WO2018184235A1 - 一种Ti3C 2Tx/氧化石墨烯/Celgard复合隔膜 - Google Patents

一种Ti3C 2Tx/氧化石墨烯/Celgard复合隔膜 Download PDF

Info

Publication number
WO2018184235A1
WO2018184235A1 PCT/CN2017/079803 CN2017079803W WO2018184235A1 WO 2018184235 A1 WO2018184235 A1 WO 2018184235A1 CN 2017079803 W CN2017079803 W CN 2017079803W WO 2018184235 A1 WO2018184235 A1 WO 2018184235A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene oxide
celgard
ti3c2tx
separator
powder
Prior art date
Application number
PCT/CN2017/079803
Other languages
English (en)
French (fr)
Inventor
钟玲珑
Original Assignee
深圳市佩成科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市佩成科技有限责任公司 filed Critical 深圳市佩成科技有限责任公司
Priority to PCT/CN2017/079803 priority Critical patent/WO2018184235A1/zh
Publication of WO2018184235A1 publication Critical patent/WO2018184235A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of lithium-sulfur batteries, and in particular, to a method for preparing a lithium-sulfur battery separator.
  • a lithium-sulfur battery is a battery system in which lithium metal is used as a negative electrode and elemental sulfur is a positive electrode.
  • Lithium-sulfur batteries have two discharge platforms (approximately 2.4 V and 2.1 V), but their electrochemical reaction mechanisms are complex. Lithium-sulfur batteries have the advantages of high specific energy (2600 Wh/kg), high specific capacity (1675 mAh/g), and low cost, and are considered to be promising new generation batteries.
  • the highly polylithium polysulfide Li 2 S n (8 >n>4) generated during the electrode reaction is easily soluble in the electrolyte, forming a concentration difference between the positive and negative electrodes, under the action of the concentration gradient
  • the highly polylithium polysulfide is reduced by lithium metal to oligomeric lithium polysulfide.
  • the oligomeric lithium polysulfide aggregates at the negative electrode, eventually forming a concentration difference between the two electrodes, and then migrating to the positive electrode to be oxidized to a highly polylithium polysulfide.
  • the technical problem to be solved by the present invention is to provide a Ti 3 C 2 T ⁇ / graphene oxide / Celgard composite separator, Including commercial Celgard membrane and the surface of the Ti 3 C 2 T ⁇ / graphene oxide layers, the thickness of the Ti 3 C 2 TJ the graphene oxide layer is 1 ⁇ 10 ⁇ , said Ti 3 C 2 T ⁇ / The mass ratio of Ti 3 C 2 ⁇ ⁇ to graphene oxide in the graphene oxide layer was 1: 0.2-1.
  • the present invention provides a Ti 3 C 2 T ⁇ / graphene oxide / Celgard composite membrane preparation method is as follows:
  • Ti 3 AlC ⁇ 3 ⁇ 4 porcelain powder is etched in hydrofluoric acid, and the solution is added to deionized water for centrifugation after etching, and then the precipitate is dried to obtain a stacked sheet of Ti 3 C. 2 T x powder;
  • the concentration of hydrofluoric acid in step (1) is 20 ⁇ 3 ⁇ 4-50 ⁇ 3 ⁇ 4, and the corroded turns are 4-24 hours;
  • the mass ratio of the graphite oxide and the Ti 3 C 2 T x powder in the step (2) is 1: 0.2-1, and the ultrasonic ratio is 1-5 hours.
  • the concentration of the graphite oxide and Ti 3 C 2 T x powder suspension is 0.1-lmg/mL, and the Celgard membrane is directly contacted with the suspension on the filter paper.
  • Ti 3 C 2 T ⁇ / graphene oxide / Celgard ⁇ composite membrane on the Ti 3 C 2 T graphene oxide layer of Ti 3 C 2 T ⁇ group is -F Or -OH groups, and oxygen on the surface of graphene oxide are strong polar groups, which can form strong chemisorption of polysulfides formed during charge and discharge, and can effectively prevent polysulfides from passing through the separator to the negative electrode. , reduce the occurrence of the shuttle effect and improve the life of the lithium-sulfur battery.
  • FIG. 1 is a schematic view showing the structure of a Ti 3 C 2 T ⁇ / graphene oxide/Celgard composite separator of the present invention.
  • FIG. 2 is a flow chart for preparing a Ti 3 C 2 T ⁇ / graphene oxide/Celgard composite separator of the present invention.
  • FIG 3 is a cycle life diagram of a Ti 3 C 2 T ⁇ / graphene oxide/Celgard composite separator of the present invention.
  • Ti 3 AlC 2 ceramic powder is placed in a hydrofluoric acid having a mass concentration of 20% for 24 hours, and the solution is added to deionized water for centrifugation after etching, and then the precipitate is dried to obtain a stack.
  • Ti 3 AlC 2 ceramic powder is placed in a hydrofluoric acid having a mass concentration of 50% for 4 hours, and after etching, the solution is added to deionized water for centrifugation, and then the precipitate is dried to obtain a stack. Layered Ti 3 C 2 T morning;
  • Ti 3 AlC 2 ceramic powder is placed in hydrofluoric acid with a concentration of 30% for 20h, after etching, the solution is added to deionized water for centrifugation, and then the precipitate is dried to obtain a stack.
  • Ti 3 AlC 2 ceramic powder is placed in hydrofluoric acid with a concentration of 35% for 13h, after etching, the solution is added to deionized water for centrifugation, and then the precipitate is dried to obtain a stack. Layered Ti 3 C 2 T morning;
  • the comparative example uses a Celgard separator as a lithium-sulfur battery separator, and other conditions are the same as described above.
  • FIG. 3 is a cycle life diagram of a composite separator prepared in Example 1 of the present invention assembled into a lithium sulfur battery. It can be seen from the figure that the composite separator prepared by the present invention retains the capacity of more than 70% of the initial capacity after 400 times of charge and discharge, and the comparative example is assembled into a lithium-sulfur battery by using a Celgard separator, and the capacity is entered into the initial capacity after 200 cycles. 40%, indicating that the composite diaphragm can effectively suppress the shuttle effect and improve the life of the sulfur battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供一种Ti3C2Tx/氧化石墨烯/Celgard复合隔膜,包括Celgard隔膜和其表面的Ti3C 2T x/氧化石墨烯层组成,所述的Ti 3C2Tx/氧化石墨烯层的厚度为1~10μm,所述的Ti3C2Tx/氧化石墨烯层中Ti3C2Tx与氧化石墨烯的质量比为1:0.2-1。Ti3C2Tx/氧化石墨烯层中的Ti3C2Tx上的T为-F基团或 -OH基团,与氧化石墨烯表面的氧均为强极性基团,能对充放电过程中形成的多硫化物形成强烈的化学吸附,能有效的阻止多硫化物穿过隔膜到达负极,减少飞梭效应的发生,提高锂硫电池的寿命。

Description

发明名称:一种 Ti 3C 2Τ χ/氧化石墨烯 /Celgard复合隔膜
技术领域
[0001] 本发明涉及锂硫电池领域, 特别涉及一种锂硫电池隔膜的制备方法。
背景技术
[0002] 锂硫电池是以金属锂为负极, 单质硫为正极的电池体系。 锂硫电池的具有两个 放电平台 (约为 2.4 V和 2.1 V) , 但其电化学反应机理比较复杂。 锂硫电池具有 比能量高 (2600 Wh/kg) 、 比容量高 (1675 mAh/g) 、 成本低等优点, 被认为 是很有发展前景的新一代电池。
技术问题
[0003] 但是目前其存在着活性物质利用率低、 循环寿命低和安全性差等问题, 这严重 制约着锂硫电池的发展。 造成上述问题的主要原因有以下几个方面: (1) 单质 硫是电子和离子绝缘体, 室温电导率低 (5x10 ^s^m ) , 由于没有离子态的硫 存在, 因而作为正极材料活化困难; (2) 在电极反应过程中产生的高聚态多硫 化锂 Li 2S n (8 > n>4) 易溶于电解液中, 在正负极之间形成浓度差, 在浓度梯度 的作用下迁移到负极, 高聚态多硫化锂被金属锂还原成低聚态多硫化锂。 随着 以上反应的进行, 低聚态多硫化锂在负极聚集, 最终在两电极之间形成浓度差 , 又迁移到正极被氧化成高聚态多硫化锂。 这种现象被称为飞梭效应, 降低了 硫活性物质的利用率。 同吋不溶性的 Li 28和 Li 2S 2沉积在锂负极表面, 更进一步 恶化了锂硫电池的性能; (3) 反应最终产物 Li 2S同样是电子绝缘体, 会沉积在 硫电极上, 而锂离子在固态硫化锂中迁移速度慢, 使电化学反应动力学速度变 慢; (4) 硫和最终产物 Li 2S的密度不同, 当硫被锂化后体积膨胀大约 79%, 易 导致 28的粉化, 引起锂硫电池的安全问题。 上述不足制约着锂硫电池的发展 , 这也是目前锂硫电池研究需要解决的重点问题。
问题的解决方案
技术解决方案
[0004] 本发明要解决的技术问题是提供一种 Ti 3C 2T χ/氧化石墨烯 /Celgard复合隔膜, 包括商用 Celgard隔膜和其表面的 Ti 3C 2T χ/氧化石墨烯层组成, 所述的 Ti 3C 2T J 氧化石墨烯层的厚度为 1〜10μηι, 所述的 Ti 3C 2T χ/氧化石墨烯层中 Ti 3C 2Τ χ与氧 化石墨烯的质量比为 1 : 0.2-1。
[0005] 本发明提供一种 Ti 3C 2T χ/氧化石墨烯 /Celgard复合隔膜的制备方法如下:
[0006] (1) 将 Ti 3AlC ^¾瓷粉末放入氢氟酸中腐蚀, 腐蚀后溶液加入去离子水进行 离心处理, 然后将沉淀物烘干, 得到堆垛的层片状 Ti 3C 2T x粉体;
[0007] (2) 将氧化石墨和 Ti 3C 2T x粉体加入到水中超声分散, 形成的悬浮液, 再将 悬浮液加入到垫有 Celgard隔膜和滤纸的抽滤瓶中抽滤, 烘干后撕去滤纸及得到 T i 3C 2T χ/氧化石墨烯 /Celgard复合隔膜。
[0008] 步骤 (1) 中氢氟酸的浓度为 20<¾-50<¾, 腐蚀的吋间为 4-24小吋;
[0009] 步骤 (2) 中氧化石墨和 Ti 3C 2T x粉体的质量比为 1 : 0.2-1, 超声吋间为 1-5小吋
, 氧化石墨和 Ti 3C 2T x粉体悬浮液的浓度为 0.1-lmg/mL, 抽滤吋 Celgard隔膜在 滤纸的上面与悬浮液直接接触。
发明的有益效果
有益效果
[0010] 本发明具有如下有益效果: Ti 3C 2T χ/氧化石墨烯 /Celgard复合隔膜中 Ti 3C 2T 氧化石墨烯层中的 Ti 3C 2T χ上的 Τ为 -F基团或 -OH基团, 与氧化石墨烯表面的氧 均为强极性基团, 能对充放电过程中形成的多硫化物形成强烈的化学吸附, 能 有效的阻止多硫化物穿过隔膜到达负极, 减少飞梭效应的发生, 提高锂硫电池 的寿命。
对附图的简要说明
附图说明
[0011] 图 1是本发明的 Ti 3C 2T χ/氧化石墨烯 /Celgard复合隔膜结构示意图。
[0012] 图 2是本发明的 Ti 3C 2T χ/氧化石墨烯 /Celgard复合隔膜制备流程图。
[0013] 图 3是本发明的 Ti 3C 2T χ/氧化石墨烯 /Celgard复合隔膜的循环寿命图。
[0014] 其中, 1为 Ti 3C 2T x/氧化石墨烯层, 2为 Celgard隔膜。 本发明的实施方式
[0015] 下面结合附图, 对本发明的较优的实施例作进一步的详细说明:
[0016] 实施例 1
[0017] (1) 将 Ti3AlC2陶瓷粉末放入质量浓度为 20%的氢氟酸中腐蚀 24h, 腐蚀后溶 液加入去离子水进行离心处理, 然后将沉淀物烘干, 得到堆垛的层片状 Ti3C2T 崖;
[0018] (2) 将 10g氧化石墨和 2gTi3C2Tx粉体加入到水中超声分散, 超声吋间为 1小 吋, 形成浓度为 O.lmg/mL悬浮液, 再将悬浮液加入到垫有 Celgard隔膜和滤纸的 抽滤瓶中抽滤, 烘干后撕去滤纸及得到 Ti 3C 2T χ/氧化石墨烯 /Celgard复合隔膜。
[0019] 实施例 2
[0020] (1) 将 Ti3AlC2陶瓷粉末放入质量浓度为 50%的氢氟酸中腐蚀 4h, 腐蚀后溶 液加入去离子水进行离心处理, 然后将沉淀物烘干, 得到堆垛的层片状 Ti3C2T 晨;
[0021] (2) 将 10g氧化石墨和 10gTi3C2Tx粉体加入到水中超声分散, 超声吋间为 5小 吋, 形成浓度为 lmg/mL悬浮液, 再将悬浮液加入到垫有 Celgard隔膜和滤纸的抽 滤瓶中抽滤, 烘干后撕去滤纸及得到 Ti 3C 2T χ/氧化石墨烯 /Celgard复合隔膜。
[0022] 实施例 3
[0023] (1) 将 Ti3AlC2陶瓷粉末放入质量浓度为 30%的氢氟酸中腐蚀 20h, 腐蚀后溶 液加入去离子水进行离心处理, 然后将沉淀物烘干, 得到堆垛的层片状 Ti3C2T 崖;
[0024] (2) 将 10g氧化石墨和 6gTi3C2Tx粉体加入到水中超声分散, 超声吋间为 3小 吋, 形成浓度为 0.5mg/mL悬浮液, 再将悬浮液加入到垫有 Celgard隔膜和滤纸的 抽滤瓶中抽滤, 烘干后撕去滤纸及得到 Ti 3C 2T χ/氧化石墨烯 /Celgard复合隔膜。
[0025] 实施例 4
[0026] (1) 将 Ti3AlC2陶瓷粉末放入质量浓度为 40%的氢氟酸中腐蚀 15h, 腐蚀后溶 液加入去离子水进行离心处理, 然后将沉淀物烘干, 得到堆垛的层片状 Ti3C2T 崖;
[0027] (2) 将 10g氧化石墨和 4gTi3C2Tx粉体加入到水中超声分散, 超声吋间为 2小 吋, 形成浓度为 0.3mg/mL悬浮液, 再将悬浮液加入到垫有 Celgard隔膜和滤纸的 抽滤瓶中抽滤, 烘干后撕去滤纸及得到 Ti 3C 2T χ/氧化石墨烯 /Celgard复合隔膜。
[0028] 实施例 5
[0029] (1) 将 Ti 3AlC 2陶瓷粉末放入质量浓度为 35%的氢氟酸中腐蚀 13h, 腐蚀后溶 液加入去离子水进行离心处理, 然后将沉淀物烘干, 得到堆垛的层片状 Ti 3C 2T 晨;
[0030] (2) 将 10g氧化石墨和 8gTi 3C 2T x粉体加入到水中超声分散, 超声吋间为 4小 吋, 形成浓度为 0.7mg/mL悬浮液, 再将悬浮液加入到垫有 Celgard隔膜和滤纸的 抽滤瓶中抽滤, 烘干后撕去滤纸及得到 Ti 3C 2T χ/氧化石墨烯 /Celgard复合隔膜。
[0031] 锂硫电池的制备及性能测试; 将硫单质材料、 乙炔黑和 PVDF按质量比 70: 20 : 10在 NMP中混合, 涂覆在铝箔上为电极膜, 金属锂片为对电极, 实施例 1制备 的复合隔膜做为隔膜, lmol/L的 LiTFSI/DOL-DME (体积比 1: 1)为电解液, lmol/L 的 LiN03为添加剂, 在充满 Ar手套箱内组装成扣式电池, 采用 Land电池测试*** 进行恒流充放电测试。 充放电电压范围为 1-3V, 电流密度为 0.5C。
[0032] 对比例采用 Celgard隔膜为锂硫电池隔膜, 其他的条件与上述相同。
[0033]
[0034] 图 3是本发明实施例 1制备的复合隔膜组装成锂硫电池的循环寿命图。 从图中可 以看出本发明制备的复合隔膜进行 400次充放电后容量仍保有初始容量的 70%以 上, 而对比例采用 Celgard隔膜组装成锂硫电池, 进行 200次循环后容量进为初始 容量的 40%, 说明该复合隔膜能有效抑制飞梭效应, 提高硫电池的寿命。
[0035] 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认 定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术 人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发明的保护范围。

Claims

权利要求书
[权利要求 1] 一种 Ti 3C 2T χ/氧化石墨烯 /Celgard复合隔膜, 包括 Celgard隔膜和其表 面的 Ti 3C 2Τ χ/氧化石墨烯层组成, 所述的 Ti 3C 2Τ χ/氧化石墨烯层的 厚度为 1〜10μηι, 所述的 Ti 3C 2T χ/氧化石墨烯层中 Ti 3C 2T 与氧化石 墨烯的质量比为 1 : 0.2-1。
[权利要求 2] —种如权利要求 1所述的 Ti 3C 2T χ/氧化石墨烯 /Celgard复合隔膜的制备 方法, 其特征在于, 包括以下几个步骤:
步骤 (1) 将 Ti 3AlC ^¾瓷粉末放入氢氟酸中腐蚀, 腐蚀后溶液加入 去离子水进行离心处理, 然后将沉淀物烘干, 得到堆垛的层片状 Ti 3 C 2T X粉体;
步骤 (2) 将氧化石墨和 Ti 3C 2T x粉体加入到水中超声分散, 形成的 悬浮液, 再将悬浮液加入到垫有 Celgard隔膜和滤纸的抽滤瓶中抽滤
, 烘干后撕去滤纸及得到 Ti 3C 2T χ/氧化石墨烯 /Celgard复合隔膜。
[权利要求 3] 如权利要求 2所述的方法, 其特征在于, 所述步骤 (1) 中氢氟酸的浓 度为 20<¾-50<¾, 腐蚀的吋间为 4-24小吋。
[权利要求 4] 如权利要求 2所述的方法, 其特征在于, 所述步骤 (2) 中氧化石墨和
11 ^ 21\粉体的质量比为1: 0.2-1, 超声吋间为 1-5小吋。
[权利要求 5] 如权利要求 2所述的方法, 其特征在于, 所述步骤 (2) 中氧化石墨和
Ti 3C 2T χ粉体悬浮液的浓度为 0.1- lmg/mL, 抽滤吋 Celgard隔膜在滤纸 的上面与悬浮液直接接触。
PCT/CN2017/079803 2017-04-08 2017-04-08 一种Ti3C 2Tx/氧化石墨烯/Celgard复合隔膜 WO2018184235A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/079803 WO2018184235A1 (zh) 2017-04-08 2017-04-08 一种Ti3C 2Tx/氧化石墨烯/Celgard复合隔膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/079803 WO2018184235A1 (zh) 2017-04-08 2017-04-08 一种Ti3C 2Tx/氧化石墨烯/Celgard复合隔膜

Publications (1)

Publication Number Publication Date
WO2018184235A1 true WO2018184235A1 (zh) 2018-10-11

Family

ID=63712850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079803 WO2018184235A1 (zh) 2017-04-08 2017-04-08 一种Ti3C 2Tx/氧化石墨烯/Celgard复合隔膜

Country Status (1)

Country Link
WO (1) WO2018184235A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113078416A (zh) * 2021-03-22 2021-07-06 电子科技大学 一种纳米花状CoIn2S4颗粒/石墨烯复合修饰的隔膜
CN113745012A (zh) * 2021-07-28 2021-12-03 西交利物浦大学 MXene/rGO@生物炭水凝胶复合材料的制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993083A (zh) * 2015-05-21 2015-10-21 西北工业大学 一种锂硫电池氮化硼包覆隔膜的制备方法
CN105098162A (zh) * 2015-09-14 2015-11-25 哈尔滨工业大学 一种可用于锂离子电池负极的碳化钛纳米片/石墨烯复合材料的制备方法
CN106972141A (zh) * 2017-04-08 2017-07-21 深圳市佩成科技有限责任公司 一种Ti3C2Tx/氧化石墨烯/Celgard复合隔膜

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993083A (zh) * 2015-05-21 2015-10-21 西北工业大学 一种锂硫电池氮化硼包覆隔膜的制备方法
CN105098162A (zh) * 2015-09-14 2015-11-25 哈尔滨工业大学 一种可用于锂离子电池负极的碳化钛纳米片/石墨烯复合材料的制备方法
CN106972141A (zh) * 2017-04-08 2017-07-21 深圳市佩成科技有限责任公司 一种Ti3C2Tx/氧化石墨烯/Celgard复合隔膜

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113078416A (zh) * 2021-03-22 2021-07-06 电子科技大学 一种纳米花状CoIn2S4颗粒/石墨烯复合修饰的隔膜
CN113078416B (zh) * 2021-03-22 2022-03-15 电子科技大学 一种纳米花状CoIn2S4颗粒/石墨烯复合修饰的隔膜
CN113745012A (zh) * 2021-07-28 2021-12-03 西交利物浦大学 MXene/rGO@生物炭水凝胶复合材料的制备方法及应用

Similar Documents

Publication Publication Date Title
CN106328992B (zh) 一种锂离子电池和该锂离子电池的制备方法
CN105470576B (zh) 一种高压锂电池电芯及其制备方法、锂离子电池
WO2018184238A1 (zh) 一种Ti3C2Tx/PVDF/Celgard复合隔膜
WO2012177104A2 (ko) 리튬 공기 전지
WO2012164760A1 (ja) 電極活物質の製造方法及び電極活物質
WO2018184236A1 (zh) 一种锂硫电池复合隔膜
CN112259803B (zh) 一种锂离子叠芯及其应用
TW201501399A (zh) 正極合材及全固體型鋰硫電池
CN106972141A (zh) 一种Ti3C2Tx/氧化石墨烯/Celgard复合隔膜
CN110120493A (zh) 一种锂离子电池正极补锂方法
WO2017139984A1 (zh) 一种硫掺杂三维结构锂硫电池正极材料的制备方法
BR112020006122A2 (pt) método para produzir uma bateria de estado sólido.
CN106848165A (zh) 一种锂硫电池复合隔膜
CN108400298B (zh) 一种制备钠离子电池用石墨烯负载锑纳米管负极材料的方法及其应用
WO2017139982A1 (zh) 一种硼氮共掺杂三维结构锂硫电池正极材料的制备方法
CN114497566A (zh) 一种正极片和锂离子电池
CN115395091A (zh) 一种高性能复合固态电解质膜片及其制备方法和应用
WO2023108964A1 (zh) 一种锂离子电池
WO2018184235A1 (zh) 一种Ti3C 2Tx/氧化石墨烯/Celgard复合隔膜
WO2017139993A1 (zh) 一种核壳结构的石墨烯/碳包覆的掺杂硫化锂复合材料的制备方法
WO2018184237A1 (zh) 一种Ti3C2Tx/Nafion/Celgard复合隔膜
WO2017139990A1 (zh) 一种氧化铝空心球锂硫电池正极材料的制备方法
WO2017139997A1 (zh) 一种掺杂碳硫化锂核壳结构的正极材料的制备方法
WO2017139986A1 (zh) 一种磷掺杂三维结构锂硫电池正极材料的制备方法
JP2020053300A (ja) 全固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 17904991

Country of ref document: EP

Kind code of ref document: A1