで昇温させた。このとき、加熱炉内に存在する酸素によってナノ粒子試料が酸化することを抑制するために、不活性ガスを導入しており、ここではN(窒素)を導入しながら昇温工程を行った。 Specifically, a heating furnace such as the tubular furnace 10 or the muffle furnace described above was prepared, and a FeNi irregular alloy nanoparticle sample having an average particle diameter of 30 nm was placed in the heating furnace. Then, the heating furnace was heated from room temperature to a temperature at the time of removal treatment for removing the oxide film, here 400 ° C. At this time, in order to suppress the oxidation of the nanoparticle sample due to oxygen present in the heating furnace, an inert gas was introduced. Here, the temperature raising step was performed while introducing N 2 (nitrogen). .
 なお、不活性ガスとして、この後の窒化処理において利用することも可能なNを用いたが、N以外の不活性ガス、例えばAr(アルゴン)やHe(ヘリウム)等を用いるようにしても良い。 As the inert gas, N 2 that can be used in the subsequent nitriding treatment is used. However, an inert gas other than N 2 , such as Ar (argon) or He (helium), is used. Also good.
 そして、除去処理時の温度まで加熱炉を昇温させたら、Nの導入を停止して酸化膜のエッチングガスを導入することでエッチング雰囲気を生成し、所定時間加熱炉の温度を酸化膜の除去に必要な温度に維持した。本実験においては、エッチングガスとしてH(水素)を用いており、1L/minのレートでHを加熱炉内に導入し、加熱炉を1時間400℃に維持した。これにより、ナノ粒子試料の表面の酸化膜を除去した。 Then, when the temperature of the heating furnace is raised to the temperature at the time of the removal process, the introduction of N 2 is stopped and the etching gas for the oxide film is introduced to generate an etching atmosphere. The temperature required for removal was maintained. In this experiment, is used with H 2 (hydrogen) as an etching gas, and H 2 introduced into the furnace at a rate of 1L / min, was maintained heated furnace 1 hour 400 ° C.. Thereby, the oxide film on the surface of the nanoparticle sample was removed.
 酸化膜の除去に必要な時間については任意であるが、例えば10分以上の時間行うことで、酸化膜をある程度除去できることを確認している。また、酸化膜の除去の温度については、少なくとも300℃~450℃の間であれば良い。 The time required for removing the oxide film is arbitrary, but it has been confirmed that the oxide film can be removed to some extent by performing, for example, a time of 10 minutes or more. The temperature for removing the oxide film may be at least between 300 ° C. and 450 ° C.
 酸化膜の除去の温度の下限値については、少なくとも300℃以上であれば酸化膜を除去できることを確認していることから300℃としている。ただし、300℃未満であってもあっても、時間を掛ければ酸化膜の除去が行えると考えられる。また、酸化膜の除去の温度の上限値については、この後のFeNi不規則合金の窒化が容易に行えるようにするために規定している。すなわち、酸化膜の除去の温度を450℃より高くすると、酸化膜が除去されたFeNi不規則合金の表面が焼結し、窒化し難くなる。したがって、FeNi不規則合金の表面が焼結されることを抑制するために450℃以下としている。また、加熱炉内へのエッチングガスの導入レートについも任意であり、例えばHの場合、少なくとも0.3~5L/minの範囲であれば酸化膜を除去できた。 The lower limit of the temperature for removing the oxide film is set to 300 ° C. because it has been confirmed that the oxide film can be removed if it is at least 300 ° C. or higher. However, even if it is less than 300 ° C., it is considered that the oxide film can be removed over time. Further, the upper limit value of the temperature for removing the oxide film is defined in order to facilitate the subsequent nitriding of the FeNi disordered alloy. That is, when the temperature for removing the oxide film is higher than 450 ° C., the surface of the FeNi disordered alloy from which the oxide film has been removed is sintered and is not easily nitrided. Accordingly, the temperature is set to 450 ° C. or lower in order to suppress the sintering of the FeNi disordered alloy surface. The rate of introduction of the etching gas into the heating furnace is also arbitrary. For example, in the case of H 2 , the oxide film can be removed if it is in the range of at least 0.3 to 5 L / min.
 このようにして、酸化膜の除去処理を終えた後、同じ加熱炉内において窒化処理を継続して行った。具体的には、加熱炉への導入ガスをエッチングガスから窒化ガスに切り替え、加熱炉内をNが含まれる雰囲気とし、窒化に必要な温度を維持した。本実験においては、窒化ガスとしてNH(アンモニア)を用いており、5L/minのレートで加熱炉内に導入し、加熱炉を50時間300℃に維持した。これにより、ナノ粒子試料が窒化され、中間生成物となるFeNiNが形成された。 Thus, after finishing the removal process of the oxide film, the nitriding process was continuously performed in the same heating furnace. Specifically, the gas introduced into the heating furnace was switched from the etching gas to the nitriding gas, the atmosphere inside the heating furnace was made to contain N, and the temperature necessary for nitriding was maintained. In this experiment, NH 3 (ammonia) was used as the nitriding gas, which was introduced into the heating furnace at a rate of 5 L / min, and the heating furnace was maintained at 300 ° C. for 50 hours. Thereby, the nanoparticle sample was nitrided, and FeNiN as an intermediate product was formed.
 窒化処理に必要な時間については任意であるが、例えば10時間行うことで、中間生成物となるFeNiNが合成できることを確認している。また、窒化処理の温度については、少なくとも200℃~400℃の間であれば良い。Nが含まれる雰囲気を生成するための加熱炉内への窒化ガスの導入レートについも任意であり、例えばNHの場合、少なくとも0.1~10L/minの範囲であればナノ粒子試料を窒化できた。 Although the time required for the nitriding treatment is arbitrary, for example, it has been confirmed that FeNiN as an intermediate product can be synthesized by performing for 10 hours. The nitriding temperature may be at least between 200 ° C. and 400 ° C. The introduction rate of the nitriding gas into the heating furnace for generating the atmosphere containing N is also arbitrary. For example, in the case of NH 3 , the nanoparticle sample is nitrided at least in the range of 0.1 to 10 L / min. did it.
 このように、酸化膜の除去処理の後に引き続いて窒化処理を行った。このようにすることで、酸化膜を除去したFeNi不規則合金の表面に再び酸化膜が形成されることを抑制できると共に、再び昇温工程を行わなくて済み、熱処理の簡素化および時間短縮化を図ることが可能となる。 Thus, the nitridation process was performed subsequently to the oxide film removal process. By doing so, it is possible to suppress the formation of an oxide film again on the surface of the FeNi disordered alloy from which the oxide film has been removed, and it is not necessary to perform the temperature raising process again, simplifying the heat treatment and shortening the time. Can be achieved.
 続いて、脱窒素処理を行った。脱窒素処理については、図15Bに示すプロファイルに従った処理を行った。ここでは窒化処理後に時間を置いて脱窒素処理を行っているが、これらを連続して行うことも可能である。 Subsequently, denitrification was performed. About the denitrification process, the process according to the profile shown to FIG. 15B was performed. Here, denitrification is performed after a nitridation process, but it is also possible to perform these continuously.
 まず、上記した管状炉10もしくはマッフル炉などの加熱炉を用意し、加熱炉内に図15Aのプロファイルに従って生成した中間生成物となるFeNiNを配置した。そして、加熱炉を室温から脱窒素処理時の温度、ここでは300℃まで昇温させた。このときも、加熱炉内に存在する酸素によって中間生成物であるFeNiNが酸化することを抑制するために、不活性ガスを導入しており、ここではNを導入しながら昇温工程を行った。 First, a heating furnace such as the tubular furnace 10 or the muffle furnace described above was prepared, and FeNiN as an intermediate product generated according to the profile of FIG. 15A was placed in the heating furnace. And the heating furnace was heated up from room temperature to the temperature at the time of a denitrification process, 300 degreeC here. In this case, in order to FeNiN an intermediate product by oxygen present in the heating furnace is prevented from being oxidized, and introducing an inert gas, subjected to heated process while introducing N 2 here It was.
 そして、脱窒素処理時の温度まで加熱炉を昇温させたら、Nの導入を停止して脱窒素処理を行うことができる雰囲気を生成し、所定時間加熱炉の温度を脱窒素に必要な温度に維持した。本実験においては、H(水素)を用いて脱窒素を行うことができる雰囲気を生成しており、1L/minのレートでHを加熱炉内に導入し、加熱炉を4時間300℃に維持した。これにより、中間生成物であるFeNiNから脱窒素を行った。 Then, when the heating furnace is heated up to the temperature at the time of denitrification treatment, an atmosphere in which introduction of N 2 is stopped and denitrification treatment can be performed is generated, and the temperature of the heating furnace is necessary for denitrification for a predetermined time. Maintained at temperature. In this experiment, an atmosphere in which denitrification can be performed using H 2 (hydrogen) is generated, H 2 is introduced into the heating furnace at a rate of 1 L / min, and the heating furnace is kept at 300 ° C. for 4 hours. Maintained. Thereby, denitrification was performed from FeNiN which is an intermediate product.
 脱窒素処理に必要な時間については任意であるが、例えば1時間以上行うことで、脱窒素処理によってL1型のFeNi規則合金を生成できることを確認している。また、脱窒素処理の温度については、少なくとも200℃~400℃の間であれば良いことを確認している。また、脱窒素処理が行える雰囲気を生成するための加熱炉内へのガスの導入レートについても任意であり、例えばHの場合、少なくとも0.1~5L/minの範囲であれば脱窒素処理が行えた。 Optionally for the time required for the denitrification treatment, by performing for example 1 hour or more, it was confirmed that can generate L1 0 type FeNi ordered alloy by denitrification. Further, it has been confirmed that the temperature of the denitrification treatment may be at least between 200 ° C. and 400 ° C. Further, an arbitrary even the introduction rate of the gas into the heating furnace to generate an atmosphere denitrification can be performed, for example, in the case of H 2, denitrification treatment be in the range of at least 0.1 ~ 5L / min Was done.
 以上のような脱窒素処理を行うことで、L1型のFeNi規則合金を生成することができた。このように形成したL1型のFeNi規則合金について、材料全体の平均的な規則度Sを求めた。具体的には、粉末X線回折パターンにより、規則度Sを求めた。 By performing the denitrification treatment as described above, we were able to generate L1 0 type FeNi ordered alloy. This so-formed L1 0 type FeNi ordered alloy was determined an average order parameter S of the whole material. Specifically, the regularity S was determined from the powder X-ray diffraction pattern.
 例えば、規則度Sが1である場合におけるL1型のFeNi規則合金の粉末のX線回折パターンは、図16のように表される。規則度Sは、X線回折パターンのうち、超格子反射である(001)面からの回折ピーク、つまり超格子回折のピークの積分強度と、(111)面からの回折ピーク、つまり基本回折のピークの積分強度との比である回折強度比に対して図17に示す関係を有している。このため、本実施形態のようにして生成したL1型のFeNi規則合金についても、X線回折パターンを求め、その結果から規則度Sを得ることができる。 For example, X-ray diffraction pattern of the powder of L1 0 type FeNi ordered alloy when the degree of order S is 1, is represented as shown in FIG. 16. The regularity S is the integrated intensity of the diffraction peak from the (001) plane that is the superlattice reflection, that is, the peak of the superlattice diffraction, and the diffraction peak from the (111) plane, that is, the fundamental diffraction of the X-ray diffraction pattern. FIG. 17 shows the relationship with the diffraction intensity ratio, which is the ratio with the integrated intensity of the peak. Therefore, for the FeNi ordered alloy on to the generated L1 0 type and as in this embodiment, obtaining the X-ray diffraction pattern, it is possible to obtain a degree of order S from the result.
 具体的に、本実施形態のように、FeNi不規則合金から酸化膜の除去処理を行ってから窒化処理を行って中間生成物であるFeNiNを生成し、さらに脱窒素処理を行ってL1型のFeNi規則合金を生成したときのX線回折パターンを求めた。図18は、その結果を示している。 Specifically, as in the present embodiment, FeNi irregular after performing removal processing of oxide film from the alloy subjected to nitriding treatment to generate a FeNiN an intermediate product, L1 0 type further performing denitrification X-ray diffraction pattern was obtained when an FeNi ordered alloy was produced. FIG. 18 shows the result.
 図18に示されるように、(001)面において超格子回折のピークが生じていることから、FeNi超格子ができていることが判る。この結果に基づいて、回折強度比を算出したところ、回折強度比が0.8であった。この回折強度比=0.8のときの規則度Sを図17から求めると、規則度Sが0.71という高い値になった。 As shown in FIG. 18, since a peak of superlattice diffraction occurs in the (001) plane, it can be seen that a FeNi superlattice is formed. When the diffraction intensity ratio was calculated based on this result, the diffraction intensity ratio was 0.8. When the regularity S when the diffraction intensity ratio = 0.8 is obtained from FIG. 17, the regularity S is as high as 0.71.
 このように、本実施形態の製造方法によって生成したL1型のFeNi規則合金について、高い規則度Sを得ることができた。さらに、このL1型のFeNi規則合金について、磁気特性評価も行ったところ、異方性磁界として1120kA/mという比較的高い値を得ることができた。 Thus, the L1 0 type FeNi ordered alloy produced by the production method of the present embodiment, it was possible to obtain a high degree of order S. Furthermore, this L1 0 type FeNi ordered alloy, where also performed magnetic characterization, it was possible to obtain a relatively high value of 1120kA / m as anisotropy field.
 以上説明したように、本実施形態では、FeNi不規則合金に対して窒化処理を行って中間生成物であるFeNiNを生成し、さらに脱窒素処理を行ってL1型のFeNi規則合金を生成している。このような製造方法により、全体の平均的な規則度Sが0.7以上という高い値となるL1型のFeNi規則合金を容易に生成することが可能となる。そして、このように高い規則度Sとすることで、FeNi規則合金の保磁力Hcについても、高い値にすることが可能となる。したがって、より保磁力Hcが87.5kA/m以上のFeNi規則合金を得やすくすることが可能となる。 As described above, in the present embodiment, generates a FeNi an intermediate product by performing a nitriding process on disordered alloy Fenin, it generates an L1 0 type FeNi ordered alloy further subjected to denitrification ing. By such a manufacturing method, the average degree of order S of the whole it is possible to easily generate an L1 0 type FeNi ordered alloy as a high as 0.7 or more. And by setting it as this high degree of order S, it becomes possible also to make high value also about the coercive force Hc of a FeNi ordered alloy. Therefore, it is possible to easily obtain an FeNi ordered alloy having a coercive force Hc of 87.5 kA / m or more.
 特に、FeNi不規則合金の表面に形成されている酸化膜を除去するための除去処理を行ってから窒化処理を行うようにすることで、より的確に中間生成物を生成することが可能となる。したがって、除去処理を行うことで、より高い規則度Sを有するL1型のFeNi規則合金を得ることが可能となる。 In particular, an intermediate product can be generated more accurately by performing a nitriding process after performing a removing process for removing the oxide film formed on the surface of the FeNi disordered alloy. . Therefore, by performing the removal processing, it is possible to obtain L1 0 type FeNi ordered alloy having a higher degree of order S.
 なお、本実施形態では、酸化膜の除去を行うこと、窒化処理によって中間生成物を得ること、窒化処理の処理温度をより低温にできることについて、第1実施形態と異なることを示した。これ以外の事項、例えば脱窒素処理の時間や、体積平均粒径等については、第1実施形態と同様のことが言える。 In the present embodiment, it has been shown that the removal of the oxide film, the obtaining of an intermediate product by nitriding treatment, and the lowering of the nitriding treatment temperature can be made different from the first embodiment. Other matters, such as the time for denitrification, the volume average particle diameter, etc., can be said to be the same as in the first embodiment.
 (他の実施形態)
 本開示は、上記した実施形態に準拠して記述されたが、当該実施形態に限定されるものではなく、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
(Other embodiments)
Although the present disclosure has been described based on the above-described embodiment, the present disclosure is not limited to the embodiment, and includes various modifications and modifications within an equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.
 例えば、第1実施形態では窒化処理および脱窒素処理の条件の一例について説明した。しかしながら、ここで説明したのは各条件の一例を示したに過ぎない。すなわち、窒化処理および脱窒素処理によって、規則度Sが0.4以上、かつ、保磁力Hcが87.5kA/m以上のL1型のFeNi規則合金を得ることができるならば、これら処理の処理温度、処理時間について、上記の例に限定するものではない。同様に、第2実施形態では、酸化膜の除去処理、窒化処理および脱窒素処理の条件の一例について説明したが、これらについても各条件の一例を示したに過ぎない。すなわち、規則度Sが0.4以上、かつ、保磁力Hcが87.5kA/m以上のL1型のFeNi規則合金を得ることができるならば、これら処理の処理温度、処理時間について、上記の例に限定するものではない。 For example, in the first embodiment, an example of the conditions for nitriding and denitrifying has been described. However, what has been described here is merely an example of each condition. That is, the nitriding treatment and denitrification treatment, the degree of order S is 0.4 or more, and, if the coercive force Hc can be obtained FeNi ordered alloy of the above L1 0 type 87.5kA / m, these processes The processing temperature and processing time are not limited to the above example. Similarly, in the second embodiment, examples of the conditions for the oxide film removal process, the nitriding process, and the denitrifying process have been described. However, these are merely examples of the respective conditions. That is, the degree of order S is 0.4 or more, and, if it is possible to coercive force Hc obtain 87.5kA / m or more L1 0 type FeNi ordered alloy, processing temperatures of these processes, the processing time, the It is not limited to the example.
 また、上記第1、第2実施形態では、窒化処理および脱窒素処理を行うことによって、L1型のFeNi規則合金を得ているが、窒化処理および脱窒素処理以外の手法によってL1型のFeNi規則合金を得るようにしても良い。すなわち、FeとNiとがL1型のFeNi規則構造と同じ格子構造で整列した化合物を合成する処理を行ったのち、この化合物からFeとNi以外の不要な元素を除去する処理とを行うことでL1型のFeNi規則合金を得るようにしても良い。 Further, in the first and second embodiment, by performing the nitriding treatment and denitrification treatment, to obtain an L1 0 type FeNi ordered alloy, the L1 0 type by a method other than the nitriding treatment and denitrification An FeNi ordered alloy may be obtained. That is, after performing the process of the Fe and Ni to synthesize compounds that are aligned in the same lattice structure as the L1 0 type FeNi ordered structure, by performing a process of removing unnecessary elements other than Fe and Ni from the compound in may be obtained an L1 0 type FeNi ordered alloy.
 また、上記実施形態にかかるL1型のFeNi規則合金は、磁石材料および磁気記録材料等の磁性材料に適用されるが、このFeNi規則合金の適用範囲は、磁性材料に限定されるものではない。 Also, L1 0 type FeNi ordered alloy according to the embodiment is applied to a magnetic material such as magnetic materials and magnetic recording materials, the scope of the FeNi ordered alloy is not limited to a magnetic material .

Claims (7)

  1.  L1型の規則構造を有し、材料の全体の平均的な規則度が0.4以上、かつ、保磁力が87.5kA/m以上であるFeNi規則合金。 Having an L1 0 type ordered structure, overall average degree of order of the material is 0.4 or more, and, FeNi ordered alloy coercivity is 87.5kA / m or more.
  2.  体積平均粒径が45nm以上とされている請求項1に記載のFeNi規則合金。 The FeNi ordered alloy according to claim 1, wherein the volume average particle diameter is 45 nm or more.
  3.  前記規則度が0.7以上、かつ、前記保磁力が97.5kA/m以上である請求項1または2に記載のFeNi規則合金。 The FeNi ordered alloy according to claim 1 or 2, wherein the degree of order is 0.7 or more and the coercive force is 97.5 kA / m or more.
  4.  請求項1ないし3のいずれか1つに記載のFeNi規則合金を含み構成されたFeNi規則合金磁石。 An FeNi ordered alloy magnet comprising the FeNi ordered alloy according to any one of claims 1 to 3.
  5.  L1型の規則構造を有するFeNi規則合金の製造方法であって、
     FeNi不規則合金(100)を窒化する窒化処理を行うことと、
     前記窒化処理されたFeNi不規則合金から窒素を除去する脱窒素処理を行うことにより、材料の全体の平均的な規則度が0.4以上、かつ、保磁力が87.5kA/m以上であるL1型のFeNi規則合金を得ることと、を含み、
     前記窒化処理を行うことでは、前記窒化処理の処理温度を300℃以上500℃以下とし、処理時間を10時間以上とするFeNi規則合金の製造方法。
    A method of manufacturing a FeNi ordered alloy having an L1 0 type ordered structure,
    Performing a nitriding treatment to nitride the FeNi disordered alloy (100);
    By performing a denitrification process for removing nitrogen from the nitridated FeNi disordered alloy, the overall average degree of order of the material is 0.4 or more and the coercive force is 87.5 kA / m or more. anda to obtain L1 0 type FeNi ordered alloy,
    By performing the nitriding treatment, a method of producing an FeNi ordered alloy in which a treatment temperature of the nitriding treatment is set to 300 ° C. or more and 500 ° C. or less and a treatment time is set to 10 hours or more.
  6.  L1型の規則構造を有するFeNi規則合金の製造方法であって、
     FeとNiとがL1型のFeNi規則構造と同じ格子構造で整列した化合物を合成することと、
     前記化合物からFeとNi以外の不要な元素を除去することでL1型のFeNi規則合金を生成することと、を含み、
     前記化合物を合成することでは、処理温度を200℃以上500℃以下とし、処理時間を10時間以上として、FeNi不規則合金を窒化処理することで前記化合物として中間生成物となるFeNiNを合成するFeNi規則合金の製造方法。
    A method of manufacturing a FeNi ordered alloy having an L1 0 type ordered structure,
    And the Fe and the Ni to synthesize compounds that are aligned in the same lattice structure as the L1 0 type FeNi ordered structure,
    Anda generating an L1 0 type FeNi ordered alloy by removing unnecessary elements other than Fe and Ni from the compound,
    By synthesizing the compound, FeNiN is synthesized as an intermediate product as the compound by nitriding the FeNi disordered alloy at a treatment temperature of 200 ° C. or more and 500 ° C. or less and a treatment time of 10 hours or more. Ordered alloy manufacturing method.
  7.  FeNi不規則合金から酸化膜を除去することを含み、
     前記化合物を合成することは、前記酸化膜を除去することの後に行われ、前記酸化膜が除去されたFeNi不規則合金を窒化処理することで中間生成物となるFeNiNを合成することである請求項6に記載のFeNi規則合金の製造方法。
    Removing the oxide film from the FeNi disordered alloy,
    The synthesis of the compound is performed after the oxide film is removed, and the FeNiN alloy as an intermediate product is synthesized by nitriding the FeNi disordered alloy from which the oxide film has been removed. Item 7. A method for producing an FeNi ordered alloy according to Item 6.
PCT/JP2018/015436 2017-04-13 2018-04-12 FeNi ORDERED ALLOY, FeNi ORDERED ALLOY MAGNET, AND METHOD FOR MANUFACTURING FeNi ORDERED ALLOY WO2018190405A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018002014.2T DE112018002014T5 (en) 2017-04-13 2018-04-12 ORDERED FeNi ALLOY, MAGNET OF ORDERED FeNi ALLOY AND METHOD FOR PRODUCING AN ORDERED FeNi ALLOY
CN201880024767.4A CN110506313B (en) 2017-04-13 2018-04-12 FeNi ordered alloy, FeNi ordered alloy magnet, and method for producing FeNi ordered alloy
US16/574,514 US11427895B2 (en) 2017-04-13 2019-09-18 FeNi ordered alloy, FeNi ordered alloy magnet, and method for manufacturing FeNi ordered alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017080025A JP6627818B2 (en) 2017-04-13 2017-04-13 FeNi ordered alloy, FeNi ordered alloy magnet, and method for producing FeNi ordered alloy
JP2017-080025 2017-04-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/574,514 Continuation US11427895B2 (en) 2017-04-13 2019-09-18 FeNi ordered alloy, FeNi ordered alloy magnet, and method for manufacturing FeNi ordered alloy

Publications (1)

Publication Number Publication Date
WO2018190405A1 true WO2018190405A1 (en) 2018-10-18

Family

ID=63792448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015436 WO2018190405A1 (en) 2017-04-13 2018-04-12 FeNi ORDERED ALLOY, FeNi ORDERED ALLOY MAGNET, AND METHOD FOR MANUFACTURING FeNi ORDERED ALLOY

Country Status (5)

Country Link
US (1) US11427895B2 (en)
JP (1) JP6627818B2 (en)
CN (1) CN110506313B (en)
DE (1) DE112018002014T5 (en)
WO (1) WO2018190405A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176842A1 (en) * 2021-02-16 2022-08-25 株式会社デンソー Feni ordered alloy structural body and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016036856A1 (en) * 2014-09-02 2016-03-10 Northeastern University Rare-earth-free permanent magnetic materials based on fe-ni
JP2016079484A (en) * 2014-10-20 2016-05-16 株式会社デンソー Magnetic nanoparticle, method for producing the same, and magnetic material
WO2016171232A1 (en) * 2015-04-23 2016-10-27 国立大学法人東北大学 FeNi ALLOY COMPOSITION CONTAINING L10-TYPE FeNi ORDERED PHASE, METHOD FOR PRODUCING FeNi ALLOY COMPOSITION INCLUDING L10-TYPE FeNi ORDERED PHASE, FeNi ALLOY COMPOSITION HAVING AMORPHOUS MAIN PHASE, PARENT ALLOY OF AMORPHOUS MEMBER, AMORPHOUS MEMBER, MAGNETIC MATERIAL, AND METHOD FOR PRODUCING MAGNETIC MATERIAL

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524078B2 (en) 2002-05-31 2010-08-11 富士フイルム株式会社 Magnetic particle and method for manufacturing the same, and magnetic recording medium and method for manufacturing the same
JP5892662B2 (en) 2011-04-11 2016-03-23 国立大学法人北海道大学 L10 type FeNi alloy particles and method for producing the same, magnetic composition and magnet
CN102719628B (en) * 2012-06-27 2014-08-20 陕西长岭电子科技有限责任公司 Two-step method for vacuum annealing of iron-nickel soft magnetic alloy
JP6388190B2 (en) 2012-11-29 2018-09-12 善治 堀田 Method for producing FeNi-based material including L10-type FeNi ordered alloy, and FeNi-based material
JP2014231624A (en) 2013-05-29 2014-12-11 株式会社デンソー METHOD FOR PRODUCING Fe-Ni ALLOY POWDER, Fe-Ni ALLOY POWDER AND MAGNET
JPWO2015053006A1 (en) * 2013-10-08 2017-03-09 国立大学法人東北大学 Method for producing L10 type FeNi ordered alloy
JP6332359B2 (en) 2015-10-14 2018-05-30 株式会社デンソー FeNi ordered alloy, method for producing FeNi ordered alloy, and magnetic material including FeNi ordered alloy
JP2017080025A (en) 2015-10-27 2017-05-18 株式会社平和 Game machine
CN105374374B (en) * 2015-10-30 2018-08-10 钢铁研究总院 A kind of high density, low cost magnetic recording media FeNi alloys and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016036856A1 (en) * 2014-09-02 2016-03-10 Northeastern University Rare-earth-free permanent magnetic materials based on fe-ni
JP2016079484A (en) * 2014-10-20 2016-05-16 株式会社デンソー Magnetic nanoparticle, method for producing the same, and magnetic material
WO2016171232A1 (en) * 2015-04-23 2016-10-27 国立大学法人東北大学 FeNi ALLOY COMPOSITION CONTAINING L10-TYPE FeNi ORDERED PHASE, METHOD FOR PRODUCING FeNi ALLOY COMPOSITION INCLUDING L10-TYPE FeNi ORDERED PHASE, FeNi ALLOY COMPOSITION HAVING AMORPHOUS MAIN PHASE, PARENT ALLOY OF AMORPHOUS MEMBER, AMORPHOUS MEMBER, MAGNETIC MATERIAL, AND METHOD FOR PRODUCING MAGNETIC MATERIAL

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
vol. 3, no. 2, 21 July 2015 (2015-07-21), pages 606 - 608, ISSN: 2187-6886 *

Also Published As

Publication number Publication date
US11427895B2 (en) 2022-08-30
US20200010938A1 (en) 2020-01-09
CN110506313B (en) 2021-11-19
DE112018002014T5 (en) 2020-01-09
CN110506313A (en) 2019-11-26
JP2018182081A (en) 2018-11-15
JP6627818B2 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
JP6729760B2 (en) FeNi ordered alloy powder and magnetic material containing the same
WO2017064989A1 (en) FeNi ORDERED ALLOY AND METHOD FOR MANUFACTURING FeNi ORDERED ALLOY
EP3239318B1 (en) Fe-based soft magnetic alloy ribbon and magnetic core comprising same
US7141127B2 (en) Low core loss magnetic alloy with high saturation magnetic flux density and magnetic parts made of same
KR20170039741A (en) Multilayer iron nitride hard magnetic materials
CN107614715A (en) Contain L10The iron-nickel alloy constituent of sections nickel rule phase, contain L10The manufacture method of the iron-nickel alloy constituent of sections nickel rule phase, the iron-nickel alloy constituent using amorphous as principal phase, the foundry alloy of amorphous material, amorphous material, the manufacture method of magnetic material and magnetic material
JP6248689B2 (en) Ferromagnetic alloy and method for producing the same
Zulhijah et al. α ″-Fe16N2 phase formation of plasma-synthesized core–shell type α-Fe nanoparticles under various conditions
WO2018190405A1 (en) FeNi ORDERED ALLOY, FeNi ORDERED ALLOY MAGNET, AND METHOD FOR MANUFACTURING FeNi ORDERED ALLOY
Takahashi et al. Perpendicular Exchange Anisotropy in Mn-Ir/Fe-Co/[Pt/Co] $ _ {4} $ Multilayers
JP2019534562A (en) Fe-Al alloy magnetic thin film
Mattei et al. Structure and thermal stability of Au–Fe alloy nanoclusters formed by sequential ion implantation in silica
US20200075201A1 (en) MAGNETIC MATERIAL COMPRISING FeNi ORDERED ALLOY AND MANUFACTURING METHOD FOR THE SAME
Kim et al. Microstructure and Magnetic Properties of CoFe Nanowires and Helical Nanosprings
JP6294534B1 (en) Manufacturing method of iron carbide material and iron carbide thin film material
JP5023103B2 (en) Permanent magnet material
WO2022176842A1 (en) Feni ordered alloy structural body and method for manufacturing same
JP2003332127A (en) Method for manufacturing soft magnetic ferrite material
JP2005076044A (en) Method for manufacturing hard magnetic composition
Deepchand Magnetic and structural properties of chemically synthesized Fe (Co)-Pt (Ni, Bi) nanoparticles
Kim et al. Synthesis and Characterization of FeNi-based Composite Powder from the Mixture of Fe-based Amorphous Powders and Crystalline Ni powders
WO2018212299A1 (en) MAGNETIC MATERIAL INCLUDING FeNi ORDERED ALLOY AND METHOD FOR MANUFACTURING SAME
Jaffari Morphological, magnetic and electronic structural studies of nanostructured spinel ferrites
Fajgar et al. ArF laser-induced deposition of carbon encapsulated CoFe nanoparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784845

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18784845

Country of ref document: EP

Kind code of ref document: A1