WO2018181957A1 - 複合磁性体、複合磁性体を含む基板、およびこれらを含む高周波電子部品 - Google Patents

複合磁性体、複合磁性体を含む基板、およびこれらを含む高周波電子部品 Download PDF

Info

Publication number
WO2018181957A1
WO2018181957A1 PCT/JP2018/013771 JP2018013771W WO2018181957A1 WO 2018181957 A1 WO2018181957 A1 WO 2018181957A1 JP 2018013771 W JP2018013771 W JP 2018013771W WO 2018181957 A1 WO2018181957 A1 WO 2018181957A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic core
nanowires
electronic component
frequency electronic
Prior art date
Application number
PCT/JP2018/013771
Other languages
English (en)
French (fr)
Inventor
坂本 健
芳浩 新海
祐 米澤
英治 茂呂
健輔 荒
亨 及川
功 金田
賢治 堀野
崔 京九
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US16/494,791 priority Critical patent/US20200082964A1/en
Publication of WO2018181957A1 publication Critical patent/WO2018181957A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/06Cores, Yokes, or armatures made from wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0072Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures
    • H01F1/0081Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures in a non-magnetic matrix, e.g. Fe-nanowires in a nanoporous membrane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0033Printed inductances with the coil helically wound around a magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles

Definitions

  • the present invention relates to a composite magnetic body, a substrate including the composite magnetic body, and a high-frequency electronic component including these.
  • a 2.4 GHz band gigahertz band is used in a wireless LAN, and the frequency band of high-frequency electronic components mounted on a wireless communication device such as a mobile phone or a wireless LAN communication device extends to the gigahertz band. It is.
  • high frequency electronic components used in the gigahertz band include an inductor including a coil, an antenna for a wireless communication device including an inductor, or a high frequency noise countermeasure filter including an inductor and a capacitor.
  • a plurality of these high-frequency electronic components may be housed in a narrow space inside a wireless communication device, and have high performance such as high inductance, low insertion loss, high capacitance, or high electromagnetic shielding performance. There is a need for high frequency electronic components.
  • Patent Document 1 discloses a composite magnetic material obtained by dispersing a magnetic oxide having a main phase of hexagonal ferrite in a resin as a composite magnetic material having a high magnetic permeability and low magnetic loss in a high-frequency region of the gigahertz band. Is described. Since the composite magnetic material of Patent Document 1 includes a magnetic oxide having a high electric resistance, eddy current loss can be reduced. Therefore, the magnetic loss coefficient tan ⁇ at 2 GHz is as small as 0.01, and the magnetic loss coefficient tan ⁇ in the gigahertz band can be reduced.
  • the real part ⁇ ′ of the complex permeability at 2 GHz is as small as 1.4, and the real part ⁇ ′ of the complex permeability in the gigahertz band cannot be increased. That is, the composite magnetic material described in Patent Document 1 cannot achieve both high magnetic permeability and low magnetic loss.
  • Patent Document 2 describes a magnetic composite material in which needle-shaped magnetic metal particles having an aspect ratio (major axis length / minor axis length) of 1.5 to 20 are dispersed in a dielectric material. .
  • the permeability ⁇ ′ is as small as 1.37, and the permeability ⁇ ′ in the gigahertz band cannot be increased.
  • the loss tangent tan ⁇ is as large as 0.096 in the sample having a large permeability ⁇ ′ of 1.98, and the loss tangent tan ⁇ in the gigahertz band cannot be reduced.
  • Patent Document 2 cannot achieve both high magnetic permeability and low magnetic loss. This is because in Patent Document 2, magnetic metal particles are dispersed in a dielectric material such as polyethylene and press-molded, so that the magnetic particle ratio is as low as 30% and the magnetic metal particles are sufficiently insulated. This is thought to be because it is impossible.
  • the present invention has been made in view of the above problems, and its object is to provide a composite magnetic body having a high magnetic permeability and a low magnetic loss in the high frequency region of the gigahertz band, and a small, high-frequency electronic component having a low insertion loss using the same Is to provide.
  • the present inventors have conventionally included a plurality of magnetic nanowires aligned so as not to cross each other in the composite magnetic body. As a result, it was found that a composite magnetic body having a high magnetic permeability and a low magnetic loss was obtained, and the present invention was completed. In addition, the present inventors have found that by including a composite magnetic body or a magnetic substrate containing a composite magnetic body in a high-frequency electronic component, it is possible to obtain a high-frequency electronic component that is smaller and has a lower insertion loss than before. It came to complete.
  • the composite magnetic body of the present invention is A plurality of magnetic nanowires arranged so as not to cross each other and an insulator for electrically insulating the plurality of magnetic nanowires.
  • a composite magnetic body having a high magnetic permeability and a low magnetic loss can be provided in the high frequency region of the gigahertz band, particularly in the high frequency region of the gigahertz band.
  • the volume ratio of the magnetic nanowires in the composite magnetic body can be easily increased, and the composite magnetism in the gigahertz band
  • the permeability of the body can be increased.
  • a plurality of magnetic nanowires are electrically insulated by an insulator, eddy current loss can be reduced, and magnetic loss in the gigahertz band can be reduced.
  • the magnetic nanowire includes at least one metal of Fe, Co, and Ni.
  • the magnetic substrate contains a composite magnetic material.
  • the high-frequency electronic component according to the present invention includes a composite magnetic body or a magnetic substrate including the composite magnetic body. With such a configuration, deterioration of characteristics due to inductor loss is small, and insertion loss can be reduced particularly in the gigahertz band. Therefore, among the high frequency regions of the megahertz band and the gigahertz band, particularly in the high frequency region of the gigahertz band, it is possible to provide a high-frequency electronic component that is small and thin and has low insertion loss.
  • the composite magnetic body is included in a magnetic core.
  • a magnetic core By adopting such a configuration, it is possible to effectively reduce the insertion loss particularly in the gigahertz band.
  • the magnetic core includes a magnetic core middle leg portion inserted through the inside of the coil, and the magnetic nanowires included in the magnetic core middle leg portion are aligned substantially perpendicular to the winding axis direction of the coil.
  • intersects so that it may be substantially orthogonal to the magnetization easy direction (longitudinal direction of a magnetic nanowire) with respect to a magnetic nanowire. Therefore, eddy current loss particularly in the gigahertz band is reduced, magnetic loss is reduced, and insertion loss of high-frequency electronic components can be reduced.
  • the substrate includes at least one of a magnetic core upper substrate disposed above the coil and a magnetic core lower substrate disposed below the coil, and is included in at least one of the magnetic core upper substrate and the magnetic core lower substrate.
  • the magnetic nanowires are aligned substantially parallel to the winding axis direction of the coil.
  • the magnetic flux passing through at least one of the magnetic core upper substrate and the magnetic core lower substrate intersects the magnetic nanowire so as to be substantially orthogonal to the direction of easy magnetization (longitudinal direction of the magnetic nanowire). Therefore, eddy current loss particularly in the gigahertz band is reduced, magnetic loss is reduced, and insertion loss of high-frequency electronic components can be reduced.
  • the magnetic core includes a magnetic core outer leg portion disposed on a peripheral edge of the coil, and the magnetic nanowires included in the magnetic core outer foot portion are aligned substantially perpendicularly to a coil winding axis direction.
  • intersects so that it may be substantially orthogonal to the magnetization easy direction (longitudinal direction of a magnetic nanowire) with respect to a magnetic nanowire. Therefore, eddy current loss particularly in the gigahertz band is reduced, magnetic loss is reduced, and insertion loss of high-frequency electronic components can be further reduced.
  • FIG. 1 is a perspective view showing a configuration of a high-frequency electronic component having a composite magnetic body according to an embodiment of the present invention.
  • 2 is a cross-sectional view taken along the line II-II of the high-frequency electronic component shown in FIG.
  • FIG. 3 is a circuit diagram showing a circuit configuration of the high-frequency electronic component shown in FIG. 4 is a partially enlarged view of the cross-sectional view shown in FIG.
  • FIG. 5 is a perspective view showing a configuration of a high-frequency electronic component having a composite magnetic body according to another embodiment of the present invention.
  • a high-frequency electronic component 1 shown in FIG. 1 is used in a wireless communication device such as a mobile phone or a wireless LAN communication device.
  • the high frequency electronic component 1 includes inductors 11, 12 and 17, capacitors 13 to 16, magnetic core middle legs 23 and 24, a magnetic core upper substrate 21 and a magnetic core lower substrate 22.
  • the high frequency electronic component 1 has a function as a low pass filter as shown in FIG.
  • each part of the high-frequency electronic component 1 is formed to be line symmetric with respect to an axis parallel to the longitudinal direction (Y-axis direction) of the capacitor 16.
  • the inductors 11, 12, 17 and the capacitors 13 to 16 are configured by forming a multilayer substrate including a ground layer, an insulating layer, and a conductor layer into a shape as shown in FIG. More specifically, as shown in FIGS. 1 and 2, the inductor 11 includes an insulating layer 341, and a plurality of rectangular ring-shaped conductor layers 311 wound in a counterclockwise direction are laminated to form a coil. The coil unit 110 is connected.
  • the inductor 12 includes an insulating layer 342, and includes a coil portion 120 in which a plurality of rectangular ring-shaped conductor layers 312 wound in a clockwise direction are stacked and connected in a coil shape.
  • one end of a square ring-shaped conductor layer constituting the inductor 11 is connected to one end of a square conductor layer constituting the capacitor 13.
  • One end of a rectangular ring-shaped conductor layer that constitutes the inductor 12 is connected to one end of a square conductor layer that constitutes the capacitor 14.
  • the other ends of the capacitors 13 and 14 are connected and integrated with each other, and one end of a rectangular conductor layer constituting the capacitor 16 is connected to an intermediate portion in the X-axis direction of the integrated conductor layer.
  • the other end of the capacitor 16 is connected to an inductor 17 having a rectangular ring-shaped conductor layer, and a part of the inductor 17 is connected to the ground layer.
  • the capacitor 16 is configured by alternately laminating a plurality of insulating layers 336 and conductor layers 316.
  • the capacitors 13 to 15 shown in FIG. 1 also have the same configuration as the capacitor 16 shown in FIG.
  • the magnetic core middle legs 23 and 24 are magnetic cores (cores) each having the same shape, and have a function of increasing the inductance of the inductors 11 and 12.
  • the magnetic core middle leg part 23 is inserted into the coil part 110.
  • the magnetic core middle leg portion 24 is inserted into the coil portion 120.
  • the magnetic core lower substrate 22 constitutes a bottom surface portion of the high frequency electronic component 1.
  • the magnetic core upper substrate 21 constitutes an upper surface portion of the high frequency electronic component 1.
  • the magnetic core upper substrate 21 and the magnetic core lower substrate 22 are magnetic substrates and have a function of increasing the inductance of the inductors 11, 12, and 17. As shown in FIG. 2, the magnetic core upper substrate 21 and the magnetic core lower substrate 22 are arranged above and below the coils 11 and 12 so as to face each other so as to sandwich the inductors 11, 12, and 17 and the capacitors 13 to 16 therebetween. Has been.
  • the thickness T1 of the magnetic core upper substrate 21 in the Z-axis direction (the winding axis direction of the inductors 11 and 12) is preferably 100 nm to 1 cm, more preferably 10 to 1000 ⁇ m, and particularly preferably 50 to 500 ⁇ m.
  • the thickness T1 may be determined according to the length of the magnetic nanowire 362 included in the magnetic core upper substrate 21 described later.
  • the thickness T2 in the Z-axis direction of the magnetic core lower substrate 22 may be the same as the thickness T1 in the Z-axis direction of the magnetic core upper substrate 21 as shown in FIG. 4, or different from T1 as shown in FIG. May be.
  • the thickness T3 in the Z-axis direction of the magnetic core middle foot portion 23 may be the same as or different from the thickness T1 in the Z-axis direction of the magnetic core upper substrate 21.
  • the input side terminal of the capacitor 15 is connected to the input terminal 2, and the output side terminal is connected to the output terminal 3.
  • Inductors 11 and 12 connected in series with each other and capacitors 13 and 14 connected in series with each other are connected in parallel to the capacitor 15, respectively.
  • the output side terminal of the inductor 11, the input side terminal of the inductor 12, and the input side terminal of the capacitor 16 are connected to the output side terminal of the capacitor 13.
  • An inductor 17 is interposed between the output side terminal of the capacitor 16 and the ground.
  • the magnetic core middle legs 23 and 24 include a composite magnetic body.
  • the magnetic core middle leg portion 23 made of a composite magnetic body includes a plurality of linear magnetic nanowires 361 aligned so as not to cross each other, and an insulator 365 that electrically insulates the plurality of magnetic nanowires 361 from each other.
  • the plurality of magnetic nanowires 361 are aligned substantially perpendicularly in the direction of the winding axis (winding axis c) of the inductor 11. That is, the plurality of magnetic nanowires 361 are aligned substantially perpendicular to the direction of the magnetic flux passing through the magnetic core middle foot 23 in the Z-axis direction.
  • the direction substantially perpendicular to the winding axis direction of the inductors 11 and 12 is a direction substantially parallel to the winding direction of the coil portions 110 and 120 or a direction substantially parallel to the XY plane including the coil portions 110 and 120. Correspond.
  • the magnetic core middle foot portion 24 made of a composite magnetic material is also electrically insulated from a plurality of linear magnetic nanowires 361 aligned so as not to cross each other and the plurality of magnetic nanowires 361. And an insulator 365.
  • the plurality of magnetic nanowires 361 included in the magnetic core middle leg portion 24 are aligned substantially perpendicularly to the winding axis (winding axis c) direction of the inductor 12. That is, the plurality of magnetic nanowires 361 are aligned substantially perpendicularly to the direction of magnetic flux passing through the magnetic core middle foot 24 in the Z-axis direction.
  • the magnetic nanowire 361 includes at least one metal of Fe, Co, and Ni. More specifically, the magnetic nanowire 361 includes, for example, Fe, Co, Ni as a single metal, and includes, for example, an FeCo alloy, FeNi alloy, CoNi alloy, and FeCoNi alloy as an alloy of these metals. Further, the magnetic nanowire 361 may include an FeSi alloy or an FeSiCr alloy in which the above metal or alloy includes other elements. Further, the magnetic nanowire 361 may contain, for example, Cr, Mo, Mn, Cu, Sn, Zn, Al, P, B, V, etc. as an optional additive element or as an unavoidable impurity. Magnetic nanowires 361 made of these metals or alloys exhibit soft magnetism.
  • the volume ratio of the magnetic nanowires 361 in the composite magnetic material is preferably 45% or more and 90% or less. By setting the volume ratio within the above range, it is possible to prevent a decrease in the real part ⁇ ′ of the magnetic permeability of the composite magnetic body due to the volume ratio being too small, and between the magnetic nanowires 361 due to the volume ratio being too large. It is possible to prevent a decrease in insulation.
  • the diameter of the magnetic nanowire 361 is preferably 5 nm or more and 500 nm or less. By setting the diameter of the magnetic nanowire 361 within the above range, it becomes possible to prevent damage due to insufficient strength of the magnetic nanowire 361 due to the too small diameter, and the magnetic loss tan ⁇ of the composite magnetic body due to the excessively large diameter. An increase can be prevented.
  • the length of the magnetic nanowire 361 in the longitudinal direction is not particularly limited, but it is considered that the upper limit of the length is about 1 cm due to restrictions on the manufacturing method of the magnetic wire 361. This is because in the manufacturing method described later, the magnetic nanowires 361 are electrodeposited in the holes formed in the insulator 365, and the upper limit of the length of the holes is about 1 cm.
  • the magnetic nanowire 361 When forming the magnetic nanowire 361, it is necessary to form the magnetic nanowire 361 so as to increase the aspect ratio. This is because in the gigahertz band, the magnetic loss tan ⁇ of the composite magnetic material can be reduced by increasing the shape magnetic anisotropy of the magnetic nanowire 361.
  • the lower limit of the aspect ratio of the magnetic nanowire 361 is preferably 4, more preferably 20, and particularly preferably 100.
  • the upper limit of the aspect ratio of the magnetic nanowire 361 is 2 ⁇ 10 6 , and corresponds to the magnetic nanowire 361 having a diameter of 5 nm and a length of 1 cm, for example.
  • the ratio d / D between the diameter D and the distance d of the magnetic nanowire 361 is preferably 0.1 to 1, and more preferably 0.2 to 0.8. Particularly preferred is 0.3 to 0.5.
  • the aspect ratio of the magnetic nanowire 361 is high, unlike the patent document 2, a molding process for homogeneously mixing the magnetic metal particles and the resin is not performed. This is because in order to mix the resin and the magnetic metal particles uniformly, the magnetic metal particles must be spherical or similar in shape, or needle-like particles having a low aspect ratio. As in Patent Document 2, in the method of mixing magnetic metal particles and resin, it is practically difficult to make the volume ratio of magnetic particles 45% or more. In this embodiment, such a method is used. Although not adopted, the volume ratio of the magnetic nanowires 361 in the composite magnetic material can be easily increased.
  • the material of the insulator 365 is preferably an oxide or a resin.
  • the oxide include Al oxide, Si oxide, Cr oxide, Ta oxide, and Nb oxide.
  • Al oxide a porous anodic oxide formed by anodic oxidation of Al is particularly preferable. This is because this type of porous anodic oxide forms a periodic porous Al oxide having periodic wire-like cavities of nano-level diameter in a self-organizing manner.
  • resins include polystyrene, polybutadiene, polyethylene oxide, polyethylene oxide methyl ether, polymethacrylate, polymethacrylate, polyisoprene, polyNisopropylacrylamide, polybutylmethacrylate, polyvinylpyridine, polyferrocenyldimethylsilane, polyferrocenyl.
  • resins include polystyrene, polybutadiene, polyethylene oxide, polyethylene oxide methyl ether, polymethacrylate, polymethacrylate, polyisoprene, polyNisopropylacrylamide, polybutylmethacrylate, polyvinylpyridine, polyferrocenyldimethylsilane, polyferrocenyl.
  • examples include ethylmethylsilane, polydimethylsilane, polyethylenepropylene, polyethylene, polytetrabutylmethacrylate, polymethylstyrene, polyhydroxystyrene, epoxy resin, acrylic resin, poly
  • these resins are combined to form a block copolymer to form a two-dimensional periodic structure in which rod-like micelles are hexagonally arranged in a self-organized manner, and thereafter the rod-like micelle portions are removed.
  • an insulator 365 having a periodic wire-like cavity having a nano-level diameter is formed.
  • additives such as surface treating agents, such as a coupling agent and a dispersing agent, a heat stabilizer, and a plasticizer, as needed.
  • the magnetic core upper substrate 21 and the magnetic core lower substrate 22 include a composite magnetic material.
  • the magnetic core upper substrate 21 includes a plurality of linear magnetic nanowires 362 aligned so as not to cross each other, and an insulator 366 that electrically insulates the plurality of magnetic nanowires 362 from each other.
  • the magnetic core lower substrate 22 includes a plurality of linear magnetic nanowires 363 aligned so as not to cross each other, and an insulator 367 that electrically insulates the plurality of magnetic nanowires 363 from each other.
  • the magnetic nanowires 362 are aligned substantially parallel to the winding axis direction of the inductor 11. That is, the magnetic nanowires 362 are aligned substantially perpendicular to the direction of magnetic flux passing through the magnetic core upper substrate 21 in the X-axis direction. Further, the magnetic nanowires 363 are aligned substantially parallel to the winding axis direction of the inductor 11. That is, the magnetic nanowires 363 are aligned substantially perpendicular to the direction of magnetic flux passing through the magnetic core lower substrate 22 in the X-axis direction.
  • the configuration of the magnetic nanowires 362 and 363 is the same as that of the magnetic nanowire 361 described above.
  • an insulator having a periodic porous structure having a plurality of holes aligned so as not to cross each other is prepared, and magnetic nanowires are electrodeposited inside these holes.
  • the composite magnetic body is processed into a predetermined shape and size to produce the magnetic core upper substrate 21, the magnetic core lower substrate 22, and the magnetic core middle foot portion 23.
  • the insulator is processed into a predetermined shape and size in advance, and magnetic nanowires are electrodeposited inside the holes of the insulator to form a composite magnetic body (the magnetic core upper substrate 21, the magnetic core lower substrate 22 and the magnetic core).
  • a foot 23) is produced.
  • the inductor 11 is manufactured by laminating a plurality of rectangular ring-shaped conductor layers 311 shown in FIG. 2 and connecting them in a coil shape.
  • the inductor 12 is similarly manufactured.
  • the inductor 17 and the capacitors 13 to 16 shown in FIG. 1 are also manufactured by stacking a plurality of conductive layers and insulating layers. And these are integrated and the circuit pattern board
  • this circuit pattern substrate is placed on the upper surface of the magnetic core lower substrate 22, and the magnetic core middle foot portion 23 is inserted into the opening 111 inside the coil portion 110 shown in FIG.
  • the magnetic core middle leg portion 23 is installed on the upper surface.
  • the magnetic core middle leg portion 24 shown in FIG. 1 is installed on the upper surface of the magnetic core lower substrate 22.
  • the magnetic core upper substrate 21 is put on the circuit pattern, and the respective parts are joined to obtain the high-frequency electronic component 1.
  • the magnetic core upper substrate 21, the magnetic core lower substrate 22, the magnetic core middle legs 23 and 24, and the circuit pattern substrate may be joined by an adhesive.
  • the composite magnetic body (the magnetic core upper substrate 21, the magnetic core lower substrate 22, and the magnetic core middle foot portion 23) according to the present embodiment, the high permeability of the high frequency region of the megahertz band and the gigahertz band, particularly in the high frequency region of the gigahertz band. It is possible to provide a composite magnetic body having magnetic susceptibility and low magnetic loss. Although the mechanism of action that produces such an effect has not yet been clarified, the following mechanism of action is conceivable.
  • the volume ratio of the magnetic nanowires 361, 362, 363 in the composite magnetic body can be easily set.
  • the magnetic permeability of the composite magnetic material in the gigahertz band can be increased.
  • the plurality of magnetic nanowires 361, 362, and 363 are electrically insulated by insulators 365, 366, and 367, eddy current loss can be reduced, and magnetic loss in the gigahertz band is reduced. be able to.
  • the high frequency electronic component 1 includes a magnetic core upper substrate 21 and a magnetic core lower substrate 22 including a composite magnetic material. Therefore, the deterioration of characteristics due to the inductor loss is small, and the insertion loss can be reduced particularly in the gigahertz band. Therefore, among the high frequency regions of the megahertz band and the gigahertz band, particularly in the high frequency region of the gigahertz band, it is possible to provide a high-frequency electronic component that is small and thin and has low insertion loss.
  • the composite magnetic body is included in the magnetic core middle legs 23 and 24 that pass through the insides of the inductors 11 and 12. Therefore, the insertion loss can be effectively reduced particularly in the gigahertz band.
  • the magnetic nanowires 361 included in the magnetic core middle legs 23 and 24 are aligned substantially perpendicularly to the winding axis direction of the inductors 11 and 12. Therefore, the magnetic flux passing through the magnetic core middle legs 23 and 24 intersects the magnetic nanowire 361 so as to be substantially perpendicular to the magnetization easy direction (longitudinal direction of the magnetic nanowire 361). Therefore, eddy current loss particularly in the gigahertz band is reduced, magnetic loss is reduced, and insertion loss of the high-frequency electronic component 1 can be reduced.
  • the magnetic nanowires 362 and 363 included in the magnetic core upper substrate 21 and the magnetic core lower substrate 22 are aligned substantially parallel to the winding axis direction of the inductors 11 and 12. Therefore, the magnetic flux passing through the magnetic core upper substrate 21 and the magnetic core lower substrate 22 intersects the magnetic nanowires 362 and 363 so as to be substantially orthogonal to the direction of easy magnetization (longitudinal direction of the magnetic nanowire 361). Therefore, eddy current loss particularly in the gigahertz band is reduced, magnetic loss is reduced, and insertion loss of the high-frequency electronic component 1 can be reduced.
  • High-frequency electronic component 1A having a composite magnetic body of the present embodiment shown in FIG. 5 has the same configuration and operational effects as those of the first embodiment except for the following points, and is a common part.
  • common members are denoted by common reference numerals.
  • the high frequency electronic component 1 ⁇ / b> A is different from the high frequency electronic component 1 in that it further includes magnetic core outer legs 25 and 26.
  • the magnetic core outer legs 25 and 26 are magnetic cores (cores) each having the same shape, and have a function of increasing the inductance of the inductors 11 and 12.
  • the magnetic core outer legs 25 and 26 have a rectangular shape and are disposed on the peripheral edges of the coils 11 and 12.
  • the magnetic core outer legs 25 and 26 include a composite magnetic body.
  • the magnetic core outer legs 25 and 26 made of a composite magnetic body include a plurality of linear magnetic nanowires 364 aligned so as not to cross each other, and an insulator 368 that electrically insulates the plurality of magnetic nanowires 364 from each other. .
  • the plurality of magnetic nanowires 364 are substantially perpendicular to the direction of the winding axis (winding axis c) of the inductor 11 (with respect to the direction of the magnetic flux passing through the region C shown in the figure in the Z-axis direction). (Almost vertical).
  • the configuration of the magnetic nanowire 364 is the same as that of the magnetic nanowire 361 described above.
  • the magnetic core outer legs 25 and 26 can be manufactured by processing the composite magnetic body manufactured by the manufacturing method described in the first embodiment into a predetermined size and shape. Further, the high frequency electronic component 1A is manufactured by adding a step of installing the magnetic core outer legs 25 and 26 outside the coil portion 110 on the upper surface of the magnetic core lower substrate 22 shown in FIG. Can do.
  • the same effect as the above embodiment can be obtained.
  • the magnetic nanowires 364 included in the magnetic core outer legs 25 and 26 are aligned substantially perpendicularly to the winding axis direction of the coils 11 and 12. Therefore, the magnetic flux passing through the magnetic core outer legs 25 and 26 intersects the magnetic nanowire 364 so as to be substantially orthogonal to the magnetization easy direction (longitudinal direction of the magnetic nanowire 361). Accordingly, eddy current loss particularly in the gigahertz band is reduced, magnetic loss is reduced, and insertion loss of the high-frequency electronic component 1 can be further reduced.
  • each of the magnetic core upper substrate 21, the magnetic core lower substrate 22, the magnetic core middle legs 23 and 24, and the magnetic core outer legs 25 and 26 is composed of a composite magnetic material. Only a part of each of the substrate 22, the magnetic core middle legs 23 and 24, and the magnetic core outer legs 25 and 26 may be composed of a composite magnetic material.
  • the circuit patterns of the inductors 11, 12, 17 and capacitors 13 to 16, which are prepared in advance at the time of manufacturing the high-frequency electronic component 1, is installed on the upper surface of the magnetic core lower substrate 22 is shown.
  • the manufacturing method of the high frequency electronic component 1 is not limited to this.
  • the coil portion 110 may be formed by stacking a plurality of conductive pastes and insulating pastes on the upper surface of the magnetic core lower substrate 22 and connecting them in a coil shape.
  • the inductors 12 and 17 and the capacitors 13 to 16 may be formed by laminating a plurality of conductive pastes and insulating pastes on the upper surface of the magnetic core lower substrate 22.
  • the length of the magnetic nanowires 362 and 363 may be shortened within a range where the aspect ratio does not become too small, and these may be multilayered and included in the magnetic core upper substrate 21 and the magnetic core lower substrate 22.
  • the lengths of the magnetic nanowires 361 and 364 may be shortened within a range in which the aspect ratio does not become too small, and these may be included in the magnetic core middle legs 23 and 24 and the magnetic core outer legs 25 and 26.
  • the thickness of the magnetic core upper substrate 21 and the magnetic core lower substrate 22 in the Z-axis direction may be increased, and magnetic nanowires 362 and 363 may be included in these layers in a multilayered manner.
  • the thickness of the magnetic core middle foot portions 23 and 24 and the magnetic core outer foot portions 25 and 26 in the Z-axis direction may be increased, and the magnetic nanowires 361 and 364 may be further multilayered and included therein.
  • the plurality of magnetic nanowires 361 to 364 are regularly arranged so as not to cross each other, but may be arranged somewhat randomly as long as they do not cross each other.
  • the lengths of the plurality of magnetic nanowires 361 to 364 are substantially equal, but may be slightly different.
  • the magnetic nanowires 361 to 364 may be substantially linear, and may be somewhat distorted (bent) as long as they are insulated without crossing each other. Further, the magnetic nanowires 361 and 364 may be aligned substantially perpendicularly to the winding axis c (Z axis) of the inductor 11, and if they are insulated without crossing each other, the winding axis c It may be slightly inclined with respect to the vertical line. That is, the magnetic nanowires 361 and 364 may be inclined with respect to the vertical line of the winding axis c (Z axis), preferably within a range of ⁇ 45 degrees, and more preferably within a range of ⁇ 30 degrees.
  • It may be inclined with respect to the vertical line of the rotation axis c (Z axis), and particularly preferably may be inclined with respect to the vertical line of the winding axis c (Z axis) within a range of ⁇ 15 degrees. .
  • the magnetic nanowires 362 and 363 may be aligned substantially in parallel with the winding axis c (Z axis) of the inductor 11, and if the magnetic nanowires 362 and 363 are insulated without crossing each other, the winding axis c is sufficient. It may be slightly inclined with respect to (Z axis). That is, the magnetic nanowires 362 and 363 may be inclined with respect to the winding axis c (Z axis), preferably within a range of ⁇ 45, and more preferably within a range of ⁇ 30 degrees. Particularly preferably, it may be inclined with respect to the vertical line of the winding axis c (Z axis) within a range of ⁇ 15 degrees. By tilting the magnetic nanowires 361 to 364 at such an inclination angle, it is possible to impart high-dimensional strength and magnetic permeability to the composite magnetic body.
  • the present invention may be applied to other high-frequency electronic components.
  • other high-frequency electronic components include inductors, filters, and antennas that can be used in the high-frequency region of the megahertz band or the gigahertz band. More specifically, for chip inductors, SAW filters, BAW filters, EMI filters, LTCC, thin film filters, duplexers, bandpass filters, baluns, diplexers, RF front ends, couplers, highly integrated modules for wireless connection and power management, etc.
  • the present invention may be applied.
  • Example 1 Production of the high-frequency electronic component 1
  • the Al foil was anodized in a 0.3 M oxalic acid solution at a voltage of 40 V to produce a periodic porous Al oxide having a thickness of 60 ⁇ m and a pore diameter of 100 nm.
  • an electrolyte composed of 1 M ferric sulfate, 0.7 M boric acid and 1 mM sodium ascorbate maintained at 50 degrees with an Al foil connecting the cathode to the porous Al oxide, the anode Fe
  • the Fe magnetic nanowires 361 to 363 were electrodeposited in the pores of the periodic porous Al oxide by AC electrolysis at 500 Hz.
  • the length of the magnetic nanowires 361 to 363 in the longitudinal direction was 21 ⁇ m, and the diameter of the magnetic nanowires 361 to 363 was 98 nm.
  • the volume ratio of the magnetic nanowires 361 to 363 obtained from the porosity of the periodic porous Al oxide as the insulators 365 to 367 was 51%. In this way, a composite magnetic body of Example 1 composed of Fe magnetic nanowires 361 to 363 and Al oxide insulators 365 to 367 was obtained.
  • the length L of the inductor 11 (the winding of the coil 110 shown in FIG. 4) can be obtained. (Outer diameter) was simulated. And based on the simulation result, the magnetic core upper substrate 21, the magnetic core lower substrate 22, and the magnetic core middle legs 23 and 24 were designed and manufactured.
  • the magnetic core middle legs 23 and 24 were formed such that the magnetic nanowires 361 were aligned substantially perpendicularly to the winding axis direction of the inductors 11 and 12. Further, the magnetic core upper substrate 21 and the magnetic core lower substrate 22 were formed such that the magnetic nanowires 362 and 363 were aligned substantially parallel to the winding axis direction of the inductors 11 and 12.
  • a vertical groove is dug from the surface, and the processed surface, that is, a cross-sectional SIM image is observed at a 45-degree observation angle.
  • the cross section was confirmed, and the orientation of the magnetic nanowires 361 in the magnetic core middle legs 23 and 24 and the orientation of the magnetic nanowires 362 and 363 in the magnetic core upper substrate 21 and the magnetic core lower substrate 22 were confirmed.
  • a circuit pattern substrate in which the inductors 11, 12, 17 and capacitors 13 to 16 shown in FIG. 1 were incorporated was produced.
  • the inductor 11 is manufactured by stacking a plurality of rectangular ring-shaped conductor layers 311 and connecting them in a coil shape.
  • the inductor 12 was produced in the same manner.
  • the inductor 17 and the capacitors 13 to 16 are also produced by laminating a plurality of conductive layers and insulating layers. And these were integrated and the circuit pattern board
  • this circuit pattern substrate is placed on the upper surface of the magnetic core lower substrate 22, and the magnetic core middle foot portion 23 is inserted into the opening 111 inside the coil portion 110 shown in FIG.
  • the magnetic core middle leg part 23 was installed on the upper surface.
  • the magnetic core middle foot portion 24 was installed on the upper surface of the magnetic core lower substrate 22.
  • the magnetic core upper substrate 21 was put on the circuit pattern, and each part was bonded with a resin to obtain the high frequency electronic component 1.
  • the cross section of the composite magnetic material is observed with a scanning electron microscope (SEM) (manufactured by Hitachi High-Technologies Corporation, SU8000), the width and length of the magnetic nanowires 361 to 363 are measured, and the magnetic nanowire is measured with the attached EDX.
  • the compositions of 361 to 363 were measured.
  • the volume ratio of the magnetic nanowires 361 to 363 was obtained from the weight of the unit area of the porous insulator, the weight after electrodeposition of the magnetic nanowire, and the specific gravity of the insulators 365 to 367 and the magnetic nanowires 361 to 363.
  • ⁇ Real part ⁇ ′ of complex permeability and magnetic loss tan ⁇ > Using a test piece processed into a 1 mm x 1 mm x 80 mm rod shape, using a network analyzer (manufactured by Agilent Technologies, HP8753D) and a cavity resonator (manufactured by Kanto Electronics Co., Ltd.), a composite magnetic material The real part ⁇ ′ of the complex permeability at 2.4 GHz and the magnetic loss tan ⁇ were measured by the perturbation method.
  • Table 1 shows the real part ⁇ ′ of the complex permeability at 2.4 GHz and the magnetic loss tan ⁇ of the composite magnetic body, the length L (see FIG. 4) of the inductors 11 and 12, and the insertion loss IL of the high-frequency electronic component 1. Show.
  • Example 2 The composite magnetic body and the high-frequency electronic component 1 of Example 2 were manufactured in the same manner as in Example 1 except that the composite magnetic body was manufactured by the manufacturing method different from that of Example 1 as follows, and the same experiment was performed. .
  • Periodic porous Al oxide was prepared.
  • An Al sputter deposition layer was formed on one side of the periodic porous Al oxide to form a cathode.
  • Co was used for the anode, in an electrolyte solution composed of 0.7 M ferric sulfate, 0.3 M cobalt sulfate, 0.7 M boric acid, and 1 mM sodium ascorbate maintained at 50 degrees.
  • FeCo alloy magnetic nanowires 361 to 363 were DC-deposited in the pores of the porous Al oxide. Thereafter, the Al sputter deposition layer was removed with a sodium hydroxide solution.
  • the magnetic nanowires 361 to 363 had a diameter of 19 nm, and the magnetic nanowires 361 to 363 had a length of 60 ⁇ m.
  • the composition of the magnetic nanowires 361 to 363 was 64% for Fe and 36% for Co.
  • the volume ratio of the magnetic nanowires 361 to 363 obtained from the porosity of the periodic porous Al oxide as the insulators 365 to 367 was 74%.
  • the composite magnetic body of Example 2 composed of the FeCo alloy magnetic nanowires 361 to 363 and the Al oxide insulators 365 to 367 and the high-frequency electronic component 1 including the composite magnetic body were obtained.
  • Example 3 The composite magnetic body and the high-frequency electronic component 1 of Example 3 were manufactured in the same manner as in Example 1 except that the composite magnetic body was manufactured by the manufacturing method different from that of Example 1 as follows, and the same experiment was performed. .
  • a block copolymer containing poly (ethylene oxide) methyl ether (molecular weight 5000) as a hydrophilic block and polymethacrylate having a polymerization degree of 50 to 150 as a hydrophobic block was synthesized by an atom transfer radical polymerization method using a copper complex as a catalyst. did.
  • the obtained block copolymer was represented by the general formula (Formula 1).
  • n 80 to 120
  • n 50 to 80
  • R is an alkyl group.
  • the obtained 0.02 g block copolymer was mixed with 0.01 g polyethylene oxide (molecular weight 400, degree of polymerization 7), and dissolved in chloroform to obtain a 10 wt% solution.
  • bar coating was applied to an Al foil that had been ultrasonically cleaned with isopropanol to a thickness of 1 ⁇ m.
  • a heat treatment was performed at 140 ° C. for 1 hour, and the hydrophilic block was removed with a 0.3 M phosphoric acid-disodium hydrogen phosphate aqueous solution having a pH of 6.9, whereby a 1 ⁇ m thick and 10 nm pore diameter was formed on the Al foil.
  • a periodic porous copolymer film was prepared.
  • Periodic porous co-polymerization in an electrolyte composed of 0.7 M ferric sulfate, 0.3 M cobalt sulfate, 0.7 M boric acid, and 1 mM sodium ascorbate maintained at 50 ° C.
  • FeCo alloy magnetic nanowires 361 to 363 were DC-deposited in the holes of the combined film. Thereafter, the Al foil was removed with a sodium hydroxide solution.
  • the diameter of the magnetic nanowires 361 to 363 was 10 nm, and the length of the magnetic nanowires 361 to 363 was 1 ⁇ m.
  • the compositions of the magnetic nanowires 361 to 363 were Fe 64% and Co 36%.
  • the volume ratio of the magnetic nanowires 361 to 363 obtained from the porosity of the periodic porous copolymer film as an insulator was 74%.
  • the composite magnetic body of Example 3 composed of the FeCo alloy magnetic nanowires 361 to 363 and the periodic porous copolymer film insulator, and the high-frequency electronic component 1 including the composite magnetic body were obtained.
  • the magnetic core middle legs 23 and 24 were formed such that the magnetic nanowires 361 were aligned substantially perpendicularly to the winding axis direction of the inductor 11. Further, the magnetic core upper substrate 21 and the magnetic core lower substrate 22 were formed so that the magnetic nanowires 362 and 363 were aligned substantially parallel to the winding axis direction of the inductor 11.
  • Example 4 A composite magnetic body and the high-frequency electronic component 1 of Example 4 were manufactured in the same manner as in Example 1 except that the composite magnetic body was manufactured by the manufacturing method different from that of Example 1 as follows, and a similar experiment was performed. .
  • Insulating layers 341 and 342 were formed on the magnetic core lower substrate 22 of Example 1, and the core portions 23 and 24 were formed in the following manner while the coil portions 110 and 120 were formed.
  • a FeCo layer having a thickness of 20 nm is formed by sputtering, a resist ink is printed with a resin mold having a line / space of 20 nm / 20 nm, and a resist ink is not printed by RIE (Reactive Ion Etching). Then, an alumina layer having a thickness of 10 nm was formed by sputtering. This process was repeated to form the magnetic core midfoot parts 23 and 24. Thereafter, the magnetic core upper substrate 21 was covered from above, and each part was adhered with a resin to obtain the composite magnetic body of Example 4 and the high-frequency electronic component 1 including the composite magnetic body.
  • Example 5 The composite magnetic body and the high-frequency electronic component 1 of Example 5 were manufactured in the same manner as in Example 1 except that the composite magnetic body was manufactured by the manufacturing method different from that of Example 1 as follows, and the same experiment was performed. .
  • FeCo alloy nanowires were formed on a yttria-stabilized zirconia (YSZ) substrate by CVD using iron chloride and cobalt chloride as a deposition source and nitrogen gas containing 4% hydrogen as a carrier. This nanowire was taken out and weighed so that the ratio of the polyethylene resin was 30 vol%: 70 vol%.
  • a dispersant and a coupling agent were appropriately added to the above materials and kneaded using a mixing roll (No191-TM / WM) manufactured by Yasuda Seiki Seisakusho. The kneading was performed until the acicular magnetic particles were homogeneously mixed in the polyethylene resin while heating the raw material to 140 ° C.
  • the nanowires were aligned by applying a magnetic field to the obtained raw material mixture. Further, this was put into a mold heated to 180 ° C. and molded with a press pressure of 35 MPa. Thus, the composite magnetic body of Example 5 and the high frequency electronic component 1 including the composite magnetic body were obtained.
  • Example 6 The direction of the magnetic nanowire 361 in the magnetic core middle legs 23 and 24 and the direction of the magnetic nanowires 362 and 363 in the magnetic core upper substrate 21 and the magnetic core lower substrate 22 are the same as in the fifth embodiment except that they are opposite to those in the fifth embodiment.
  • the composite magnetic body and the high-frequency electronic component 1 of Example 6 were produced, and a similar experiment was performed. The results are shown in Table 1.
  • Comparative Example 1 The composite magnetic body and the high-frequency electronic component 1 of Comparative Example 1 were manufactured in the same manner as in Example 1 except that the composite magnetic body was manufactured by the manufacturing method different from that of Example 1 as follows, and the same experiment was performed. .
  • Iron oxide (Fe 2 O 3 ) 73 mol%, cobalt oxide (Co 3 O 4 ) 18 mol%, and barium carbonate (BaCO 3 ) 9 mol% were used as raw materials, and these were weighed so as to have a predetermined composition. Then, the weighed raw materials were blended in a wet ball mill for 16 hours using water as a medium, and then fired at 1250 ° C. in the atmosphere. The magnetic oxide thus obtained was dry pulverized with a vibration mill for 10 minutes, then pulverized with a wet ball mill using water as a medium for 88 hours, and the pulverized magnetic oxide was dried at 150 ° C. for 24 hours to obtain an average particle size.
  • Magnetic oxide powder W Magnetic oxide powder of 1 ⁇ m or less.
  • This magnetic oxide contains Co-substituted W-type hexagonal ferrite (BaCo 2 Fe 16 O 27 ) as a main component.
  • the composite magnetic body of Comparative Example 1 and the high-frequency electronic component 1 including the composite magnetic body were obtained.
  • Comparative Example 2 The composite magnetic body and the high-frequency electronic component 1 of Comparative Example 2 were manufactured in the same manner as in Example 1 except that the composite magnetic body was manufactured by the manufacturing method different from that of Example 1 as follows, and the same experiment was performed. .
  • the real part ⁇ ′ of the complex permeability of 2.4 GHz is 2.3 or more, preferably 2.5 or more, and the magnetic loss tan ⁇ is 0.024 or less. , Preferably 0.22 or less.
  • Comparative Examples 1 and 2 it was confirmed that the real part ⁇ ′ of the complex permeability of 2.4 GHz was 2.0 or less and the magnetic loss tan ⁇ was 0.041 or more. That is, it was confirmed that the composite magnetic body according to the present example has a real part ⁇ ′ having a high complex permeability and a low magnetic loss tan ⁇ in the gigahertz band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

【課題】ギガヘルツ帯の高周波領域において高透磁率かつ低磁気損失な複合磁性体、およびそれを用いた小型で低挿入損失な高周波電子部品を提供すること。 【解決手段】互いに交わらないように整列した複数の磁性ナノワイヤ361~363と、複数の磁性ナノワイヤ361~363間を電気的に絶縁する絶縁体365~367とを備え、特にギガヘルツ帯の高周波領域において、高透磁率かつ低磁気損失な複合磁性体である。

Description

複合磁性体、複合磁性体を含む基板、およびこれらを含む高周波電子部品
 本発明は、複合磁性体、複合磁性体を含む基板、およびこれらを含む高周波電子部品に関する。
 無線通信機器の小型化、薄型化あるいは低コスト化の要求が高まる中で、これらに搭載される高周波電子部品に対しても、小型化、薄型化あるいは低コスト化の要求が高まっている。
 近年では、たとえば無線LANで2.4GHz帯のギガヘルツ帯が使用されるなど、携帯電話機あるいは無線LAN通信機器等の無線通信機器に搭載される高周波電子部品の使用周波数帯は、ギガヘルツ帯にまで及んでいる。このようなギガヘルツ帯で用いられる高周波電子部品としては、たとえばコイルを含むインダクタ、インダクタを含む無線通信機器用アンテナ、あるいはインダクタとキャパシタを含む高周波ノイズ対策用フィルタなどが挙げられ、これらの高周波電子部品に対しても、小型化、薄型化あるいは低コスト化の要求が高まっている。
 特に、これらの高周波電子部品は、無線通信機器の内部の狭い空間内に複数収容されることもあり、高インダクタンス、低挿入損失、高キャパシタンスあるいは高電磁シールド性能などの性能を具備した高性能な高周波電子部品が必要とされている。
 しかしながら、たとえばインダクタを含む高周波電子部品を小型低背化する場合、コイルの径が小さくならざるを得ず、Q値やインダクタンス値が低下して、高周波電子部品の高性能化が難しくなる。そのため、これらの高周波電子部品には、コイルの磁心材料として、高透磁率かつ低磁気損失な磁性材料を用いる必要がある。
 特許文献1には、ギガヘルツ帯の高周波領域において、高透磁率かつ低磁気損失な複合磁性材料として、六方晶フェライトを主相とする磁性酸化物を樹脂中に分散して複合化した複合磁性材料が記載されている。特許文献1の複合磁性材料は、電気抵抗の高い磁性酸化物を含んでいるため、渦電流損失を低減できる。そのため、2GHzにおける磁気損失係数tanδμが0.01と小さく、ギガヘルツ帯における磁気損失係数tanδμを小さくすることができる。しかしながら、2GHzにおける複素透磁率の実部μ’は1.4と小さく、ギガヘルツ帯における複素透磁率の実部μ’を大きくすることができない。すなわち、特許文献1に記載の複合磁性材料では、高透磁率と低磁気損失を両立させることができない。
 また、特許文献2では、アスペクト比(長軸長/短軸長)が1.5~20の針状である磁性金属粒子を誘電体材料中に分散された磁性体複合材料が記載されている。特許文献2の磁性体複合材料では、3GHzにおける損失正接tanδが0.014と小さいサンプルでは、透磁率μ’が1.37と小さく、ギガヘルツ帯における透磁率μ’を大きくすることができない。その一方で、透磁率μ’が1.98と大きいサンプルでは、損失正接tanδが0.096と大きく、ギガヘルツ帯における損失正接tanδを小さくすることができない。すなわち、特許文献2に記載の磁性体複合材料では、高透磁率と低磁気損失を両立させることができない。これは、特許文献2では、磁性金属粒子をポリエチレンなどの誘電体材料に分散させてプレス成型していることから、磁性粒子比率が30%と低く、しかも磁性金属粒子間を十分に絶縁することができないためであると考えられる。
特開2010-238748号公報 特開2014-116332号公報
 本発明は上記課題に鑑みて為されたものであり、その目的はギガヘルツ帯の高周波領域において高透磁率かつ低磁気損失な複合磁性体、およびそれを用いた小型で低挿入損失な高周波電子部品を提供することである。
 本発明者らは、ギガヘルツ帯の高周波領域において高透磁率かつ低磁気損失な複合磁性体について鋭意検討した結果、互いに交わらないように整列した複数の磁性ナノワイヤを複合磁性体に含めることにより、従来よりも、高透磁率かつ低磁気損失な複合磁性体が得られることを見出し、本発明を完成させるに至った。また、本発明者らは、複合磁性体あるいは複合磁性体を含む磁性基板を高周波電子部品に含めることにより、従来よりも、小型で低挿入損失な高周波電子部品が得られることを見出し、本発明を完成させるに至った。
 すなわち、本発明の複合磁性体は、
互いに交わらないように整列した複数の磁性ナノワイヤと、前記複数の磁性ナノワイヤ間を電気的に絶縁する絶縁体とを備える。
 本発明にかかる複合磁性体によれば、メガヘルツ帯およびギガヘルツ帯の高周波領域のうち、特にギガヘルツ帯の高周波領域において、高透磁率かつ低磁気損失な複合磁性体を提供することができる。このような効果が奏される作用機構について未だ明らかにはなっていないが、下記のような作用機構が考えられる。
 すなわち、本発明にかかる複合磁性体では、複数の磁性ナノワイヤが互いに交わらないように整列しているため、複合磁性体における磁性ナノワイヤの体積比率を容易に高めることが可能となり、ギガヘルツ帯における複合磁性体の透磁率を高めることができる。また、複数の磁性ナノワイヤ間は、絶縁体によって電気的に絶縁されているため、渦電流損失が低減することが可能となり、ギガヘルツ帯における磁気損失を小さくすることができる。
 好ましくは、前記磁性ナノワイヤは、Fe、Co、Niの少なくとも1つの金属を含む。
 好ましくは、磁性基板が複合磁性体を含んでいる。
 また、本発明にかかる高周波電子部品は、複合磁性体あるいは複合磁性体を含む磁性基板を含んでいる。このような構成とすることにより、インダクタ損失による特性の劣化が小さく、特にギガヘルツ帯において、挿入損失を小さくすることができる。したがって、メガヘルツ帯およびギガヘルツ帯の高周波領域のうち、特にギガヘルツ帯の高周波領域において、小型かつ薄型で、低挿入損失な高周波電子部品を提供することができる。
 好ましくは、前記複合磁性体は磁心に含まれる。このような構成とすることにより、特にギガヘルツ帯において挿入損失を効果的に低減することができる。
 好ましくは、前記磁心はコイルの内部を挿通する磁心中足部を含み、前記磁心中足部に含まれる前記磁性ナノワイヤが、コイルの巻回軸方向に略垂直に整列する。このような構成とすることにより、磁心中足部を通過する磁束が、磁性ナノワイヤに対して、その磁化容易方向(磁性ナノワイヤの長手方向)と略直交するように交わる。そのため、特にギガヘルツ帯における渦電流損失が低減されて、磁気損失が小さくなり、高周波電子部品の挿入損失を低減することができる。
 好ましくは、前記基板は、前記コイルの上方に配置される磁心上部基板および前記コイルの下方に配置される磁心下部基板の少なくとも一方を含み、前記磁心上部基板および前記磁心下部基板の少なくとも一方に含まれる前記磁性ナノワイヤは、コイルの巻回軸方向に略平行に整列している。このような構成とすることにより、磁心上部基板および磁心下部基板の少なくとも一方を通過する磁束が、磁性ナノワイヤに対して、その磁化容易方向(磁性ナノワイヤの長手方向)と略直交するように交わる。そのため、特にギガヘルツ帯における渦電流損失が低減されて、磁気損失が小さくなり、高周波電子部品の挿入損失を低減することができる。
 好ましくは、前記磁心は、前記コイルの周縁に配置される磁心外足部を含み、前記磁心外足部に含まれる前記磁性ナノワイヤは、コイルの巻回軸方向に略垂直に整列している。このような構成とすることにより、磁心外足部を通過する磁束が、磁性ナノワイヤに対して、その磁化容易方向(磁性ナノワイヤの長手方向)と略直交するように交わる。そのため、特にギガヘルツ帯における渦電流損失が低減されて、磁気損失が小さくなり、高周波電子部品の挿入損失をさらに低減することができる。
図1は本発明の一実施形態に係る複合磁性体を有する高周波電子部品の構成を示す斜視図である。 図2は図1に示す高周波電子部品のII-II線に沿う断面図である。 図3は図1に示す高周波電子部品の回路構成を示す回路図である。 図4は図2に示す断面図の一部拡大図である。 図5は本発明の他の実施形態に係る複合磁性体を有する高周波電子部品の構成を示す斜視図である。
 以下、本発明を、図面に示す実施形態に基づき説明する。
 第1実施形態
 図1に示す高周波電子部品1は、たとえば携帯電話機や無線LAN通信機器等の無線通信機器に用いられる。高周波電子部品1は、インダクタ11,12,17と、キャパシタ13~16と、磁心中足部23,24と、磁心上部基板21および磁心下部基板22とを備える。高周波電子部品1は、図3に示すようなローパスフィルタとしての機能を有する。図1に示すように、高周波電子部品1の各部は、キャパシタ16の長手方向(Y軸方向)に平行な軸を対称軸として、線対称となるように形成されている。
 インダクタ11,12,17およびキャパシタ13~16は、グランド層、絶縁層および導体層からなる多層基板を図1に示すような形状に形成することにより構成される。より詳細には、図1および図2に示すように、インダクタ11は、絶縁層341を含み、反時計回りに巻回してある四角リング状の導体層311を複数積層して各々をコイル状に接続したコイル部110からなる。インダクタ12は、絶縁層342を含み、時計回りに巻回してある四角リング状の導体層312を複数積層して各々をコイル状に接続したコイル部120からなる。
 図1に示すように、インダクタ11を構成する四角リング状の導体層の一端は、キャパシタ13を構成する四角形の導体層の一端に接続されている。インダクタ12を構成する四角リング状の導体層の一端は、キャパシタ14を構成する四角形の導体層の一端に接続されている。キャパシタ13および14の他端は互いに連結されて一体化してあり、この一体化した導体層のX軸方向中間部には、キャパシタ16を構成する長方形の導体層の一端が接続されている。キャパシタ16の他端には、四角リング状の導体層を有するインダクタ17が接続されており、インダクタ17の一部はグランド層に接続されている。なお、図2に示すように、キャパシタ16は、絶縁層336と、導体層316とを交互に複数積層して構成される。図1に示すキャパシタ13~15も、図2に示すキャパシタ16と同様の構成を有する。
 磁心中足部23,24は、それぞれ同一形状からなる磁心(コア)であり、インダクタ11,12のインダクタンスを高める機能を有する。磁心中足部23は、コイル部110の内部に挿通されている。磁心中足部24は、コイル部120の内部に挿通されている。磁心下部基板22は、高周波電子部品1の底面部を構成する。磁心上部基板21は、高周波電子部品1の上面部を構成する。
 磁心上部基板21および磁心下部基板22は、磁性基板であり、インダクタ11,12,17のインダクタンスを高める機能を有する。図2に示すように、磁心上部基板21および磁心下部基板22は、インダクタ11,12,17およびキャパシタ13~16を間に挟むように、各々対向してコイル11,12の上方および下方に配置されている。磁心上部基板21のZ軸方向(インダクタ11,12の巻回軸方向)の厚みT1は、好ましくは100nm~1cm、さらに好ましくは10~1000μm、特に好ましくは50~500μmである。厚みT1は、後述する磁芯上部基板21に含まれる磁性ナノワイヤ362の長さに応じて決定されてもよい。磁心下部基板22のZ軸方向の厚みT2は、図4に示すように磁心上部基板21のZ軸方向の厚みT1と同じになっていてもよいし、図2に示すようにT1と異なっていてもよい。磁心中足部23のZ軸方向の厚みT3は、磁心上部基板21のZ軸方向の厚みT1と同じでも異なっていてもよい。
 図3に示すように、キャパシタ15の入力側端子は入力端子2に接続されており、出力側端子は出力端子3に接続されている。キャパシタ15には、各々直列接続されたインダクタ11,12と、各々直列接続されたキャパシタ13,14とが、それぞれ並列接続されている。キャパシタ13の出力側端子には、キャパシタ14の入力側端子の他、インダクタ11の出力側端子と、インダクタ12の入力側端子と、キャパシタ16の入力側端子とが接続されている。キャパシタ16の出力側端子とグランドとの間には、インダクタ17が介挿されている。
 本実施形態では、磁心中足部23,24は複合磁性体を含む。複合磁性体からなる磁心中足部23は、互いに交わらないように整列した複数の直線状の磁性ナノワイヤ361と、これら複数の磁性ナノワイヤ361間を電気的に絶縁する絶縁体365とを備える。図4に示すように、複数の磁性ナノワイヤ361は、インダクタ11の巻回軸(巻回軸c)方向に略垂直に整列している。すなわち、複数の磁性ナノワイヤ361は、磁芯中足部23をZ軸方向に通過する磁束の向きに対して略垂直に整列している。なお、インダクタ11,12の巻回軸方向に略垂直な方向とは、コイル部110,120の巻回方向に略平行な方向、あるいはコイル部110,120を含むXY平面に略平行な方向に対応する。
 図示は省略するが、複合磁性体からなる磁心中足部24も同様に、互いに交わらないように整列した複数の直線状の磁性ナノワイヤ361と、これら複数の磁性ナノワイヤ361間を電気的に絶縁する絶縁体365とを備える。また、磁心中足部24に含まれる複数の磁性ナノワイヤ361は、インダクタ12の巻回軸(巻回軸c)方向に略垂直に整列している。すなわち、複数の磁性ナノワイヤ361は、磁芯中足部24をZ軸方向に通過する磁束の向きに対して略垂直に整列している。
 磁性ナノワイヤ361は、Fe、Co、Niの少なくとも1つの金属を含む。より詳細には、磁性ナノワイヤ361は、金属単体としては、たとえばFe、Co、Niを含み、これらの金属の合金としては、たとえばFeCo合金、FeNi合金、CoNi合金、FeCoNi合金を含む。また、磁性ナノワイヤ361は、上記の金属または合金に他の元素を含めたFeSi合金、FeSiCr合金を含んでいてもよい。また、磁性ナノワイヤ361は、任意の添加元素として、あるいは不可避不純物として、たとえば、Cr、Mo、Mn、Cu、Sn、Zn、Al、P、B,Vなどを含んでいてもよい。これらの金属あるいは合金からなる磁性ナノワイヤ361は軟磁性を示す。
 複合磁性体における磁性ナノワイヤ361の体積比率は、好ましくは45%以上、90%以下である。体積比率を上記範囲内とすることにより、体積比率の小さ過ぎによる複合磁性体の透磁率の実部μ’の低下を防止することが可能となり、また体積比率の大き過ぎによる磁性ナノワイヤ361間の絶縁性の低下を防止することが可能となる。
 磁性ナノワイヤ361の直径は、好ましくは5nm以上、500nm以下である。磁性ナノワイヤ361の直径を上記範囲内とすることにより、直径の小さ過ぎによる磁性ナノワイヤ361の強度不足に伴う破損を防止することが可能となり、また直径の大き過ぎによる複合磁性体の磁気損失tanδμの増大を防止することが可能となる。
 磁性ナノワイヤ361の長手方向の長さは特に限定されないが、磁性ワイヤ361の製造方法の制約上、1cm程度が長さの上限であると考えられる。これは、後述する製造方法では、磁性ナノワイヤ361は、絶縁体365に形成された孔内に電析されるところ、この孔の長さの上限が1cm程度であるからである。
 磁性ナノワイヤ361を形成する際には、アスペクト比が大きくなるように形成する必要がある。これは、ギガヘルツ帯では、磁性ナノワイヤ361の形状磁気異方性を大きくすることによって、複合磁性体の磁気損失tanδμを小さくすることができるからである。
 本発明者らが分析したところ、磁性ナノワイヤ361のアスペクト比の下限は、好ましくは4であり、さらに好ましくは20であり、特に好ましくは100である。また、磁性ナノワイヤ361のアスペクト比の上限は、2×10であり、たとえば直径が5nm、長さが1cmの磁性ナノワイヤ361に相当する。
 また、本発明者らが分析したところ、磁性ナノワイヤ361の直径Dと間隔dとの比d/Dは、好ましくは0.1~1であり、さらに好ましくは0.2~0.8であり、特に好ましくは0.3~0.5である。
 本実施形態では、磁性ナノワイヤ361のアスペクト比が高いため、特許文献2とは異なり、磁性金属粒子と樹脂とを均質に混合するための成形工程は行われない。なぜなら、樹脂と磁性金属粒子とを均質に混合するためには、磁性金属粒子が、球状かそれに準ずる形状の粒子、あるいはアスペクト比の低い針状粒子でなければならないからである。なお、特許文献2のように、磁性金属粒子と樹脂を混合する方法では、磁性粒子の体積比率を45%以上にすることは事実上困難であるところ、本実施形態では、このような方法を採用してはおらず、複合磁性体における磁性ナノワイヤ361の体積比率を容易に高めることができる。
 絶縁体365の材料としては、酸化物あるいは樹脂であることが好ましい。酸化物としては、たとえば、Al酸化物、Si酸化物、Cr酸化物、Ta酸化物、Nb酸化物などが挙げられる。Al酸化物としては、特に、Alの陽極酸化によって形成される多孔アノード酸化物が好ましい。この種の多孔アノード酸化物は、自己組織的にナノレベルの直径の周期的なワイヤ状空洞を有する周期的多孔Al酸化物を形成するからである。
 樹脂としては、ポリスチレン、ポリブタジエン、ポリエチレンオキシド、ポリエチレンオキシドメチルエーテル、ポリメタクレート、ポリメタクリル酸エステル、ポリイソプレン、ポリNイソプロピルアクリルアミド、ポリブチルメタクリル酸、ポリビニルピリジン、ポリフェロセニルジメチルシラン、ポリフェロセニルエチルメチルシラン、ポリジメチルシラン、ポリエチレンプロピレン、ポリエチレン、ポリテトラブチルメタクレート、ポリメチルスチレン、ポリヒドロキシスチレン、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、ポリアミド樹脂、フェノール樹脂、シリコーン樹脂などの樹脂などが挙げられる。
 好ましくは、これらの樹脂を組み合わせてブロック共重合体をつくり、自己組織的に棒状ミセルが六方晶配列した二次元周期構造を形成し、その後、棒状ミセル部分を除去する。これにより、ナノレベルの直径からなる周期的なワイヤ状空洞を有する絶縁体365が形成される。また、必要に応じてカップリング剤、分散剤等の表面処理剤、熱安定剤、可塑剤等の添加剤等を添加してもよい。
 本実施形態では、磁心上部基板21および磁心下部基板22は複合磁性体を含む。磁心上部基板21は、互いに交わらないように整列した複数の直線状の磁性ナノワイヤ362と、これら複数の磁性ナノワイヤ362間を電気的に絶縁する絶縁体366とを備える。また、磁心下部基板22は、互いに交わらないように整列した複数の直線状の磁性ナノワイヤ363と、これら複数の磁性ナノワイヤ363間を電気的に絶縁する絶縁体367とを備える。
 図4に示すように、磁性ナノワイヤ362は、インダクタ11の巻回軸方向に略平行に整列している。すなわち、磁性ナノワイヤ362は、磁心上部基板21をX軸方向に通過する磁束の向きに対して略垂直に整列している。また、磁性ナノワイヤ363は、インダクタ11の巻回軸方向に略平行に整列している。すなわち、磁性ナノワイヤ363は、磁心下部基板22をX軸方向に通過する磁束の向きに対して略垂直に整列している。なお、磁性ナノワイヤ362,363の構成は、上述した磁性ナノワイヤ361と同様である。
 次に、高周波電子部品1の製造方法について説明する。まず、互いに交わらないように整列した複数の孔を有する周期的多孔構造からなる絶縁体(たとえば、前述した周期的多孔Al酸化物)を作製し、これらの孔の内部に磁性ナノワイヤを電析させて複合磁性体を作製する。そして、この複合磁性体を所定の形状および大きさに加工して、磁心上部基板21、磁心下部基板22および磁心中足部23を作製する。あるいは、予め上記絶縁体を所定の形状および大きさに加工しておき、この絶縁体の孔の内部に磁性ナノワイヤを電析させて複合磁性体(磁心上部基板21、磁心下部基板22および磁心中足部23)を作製する。
 また、図1に示すインダクタ11,12,17およびキャパシタ13~16が作り込まれた回路パターン基板を作製する。たとえば、インダクタ11は、図2に示す四角リング状の導体層311を複数積層して各々をコイル状に接続することにより作製される。また、インダクタ12についても同様に作製される。詳細な図示は省略するが、図1に示すインダクタ17およびキャパシタ13~16についても導電層と絶縁層とを複数積層することにより作製される。そして、これらを一体化して、図3に示すローパスフィルタが作り込まれた回路パターン基板(図2参照)を作製する。
 次に、この回路パターン基板を磁芯下部基板22の上面に設置し、図4に示すコイル部110の内側にある開口部111に磁芯中足部23を挿通し、磁芯下部基板22の上面に磁芯中足部23を設置する。図1に示す磁芯中足部24についても同様に、磁芯下部基板22の上面に設置する。そして、この回路パターンの上から磁心上部基板21を被せ、各部を接合して、高周波電子部品1を得る。なお、磁心上部基板21と、磁芯下部基板22と、磁芯中足部23,24と、回路パターン基板とは、接着材により接合してもよい。
 本実施形態にかかる複合磁性体(磁心上部基板21、磁心下部基板22、磁心中足部23)によれば、メガヘルツ帯およびギガヘルツ帯の高周波領域のうち、特にギガヘルツ帯の高周波領域において、高透磁率かつ低磁気損失な複合磁性体を提供することができる。このような効果が奏される作用機構について未だ明らかにはなっていないが、下記のような作用機構が考えられる。
 すなわち、本実施形態にかかる複合磁性体では、複数の磁性ナノワイヤ361,362,363が互いに交わらないように整列しているため、複合磁性体における磁性ナノワイヤ361,362,363の体積比率を容易に高めることが可能となり、ギガヘルツ帯における複合磁性体の透磁率を高めることができる。また、複数の磁性ナノワイヤ361,362,363間は、絶縁体365,366,367によって電気的に絶縁されているため、渦電流損失が低減することが可能となり、ギガヘルツ帯における磁気損失を小さくすることができる。
 また、本実施形態にかかる高周波電子部品1は、複合磁性体を含む磁心上部基板21および磁心下部基板22を含んでいる。そのため、インダクタ損失による特性の劣化が小さく、特にギガヘルツ帯において、挿入損失を小さくすることができる。したがって、メガヘルツ帯およびギガヘルツ帯の高周波領域のうち、特にギガヘルツ帯の高周波領域において、小型かつ薄型で、低挿入損失な高周波電子部品を提供することができる。
 また、本実施形態では、複合磁性体がインダクタ11,12の内部を挿通する磁心中足部23,24に含まれている。そのため、特にギガヘルツ帯において挿入損失を効果的に低減することができる。
 また、本実施形態では、磁心中足部23,24に含まれる磁性ナノワイヤ361が、インダクタ11,12の巻回軸方向に略垂直に整列する。そのため、磁芯中足部23,24を通過する磁束が、磁性ナノワイヤ361に対して、その磁化容易方向(磁性ナノワイヤ361の長手方向)と略直交するように交わる。そのため、特にギガヘルツ帯における渦電流損失が低減されて、磁気損失が小さくなり、高周波電子部品1の挿入損失を低減することができる。
 また、本実施形態では、磁心上部基板21および磁心下部基板22に含まれる磁性ナノワイヤ362,363は、インダクタ11,12の巻回軸方向に略平行に整列している。そのため、磁心上部基板21および磁心下部基板22を通過する磁束が、磁性ナノワイヤ362,363に対して、その磁化容易方向(磁性ナノワイヤ361の長手方向)と略直交するように交わる。そのため、特にギガヘルツ帯における渦電流損失が低減されて、磁気損失が小さくなり、高周波電子部品1の挿入損失を低減することができる。
 第2実施形態
 図5に示す本実施形態の複合磁性体を有する高周波電子部品1Aは、以下に示す点以外は、上述した第1実施形態と同様な構成と作用効果を有し、共通する部分の説明は省略し、図面では、共通する部材には共通する部材符号を付してある。図5に示すように、高周波電子部品1Aは、磁心外足部25,26をさらに有するという点において、高周波電子部品1と異なる。
 磁心外足部25,26は、それぞれ同一形状からなる磁心(コア)であり、インダクタ11,12のインダクタンスを高める機能を有する。磁心外足部25,26は、直方形状からなり、コイル11,12の周縁に配置される。
 本実施形態では、磁心外足部25,26は複合磁性体を含む。複合磁性体からなる磁心外足部25,26は、互いに交わらないように整列した複数の直線状の磁性ナノワイヤ364と、これら複数の磁性ナノワイヤ364間を電気的に絶縁する絶縁体368とを備える。図5に示すように、複数の磁性ナノワイヤ364は、インダクタ11の巻回軸(巻回軸c)方向に略垂直(図中に示す領域CをZ軸方向に通過する磁束の向きに対して略垂直)に整列している。なお、磁性ナノワイヤ364の構成は、上述した磁性ナノワイヤ361と同様である。
 磁芯外足部25,26は、第1実施形態において説明した製造方法で作製した複合磁性体を所定の大きさおよび形状に加工することにより作製することができる。また、上記製造方法に、磁芯外足部25,26を、図5に示す磁心下部基板22の上面のコイル部110の外側に設置する工程を加えることにより、高周波電子部品1Aを製造することができる。
 本実施形態においても、上記実施形態と同様の効果が得られる。加えて、本実施形態では、磁心外足部25,26に含まれる磁性ナノワイヤ364が、コイル11,12の巻回軸方向に略垂直に整列している。そのため、磁心外足部25,26を通過する磁束が、磁性ナノワイヤ364に対して、その磁化容易方向(磁性ナノワイヤ361の長手方向)と略直交するように交わる。したがって、特にギガヘルツ帯における渦電流損失が低減されて、磁気損失が小さくなり、高周波電子部品1の挿入損失をさらに低減することができる。
 なお、本発明は、上述した実施形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。
 上記実施形態では、磁心上部基板21、磁心下部基板22、磁心中足部23,24および磁心外足部25,26の各々の全体を複合磁性体で構成したが、磁心上部基板21、磁心下部基板22、磁心中足部23,24および磁心外足部25,26の各々の一部のみを複合磁性体で構成してもよい。
 上記実施形態では、高周波電子部品1の製造時において、予め作製しておいたインダクタ11,12,17およびキャパシタ13~16の回路パターンを磁芯下部基板22の上面に設置する例について示したが、高周波電子部品1の製造方法は、これに限定されるものではない。たとえば、磁芯下部基板22の上面に導電ペーストと絶縁ペーストを複数積層し、各々をコイル状に接続することによりコイル部110を形成してもよい。また、インダクタ12,17およびキャパシタ13~16についても同様に、磁芯下部基板22の上面に導電ペーストと絶縁ペーストを複数積層して形成してもよい。
 上記実施形態において、磁性ナノワイヤ362,363の長さをアスペクト比が小さくなり過ぎない範囲で短くし、これらを多層化して磁心上部基板21および磁心下部基板22に含めてもよい。同様に、磁性ナノワイヤ361,364の長さをアスペクト比が小さくなり過ぎない範囲で短くし、これらを磁心中足部23,24および磁心外足部25,26に含めてもよい。
 図4および5において、磁心上部基板21および磁心下部基板22のZ軸方向の厚みを増やし、これらの内部に、磁性ナノワイヤ362,363を多層化して含めてもよい。また、磁心中足部23,24および磁心外足部25,26のZ軸方向の厚みを増やし、これらの内部に、磁性ナノワイヤ361,364をさらに多層化して含めてもよい。
 図4および図5に示す例では、複数の磁性ナノワイヤ361~364は、互いに交わらないように整然と整列していたが、互いに交わらない程度であれば、多少ランダムに整列していてもよい。また、図4および図5に示す例では、複数の磁性ナノワイヤ361~364の各々の長さは略等しくなっていたが、多少異なっていてもよい。
 また、磁性ナノワイヤ361~364は、実質的に直線状であればよく、互いに交わることなく絶縁されていれば、多少歪み(曲がり)があってもよい。また、磁性ナノワイヤ361,364は、実質的にインダクタ11の巻回軸c(Z軸)に対して略垂直に整列していればよく、互いに交わることなく絶縁されていれば、巻回軸cの垂直線に対して多少傾斜していてもよい。すなわち、磁性ナノワイヤ361,364は、好ましくは±45度の範囲内で巻回軸c(Z軸)の垂直線に対して傾斜していてもよく、さらに好ましくは±30度の範囲内で巻回軸c(Z軸)の垂直線に対して傾斜していてもよく、特に好ましくは±15度の範囲内で巻回軸c(Z軸)の垂直線に対して傾斜していてもよい。
 また、磁性ナノワイヤ362,363は、実質的にインダクタ11の巻回軸c(Z軸)に対して略平行に整列していればよく、互いに交わることなく絶縁されていれば、巻回軸c(Z軸)に対して多少傾斜していてもよい。すなわち、磁性ナノワイヤ362,363は、巻回軸c(Z軸)に対して、好ましくは±45の範囲内で傾斜していてもよく、さらに好ましくは±30度の範囲内で傾斜していてもよく、特に好ましくは±15度の範囲内で巻回軸c(Z軸)の垂直線に対して傾斜していてもよい。このような傾斜角度で磁性ナノワイヤ361~364を傾斜させることにより、複合磁性体に高い次元の強度と透磁率を付与することができる。
 上記実施形態では、本発明のローパスフィルタへの適用例について示したが、本発明を他の高周波電子部品に適用してもよい。他の高周波電子部品としては、メガヘルツ帯あるいはギガヘルツ帯の高周波領域で使用可能なインダクタ、フィルタあるいはアンテナなどが挙げられる。より詳細には、チップインダクタ、SAWフィルタ、BAWフィルタ、EMIフィルタ、LTCC、薄膜フィルタ、デュプレクサ、バンドパスフィルタ、バラン、ダイプレクサ、RFフロントエンド、カプラ、ワイヤレス接続や電源管理用の高集積モジュールなどに本発明を適用してもよい。
 以下、具体的実施例を挙げて本発明をさらに詳細に説明するが、本発明は、これら実施例に限定されない。
 (実施例1)
 高周波電子部品1の作製
 Al箔を0.3Mシュウ酸溶液中で電圧40Vにてアノード酸化させ、厚さが60μm、孔径が100nmの周期的多孔Al酸化物を作製した。陰極を多孔Al酸化物に接続するAl箔とし、陽極をFeとし、50度に保った1M硫酸第二鉄と、0.7Mホウ酸と、1mMアスコルビン酸ナトリウムとで構成される電解液中で、500Hzの交流電解によりFe磁性ナノワイヤ361~363を周期多孔Al酸化物の孔内に電析させた。磁性ナノワイヤ361~363の長手方向の長さは21μmであり、磁性ナノワイヤ361~363の直径は98nmであった。絶縁体365~367としての周期多孔Al酸化物の空孔率から求めた磁性ナノワイヤ361~363の体積比率は51%であった。このようにして、Fe磁性ナノワイヤ361~363とAl酸化物絶縁体365~367とで構成される実施例1の複合磁性体を得た。
 複合磁性体を磁心上部基板21、磁心下部基板22および磁心中足部23,24として用いたときに所望のインダクタンスが得られるインダクタ11の長さL(図4に示すコイル部110の巻線の外径)をシミュレーションした。そして、そのシミュレーション結果に基づいて磁心上部基板21、磁心下部基板22および磁心中足部23,24を設計し、これらを作製した。
 なお、磁心中足部23,24は、磁性ナノワイヤ361がインダクタ11,12の巻回軸方向に略垂直に整列するように形成した。また、磁心上部基板21および磁心下部基板22は、磁性ナノワイヤ362,363がインダクタ11,12の巻回軸方向に略平行に整列するように形成した。
 なお、Gaイオン集光イオンビーム(FIB,日立製作所(株)製FB-2100)を用いて表面から垂直の溝を掘り,加工面すなわち断面SIM像を45度の観測角で断面観察することにより断面を確認し、磁心中足部23,24における磁性ナノワイヤ361の向きと、磁心上部基板21および磁心下部基板22における磁性ナノワイヤ362,363の向きを確認した。
 また、図1に示すインダクタ11,12,17およびキャパシタ13~16が組み込まれた回路パターン基板を作製した。たとえば、インダクタ11は、図4に示すように、四角リング状の導体層311を複数積層して各々をコイル状に接続することにより作製した。また、インダクタ12についても同様に作製した。詳細な図示は省略するが、インダクタ17およびキャパシタ13~16についても導電層と絶縁層とを複数積層することにより作製した。そして、これらを一体化して、図3に示すローパスフィルタが作り込まれた回路パターン基板を作製した。
 次に、この回路パターン基板を磁芯下部基板22の上面に設置し、図4に示すコイル部110の内側にある開口部111に磁芯中足部23を挿通し、磁芯下部基板22の上面に磁芯中足部23を設置した。磁芯中足部24についても同様に、磁芯下部基板22の上面に設置した。そして、この回路パターンの上から磁心上部基板21を被せ、各部を樹脂で接着して、高周波電子部品1を得た。
 評価
 <磁性ナノワイヤ形状、組成、および体積比率>
 複合磁性体の断面を走査型電子顕微鏡(SEM)((株)日立ハイテクノロジーズ製、SU8000)で観察して、磁性ナノワイヤ361~363の幅および長さを計測し、付属するEDXにて磁性ナノワイヤ361~363の組成を測定した。磁性ナノワイヤ361~363の体積比率は、多孔絶縁体の単位面積の重量と磁性ナノワイヤの電析後の重量と、絶縁体365~367および磁性ナノワイヤ361~363の比重から体積比率を求めた。
 <複素透磁率の実部μ’および磁気損失tanδμ>
 1mm×1mm×80mmの棒状に加工した試験片を使用し、ネットワークアナライザ(アジレント・テクノロジー(株)製、HP8753D)と空洞共振器((株)関東電子応用開発製)を用いて、複合磁性体の2.4GHzにおける複素透磁率の実部μ’および磁気損失tanδμを摂動法により測定した。
 <インダクタの長さLおよび高周波電子部品1の挿入損失IL>
 高周波電子部品1の2.4GHzにおける挿入損失ILを測定した。表1に複合磁性体の2.4GHzにおける複素透磁率の実部μ’および磁気損失tanδμと、インダクタ11,12の長さL(図4参照)と、高周波電子部品1の挿入損失ILとを示す。
 (実施例2)
 複合磁性体を実施例1と異なる製法で、以下のように作製した以外は実施例1と同様にして、実施例2の複合磁性体および高周波電子部品1を作製し、同様な実験を行った。
 Al箔を0.3M過塩素酸溶液中で電圧40Vにてアノード酸化させた後、Al箔とAl箔に接するアノード酸化膜を水酸化ナトリウム溶液で溶解させ、厚さが70μm、孔径が20nmの周期的多孔Al酸化物を作製した。この周期的多孔Al酸化物の片面にAlスパッタ蒸着層を形成して陰極とした。陽極にはCoを用い、50度に保った0.7M硫酸第二鉄と、0.3M硫酸コバルトと、0.7Mホウ酸と、1mMアスコルビン酸ナトリウムとで構成される電解液中で、周期多孔Al酸化物の孔内にFeCo合金磁性ナノワイヤ361~363を直流電析させた。その後、水酸化ナトリウム溶液でAlスパッタ蒸着層を除去した。ここで、磁性ナノワイヤ361~363の直径は19nmであり、磁性ナノワイヤ361~363の長さは60μmであった。また、EDXにより組成評価を行ったところ、磁性ナノワイヤ361~363の組成は、Feが64%、Coが36%であった。絶縁体365~367としての周期多孔Al酸化物の空孔率から求めた磁性ナノワイヤ361~363の体積比率は74%であった。このようにFeCo合金磁性ナノワイヤ361~363とAl酸化物絶縁体365~367とで構成される実施例2の複合磁性体、および当該複合磁性体を含む高周波電子部品1を得た。
 なお、実施例1と同様に断面を観察したところ、磁心中足部23,24における磁性ナノワイヤ361の向きと、磁心上部基板21および磁心下部基板22における磁性ナノワイヤ362,363の向きは、実施例1と同様であった。
 (実施例3)
 複合磁性体を実施例1と異なる製法で、以下のように作製した以外は実施例1と同様にして、実施例3の複合磁性体および高周波電子部品1を作製し、同様な実験を行った。
 ポリ(エチレンオキシド)メチルエーテル(分子量5000)を親水性ブロックとし、重合度が50~150のポリメタクリレートを疎水性ブロックとするブロック共重合体を、銅錯体を触媒とする原子移動ラジカル重合法により合成した。得られたブロック共重合体は一般式(化1)で示された。
Figure JPOXMLDOC01-appb-C000001
 ここで、mは80~120であり、nは50~80であり、Rはアルキル基である。
 得られた0.02gブロック共重合体を、0.01gポリエチレンオキシド(分子量400、重合度7) と混合し、これをクロロホルムに溶解させて、10wt%の溶液を得た。この溶液を用いてイソプロパノールで超音波洗浄したAl箔上に厚み1μmとなるようバーコートした。その後、140℃で1時間の熱処理を行い、pH6.9の0.3Mリン酸-リン酸水素二ナトリウム水溶液にて親水性ブロックを除去することにより、Al箔上に厚さ1μm、孔径10nmの周期的多孔共重合体膜を作製した。
 陽極をCoとし、50度に保った0.7M硫酸第二鉄と、0.3M硫酸コバルトと、0.7Mホウ酸と、1mMアスコルビン酸ナトリウムとで構成される電解液中で周期多孔共重合体膜の孔内にFeCo合金磁性ナノワイヤ361~363を直流電析させた。その後、水酸化ナトリウム溶液でAl箔を除去した。ここで、磁性ナノワイヤ361~363の直径は10nm、磁性ナノワイヤ361~363の長さは1μmであった。EDXにより組成評価を行ったところ、磁性ナノワイヤ361~363の組成は、Fe64%、Co36%であった。絶縁体として周期多孔共重合体膜の空孔率から求めた磁性ナノワイヤ361~363の体積比率は74%であった。このようにして、FeCo合金磁性ナノワイヤ361~363と周期的多孔共重合体膜絶縁体で構成される実施例3の複合磁性体、および当該複合磁性体を含む高周波電子部品1を得た。
 ここで、磁心中足部23,24は、磁性ナノワイヤ361がインダクタ11の巻回軸方向に略垂直に整列するように形成した。また、磁心上部基板21および磁心下部基板22は、磁性ナノワイヤ362,363がインダクタ11の巻回軸方向に略平行に整列するように形成した。
 (実施例4)
 複合磁性体を実施例1と異なる製法で、以下のように作製した以外は実施例1と同様にして、実施例4の複合磁性体および高周波電子部品1を作製し、同様な実験を行った。
 実施例1の磁心下部基板22上に絶縁層341,342を形成し、コイル部110,120を形成しつつ、磁心中足部23,24を次のようにして形成した。
 すなわち、スパッタリングで厚さ20nmのFeCo層を成膜し、ライン/スペースが20nm/20nmの樹脂型にてレジストインクを印刷し、RIE(Reactive Ion Etching)にてレジストインクが印刷されていないFeCo層を除去し、その上から10nmのアルミナ層をスパッタ成膜した。この工程を繰り返し行い、磁心中足部23,24を形成した。その後、磁心上部基板21を上から被せ、各部を樹脂で接着して、実施例4の複合磁性体、および当該複合磁性体を含む高周波電子部品1を得た。
 なお、実施例1と同様に断面を観察したところ、磁心中足部23,24における磁性ナノワイヤ361の向きと、磁心上部基板21および磁心下部基板22における磁性ナノワイヤ362,363の向きは、実施例1と同様であった。
 (実施例5)
 複合磁性体を実施例1と異なる製法で、以下のように作製した以外は実施例1と同様にして、実施例5の複合磁性体および高周波電子部品1を作製し、同様な実験を行った。
 塩化鉄および塩化コバルトを蒸着源とし、4%の水素を含む窒素ガスをキャリアとして、CVDにてFeCo合金のナノワイヤをイットリア安定化ジルコニア(YSZ)基板上に形成した。このナノワイヤを取り出し、ポリエチレン樹脂の割合が、30vol%:70vol%となるように秤量した。上記の材料に分散剤およびカップリング剤を適宜添加して、安田精機製作所製ミキシングロール(No191-TM/WM)を用いて混練した。混練は、原料を140℃に加温しながら針状磁性粒子がポリエチレン樹脂中に均質に混合されるまで行った。次に、得られた原料混合物に磁場をかけることによってナノワイヤを整列させた。さらに、これを180℃に加熱した金型に投入し、35MPaのプレス圧で成形した。このようにして、実施例5の複合磁性体および当該複合磁性体を含む高周波電子部品1を得た。
 なお、実施例1と同様に断面を観察したところ、磁心中足部23,24における磁性ナノワイヤ361の向きと、磁心上部基板21および磁心下部基板22における磁性ナノワイヤ362,363の向きは、実施例1と同様であった。
 (実施例6)
 磁心中足部23,24における磁性ナノワイヤ361の向きと、磁心上部基板21および磁心下部基板22における磁性ナノワイヤ362,363の向きを、実施例5とは逆にした以外は実施例5と同様にして、実施例6の複合磁性体および高周波電子部品1を作製し、同様な実験を行った。結果を表1に示す。
 (比較例1)
 複合磁性体を実施例1と異なる製法で、以下のように作製した以外は実施例1と同様にして、比較例1の複合磁性体および高周波電子部品1を作製し、同様な実験を行った。
 酸化鉄(Fe)73mol%、酸化コバルト(Co)18mol%、炭酸バリウム(BaCO)9mol%を原料とし、これらを所定の組成となるように秤量した。そして、秤量後の原料を湿式ボールミルで水を媒体として16時間配合した後、大気中において1250℃で焼成した。これによって得られた磁性酸化物を振動ミルで10分間乾式粉砕した後、湿式ボールミルで水を媒体として88時間粉砕し、粉砕後の磁性酸化物を150℃で24時間乾燥させて、平均粒径が1μm以下の磁性酸化物の粉末(磁性酸化物粉末W)を作製した。この磁性酸化物は、Co置換型W型六方晶フェライト(BaCoFe1627)を主成分とする。このようにして、比較例1の複合磁性体、および当該複合磁性体を含む高周波電子部品1を得た。
 なお、比較例1の複合磁性体は、フェライトであり、ナノワイヤは用いていないため、表1では、ナノワイヤの向きの欄を「-」として表した。
 (比較例2)
 複合磁性体を実施例1と異なる製法で、以下のように作製した以外は実施例1と同様にして、比較例2の複合磁性体および高周波電子部品1を作製し、同様な実験を行った。
 長軸長が45nm、アスペクト比が1.5のFe70Co30合金針状粒子と、誘電体材料としてポリエチレン樹脂とを、針状磁性粒子とポリエチレン樹脂の割合が、30vol%:70vol%となるように秤量した。上記の材料に分散剤およびカップリング剤を適宜添加して、安田精機製作所製ミキシングロール(No191-TM/WM)を用いて、混練した。混練は、原料を140℃に加温しながら針状磁性粒子がポリエチレン樹脂中に均質に混合されるまで行った。次に、得られた原料混合物を180℃に加熱した金型に投入し、35MPaのプレス圧で成形した。このようにして、比較例2の磁性体複合材料、および当該磁性体複合材料を含む高周波電子部品1を得た。
 なお、実施例1と同様に断面を観察したところ、磁心中足部23,24における磁性ナノワイヤ361の向きと、磁心上部基板21および磁心下部基板22における磁性ナノワイヤ362,363の向きは、ランダムであった。
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例1~6では、2.4GHzの複素透磁率の実部μ’が2.3以上、好ましくは2.5以上であり、かつ磁気損失tanδμが0.024以下、好ましくは0.22以下であることが確認された。一方、比較例1および2では、2.4GHzの複素透磁率の実部μ’が2.0以下であり、かつ磁気損失tanδμが0.041以上であることが確認された。すなわち、本実施例に係る複合磁性体は、ギガヘルツ帯において、高い複素透磁率の実部μ’および低い磁気損失tanδμを有することが確認された。
 また、実施例1~6では、インダクタ11,12の長さLが2150μm以下であり、高周波電子部品1の挿入損失ILが1.00dB未満(0.95dB以下)であることが確認された。一方、比較例1および2では、インダクタ11,12の長さLが2150μmよりも大きく、高周波電子部品1の挿入損失ILが1.00dB以上(1.09dB以上)であることが確認された。すなわち、本実施例にかかる複合磁性体を含む高周波電子部品1では、インダクタ11,12の長さLを小さくすることができるため、高周波電子部品1自体の小型化が可能であるとともに、挿入損失ILが小さい優れた特性を有する高周波電子部品1が得られることが確認された。また、実施例1~5と実施例6とを比較することで、実施例6に比較して、実施例1~5では、μ’、tanδμ、長さLおよびILの全ての項目において優れていることが確認できた。
1,1A… 高周波電子部品
 11,12,17… インダクタ
 110,120… コイル部
  111,121… 開口部
 13,14,15,16… キャパシタ:
 21… 磁心上部基板
 22… 磁心下部基板
 23,24… 磁心中足部
 25,26… 磁心外足部
 311,312,316… 導体層
 341,342,336… 絶縁層
 361,362,363,364… 磁性ナノワイヤ
 365,366,367,368… 絶縁体

Claims (9)

  1.  互いに交わらないように整列した複数の磁性ナノワイヤと、前記複数の磁性ナノワイヤ間を電気的に絶縁する絶縁体とを備える複合磁性体。
  2.  前記磁性ナノワイヤは、Fe、Co、Niの少なくとも1つの金属を含む請求項1に記載の複合磁性体。
  3.  請求項1または2に記載の複合磁性体を含む基板。
  4.  請求項1または2に記載の複合磁性体を含む高周波電子部品。
  5.  請求項3に記載の基板を含む高周波電子部品。
  6.  前記複合磁性体は磁心に含まれる請求項4または5に記載の高周波電子部品。
  7.  前記磁心はコイルの内部を挿通する磁心中足部を含み、
    前記磁心中足部に含まれる前記磁性ナノワイヤが、コイルの巻回軸方向に略垂直に整列している請求項6に記載の高周波電子部品。
  8.  前記基板は、前記コイルの上方に配置される磁心上部基板および前記コイルの下方に配置される磁心下部基板の少なくとも一方を含み、
    前記磁心上部基板および前記磁心下部基板の少なくとも一方に含まれる前記磁性ナノワイヤは、コイルの巻回軸方向に略平行に整列している請求項6または7に記載の高周波電子部品。
  9.  前記磁心は、前記コイルの周縁に配置される磁心外足部を含み、
    前記磁心外足部に含まれる前記磁性ナノワイヤは、コイルの巻回軸方向に略垂直に整列している請求項6~8のいずれかに記載の高周波電子部品。
PCT/JP2018/013771 2017-03-31 2018-03-30 複合磁性体、複合磁性体を含む基板、およびこれらを含む高周波電子部品 WO2018181957A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/494,791 US20200082964A1 (en) 2017-03-31 2018-03-30 Composite magnetic body, substrate including composite magnetic body, and high-frequency electronic component including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017071727A JP2020095993A (ja) 2017-03-31 2017-03-31 複合磁性体、複合磁性体を含む基板、およびこれらを含む高周波電子部品
JP2017-071727 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181957A1 true WO2018181957A1 (ja) 2018-10-04

Family

ID=63676181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013771 WO2018181957A1 (ja) 2017-03-31 2018-03-30 複合磁性体、複合磁性体を含む基板、およびこれらを含む高周波電子部品

Country Status (3)

Country Link
US (1) US20200082964A1 (ja)
JP (1) JP2020095993A (ja)
WO (1) WO2018181957A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111383818A (zh) * 2018-12-27 2020-07-07 Tdk株式会社 Lc复合部件
JP2020107879A (ja) * 2018-12-27 2020-07-09 Tdk株式会社 Lc複合部品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042931A (ja) * 2005-08-04 2007-02-15 Nec Tokin Corp 線輪部品およびその製造方法
JP2011504662A (ja) * 2008-03-11 2011-02-10 チャン ソン コーポレイション 軟磁性金属粉末が充填されたシートを用いた積層型パワーインダクタ
US20110080241A1 (en) * 2009-10-05 2011-04-07 University Of Delaware Ferromagnetic resonance and memory effect in magnetic composite materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042931A (ja) * 2005-08-04 2007-02-15 Nec Tokin Corp 線輪部品およびその製造方法
JP2011504662A (ja) * 2008-03-11 2011-02-10 チャン ソン コーポレイション 軟磁性金属粉末が充填されたシートを用いた積層型パワーインダクタ
US20110080241A1 (en) * 2009-10-05 2011-04-07 University Of Delaware Ferromagnetic resonance and memory effect in magnetic composite materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAMOIR, GAEL ET AL.: "Q-FACTOR IMPROVEMENT OF INTEGRATED INDUCTORS USING HIGH ASPECT RATIO FERROMAGNETIC NANOWIRES", MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, vol. 54, no. 7, July 2012 (2012-07-01), pages 1633 - 1637, XP055558870, ISSN: 0895-2477 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111383818A (zh) * 2018-12-27 2020-07-07 Tdk株式会社 Lc复合部件
JP2020107879A (ja) * 2018-12-27 2020-07-09 Tdk株式会社 Lc複合部品
US11328872B2 (en) 2018-12-27 2022-05-10 Tdk Corporation LC composite component
CN111383818B (zh) * 2018-12-27 2022-08-12 Tdk株式会社 Lc复合部件

Also Published As

Publication number Publication date
US20200082964A1 (en) 2020-03-12
JP2020095993A (ja) 2020-06-18

Similar Documents

Publication Publication Date Title
KR101832572B1 (ko) 코일 부품
US9275785B2 (en) Multilayered power inductor and method for preparing the same
KR101659248B1 (ko) 인덕터 및 이의 제조방법
CN101354946A (zh) 压粉磁芯及其制造方法
KR20160140153A (ko) 코일 전자부품 및 그 제조방법
WO2018181957A1 (ja) 複合磁性体、複合磁性体を含む基板、およびこれらを含む高周波電子部品
JP6812886B2 (ja) 高周波電子部品
KR20050008506A (ko) 적층 세라믹 전자부품
US10854376B2 (en) Coil component and LC composite component
US20220375675A1 (en) Coil-embedded magnetic core and coil device
TWI717174B (zh) Lc複合零件
KR20160014936A (ko) 복합 자성 분말 및 그를 이용한 칩 코일 부품
KR101661067B1 (ko) 금속 고분자 복합체 시트의 제조방법
US11328872B2 (en) LC composite component
US11515854B2 (en) LC composite component
JP7404788B2 (ja) Lc複合部品
US11682510B2 (en) Composite magnetic material, magnetic core, and electronic component
KR101813388B1 (ko) 코일 부품용 합금 파우더 및 이를 포함하는 코일 부품
US20230207169A1 (en) Ferromagnetic Metal-Ferrite Composites for High Frequency Inductor Applications
KR20100048250A (ko) 초박형 파워 인덕터
JPH09129432A (ja) 積層インダクタ及びその製造方法
JP2005317678A (ja) 磁気部品およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP