WO2018181969A1 - 蒸着マスク、フレーム付き蒸着マスク、蒸着マスク準備体、蒸着パターン形成方法および有機半導体素子の製造方法 - Google Patents

蒸着マスク、フレーム付き蒸着マスク、蒸着マスク準備体、蒸着パターン形成方法および有機半導体素子の製造方法 Download PDF

Info

Publication number
WO2018181969A1
WO2018181969A1 PCT/JP2018/013798 JP2018013798W WO2018181969A1 WO 2018181969 A1 WO2018181969 A1 WO 2018181969A1 JP 2018013798 W JP2018013798 W JP 2018013798W WO 2018181969 A1 WO2018181969 A1 WO 2018181969A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
vapor deposition
resin
metal
deposition mask
Prior art date
Application number
PCT/JP2018/013798
Other languages
English (en)
French (fr)
Inventor
康子 曽根
博司 川崎
吉紀 廣部
小幡 勝也
亜沙子 成田
均 居城
千秋 初田
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to KR1020197022599A priority Critical patent/KR20190132989A/ko
Priority to JP2018566612A priority patent/JP6620899B2/ja
Priority to CN201880015841.6A priority patent/CN110382731B/zh
Priority to US16/494,802 priority patent/US10895008B2/en
Publication of WO2018181969A1 publication Critical patent/WO2018181969A1/ja
Priority to US17/121,916 priority patent/US20210214843A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/28Acidic compositions for etching iron group metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0015Production of aperture devices, microporous systems or stamps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]

Definitions

  • Embodiments of the present disclosure relate to a vapor deposition mask, a vapor deposition mask with a frame, a vapor deposition mask preparation, a vapor deposition pattern forming method, and an organic semiconductor element manufacturing method.
  • Formation of a vapor deposition pattern using a vapor deposition mask is usually performed by bringing a vapor deposition mask provided with an opening corresponding to a pattern to be vapor-deposited and an object to be vapor-deposited, and allowing a vapor deposition material released from a vapor deposition source to pass through the opening. It is performed by adhering to a vapor deposition object.
  • the vapor deposition mask used for forming the vapor deposition pattern includes, for example, a resin mask having a resin mask opening corresponding to a pattern to be deposited and a metal mask having a metal mask opening (sometimes referred to as a slit).
  • a vapor deposition mask (for example, Patent Document 1) formed by laminating and is known.
  • the main object of the embodiment of the present disclosure is to provide a vapor deposition mask capable of forming a high-definition vapor deposition pattern.
  • the vapor deposition mask according to the first embodiment of the present disclosure is provided with a metal mask provided with a metal mask opening, and a resin mask opening corresponding to a pattern for vapor deposition at a position overlapping the metal mask opening. It is a vapor deposition mask formed by laminating a resin mask, and the arithmetic average height (Sa) of the surface of the resin mask exposed from the metal mask opening is 0.8 ⁇ m or less.
  • the maximum height (Sz) of the surface of the resin mask exposed from the opening of the metal mask may be 2.5 ⁇ m or less.
  • the vapor deposition mask preparation according to the first embodiment of the present disclosure includes a metal mask provided with a metal mask opening, and a resin mask opening corresponding to a pattern formed by vapor deposition at a position overlapping the metal mask opening.
  • the arithmetic average height (Sa) of the surface of the resin layer exposed from the opening of the metal mask is 0.8 ⁇ m or less.
  • the maximum height (Sz) of the surface of the resin layer exposed from the opening of the metal mask may be 2.5 ⁇ m or less. .
  • the vapor deposition mask according to the second embodiment of the present disclosure is provided with a metal mask provided with a metal mask opening, and a resin mask opening corresponding to a pattern to be formed by vapor deposition at a position overlapping the metal mask opening.
  • the maximum height (Sz) of the surface of the resin mask on the side not in contact with the metal mask may be 2.0 ⁇ m or less.
  • a vapor deposition mask preparation includes a metal mask provided with a metal mask opening, and a resin mask opening corresponding to a pattern to be vapor deposited at a position overlapping the metal mask opening.
  • the arithmetic average height (Sa) of the surface of the resin layer that is not in contact with the metal mask is 0.5 ⁇ m or less.
  • the maximum height (Sz) of the surface of the resin layer on the side not in contact with the metal mask is 2.0 ⁇ m or less. Also good.
  • a vapor deposition mask according to a third embodiment of the present disclosure is a vapor deposition mask including a resin mask provided with a resin mask opening corresponding to a pattern to be vapor-deposited, and has an arithmetic average height on one surface of the resin mask.
  • the thickness (Sa) is 0.8 ⁇ m or less.
  • a metal layer may be laminated on the surface of the resin mask having an arithmetic average height (Sa) of 0.8 ⁇ m or less.
  • the arithmetic average height (Sa) of one surface of the resin mask is 0.5 ⁇ m or less, and the arithmetic average height (Sa) is 0.
  • the metal layer may be laminated
  • a deposition mask with a frame is a deposition mask with a frame including a frame and a deposition mask fixed to the frame, wherein the deposition mask is any one of the first to third aspects. It is a vapor deposition mask concerning the vapor deposition mask concerning embodiment.
  • the vapor deposition pattern forming method by the vapor deposition method according to the embodiment of the present disclosure uses the vapor deposition mask according to any one of the first to third embodiments.
  • the method for manufacturing an organic semiconductor element according to the embodiment of the present disclosure uses the vapor deposition mask according to any one of the first to third embodiments.
  • a high-definition vapor deposition pattern can be formed.
  • (A) is a schematic sectional drawing which shows an example of the vapor deposition mask concerning 1st Embodiment of this indication
  • (b) is the vapor deposition mask concerning 1st Embodiment of this indication from the surface side of a resin mask. It is a front view which shows an example when planarly viewed. It is a front view showing an example of a vapor deposition mask with a frame concerning an embodiment of this indication. It is a front view showing an example of a vapor deposition mask with a frame concerning an embodiment of this indication.
  • (A)-(c) is a front view which shows an example of the flame
  • FIG.1 (a) is a front view which shows an example when the vapor deposition mask concerning 1st Embodiment of this indication is planarly viewed from the metal mask side
  • FIG.1 (b) is FIG.1 (a). It is a schematic sectional drawing in the AA part. Note that a portion near the center of the vapor deposition mask in FIG. 1B is omitted.
  • a vapor deposition mask 100 includes a resin mask 20 having a plurality of resin mask openings 25 corresponding to a pattern to be vapor-deposited, and a metal mask opening 15.
  • the metal mask 10 is an evaporation mask 100 in which the resin mask opening 25 and the metal mask opening 15 are stacked so as to overlap each other.
  • the opening shape of the resin mask opening 25 and the metal mask opening 15 is rectangular, but the opening shape is not particularly limited, and the resin mask opening 25 and the metal mask opening 15 are not limited.
  • the opening shape may be a diamond shape or a polygonal shape, or may be a shape having a curvature such as a circle or an ellipse.
  • the rectangular or polygonal opening shape is a preferable opening shape of the resin mask opening 25 in that the light emission area can be increased as compared with the opening shape having a curvature such as a circle or an ellipse.
  • the resin material that is the main material of the resin mask 20 constituting the vapor deposition mask 100 according to the first embodiment shown in FIG. 1 is not limited, and a high-definition resin mask opening 25 can be formed by laser processing or the like. It is preferable to use a lightweight material that has a small rate of dimensional change and moisture absorption over time and heat.
  • Such materials include polyimide resin, polyamide resin, polyamideimide resin, polyester resin, polyethylene resin, polyvinyl alcohol resin, polypropylene resin, polycarbonate resin, polystyrene resin, polyacrylonitrile resin, ethylene vinyl acetate copolymer resin, ethylene- Examples thereof include vinyl alcohol copolymer resin, ethylene-methacrylic acid copolymer resin, polyvinyl chloride resin, polyvinylidene chloride resin, cellophane, and ionomer resin.
  • a resin material having a moisture absorption rate of 1.0% or less is preferable, and a resin material having both conditions is particularly preferable.
  • the thickness of the resin mask 20 is not particularly limited, but in the case of further improving the effect of suppressing the generation of shadows, the thickness of the resin mask 20 is preferably 25 ⁇ m or less, and more preferably less than 10 ⁇ m. Although there is no particular limitation on the preferable range of the lower limit value, when the thickness of the resin mask 20 is less than 3 ⁇ m, defects such as pinholes are likely to occur, and the risk of deformation and the like increases. In particular, by setting the thickness of the resin mask 20 to 3 ⁇ m or more and less than 10 ⁇ m, more preferably 4 ⁇ m or more and 8 ⁇ m or less, it is possible to more effectively prevent the influence of shadows when forming a high-definition pattern exceeding 400 ppi. .
  • the resin mask 20 and the metal mask 10 to be described later may be bonded directly or via an adhesive layer, but the resin mask 20 and the metal mask via an adhesive layer. 10 is bonded, it is preferable that the total thickness of the resin mask 20 and the pressure-sensitive adhesive layer is within the range of the preferable thickness.
  • the shadow means that a part of the vapor deposition material discharged from the vapor deposition source collides with the inner wall surface of the opening part of the metal mask or the resin mask and does not reach the vapor deposition target, thereby achieving the target vapor deposition. This refers to a phenomenon in which an undeposited portion having a film thickness thinner than the film thickness occurs.
  • the cross-sectional shape of the resin mask opening 25 is not particularly limited, and the end faces of the resin mask that form the resin mask opening 25 may be substantially parallel to each other. However, as shown in FIG. It is preferable that the cross-sectional shape of the mask opening 25 is a shape that expands toward the vapor deposition source. In other words, it is preferable to have a tapered surface that expands toward the metal mask 10 side. The taper angle can be set as appropriate in consideration of the thickness of the resin mask 20 and the like.
  • the lower bottom tip of the resin mask opening, the straight line connecting the upper base tips of the resin mask opening, and the resin mask The angle formed with the bottom surface, in other words, the cross section in the thickness direction of the inner wall surface constituting the resin mask opening 25, the surface on the side that does not contact the inner mask of the resin mask opening 25 and the metal mask 10 of the resin mask 20 (illustration In this embodiment, the angle formed with the lower surface of the resin mask is preferably in the range of 5 ° to 85 °, more preferably in the range of 15 ° to 75 °, and more preferably 25 ° to 65 °. More preferably, it is within the range of 0 ° or less.
  • the end face forming the resin mask opening 25 has a linear shape, but is not limited to this, and has an outwardly convex curved shape, that is, the resin mask opening.
  • the entire shape of 25 may be a bowl shape. Further, it may be the opposite, that is, it may have a convex curved shape.
  • the arithmetic average height (Sa) of the surface 20 ′ of the resin mask 20 exposed from the metal mask opening 15 is 0.8 ⁇ m or less. It has characteristics. By setting the arithmetic average height (Sa) of the surface 20 ′ to 0.8 ⁇ m or less, it is possible to improve accuracy when the resin mask opening 25 is processed, particularly when laser processing is performed. Further, it is possible to prevent the edge of the resin mask opening 25 from causing a jaggedness or a defect. Furthermore, the arithmetic average height (Sa) of the surface 20 ′ being 0.8 ⁇ m or less means that the thickness of the resin mask 20 is uniform, and thereby the shape of the resin mask opening 25 and The size can be made uniform with higher accuracy.
  • the arithmetic average height (Sa) of the surface 20 ′ of the resin mask 20 exposed from the metal mask opening 15 is more preferably 0.1 ⁇ m or less, and particularly preferably 0.08 ⁇ m or less.
  • the “arithmetic average height (Sa)” is a parameter obtained by extending the arithmetic average height (Ra) of a line to a surface, and the height of each point with respect to the average surface of the surface to be measured. It is a value calculated by averaging the absolute values of.
  • the surface 20 ′ of the resin mask 20 is measured using a shape analysis laser microscope, and can be calculated by a method in accordance with ISO 25178.
  • the maximum height (Sz) of the surface 20 ′ of the resin mask 20 exposed from the metal mask opening 15 is 2.5 ⁇ m or less. preferable.
  • the arithmetic average height (Sa) is 0.8 ⁇ m or less and the maximum height (Sz) is 2.5 ⁇ m or less, the thickness of the resin mask 20 becomes even more uniform, thereby the resin mask opening.
  • the shape and size of 25 can be made uniform with higher accuracy.
  • the maximum height (Sz) of the surface 20 ′ of the resin mask 20 exposed from the metal mask opening 15 is more preferably 2.0 ⁇ m or less, and particularly preferably 1.5 ⁇ m or less.
  • the “maximum height (Sz)” is a parameter obtained by extending the maximum height Rz of the line to the surface, and is a value representing the distance from the highest point to the lowest point on the surface to be measured. .
  • the surface 20 ′ of the resin mask 20 is measured using a shape analysis laser microscope, and can be calculated by a method according to ISO 25178.
  • a metal mask 10 is laminated on one surface of the resin mask 20.
  • the metal mask 10 is made of metal, and has a metal mask opening 15 extending in the vertical direction or the horizontal direction.
  • the arrangement example of the metal mask openings is not particularly limited, and the metal mask openings extending in the vertical direction and the horizontal direction may be arranged in a plurality of rows in the vertical direction and the horizontal direction, and the metal mask openings extending in the vertical direction.
  • the portions may be arranged in a plurality of rows in the horizontal direction, and the metal mask openings extending in the horizontal direction may be arranged in a plurality of rows in the vertical direction. Further, only one row may be arranged in the vertical direction or the horizontal direction.
  • vertical direction and lateral direction refer to the vertical and horizontal directions in the drawing, and are any of the longitudinal direction and the width direction of the vapor deposition mask, resin mask, and metal mask. May be.
  • the longitudinal direction of the vapor deposition mask, the resin mask, and the metal mask may be “vertical direction”
  • the width direction may be “vertical direction”.
  • shape of the vapor deposition mask when viewed in plan is a rectangular shape is described as an example, but other shapes, for example, a circular shape, a polygonal shape such as a rhombus shape, etc. It is good.
  • the longitudinal direction, the radial direction, or an arbitrary direction of the diagonal line is defined as a “longitudinal direction”, and a direction orthogonal to the “longitudinal direction” is referred to as a “width direction (sometimes referred to as a short direction)”. do it.
  • the material of the metal mask 10 is not particularly limited, and any conventionally known material can be appropriately selected and used in the field of the evaporation mask, and examples thereof include metal materials such as stainless steel, iron-nickel alloy, and aluminum alloy. . Among them, an invar material that is an iron-nickel alloy can be suitably used because it is less deformed by heat.
  • the thickness of the metal mask 10 is not particularly limited, it is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and more preferably 35 ⁇ m or less in order to more effectively prevent the occurrence of shadows. Particularly preferred. When the thickness is less than 5 ⁇ m, the risk of breakage and deformation increases and handling tends to be difficult.
  • the opening shape when the metal mask opening 15 is viewed in plan is a rectangular shape, but the opening shape is not particularly limited, and the opening of the metal mask opening 15 is not limited.
  • the shape may be any shape such as a trapezoidal shape or a circular shape.
  • the cross-sectional shape of the metal mask opening 15 formed in the metal mask 10 is not particularly limited, but may be a shape having a spread toward the vapor deposition source as shown in FIG. preferable. More specifically, the angle formed by the straight line connecting the lower bottom tip of the metal mask opening and the upper bottom tip of the metal mask opening 15 and the bottom surface of the metal mask 10, in other words, the metal mask opening.
  • the angle formed between the inner wall surface of the metal mask opening 15 and the surface of the metal mask 10 on the side in contact with the resin mask 20 is It is preferably in the range of 5 ° to 85 °, more preferably in the range of 15 ° to 80 °, and still more preferably in the range of 25 ° to 65 °. In particular, within this range, an angle smaller than the vapor deposition angle of the vapor deposition machine to be used is preferable.
  • the vapor deposition mask 100 according to the first embodiment of the present disclosure may be a vapor deposition mask with a frame by fixing the vapor deposition mask 100 to the frame.
  • FIG. 2 is a front view showing an example of a vapor deposition mask with a frame
  • FIG. 3 is a front view showing an example of a vapor deposition mask with a frame
  • FIGS. 4A to 4C are embodiments of the present disclosure. It is a front view showing an example of a frame concerning.
  • the frame-equipped vapor deposition mask 200 may be one in which one vapor deposition mask 100 is fixed to the frame 60, and as shown in FIG. 3, the frame 60 has a plurality of vapor deposition masks 100. May be fixed.
  • the frame 60 is a substantially rectangular frame member, and has an opening for exposing the resin mask opening 25 provided in the resin mask 20 of the vapor deposition mask 100 to be finally fixed to the vapor deposition source side.
  • the frame material include a metal material, a glass material, and a ceramic material.
  • the thickness of the frame is not particularly limited, but is preferably in the range of 10 mm to 30 mm from the viewpoint of rigidity and the like.
  • the width between the inner peripheral end face of the opening of the frame and the outer peripheral end face of the frame is not particularly limited as long as the frame and the metal mask of the vapor deposition mask can be fixed, for example, 10 mm or more and 70 mm or less. Within range.
  • a frame 60 in which a reinforcing frame 65 or the like is provided in the opening area of the frame may be used.
  • the opening of the frame 60 may be divided by a reinforcing frame or the like.
  • the frame 60 and the vapor deposition mask 100 can be fixed using the reinforcing frame 65.
  • the vapor deposition mask 100 can be fixed to the frame 60 even at a position where the reinforcing frame and the vapor deposition mask overlap. it can.
  • the frame 60 and the vapor deposition mask 100 can be fixed using spot welding, adhesive, screwing, or other methods for fixing with a laser beam or the like.
  • FIG. 5 is a cross-sectional view showing an example of a vapor deposition mask preparation according to the first embodiment of the present disclosure.
  • a first vapor deposition mask preparation 30 shown in FIG. 5 is prepared.
  • the first vapor deposition mask preparation 30 is a metal plate 11 and is characterized in that the arithmetic average height (Sa) of its surface 11 ′ (lower surface in FIG. 5) is 0.8 ⁇ m or less. is doing.
  • a resin layer is laminated on the surface 11 ′ of the metal plate 11 constituting the vapor deposition mask preparation 30, and the metal plate 11 is processed to form a metal mask.
  • the resin layer is processed into a resin mask. In this case, the roughness of the surface of the resin mask finally exposed from the metal mask opening of the metal mask is copied from the roughness of the surface of the metal mask (metal plate 11) in contact with the resin mask.
  • the arithmetic average height (Sa) of the surface 11 ′ of the metal plate 11 constituting the surface is 11 ⁇ m or less.
  • the arithmetic average height (Sa) of the surface of the resin layer laminated on the substrate can also be 0.8 ⁇ m or less.
  • the material, shape, and thickness of the metal plate 11 are the same as those of the above-described metal mask, and thus description thereof is omitted here.
  • the maximum height (Sz) of the surface is preferably 2.5 ⁇ m or less, and particularly preferably 2.0 ⁇ m or less.
  • the method of setting the arithmetic average height (Sa) of the surface 11 ′ of the metal plate 11 to 0.8 ⁇ m or less, and the method of setting the maximum height (Sz) to 2.5 ⁇ m or less are particularly limited. However, it can be appropriately selected from conventionally known various methods.
  • a metal plate having a surface arithmetic average height (Sa) of 0.8 ⁇ m or less and a maximum height (Sz) of 2.5 ⁇ m or less will be described with reference to FIGS. 8 and 9. It is shown below. Specifically, an example in which the metal plate is made of a rolled material of an iron alloy containing nickel will be described.
  • This rolled material has a thickness of 35 ⁇ m or less. Further, the total content of nickel and cobalt in the rolled material is 30% by mass or more and 38% by mass or less.
  • each raw material is prepared so that the ratio of iron to the total raw material and the ratio of nickel are about 64 wt% and about 36 wt%, respectively.
  • a melting step of melting each raw material in a melting furnace is performed.
  • each raw material is melted and mixed using gas discharge such as arc discharge.
  • gas discharge such as arc discharge.
  • a base material for the metal plate can be obtained.
  • dissolution is set according to a raw material, it is 1500 degreeC or more, for example.
  • the melting step may include a step of introducing aluminum, manganese, silicon, or the like into a melting furnace for deoxidation, dehydration, denitrification, or the like. Moreover, you may implement a melt
  • inert gas such as argon gas
  • a grinding step of scraping the surface of the base material After taking out the base material from the melting furnace, a grinding step of scraping the surface of the base material may be performed. Thereby, the oxide film such as scale can be removed.
  • the specific grinding method is not particularly limited, but the so-called grinding method in which the grinding wheel is rotated to cut the surface of the base material, or the so-called indentation method in which the base material is pushed into a cutting tool and the surface of the base material is shaved. Etc. can be adopted.
  • the grinding step may be performed so that the thickness of the base material is uniform.
  • the wound body 62 may be formed by winding a metal plate 64 around a core 61.
  • FIG. 8 only shows the outline of a rolling process, and the specific structure and procedure for implementing a rolling process are not specifically limited.
  • the rolling process includes a hot rolling process in which the base material is processed at a temperature equal to or higher than the temperature at which the crystal arrangement of the iron alloy constituting the base material 60 is changed, and a base material at a temperature lower than the temperature at which the crystal arrangement of the iron alloy is changed. It may include a cold rolling process for processing.
  • the direction at the time of passing the base material 60 and the metal plate 64 between a pair of rolling rolls 66a and 66b is not restricted to one direction. For example, in FIGS.
  • the base material 60 and the metal plate 64 may be gradually rolled.
  • the surface roughness of the metal plate 64 can be adjusted by adjusting the diameters of the rolling rolls 66 a and 66 b that are in contact with the base material 60.
  • the surface roughness of the metal plate can be reduced by reducing the diameter of the rolling rolls 66a and 66b.
  • the pressure of the rolling actuator may be adjusted in order to adjust the shape of the metal plate 64.
  • the shape of the backup roll may be adjusted as appropriate, and the position of the backup roll may be adjusted as appropriate in the plate width direction.
  • you may adjust a rolling speed, ie, the conveyance speed of a base material.
  • a coolant such as kerosene may be supplied between the base material 60 and the rolling rolls 66a and 66b. Thereby, the temperature of the base material can be controlled.
  • the analysis process which analyzes the quality and characteristic of the base material 60 or the metal plate 64 before and after a rolling process, or during a rolling process.
  • the composition may be analyzed by irradiating the base material 60 or the metal plate 64 with fluorescent X-rays.
  • the thermal expansion amount of the base material 60 or the metal plate 64 may be measured by thermomechanical analysis (TMA: Thermomechanical Analysis).
  • the metal plate 64 may be annealed using an annealing device 67 as shown in FIG.
  • the annealing step may be performed while pulling the metal plate 64 in the transport direction (longitudinal direction). That is, the annealing step may be performed as continuous annealing while being conveyed, not so-called batch-type annealing. In this case, it is preferable to set the temperature and the conveyance speed so as to suppress deformation such as bending of the metal plate 64.
  • the metal plate 64 from which residual strain has been removed to some extent can be obtained.
  • the present invention is not limited to this, and the metal plate 64 is moved in the vertical direction or the like during the annealing step. You may convey in another direction.
  • the conditions for the annealing step are appropriately set according to the thickness of the metal plate 64, the rolling reduction, and the like.
  • the annealing step is performed within a range of 500 ° C. to 600 ° C. for 30 seconds to 90 seconds.
  • the number of seconds represents the time required for the metal plate 64 to pass through the space adjusted to a predetermined temperature in the annealing device 67.
  • the temperature of the annealing process may be set so that the metal plate 64 does not soften.
  • the above-described annealing step is performed in a non-reducing atmosphere or an inert gas atmosphere.
  • the non-reducing atmosphere is an atmosphere that does not contain a reducing gas such as hydrogen. “Does not contain reducing gas” means that the concentration of reducing gas such as hydrogen is 10% or less.
  • the inert gas atmosphere is an atmosphere in which the concentration of an inert gas such as argon gas, helium gas, or nitrogen gas is 90% or more.
  • the annealing device 67 may have a mechanism for monitoring the concentration of the inert gas and a mechanism for adjusting the concentration of the inert gas.
  • a cleaning process for cleaning the metal plate 64 may be performed before the annealing process. Thereby, it can suppress that a foreign material adheres to the surface of the metal plate 64 in the annealing process.
  • As the cleaning liquid for cleaning for example, a hydrocarbon-based liquid can be used.
  • FIG. 9 shows an example in which the annealing process is performed while pulling the metal plate 64 in the longitudinal direction.
  • the present invention is not limited to this, and the annealing process is performed by winding the metal plate 64 around the core 61. You may carry out in the state made. That is, batch-type annealing may be performed.
  • the metal plate 64 may be wrinkled with a warp corresponding to the winding diameter of the wound body 62. Therefore, depending on the winding diameter of the wound body 62 and the material constituting the base material 60, it is advantageous to perform the annealing step while pulling the metal plate 64 in the longitudinal direction.
  • the long metal plate 64 having a predetermined thickness may be produced by repeating at least two of the rolling process, the annealing process, and the slit process a plurality of times.
  • a metal plate having a surface arithmetic average height (Sa) of 0.8 ⁇ m or less and a maximum height (Sz) of 2.5 ⁇ m or less can be produced.
  • FIG. 6 is a cross-sectional view showing an example of a deposition mask preparation according to the first embodiment of the present disclosure different from FIG.
  • the resin layer 21 is laminated on the surface 11 ′ of the metal plate 11 constituting the vapor deposition mask preparation 30 illustrated in FIG. 5.
  • the lamination method of the resin layer 21 is not particularly limited, and a resin layer that finally becomes a resin mask can be formed by a conventionally known coating method or the like.
  • a resin layer coating liquid prepared by dispersing or dissolving the resin mask material described above and any components added as necessary in an appropriate solvent is prepared, and this is applied to the surface 11 ′ of the metal plate 11.
  • it can be set as the resin layer 21 by coating and drying using a conventionally known coating means.
  • the arithmetic average height (Sa) of the surface 21 ′ in contact with the metal plate 11 in the resin layer 21 constituting the vapor deposition mask preparation 40 obtained by such a method is the surface 11 ′ in contact with the resin layer 21 in the metal plate 11. Since it is the same as the arithmetic average height (Sa), it is naturally 0.8 ⁇ m or less.
  • the resin layer 21 is formed on a surface having an arithmetic average height (Sa) of 0.8 ⁇ m or less, the resin layer 21 is peeled off from the other surface, and the arithmetic operation in the resin layer 21 is performed.
  • the vapor deposition mask preparation 40 may be formed by bonding a surface having an average height (Sa) of 0.8 ⁇ m or less to the metal plate 11.
  • examples of the surface having an arithmetic average height (Sa) of 0.8 ⁇ m or less include non-alkali glass (Nippon Electric Glass Co., Ltd., OA-10G).
  • FIG. 7 is a cross-sectional view showing an example of a deposition mask preparation according to the first embodiment of the present disclosure different from FIGS. 5 and 6.
  • the metal mask 10 is formed by processing the metal mask opening 15 in the metal plate 11 constituting the vapor deposition mask preparation 40 shown in FIG. Is formed.
  • the processing method of the metal mask opening 15 is not particularly limited, and can be appropriately selected from conventionally known processing methods.
  • a masking member for example, a resist material, and a predetermined portion is exposed and developed to form a resist pattern that leaves the position where the metal mask opening 15 is finally formed.
  • the resist material used as the masking member those having good processability and desired resolution are preferable.
  • etching is performed from the side not in contact with the resin layer 21 by an etching method using this resist pattern as an etching resistant mask.
  • the resist pattern is removed by washing.
  • the vapor deposition mask preparation 50 in which the metal mask 10 provided with the metal mask opening 15 on one surface of the resin layer 21 is laminated is obtained.
  • the resin layer 21 has etching resistance with respect to the etching material of the metal plate 11, it is not necessary to mask the surface of the resin layer 21, but the resin layer 21 is resistant to the etching material of the metal plate 11.
  • it does not have, it is necessary to coat the masking member on the surface of the resin layer 21.
  • the resist material is mainly described as the masking member. However, instead of coating the resist material, a dry film resist may be laminated and the same patterning may be performed.
  • the arithmetic average height (Sa) of the surface 21 ′ of the resin layer 21 exposed from the metal mask opening 15 in the vapor deposition mask preparation 50 obtained by the manufacturing method is 0.8 ⁇ m or less, and in addition, the metal plate 11 has a maximum height (Sz) of 2.5 ⁇ m or less, the maximum height (Sz) of the surface 21 ′ of the resin layer 21 is also 2.5 ⁇ m or less.
  • the vapor deposition mask preparation 30 shown in FIG. 5 that is, the vapor deposition mask preparation in which the arithmetic average height (Sa) of the surface 11 ′ of the metal plate 11 is not less than 0.8 ⁇ m
  • the arithmetic average height (Sa) of the surface of the resin layer exposed from the opening of the metal mask may not be 0.8 ⁇ m or less.
  • the arithmetic average height (Sa) of the surface may be 0.8 ⁇ m or less by processing the surface of the resin layer exposed from the opening of the metal mask.
  • a processing method of the resin layer surface it can select suitably from conventionally well-known various methods.
  • the vapor deposition mask preparation whose arithmetic mean height (Sa) of surface 11 'of the metal plate 11 is not 0.8 micrometer or less, before forming the resin layer 21 on the surface 11' of the said metal plate 11
  • a planarization layer may be formed on the surface 11 ′.
  • the material for forming the planarizing layer is not particularly limited, and various resins similar to the resin layer 21 can be used, for example.
  • the resin layer 21 is formed not on the surface of the metal plate but on another surface, more specifically on the surface having an arithmetic average height (Sa) of 0.8 ⁇ m or less.
  • the metal layer may be formed by peeling the resin layer 21 from above and depositing a metal in a predetermined pattern on a surface having an arithmetic average height (Sa) of the resin layer 21 of 0.8 ⁇ m or less.
  • the above alkali-free glass or the like can be used as the surface having an arithmetic average height (Sa) of 0.8 ⁇ m or less.
  • As a method for depositing the metal various plating methods can be used.
  • the metal is deposited on the surface of the resin layer 21 having an arithmetic average height (Sa) of 0.8 ⁇ m or less by using an electroless plating method.
  • a metal mask may be formed by using an electrolytic plating method with this as an underlayer.
  • an alkali-free glass having an arithmetic average height (Sa) of the surface of 0.8 ⁇ m or less is prepared, and the resin layer 21 is formed on the surface, A metal mask may be formed on the resin layer 21 in this state, and then the resin layer 21 with the metal mask may be peeled from the alkali-free glass. Furthermore, without peeling the resin layer 21 with the metal mask from the alkali-free glass, it is fixed to the frame as it is, and a resin mask opening 25 is formed in the resin layer 21 using a laser processing method described later, Finally, the inorganic alkali glass may be peeled off.
  • Sa arithmetic average height
  • the resin mask opening 25 is processed in the resin layer 21 constituting the vapor deposition mask preparation 50 shown in FIG.
  • the vapor deposition mask 100 shown is manufactured.
  • the vapor deposition mask preparation 50 is penetrated through the resin layer 21 using a laser processing method, precision press processing, photolithographic processing, or the like to form a vapor deposition pattern on the resin layer 21.
  • the vapor deposition mask 100 according to the actual embodiment of the present disclosure is obtained.
  • the arithmetic average height (Sa) of the surface 21 ′ of the resin layer 21 to which the laser processing method is applied is 0.8 ⁇ m or less, Furthermore, since the maximum height (Sz) is 2.5 ⁇ m or less and the smoothness is high, it is suitable for the laser processing method.
  • the method for fixing the vapor deposition mask preparation 50 and the frame is not particularly limited, and the mask can be fixed using spot welding, adhesive, screwing, or other methods for fixing with a laser beam or the like.
  • the laser processing apparatus includes an XY stage, a laser light source, a coupling optical system, a beam shaping mask, an image forming lens, an objective lens, and a laser beam source, which are located above the XY stage from upstream to downstream in the laser light traveling direction.
  • the lens is provided in this order.
  • the XY stage is configured to place a mask member on the upper surface and move in the XY direction in a plane parallel to the XY plane.
  • the XY stage is controlled by a control device and moves stepwise by a movement amount input and stored in advance. It is like that.
  • the laser light source is, for example, an excimer laser with a wavelength of 400 nm or less, for example, an excimer laser with a KrF of 248 nm, or a YAG laser that emits laser light with a third or fourth harmonic of 1064 nm.
  • the coupling optical system includes a beam expander that expands the laser beam emitted from the laser light source, a photo integrator and a condenser lens that irradiates a beam shaping mask described later with a uniform luminance distribution of the laser beam. It is a waste.
  • the beam shaping mask is formed by emitting laser light applied to a mask member into a laser beam having a cross-sectional shape similar to the opening pattern to be formed.
  • the imaging lens is a condensing lens that projects a plurality of light transmission windows formed in a beam shaping mask in cooperation with an objective lens, which will be described later, onto a resin layer at a predetermined magnification.
  • the objective lens projects a plurality of light-transmitting windows formed on the beam shaping mask in cooperation with the imaging lens at a predetermined magnification on the resin layer.
  • the XY stage moves and the objective lens is positioned at the laser processing start position of the frame-equipped vapor deposition mask preparation.
  • the optical unit of the laser processing apparatus is raised in the Z-axis direction by a predetermined distance along the optical axis of the objective lens, and the imaging position of the objective lens is set to the resin layer and the XY stage of the deposition mask preparation body with a frame. Position it at the interface.
  • the laser light source is activated to generate a pulse oscillation, and a plurality of shot laser beams are emitted.
  • the emitted laser beam is expanded by a coupling optical system, and is applied to the beam shaping mask as laser light having a uniform intensity distribution.
  • the laser light applied to the beam shaping mask is transmitted through a plurality of light transmission windows of the beam shaping mask, so that the cross-sectional shape is shaped to be similar to the shape of the opening pattern, and becomes a plurality of laser lights.
  • the light is condensed on the resin layer by the objective lens.
  • the XY stage is stepped by a predetermined distance in the X or Y axis direction, the second unit region, the third unit region, and so on.
  • a plurality of opening patterns are laser processed in order in each unit region.
  • a plurality of opening patterns are laser processed at predetermined positions on the resin layer, and a resin mask is formed.
  • FIG. 10A is a front view showing an example when the vapor deposition mask according to the second embodiment of the present disclosure is viewed from the metal mask side
  • FIG. 10B is a front view of FIG. It is a schematic sectional drawing in the AA part. Note that a portion near the center of the vapor deposition mask in FIG. 10B is omitted.
  • the vapor deposition mask 100 according to the second embodiment of the present disclosure is similar to the vapor deposition mask 100 according to the first embodiment of the present disclosure.
  • a vapor deposition mask 100 in which a resin mask 20 having an opening 25 and a metal mask 10 having a metal mask opening 15 are laminated so that the resin mask opening 25 and the metal mask opening 15 overlap each other. is there.
  • Such a vapor deposition mask 100 according to the second embodiment of the present disclosure is a surface 20 ′′ of the resin mask 20 on the side opposite to the surface on the metal mask 10 side, that is, the side not in contact with the metal mask 10. It is characterized in that the arithmetic average height (Sa) of the surface 20 ′′ is 0.5 ⁇ m or less. By setting the arithmetic average height (Sa) of the surface 20 ′′ to 0.5 ⁇ m or less, a desired pattern is deposited on the deposition target using the deposition mask 100 according to the second embodiment of the present disclosure.
  • the arithmetic average height (Sa) of the surface 20 ′′ being 0.5 ⁇ m or less means that the thickness of the resin mask 20 is uniform, and thereby the shape of the resin mask opening 25 is formed. And the size can be made uniform with higher accuracy.
  • the arithmetic average height (Sa) of the surface 20 ′′ of the resin mask 20 opposite to the surface on the metal mask 10 side, that is, 20 ′′ on the side not in contact with the metal mask 10, is 0.1 ⁇ m or less. It is more preferable that it is 0.05 ⁇ m or less.
  • the surface 20 ′′ of the resin mask 20 opposite to the surface on the metal mask 10 side that is, the side not in contact with the metal mask 10 is provided.
  • the maximum height (Sz) of the surface 20 ′′ is preferably 2.0 ⁇ m or less. Since the arithmetic average height (Sa) is 0.5 ⁇ m or less and the maximum height (Sz) is 2.0 ⁇ m or less, the surface of the resin mask 20 opposite to the surface on the metal mask 10 side The adhesion between 20 ′′ and the deposition object can be further improved.
  • the maximum height (Sz) of the surface 20 ′ of the resin mask 20 on the side not in contact with the metal mask 10 is more preferably 1.0 ⁇ m or less, and particularly preferably 0.8 ⁇ m or less.
  • maximum height (Sz) is the same as that of the vapor deposition mask 100 according to the first embodiment, the description thereof is omitted here.
  • Metal mask As shown in FIG. 1B, a metal mask 10 is laminated on one surface of the resin mask 20.
  • the details of the metal mask 10, specifically, the arrangement of the metal mask openings 15, the material and thickness of the metal mask 10, the opening shape and the cross-sectional shape of the metal mask opening 15, are described in the first embodiment. Since it is the same as the vapor deposition mask 100 concerning a form, description here is abbreviate
  • the vapor deposition mask 100 according to the second embodiment of the present disclosure may also be a vapor deposition mask with a frame by being fixed to the frame in the same manner as the vapor deposition mask 100 according to the first embodiment.
  • An example of the frame-equipped vapor deposition mask and the frame using the vapor deposition mask 100 according to the second embodiment of the present disclosure are the same as those of the vapor deposition mask 100 according to the first embodiment, and thus description thereof is omitted here.
  • FIG. 11 is a cross-sectional view showing an example of a metal plate.
  • a metal plate 11 shown in FIG. 11 is prepared.
  • the arithmetic average height (Sa) of the surface 11 ′′ (the lower surface in FIG. 5) of the metal plate 11 is 0.5 ⁇ m or less.
  • the resin layer when a resin layer is laminated on the surface 11 ′′ of the metal plate 11, the resin layer follows the unevenness of the surface 11 ′′ of the metal plate 11, and the surface of the resin layer on the metal plate 11 side is The unevenness of the surface 11 ′′ of the metal plate 11 is also reflected on the opposite surface, that is, the surface not in contact with the metal plate 11. This phenomenon becomes more prominent as the resin layer is thinner. Therefore, by using the metal plate 11 having an arithmetic average height (Sa) of the surface 11 ′′ of 0.5 ⁇ m or less, the surface of the resin layer laminated thereafter is the surface opposite to the surface on the metal plate 11 side. That is, the arithmetic average height (Sa) on the surface not in contact with the metal plate 11 can also be 0.5 ⁇ m or less.
  • the material, shape, and thickness of the metal plate 11 are the same as those of the above-described metal mask, and thus description thereof is omitted here.
  • the maximum height (Sz) of the surface is preferably 2.0 ⁇ m or less.
  • the method of setting the arithmetic average height (Sa) of the surface 11 ′′ of the metal plate 11 to 0.5 ⁇ m or less, and the method of setting the maximum height (Sz) to 2.0 ⁇ m or less are particularly limited. It is not carried out, and it can select suitably from conventionally well-known various methods. Specifically, the “rolled material manufacturing method” described in the vapor deposition mask 100 according to the first embodiment can be used.
  • FIG. 12 is a cross-sectional view illustrating an example of a deposition mask preparation according to the second embodiment of the present disclosure.
  • the resin layer 21 is laminated on the surface 11 ′′ of the metal plate 11 shown in FIG.
  • the same method as the method for manufacturing the vapor deposition mask according to the first embodiment can be used.
  • the arithmetic average height (Sa) of the surface 21 ′′ on the side not in contact with the metal plate 11 in the resin layer 21 constituting the vapor deposition mask preparation 40 is the surface 11 ′ in contact with the resin layer 21 in the metal plate 11. It follows the arithmetic average height (Sa) of 'and is 0.5 ⁇ m or less.
  • the resin layer 21 on the side not in contact with the metal plate 11 is used.
  • the arithmetic average height (Sa) of the surface 21 ′′ may not be 0.5 ⁇ m or less.
  • the arithmetic average height (Sa) of the surface 21 ′′ may be set to 0.5 ⁇ m or less by processing the surface 21 ′′ of the resin layer 21.
  • a processing method of the resin layer surface it can select suitably from conventionally well-known various methods.
  • the arithmetic average height (Sa) of the surface 11 ′′ of the metal plate 11 is not 0.5 ⁇ m or less, in the stage before the resin layer 21 is formed on the surface 11 ′′ of the metal plate 11, A planarizing layer may be formed on the surface 11 ′.
  • the material for forming the planarizing layer is not particularly limited, and various resins similar to the resin layer 21 can be used, for example.
  • the metal plate 11 when using the metal plate 11 as a vapor deposition mask preparation whose surface 11 '' arithmetic mean height (Sa) is not 0.5 micrometer or less, it is not on the surface of the said metal plate but on another surface. More specifically, the resin layer 21 is formed on a surface having an arithmetic average height (Sa) of 0.5 ⁇ m or less, the resin layer 21 is peeled off from the other surface, and the resin layer 21 is made of metal. You may form the vapor deposition mask preparation 40 by bonding with the board 11.
  • examples of the surface having an arithmetic average height (Sa) of 0.5 ⁇ m or less include non-alkali glass (Nippon Electric Glass Co., Ltd., OA-10G).
  • FIG. 13 is a cross-sectional view showing an example of a deposition mask preparation according to the second embodiment of the present disclosure different from FIGS. 11 and 12.
  • the metal mask 10 is formed by processing the metal mask opening 15 in the metal plate 11 constituting the vapor deposition mask preparation 40 shown in FIG. Is formed.
  • the processing method of the metal mask opening 15 is the same as the manufacturing method of the vapor deposition mask according to the first embodiment, and a description thereof is omitted here.
  • the arithmetic average height (Sa) of the surface 21 ′′ on the side not in contact with the metal mask in the resin layer 21 is 0.5 ⁇ m.
  • the maximum height (Sz) of the surface of the metal plate 11 is 2.0 ⁇ m or less
  • the maximum height (Sz) of the surface 21 ′ of the resin layer 21 is also 2.0 ⁇ m or less. It is.
  • the resin mask opening 25 is processed in the resin layer 21 constituting the vapor deposition mask preparation 50 illustrated in FIG.
  • the vapor deposition mask 100 shown is manufactured.
  • the method for forming the resin mask opening 25 is the same as the method for manufacturing the vapor deposition mask according to the first embodiment, and a description thereof is omitted here.
  • a vapor deposition mask according to a third embodiment of the present disclosure is a vapor deposition mask including a resin mask provided with a resin mask opening corresponding to a pattern to be vapor-deposited, and has an arithmetic average height on one surface of the resin mask.
  • the thickness (Sa) is 0.8 ⁇ m or less.
  • Each of the vapor deposition masks according to the first and second embodiments has a laminated structure in which a metal mask and a resin mask are laminated, but is not limited to this, and an arithmetic average of one surface thereof What is necessary is just a vapor deposition mask containing the resin mask whose height (Sa) is 0.8 micrometer or less.
  • a resin mask having an arithmetic average height (Sa) on one side of 0.8 ⁇ m or less may be used as a vapor deposition mask. Since the details of the resin mask in this case are the same as those of the resin mask constituting the vapor deposition mask according to the first and second embodiments, description thereof is omitted here.
  • the arithmetic mean height (Sa) of the surface is 0.8 micrometer or less alkali free
  • a resin layer may be used as a resin mask by preparing glass or the like, forming a resin layer on the surface, and forming a resin mask opening in the resin layer using a laser processing method or the like.
  • the arithmetic mean height (Sa) in a resin mask is 0.
  • the surface of 8 ⁇ m or less may be used toward the deposition source side, and conversely, that is, the surface having an arithmetic average height (Sa) of 0.8 ⁇ m or less may be used toward the deposition object side.
  • the vapor deposition mask according to the third embodiment of the present disclosure is more accurately formed on one surface of the resin mask 20 provided with the resin mask opening 25.
  • the metal layer 12 may be partially provided on one surface of the resin mask 20 provided with the opening 25 and in a portion where the resin mask opening 25 is not provided. According to such a vapor deposition mask, when the vapor deposition mask is fixed to the frame, the stress that can be generated in the resin mask 20 can be appropriately released, and as a result, deformation such as expansion and contraction is effectively suppressed. be able to.
  • the metal layer 12 may be provided on a surface having an arithmetic average height (Sa) of the resin mask 20 of 0.8 ⁇ m or less, and the opposite surface, that is, the arithmetic average height (Sa). May be provided on the surface opposite to the surface of 0.8 ⁇ m or less.
  • the arithmetic average height (Sa) of the surface on which the metal layer 12 is not provided is preferably 0.5 ⁇ m or less.
  • the position where the metal layer 12 is provided and the planar shape when the metal layer 12 is viewed in plan are not particularly limited. That is, the planar shape of the metal layer 12 can be appropriately designed according to the position where the metal layer is provided.
  • the resin mask 20 when the vapor deposition mask 100 according to the third embodiment is viewed from the side where the metal layer 12 is provided, the resin mask 20 has a long side and a short side.
  • the metal layer 12 may have a band shape along the side of the resin mask.
  • the metal layer 12 may be arranged in parallel with the short side of the resin mask 20 while forming a band shape having the same length as the short side.
  • the resin mask 20 when the vapor deposition mask 100 according to the third embodiment is viewed from the side where the metal layer 12 is provided, the resin mask 20 has a rectangular shape having a long side and a short side.
  • the shape of the metal layer 12 may be a strip shape having the same length as the long side, and may be arranged in parallel with the long side of the resin mask 20.
  • the shape of the metal layer may be a band shape having a predetermined angle with respect to the long side of the resin mask.
  • the quadrilateral is not limited to a rectangle, and may be, for example, a trapezoid, a parallelogram, or another quadrilateral.
  • the shape of the resin mask 20 in plan view may be a shape other than the quadrilateral.
  • the shape and arrangement of the metal layer 12 described in the present specification can be applied as appropriate to the resin mask 20 having a shape other than the quadrangular shape when the resin mask 20 is planarized.
  • each band-shaped metal layers 12 are arranged in parallel with the short sides of the resin mask 20, and in the form shown in FIG. 20, three bands are parallel to the long sides of the resin mask 20.
  • the shape of the metal layer 12 is arranged, the number of the metal layers 12 arranged is not limited. For example, although not shown, only one metal layer 12 of the plurality of metal layers 12 is arranged. It is good also as the arrangement
  • the band-shaped metal layer 12 having the same length as the short side may be disposed only in the vicinity of the upper side and the lower side of the resin mask 20, and as shown in FIG.
  • the band-shaped metal layer 12 having the same length as the long side may be disposed only on the left side of the mask 20 and in the vicinity of the right side.
  • the metal layer 12 located in the vicinity of the upper side and the lower side of the resin mask, or in the vicinity of the right side and the left side of the resin mask is arranged at a position overlapping the periphery of the resin mask 20.
  • the metal layer 12 may be disposed only on the peripheral edge of the resin mask 20.
  • the peripheral part of the resin mask 20 as used in this specification means the area
  • the metal layer 12 may be arranged only in the vicinity of one or both of the upper side and the lower side of the resin mask in the peripheral part of the resin mask 20. In this case, the metal layer 12 may be disposed so as to overlap the periphery of the resin mask.
  • a metal layer having a length different from the long side or the short side of the resin mask 20 is used instead of the strip-shaped metal layer 12 having the same length as the long side or the short side of the resin mask 20 .
  • One may be arranged in parallel with 20 long sides or short sides, or a plurality of them may be arranged.
  • One or a plurality of band-shaped metal layers 12 may be arranged in random directions.
  • the strip-shaped metal layer 12 having a length shorter than the right side and the left side, that is, the long side of the resin mask 20 is arranged at positions separated from the peripheral edges of the right side and the left side of the resin mask 20.
  • the region where the metal layer 12 is disposed in FIG. 22 may be a peripheral portion of the resin mask 20 or a non-peripheral portion.
  • region which straddles a peripheral part and a non-peripheral part may be sufficient.
  • the non-peripheral part of the resin mask 20 as used in this specification means the whole area
  • the band-shaped metal layer 12 arranged in parallel to the long side of the resin mask 20 is divided into a plurality of pieces in the length direction and five pieces in FIG. Also good.
  • FIG. 15 is a front view showing an example when the deposition mask of the third embodiment is viewed from the metal layer 12 side.
  • the metal layer 12 is not necessarily required to be positioned on the peripheral edge of the resin mask 20.
  • FIG. 15 shows an example in which the metal layer 12 is positioned only on the non-peripheral portion of the resin mask 20. Further, the metal layer 12 may be disposed on the peripheral edge and the non-peripheral edge of the resin mask 20.
  • the metal layer 12 is used only for fixing to the frame by disposing the metal layer 12 on the non-peripheral portion of the resin mask 20, specifically, at a position that does not overlap the frame in the resin mask 20. Instead, deformation such as elongation or shrinkage that can occur in the resin mask 20 can be effectively suppressed.
  • the resin mask 20 is fixed when the vapor deposition mask is fixed to the frame as compared to the case where the metal layer 12 surrounds the periphery of the opening 25 formed in the resin mask 20. It is possible to appropriately release the stress that can be generated in the film, and as a result, it is possible to effectively suppress deformation such as expansion and contraction.
  • the dotted line shown in FIG. 15 indicates an area of “one screen”.
  • the metal layer 12 may be disposed between “one screen” and “one screen”.
  • FIG. 16 is a front view showing an example when the vapor deposition mask according to the third embodiment is viewed in plan view from the side on which the metal layer is formed.
  • the metal layer 12 does not necessarily have a strip shape, and may be arranged so as to be scattered on the resin mask 20. Further, as shown in FIG. It may be arranged only at the four corners of the resin mask 20. In such a case, the metal layer 12 shown in FIG. 16 and FIG. 24 is a square, but is not limited to this, and is not limited to this, but a rectangle, a triangle, a quadrilateral or more, a circle, an ellipse, a semicircle, a donut. Any shape such as a shape, an alphabetic “C” shape, a “T” shape, a “cross” shape or a “star” shape can be employed.
  • a vapor deposition mask 100 of a preferred form has a band-shaped metal layer 12 disposed on a resin mask 20.
  • the band-shaped metal layer 12 is disposed along the transport direction of the vapor deposition mask 100 during vapor deposition.
  • the band-shaped metal layer 12 is disposed on the resin mask 10 along a direction perpendicular to the linear source (vapor deposition source) during vapor deposition. .
  • the band-shaped metal layer 12 is positioned along the transport direction as shown in FIGS.
  • the vapor deposition mask 100 is preferable. According to the vapor deposition mask 100 of this form, it can suppress more effectively that a dimensional fluctuation and a position fluctuation arise in the opening part 25 currently formed in the resin mask 20.
  • FIG. 1 the horizontal direction in the figure is the transport direction of the vapor deposition mask, the band-shaped metal layer 12 is positioned along the transport direction as shown in FIGS.
  • the vapor deposition mask 100 is preferable. According to the vapor deposition mask 100 of this form, it can suppress more effectively that a dimensional fluctuation and a position fluctuation arise in the opening part 25 currently formed in the resin mask 20.
  • the thickness of the metal layer 12 is not particularly limited, but is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and more preferably 35 ⁇ m or less in order to more effectively prevent the occurrence of shadows. Particularly preferred. By setting the thickness of the metal layer 12 to such a thickness, the risk of breakage and deformation can be reduced, and handling properties can be improved.
  • the cross-sectional shape of the metal layer 12 is not particularly limited, but spreads toward the vapor deposition source as in the case of the metal mask constituting the vapor deposition mask according to the first and second embodiments of the present disclosure. It is preferable that it has a shape.
  • the method for providing the metal layer 12 on the resin mask is not particularly limited, and the resin mask 20 and the metal layer 12 may be bonded together using various adhesives, or a resin mask having self-adhesiveness may be used. Further, as in the case of manufacturing the metal mask constituting the vapor deposition mask according to the first and second embodiments of the present disclosure, various plating methods, for example, an electroless plating method and an electrolytic plating method may be used in combination. Good.
  • the vapor deposition method used for forming the vapor deposition pattern using the first and second vapor deposition masks of the present disclosure described above or the first and second vapor deposition masks with a frame is not particularly limited.
  • Chemical Vapor Deposition Physical Vapor Deposition
  • Chemical Vapor Deposition such as reactive sputtering, vacuum evaporation, ion plating, electron beam evaporation, etc.
  • Chemical Vapor Deposition such as Thermal CVD, Plasma CVD, Photo CVD etc.
  • the vapor deposition pattern can be formed using a conventionally known vacuum vapor deposition apparatus or the like.
  • An organic semiconductor device manufacturing method includes a step of forming a vapor deposition pattern on a vapor deposition object using a vapor deposition mask. In the step of forming a vapor deposition pattern, the method of the present disclosure described above is performed. The first and second vapor deposition masks or the first and second frame-equipped vapor deposition masks are used.
  • the step of forming the vapor deposition pattern by the vapor deposition method using the first and second vapor deposition masks There is no particular limitation on the step of forming the vapor deposition pattern by the vapor deposition method using the first and second vapor deposition masks.
  • the electrode forming step, the organic layer forming step, the counter electrode forming step, and the sealing layer for forming electrodes on the substrate A vapor deposition pattern is formed using the vapor deposition mask of this indication explained above in each arbitrary process.
  • the manufacturing method of the organic-semiconductor element of this indication is not limited to these processes, It is applicable to the arbitrary processes in manufacture of a conventionally well-known organic-semiconductor element.
  • the method for manufacturing an organic semiconductor element of the present disclosure it is possible to perform vapor deposition for forming an organic semiconductor element in a state where the vapor deposition mask and the vapor deposition object are closely adhered to each other, and a high-definition organic semiconductor An element can be manufactured.
  • the organic semiconductor element manufactured with the manufacturing method of the organic semiconductor element of this indication the organic layer, light emitting layer, cathode electrode, etc. of an organic EL element can be mentioned, for example.
  • the method for manufacturing an organic semiconductor element of the present disclosure is preferably used for manufacturing R (red), G (green), and B (blue) light emitting layers of organic EL elements that require high-definition pattern accuracy. it can.
  • a method for manufacturing an organic EL display (organic electroluminescence display) according to an embodiment of the present disclosure (hereinafter referred to as a method for manufacturing an organic EL display of the present disclosure) will be described.
  • the manufacturing method of the organic EL display of the present disclosure uses the organic semiconductor element manufactured by the manufacturing method of the organic semiconductor element of the present disclosure described above in the manufacturing process of the organic EL display.
  • FIG. 25 is a diagram showing an example of a device having an organic EL display.
  • Examples of the organic EL display using the organic semiconductor element manufactured by the organic semiconductor element manufacturing method of the present disclosure include a notebook personal computer (see FIG. 25A) and a tablet terminal (see FIG. 25B).
  • Mobile phones see FIG. 25C
  • smartphones see FIG. 25D
  • video cameras see FIG. 25E
  • digital cameras see FIG. 25F
  • smart watches see FIG. 25.
  • Examples thereof include organic EL displays used in g).
  • the detail of the measuring method of Sa and Sz of the surface of a metal plate is as follows.
  • test piece was prepared as follows. A square test piece having a side of 5 cm was cut out at the center in the width direction of the metal plate. Then, the position of the surface in the measurement area
  • the setting of the laser microscope when the position of the surface of the test piece was measured was as follows.
  • RPD is an abbreviation for Real Peak Detection. “With RPD” means that the method of measuring the position of the surface of the test piece by detecting the peak of the reflected light of the laser beam is adopted.
  • Example 1 polyimide varnish (UPIA (registered trademark) -ST / Ube Industries Co., Ltd.) was blade-coated on the surface of the metal plate on the side where Sa and Sz were measured, and then at 400 ° C. for 60 minutes in a nitrogen atmosphere. Firing was performed. As a result, a first vapor deposition mask preparation of Example 1 in which a resin layer having a thickness of 6.0 ⁇ m ⁇ 0.5 ⁇ m was laminated on the surface of the metal plate was obtained.
  • UPIA registered trademark
  • a dry film was bonded to the surface of the metal plate of the first vapor deposition mask preparation of Example 1 above, and a predetermined portion was exposed and developed to form a mask pattern.
  • this mask pattern as an anti-etching mask, an unnecessary metal plate was removed using a ferric chloride corrosive solution, and then the mask pattern was washed away.
  • the metal plate was used as a metal mask having a metal mask opening, and a second vapor deposition mask preparation of Example 1 in which the metal mask and a resin layer were laminated was obtained.
  • a metal frame made of an invar material is prepared, and is fixed by welding so that the metal mask of the second vapor deposition mask preparation of Example 1 is in contact with the metal frame, and the vapor deposition mask preparation of Example 1 is prepared. Produced.
  • the frame-equipped vapor deposition mask preparation of Example 1 was placed on the processing stage of the laser processing apparatus with the resin layer facing away from the metal mask. At this time, the processing stage and the resin layer were brought into close contact with each other by bringing the gap between the processing stage and the resin layer into contact with isopropyl alcohol. After that, the resin layer was irradiated with a YAG laser (wavelength 355 nm) through the metal mask opening to penetrate the resin layer to form a resin mask opening (32 ⁇ m ⁇ 34 ⁇ m), and a 400 ppi pattern was formed. A vapor deposition mask with a frame of Example 1 was obtained by obtaining a resin mask.
  • a YAG laser wavelength 355 nm
  • Example 2 to 3 and Comparative Example 1 Except that a metal plate having a surface roughness different from that of the metal plate was prepared, framed deposition masks of Examples 2 to 3 and Comparative Example 1 were obtained under the same conditions as in Example 1.
  • the second vapor deposition mask preparations of Examples 2 to 3 and Comparative Example 1 obtained in the process of manufacturing the vapor deposition mask with frames of Examples 2 to 3 and Comparative Example 1, When the Sa and Sz on the surface of the exposed resin layer were measured, they were as shown in Table 1 below.
  • the organic light emitting material Alq 3 was vacuum deposited on a glass substrate (150 mm ⁇ 150 mm ⁇ 0.7 t) with a thickness of 40 nm.
  • the vapor deposition mask and the glass substrate were in close contact with each other without any gap.
  • the deposited film was observed using an optical microscope (DMRX HC DC300F manufactured by LEICA) and a scanning white interference microscope (Hitachi High-Technologies Bart Scan Co., Ltd.), and the area ratio of the deposited film was calculated.
  • the area ratio of the deposited film means that when the area of the pattern to be deposited is 100%, the film thickness is 95% or more of the target value with respect to the area (thus, 38 nm or more when the film thickness is 40 nm). ) In%. In the pattern of 400 ppi, the area ratio of the deposited film was 70% or more. If it is less than that, it is considered that there is a high possibility that a defect will occur due to the effect of misalignment of vapor deposition.
  • Measured area ratio is as shown in Table 1 below.
  • the area ratio of the vapor deposition film to be formed is 70% or more, the occurrence of defects due to the influence of the positional deviation of the deposition, etc. It was found that can be suppressed.
  • the area ratio of the vapor deposition film to be formed is less than 70%. This is considered to be because the resin mask opening cannot be formed with high accuracy because Sa on the surface of the resin mask exposed from the metal mask opening is 0.8 or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

金属マスク開口部が設けられた金属マスクと、前記金属マスク開口部と重なる位置に蒸着作製するパターンに対応した樹脂マスク開口部が設けられた樹脂マスクとが積層されてなる蒸着マスクであって、前記金属マスク開口部から露出する前記樹脂マスクの表面の算術平均高さ(Sa)が0.8μm以下である。

Description

蒸着マスク、フレーム付き蒸着マスク、蒸着マスク準備体、蒸着パターン形成方法および有機半導体素子の製造方法
 本開示の実施形態は、蒸着マスク、フレーム付き蒸着マスク、蒸着マスク準備体、蒸着パターン形成方法および有機半導体素子の製造方法に関する。
 蒸着マスクを用いた蒸着パターンの形成は、通常、蒸着作製するパターンに対応する開口部が設けられた蒸着マスクと蒸着対象物とを密着させ、蒸着源から放出された蒸着材を、開口部を通して、蒸着対象物に付着させることにより行われる。
 上記蒸着パターンの形成に用いられる蒸着マスクとしては、例えば、蒸着作製するパターンに対応する樹脂マスク開口部を有する樹脂マスクと、金属マスク開口部(スリットと称される場合もある)を有する金属マスクとを積層してなる蒸着マスク(例えば、特許文献1)等が知られている。
特許第5288072号公報
 本開示の実施形態は、高精細な蒸着パターンの形成が可能な蒸着マスクなどを提供することを主たる課題とする。
 本開示の第1の実施形態にかかる蒸着マスクは、金属マスク開口部が設けられた金属マスクと、前記金属マスク開口部と重なる位置に蒸着作製するパターンに対応した樹脂マスク開口部が設けられた樹脂マスクとが積層されてなる蒸着マスクであって、前記金属マスク開口部から露出する前記樹脂マスクの表面の算術平均高さ(Sa)が0.8μm以下である。
 上記第1の実施形態にかかる蒸着マスクにあっては、さらに、前記金属マスク開口部から露出する前記樹脂マスクの表面の最大高さ(Sz)が2.5μm以下であってもよい。
 また、本開示の第1の実施形態にかかる蒸着マスク準備体は、金属マスク開口部が設けられた金属マスクと、前記金属マスク開口部と重なる位置に蒸着作製するパターンに対応した樹脂マスク開口部が設けられた樹脂マスクとが積層されてなる蒸着マスクを得るための蒸着マスク準備体であって、金属マスク開口部が設けられた金属マスクと、前記金属マスクに積層された樹脂層と、を含み、前記金属マスク開口部から露出する前記樹脂層の表面の算術平均高さ(Sa)が0.8μm以下である。
 上記第1の実施形態にかかる蒸着マスク準備体にあっては、さらに、前記金属マスクの開口部から露出する前記樹脂層の表面の最大高さ(Sz)が2.5μm以下であってもよい。
 また、本開示の第2の実施形態にかかる蒸着マスクは、金属マスク開口部が設けられた金属マスクと、前記金属マスク開口部と重なる位置に蒸着作製するパターンに対応した樹脂マスク開口部が設けられた樹脂マスクとが積層されてなる蒸着マスクであって、前記樹脂マスクの、前記金属マスクとは接していない側の表面の算術平均高さ(Sa)が0.5μm以下である。
 上記第2の実施形態にかかる蒸着マスクにあっては、さらに、前記樹脂マスクの、前記金属マスクとは接していない側の表面の最大高さ(Sz)が2.0μm以下であってもよい。
 また、本開示の第2の実施形態にかかる蒸着マスク準備体は、金属マスク開口部が設けられた金属マスクと、前記金属マスク開口部と重なる位置に蒸着作製するパターンに対応した樹脂マスク開口部が設けられた樹脂マスクとが積層されてなる蒸着マスクを得るための蒸着マスク準備体であって、金属マスク開口部が設けられた金属マスクと、前記金属マスクに積層された樹脂層と、を含み、前記樹脂層の、前記金属マスクとは接していない側の表面の算術平均高さ(Sa)が0.5μm以下である。
 上記第2の実施形態にかかる蒸着マスク準備体にあっては、さらに、前記樹脂層の、前記金属マスクとは接していない側の表面の最大高さ(Sz)が2.0μm以下であってもよい。
 本開示の第3の実施形態にかかる蒸着マスクは、蒸着作製するパターンに対応した樹脂マスク開口部が設けられた樹脂マスクを含む蒸着マスクであって、前記樹脂マスクの一方の面の算術平均高さ(Sa)が0.8μm以下である。
 上記第3の実施形態にかかる蒸着マスクにあっては、前記樹脂マスクの、算術平均高さ(Sa)が0.8μm以下の面上に金属層が積層されていてもよい。
 また、上記第3の実施形態にかかる蒸着マスクにあっては、前記樹脂マスクの一方の面の算術平均高さ(Sa)が0.5μm以下であり、前記算術平均高さ(Sa)が0.5μm以下の面とは反対側の面上に金属層が積層されていてもよい。
 本開示の実施形態にかかるフレーム付き蒸着マスクは、フレームと、前記フレームに固定された蒸着マスクと、を含むフレーム付き蒸着マスクであって、前記蒸着マスクが、上記第1乃至3の何れかの実施形態にかかる蒸着マスクにかかる蒸着マスクである。
 また、本開示の実施形態にかかる蒸着法による蒸着パターン形成方法は、第1乃至3の何れかの実施形態にかかる蒸着マスクを使用する。
 また、本開示の実施形態にかかる有機半導体素子の製造方法は、第1乃至3の何れかの実施形態にかかる蒸着マスクを使用する。
 本開示の蒸着マスク等によれば、高精細な蒸着パターンを形成することができる。
(a)は、本開示の第1の実施形態にかかる蒸着マスクの一例を示す概略断面図であり、(b)は本開示の第1の実施形態にかかる蒸着マスクを樹脂マスクの表面側から平面視したときの一例を示す正面図である。 本開示の実施形態にかかるフレーム付き蒸着マスクの一例を示す正面図である。 本開示の実施形態にかかるフレーム付き蒸着マスクの一例を示す正面図である。 (a)~(c)は、本開示の実施形態にかかるフレームの一例を示す正面図である。 本開示の第1の実施形態にかかる蒸着マスク準備体の一例を示す断面図である。 本開示の第1の実施形態にかかる蒸着マスク準備体の一例を示す断面図である。 本開示の第1の実施形態にかかる蒸着マスク準備体の一例を示す断面図である。 圧延工程の概略図である。 アニール工程の概略図である。 (a)は、本開示の第2の実施形態にかかる蒸着マスクの一例を示す概略断面図であり、(b)は本開示の第2の実施形態にかかる蒸着マスクを樹脂マスクの表面側から平面視したときの一例を示す正面図である。 本開示の第2の実施形態にかかる蒸着マスク準備体の一例を示す断面図である。 本開示の第2の実施形態にかかる蒸着マスク準備体の一例を示す断面図である。 本開示の第2の実施形態にかかる蒸着マスク準備体の一例を示す断面図である。 (a)は、本開示の第3の実施形態にかかる蒸着マスクを金属層側から平面視したときの一例を示す正面図であり、(b)は、(a)のA-A部分での概略断面図である。 本開示の第3の実施形態にかかる蒸着マスクを金属層側から平面視したときの一例を示す正面図である。 本開示の第3の実施形態にかかる蒸着マスクを金属層側から平面視したときの一例を示す正面図である。 本開示の第3の実施形態にかかる蒸着マスクを金属層側から平面視したときの一例を示す正面図である。 フレーム付きの本開示の第3の実施形態にかかる蒸着マスク蒸着マスクの一例を示す正面図である。 フレーム付きの本開示の第3の実施形態にかかる蒸着マスクの一例を示す正面図である。 本開示の第3の実施形態にかかる蒸着マスクを金属層側から平面視したときの一例を示す正面図である。 本開示の第3の実施形態にかかる蒸着マスクを金属層側から平面視したときの一例を示す正面図である。 本開示の第3の実施形態にかかる蒸着マスクを金属層側から平面視したときの一例を示す正面図である。 本開示の第3の実施形態にかかる蒸着マスクを金属層側から平面視したときの一例を示す正面図である。 本開示の第3の実施形態にかかる蒸着マスクを金属層側から平面視したときの一例を示す正面図である。 有機ELディスプレイを有するデバイスの一例を示す図である。
 以下、本発明の実施の形態を、図面等を参照しながら説明する。なお、本発明は多くの異なる態様で実施することが可能であり、以下に例示する実施の形態の記載内容に限定して解釈されるものではない。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本願明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。また、説明の便宜上、上方または下方などの語句を用いて説明するが、上下方向が逆転してもよい。左右方向についても同様である。
 <第1の実施形態にかかる蒸着マスク>
 図1(a)は、本開示の第1の実施形態にかかる蒸着マスクを金属マスク側から平面視したときの一例を示す正面図であり、図1(b)は、図1(a)のA-A部分での概略断面図である。なお、図1(b)における蒸着マスクの中央付近の一部は省略されている。
 図1に示すように、本開示の第1の実施形態にかかる蒸着マスク100は、蒸着作製するパターンに対応する複数の樹脂マスク開口部25を有する樹脂マスク20と、金属マスク開口部15を有する金属マスク10とが、前記樹脂マスク開口部25と前記金属マスク開口部15とが重なるようにして積層されてなる蒸着マスク100である。
 図示する形態では、樹脂マスク開口部25や、金属マスク開口部15の開口形状は、矩形状を呈しているが、開口形状について特に限定はなく、樹脂マスク開口部25や、金属マスク開口部15の開口形状は、ひし形、多角形状であってもよく、円や、楕円等の曲率を有する形状であってもよい。なお、矩形や、多角形状の開口形状は、円や楕円等の曲率を有する開口形状と比較して発光面積を大きくとれる点で、好ましい樹脂マスク開口部25の開口形状であるといえる。
 (樹脂マスク)
 図1に示す第1の実施形態にかかる蒸着マスク100を構成する樹脂マスク20の主材料となる樹脂材料について限定はなく、レーザー加工等によって高精細な樹脂マスク開口部25の形成が可能であり、熱や経時での寸法変化率や吸湿率が小さく、軽量な材料を用いることが好ましい。このような材料としては、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリビニルアルコール樹脂、ポリプロピレン樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリアクリロニトリル樹脂、エチレン酢酸ビニル共重合体樹脂、エチレン-ビニルアルコール共重合体樹脂、エチレン-メタクリル酸共重合体樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、セロファン、アイオノマー樹脂等を挙げることができる。上記に例示した材料の中でも、熱膨張係数が16ppm/℃以下である樹脂材料が好ましく、吸湿率が1.0%以下である樹脂材料が好ましく、この双方の条件を備える樹脂材料が特に好ましい。この樹脂材料を用いた樹脂マスク20とすることで、樹脂マスク開口部25の寸法精度を向上させることができ、かつ熱や経時での寸法変化率や吸湿率を小さくすることができる。
 樹脂マスク20の厚みについて特に限定はないが、シャドウの発生の抑制効果をさらに向上せしめる場合には、樹脂マスク20の厚みは、25μm以下であることが好ましく、10μm未満であることがより好ましい。下限値の好ましい範囲について特に限定はないが、樹脂マスク20の厚みが3μm未満である場合には、ピンホール等の欠陥が生じやすく、また変形等のリスクが高まる。特に、樹脂マスク20の厚みを、3μm以上10μm未満、より好ましくは4μm以上8μm以下とすることで、400ppiを超える高精細パターンを形成する際のシャドウの影響をより効果的に防止することができる。また、樹脂マスク20と後述する金属マスク10とは、直接的に接合されていてもよく、粘着剤層を介して接合されていてもよいが、粘着剤層を介して樹脂マスク20と金属マスク10とが接合される場合には、樹脂マスク20と粘着剤層との合計の厚みが上記好ましい厚みの範囲内であることが好ましい。なお、シャドウとは、蒸着源から放出された蒸着材の一部が、金属マスク開口部や、樹脂マスクの開口部の内壁面に衝突して蒸着対象物へ到達しないことにより、目的とする蒸着膜厚よりも薄い膜厚となる未蒸着部分が生ずる現象のことを言う。
 樹脂マスク開口部25の断面形状についても特に限定はなく、樹脂マスク開口部25を形成する樹脂マスクの向かいあう端面同士が略平行であってもよいが、図1(b)に示すように、樹脂マスク開口部25はその断面形状が、蒸着源に向かって広がりをもつような形状であることが好ましい。換言すれば、金属マスク10側に向かって広がりをもつテーパー面を有していることが好ましい。テーパー角については、樹脂マスク20の厚み等を考慮して適宜設定することができるが、樹脂マスク開口部における下底先端と、同じく樹脂マスク開口部における上底先端を結んだ直線と、樹脂マスク底面とのなす角度、換言すれば、樹脂マスク開口部25を構成する内壁面の厚み方向断面において、樹脂マスク開口部25の内壁面と樹脂マスク20の金属マスク10と接しない側の面(図示する形態では、樹脂マスクの下面)とのなす角度は、5°以上85°以下の範囲内であることが好ましく、15°以上75°以下の範囲内であることがより好ましく、25°以上65°以下の範囲内であることがさらに好ましい。特には、この範囲内の中でも、使用する蒸着機の蒸着角度よりも小さい角度であることが好ましい。また、図示する形態では、樹脂マスク開口部25を形成する端面は直線形状を呈しているが、これに限定されることはなく、外に凸の湾曲形状となっている、つまり樹脂マスク開口部25の全体の形状がお椀形状となっていてもよい。また、その逆、つまり内に凸の湾曲形状となっていてもよい。
 このような本開示の第1の実施形態にかかる蒸着マスク100は、金属マスク開口部15から露出する樹脂マスク20の表面20’の算術平均高さ(Sa)が0.8μm以下であることに特徴を有している。当該表面20’の算術平均高さ(Sa)を0.8μm以下とすることにより、樹脂マスク開口部25を加工する際、特にレーザー加工する際の精度を向上することができる。また、樹脂マスク開口部25のエッジにギザツキや欠陥が生じることを防止することもできる。さらに、当該表面20’の算術平均高さ(Sa)が0.8μm以下であるということは、樹脂マスク20の厚さが均一であることを意味し、これにより樹脂マスク開口部25の形状やサイズをより高い精度で均一とすることができる。
 金属マスク開口部15から露出する樹脂マスク20の表面20’の算術平均高さ(Sa)は、0.1μm以下であることがより好ましく、0.08μm以下であることが特に好ましい。
 ここで、「算術平均高さ(Sa)」とは、線の算術平均高さ(Ra)を面に拡張したパラメータであり、測定対象となる表面の平均面に対して、各点の高さの絶対値の平均により算出される値である。当該算術平均高さ(Sa)を算出するにあっては、例えば、形状解析レーザー顕微鏡を用いて、樹脂マスク20の表面20’を測定し、ISO 25178に準じた方法で算出できる。
 本開示の第1の実施形態にかかる蒸着マスク100にあっては、さらに金属マスク開口部15から露出する樹脂マスク20の表面20’の最大高さ(Sz)が2.5μm以下であることが好ましい。算術平均高さ(Sa)が0.8μm以下であり、かつ、最大高さ(Sz)が2.5μm以下であることにより、樹脂マスク20の厚さがさらに均一となり、これにより樹脂マスク開口部25の形状やサイズをささらに高い精度で均一とすることができる。
 金属マスク開口部15から露出する樹脂マスク20の表面20’の最大高さ(Sz)は、2.0μm以下であることがより好ましく、1.5μm以下であることが特に好ましい。
 ここで、「最大高さ(Sz)」とは、線の最大高さRzを面に拡張したパラメータであり、測定対象となる表面における最も高い点から最も低い点までの距離を表す値である。当該最大高さ(Sz)を測定するにあっては、例えば、形状解析レーザー顕微鏡を用いて、樹脂マスク20の表面20’を測定し、ISO 25178に準じた方法で算出できる。
 (金属マスク)
 図1(b)に示すように、樹脂マスク20の一方の面上には、金属マスク10が積層されている。金属マスク10は、金属から構成され、縦方向或いは横方向に延びる金属マスク開口部15が配置されている。金属マスク開口部の配置例について特に限定はなく、縦方向、及び横方向に延びる金属マスク開口部が、縦方向、及び横方向に複数列配置されていてもよく、縦方向に延びる金属マスク開口部が、横方向に複数列配置されていてもよく、横方向に延びる金属マスク開口部が縦方向に複数列配置されていてもよい。また、縦方向、或いは横方向に1列のみ配置されていてもよい。なお、本願明細書で言う「縦方向」、「横方向」とは、図面の上下方向、左右方向をさし、蒸着マスク、樹脂マスク、金属マスクの長手方向、幅方向の何れの方向であってもよい。例えば、蒸着マスク、樹脂マスク、金属マスクの長手方向を「縦方向」としてもよく、幅方向を「縦方向」としてもよい。また、本願明細書では、蒸着マスクを平面視したときの形状が矩形状である場合を例に挙げて説明しているが、これ以外の形状、例えば、円形状や、ひし形状等の多角形状としてもよい。この場合、対角線の長手方向や、径方向、或いは、任意の方向を「長手方向」とし、この「長手方向」に直交する方向を、「幅方向(短手方向と言う場合もある)」とすればよい。
 金属マスク10の材料について特に限定はなく、蒸着マスクの分野で従来公知のものを適宜選択して用いることができ、例えば、ステンレス鋼、鉄ニッケル合金、アルミニウム合金などの金属材料を挙げることができる。中でも、鉄ニッケル合金であるインバー材は熱による変形が少ないので好適に用いることができる。
 金属マスク10の厚みについても特に限定はないが、シャドウの発生をより効果的に防止するためには、100μm以下であることが好ましく、50μm以下であることがより好ましく、35μm以下であることが特に好ましい。なお、5μmより薄くした場合、破断や変形のリスクが高まるとともにハンドリングが困難となる傾向にある。
 また、図1(a)に示す形態では、金属マスク開口部15を平面視したときの開口形状は、矩形状を呈しているが、開口形状について特に限定はなく、金属マスク開口部15の開口形状は、台形状、円形状等いかなる形状であってもよい。
 金属マスク10に形成される金属マスク開口部15の断面形状についても特に限定されることはないが、図1(b)に示すように蒸着源に向かって広がりをもつような形状であることが好ましい。より具体的には、金属マスク開口部における下底先端と、同じく金属マスク開口部15における上底先端とを結んだ直線と、金属マスク10の底面とのなす角度、換言すれば、金属マスク開口部15を構成する内壁面の厚み方向断面において、金属マスク開口部15の内壁面と金属マスク10の樹脂マスク20と接する側の面(図示する形態では、金属マスクの下面)とのなす角度は、5°以上85°以下の範囲内であることが好ましく、15°~80°の範囲内であることがより好ましく、25°以上65°以下の範囲内であることがさらに好ましい。特には、この範囲内の中でも、使用する蒸着機の蒸着角度よりも小さい角度であることが好ましい。
 なお、本開示の第1の実施形態にかかる蒸着マスク100は、これをフレームに固定することで、フレーム付き蒸着マスクとしてもよい。
 図2は、フレーム付き蒸着マスクの一例を示す正面図であり、図3は、フレーム付き蒸着マスクの一例を示す正面図であり、図4(a)~(c)は、本開示の実施形態にかかるフレームの一例を示す正面図である。
 フレーム付き蒸着マスク200は、図2に示すように、フレーム60に、1つの蒸着マスク100が固定されたものであってもよく、図3に示すように、フレーム60に、複数の蒸着マスク100が固定されたものであってもよい。
 フレーム60は、略矩形形状の枠部材であり、最終的に固定される蒸着マスク100の樹脂マスク20に設けられた樹脂マスク開口部25を蒸着源側に露出させるための開口を有する。フレームの材料としては、金属材料や、ガラス材料、セラミック材料等を挙げることができる。
 フレームの厚みについても特に限定はないが、剛性等の点から10mm以上30mm以下の範囲内であることが好ましい。フレームの開口の内周端面と、フレームの外周端面間の幅は、当該フレームと、蒸着マスクの金属マスクとを固定することができる幅であれば特に限定はなく、例えば、10mm以上70mm以下の範囲内である。
 また、図4(a)~(c)に示すように、フレームの開口領域に補強フレーム65等が設けられたフレーム60を用いてもよい。換言すれば、フレーム60が有する開口が、補強フレーム等によって分割された構成を有していてもよい。補強フレーム65を設けることで、当該補強フレーム65を利用してフレーム60と蒸着マスク100とを固定することができる。具体的には、上記で説明した蒸着マスク100を縦方向、及び横方向に複数並べて固定するときに、当該補強フレームと蒸着マスクが重なる位置においても、フレーム60に蒸着マスク100を固定することができる。
 フレーム60と、蒸着マスク100との固定方法についても特に限定はなく、レーザー光等により固定するスポット溶接、接着剤、ねじ止め、或いはこれ以外の方法を用いて固定することができる。
 <第1の実施形態にかかる蒸着マスクの製造方法>
 <第1の実施形態にかかる蒸着マスク準備体>
 以下、本開示の第1の実施形態にかかる蒸着マスクの製造方法について一例を挙げて説明しつつ、併せて本開示の第1の実施形態にかかる蒸着マスク準備体についても説明する。
 図5は、本開示の第1の実施形態にかかる蒸着マスク準備体の一例を示す断面図である。
 本開示の第1の実施形態にかかる蒸着マスクの製造方法にあっては、図5に示す第1の蒸着マスク準備体30が準備される。
 第1の蒸着マスク準備体30は、金属板11であり、その表面11’(図5においては下側の面)の算術平均高さ(Sa)が0.8μm以下であることに特徴を有している。当該蒸着マスク準備体30を用いて蒸着マスクを製造するにあっては、蒸着マスク準備体30を構成する金属板11の表面11’に樹脂層を積層し、金属板11を加工して金属マスクとし、一方で樹脂層を加工して樹脂マスクとすることとなる。この場合において、最終的に金属マスクの金属マスク開口部から露出する樹脂マスクの表面の粗さは、当該樹脂マスクと接する金属マスク(金属板11)の表面の粗さが写される。本開示の第1の実施形態にかかる蒸着マスク準備体30によれば、これを構成する金属板11の表面11’の算術平均高さ(Sa)が0.8μm以下であるため、当該表面11’に積層される樹脂層の表面の算術平均高さ(Sa)も0.8μm以下とすることができる。
 なお、金属板11の材質や形状、さらには厚さなどについては、上記金属マスクと同様であるため、ここでの説明は省略する。
 このような金属板11にあっては、その表面の最大高さ(Sz)が2.5μm以下、であることが好ましく、2.0μm以下であることが特に好ましい。
 ここで、金属板11の表面11’の算術平均高さ(Sa)を0.8μm以下とする方法、さらには、最大高さ(Sz)を2.5μm以下とする方法については、特に限定されることはなく、従来公知の種々の方法から適宜選択することができる。
 以下に、図8と図9を用いて、表面の算術平均高さ(Sa)が0.8μm以下であり、さらには最大高さ(Sz)が2.5μm以下の金属板を製造する一例を以下に示す。具体的には、金属板が、ニッケルを含む鉄合金の圧延材からなる例について説明する。
 この圧延材は、35μm以下の厚みを有している。また、圧延材におけるニッケル及びコバルトの含有量が合計で30質量%以上且つ38質量%以下である。
 (溶解工程)
 まず、鉄及びニッケル並びにその他の原材料を準備する。例えば、原材料全体に対する鉄の比率及びニッケルの比率がそれぞれ約64重量%および約36重量%となるよう、各原材料を準備する。続いて、各原材料を必要に応じて粉砕した後、各原材料を溶解炉にて溶解する溶解工程を実施する。例えば、アーク放電などの気体放電を利用して各原材料を溶解して混合する。これによって、金属板のための母材を得ることができる。溶解時の温度は、原材料に応じて設定するが、例えば1500℃以上である。溶解工程は、脱酸、脱水、脱窒素などのためにアルミニウム、マンガン、シリコンなどを溶解炉に投入する工程を含んでいてもよい。また、溶解工程は、大気圧よりも低い低圧状態で、アルゴンガスなどの不活性ガスの雰囲気下で実施してもよい。
 (研削工程)
 母材を溶解炉から取り出した後、母材の表面を削り取る研削工程を実施してもよい。これによって、スケールなどの酸化物の被膜を除去することができる。具体的な研削方法は特には限られないが、砥石車を回転させて母材の表面を削る、いわゆるグラインディング法や、母材を切削具に押し込んで母材の表面を削る、いわゆる押し込み法などを採用することができる。研削工程は、母材の厚みが均一になるように実施されてもよい。
 (圧延工程)
 続いて、図8に示すように、ニッケルを含む鉄合金から構成された母材60を圧延する圧延工程を実施する。例えば、一対の圧延ロール66a,66b(ワークロール)を含む圧延装置66に向けて、矢印D1で示す方向に引張張力を加えながら搬送する。一対の圧延ロール66a,66bの間に到達した母材60は、一対の圧延ロール66a,66bによって圧延され、この結果、母材60は、その厚みが低減されるとともに、搬送方向に沿って伸ばされる。これによって、厚みT0の金属板64を得ることができる。図8に示すように、金属板64をコア61に巻き取ることによって巻き体62を形成してもよい。なお、図8は、圧延工程の概略を示すものにすぎず、圧延工程を実施するための具体的な構成や手順が特に限られることはない。例えば圧延工程は、母材60を構成する鉄合金の結晶配列を変化させる温度以上の温度で母材を加工する熱間圧延工程や、鉄合金の結晶配列を変化させる温度以下の温度で母材を加工する冷間圧延工程を含んでいてもよい。また、一対の圧延ロール66a,66bの間に母材60や金属板64を通過させる際の向きが一方向に限られることはない。例えば、図8及び図9において、紙面左側から右側への向き、および紙面右側から左側への向きで繰り返し母材60や金属板64を一対の圧延ロール66a,66bの間に通過させることにより、母材60や金属板64を徐々に圧延してもよい。圧延工程においては、母材60に接触する圧延ロール66a,66bの直径を調整することにより、金属板64の表面粗さを調整することができる。例えば、圧延ロール66a,66bの直径を小さくすることにより、金属板の表面粗さを小さくすることができる。また、圧延工程においては、金属板64の形状を調整するために圧延アクチュエータの圧力を調整してもよい。また、圧延ロール(ワークロール)66a,66bに加えてバックアップロールの形状を適宜調整してもよく、バックアップロールの位置を板幅方向に適宜調整してもよい。また、圧延工程においては、圧延速度、すなわち母材の搬送速度を調整してもよい。なお、表面粗さをより小さくするという観点においては、圧延速度を遅くすることが好ましい。また、冷間圧延工程においては、母材60と圧延ロール66a,66bとの間に灯油などのクーラントを供給してもよい。これにより、母材の温度を制御することができる。なお、表面粗さをより小さくするという観点においては、クーラントの供給量を少なくすることが好ましい。また、圧延工程の前後、又は圧延工程の間に母材60又は金属板64の品質や特性を分析する分析工程を実施してもよい。例えば、蛍光X線を母材60又は金属板64に照射して組成を分析してもよい。また、熱機械分析(TMA:Thermomechanical Analysis)によって母材60又は金属板64の熱膨張量を測定してもよい。
 (アニール工程)
 その後、圧延によって金属板64内に蓄積された残留応力を取り除くため、図9に示すように、アニール装置67を用いて金属板64をアニールしてもよい。アニール工程は、図9に示すように、金属板64を搬送方向(長手方向)に引っ張りながら実施されてもよい。すなわち、アニール工程は、いわゆるバッチ式の焼鈍ではなく、搬送しながらの連続焼鈍として実施されてもよい。この場合、金属板64に座屈折れなどの変形が生じることを抑制するように温度や搬送速度を設定することが好ましい。アニール工程を実施することにより、残留歪がある程度除去された金属板64を得ることができる。なお、図9においては、アニール工程の際に金属板64を水平方向に搬送する例を示しているが、これに限られることはなく、アニール工程の際に金属板64を、垂直方向などのその他の方向に搬送してもよい。アニール工程の条件は、金属板64の厚みや圧下率などに応じて適切に設定されるが、例えば、500℃~600℃の範囲内で30秒~90秒にわたってアニール工程が実施される。なお上記の秒数は、アニール装置67中で所定の温度に調整された空間を金属板64が通過することに要する時間を表している。アニール工程の温度は、金属板64の軟化が生じないように設定されてもよい。好ましくは上述のアニール工程は、非還元雰囲気や不活性ガス雰囲気で実施される。ここで非還元雰囲気とは、水素などの還元性ガスを含まない雰囲気のことである。「還元性ガスを含まない」とは、水素などの還元性ガスの濃度が10%以下であることを意味している。また不活性ガス雰囲気とは、アルゴンガス、ヘリウムガス、窒素ガスなどの不活性ガスの濃度が90%以上である雰囲気のことである。非還元雰囲気や不活性ガス雰囲気でアニール工程を実施することにより、ニッケル水酸化物などのニッケル化合物が金属板64の表面層に生成されることを抑制することができる。アニール装置67は、不活性ガスの濃度をモニタする機構や、不活性ガスの濃度を調整する機構を有していてもよい。アニール工程の前に、金属板64を洗浄する洗浄工程を実施してもよい。これにより、アニール工程の際に金属板64の表面に異物が付着することを抑制することができる。洗浄のための洗浄液としては、例えば、炭化水素系の液を用いることができる。また、図9においては、アニール工程が、金属板64を長手方向に引っ張りながら実施される例を示したが、これに限られることはなく、アニール工程を、金属板64がコア61に巻き取られた状態で実施してもよい。すなわちバッチ式の焼鈍が実施されてもよい。なお、金属板64がコア61に巻き取られた状態でアニール工程を実施する場合、金属板64に、巻き体62の巻き取り径に応じた反りの癖がついてしまうことがある。従って、巻き体62の巻き径や母材60を構成する材料によっては、金属板64を長手方向に引っ張りながらアニール工程を実施することが有利である。
 (スリット工程)
 その後、金属板64の幅が所定の範囲内になるよう、圧延工程によって得られた金属板64の幅方向における両端をそれぞれ所定の範囲にわたって切り落とすスリット工程を実施してもよい。このスリット工程は、圧延に起因して金属板64の両端に生じ得るクラックを除去するために実施される。このようなスリット工程を実施することにより、金属板64が破断してしまう現象、いわゆる板切れが、クラックを起点として生じてしまうことを防ぐことができる。スリット工程において切り落とされる部分の幅は、スリット工程後の金属板64の形状が、幅方向において左右対称になるように調整されてもよい。また、スリット工程を、上述のアニール工程の前に実施してもよい。なお、上述の圧延工程、アニール工程及びスリット工程のうちの少なくとも2つの工程を複数回繰り返すことによって、所定の厚みの長尺状の金属板64を作製してもよい。
 以上の工程により、表面の算術平均高さ(Sa)が0.8μm以下であり、さらには最大高さ(Sz)が2.5μm以下の金属板を製造できる。
 図6は、図5とは別の本開示の第1の実施形態にかかる蒸着マスク準備体の一例を示す断面図である。
 本開示の第1の実施形態にかかる蒸着マスクの製造方法にあっては、図5に示す蒸着マスク準備体30を構成する金属板11の表面11’に樹脂層21が積層される。
 樹脂層21の積層方法については特に限定されることはなく、従来公知のコーティング法等によって、最終的に樹脂マスクとなる樹脂層を形成することができる。例えば、上記で説明した樹脂マスクの材料および必要に応じて添加される任意の成分を適当な溶媒に分散、或いは溶解した樹脂層用塗工液を調製し、これを金属板11の表面11’に、従来公知の塗工手段を用いて塗工・乾燥することで樹脂層21とすることができる。
 このような方法により得られた蒸着マスク準備体40を構成する樹脂層21における金属板11と接する表面21’の算術平均高さ(Sa)は、金属板11における樹脂層21と接する表面11’の算術平均高さ(Sa)と同じであるため、当然に0.8μm以下となっている。
 一方で、表面11’の算術平均高さ(Sa)が0.8μm以下ではない蒸着マスク準備体としての金属板11を用いる場合にあっては、当該金属板の表面ではなく、別の面上で、より具体的には、算術平均高さ(Sa)が0.8μm以下の面上で樹脂層21を形成し、当該別の面上から樹脂層21を剥がして、当該樹脂層21における算術平均高さ(Sa)が0.8μm以下の面を金属板11と貼り合わせることで蒸着マスク準備体40を形成してもよい。ここで、算術平均高さ(Sa)が0.8μm以下の面としては、例えば無アルカリガラス(日本電気硝子(株)、OA-10G)などを挙げることができる。
 図7は、図5、および図6とは別の本開示の第1の実施形態にかかる蒸着マスク準備体の一例を示す断面図である。
 本開示の第1の実施形態にかかる蒸着マスクの製造方法にあっては、図6に示す蒸着マスク準備体40を構成する金属板11に金属マスク開口部15を加工することにより、金属マスク10が形成される。
 金属マスク開口部15の加工方法については特に限定されることはなく、従来公知の加工方法から適宜選択することができる。例えば、図6に示す蒸着マスク準備体40の金属板11において、樹脂層21と接しない側の表面、つまり樹脂マスク側の面とは反対側の表面(図6および図7では、上側の面)にマスキング部材、例えば、レジスト材を塗工し、所定の箇所を露光し、現像することで、最終的に金属マスク開口部15が形成される位置を残したレジストパターンを形成する。マスキング部材として用いるレジスト材としては処理性が良く、所望の解像性があるものが好ましい。次いで、このレジストパターンを耐エッチングマスクとして用いてエッチング法により、樹脂層21と接しない側からエッチング加工する。エッチングが終了後、レジストパターンを洗浄除去する。これにより、樹脂層21の一方の面上に金属マスク開口部15が設けられた金属マスク10が積層された蒸着マスク準備体50が得られる。なお、樹脂層21が、金属板11のエッチング材に対し耐エッチング性を有する場合には、樹脂層21の表面をマスキングする必要はないが、樹脂層21が、金属板11のエッチング材に対する耐性を有しない場合には、樹脂層21の表面にマスキング部材を塗工しておく必要がある。また、上記では、マスキング部材としてレジスト材を中心に説明を行ったが、レジスト材を塗工する代わりにドライフィルムレジストをラミネートし、同様のパターニングを行ってもよい。
 当該製造方法により得られた蒸着マスク準備体50における金属マスク開口部15から露出した樹脂層21の表面21’の算術平均高さ(Sa)は0.8μm以下であり、加えて、上記金属板11の表面の最大高さ(Sz)が2.5μm以下の場合には、当該樹脂層21の表面21’の最大高さ(Sz)も2.5μm以下である。
 一方で、上記図5に示す蒸着マスク準備体30、つまり金属板11の表面11’の算術平均高さ(Sa)が0.8μm以下ではない蒸着マスク準備体を用いた場合にあっては、金属マスク開口部から露出する樹脂層の表面の算術平均高さ(Sa)も0.8μm以下とはなっていない場合がある。
 この場合においては、金属マスク開口部から露出した樹脂層の表面を加工することにより、当該表面の算術平均高さ(Sa)を0.8μm以下としてもよい。樹脂層表面の加工方法としては、従来公知の種々の方法から適宜選択することができる。一方で、金属板11の表面11’の算術平均高さ(Sa)が0.8μm以下ではない蒸着マスク準備体を用いる場合、当該金属板11の表面11’に樹脂層21を形成する前の段階で、当該表面11’に平坦化層を形成してもよい。前記平坦化層を形成するための材料としては特に限定されることはなく、例えば樹脂層21と同様の各種樹脂を用いることができる。
 また一方で、金属板の表面ではなく、別の面上で、より具体的には、算術平均高さ(Sa)が0.8μm以下の面上で樹脂層21を形成し、当該別の面上から樹脂層21を剥がして、当該樹脂層21における算術平均高さ(Sa)が0.8μm以下の面上に金属を所定のパターン状に析出させることで金属マスクを形成してもよい。この場合における算術平均高さ(Sa)が0.8μm以下の面としては、上記の無アルカリガラスなどを用いることができる。金属を析出させる方法としては、各種めっき法を用いることができ、例えば、無電解めっき法を用いて樹脂層21における算術平均高さ(Sa)が0.8μm以下の面上に金属を析出させ、これを下地層として電解めっき法を用いて金属マスクを形成してもよい。
 また、上記と同様に、金属板の表面ではなく、例えば、その表面の算術平均高さ(Sa)が0.8μm以下の無アルカリガラスを準備し、その表面上に樹脂層21を形成し、この状態のままで樹脂層21上に金属マスクを形成し、その後に、金属マスク付き樹脂層21を無アルカリガラスから剥離してもよい。さらには、金属マスク付き樹脂層21を無アルカリガラスから剥離することなく、このままの状態でフレームに固定し、後述するレーザー加工法などを用いて樹脂層21に樹脂マスク開口部25を形成し、最後に無機アルカリガラスを剥離してもよい。
 本開示の第1の実施形態にかかる蒸着マスクの製造方法にあっては、図7に示す蒸着マスク準備体50を構成する樹脂層21に樹脂マスク開口部25を加工することにより、図1に示す蒸着マスク100が製造される。
 樹脂マスク開口部25の形成方法としては、蒸着マスク準備体50に対し、レーザー加工法、精密プレス加工、フォトリソ加工等を用いて、樹脂層21を貫通させ、樹脂層21に蒸着作製するパターンに対応する樹脂マスク開口部25を形成することで、本開示の実実施形態にかかる蒸着マスク100を得る。なお、高精細な樹脂マスク開口部25を容易に形成することができる点からは、樹脂マスク開口部25の形成には、レーザー加工法を用いることが好ましい。また、本開示の実施形態にかかる蒸着マスク準備体50にあっては、当該レーザー加工法が施される樹脂層21の表面21’の算術平均高さ(Sa)が0.8μm以下であり、さらには、最大高さ(Sz)が2.5μm以下であり、平滑性が高いことから、レーザー加工法に適している。
 なお、上記樹脂マスク開口部の加工は、蒸着マスク準備体50をフレームに固定した後に行ってもよい。完成した蒸着マスク100をフレームに固定するのではなく、フレームに固定された状態の蒸着マスク準備体50に対し、後から樹脂マスク開口部25を設けることで、位置精度を格段に向上せしめることができる。蒸着マスク準備体50とフレームとの固定方法については特に限定はなく、レーザー光等により固定するスポット溶接、接着剤、ねじ止め、或いはこれ以外の方法を用いて固定することができる。
 樹脂マスク開口部25を形成する際に用いられるレーザー加工装置の一例について説明する。
 レーザー加工装置は、XYステージと、当該XYステージの上方に、レーザー光の進行方向の上流から下流に向かってレーザー光源と、カップリング光学系と、ビーム整形用マスクと、結像レンズと、対物レンズとをこの順に備えている。XYステージは、上面にマスク用部材を載置してXY平面に平行な面内をXY方向に移動するもので、制御装置によって制御されて、予め入力して記憶された移動量だけステップ移動するようになっている。上記レーザー光源は、波長が400nm以下のレーザー光を発生する、例えばKrF248nmのエキシマレーザーや、1064nmの第3高調波や第4高調波のレーザー光を放射するYAGレーザーである。また、上記カップリング光学系は、レーザー光源から放射されたレーザービームを拡張するビームエキスパンダと、レーザー光の輝度分布を均一にして後述のビーム整形用マスクに照射するフォトインテグレータ及びコンデンサレンズを含むものである。上記ビーム整形用マスクは、マスク用部材に照射されるレーザー光を、形成しようとする開口パターンに相似形の断面形状を有するレーザービームに整形して射出するもので、開口パターンに相似形の複数の透光窓を、予め定められた単位領域内に位置する複数の開口パターンの配列ピッチに対して、予め定められた拡大倍率で配置して備えたもので、透明なガラス基板や石英基板に被着させたクロム(Cr)等の遮光膜に上記透光窓を形成したものである。結像レンズは、後述の対物レンズと協働してビーム整形用マスクに形成された複数の透光窓を樹脂層上に予め定められた倍率で縮小投影するもので集光レンズである。また、対物レンズは、結像レンズと協働してビーム整形用マスクに形成された複数の透光窓を樹脂層上に予め定められた倍率で縮小投影するものである。
 次に、上記のようなレーザー加工装置を用いて樹脂マスク開口部25を形成する工程の一例について説明する。
 フレーム付き蒸着マスク準備体の金属マスク側をレーザー光の照射側として、XYステージ上に位置決めし、載置する。次いで、XYステージが移動して対物レンズがフレーム付き蒸着マスク準備体のレーザー加工開始位置に位置付けられる。続いて、レーザー加工装置の光学ユニットを対物レンズの光軸に沿って予め定められた距離だけZ軸方向に上昇させ、対物レンズの結像位置をフレーム付き蒸着マスク準備体の樹脂層とXYステージとの界面に位置付ける。引き続いて、レーザー光源が起動されてパルス発振し、複数ショットのレーザービームが放射される。放射されたレーザービームは、カップリング光学系により拡張され、強度分布が均一にされたレーザー光となってビーム整形用マスクに照射する。ビーム整形用マスクに照射したレーザー光は、該ビーム整形用マスクの複数の透光窓を透過することにより断面形状が開口パターンの形状と相似形に整形されて、複数のレーザー光となってビーム整形用マスクを射出する。そして、対物レンズにより樹脂層上に集光される。レーザー加工開始位置の単位領域に複数の開口パターンが形成されると、XYステージがX又はY軸方向に予め定められた距離だけステップ移動し、2番目の単位領域、3番目の単位領域…と、各単位領域に順繰りに複数の開口パターンがレーザー加工される。こうして、樹脂層の予め定められた所定位置に複数の開口パターンがレーザー加工され、樹脂マスクが形成される。
 <第2の実施形態にかかる蒸着マスク>
 図10(a)は、本開示の第2の実施形態にかかる蒸着マスクを金属マスク側から平面視したときの一例を示す正面図であり、図10(b)は、図10(a)のA-A部分での概略断面図である。なお、図10(b)における蒸着マスクの中央付近の一部は省略されている。
 図10に示すように、本開示の第2の実施形態にかかる蒸着マスク100は、上記本開示の第1の実施形態にかかる蒸着マスク100と同様、蒸着作製するパターンに対応する複数の樹脂マスク開口部25を有する樹脂マスク20と、金属マスク開口部15を有する金属マスク10とが、前記樹脂マスク開口部25と前記金属マスク開口部15とが重なるようにして積層されてなる蒸着マスク100である。
 樹脂マスク開口部25および金属マスク開口部15の開口形状については、第1の実施形態にかかる蒸着マスク100と同様であるため、ここでの説明は省略する。
 (樹脂マスク)
 図10に示す第2の実施形態にかかる蒸着マスク100を構成する樹脂マスク20の主材料となる樹脂材料、厚み、さらには樹脂マスク開口部25の断面形状については、第1の実施形態にかかる蒸着マスク100と同様であるため、ここでの説明は省略する。
 このような本開示の第2の実施形態にかかる蒸着マスク100は、樹脂マスク20の、金属マスク10側の面とは反対側の表面20’’、つまり金属マスク10とは接していない側の表面20’’の算術平均高さ(Sa)が0.5μm以下であることに特徴を有している。当該表面20’’の算術平均高さ(Sa)を0.5μm以下とすることにより、本開示の第2の実施形態にかかる蒸着マスク100を用いて蒸着対象物に所望のパターンを蒸着作製する際に、当該蒸着マスク100と蒸着対象物との密着性を向上することができ、これにより「蒸着パターン太り」とか「蒸着ボケ」とよばれる不具合の発生を抑制することができる。さらに、当該表面20’’の算術平均高さ(Sa)が0.5μm以下であるということは、樹脂マスク20の厚さが均一であることを意味し、これにより樹脂マスク開口部25の形状やサイズをより高い精度で均一とすることもできる。
 樹脂マスク20の、金属マスク10側の面とは反対側の表面20’’、つまりは金属マスク10とは接していない側の20’’の算術平均高さ(Sa)は、0.1μm以下であることがより好ましく、0.05μm以下であることが特に好ましい。
 なお、「算術平均高さ(Sa)」については、第1の実施形態にかかる蒸着マスク100と同様であるため、ここでの説明は省略する。
 本開示の第2の実施形態にかかる蒸着マスク100にあっては、さらに樹脂マスク20の、金属マスク10側の面とは反対側の表面20’’、つまり金属マスク10とは接していない側の表面20’’の最大高さ(Sz)が2.0μm以下であることが好ましい。算術平均高さ(Sa)が0.5μm以下であり、かつ、最大高さ(Sz)が2.0μm以下であることにより、樹脂マスク20の、金属マスク10側の面とは反対側の表面20’’と蒸着対象物との密着性をさらに向上することができる。
 樹脂マスク20の、金属マスク10とは接していない側の表面20’の最大高さ(Sz)は、1.0μm以下であることがより好ましく、0.8μm以下であることが特に好ましい。
 なお、「最大高さ(Sz)」については、第1の実施形態にかかる蒸着マスク100と同様であるため、ここでの説明は省略する。
 (金属マスク)
 図1(b)に示すように、樹脂マスク20の一方の面上には、金属マスク10が積層されている。ここで、金属マスク10の詳細について、具体的には、金属マスク開口部15の配列、金属マスク10の材料、厚み、金属マスク開口部15の開口形状や断面形状などについては、第1の実施形態にかかる蒸着マスク100と同様であるため、ここでの説明は省略する。
 本開示の第2の実施形態にかかる蒸着マスク100においても、第1の実施形態にかかる蒸着マスク100と同様、フレームに固定することで、フレーム付き蒸着マスクとしてもよい。本開示の第2の実施形態にかかる蒸着マスク100を用いたフレーム付き蒸着マスクの一例やフレームについては第1の実施形態にかかる蒸着マスク100と同様であるため、ここでの説明は省略する。
 <第2の実施形態にかかる蒸着マスクの製造方法>
 <第2の実施形態にかかる蒸着マスク準備体>
 以下、本開示の第2の実施形態にかかる蒸着マスクの製造方法について一例を挙げて説明しつつ、併せて本開示の第2の実施形態にかかる蒸着マスク準備体についても説明する。
 図11は、金属板の一例をしめす断面図である。
 本開示の第2の実施形態にかかる蒸着マスクの製造方法にあっては、図11に示す金属板11が準備される。
 この金属板11は、その表面11’’(図5においては下側の面)の算術平均高さ(Sa)が0.5μm以下となっている。この金属板11を用いて蒸着マスクを製造するにあっては、当該金属板11の表面11’’に樹脂層を積層し、金属板11を加工して金属マスクとし、一方で樹脂層を加工して樹脂マスクとすることとなる。この場合において、金属板11の表面11’’に樹脂層を積層した場合、当該金属板11の表面11’’の凹凸に樹脂層は追従し、樹脂層の、金属板11側の面とは反対側の表面、つまり金属板11とは接していない側の表面にも、前記金属板11の表面11’’の凹凸が反映される。この現象は、樹脂層が薄いほど顕著となる。したがって、その表面11’’の算術平均高さ(Sa)が0.5μm以下の金属板11を用いることにより、その後に積層される樹脂層の、金属板11側の面とは反対側の表面、つまり金属板11とは接していない側の表面の算術平均高さ(Sa)も0.5μm以下とすることができる。
 なお、金属板11の材質や形状、さらには厚さなどについては、上記金属マスクと同様であるため、ここでの説明は省略する。
 このような金属板11にあっては、その表面の最大高さ(Sz)が2.0μm以下であることが好ましい。
 ここで、金属板11の表面11’’の算術平均高さ(Sa)を0.5μm以下とする方法、さらには、最大高さ(Sz)を2.0μm以下とする方法については、特に限定されることはなく、従来公知の種々の方法から適宜選択することができる。具体的には、前記第1の実施形態にかかる蒸着マスク100で説明した「圧延材の製造方法」を用いることができる。
 図12は、本開示の第2の実施形態にかかる蒸着マスク準備体の一例を示す断面図である。
 本開示の第2の実施形態にかかる蒸着マスクの製造方法にあっては、図11に示す金属板11の表面11’’に樹脂層21が積層される。
 樹脂層21の積層方法については、第1の実施形態にかかる蒸着マスクの製造方法と同じ方法を用いることができる。
 こ蒸着マスク準備体40を構成する樹脂層21における、金属板11とは接していない側の表面21’’の算術平均高さ(Sa)は、金属板11における樹脂層21と接する面11’’の算術平均高さ(Sa)に追従し、0.5μm以下となっている。
 一方で、上記図11示す金属板11の表面11’’の算術平均高さ(Sa)が0.5μm以下ではない場合にあっては、樹脂層21の、金属板11と接していない側の表面21’’の算術平均高さ(Sa)も0.5μm以下とはなっていない場合がある。
 この場合においては、当該樹脂層21の表面21’’を加工することにより、表面21’’の算術平均高さ(Sa)を0.5μm以下としてもよい。樹脂層表面の加工方法としては、従来公知の種々の方法から適宜選択することができる。一方で、金属板11の表面11’’の算術平均高さ(Sa)が0.5μm以下ではない場合、当該金属板11の表面11’’に樹脂層21を形成する前の段階で、当該表面11’に平坦化層を形成してもよい。前記平坦化層を形成するための材料としては特に限定されることはなく、例えば樹脂層21と同様の各種樹脂を用いることができる。
 また、表面11’’の算術平均高さ(Sa)が0.5μm以下ではない蒸着マスク準備体としての金属板11を用いる場合にあっては、当該金属板の表面ではなく、別の面上で、より具体的には、算術平均高さ(Sa)が0.5μm以下の面上で樹脂層21を形成し、当該別の面上から樹脂層21を剥がして、当該樹脂層21を金属板11と貼り合わせることで蒸着マスク準備体40を形成してもよい。ここで、算術平均高さ(Sa)が0.5μm以下の面としては、例えば無アルカリガラス(日本電気硝子(株)、OA-10G)などを挙げることができる。
 図13は、図11、および図12とは別の本開示の第2の実施形態にかかる蒸着マスク準備体の一例を示す断面図である。
 本開示の第2の実施形態にかかる蒸着マスクの製造方法にあっては、図12に示す蒸着マスク準備体40を構成する金属板11に金属マスク開口部15を加工することにより、金属マスク10が形成される。
 金属マスク開口部15の加工方法については、第1の実施形態にかかる蒸着マスクの製造方法と同じであり、ここでの説明は省略する。
 当該製造方法により得られた蒸着マスク準備体50にあっては、前述の通り、樹脂層21における、金属マスクと接していない側の表面21’’の算術平均高さ(Sa)は0.5μm以下であり、加えて、上記金属板11の表面の最大高さ(Sz)が2.0μm以下の場合には、当該樹脂層21の表面21’の最大高さ(Sz)も2.0μm以下である。
 本開示の第2の実施形態にかかる蒸着マスクの製造方法にあっては、図13に示す蒸着マスク準備体50を構成する樹脂層21に樹脂マスク開口部25を加工することにより、図10に示す蒸着マスク100が製造される。
 樹脂マスク開口部25の形成方法については、第1の実施形態にかかる蒸着マスクの製造方法と同じであり、ここでの説明は省略する。
 <第3の実施形態にかかる蒸着マスク>
 本開示の第3の実施形態にかかる蒸着マスクは、蒸着作製するパターンに対応した樹脂マスク開口部が設けられた樹脂マスクを含む蒸着マスクであって、前記樹脂マスクの一方の面の算術平均高さ(Sa)が0.8μm以下である。上記第1および第2の実施形態にかかる蒸着マスクはいずれも、金属マスクと樹脂マスクとを積層した積層構造ものであったが、これに限定されることはなく、その一方の面の算術平均高さ(Sa)が0.8μm以下である樹脂マスクを含む蒸着マスクであればよい。
 具体的には、金属マスクを用いることなく、一方の面の算術平均高さ(Sa)が0.8μm以下である樹脂マスクを蒸着マスクとしてもよい。この場合における樹脂マスクの詳細は、上記第1および第2の実施形態にかかる蒸着マスクを構成する樹脂マスクと同様であるため、ここでの説明は省略する。
 なお、第3の実施形態にかかる蒸着マスクを構成する樹脂マスクの製造方法ついても特に限定されることはないが、例えば、その表面の算術平均高さ(Sa)が0.8μm以下の無アルカリガラスなどを準備し、その表面上に樹脂層を形成し、当該樹脂層にレーザー加工法などを用いて樹脂マスク開口部を形成することで、樹脂層を樹脂マスクとしてもよい。
 また、上記のような、いわゆる樹脂マスクのみからなる、第3の実施形態にかかる蒸着マスクを用いて蒸着パターンを形成する場合にあっては、樹脂マスクにおける算術平均高さ(Sa)が0.8μm以下の表面を、蒸着源側に向けて用いてもよく、その逆、つまり算術平均高さ(Sa)が0.8μm以下の表面を蒸着対象物側に向けて用いてもよい。
 本開示の第3の実施形態にかかる蒸着マスクは、図14~図24に示すように、樹脂マスク開口部25が設けられた樹脂マスク20の一方の面上に、より正確には、樹脂マスク開口部25が設けられた樹脂マスク20の一方の面上であって、樹脂マスク開口部25が設けられていない部分に、部分的に金属層12が設けられていてもよい。このような蒸着マスクによれば、フレームに蒸着マスクを固定する際に、樹脂マスク20に発生し得る応力を適当に逃がすことができ、その結果、伸びや縮みなどの変形を効果的に抑制することができる。
 この場合において、金属層12は、樹脂マスク20における算術平均高さ(Sa)が0.8μm以下の面上に設けられていてもよく、その反対側の面、つまり算術平均高さ(Sa)が0.8μm以下の面とは反対側の面上に設けられていてもよい。なお、金属層12を反対側に設ける場合にあっては、金属層12が設けられていない側の表面の算術平均高さ(Sa)を0.5μm以下とすることが好ましい。
 また、金属層12が設けられる位置および金属層12を平面視したときの平面形状についても特に限定されることはない。すなわち、金属層が設けられる位置に応じて、金属層12の平面形状を適宜設計することが可能である。
 例えば、図14(a)に示すように、第3の実施形態にかかる蒸着マスク100を金属層12が設けられている側から平面視したときに、樹脂マスク20が長辺と短辺とを有する四辺形、例えば、長方形を呈している場合にあっては、金属層12を、樹脂マスクの辺に沿った帯形状としてもよい。また、例えば、金属層12の形状を、その短辺と同じ長さを有する帯形状としつつ、樹脂マスク20の短辺と平行に配置してもよい。一方で、図20に示すように、第3の実施形態にかかる蒸着マスク100を金属層12が設けられている側から平面視したときに、樹脂マスク20が長辺と短辺とを有する長方形を呈している場合において、金属層12の形状をその長辺と同じ長さを有する帯形状としつつ、樹脂マスク20の長辺と平行に配置してもよい。また、金属層の形状を、樹脂マスクの長辺に対し、所定の角度をもつ帯形状としてもよい。なお、四辺形は、長方形に限定されるものではなく、例えば、台形、平行四辺形としてもよく、これ以外の四辺形としてもよい。また、樹脂マスク20を平面視したときの形状を、四辺形以外の形状としてもよい。また、樹脂マスク20を平面したときの形状を、四辺形以外の形状とした樹脂マスク20においても、本願明細書で説明する金属層12の形状や、配置の形態を適宜適用することができる。
 図14に示す形態では、樹脂マスク20の短辺と平行に、6つの帯形状の金属層12を配置しており、図20に示す形態では、樹脂マスク20の長辺と平行に3つの帯形状の金属層12を配置しているが、配置される金属層12の数は限定されることはなく、例えば、図示はしないが、複数の金属層12の何れか1つの金属層12のみを配置した形態としてもよい。
 また、図17に示すように、樹脂マスク20の上辺、及び下辺近傍にのみ、短辺と同じ長さを有する帯形状の金属層12を配置してもよく、図21に示すように、樹脂マスク20の左辺、及び右辺近傍にのみ、長辺と同じ長さを有する帯状体の金属層12を配置してもよい。また、長辺よりも短い長さの帯形状としてもよい。図17や図21に示す蒸着マスク100では、樹脂マスクの上辺及び下辺近傍、もしくは樹脂マスクの右辺及び左辺近傍に位置する金属層12は、樹脂マスク20の周縁と重なる位置に配置されているが、周縁と重ならない位置に配置してもよい。また、樹脂マスク20の周縁部上にのみ、金属層12を配置してもよい。なお、本願明細書でいう樹脂マスク20の周縁部とは、フレームに蒸着マスクを固定するときに、当該フレームをなす枠部材と厚み方向で重なる領域を意味する。この領域は、フレームの大きさや、フレームをなす枠部材の幅等により変化する。例えば、図14に示す形態において、樹脂マスク20の周縁部のうち、樹脂マスクの上辺、及び下辺の何れか一方、又は双方の辺の近傍にのみ、金属層12を配置した形態としてもよい。また、この場合において、金属層12を、樹脂マスクの周縁と重なるように配置してもよい。また、樹脂マスク20の長辺、或いは短辺と同じ長さを有する帯形状の金属層12にかえて、樹脂マスク20の長辺、或いは短辺と異なる長さを有する金属層を、樹脂マスク20の長辺、或いは短辺と平行に1つ配置してもよく、複数配置してもよい。また、1つ、又は複数の帯形状の金属層12をそれぞれランダムな方向に配置してもよい。
 例えば、図22に示すように、樹脂マスク20の右辺および左辺それぞれの周縁から離間した位置に、右辺および左辺、つまり樹脂マスク20の長辺よりも短い長さの帯状体の金属層12を配置してもよい。図22における金属層12が配置されている領域は、樹脂マスク20の周縁部であってもよく、非周縁部であってもよい。また、周縁部と非周縁部を跨ぐ領域であってもよい。なお、本願明細書でいう樹脂マスク20の非周縁部とは、樹脂マスク20の上記周縁部とは異なる領域全般を意味する。換言すれば、フレームに蒸着マスクを固定するときに、当該フレームをなす枠部材と厚み方向で重ならない領域を意味する。また、図23に示すように、樹脂マスク20の長辺に平行に配置される帯形状の金属層12は、その長さ方向において複数個に、図23においては5個に、分割されていてもよい。
 このように、樹脂マスク20の長辺や短辺に平行に帯形状の金属層12を配置することにより、帯形状の金属層12の長さ方向における樹脂マスク20の伸びや縮みなどの変形を効果的に抑制することができ、蒸着マスク100をフレームに固定したときのシワの発生を抑制することができる。したがって、樹脂マスク20が長辺と短辺を有する場合にあっては、伸びや縮みなどの変化量が大きい長辺に平行に金属層12を配置することが好ましい。
 図15は、第3形態の蒸着マスクを金属層12側から平面視したときの一例を示す正面図である。
 金属層12は樹脂マスク20の周縁部上に位置していることを必ずしも要しない。図15は、樹脂マスク20の非周縁部上にのみ金属層12を位置させた例を示している。また、樹脂マスク20の周縁部上、及び非周縁部上に、金属層12を配置してもよい。
 このように、金属層12を、樹脂マスク20の非周縁部上、具体的には、樹脂マスク20におけるフレームと重ならない位置にも配置することにより、金属層12をフレームとの固定にのみ用いるのではなく、樹脂マスク20に生じ得る伸びや縮みなどの変形を効果的に抑制することができる。また、金属層12の形状を帯形状とすることにより、金属層で樹脂マスク20に形成された開口部25の周囲を取り囲む場合と比べて、フレームに蒸着マスクを固定する際に、樹脂マスク20に発生し得る応力を適当に逃がすことができ、その結果、やはり伸びや縮みなどの変形を効果的に抑制することができる。
 なお、図15に示す点線は、「1画面」の領域を示している。金属層12を非周縁部上に配置する場合にあっては、「1画面」と「1画面」の間に金属層12を配置するようにしてもよい。
 また、図16は、第3の実施形態にかかる蒸着マスクを金属層が形成されている側から平面視したときの一例を示す正面図である。
 図16に示すように、金属層12は必ずしも帯状である必要はなく、樹脂マスク20上に点在するように配置されていてもよく、さらには、図24に示すように、金属層12が樹脂マスク20の四隅にのみ配置されていてもよい。このような場合において、図16や、図24に示す金属層12は正方形であるが、これに限定されることはなく、長方形、三角形、四角形以上の多角形、円、楕円、半円、ドーナツ形状、アルファベットの「C」形状、「T」形状、さらには「十字」形状や「星」形状など、あらゆる形状をも採用可能である。一枚の樹脂マスク20上に複数の金属層12が設けられている場合において、すべての金属層12が同一形状である必要はなく、前記で挙げた種々の形状の金属層12が混在していてもよい。また、上記で説明した金属層12の形状や、配置の形態を、適宜組み合わせてもよい。この場合であっても、上記金属層12が帯形状の場合と同様、フレームに蒸着マスクを固定する際に、樹脂マスクに発生し得る応力を逃がすことができる。
 好ましい形態の蒸着マスク100は、図14(a)、図15、図17、図18等に示すように、樹脂マスク20上に、帯形状の金属層12が配置されている。より好ましい形態の蒸着マスク100は、蒸着時における蒸着マスク100の搬送方向に沿って、帯形状の金属層12が配置されている。換言すれば、より好ましい形態の蒸着マスク100は、蒸着時のリニアソース(蒸着源)に対して、垂直な方向に沿って、樹脂マスク10上に、帯形状の金属層12が配置されている。例えば、図中の左右方向を、蒸着マスクの搬送方向とする場合、図14(a)、図15、図17等に示すように、搬送方向に沿って、帯形状の金属層12が位置する蒸着マスク100とすることが好ましい。この形態の蒸着マスク100によれば、樹脂マスク20に形成されている開口部25に寸法変動や、位置変動が生ずることをより効果的に抑制できる。
 金属層12の厚みについても特に限定はないが、シャドウの発生をより効果的に防止するためには、100μm以下であることが好ましく、50μm以下であることがより好ましく、35μm以下であることが特に好ましい。金属層12の厚みをこのような厚みとすることで、破断や変形のリスクを低減させることができるとともに、ハンドリング性を向上させることができる。
 金属層12の断面形状についても特に限定されることはないが、上記本開示の第1および第2の実施形態にかかる蒸着マスクを構成する金属マスクの場合と同様、蒸着源に向かって広がりをもつような形状であることが好ましい。
 樹脂マスク上に金属層12を設ける方法について特に限定はなく、樹脂マスク20と金属層12とを各種粘着剤を用いて貼り合わせてもよく、自己粘着性を有する樹脂マスクを用いてもよい。また、上記本開示の第1および第2の実施形態にかかる蒸着マスクを構成する金属マスクを製造する場合と同様、各種めっき法、例えば無電解めっき法と電解めっき法とを組み合わせて用いてもよい。
 <蒸着マスクを用いた蒸着方法>
 上記で説明した本開示の第1および第2の蒸着マスク、または第1および第2のフレーム付き蒸着マスクを用いた蒸着パターンの形成に用いられる蒸着方法については、特に限定はなく、例えば、反応性スパッタリング法、真空蒸着法、イオンプレーティング、電子ビーム蒸着法等の物理的気相成長法(Physical Vapor Deposition)、熱CVD、プラズマCVD、光CVD法等の化学気相成長法(Chemical Vapor Deposition)等を挙げることができる。また、蒸着パターンの形成は、従来公知の真空蒸着装置などを用いて行うことができる。
 <有機半導体素子の製造方法>
 次に、本開示の実施の形態にかかる有機半導体素子の製造方法(以下、本開示の有機半導体素子の製造方法と言う)について説明する。本開示の実施の形態にかかる有機半導体素子の製造方法は、蒸着マスクを用いて蒸着対象物に蒸着パターンを形成する工程を含み、蒸着パターンを形成する工程において、上記で説明した本開示の第1および第2の蒸着マスク、または第1および第2のフレーム付き蒸着マスクが用いられることを特徴としている。
 第1および第2の蒸着マスクを用いた蒸着法により蒸着パターンを形成する工程について特に限定はなく、基板上に電極を形成する電極形成工程、有機層形成工程、対向電極形成工程、封止層形成工程等を有し、各任意の工程において、上記で説明した本開示の蒸着マスクを用いて、蒸着パターンが形成される。例えば、有機ELデバイスのR(レッド),G(グリーン),B(ブルー)各色の発光層形成工程に、上記で説明した本開示の蒸着マスクをそれぞれ適用する場合には、基板上に各色発光層の蒸着パターンが形成される。なお、本開示の有機半導体素子の製造方法は、これらの工程に限定されるものではなく、従来公知の有機半導体素子の製造における任意の工程に適用可能である。
 以上説明した本開示の有機半導体素子の製造方法によれば、蒸着マスクと蒸着対象物とを隙間なく密着させた状態で、有機半導体素子を形成する蒸着を行うことができ、高精細な有機半導体素子を製造することができる。本開示の有機半導体素子の製造方法で製造される有機半導体素子としては、例えば、有機EL素子の有機層、発光層や、カソード電極等を挙げることができる。特に、本開示の有機半導体素子の製造方法は、高精細なパターン精度が要求される有機EL素子のR(レッド),G(グリーン),B(ブルー)発光層の製造に好適に用いることができる。
 <有機ELディスプレイの製造方法>
 次に、本開示の実施の形態にかかる有機ELディスプレイ(有機エレクトロルミネッセンスディスプレイ)の製造方法(以下、本開示の有機ELディスプレイの製造方法と言う)について説明する。本開示の有機ELディスプレイの製造方法は、有機ELディスプレイの製造工程において、上記で説明した本開示の有機半導体素子の製造方法により製造された有機半導体素子が用いられる。
 図25は、有機ELディスプレイを有するデバイスの一例を示す図である。
 上記本開示の有機半導体素子の製造方法により製造された有機半導体素子が用いられた有機ELディスプレイとしては、例えば、ノートパソコン(図25(a)参照)、タブレット端末(図25(b)参照)、携帯電話(図25(c)参照)、スマートフォン(図25(d)参照)、ビデオカメラ(図25(e)参照)、デジタルカメラ(図25(f)参照)、スマートウォッチ(図25(g)参照)等に用いられる有機ELディスプレイを挙げることができる。
 (実施例1)
 金属板として、36%インバー圧延材(厚さ30μm)で、その表面のSaおよびSzが、Sa=0.072μm、Sz=1.312μmの金属板を用意した。なお、金属板の表面のSaおよびSzの測定方法の詳細は以下の通りである。
 (金属板の表面の測定方法)
 金属板の測定に関しては、次のようにして試験片を準備した。金属板の幅方向の中央部において一辺が5cmの正方形状の試験片を切り出した。続いて、レーザー顕微鏡を用いて、試験片の測定領域における表面の位置を測定した。レーザー顕微鏡としては、キーエンス社製のレーザー顕微鏡 VK-X250を用いた。
 試験片の表面の位置を測定した時の、レーザー顕微鏡の設定は下記の通りであった。
・レーザー光:青色(波長408nm)
・対物レンズ:50倍
・光学ズーム:1.0倍
・測定モード:表面形状
・測定サイズ:標準(1024×768)
・測定品質:高速
・RPD:あり
・試験片固定方法:KOKUYO マグネットシート または 多孔質吸着プレートを使用して固定
 なお、RPDは、Real Peak Detectionの略である。「RPD あり」は、レーザー光の反射光のピークを検出することによって試験片の表面の位置を測定するという手法を採用したことを意味する。
 測定領域の面積について説明する。上述の「標準(1024×768)」という設定の下で測定した9か所の領域(画像)を連結して、測定領域とした。この場合、測定領域の面積は0.35mm2であった。以上の測定結果から、ISO 25178に準じた方法で算出し、高さパラメータSaおよびSzを得た。
 以上のようにして、ひとつの試験片に関して、少なくとも3点以上の測定をおこない、算出した値の平均値を測定値とした。
 次いで、前記金属板の、SaおよびSzを測定した側の表面に、ポリイミドワニス(ユピア(登録商標)-ST/宇部興産(株))をブレードコートした後、窒素雰囲気下400℃で60分間の焼成をおこなった。その結果、金属板の表面に、厚み6.0μm±0.5μmの樹脂層が積層されてなる、実施例1の第1の蒸着マスク準備体を得た。
 次いで、前記実施例1の第1の蒸着マスク準備体の、金属板の表面にドライフィルムを貼合し、所定の箇所を露光し、現像することで、マスクパターンを形成した。このマスクパターンを耐エッチングマスクとして用いて、塩化第二鉄腐食液を用いて不要な金属板を除去した後、マスクパターンを洗浄除去した。その結果、金属板を、金属マスク開口部を有する金属マスクとし、この金属マスクと樹脂層とが積層されてなる、実施例1の第2の蒸着マスク準備体を得た。
 前記実施例1の第2の蒸着マスク準備体の、金属マスク開口部から露出する樹脂層の表面のSaとおよびSzを測定したところSa=0.076μm、Sz=1.243μmであった。なお、金属マスク開口部から露出する樹脂層の表面のSaおよびSzの測定方法の詳細は以下の通りである。
 (樹脂層の表面の測定方法)
 樹脂層の表面の測定に関しては、中央部の一辺が5cmの正方形状のエリアを試験片とみなし、上記(金属マスクの測定方法)と同様にしてSaおよびSzの測定値を得た。
 次いで、インバー材からなる金属フレームを準備し、前記実施例1の第2の蒸着マスク準備体の金属マスクと金属フレームとが接するように溶接固定し、実施例1のフレーム付き蒸着マスク準備体を作製した。
 次いで、前記実施例1のフレーム付き蒸着マスク準備体を、金属マスクとは反対側、つまり樹脂層が下になるようにして、レーザー加工装置の加工ステージに載置した。この際、加工ステージと樹脂層との隙間を、イソプロピルアルコールで充填するように接触させることで、加工ステージと樹脂層とを密着させた。その後、樹脂層に対して、金属マスク開口部を通してYAGレーザー(波長355nm)を照射し、樹脂層を貫通させて、樹脂マスク開口部(32μm×34μm)を作製し、400ppiのパターンが形成された樹脂マスクを得ることで、実施例1のフレーム付き蒸着マスクを得た。
 (実施例2~3、および比較例1)
 前記金属板とは表面粗さの異なる金属板を準備したこと以外、すべて前記実施例1と同じ条件にて、実施例2~3および比較例1のフレーム付き蒸着マスクを得た。なお、実施例2~3および比較例1のフレーム付き蒸着マスクを製造する過程で得られる、実施例2~3および比較例1の第2の蒸着マスク準備体のそれぞれについて、金属マスク開口部から露出する樹脂層の表面のSaとおよびSzを測定したところ、以下の表1の通りであった。
 (面積率の測定)
 前記実施例1~3および比較例1のフレーム付き蒸着マスクを使用し、ガラス基板(150mm×150mm×0.7t)上に、有機発光材料Alqを厚み40nmで真空蒸着した。なお、蒸着マスクとガラス基板は隙間なく密着させた。蒸着した膜を光学顕微鏡(LEICA製 DMRX HC DC300F)および走査型白色干渉顕微鏡((株)日立ハイテクノロジーズ バートスキャン)を用いて観察し、蒸着膜の面積率を計算した。
 ここで、蒸着膜の面積率とは、蒸着すべきパターンの面積を100%としたとき、その面積に対して、膜厚が目標値の95%以上(したがって、膜厚40nmの場合は38nm以上)の面積を%で表したものである。400ppiのパターンにおいて、蒸着膜の面積率は70%以上を合格とした。それよりも少ない場合、蒸着の位置ズレ等の影響で、不良が発生する可能性が高いと考えられる。
 測定された面積率は以下の表1の通りである。
Figure JPOXMLDOC01-appb-T000001
 前記面積率の測定から、実施例1~3のフレーム付き蒸着マスクによれば、形成される蒸着膜の面積率が70%以上であるため、蒸着の位置ズレなどの影響に起因する不良の発生を抑制できることが分かった。一方で、比較例1のフレーム付き蒸着マスクにあっては、形成される蒸着膜の面積率が70%未満である。これは、金属マスク開口部から露出する樹脂マスクの表面のSaが0.8以上であることから、樹脂マスク開口部を精度良く形成することができていないことが原因であると考えられる。
 なお、比較例1のフレーム付き蒸着マスクを用いて形成した蒸着膜の面積率が70%未満となった原因については、例えば、(1)金属マスク開口部から露出する樹脂マスクの表面の凹凸により、樹脂マスク開口を形成する際のレーザー加工時におけるレーザー照射が均一とはならず、バリや滓が多く発生し、これに起因して、樹脂マスク開口部の形状に歪みや変形が生じたこと。(2)前記バリや滓の影響や、樹脂マスクの金属マスク側とは反対側の表面の凹凸の影響で、蒸着膜を形成する際に、フレーム付き蒸着マスクと蒸着対象物であるガラス基板との間で十分な密着が得られず、蒸着膜の厚さが十分ではない領域が増えたこと。および(3)樹脂マスク開口部の形状の歪みや変形により蒸着面積が減少したこと。などが考えられる。
 また、比較例の比較例1のフレーム付き蒸着マスクのみならず、実施例1~3のフレーム付き蒸着マスクにあっても、蒸着膜の形成時にはある程度の「位置ズレ」は発生していると考えられるが、比較例1のフレーム付き蒸着マスクを用いて形成した蒸着膜の面積率が70%未満であるため、位置ズレの影響により、TFTの発光エリア上に十分な膜厚の蒸着膜がのらず、パネル発光時の輝度ムラなどが発生するなどのパネル欠陥につながる可能性も考えられる。
10・・・金属マスク
11・・・金属板
11’、11’’・・・金属板の表面
12・・・金属層
15・・・金属マスク開口部
20・・・樹脂マスク
21・・・樹脂層
21’・・・樹脂層の、金属板側の表面
21’’・・・樹脂層の、金属板側の面とは反対側の表面
25・・・樹脂マスク開口部
30、40、50・・・蒸着マスク準備体
60・・・フレーム
100・・・蒸着マスク
200・・・フレーム付き蒸着マスク
 

Claims (14)

  1.  金属マスク開口部が設けられた金属マスクと、前記金属マスク開口部と重なる位置に蒸着作製するパターンに対応した樹脂マスク開口部が設けられた樹脂マスクとが積層されてなる蒸着マスクであって、
     前記金属マスク開口部から露出する前記樹脂マスクの表面の算術平均高さ(Sa)が0.8μm以下である、蒸着マスク。
  2.  さらに、前記金属マスク開口部から露出する前記樹脂マスクの表面の最大高さ(Sz)が2.5μm以下である、請求項1に記載の蒸着マスク。
  3.  金属マスク開口部が設けられた金属マスクと、前記金属マスク開口部と重なる位置に蒸着作製するパターンに対応した樹脂マスク開口部が設けられた樹脂マスクとが積層されてなる蒸着マスクを得るための蒸着マスク準備体であって、
     金属マスク開口部が設けられた金属マスクと、
     前記金属マスクに積層された樹脂層と、を含み、
     前記金属マスク開口部から露出する前記樹脂層の表面の算術平均高さ(Sa)が0.8μm以下である、蒸着マスク準備体。
  4.  さらに、前記金属マスクの開口部から露出する前記樹脂層の表面の最大高さ(Sz)が2.5μm以下である、請求項3に記載の蒸着マスク準備体。
  5.  金属マスク開口部が設けられた金属マスクと、前記金属マスク開口部と重なる位置に蒸着作製するパターンに対応した樹脂マスク開口部が設けられた樹脂マスクとが積層されてなる蒸着マスクであって、
     前記樹脂マスクの、前記金属マスク側の面とは反対側の表面の算術平均高さ(Sa)が0.5μm以下である、蒸着マスク。
  6.  さらに、前記樹脂マスクの、前記金属マスク側とは反対側の表面の最大高さ(Sz)が2.0μm以下である、請求項5に記載の蒸着マスク。
  7.  金属マスク開口部が設けられた金属マスクと、前記金属マスク開口部と重なる位置に蒸着作製するパターンに対応した樹脂マスク開口部が設けられた樹脂マスクとが積層されてなる蒸着マスクを得るための蒸着マスク準備体であって、
     金属マスク開口部が設けられた金属マスクと、
     前記金属マスクに積層された樹脂層と、を含み、
     前記樹脂層の、前記金属マスク側の面とは反対側の表面の算術平均高さ(Sa)が0.5μm以下である、蒸着マスク準備体。
  8.  さらに、前記樹脂層の、前記金属マスク側の面とは反対側の表面の最大高さ(Sz)が2.0μm以下である、請求項7に記載の蒸着マスク準備体。
  9.  蒸着作製するパターンに対応した樹脂マスク開口部が設けられた樹脂マスクを含む蒸着マスクであって、
     前記樹脂マスクの一方の面の算術平均高さ(Sa)が0.8μm以下である、蒸着マスク。
  10.  前記樹脂マスクの、算術平均高さ(Sa)が0.8μm以下の面上に金属層が積層されている、請求項9に記載の蒸着マスク。
  11.  前記樹脂マスクの一方の面の算術平均高さ(Sa)が0.5μm以下であり、
     前記算術平均高さ(Sa)が0.5μm以下の面とは反対側の面上に金属層が積層されている、請求項9に記載の蒸着マスク。
  12.  フレームと、前記フレームに固定された蒸着マスクと、を含むフレーム付き蒸着マスクであって、
     前記蒸着マスクが、請求項1、5および9のいずれか一項に記載の蒸着マスクである、フレーム付き蒸着マスク。
  13.  蒸着法による蒸着パターン形成方法であって、
     前記請求項1、5および9のいずれか一項に記載の蒸着マスクを使用する、蒸着パターン形成方法。
  14.  有機半導体素子の製造方法であって、
     前記請求項1、5および9のいずれか一項に記載の蒸着マスクを使用する、有機半導体素子の形成方法。
     
PCT/JP2018/013798 2017-03-31 2018-03-30 蒸着マスク、フレーム付き蒸着マスク、蒸着マスク準備体、蒸着パターン形成方法および有機半導体素子の製造方法 WO2018181969A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197022599A KR20190132989A (ko) 2017-03-31 2018-03-30 증착 마스크, 프레임 부착 증착 마스크, 증착 마스크 준비체, 증착 패턴 형성 방법 및 유기 반도체 소자의 제조 방법
JP2018566612A JP6620899B2 (ja) 2017-03-31 2018-03-30 蒸着マスク、フレーム付き蒸着マスク、蒸着マスク準備体、蒸着パターン形成方法および有機半導体素子の製造方法
CN201880015841.6A CN110382731B (zh) 2017-03-31 2018-03-30 蒸镀掩模、带框体的蒸镀掩模、蒸镀掩模准备体、蒸镀图案形成方法及有机半导体元件的制造方法
US16/494,802 US10895008B2 (en) 2017-03-31 2018-03-30 Vapor deposition mask, frame-equipped vapor deposition mask, vapor deposition mask preparation body, vapor deposition pattern forming method, and method for producing organic semiconductor element
US17/121,916 US20210214843A1 (en) 2017-03-31 2020-12-15 Vapor deposition mask, frame-equipped vapor deposition mask, vapor deposition mask preparation body, vapor deposition pattern forming method, and method for producing organic semiconductor element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-072212 2017-03-31
JP2017-072211 2017-03-31
JP2017072212 2017-03-31
JP2017072211 2017-03-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/494,802 A-371-Of-International US10895008B2 (en) 2017-03-31 2018-03-30 Vapor deposition mask, frame-equipped vapor deposition mask, vapor deposition mask preparation body, vapor deposition pattern forming method, and method for producing organic semiconductor element
US17/121,916 Continuation US20210214843A1 (en) 2017-03-31 2020-12-15 Vapor deposition mask, frame-equipped vapor deposition mask, vapor deposition mask preparation body, vapor deposition pattern forming method, and method for producing organic semiconductor element

Publications (1)

Publication Number Publication Date
WO2018181969A1 true WO2018181969A1 (ja) 2018-10-04

Family

ID=63676261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013798 WO2018181969A1 (ja) 2017-03-31 2018-03-30 蒸着マスク、フレーム付き蒸着マスク、蒸着マスク準備体、蒸着パターン形成方法および有機半導体素子の製造方法

Country Status (6)

Country Link
US (2) US10895008B2 (ja)
JP (2) JP6620899B2 (ja)
KR (1) KR20190132989A (ja)
CN (1) CN110382731B (ja)
TW (1) TWI763818B (ja)
WO (1) WO2018181969A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130389A1 (ja) * 2017-12-25 2019-07-04 堺ディスプレイプロダクト株式会社 蒸着マスク、蒸着方法及び有機el表示装置の製造方法
JP6838693B2 (ja) * 2019-01-31 2021-03-03 大日本印刷株式会社 蒸着マスク群、電子デバイスの製造方法及び電子デバイス
JP2022080753A (ja) * 2020-11-18 2022-05-30 株式会社ジャパンディスプレイ 蒸着マスクの製造方法
TWI772066B (zh) * 2021-06-16 2022-07-21 達運精密工業股份有限公司 金屬遮罩基材的製備方法
KR20230020035A (ko) * 2021-08-02 2023-02-10 삼성디스플레이 주식회사 증착용 마스크

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121720A (ja) * 2012-12-21 2014-07-03 V Technology Co Ltd 蒸着マスクの製造方法
JP2016053194A (ja) * 2014-09-03 2016-04-14 大日本印刷株式会社 蒸着マスク、フレーム付き蒸着マスク、蒸着マスク準備体、及び有機半導体素子の製造方法
WO2017013903A1 (ja) * 2015-07-17 2017-01-26 凸版印刷株式会社 メタルマスク基材、メタルマスク、および、メタルマスクの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288072A (en) 1976-01-17 1977-07-22 Citizen Watch Co Ltd Electronic watch with leghting
TW575786B (en) * 2000-03-14 2004-02-11 Takashi Nishi Exposure controlling photomask and production method thereof
CN105779935A (zh) * 2012-01-12 2016-07-20 大日本印刷株式会社 蒸镀掩模的制造方法及有机半导体元件的制造方法
JP5288072B2 (ja) 2012-01-12 2013-09-11 大日本印刷株式会社 蒸着マスク、蒸着マスク装置の製造方法、及び有機半導体素子の製造方法
JP5846287B1 (ja) * 2013-12-27 2016-01-20 大日本印刷株式会社 フレーム付き蒸着マスクの製造方法、引張装置、有機半導体素子の製造装置及び有機半導体素子の製造方法
JP2017020068A (ja) * 2015-07-09 2017-01-26 大日本印刷株式会社 蒸着マスク、蒸着マスク準備体、及び有機半導体素子の製造方法
CN205974646U (zh) * 2015-07-17 2017-02-22 凸版印刷株式会社 蒸镀用金属掩模
JP6417486B2 (ja) * 2015-12-25 2018-11-07 鴻海精密工業股▲ふん▼有限公司 蒸着マスクおよび有機半導体素子の製造方法
CN110214198A (zh) * 2017-01-26 2019-09-06 夏普株式会社 蒸镀用掩模、蒸镀用掩模的制造方法和有机el显示装置的制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121720A (ja) * 2012-12-21 2014-07-03 V Technology Co Ltd 蒸着マスクの製造方法
JP2016053194A (ja) * 2014-09-03 2016-04-14 大日本印刷株式会社 蒸着マスク、フレーム付き蒸着マスク、蒸着マスク準備体、及び有機半導体素子の製造方法
WO2017013903A1 (ja) * 2015-07-17 2017-01-26 凸版印刷株式会社 メタルマスク基材、メタルマスク、および、メタルマスクの製造方法

Also Published As

Publication number Publication date
CN110382731A (zh) 2019-10-25
TW201842689A (zh) 2018-12-01
JP2020045571A (ja) 2020-03-26
US20210214843A1 (en) 2021-07-15
KR20190132989A (ko) 2019-11-29
JP6620899B2 (ja) 2019-12-18
CN110382731B (zh) 2022-06-17
TWI763818B (zh) 2022-05-11
US10895008B2 (en) 2021-01-19
US20200259090A1 (en) 2020-08-13
JPWO2018181969A1 (ja) 2019-04-04

Similar Documents

Publication Publication Date Title
JP6620899B2 (ja) 蒸着マスク、フレーム付き蒸着マスク、蒸着マスク準備体、蒸着パターン形成方法および有機半導体素子の製造方法
JP6814420B2 (ja) 蒸着マスクを製造するための金属板、金属板の検査方法、金属板の製造方法、蒸着マスク、蒸着マスク装置及び蒸着マスクの製造方法
EP3556899B1 (en) Vapor deposition mask device and method for manufacturing vapor deposition mask device
US11211558B2 (en) Deposition mask device and method of manufacturing deposition mask device
KR101749435B1 (ko) 금속판, 금속판의 제조 방법, 및 금속판을 사용해서 증착 마스크를 제조하는 방법
JP7024837B2 (ja) 蒸着マスクの製造方法、蒸着マスク準備体、フレーム付き蒸着マスク準備体、蒸着マスク、保護シート付き蒸着マスク、フレーム一体型の保護シート付き蒸着マスク、有機半導体素子の製造方法、及び有機elディスプレイの製造方法
JP2015055007A (ja) 金属板、金属板の製造方法、および金属板を用いてマスクを製造する方法
WO2019049600A1 (ja) 蒸着マスク装置の製造方法及び蒸着マスク装置の製造装置
KR20210116310A (ko) 유기 디바이스의 제조 장치의 증착실의 평가 방법, 평가 방법에서 사용되는 표준 마스크 장치 및 표준 기판, 표준 마스크 장치의 제조 방법, 평가 방법으로 평가된 증착실을 구비하는 유기 디바이스의 제조 장치, 평가 방법으로 평가된 증착실에서 형성된 증착층을 구비하는 유기 디바이스, 그리고 유기 디바이스의 제조 장치의 증착실의 메인터넌스 방법
KR102372834B1 (ko) 증착 마스크, 프레임 부착 증착 마스크, 증착 마스크 준비체, 증착 패턴 형성 방법, 유기 반도체 소자의 제조 방법, 유기 el 디스플레이의 제조 방법
JP6167526B2 (ja) 蒸着マスクの製造方法、及び有機半導体素子の製造方法
JP2005339858A (ja) マスク構造体及びその製造方法
JP2018111879A (ja) 金属板、金属板の製造方法、マスクの製造方法およびマスク装置の製造方法
US20230272517A1 (en) Deposition mask and method for manufacturing deposition mask
JP2020007623A (ja) 蒸着マスク、蒸着マスクの製造方法および有機el表示装置の製造方法
JP6315140B2 (ja) 蒸着マスクの製造方法、及び有機半導体素子の製造方法
JP2019214794A (ja) 蒸着マスクの製造方法
JP2018138693A (ja) 蒸着マスクの製造方法、及び有機半導体素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566612

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197022599

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776711

Country of ref document: EP

Kind code of ref document: A1