WO2018181303A1 - Device and method for forming liquid film, and method for producing synthetic polymer film - Google Patents

Device and method for forming liquid film, and method for producing synthetic polymer film Download PDF

Info

Publication number
WO2018181303A1
WO2018181303A1 PCT/JP2018/012419 JP2018012419W WO2018181303A1 WO 2018181303 A1 WO2018181303 A1 WO 2018181303A1 JP 2018012419 W JP2018012419 W JP 2018012419W WO 2018181303 A1 WO2018181303 A1 WO 2018181303A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
liquid film
outer peripheral
peripheral surface
film forming
Prior art date
Application number
PCT/JP2018/012419
Other languages
French (fr)
Japanese (ja)
Inventor
郁雄 二宮
林 秀和
一輝 澤井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2019509883A priority Critical patent/JP6789380B2/en
Priority to CN201880023090.2A priority patent/CN110536754A/en
Publication of WO2018181303A1 publication Critical patent/WO2018181303A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/28Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with integral means for shielding the discharged liquid or other fluent material, e.g. to limit area of spray; with integral means for catching drips or collecting surplus liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B14/00Arrangements for collecting, re-using or eliminating excess spraying material
    • B05B14/30Arrangements for collecting, re-using or eliminating excess spraying material comprising enclosures close to, or in contact with, the object to be sprayed and surrounding or confining the discharged spray or jet but not the object to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/26Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on a rotating drum
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing

Definitions

  • the present invention relates to a liquid film forming apparatus, a liquid film forming method, and a synthetic polymer film manufacturing method.
  • An optical element such as a display device or a camera lens used for a television or a mobile phone is usually provided with an antireflection technique in order to reduce surface reflection and increase light transmission.
  • an antireflection technique in order to reduce surface reflection and increase light transmission. For example, when light passes through the interface of a medium with a different refractive index, such as when light enters the interface between air and glass, the amount of transmitted light is reduced due to Fresnel reflection, etc., and visibility is reduced. is there.
  • This method utilizes the principle of a so-called moth-eye structure, and the refractive index for light incident on the substrate is determined from the refractive index of the incident medium along the depth direction of the irregularities. By continuously changing the refractive index, reflection in the wavelength region where reflection is desired to be prevented is suppressed.
  • the moth-eye structure has an advantage that it can exhibit an antireflection effect with a small incident angle dependency over a wide wavelength range, can be applied to many materials, and can form an uneven pattern directly on a substrate. As a result, a low-cost and high-performance antireflection film (or antireflection surface) can be provided.
  • the present applicant has developed a method using an anodized porous alumina layer obtained by anodizing aluminum as a method for producing an antireflection film (or antireflection surface) having a moth-eye structure (for example, Patent Document 2 and 3).
  • a mold for forming a moth-eye structure on the surface (hereinafter referred to as “moth-eye mold”) can be easily manufactured.
  • the surface of the anodized aluminum film is used as a mold as it is, the effect of reducing the manufacturing cost is great.
  • the surface structure of the moth-eye mold that can form the moth-eye structure is referred to as an “inverted moth-eye structure”.
  • a moth-eye structure can be efficiently manufactured by a roll-to-roll method.
  • the “mold” includes molds used for various processing methods (stamping and casting), and is sometimes referred to as a stamper. It can also be used for printing (including nanoprinting).
  • the present applicant has an antireflection function and has antifouling properties (for example, water repellency, oil repellency, easy wiping of fats and oils, scratch resistance, slipperiness). ) Has been developed.
  • Patent Documents 1 to 5 All the disclosures of Patent Documents 1 to 5 are incorporated herein by reference.
  • a method for producing a synthetic polymer film having excellent antifouling properties by a roll-to-roll method includes, for example, a step of applying a resin to the surface (outer peripheral surface) of a columnar or cylindrical moth-eye mold by a spray method. Include. In this step, the production yield may decrease due to the resin scattering around the moth-eye mold. Details will be described later.
  • This problem is not limited to the process of producing a synthetic polymer film having excellent antifouling properties, and is not limited to the process of using a moth-eye mold. This is a common problem in the process of forming a liquid film on the outer peripheral surface of a columnar or cylindrical base material.
  • the present invention provides an apparatus and method capable of suppressing a decrease in production yield in the step of forming a liquid film on the outer peripheral surface of a columnar or cylindrical substrate, and uses such an apparatus or method. It is an object of the present invention to provide a method for producing a synthetic polymer film.
  • a liquid film forming apparatus is an apparatus that forms a liquid film on an outer peripheral surface of a columnar or cylindrical base material, and is a blowout port that sprays liquid, and the first of the blowout ports.
  • the length in one direction is larger than the length of the outlet in the second direction orthogonal to the first direction, and when the liquid is sprayed toward the outer peripheral surface, the first direction is the axis of the base material.
  • Extending in the first direction At least one suction port including a portion, and a gas suction device that sucks gas through the at least one suction port, wherein the gas suction device is configured to supply a gas containing the liquid sprayed from the outlet. It is configured to suck a gas having a flow rate higher than the flow rate.
  • an average diameter of the liquid sprayed from the outlet is 20 ⁇ m or less.
  • the outlet is penetrating in a third direction perpendicular to the first direction and the second direction.
  • the liquid film forming apparatus further includes a plurality of nozzles arranged along the first direction in the outlet and spraying the liquid.
  • the plurality of nozzles are ultrasonic nozzles.
  • the plurality of nozzles are arranged at different levels.
  • the plurality of nozzles are arranged so that the angles of the ejection holes of adjacent nozzles with respect to the horizontal direction are different from each other.
  • the liquid film forming apparatus is configured such that when the liquid is sprayed toward the outer peripheral surface, the inner cover portion and the outer cover portion may not contact the outer peripheral surface. ing.
  • the liquid film forming apparatus is configured to spray the liquid toward the outer peripheral surface and / or the distance between the inner cover portion and the outer peripheral surface and / or the outer cover portion and the outer peripheral surface. The distance can be changed.
  • the shortest distance between the inner cover portion and the outer peripheral surface and the shortest distance between the outer cover portion and the outer peripheral surface are each configured to be 30 mm or less.
  • the gas suction device is configured to suck a gas having a flow rate not less than 9 times and not more than 15 times the flow rate of the gas including the liquid sprayed from the outlet.
  • the liquid film forming apparatus supports the base material so that an axial direction of the base material is substantially parallel to a horizontal direction and is rotatable about an axis of the base material.
  • a rotating support structure supports the base material so that an axial direction of the base material is substantially parallel to a horizontal direction and is rotatable about an axis of the base material.
  • a liquid film forming method is a method of forming a liquid film on the outer peripheral surface of a columnar or cylindrical base material, the step (a) of spraying liquid toward the outer peripheral surface, A step (b) of sucking a gas around the outer peripheral surface, and the step (b) includes a step performed simultaneously with the step (a), and a flow rate of the gas sucked in the step (b). Is larger than the flow rate of the gas containing the liquid sprayed in the step (a).
  • the average diameter of the liquid sprayed in the step (a) is 20 ⁇ m or less.
  • the viscosity of the liquid sprayed in the step (a) at 23 ° C. is 20 cP or less.
  • the dynamic surface tension of the liquid sprayed in the step (a) when the surface lifetime at 23 ° C. according to the maximum bubble pressure method is 100 ms is 31 mN / m or more.
  • the liquid film forming method is characterized in that the base is arranged around the axis of the base material in a state where the base material is arranged so that an axial direction of the base material is substantially parallel to a horizontal direction.
  • the method further includes a step (c) of rotating the material.
  • the rotation speed of the substrate is more than 0 rpm and not more than 20 rpm.
  • the liquid film forming method forms a liquid film having a thickness of 2 ⁇ m or less.
  • a method for producing a synthetic polymer film according to an embodiment of the present invention includes an inverted moth-eye structure having a plurality of recesses having a two-dimensional size of 20 nm or more and less than 500 nm when viewed from the normal direction of the surface.
  • a method of producing a synthetic polymer film using a columnar or cylindrical mold having a porous alumina layer on the surface the step (A) of preparing the mold and a workpiece, the step (B) of applying a first resin containing an ultraviolet curable resin to the surface of the workpiece, and using any one of the above liquid film forming apparatuses or by any one of the above liquid film forming methods,
  • the first resin and the second tree Comprising a step (D) curing the first resin and the second resin by irradiating with ultraviolet rays.
  • an apparatus and method capable of suppressing a decrease in manufacturing yield in the step of forming a liquid film on the outer peripheral surface of a columnar or cylindrical base material, and such an apparatus or method are used.
  • a method for producing a synthetic polymer membrane is provided.
  • FIG. 2 is a schematic diagram for explaining a liquid film forming method and a liquid film forming apparatus 50 according to an embodiment of the present invention, showing a cross section taken along the line A-A ′ in FIG. 1. It is a typical figure for demonstrating the liquid film formation method and the liquid film formation apparatus 50 by embodiment of this invention.
  • 4 is a schematic diagram for explaining an example of a configuration of a liquid film forming apparatus 50.
  • FIG. It is a typical perspective view for demonstrating the arrangement
  • FIG. 5 is a schematic cross-sectional view for explaining a method for producing a synthetic polymer film 36 by a roll-to-roll method.
  • (A)-(e) is typical sectional drawing for demonstrating the manufacturing method of the moth-eye type
  • (A) to (c) are schematic cross-sectional views for explaining a method for producing the synthetic polymer film and the structure of the synthetic polymer film. It is a figure which shows typically the change (depth profile) in the thickness direction of the element concentration of fluorine (F) and nitrogen (N) of the synthetic polymer film 36. It is typical sectional drawing for demonstrating the method to manufacture the synthetic polymer film
  • FIGS. 11A to 11C are schematic cross-sectional views for explaining the method for producing the synthetic polymer film 36 and the structure of the synthetic polymer film 36.
  • the liquid film forming method or the liquid film forming apparatus according to the embodiment of the present invention can be suitably used, for example, in the process of forming the synthetic polymer film 36. Therefore, the description of the synthetic polymer film 36 performed with reference to FIGS. 11 to 13 is an example of the synthetic polymer film manufactured using the liquid film forming method or the liquid film forming apparatus according to the embodiment of the present invention. Also applies.
  • the synthetic polymer film 36 has a plurality of convex portions 36p on the surface.
  • the plurality of convex portions 36p form a moth-eye structure.
  • the synthetic polymer film 36 is formed on the base film 42.
  • a film 30 shown in FIG. 11C has a base film 42 and a synthetic polymer film 36 formed on the base film 42.
  • the two-dimensional size D p of the convex portion 36p is in the range of more than 20 nm and less than 500 nm.
  • the “two-dimensional size” of the convex portion 36p refers to the area equivalent circle diameter of the convex portion 36p when viewed from the normal direction of the surface.
  • the two-dimensional size of the convex portion 36p corresponds to the diameter of the bottom surface of the cone.
  • a typical inter-adjacent distance D int of the convex portion 36p is more than 20 nm and not more than 1000 nm.
  • the convex portions 36p when the convex portions 36p are densely arranged and there is no gap between the adjacent convex portions 36p (for example, the bottom surfaces of the cones partially overlap), the convex portions 36p the two-dimensional size of a section 36p D p is equal to the distance between adjacent D int.
  • a typical height D h of the convex portion 36p is not less than 50 nm and less than 500 nm.
  • the thickness t s of the synthetic polymer film 36 may be larger than the height D h of the convex portion 36p.
  • the synthetic polymer film 36 contains fluorine element, the fluorine content continuously changes in the thickness direction, and has a profile in which the fluorine content is higher on the convex portion 36p side than on the opposite side to the convex portion 36p side.
  • the fluorine content refers to, for example, the concentration of fluorine element.
  • the synthetic polymer film 36 has an antireflection function and is excellent in antifouling properties (for example, difficulty in conspicuously attaching oil and fat adhering to the surface, easy wiping of the oil and fat, and scratch resistance).
  • the surface has no flat portion and the convex portions 36p are densely arranged.
  • the convex portion 36p has a shape in which a cross-sectional area (a cross section parallel to the plane orthogonal to the incident light, for example, a cross section parallel to the surface of the base film 42) increases from the air side toward the base film 42 side, for example, A conical shape is preferred.
  • the protrusions 36p preferably at random so that there is no regularity.
  • these characteristics are not essential.
  • the convex portions 36p do not need to be densely arranged, and may be regularly arranged.
  • a moth-eye mold 100 is prepared.
  • the moth-eye mold 100 has on its surface a porous alumina layer having a plurality of recesses having a two-dimensional size of 20 nm or more and less than 500 nm when viewed from the normal direction of the surface.
  • the plurality of recesses constitute an inverted moth-eye structure.
  • the moth-eye mold 100 is obtained, for example, by repeating anodization and etching of aluminum using the method described in Patent Document 3. The method for manufacturing the moth-eye mold 100 will be described in detail later.
  • a lower layer resin (sometimes referred to as “first resin”) 36 a ′ is applied to the surface of the base film 42.
  • An upper resin (sometimes referred to as “second resin”) 36 b ′ is applied on the inverted moth eye structure of the moth eye mold 100.
  • the lower layer resin 36a ' for example, an acrylic resin (acrylate monomer) can be used.
  • a monomer is given as a typical example of a raw material of a photocurable resin, and does not exclude oligomers.
  • the lower layer resin 36a ' includes, for example, an ultraviolet curable resin.
  • the lower layer resin 36a ' may not contain fluorine or may contain fluorine, but the fluorine content of the lower layer resin 36a' is preferably lower than the fluorine content of the upper layer resin 36b '.
  • the lower layer resin 36a ' is applied by, for example, a gravure method or a slot die method. It may be applied using a slit coater or a bar coater.
  • the thickness of the lower layer resin 36a 'when applied to the surface of the base film 42 is, for example, 3 ⁇ m to 30 ⁇ m, and preferably 5 ⁇ m to 7 ⁇ m, for example.
  • the viscosity of the lower layer resin 36a ' is, for example, 50 cP to 200 cP, and preferably 100 cP, for example.
  • the base film 42 is, for example, a PET (polyethylene terephthalate) film or a TAC (triacetyl cellulose) film.
  • the upper layer resin 36 b ′ has a fluorine-containing monomer 38.
  • the fluorine-containing monomer 38 is, for example, a fluorine-containing acrylic resin.
  • the fluorine-containing monomer 38 has, for example, a fluorine-containing hydrocarbon chain 38c and an acrylate group 38t at the terminal.
  • the fluorine-containing hydrocarbon chain 38c may include an ether bond.
  • the fluorine-containing monomer 38 is preferably cured by ultraviolet irradiation.
  • the upper layer resin 36b ' is applied by, for example, a spray method, a gravure method, or a slot die method. It may be applied using a slit coater or a bar coater.
  • the upper layer resin 36 b ′ is applied onto the moth-eye mold 100 using an ultrasonic nozzle, a two-fluid nozzle, a swirl nozzle, or an electrostatic nozzle.
  • the thickness of the upper layer resin 36b 'when applied on the moth-eye mold 100 is not particularly limited and preferably does not exceed 5m, for example, more than 0m and 3m or less, and more preferably 2m or less.
  • the viscosity of the upper layer resin 36b ' is, for example, 1 cP to 100 cP.
  • the viscosity of the upper layer resin 36b' is preferably 100 cP or less, more preferably 20 cP or less at 23 ° C, for example.
  • the upper layer resin 36b ′ further includes, for example, a reactive diluent.
  • a reactive diluent for example, 4-acryloylmorpholine can be used.
  • the chemical structural formula of 4-acryloylmorpholine is represented by [Chemical Formula 1], and 4-acryloylmorpholine has an acryloyl group (H 2 C ⁇ CH—C ( ⁇ O) —) and has an elemental nitrogen.
  • the lower layer resin 36a 'contains a solvent a step of evaporating the solvent (for example, heat treatment) is performed before the step shown in FIG.
  • a step of evaporating the solvent for example, heat treatment
  • the lower layer resin 36a 'and the upper layer resin 36b' preferably contain no solvent. If the lower layer resin 36 a ′ and the upper layer resin 36 b ′ do not contain a solvent, it is possible to reduce the cost of using the solvent and the environmental load (for example, odor during use). Furthermore, the time required for the process of evaporating the solvent, the cost, the location, etc. required for the apparatus for evaporating the solvent can be suppressed.
  • the fluorine-containing monomer 38 in the upper layer resin 36b ′ tends to be mixed with the lower layer resin 36a ′. There is a concern that it is difficult to be unevenly distributed on the convex portion 36p side.
  • the lower layer resin 36a ′ of the synthetic polymer film 36 contains a solvent, if the solvent is insufficiently dried, the adhesion between the base film 42 and the synthetic polymer film 36 (lower layer portion 36a) may be reduced. There is.
  • the upper layer resin 36b 'does not contain a solvent.
  • the viscosity of the upper layer resin 36b 'not containing a solvent is preferably 100 cP or less, for example.
  • the moth-eye mold 100 may be subjected to a mold release process. That is, the release agent may be applied to the inverted moth-eye structure of the moth-eye mold 100 before the upper layer resin 36b 'is applied.
  • the release treatment is performed on the moth-eye mold 100, the fluorine-containing hydrocarbon chain 38c of the fluorine-containing monomer 38 is attracted to the release agent, and the fluorine element content on the moth-eye mold 100 side of the upper layer portion 36b can be increased.
  • UV ultraviolet light
  • the lower layer resin 36a 'and the upper layer resin 36b' are mixed, the lower layer resin 36a 'and the upper layer resin 36b' are irradiated with ultraviolet rays, and the lower layer resin 36a 'and the upper layer resin 36b' are cured.
  • the fluorine-containing monomer 38 reacts with the reactive diluent.
  • the fluorine-containing monomer 38 also reacts with other acrylate monomers (including those contained in the lower layer resin).
  • (R) is added to the reference symbol of the acrylate group 38t after the reaction to indicate that the reaction has been completed.
  • a synthetic polymer film 36 to which the inverted moth-eye structure of the moth-eye mold 100 is transferred is formed on the surface of the base film 42.
  • the two-dimensional size D p , height D h and adjacent distance D int of the convex part 36 p of the synthetic polymer film 36 are the shape of the concave part of the moth-eye mold 100 used for manufacturing the synthetic polymer film 36. It is decided by.
  • the synthetic polymer film 36 has, for example, a lower layer portion 36a mainly including a lower layer resin and an upper layer portion 36b mainly including an upper layer resin.
  • the fluorine content of the upper layer portion 36b is higher than the fluorine content of the lower layer portion 36a.
  • a clear interface is not formed between the upper layer portion 36b and the lower layer portion 36a.
  • the synthetic polymer film 36 since the upper layer portion 36b has the fluorine-containing monomer 38, oil such as fingerprints attached to the synthetic polymer film 36 is difficult to spread. Therefore, even if oil such as fingerprints adheres to the synthetic polymer film 36, it is not noticeable. Further, the synthetic polymer film 36 can easily wipe off oils and fats such as attached fingerprints. Since the oils and fats can be easily wiped off, there is little fear that the protrusions 36p will be destroyed. The synthetic polymer film 36 is excellent in scratch resistance.
  • FIG. 12 is a diagram schematically showing changes (depth profiles) in the thickness direction of the elemental concentrations of fluorine (F) and nitrogen (N) in the synthetic polymer film 36.
  • the horizontal axis in FIG. 12 represents the depth (depth in the normal direction) from the surface of the synthetic polymer film 36 (the surface having the plurality of convex portions 36p), and the vertical axis represents the element concentration (at%) of each element. ).
  • the fluorine concentration of the synthetic polymer film 36 increases from the fluorine element concentration of the upper layer portion 36b to the fluorine element concentration of the lower layer portion 36a as the depth from the surface of the synthetic polymer film 36 increases. It changes continuously (slowly).
  • the nitrogen element concentration also changes continuously (slowly) from the nitrogen element concentration in the upper layer portion 36b to the nitrogen element concentration in the lower layer portion 36a as the depth from the surface of the synthetic polymer film 36 increases.
  • the concentration of each element may gradually approach the element concentration in the lower layer resin.
  • the composition of the surface of the synthetic polymer film 36 opposite to the surface having the plurality of convex portions 36p (also referred to as “surface on the base film 42 side”) is substantially equal to the composition of the lower layer resin.
  • the composition of the surface of the synthetic polymer film 36 on the side of the base film 42 refers to the composition of the portion constituting the surface of the synthetic polymer film 36 on the side of the base film 42.
  • the concentration of nitrogen element contained in the surface on the base film 42 side of the synthetic polymer film 36 is the concentration of nitrogen element contained in the portion constituting the surface on the base film 42 side of the synthetic polymer film 36.
  • the upper resin From the surface of the base film 42 side of the synthetic polymer film 36, in a direction normal to the synthetic polymer film 36, in the range up to, for example, at least 1/5 the thickness t s of the synthetic polymer film 36, the upper resin The reason why it can be considered that almost no components are present and has the same composition as the lower layer resin will be described. As described above with reference to FIG. 11, in the manufacturing process of the synthetic polymer film 36, the lower layer resin 36 a ′ and the upper layer resin 36 b ′ come into contact with each other when the base film 42 is pressed against the moth-eye mold 100.
  • the change of the element concentration of each element of the synthetic polymer film 36 in the thickness direction is not limited to the illustrated example.
  • the lower layer portion 36a does not contain a silicon element and a fluorine element, but the element concentrations of the silicon element and the fluorine element can be changed by arbitrarily selecting the material of the lower layer resin.
  • the lower layer resin may have a fluorine-based lubricant and / or a silicone-based lubricant.
  • the upper layer portion 36b has, for example, a nitrogen element and an acryloyl group.
  • FIG. 13 is a schematic cross-sectional view for explaining a method of manufacturing the synthetic polymer film 36 by the roll-to-roll method.
  • 14 and 15 are schematic cross-sectional views for explaining problems that occur when the synthetic polymer film 36 is manufactured by the roll-to-roll method.
  • a columnar or cylindrical moth-eye mold 100A is prepared.
  • the moth-eye mold 100A has a porous alumina layer 14 having a plurality of recesses 14p having a two-dimensional size of 20 nm or more and less than 500 nm when viewed from the normal direction of the surface.
  • the plurality of recesses 14p constitute an inverted moth-eye structure.
  • a method for manufacturing the columnar or cylindrical moth-eye mold 100A will be described in detail later.
  • the moth-eye mold 100A is arranged, for example, so that the axial direction of the moth-eye mold 100A is substantially parallel to the horizontal direction (direction perpendicular to the vertical direction).
  • FIG. 13 is a schematic cross-sectional view when viewed from the axial direction of the moth-eye mold 100A. 14 and 15 are the same.
  • the base film 42 provided with the lower layer resin 36a ′ on the surface is pressed against the moth-eye mold 100A provided with the upper layer resin 36b ′ (that is, for the moth eye).
  • the lower layer resin 36a ′ and the upper layer resin 36b ′ are cured.
  • the base film 42 is unwound from an unillustrated unwinding roller, and then a lower layer resin 36a 'is applied to the surface by, for example, a slit coater.
  • the base film 42 is supported by support rollers 46 and 48, as shown in FIG.
  • the support rollers 46 and 48 have a rotation mechanism and convey the base film 42.
  • the support roller 46 is a nip roller for transporting the base film 42 with the lower layer resin 36a ′ applied on the surface
  • the support roller 48 is a base film 42 having a cured synthetic polymer film 36 on the surface for the moth eye. It is a roller for peeling from the mold 100A.
  • the moth-eye mold 100A and the support rollers 46 and 48 are rotated in the directions indicated by the arrows in FIG. 13 at a rotation speed corresponding to the conveyance speed of the base film 42, respectively.
  • a spray method is preferably used. Since the spray method can easily form a uniform liquid film on a curved surface, it is preferably used for a roll-to-roll method. In addition, the spray method is easy to control the thickness of the liquid film to be formed, and requires a small amount of material (resin material in this case) for the liquid film to be formed. It has the advantage that space can be reduced.
  • the upper layer resin 36b ' is sprayed from the spray nozzle 92 toward the outer peripheral surface of the moth-eye mold 100A.
  • a plurality of spray nozzles 92 may be arranged along the axial direction of the moth-eye mold 100A.
  • the upper layer resin 36 b ′ is supplied to the spray nozzle 92 from a liquid supply device 93 (see FIG. 14).
  • the spray nozzle 92 sprays the upper layer resin 36b 'toward the portion of the outer peripheral surface of the moth-eye mold 100A where the base film 42 is not pressed.
  • the spray nozzle 92 is installed below the moth-eye mold 100A in the vertical direction (direction perpendicular to the horizontal direction), and the angle at which the upper layer resin 36b ′ is ejected from the spray nozzle 92 is higher than the horizontal direction. It is.
  • ultraviolet rays UV
  • the exposure apparatus is arranged vertically above the moth-eye mold 100A.
  • the arrangement of the spray nozzle 92 and the exposure apparatus is not limited to the illustrated example.
  • the spray nozzle 92 may be installed above the moth-eye mold 100A in the vertical direction, and the upper resin 36b 'may be ejected from the spray nozzle 92 downward in the horizontal direction.
  • the exposure apparatus is disposed below the moth-eye mold 100A in the vertical direction, and ultraviolet (UV) can be irradiated from below the moth-eye mold 100A.
  • UV ultraviolet
  • the moth-eye mold 100A is separated from the base film 42 to thereby transfer the inverted moth-eye structure of the moth-eye mold 100A to the base. It is formed on the surface of the film 42.
  • the base film 42 having the synthetic polymer film 36 formed on the surface is wound up by a winding roller (not shown). After the base film 42 having the synthetic polymer film 36 formed on the surface is separated from the moth-eye mold 100A, the synthetic polymer film 36 may be irradiated with ultraviolet rays again.
  • the surface of the synthetic polymer film 36 has a nano surface structure obtained by inverting the nano surface structure of the moth-eye mold 100A. By appropriately adjusting the moth-eye mold nano-surface structure, a synthetic polymer film having a desired nano-surface structure can be produced.
  • the lower layer resin 36a ' is not limited to the ultraviolet curable resin, and may include a photocurable resin that can be cured with visible light.
  • the production yield is increased by the upper layer resin 36b ′ being scattered around. There was a decline.
  • the upper layer resin 36 b ′ when the upper layer resin 36 b ′ is sprayed from the spray nozzle 92, the upper layer resin 36 b ′ may scatter around the outer peripheral surface 100 s of the moth-eye mold 100 ⁇ / b> A, for example.
  • the moth-eye mold 100A it is considered that an air flow as indicated by arrows in FIG. 15 is generated by the rotation of the moth-eye mold 100A and the support rollers 46 and 48.
  • the sprayed upper layer resin 36b ' is diffused around the moth-eye mold 100A in this air stream.
  • arrows indicating the rotational directions of the moth-eye mold 100A and the support rollers 46 and 48 are also shown.
  • the flow of the gas ejected from the spray nozzle 92 and the rotation direction of the moth-eye mold 100A combine to form a strong airflow that flows along the outer peripheral surface of the moth-eye mold 100A toward the support roller 46. There is a tendency.
  • the thickness of the upper resin 36b 'when applied on the moth-eye mold 100A is preferably not more than 5 ⁇ m, for example, more than 0 ⁇ m and 3 ⁇ m or less, and more preferably 2 ⁇ m or less.
  • a spray method is preferably used. Since the upper layer resin 36b 'is sprayed as a mist, it is easily influenced by the air current around the moth-eye mold 100A and easily scattered.
  • the average diameter of the upper resin 36b ′ sprayed as mist from the spray nozzle 92 is, for example, 20 ⁇ m or less. preferable.
  • FIG. 1 With reference to FIG. 1, FIG. 2, and FIG. 3, there is a method of forming a liquid film on the outer peripheral surface of a columnar or cylindrical base material (an “liquid film forming method”) according to an embodiment of the present invention. ) And a device for forming a liquid film on the outer peripheral surface of a columnar or cylindrical substrate (sometimes referred to as a “liquid film forming device”).
  • FIG. 2 and FIG. 3 are schematic views for explaining a liquid film forming method and a liquid film forming apparatus 50 according to an embodiment of the present invention.
  • FIG. A cross section along the line is shown.
  • 1 and 3 are schematic cross-sectional views when viewed from the axial direction of the base material 100A.
  • the liquid film forming method includes a step (a) of spraying a liquid toward an outer peripheral surface of a columnar or cylindrical base material, and a step (b) of sucking a gas around the outer peripheral surface. Is included.
  • Step (b) includes a step performed simultaneously with step (a). The flow rate of the gas sucked in the step (b) is larger than the flow rate of the gas containing the liquid sprayed in the step (a).
  • the sprayed liquid is suppressed from being scattered around. According to the liquid film forming method according to the embodiment of the present invention, it is possible to suppress a decrease in manufacturing yield in the step of forming a liquid film on the outer peripheral surface of a columnar or cylindrical base material.
  • the liquid film forming method according to the embodiment of the present invention diffusion of the sprayed liquid to the surroundings can be suppressed without contacting the substrate.
  • the liquid film forming method according to the embodiment of the present invention is used in, for example, a roll-to-roll method, in a state where the substrate is arranged so that the axial direction of the substrate is substantially parallel to the horizontal direction, You may further include the process (c) which rotates a base material centering on the axis
  • the rotation speed of the substrate is preferably, for example, more than 0 rpm and 20 rpm or less.
  • the liquid film forming method according to the embodiment of the present invention is also suitably used for a roll-to-roll method. Since the liquid film forming method according to the embodiment of the present invention can suppress the diffusion of the sprayed liquid to the surroundings without contacting the base material, when the liquid is sprayed on the rotating base material. Preferably used.
  • the process of spraying the upper layer resin is included in a series of flows including other processes (for example, a process of applying a lower layer resin to the surface of the base film, a process of irradiating ultraviolet rays, etc.). Therefore, the liquid film forming method according to the embodiment of the present invention is preferably used.
  • the liquid film forming method according to the embodiment of the present invention can be performed using, for example, the liquid film forming apparatus 50.
  • the liquid film forming apparatus 50 forms a liquid film on the outer peripheral surface 100s of the columnar or cylindrical base material 100A.
  • the columnar or cylindrical substrate is, for example, a moth-eye mold.
  • the same reference numerals as those of the moth-eye mold 100A are attached to the columnar or cylindrical base material.
  • the liquid film forming apparatus 50 includes an outlet 51 that sprays liquid, a liquid supply device 52 that supplies liquid to the outlet 51, a cylindrical inner cover portion 53 that defines the outlet 51, and an inner cover portion 53. It has the outer cover part 54 arrange
  • the length Li1 of the outlet 51 in the first direction is the length of the outlet 51 in the second direction (y-axis direction in the figure) orthogonal to the first direction. It is larger than the length Li2.
  • the outlet 51 is directed toward the outer peripheral surface 100s so that the first direction is substantially parallel to the axial direction of the base material 100A.
  • the base material 100A is arranged so that the axial direction of the base material 100A is substantially parallel to the first direction.
  • an xyz orthogonal coordinate system is shown for the liquid film forming device 50, but the liquid supply device 52 and the gas suction device 56 are not limited to this.
  • the inner cover portion 53 and the outer cover portion 54 have a cylindrical shape extending substantially parallel to a third direction (z-axis direction in the drawing) orthogonal to the first direction and the second direction.
  • the direction in which the inner cover portion 53 and the outer cover portion 54 extend may not be substantially parallel to the third direction.
  • the suction port 55 includes a portion 55m extending in the first direction (x-axis direction in the drawing) adjacent to the blowout port 51 and in the second direction (y-axis direction in the drawing).
  • one suction port 55 is defined by the inner cover portion 53 and the outer cover portion 54.
  • the inner cover portion 53 is surrounded by the outer cover portion 54 in the cross section including the blowout port 51 and the suction port 55.
  • the length Lo1 in the first direction (x-axis direction in the drawing) of the suction port 55 is larger than the length Li1 in the first direction of the outlet 51, and the second direction (in the drawing) of the suction port 55.
  • the length Lo2 in the y-axis direction) is larger than the length Li2 in the second direction of the outlet 51.
  • the shapes of the inner cover portion 53 and the outer cover portion 54 and the arrangement relationship thereof are not limited to those illustrated. Two or more suction ports may be defined by the inner cover portion 53 and the outer cover portion 54.
  • the gas suction device 56 is configured to suck a gas having a flow rate higher than the flow rate of the gas containing the liquid sprayed from the outlet 51.
  • the liquid film forming apparatus 50 further includes, for example, a plurality of nozzles 57 arranged in the first direction in the outlet 51 and spraying liquid.
  • the liquid film forming apparatus 50 further includes, for example, a plurality of suction ports 58 connected to the gas suction device 56 in the suction port 55.
  • the nozzle 57 is connected to the liquid supply device 52 via a connection portion 67.
  • the suction port 58 is connected to the gas suction device 56 via the connection portion 65.
  • the liquid film forming apparatus 50 the liquid sprayed toward the outer peripheral surface of the columnar or cylindrical base material is suppressed from being scattered to the periphery.
  • the liquid film forming method according to the embodiment of the present invention it is possible to suppress a decrease in manufacturing yield in the step of forming a liquid film on the outer peripheral surface of a columnar or cylindrical base material.
  • the gas suction device 56 When the gas suction device 56 sucks the gas having a flow rate higher than the flow rate of the gas including the liquid sprayed from the outlet 51, the sprayed liquid diffuses along the outer peripheral surface 100s of the base material 100A. It is suppressed.
  • a hatched arrow indicates a gas flow sucked by the gas suction device 56 through the suction port 55, and a white arrow indicates a gas flow including the liquid sprayed from the outlet 51.
  • the gas flow outside the outer cover portion 54 is represented by a black arrow.
  • the gas containing the liquid sprayed from the outlet 51 toward the outer peripheral surface 100s of the base material 100A reaches the outer peripheral surface 100s of the base material 100A and is sucked from the suction port 55, the gas passes through the outer peripheral surface 100s. Diffusion is suppressed.
  • the aspect ratio (Li1 / Li2) of the length Li1 in the first direction with respect to the length Li2 in the second direction of the outlet 51 is large, the contribution of the air flow that sucks the gas from the portion 55m in the suction port 55 Is big. This is because the portion 55m in the suction port 55 extends in the axial direction of the base material 100A adjacent to the outlet 51 and the circumferential direction of the base material 100A.
  • the sprayed liquid travels along the outer peripheral surface 100s even though an airflow is generated between the outer cover portion 54 and the base material 100A from the outer side to the inner side. Diffusion is suppressed.
  • the liquid sprayed from the outlet 51 is misted and sprayed with gas.
  • the average diameter of the liquid sprayed as mist from the outlet 51 is, for example, 20 ⁇ m or less.
  • the outlet 51 preferably penetrates in a third direction (z-axis direction in the drawing) perpendicular to the first direction and the second direction. This is because the air pressure in the outlet 51 is preferably kept constant from the viewpoint of continuing to generate the airflow described above while spraying the liquid. Further, from the viewpoint of efficiently sucking gas from the gas suction device 56 through the suction port 55, it is preferable that the suction port 55 does not penetrate in the third direction.
  • the liquid film forming apparatus 50 further includes a bottom surface portion 62 that covers the suction port 55 on the side opposite to the base material 100A side. The bottom surface portion 62 is formed so as not to cover the side opposite to the base material 100 ⁇ / b> A side of the outlet 51.
  • the positional relationship between the substrate 100A and the liquid film forming apparatus 50 is, for example, the shortest distance wd from the tip of the ejection hole of the nozzle 57 to the outer peripheral surface 100s of the moth-eye mold 100A, and the outer periphery of the inner cover 53 and the moth-eye mold 100A. It is determined by the shortest distance dm1 between the surface 100s and the shortest distance dm2 between the outer cover portion 54 and the outer peripheral surface 100s of the moth-eye mold 100A.
  • FIG 3 shows the distance dv1 between the inner cover portion 53 and the outer peripheral surface 100s of the moth-eye mold 100A in the direction in which the inner cover portion 53 extends in a cylindrical shape, and the outer cover portion in the direction in which the outer cover portion 54 extends in a cylindrical shape.
  • the distance dv2 between 54 and the outer peripheral surface 100s of the moth-eye mold 100A is also shown.
  • the length of the inner cover portion 53 in the direction in which the inner cover portion 53 extends in a cylindrical shape is Li3
  • the length of the outer cover portion 54 in the direction in which the outer cover portion 54 extends in a cylindrical shape is Lo3.
  • the liquid film forming apparatus 50 can suppress the sprayed liquid from being scattered around without contacting the outer peripheral surface 100s of the base material 100A. For example, when the liquid film forming apparatus 50 sprays liquid toward the outer peripheral surface 100s of the base material 100A, the inner cover portion 53 and the outer cover portion 54 can not contact the outer peripheral surface 100s of the base material 100A. It is configured to be.
  • the outer cover is adjusted by adjusting the flow rate of the gas sucked by the gas suction device 56 and the distance between the inner cover portion 53 and the outer cover portion 54 and the base material 100A. It is possible to control the airflow (the black arrow in FIG. 1) flowing from the outside to the inside of the portion 54.
  • the velocity (flow velocity) of the airflow flowing from the outside to the inside of the outer cover portion 54 has an appropriate value and the unevenness of the flow velocity depending on the position becomes small, a columnar or cylindrical base material
  • the liquid sprayed toward the outer peripheral surface 100s of 100A can be prevented from scattering to the periphery, and a liquid film can be uniformly formed on the outer peripheral surface 100s of the substrate 100A.
  • the embodiment of the present invention is not limited to the exemplified conditions. It can be appropriately adjusted according to the scale (size) of the system including the substrate, the size of the substrate forming the liquid film, the characteristics of the liquid to be sprayed, the thickness of the liquid film to be formed, and the like.
  • the liquid film forming apparatus 50 sprays liquid toward the outer peripheral surface 100s of the base material 100A, the distance between the inner cover portion 53 and the outer peripheral surface 100s of the base material 100A or the outer cover portion 54 and the base material 100A. It may be configured such that at least one of the distances to the outer peripheral surface 100s can be changed.
  • the outer cover portion 54 is provided at a cylindrical portion 54a extending substantially parallel to the inner cover portion 53 and an end of the cylindrical portion 54a on the base material 100A side. 54s, which can slide along 54a.
  • the distance between the slide portion 54s and the outer peripheral surface 100s of the base material 100A can be changed, whereby the outer cover surface 54 and the outer peripheral surface of the base material 100A can be changed.
  • the distance from 100s can be changed.
  • the inner cover portion 53 and the outer cover portion 54 may be supported by a support base 66.
  • the nozzle 57 is also supported by the support base 66.
  • the support base 66 may have wheels (casters) 68.
  • the inner cover portion 53 and the outer cover portion 54 are installed on the support base 66, the distance between them and the base material 100A can be easily adjusted. If the support 66 has wheels 68, the adjustment is easier. Further, since the inner cover portion 53 and the outer cover portion 54 are supported by the support base 66, the inner cover portion 53 and the outer cover portion 54 can be easily moved, and the liquid film forming apparatus 50 is installed. The advantage that the space for doing so can be reduced is also obtained.
  • illustration of the liquid supply device 52 and the gas suction device 56 is omitted.
  • the flow rate of the gas sucked by the gas suction device 56 is configured to be not less than 9 times and not more than 15 times the flow rate of the gas containing the liquid sprayed from the outlet 51. And the liquid sprayed toward the outer peripheral surface 100s of the columnar or cylindrical base material 100A is prevented from scattering to the periphery, and a liquid film is uniformly formed on the outer peripheral surface 100s of the base material 100A. it can.
  • the flow rate of the gas sucked by the gas suction device 56 is less than 9 times the flow rate of the gas including the liquid sprayed from the outlet 51, the sprayed liquid adhered to the outside of the outer cover portion 54. If the flow rate of the gas sucked by the gas suction device 56 is more than 15 times the flow rate of the gas containing the liquid sprayed from the outlet 51, the liquid film formed on the outer peripheral surface 100s of the base material 100A is uneven. It was.
  • FIG. 4 is a schematic diagram for explaining an example of the configuration of the liquid film forming apparatus 50.
  • the suction port 55 is provided with eight suction ports 58 on both sides of the blowout port 51.
  • the sizes of the inner cover portion 53 and the outer cover portion 54, the distances dv1, dv2, and the shortest distances dm1, dm2 between the inner cover portion 53 and the outer cover portion 54 and the base material are as follows.
  • the inner cover portion 53 is disposed at the center of the outer cover portion 54 in the first direction, and is disposed at the center of the outer cover portion 54 in the second direction.
  • the suction port 55 is formed so as to surround the inner cover portion 53.
  • FIG. 4 also shows the width dL2 of the portion extending in the first direction of the suction port 55 and the width dL1 of the portion extending in the second direction.
  • the base material 100A used has an axial length of 1600 mm and a bottom surface diameter of 300 mm.
  • the shortest distance wd between the tip of the nozzle 57 and the outer peripheral surface 100s of the substrate 100A was 110.45 mm.
  • the flow rate of the gas containing the liquid sprayed from the outlet 51 was set to 2 m 3 / min.
  • the flow rate of the gas sucked by the gas suction device 56 was changed by a valve provided between the suction port 58 and the gas suction device 56.
  • the flow rate of the gas sucked by the gas suction device 56 is 17.3 m 3 / min, the sprayed liquid adheres to the outside of the outer cover portion 54, and the flow rate of the gas sucked by the gas suction device 56 is 30.
  • 9 m 3 / min the liquid film formed on the outer peripheral surface 100 s of the base material 100 A was uneven.
  • the flow rate of the gas sucked by the gas suction device 56 is 24.3 m 3 / min, the sprayed liquid is prevented from scattering to the periphery, and a liquid film is uniformly formed on the outer peripheral surface 100s of the base material 100A.
  • a liquid film is uniformly formed on the outer peripheral surface 100s of the base material 100A.
  • the cross-sectional area of the suction port 55 was Lo1 ⁇ dL2 ⁇ 2. Since the width dL1 of the portion extending in the second direction of the suction port 55 is smaller than the width dL2 of the portion extending in the first direction, the cross-sectional area is approximated in this way.
  • the flow velocity of the airflow passing through the suction port 55 is an average value of values measured at 24 points indicated by white arrows in FIG.
  • a product manufactured by KANOMAX product name: Anemomaster-anemometer 6006-00
  • the suction flow rate in each case is estimated to be 17.3 m 3. /min,24.3m was 3 /min,30.9m 3 / min and 42m 3 / min.
  • the suction flow rate of the gas suction device 56 was estimated by a different method.
  • the suction flow rate of the gas suction device 56 was estimated from the performance of the gas suction device 56 and the pressure loss of the piping provided between the suction port 58 and the gas suction device 56.
  • the shortest distance dm1 between the inner cover portion 53 and the outer peripheral surface 100s of the base material 100A and the outer cover portion 54 and the base material 100A is preferably small.
  • the unevenness of the flow velocity depending on the position is large.
  • the liquid film forming apparatus 50 sprays liquid toward the outer peripheral surface 100s of the base material 100A, for example, the shortest distance dm1 between the inner cover portion 53 and the outer peripheral surface 100s of the base material 100A and the outer side
  • the shortest distances dm2 between the cover portion 54 and the outer peripheral surface 100s of the base material 100A are preferably configured to be 30 mm or less, and are configured to be 25 mm or less. More preferably.
  • the inventor measured the flow velocity of the airflow flowing from the outside to the inside of the outer cover portion 54 at a plurality of positions in an experimental system different from that shown in FIG. For example, as shown by the white arrow in FIG. 4, the measurement position was changed along the side extending in the first direction (x-axis direction in the drawing) of the outer cover portion 54, and the change in the flow velocity of the airflow was examined. .
  • the measurement position was changed along the side extending in the first direction (x-axis direction in the drawing) of the outer cover portion 54, and the change in the flow velocity of the airflow was examined.
  • only one suction port 58 is provided, and the distance from the suction port 58 differs depending on the measurement position.
  • the flow rate depends on the distance from the suction port 58 (for example, inversely proportional to the distance from the suction port 58), and the closer to the distance from the suction port 58, the larger the flow rate.
  • the shortest distance dm1 between the inner cover portion 53 and the outer peripheral surface 100s of the base material 100A and the shortest distance dm2 between the outer cover portion 54 and the outer peripheral surface 100s of the base material 100A are 10 mm.
  • the change in flow rate was small even when the distance changed. That is, the velocity of the airflow flowing from the outside to the inside of the outer cover portion 54 can be made almost constant.
  • the preferable range of the shortest distances dm1 and dm2 varies depending on, for example, the scale (size) of the system including the substrate.
  • the liquid film forming apparatus 50 is also suitably used for a roll-to-roll system. Since the liquid film forming apparatus 50 can suppress the diffusion of the sprayed liquid to the surroundings without contacting the base material 100A, it is preferably used when spraying the liquid onto the rotating base material 100A. It is done. In the roll-to-roll method, the process of spraying the upper layer resin is included in a series of flows including other processes (for example, a process of applying a lower layer resin to the surface of the base film, a process of irradiating ultraviolet rays, etc.). Therefore, the liquid film forming apparatus 50 is preferably used. In the roll-to-roll method, for example, it is difficult to seal the surface of the moth-eye mold separately from other support rollers and other equipment.
  • Patent Document 6 discloses a substrate processing apparatus used for cleaning a flat substrate.
  • the substrate processing apparatus of Patent Document 6 is arranged on both sides of a jet nozzle for jetting a processing liquid (for example, a cleaning liquid) toward the substrate, and sucks the processing liquid used for cleaning the substrate together with the surrounding gas. And two suction nozzles.
  • the substrate processing apparatus of Patent Document 6 cleans the substrate by removing foreign substances adhering to the surface of the substrate by causing the cleaning liquid to collide with the surface of the substrate. Since the substrate processing apparatus of Patent Document 6 has the suction nozzle, it is possible to prevent the processing liquid used for cleaning the substrate from adhering to the substrate again and contaminating the substrate.
  • the speed of the cleaning liquid ejected from the ejection nozzle toward the surface of the substrate is high.
  • the ejection nozzle is a two-fluid nozzle rather than a one-fluid nozzle. Is preferred.
  • the liquid film forming apparatus 50 is intended to form a liquid film on the outer peripheral surface of a columnar or cylindrical base material. Therefore, in the liquid film forming apparatus 50, the speed and direction of the sprayed liquid are preferably adjusted from the viewpoint that the liquid film is uniformly applied to the outer peripheral surface of the columnar or cylindrical base material.
  • the nozzle 57 that sprays the liquid that the liquid film forming apparatus 50 has for example, an ultrasonic nozzle, a two-fluid nozzle, a swirl nozzle, an electrostatic nozzle, or the like can be used.
  • the ultrasonic nozzle is a spray nozzle that sprays a liquid by atomizing the liquid by ultrasonic vibration.
  • the two-fluid nozzle is a spray nozzle that mixes and ejects compressed air and liquid divided into two systems.
  • the average diameter of the mist sprayed can be made smaller than when using a two-fluid nozzle.
  • the average diameter of the mist sprayed by the ultrasonic nozzle is about several ⁇ m to several tens of ⁇ m.
  • the ultrasonic nozzle is excellent from the viewpoint of coating efficiency.
  • the application efficiency of the sprayed liquid is 60% or more for the two-fluid nozzle, and 95% or more for the ultrasonic nozzle.
  • a swirl nozzle can also be used.
  • the swirl nozzle By using the swirl nozzle, a spiral air flow can be generated, and thus the liquid droplets can be applied to the outer peripheral surface of the substrate while swirling. At this time, since the impact when the droplets reach the outer peripheral surface of the substrate can be reduced, the droplets that splash on the outer peripheral surface of the substrate can be reduced.
  • the liquid film may be formed using an electrostatic nozzle.
  • the electrostatic nozzle is a spray nozzle that sprays charged droplets. For example, by applying a voltage between the surface of the substrate and the nozzle, the droplets can be charged and the droplets can be efficiently attached to the surface of the substrate.
  • the application efficiency of the liquid sprayed using the electrostatic nozzle is, for example, 98%.
  • an ultrasonic nozzle it is preferable to use an ultrasonic nozzle, and it is particularly preferable to use an ultrasonic nozzle that can generate a spiral airflow. Detailed examination results will be described later.
  • liquid to be sprayed As the liquid to be sprayed, three different liquids (water, liquid A and liquid B) were used, and it was determined whether the mist (atomized) state was stable.
  • the liquid flow rate was 3 ml / min, and the power was 1 to 3 W.
  • Table 1 shows the characteristics of each liquid together with the determination results.
  • the viscosity, static surface tension, and dynamic surface tension of each liquid were measured at 23 ° C.
  • Viscosity was measured using a TV25 viscometer (product name: TVE-25L) manufactured by Toki Sangyo Co., Ltd.
  • Static surface tension was measured using the penetration rate method.
  • l indicates the penetration depth of water
  • t indicates time
  • r indicates the capillary radius of the filled object
  • indicates the surface tension
  • indicates the viscosity of water
  • Indicates a contact angle. The smaller the surface tension, the greater the contact angle, indicating higher water repellency.
  • Dynamic surface tension was determined by the maximum bubble pressure method. Using an automatic dynamic surface tension meter (BP-D5, manufactured by Kyowa Interface Science Co., Ltd.), the maximum pressure when bubbles are continuously generated from a probe (capillary tube) inserted in each liquid (coating liquid) ( Maximum bubble pressure) was measured to determine the surface tension. Specifically, the value of the surface tension when the lifetime (the time from when a new interface is generated in the probe tip to the time when the maximum bubble pressure is reached; sometimes referred to as “surface life”) is 100 ms. It was measured.
  • BP-D5 automatic dynamic surface tension meter
  • the atomization state was stable with water and liquid A, but was not stable with liquid B.
  • a liquid and B liquid have the static surface tension of about the same value, there was a difference in stability when misted. It can be seen that the static surface tension of the liquid does not contribute to the stability when misted.
  • the liquid to be sprayed preferably has a dynamic surface tension of 31 mN / m or more when the surface lifetime at 23 ° C. by the maximum bubble pressure method is 100 ms. It was.
  • the liquid to be sprayed preferably has a viscosity at 23 ° C. of 20 cP or less, for example.
  • FIG. 5 is a schematic perspective view for explaining the positional relationship between the base material 100A and the liquid film forming apparatus 50 when the liquid is sprayed toward the outer peripheral surface 100s of the base material 100A.
  • FIG. 4 is a schematic side view of the liquid film forming apparatus 50 viewed from a direction parallel to the axial direction of the base material 100A.
  • illustration of the inner cover portion 53 and the outer cover portion 54 is omitted for ease of viewing.
  • the liquid film forming apparatus 50 is configured so that the base material 100A is placed so that the axial direction of the base material 100A is substantially parallel to the horizontal direction and around the axis of the base material 100A. It further has a rotation support structure 59 that supports the rotation.
  • the plurality of nozzles 57 are arranged substantially parallel to the axial direction of the substrate 100A.
  • the plurality of nozzles 57 are preferably arranged such that the heights of the adjacent nozzles 57 are different from each other. That is, it is preferable that the plurality of nozzles 57 are arranged in a different manner. Further, it is more preferable that the plurality of nozzles 57 are arranged so that the angles of the ejection holes of the adjacent nozzles 57 with respect to the horizontal direction are different from each other. In the example shown in FIGS.
  • the plurality of nozzles 57 includes a first nozzle 57 a and a second nozzle 57 b having different heights.
  • the second nozzle 57b is disposed vertically above the first nozzle 57a.
  • FIG. 6 illustrates a difference ⁇ v in the vertical direction and a difference ⁇ h in the horizontal direction between the position of the first nozzle 57a and the position of the second nozzle 57b. Further, the first nozzle 57a and the second nozzle 57b have different angles with respect to the horizontal direction of the ejection holes.
  • the angle ⁇ b with respect to the horizontal direction of the ejection hole of the second nozzle 57b is larger than the angle ⁇ a with respect to the horizontal direction of the ejection hole of the first nozzle 57a.
  • the first nozzle 57a and the second nozzle 57b are alternately arranged.
  • FIG. 7 is a diagram showing streaky irregularities extending in the circumferential direction generated in the liquid film formed on the outer peripheral surface 100s of the base material 100A. According to the study of the present inventor, this uneven stripe varies depending on the position and number of the nozzles 57 and is formed, for example, corresponding to the interval between the adjacent nozzles 57.
  • streaky irregularities tend to occur more easily when the rotation speed of the base material 100A is faster.
  • the adjacent nozzles 57 are arranged so that their heights are different from each other, the liquid sprayed from the plurality of nozzles 57 is uniformly applied to the outer peripheral surface 100s of the base material 100A, and the formation of streaky irregularities is suppressed. .
  • the present inventor examined the arrangement of the plurality of nozzles 57 and the rotation speed of the base material 100A as shown in Table 2. Here, the experiment was carried out without sucking the gas.
  • the liquid supply device 52 that supplies the liquid to the outlet 51 includes, for example, a container that stores the liquid and a liquid feed pump that is disposed between the container and the outlet 51.
  • the liquid feed pump is provided in, for example, a tube that connects the container and the outlet 51 to the container. From the viewpoint of uniformly forming a liquid film on the outer peripheral surface 100s of the base material 100A, it is preferable that the time dependency of the flow rate of the liquid supplied from the liquid feed pump is small. For example, it is preferable to use a liquid feed pump that has no pulsation or small pulsation. A pump without a valve structure may be used.
  • the present inventor installed a liquid flow rate sensor (manufactured by Sensirion Co., Ltd., product name: SLI-2000) between the container for storing the liquid and the liquid feed pump, and the flow time of the liquid supplied from the liquid feed pump Dependency was measured.
  • a liquid was supplied using a syringe pump (product name: MCIP-BOi, manufactured by Minato Concept Co., Ltd.) as a liquid feed pump (flow rate: 5 ml / min)
  • pulsations with a cycle of about 4 seconds were generated.
  • a liquid was supplied using a tube pump (product name: MCRP204 type, manufactured by Minato Concept Co., Ltd.) as a liquid feed pump (flow rate: 5 ml / min)
  • flow rate 5 ml / min
  • FIG. 8 is a schematic diagram for explaining an example of the configuration of the liquid film forming apparatus 50.
  • the gas suction device 56 that sucks gas through the suction port 55 is, for example, a suction fan 56.
  • the liquid film forming apparatus 50 includes, for example, a separator (not shown) that removes liquid (including mist) from the gas sucked from the suction port 55, and liquid separated from the gas by the separator.
  • a drain tank 72 is further included.
  • the suction fan 56 discharges the gas from which the liquid has been removed by the separator, for example, to the outside through the filter 73.
  • a pipe 71a is connected to each of the plurality of suction ports 58, and the pipe 71a is connected to the pipe 71b.
  • the inner diameter of the pipe 71b may be larger than the inner diameter of the pipe 71a.
  • a plurality of pipes 71a may be connected to one pipe 71b.
  • the gas sucked from the plurality of suction ports 58 is sent to the separator and drain tank 72 through the pipes 71 a and 71 b and sent to the suction fan 56.
  • the pipe 71a and / or the pipe 71b may be provided with a valve (not shown) for adjusting the flow rate of the gas sucked by the gas suction device 56.
  • the liquid film forming apparatus 50 may further include a liquid receiving portion 61 (see FIG. 9) provided in the outlet 51 in contact with the inner cover portion 53.
  • a liquid receiving portion 61 (see FIG. 9) provided in the outlet 51 in contact with the inner cover portion 53.
  • the mist attached to the inner cover portion 53 may flow along the inner cover portion 53.
  • the outlet 51 penetrates in the third direction (z-axis direction in the figure)
  • the mist attached to the inner cover portion 53 flows along the inner cover portion 53 and falls as a droplet. was there.
  • the liquid film forming apparatus 50 further includes the liquid receiving portion 61, it is possible to prevent such droplets from falling.
  • a tube or a tube (not shown) is connected to the liquid receiving unit 61, and the liquid droplets stored in the liquid receiving unit 61 are collected via the tube or the tube.
  • the liquid film forming apparatus 50 may further include a liquid receiving portion 64 (see FIG. 9) that covers a part of the outlet 51 on the base material 100A side.
  • the liquid receiving part 64 is made of, for example, a metal material. According to the study of the present inventor, when the synthetic polymer film is manufactured by the roll-to-roll method as shown in FIG. 9, if the liquid is continuously sprayed for several hours, the base material of the outer cover portion 54 is obtained. Mist may adhere to the portion on the 100A side, and droplets adhering to the outer cover portion 54 may adhere to the support roller 48.
  • the base film 42 when the base film 42 is peeled from the moth-eye mold 100A by the support roller 48, static electricity is generated on the surface of the base film 42, so that the droplets attached to the outer cover portion 54 are transferred to the support roller. 48. Since the liquid film forming apparatus 50 includes the liquid receiving portion 64, such scattering of droplets is suppressed.
  • the liquid film forming apparatus or the liquid film forming method according to the embodiment of the present invention can also be used in a method for producing a synthetic polymer film.
  • the liquid film forming apparatus or the liquid film forming method according to the embodiment of the present invention can be suitably used for a method for producing a synthetic polymer film having excellent antifouling properties.
  • FIG. 9 the manufacturing method of the synthetic polymer film by embodiment of this invention is demonstrated.
  • FIG. 9 is a schematic cross-sectional view for explaining a method of manufacturing the synthetic polymer film 36 by a roll-to-roll method.
  • FIG. 9 is a cross-sectional view of the moth-eye mold 100A viewed from the axial direction. Descriptions of matters common to the method of manufacturing the synthetic polymer film 36 described with reference to FIGS. 11 to 13 may be omitted.
  • components having substantially the same function are denoted by common reference numerals, and description thereof is omitted.
  • a method for producing a synthetic polymer film according to an embodiment of the present invention includes an inverted moth-eye structure having a plurality of recesses having a two-dimensional size of 20 nm or more and less than 500 nm when viewed from the normal direction of the surface. This is a method for producing a synthetic polymer film using a columnar or cylindrical mold having a porous alumina layer on the surface.
  • a method for producing a synthetic polymer film according to an embodiment of the present invention includes a step (A) of preparing a mold and a workpiece, and a step of applying a first resin containing an ultraviolet curable resin to the surface of the workpiece.
  • the method for producing a synthetic polymer film according to the embodiment of the present invention it is possible to produce a synthetic polymer film excellent in antifouling property by a roll-to-roll method while suppressing a decrease in production yield.
  • a straight line connecting the tip of the ejection hole of the nozzle 57 and the center 100o of the moth-eye mold 100A, and a straight line connecting the center 100o of the moth-eye mold 100A and the center 48o of the support roller 48 The angle formed is ⁇ n.
  • the center 46o of the support roller 46 may be, for example, on a straight line connecting the center 100o of the moth-eye mold 100A and the center 48o of the support roller 48.
  • the liquid film forming apparatus or the liquid film forming method according to the embodiment of the present invention can be used without being limited to the synthetic polymer film manufacturing method described above.
  • the liquid to be sprayed may be various known materials applied to the surface of the mold, such as a surface treatment agent and a release agent.
  • a release agent for example, a release agent containing a fluorine-containing monomer having a photoreactive group
  • a resin containing a mold agent is applied to the surface of the mold.
  • the liquid film forming apparatus or the liquid film forming method according to the embodiment of the present invention can be used.
  • the entire disclosure of WO2018 / 012340 is incorporated herein for reference.
  • FIGS. 10A to 10E are schematic cross-sectional views for explaining a method for manufacturing the moth-eye mold 100A.
  • a cylindrical aluminum substrate 12, an inorganic material layer 16 formed on the surface of the aluminum substrate 12, and an inorganic material layer 16 are deposited as a mold substrate.
  • the mold base 10 having the aluminum film 18 thus prepared is prepared.
  • a relatively rigid aluminum substrate having an aluminum purity of 99.50 mass% or more and less than 99.99 mass% is used.
  • impurities contained in the aluminum substrate 12 iron (Fe), silicon (Si), copper (Cu), manganese (Mn), zinc (Zn), nickel (Ni), titanium (Ti), lead (Pb) It is preferable that at least one element selected from the group consisting of tin (Sn) and magnesium (Mg) is included, and Mg is particularly preferable.
  • the mechanism by which pits (dents) are formed in the etching process is a local cell reaction, and therefore ideally contains no noble elements than aluminum and is a base metal, Mg (standard electrode potential ⁇ It is preferable to use an aluminum substrate 12 containing 2.36V) as an impurity element. If the content of an element nobler than aluminum is 10 ppm or less, it can be said that the said element is not included substantially from an electrochemical viewpoint.
  • the Mg content is preferably 0.1% by mass or more, and more preferably in the range of about 3.0% by mass or less. If the Mg content is less than 0.1 mass%, sufficient rigidity cannot be obtained. On the other hand, when the content rate increases, Mg segregation easily occurs.
  • Mg forms an anodic oxide film having a form different from that of aluminum, which causes defects.
  • the content rate of an impurity element according to the rigidity required according to the shape of the aluminum base material 12, thickness, and a magnitude
  • an appropriate Mg content is about 3.0 mass%, and the aluminum substrate 12 having a three-dimensional structure such as a cylinder is produced by extrusion.
  • the content rate of Mg is 2.0 mass% or less. If the Mg content exceeds 2.0 mass%, extrusion processability generally decreases.
  • a cylindrical aluminum tube formed of JIS A1050, Al—Mg alloy (for example, JIS A5052), or Al—Mg—Si alloy (for example, JIS A6063) is used as the aluminum substrate 12.
  • the surface of the aluminum substrate 12 is preferably subjected to cutting by cutting. If, for example, abrasive grains remain on the surface of the aluminum base 12, electrical conduction between the aluminum film 18 and the aluminum base 12 is facilitated in a portion where the abrasive grains exist. In addition to the abrasive grains, where there are irregularities, local conduction between the aluminum film 18 and the aluminum substrate 12 is likely to occur. When local conduction is made between the aluminum film 18 and the aluminum base 12, there is a possibility that a battery reaction occurs locally between the impurities in the aluminum base 12 and the aluminum film 18.
  • the inorganic material layer 16 for example, tantalum oxide (Ta 2 O 5 ) or silicon dioxide (SiO 2 ) can be used.
  • the inorganic material layer 16 can be formed by sputtering, for example.
  • the thickness of the tantalum oxide layer is, for example, 200 nm.
  • the thickness of the inorganic material layer 16 is preferably 100 nm or more and less than 500 nm. If the thickness of the inorganic material layer 16 is less than 100 nm, defects (mainly voids, that is, gaps between crystal grains) may occur in the aluminum film 18 in some cases. Further, when the thickness of the inorganic material layer 16 is 500 nm or more, the aluminum base 12 and the aluminum film 18 are easily insulated from each other depending on the surface state of the aluminum base 12. In order to anodize the aluminum film 18 by supplying current to the aluminum film 18 from the aluminum substrate 12 side, it is necessary that a current flow between the aluminum substrate 12 and the aluminum film 18.
  • the aluminum film 18 can be uniformly anodized over the entire surface without causing a problem that it is difficult to be supplied.
  • the thick inorganic material layer 16 it is generally necessary to lengthen the film formation time.
  • the film formation time is lengthened, the surface temperature of the aluminum base 12 is unnecessarily increased. As a result, the film quality of the aluminum film 18 is deteriorated, and defects (mainly voids) may occur. If the thickness of the inorganic material layer 16 is less than 500 nm, the occurrence of such a problem can be suppressed.
  • the aluminum film 18 may be a film formed of aluminum having a purity of 99.99 mass% or more (hereinafter referred to as “high-purity aluminum film”). ]).
  • the aluminum film 18 is formed using, for example, a vacuum deposition method or a sputtering method.
  • the thickness of the aluminum film 18 is preferably in the range of about 500 nm or more and about 1500 nm or less, for example, about 1 ⁇ m.
  • an aluminum alloy film described in International Publication No. 2013/183576 may be used instead of the high-purity aluminum film.
  • the aluminum alloy film described in International Publication No. 2013/183576 includes aluminum, a metal element other than aluminum, and nitrogen.
  • the “aluminum film” includes not only a high-purity aluminum film but also an aluminum alloy film described in International Publication No. 2013/183576.
  • the average grain size of the crystal grains constituting the aluminum alloy film as viewed from the normal direction of the aluminum alloy film is, for example, 100 nm or less, and the maximum surface roughness Rmax of the aluminum alloy film is 60 nm or less.
  • the content rate of nitrogen contained in the aluminum alloy film is, for example, not less than 0.5 mass% and not more than 5.7 mass%.
  • the absolute value of the difference between the standard electrode potential of a metal element other than aluminum contained in the aluminum alloy film and the standard electrode potential of aluminum is 0.64 V or less, and the content of the metal element in the aluminum alloy film is 1.0 mass. % Or more and 1.9 mass% or less is preferable.
  • the metal element is, for example, Ti or Nd.
  • the metal element is not limited to this, and other metal elements whose absolute value of the difference between the standard electrode potential of the metal element and the standard electrode potential of aluminum is 0.64 V or less (for example, Mn, Mg, Zr, V, and Pb).
  • the metal element may be Mo, Nb, or Hf.
  • the aluminum alloy film may contain two or more of these metal elements.
  • the aluminum alloy film is formed by, for example, a DC magnetron sputtering method.
  • the thickness of the aluminum alloy film is also preferably in the range of about 500 nm to about 1500 nm, for example, about 1 ⁇ m.
  • the surface 18s of the aluminum film 18 is anodized to form a porous alumina layer 14 having a plurality of recesses (pores) 14p.
  • the porous alumina layer 14 has a porous layer having a recess 14p and a barrier layer (the bottom of the recess (pore) 14p). It is known that the interval between the adjacent recesses 14p (center-to-center distance) corresponds to approximately twice the thickness of the barrier layer and is approximately proportional to the voltage during anodization. This relationship also holds for the final porous alumina layer 14 shown in FIG.
  • the porous alumina layer 14 is formed, for example, by anodizing the surface 18s in an acidic electrolytic solution.
  • the electrolytic solution used in the step of forming the porous alumina layer 14 is, for example, an aqueous solution containing an acid selected from the group consisting of oxalic acid, tartaric acid, phosphoric acid, sulfuric acid, chromic acid, citric acid, and malic acid.
  • the porous alumina layer 14 is formed by anodizing the surface 18 s of the aluminum film 18 using an oxalic acid aqueous solution (concentration 0.3 mass%, liquid temperature 10 ° C.) at an applied voltage of 80 V for 55 seconds.
  • the opening of the recess 14p is enlarged by etching the porous alumina layer 14 by a predetermined amount by contacting the alumina layer 14 with an alumina etchant.
  • the amount of etching (that is, the size and depth of the recess 14p) can be controlled by adjusting the type / concentration of the etching solution and the etching time.
  • an etchant for example, 10 mass% phosphoric acid, an organic acid such as formic acid, acetic acid, or citric acid, an aqueous solution of sulfuric acid, or a mixed aqueous solution of chromic phosphoric acid can be used.
  • etching is performed for 20 minutes using a phosphoric acid aqueous solution (10 mass%, 30 ° C.).
  • the aluminum film 18 is partially anodized again to grow the recess 14p in the depth direction and to thicken the porous alumina layer 14.
  • the side surface of the recess 14p is stepped.
  • the porous alumina layer 14 is further etched by bringing it into contact with an alumina etchant to further enlarge the hole diameter of the recess 14p.
  • an alumina etchant it is preferable to use the above-described etchant, and in practice, the same etch bath may be used.
  • anodizing step and etching step are alternately repeated a plurality of times (for example, five times: five times of anodization and four times of etching), thereby being inverted as shown in FIG.
  • a moth-eye mold 100A having a porous alumina layer 14 having a moth-eye structure is obtained.
  • the bottom of the recess 14p can be pointed. That is, a mold capable of forming a convex part with a sharp tip is obtained.
  • the porous alumina layer 14 (thickness t p ) shown in FIG. 10 (e) has a porous layer (thickness corresponds to the depth D d of the recess 14p) and a barrier layer (thickness t b ). Since the porous alumina layer 14 has a structure obtained by inverting the moth-eye structure of the synthetic polymer film 36, the same symbol may be used for the corresponding parameter characterizing the size.
  • the concave portion 14p of the porous alumina layer 14 is, for example, conical and may have stepped side surfaces.
  • Two-dimensional size of the recess 14p is D p (area equivalent circle diameter of the recess when viewed from the direction normal to the surface) is less than 20nm ultra 500 nm, the depth D d in the order of less than 50nm over 1000 nm (1 [mu] m) Preferably there is.
  • the bottom part of the recessed part 14p is pointed (the bottom is a point).
  • the adjacent circles overlap with each other, and a flange portion is formed between the adjacent recesses 14p. It is formed.
  • two-dimensional size D p of the concave portion 14p is equal to the distance between adjacent D int.
  • the thickness t p of the porous alumina layer 14 is, for example, about 1 ⁇ m or less.
  • an aluminum remaining layer 18r that has not been anodized in the aluminum film 18 is present under the porous alumina layer 14 shown in FIG. 10 (e). If necessary, the aluminum film 18 may be anodized substantially completely so that the remaining aluminum layer 18r does not exist. For example, when the inorganic material layer 16 is thin, current can be easily supplied from the aluminum substrate 12 side.
  • Anti-reflective coatings used in high-definition display panels are required to have high uniformity. Therefore, as described above, the selection of the aluminum base material, mirror finishing of the aluminum base, and control of the purity and composition of the aluminum film It is preferable to carry out.
  • the above-described mold production method can be simplified. For example, the surface of the aluminum substrate may be directly anodized. At this time, even if pits are formed due to the influence of impurities contained in the aluminum base material, only a local structural disorder occurs in the moth-eye structure of the synthetic polymer film 36 finally obtained. It is considered that there is almost no influence on the bactericidal action of the membrane 36.
  • a mold for forming a moth-eye structure having regularly arranged convex portions can be manufactured as follows, for example.
  • the produced porous alumina layer is removed by etching, and then anodization is performed under conditions for producing the porous alumina layer described above.
  • the porous alumina layer having a thickness of 10 ⁇ m is formed by increasing the anodic oxidation time.
  • the porous alumina layer is regularly arranged without being affected by irregularities or processing strain caused by grains present on the surface of the aluminum film or the aluminum substrate.
  • a porous alumina layer having a concave portion can be formed.
  • liquid mixture of chromic acid and phosphoric acid for the removal of a porous alumina layer.
  • galvanic corrosion may occur, but a mixed solution of chromic acid and phosphoric acid has an effect of suppressing galvanic corrosion.
  • the synthetic polymer film 36 was produced by changing the type of the ultrasonic nozzle 57, and the produced synthetic polymer film 36 was evaluated.
  • the synthetic polymer film 36 was produced by the method described with reference to FIG. That is, it was produced without using the liquid film forming apparatus and the liquid film forming method according to the embodiment of the present invention.
  • the pressure of the gas to be ejected in Table 3 is the pressure of the gas to be ejected together with the liquid to be sprayed.
  • 1 psi 6894.76 Pa.
  • “Power” in Table 3 is the power supplied to the ultrasonic nozzle.
  • “Distance to substrate” in Table 3 is the shortest distance between the tip of the ultrasonic nozzle and the moth-eye mold 100A.
  • “Temperature” in Table 3 is the temperature of the sprayed space, and “RT” represents room temperature.
  • the flow rate of liquid in Table 3 is the flow rate of the sprayed liquid.
  • “Scanning speed” in Table 3 is the moving speed of the ultrasonic nozzle during liquid spraying.
  • “Number of times of application” in Table 3 is the number of times of application of the upper layer resin 36b ′.
  • Table 3 shows the thickness of the lower layer resin 36a ′ when applied on the base film 42 as “thickness of the lower layer resin”, and shows the thickness of the upper layer resin 36b ′ when applied to the surface of the moth-eye mold 100A. The thickness is shown as “the thickness of the upper layer resin”. Furthermore, the evaluation result of the produced synthetic polymer film 36 is also shown. A specific evaluation method will be described later.
  • the synthetic polymer film 36 was obtained by changing the flow rate of the liquid to be sprayed (here, the upper layer resin) to give the upper layer resin 36b 'having different thicknesses. Under conditions 5 to 7, the synthetic polymer film 36 was obtained by applying the upper layer resin 36b 'having different thicknesses by changing the number of times of application of the liquid to be sprayed (upper layer resin) and the upper layer resin.
  • the synthetic polymer film 36 (the thickness of the upper layer resin 36b ′ when applied to the surface of the moth-eye mold 100A: 1.3 ⁇ m) produced under the condition 1 using Vortex as the ultrasonic nozzle is It has water repellency and is excellent in oil repellency, scratch resistance, slipperiness, and ease of wiping off oils and fats.
  • the synthetic polymer film 36 produced under Condition 2 using AccuMist as an ultrasonic nozzle has the upper layer resin 36b ′ having the same thickness (1.2 ⁇ m) as the synthetic polymer film 36 produced under Condition 1. Nevertheless, it was inferior in water repellency, oil repellency, scratch resistance, slipperiness, and ease of wiping oils and fats. Therefore, as conditions 3 and 4, the synthetic polymer film 36 was produced by evaluating the thickness of the upper resin 36b 'to be applied and evaluated. The evaluation results improved as the thickness of the upper layer resin 36b 'increased.
  • the synthetic polymer film 36 produced under condition 4 (the thickness of the upper resin 36b ′ when applied to the surface of the moth-eye mold 100A: 4.5 ⁇ m) is the same as that of the synthetic polymer film 36 produced under condition 1. It was excellent in water repellency, oil repellency, scratch resistance, slipperiness, and ease of wiping off oils and fats.
  • the synthetic polymer produced under condition 1 can be obtained by increasing the thickness of the upper layer resin 36b ′ to be applied to 5.4 ⁇ m (condition 7).
  • a synthetic polymer film 36 having excellent water repellency, oil repellency, scratch resistance, slipperiness, and easy wiping of fats and oils was obtained to the same extent as the film 36.
  • the static contact angle of water and hexadecane (sometimes simply referred to as “contact angle”) was measured.
  • represents the contact angle
  • r represents the radius of the droplet
  • h represents the height of the droplet.
  • the “contact angle” in Table 3 shows an average value of the contact angles at three locations.
  • the central portion of the sample is selected as the first measurement point, and the second and third measurement points are 20 mm or more away from the first measurement point and the first measurement point. Measurement was performed by selecting two points that are symmetrical with respect to the measurement point.
  • the scratch resistance of the synthetic polymer film 36 was evaluated by examining the steel wool (SW) resistance of the prepared synthetic polymer film 36. Specifically, the surface of the synthetic polymer film 36 was rubbed in a state where a predetermined load was applied to steel wool (product name: # 0000) manufactured by Nippon Steel Wool Co., and the load at the time when the scratch was applied was measured. . The greater the load value (“SW resistance” in Table 3), the better the scratch resistance. As a specific rubbing method, a surface property measuring machine (product name: 14 FW) manufactured by Shinto Kagaku Co., Ltd. was used, and rubbing was performed 10 times at a stroke width of 30 mm and a speed of 100 mm / s. The presence or absence of scratches was judged by visual observation in an environment with an illuminance of 100 lx (fluorescent lamp).
  • SW steel wool
  • the transparency of the synthetic polymer film 36 was evaluated by the presence or absence of white turbidity. Specifically, an image transmitted through the synthetic polymer film 36 was visually observed in an environment with an illuminance of 100 lx (fluorescent lamp) to examine whether the image was clouded. As evaluation indexes, ⁇ : no white turbidity was observed, ⁇ : slight white turbidity was visually recognized, and x: white turbidity was observed were used.
  • the luminous reflectance (Y value) of the synthetic polymer film 36 was measured. Specifically, the light source was irradiated from the orientation of a polar angle of 5 ° with respect to the surface of the sample of each example, and the regular reflectance of the sample of each example with respect to each wavelength of incident light was measured. Table 3 shows the reflectance (Y value) at a wavelength of 550 nm. The reflectance was measured in a wavelength range of 250 nm to 850 nm using a spectrophotometer (product name: V-560) manufactured by JASCO Corporation. The reflectance is measured in a state where a black acrylic plate (product name: Acrylite (registered trademark) EX-502) manufactured by Mitsubishi Rayon Co. is attached to the base film 42 supporting the synthetic polymer film 36. A C light source was used as the light source.
  • a film 30 having a synthetic polymer film 36 was produced by the production methods of Examples 1 to 8 using the conditions shown in Table 4, and the produced sample films were evaluated.
  • the manufacturing method of the synthetic polymer film 36 is the same as the method described with reference to FIGS. 4 and 9 unless otherwise specified.
  • a film 30 was produced in the same manner as in Example 3 described in Patent Document 4 except for the liquid film forming apparatus 50.
  • the angle ⁇ n in FIG. 9 was 65 °.
  • the diameter of the bottom surfaces of the support rollers 46 and 48 was 210 mm.
  • the configurations of the liquid film forming apparatus 50 and the moth-eye mold 100A used are the same as those described with reference to FIG. 4 unless otherwise specified.
  • “Mist scattering” in Table 4 shows the result of evaluating whether or not the upper layer resin adheres to the base film 42 supported and conveyed by the support roller 48.
  • No upper layer resin adhered to the base film 42 on the support roller 48
  • A little upper layer resin adhered to the base film 42 on the support roller 48
  • On the support roller 48 The base film 42 of the upper layer resin was used.
  • “Unevenness” in Table 4 shows the result of evaluating whether there is a change in the color of the sample film. If there is unevenness in the thickness of the applied upper layer resin, it is observed as a change in color (interference color unevenness). Specifically, it was evaluated by the following method. First, the black acrylic board was affixed on the base film 42 of the sample film via the adhesive (Panak make, PDS1). The surface of the sample film on the side of the synthetic polymer film 36 is visually observed from a polar angle of about 60 ° from the normal direction of the surface under an environment with an illuminance of 100 lx (fluorescent lamp), and there is a change in color. Evaluated whether or not. As evaluation indexes, ⁇ : change in color was not visible, ⁇ : slight change in color was visually recognized, and x: change in color was visible were used.
  • Example 1 The flow rate of the liquid (upper layer resin 36b ′) sprayed from the blowout port 51 is 3.0 ml / min, and the flow rate and pressure of the gas containing the liquid sprayed from the blowout port 51 are 2.0 m 3 / min and 0.03 MPa. It was.
  • the flow rate of the gas sucked by the gas suction device 56 was 18 m 3 / min.
  • the flow velocity of the gas flowing from the outside to the inside of the outer cover portion 54 was 2.0 m / s.
  • the flow rate was the average of the values measured at 24 points indicated by white arrows in FIG.
  • a sample film having a length of 10 m was prepared by setting the conveying speed of the base film 42 to 2.0 m / min and the temperature of the moth-eye mold 100A to 30 ° C.
  • the conveyance speed of the base film 42 corresponds to the rotation speed of the moth-eye mold 100A and the support rollers 46 and 48. If the diameter of the bottom surface of the moth-eye mold 100 is 100 d (m), 1 rpm representing the number of rotations per minute corresponds to ( ⁇ ⁇ 100 d) (m / min). Therefore, the rotational speed of the moth-eye mold 100A in the manufacturing method of Example 1 is 2.12 rpm.
  • Example 1 In the production method of Example 1, scattering of mist to the periphery could not be suppressed, and the obtained synthetic polymer film 36 was not excellent in oil and fat wiping property and transparency, resulting in unevenness.
  • Example 2 The manufacturing method of Example 2 differs from the manufacturing method of Example 1 in that the conveyance speed of the base film 42 is high.
  • the conveyance speed of the base film 42 was set to 5.0 m / min. That is, the rotational speed of the moth-eye mold 100A was set to 5.31 rpm.
  • the synthetic polymer film 36 produced by the production method of Example 2 was superior to Example 1 in transparency. However, the ease of wiping off oils and fats was inferior to that of Example 1, and unevenness occurred.
  • Example 3 The manufacturing method of the third embodiment differs from the manufacturing method of the second embodiment in that the flow rate of the liquid sprayed from the outlet 51 is large and the pressure of the gas ejected from the outlet 51 is large.
  • the flow rate of the liquid sprayed from the outlet 51 was 5.0 ml / min, and the pressure of the gas ejected from the outlet 51 was 0.10 MPa.
  • a sample film having a length of 50 m was produced.
  • the synthetic polymer film 36 manufactured by the manufacturing method of Example 3 was superior to Example 2 in the ease of wiping off oil and fat because the upper layer portion 36b was thicker than that of Example 2. However, the amount of mist scattered to the periphery increased more than in Example 2.
  • Example 4 The manufacturing method of the fourth embodiment is different from the manufacturing method of the third embodiment in that the flow rate of the gas sucked by the gas suction device 56 and the value of the flow velocity of the gas flowing from the outside to the inside of the outer cover portion 54 are large. In the manufacturing method of Example 4, it was 31 m 3 / min and 3.6 m / s, respectively.
  • the synthetic polymer film 36 produced by the production method of Example 4 was superior to Example 3 in terms of unevenness.
  • the unevenness of the thickness of the upper layer resin applied to the moth-eye mold 100A was reduced as compared with Example 3.
  • the amount of mist scattered to the periphery was about the same as in Example 3.
  • Example 5 In the manufacturing method of the fifth embodiment, the flow rate of the gas sucked by the gas suction device 56 and the value of the flow velocity of the gas flowing from the outer side to the inner side of the outer cover portion 54 are larger than those of the third embodiment and are larger than those of the fourth embodiment. In a small point, it differs from the manufacturing method of Example 3 and 4. In the manufacturing method of Example 5, they were set to 24 m 3 / min and 2.8 m / s, respectively. Here, a sample film having a length of 100 m was produced.
  • the mist was prevented from being scattered around. Further, the synthetic polymer film 36 manufactured by the manufacturing method of Example 5 was superior to Example 4 in the degree of unevenness. According to the manufacturing method of the fifth embodiment, the liquid sprayed toward the outer peripheral surface 100s of the moth-eye mold 100A is prevented from scattering to the periphery, and a liquid film is uniformly formed on the outer peripheral surface 100s of the base material 100A. I was able to.
  • Example 6 The manufacturing method of Example 6 differs from the manufacturing method of Example 5 in that the flow rate of the sprayed liquid is large.
  • the flow rate of the liquid sprayed from the outlet 51 was 6.0 ml / min.
  • a sample film having a length of 50 m was produced.
  • Example 6 The manufacturing method of Example 6 was inferior to Example 5 from the viewpoint of suppressing the mist from scattering around.
  • the synthetic polymer film 36 manufactured by the manufacturing method of Example 6 was superior to Example 5 in the ease of wiping off oils and fats, but was inferior to Example 5 in transparency.
  • Example 7 The manufacturing method of Example 7 differs from the manufacturing method of Example 5 in that the temperature of the moth-eye mold 100A is high. In the manufacturing method of Example 7, the temperature of the moth-eye mold 100A was set to 50 ° C.
  • the synthetic polymer film 36 produced by the production method of Example 7 was superior to Example 5 in the ease of wiping off fats and oils.
  • the viscosity of the upper layer resin applied to the surface of the moth-eye mold 100A decreases. This is considered to be because the fluorine-containing monomer contained in the upper layer resin is easily moved and the fluorine element content on the surface of the synthetic polymer film 36 is increased.
  • Example 8 The manufacturing method of Example 8 differs from the manufacturing method of Example 7 in that the conveying speed of the base film 42 is high. Here, a sample film having a length of 300 m was prepared.
  • the synthetic polymer membrane 36 produced by the production method of Example 8 and the production method of Example 8 was as excellent as Example 7.
  • a liquid film forming method, a liquid film forming apparatus, and a synthetic polymer film manufacturing method according to an embodiment of the present invention are suitable for the step of forming a liquid film on the outer peripheral surface of a columnar or cylindrical substrate using a spray method. Used for.

Abstract

A device (50) has a blowout port (51) that sprays a liquid, a liquid supply device (52) that supplies the liquid to the blowout port, a cylindrical inside cover part (53) that demarcates the blowout port, an outside cover part (54) that is disposed on the outside of the inside cover part, an intake port (55) that is demarcated by the inside cover part and the outside cover part, and a gas suction device (56) that suctions gas via the intake port. The length of the blowout port in a first direction is greater than the length of the blowout port in a second direction that is orthogonal to the first direction, and when the liquid is sprayed toward an outer peripheral surface (100s) of a base material, the blowout port is directed toward the outer peripheral surface so that the first direction is substantially parallel to the axial direction of the base material. The air suction device is configured so as to suction a greater flow volume of gas than the flow volume of gas including the liquid that is sprayed from the blowout port.

Description

液膜形成装置および液膜形成方法ならびに合成高分子膜の製造方法Liquid film forming apparatus, liquid film forming method, and synthetic polymer film manufacturing method
 本発明は、液膜形成装置および液膜形成方法ならびに合成高分子膜の製造方法に関する。 The present invention relates to a liquid film forming apparatus, a liquid film forming method, and a synthetic polymer film manufacturing method.
 テレビや携帯電話などに用いられる表示装置やカメラレンズなどの光学素子には、通常、表面反射を低減して光の透過量を高めるために反射防止技術が施されている。例えば、空気とガラスとの界面に光が入射する場合のように屈折率が異なる媒体の界面を光が通過する場合、フレネル反射などによって光の透過量が低減し、視認性が低下するからである。 2. Description of the Related Art An optical element such as a display device or a camera lens used for a television or a mobile phone is usually provided with an antireflection technique in order to reduce surface reflection and increase light transmission. For example, when light passes through the interface of a medium with a different refractive index, such as when light enters the interface between air and glass, the amount of transmitted light is reduced due to Fresnel reflection, etc., and visibility is reduced. is there.
 近年、反射防止技術として、凹凸の周期が可視光の波長(λ=380nm~780nm)以下に制御された微細な凹凸パターンを基板表面に形成する方法が注目されている(特許文献1~3を参照)。反射防止機能を発現する凹凸パターンを構成する凸部の2次元的な大きさは10nm以上500nm未満である。 In recent years, attention has been paid to a method of forming a fine uneven pattern on the substrate surface, in which the uneven period is controlled to be less than or equal to the wavelength of visible light (λ = 380 nm to 780 nm) as an antireflection technique (see Patent Documents 1 to 3). reference). The two-dimensional size of the convex portions constituting the concavo-convex pattern exhibiting the antireflection function is 10 nm or more and less than 500 nm.
 この方法は、いわゆるモスアイ(Moth-eye、蛾の目)構造の原理を利用したものであり、基板に入射した光に対する屈折率を凹凸の深さ方向に沿って入射媒体の屈折率から基板の屈折率まで連続的に変化させることによって反射を防止したい波長域の反射を抑えている。 This method utilizes the principle of a so-called moth-eye structure, and the refractive index for light incident on the substrate is determined from the refractive index of the incident medium along the depth direction of the irregularities. By continuously changing the refractive index, reflection in the wavelength region where reflection is desired to be prevented is suppressed.
 モスアイ構造は、広い波長域にわたって入射角依存性の小さい反射防止作用を発揮できるほか、多くの材料に適用でき、凹凸パターンを基板に直接形成できるなどの利点を有している。その結果、低コストで高性能の反射防止膜(または反射防止表面)を提供できる。 The moth-eye structure has an advantage that it can exhibit an antireflection effect with a small incident angle dependency over a wide wavelength range, can be applied to many materials, and can form an uneven pattern directly on a substrate. As a result, a low-cost and high-performance antireflection film (or antireflection surface) can be provided.
 本出願人は、モスアイ構造を有する反射防止膜(または反射防止表面)の製造方法として、アルミニウムを陽極酸化することによって得られる陽極酸化ポーラスアルミナ層を用いる方法を開発してきた(例えば特許文献2および3)。 The present applicant has developed a method using an anodized porous alumina layer obtained by anodizing aluminum as a method for producing an antireflection film (or antireflection surface) having a moth-eye structure (for example, Patent Document 2 and 3).
 陽極酸化ポーラスアルミナ膜を利用することによって、モスアイ構造を表面に形成するための型(以下、「モスアイ用型」という。)を容易に製造することができる。特に、特許文献2および3に記載されているように、アルミニウムの陽極酸化膜の表面をそのまま型として利用すると、製造コストを低減する効果が大きい。モスアイ構造を形成することができるモスアイ用型の表面の構造を「反転されたモスアイ構造」ということにする。特に、特許文献5に記載されているように、円筒状のモスアイ用型を用いると、ロール・ツー・ロール方式によりモスアイ構造を効率良く製造することができる。 By using the anodized porous alumina film, a mold for forming a moth-eye structure on the surface (hereinafter referred to as “moth-eye mold”) can be easily manufactured. In particular, as described in Patent Documents 2 and 3, if the surface of the anodized aluminum film is used as a mold as it is, the effect of reducing the manufacturing cost is great. The surface structure of the moth-eye mold that can form the moth-eye structure is referred to as an “inverted moth-eye structure”. In particular, as described in Patent Document 5, when a cylindrical moth-eye mold is used, a moth-eye structure can be efficiently manufactured by a roll-to-roll method.
 本願明細書において、「型」は、種々の加工方法(スタンピングやキャスティング)に用いられる型を包含し、スタンパということもある。また、印刷(ナノプリントを含む)にも用いられ得る。 In the present specification, the “mold” includes molds used for various processing methods (stamping and casting), and is sometimes referred to as a stamper. It can also be used for printing (including nanoprinting).
 特許文献4に記載されているように、本出願人は、反射防止機能を有し、かつ、防汚性(例えば、撥水性、撥油性、油脂の拭き取り易さ、耐擦傷性、滑り易さ)に優れた合成高分子膜を開発した。 As described in Patent Document 4, the present applicant has an antireflection function and has antifouling properties (for example, water repellency, oil repellency, easy wiping of fats and oils, scratch resistance, slipperiness). ) Has been developed.
 特許文献1から5の開示内容の全てを参考のために本明細書に援用する。 All the disclosures of Patent Documents 1 to 5 are incorporated herein by reference.
特表2001-517319号公報JP-T-2001-517319 特表2003-531962号公報Special Table 2003-531962 国際公開第2006/059686号International Publication No. 2006/059686 特許第5951165号公報Japanese Patent No. 5951165 国際公開第2011/105206号International Publication No. 2011/105206 特開2007-59417号公報JP 2007-59417 A
 本発明者の検討によると、特許文献4の防汚性に優れた合成高分子膜をロール・ツー・ロール方式で製造すると、製造歩留りが低下することがあった。防汚性に優れた合成高分子膜をロール・ツー・ロール方式で製造する方法は、例えば、円柱状または円筒状のモスアイ用型の表面(外周面)にスプレー法で樹脂を付与する工程を包含する。この工程において、樹脂がモスアイ用型の周辺に飛散することに起因して、製造歩留りが低下することがあった。詳細は後述する。 According to the study of the present inventor, when the synthetic polymer film having excellent antifouling property described in Patent Document 4 is produced by the roll-to-roll method, the production yield may be lowered. A method for producing a synthetic polymer film having excellent antifouling properties by a roll-to-roll method includes, for example, a step of applying a resin to the surface (outer peripheral surface) of a columnar or cylindrical moth-eye mold by a spray method. Include. In this step, the production yield may decrease due to the resin scattering around the moth-eye mold. Details will be described later.
 この問題は、防汚性に優れた合成高分子膜を製造する工程に限られるものではなく、また、モスアイ用型を用いる工程に限られるものでもない。円柱状または円筒状の基材の外周面に液膜を形成する工程に共通の問題である。 This problem is not limited to the process of producing a synthetic polymer film having excellent antifouling properties, and is not limited to the process of using a moth-eye mold. This is a common problem in the process of forming a liquid film on the outer peripheral surface of a columnar or cylindrical base material.
 本発明は、円柱状または円筒状の基材の外周面に液膜を形成する工程における製造歩留りの低下を抑制することができる装置および方法を提供すること、ならびにそのような装置または方法を用いた合成高分子膜の製造方法を提供することを目的とする。 The present invention provides an apparatus and method capable of suppressing a decrease in production yield in the step of forming a liquid film on the outer peripheral surface of a columnar or cylindrical substrate, and uses such an apparatus or method. It is an object of the present invention to provide a method for producing a synthetic polymer film.
 本発明の実施形態による液膜形成装置は、円柱状または円筒状の基材の外周面上に液膜を形成する装置であって、液体を噴霧する吹出し口であって、前記吹出し口の第1方向における長さは、前記第1方向と直交する第2方向における前記吹出し口の長さよりも大きく、前記外周面に向かって前記液体を噴霧するとき、前記第1方向が前記基材の軸方向と実質的に平行となるように前記外周面に向けられる吹出し口と、前記吹出し口に前記液体を供給する液体供給装置と、前記吹出し口を画定する筒状の内側カバー部と、前記内側カバー部の外側に配置されている外側カバー部と、前記内側カバー部と前記外側カバー部とによって画定される少なくとも1つの吸込み口であって、前記吹出し口と前記第2方向に隣接して前記第1方向に延びる部分を含む少なくとも1つの吸込み口と、前記少なくとも1つの吸込み口を介して気体を吸引する気体吸引装置とを有し、前記気体吸引装置は、前記吹出し口から噴霧される前記液体を含む気体の流量よりも多い流量の気体を吸引するように構成されている。 A liquid film forming apparatus according to an embodiment of the present invention is an apparatus that forms a liquid film on an outer peripheral surface of a columnar or cylindrical base material, and is a blowout port that sprays liquid, and the first of the blowout ports. The length in one direction is larger than the length of the outlet in the second direction orthogonal to the first direction, and when the liquid is sprayed toward the outer peripheral surface, the first direction is the axis of the base material. A blowing port directed to the outer peripheral surface so as to be substantially parallel to a direction; a liquid supply device that supplies the liquid to the blowing port; a cylindrical inner cover portion that defines the blowing port; and the inner side At least one suction port defined by an outer cover portion disposed outside the cover portion, the inner cover portion and the outer cover portion, and adjacent to the outlet and in the second direction. Extending in the first direction At least one suction port including a portion, and a gas suction device that sucks gas through the at least one suction port, wherein the gas suction device is configured to supply a gas containing the liquid sprayed from the outlet. It is configured to suck a gas having a flow rate higher than the flow rate.
 ある実施形態において、前記吹出し口から噴霧される前記液体の平均径は、20μm以下である。 In one embodiment, an average diameter of the liquid sprayed from the outlet is 20 μm or less.
 ある実施形態において、前記吹出し口は、前記第1方向および前記第2方向に垂直な第3方向に貫通している。 In one embodiment, the outlet is penetrating in a third direction perpendicular to the first direction and the second direction.
 ある実施形態において、前記液膜形成装置は、前記吹出し口内に、前記第1方向に沿って配列されており、前記液体を噴霧する複数のノズルをさらに有する。 In one embodiment, the liquid film forming apparatus further includes a plurality of nozzles arranged along the first direction in the outlet and spraying the liquid.
 ある実施形態において、前記複数のノズルは、超音波ノズルである。 In one embodiment, the plurality of nozzles are ultrasonic nozzles.
 ある実施形態において、前記複数のノズルは、段違いに配置されている。 In one embodiment, the plurality of nozzles are arranged at different levels.
 ある実施形態において、前記複数のノズルは、隣接するノズルの噴出し孔の水平方向に対する角度が互いに異なるように配置されている。 In one embodiment, the plurality of nozzles are arranged so that the angles of the ejection holes of adjacent nozzles with respect to the horizontal direction are different from each other.
 ある実施形態において、前記液膜形成装置は、前記外周面に向かって前記液体を噴霧するとき、前記内側カバー部および前記外側カバー部が前記外周面に接触しないことが可能であるように構成されている。 In one embodiment, the liquid film forming apparatus is configured such that when the liquid is sprayed toward the outer peripheral surface, the inner cover portion and the outer cover portion may not contact the outer peripheral surface. ing.
 ある実施形態において、前記液膜形成装置は、前記外周面に向かって前記液体を噴霧するときの、前記内側カバー部と前記外周面との距離および/または前記外側カバー部と前記外周面との距離を変えることができるように構成されている。 In one embodiment, the liquid film forming apparatus is configured to spray the liquid toward the outer peripheral surface and / or the distance between the inner cover portion and the outer peripheral surface and / or the outer cover portion and the outer peripheral surface. The distance can be changed.
 ある実施形態において、前記液膜形成装置は、前記外周面に向かって前記液体を噴霧するとき、前記内側カバー部と前記外周面との最短距離および前記外側カバー部と前記外周面との最短距離をそれぞれ30mm以下とすることができるように構成されている。 In one embodiment, when the liquid film forming device sprays the liquid toward the outer peripheral surface, the shortest distance between the inner cover portion and the outer peripheral surface and the shortest distance between the outer cover portion and the outer peripheral surface. Are each configured to be 30 mm or less.
 ある実施形態において、前記気体吸引装置は、前記吹出し口から噴霧される前記液体を含む気体の流量の、9倍以上15倍以下の流量の気体を吸引するように構成されている。 In one embodiment, the gas suction device is configured to suck a gas having a flow rate not less than 9 times and not more than 15 times the flow rate of the gas including the liquid sprayed from the outlet.
 ある実施形態において、前記液膜形成装置は、前記基材を、前記基材の軸方向が水平方向と実質的に平行になるように、かつ、前記基材の軸の周りに回転可能に支持する、回転支持構造体をさらに有する。 In one embodiment, the liquid film forming apparatus supports the base material so that an axial direction of the base material is substantially parallel to a horizontal direction and is rotatable about an axis of the base material. A rotating support structure.
 本発明の実施形態による液膜形成方法は、円柱状または円筒状の基材の外周面に液膜を形成する方法であって、前記外周面に向かって液体を噴霧する工程(a)と、前記外周面の周辺の気体を吸引する工程(b)とを包含し、前記工程(b)は、前記工程(a)と同時に行う工程を包含し、前記工程(b)において吸引する気体の流量は、前記工程(a)において噴霧される前記液体を含む気体の流量よりも多い。 A liquid film forming method according to an embodiment of the present invention is a method of forming a liquid film on the outer peripheral surface of a columnar or cylindrical base material, the step (a) of spraying liquid toward the outer peripheral surface, A step (b) of sucking a gas around the outer peripheral surface, and the step (b) includes a step performed simultaneously with the step (a), and a flow rate of the gas sucked in the step (b). Is larger than the flow rate of the gas containing the liquid sprayed in the step (a).
 ある実施形態において、前記工程(a)において噴霧する前記液体の平均径は、20μm以下である。 In one embodiment, the average diameter of the liquid sprayed in the step (a) is 20 μm or less.
 ある実施形態において、前記工程(a)において噴霧する前記液体の23℃における粘度は、20cP以下である。 In one embodiment, the viscosity of the liquid sprayed in the step (a) at 23 ° C. is 20 cP or less.
 ある実施形態において、前記工程(a)において噴霧する前記液体の、最大泡圧法による23℃での表面寿命が100msである時の動的表面張力は、31mN/m以上である。 In one embodiment, the dynamic surface tension of the liquid sprayed in the step (a) when the surface lifetime at 23 ° C. according to the maximum bubble pressure method is 100 ms is 31 mN / m or more.
 ある実施形態において、前記液膜形成方法は、前記基材の軸方向が水平方向と実質的に平行になるように前記基材を配置した状態で、前記基材の軸を中心に、前記基材を回転させる工程(c)をさらに包含する。   In one embodiment, the liquid film forming method is characterized in that the base is arranged around the axis of the base material in a state where the base material is arranged so that an axial direction of the base material is substantially parallel to a horizontal direction. The method further includes a step (c) of rotating the material. *
 ある実施形態において、前記工程(c)において、前記基材の回転速度は、0rpm超20rpm以下である。 In one embodiment, in the step (c), the rotation speed of the substrate is more than 0 rpm and not more than 20 rpm.
 ある実施形態において、前記液膜形成方法は、厚さが2μm以下である液膜を形成する。 In one embodiment, the liquid film forming method forms a liquid film having a thickness of 2 μm or less.
 本発明の実施形態による合成高分子膜の製造方法は、表面の法線方向から見たときの2次元的な大きさが20nm以上500nm未満である複数の凹部を有する、反転されたモスアイ構造を表面に有するポーラスアルミナ層を有する、円柱状または円筒状の型を用いて、合成高分子膜を製造する方法であって、前記型と、被加工物とを用意する工程(A)と、前記被加工物の表面に紫外線硬化性樹脂を含む第1樹脂を付与する工程(B)と、上記のいずれかの液膜形成装置を用いてまたは上記のいずれかの液膜形成方法によって、前記型の表面にフッ素含有モノマーを含む第2樹脂を付与する工程(C)と、前記型と前記被加工物の表面との間で前記第1樹脂および前記第2樹脂を互いに接触させた状態で、前記第1樹脂および前記第2樹脂に紫外線を照射することによって前記第1樹脂および前記第2樹脂を硬化させる工程(D)とを包含する。 A method for producing a synthetic polymer film according to an embodiment of the present invention includes an inverted moth-eye structure having a plurality of recesses having a two-dimensional size of 20 nm or more and less than 500 nm when viewed from the normal direction of the surface. A method of producing a synthetic polymer film using a columnar or cylindrical mold having a porous alumina layer on the surface, the step (A) of preparing the mold and a workpiece, The step (B) of applying a first resin containing an ultraviolet curable resin to the surface of the workpiece, and using any one of the above liquid film forming apparatuses or by any one of the above liquid film forming methods, A step (C) of applying a second resin containing a fluorine-containing monomer to the surface of the substrate, and the first resin and the second resin in contact with each other between the mold and the surface of the workpiece, The first resin and the second tree Comprising a step (D) curing the first resin and the second resin by irradiating with ultraviolet rays.
 本発明の実施形態によると、円柱状または円筒状の基材の外周面に液膜を形成する工程における製造歩留りの低下を抑制することができる装置および方法、ならびにそのような装置または方法を用いた合成高分子膜の製造方法が提供される。 According to the embodiments of the present invention, an apparatus and method capable of suppressing a decrease in manufacturing yield in the step of forming a liquid film on the outer peripheral surface of a columnar or cylindrical base material, and such an apparatus or method are used. Provided is a method for producing a synthetic polymer membrane.
本発明の実施形態による液膜形成方法および液膜形成装置50を説明するための模式的な図である。It is a typical figure for demonstrating the liquid film formation method and the liquid film formation apparatus 50 by embodiment of this invention. 本発明の実施形態による液膜形成方法および液膜形成装置50を説明するための模式的な図であり、図1中のA-A’線に沿った断面を示している。FIG. 2 is a schematic diagram for explaining a liquid film forming method and a liquid film forming apparatus 50 according to an embodiment of the present invention, showing a cross section taken along the line A-A ′ in FIG. 1. 本発明の実施形態による液膜形成方法および液膜形成装置50を説明するための模式的な図である。It is a typical figure for demonstrating the liquid film formation method and the liquid film formation apparatus 50 by embodiment of this invention. 液膜形成装置50の構成の一例を説明するための模式的な図である。4 is a schematic diagram for explaining an example of a configuration of a liquid film forming apparatus 50. FIG. 基材100Aの外周面100sに向かって液体を噴霧するときの、基材100Aと液膜形成装置50との配置関係を説明するための模式的な斜視図である。It is a typical perspective view for demonstrating the arrangement | positioning relationship between 100 A of base materials and the liquid film formation apparatus 50 when spraying a liquid toward the outer peripheral surface 100s of 100 A of base materials. 基材100Aの軸方向と平行な方向から液膜形成装置50を見たときの模式的な側面図である。It is a typical side view when the liquid film formation apparatus 50 is seen from the direction parallel to the axial direction of the base material 100A. 基材100Aの外周面100sに形成した液膜に生じる円周方向に延びる筋状のむらを示す図である。It is a figure which shows the stripe-shaped nonuniformity extended in the circumferential direction which arises in the liquid film formed in 100s of outer peripheral surfaces of 100 A of base materials. 液膜形成装置50の構成の一例を説明するための模式的な図である。4 is a schematic diagram for explaining an example of a configuration of a liquid film forming apparatus 50. FIG. 合成高分子膜36をロール・ツー・ロール方式で製造する方法を説明するための模式的な断面図である。FIG. 5 is a schematic cross-sectional view for explaining a method for producing a synthetic polymer film 36 by a roll-to-roll method. (a)~(e)は、モスアイ用型100Aの製造方法を説明するための模式的な断面図である。(A)-(e) is typical sectional drawing for demonstrating the manufacturing method of the moth-eye type | mold 100A. (a)~(c)は、合成高分子膜36の製造方法および合成高分子膜36の構造を説明するための模式的な断面図である。(A) to (c) are schematic cross-sectional views for explaining a method for producing the synthetic polymer film and the structure of the synthetic polymer film. 合成高分子膜36のフッ素(F)および窒素(N)の元素濃度の厚さ方向における変化(デプスプロファイル)を模式的に示す図である。It is a figure which shows typically the change (depth profile) in the thickness direction of the element concentration of fluorine (F) and nitrogen (N) of the synthetic polymer film 36. ロール・ツー・ロール方式により合成高分子膜36を製造する方法を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the method to manufacture the synthetic polymer film | membrane 36 by a roll-to-roll system. 合成高分子膜36をロール・ツー・ロール方式で製造する場合に生じる問題を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the problem which arises when manufacturing the synthetic polymer film 36 by a roll-to-roll system. 合成高分子膜36をロール・ツー・ロール方式で製造する場合に生じる問題を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the problem which arises when manufacturing the synthetic polymer film 36 by a roll-to-roll system.
 図11および図12を参照して、特許文献4に記載の、防汚性に優れた合成高分子膜およびその製造方法について説明する。 With reference to FIG. 11 and FIG. 12, a synthetic polymer film excellent in antifouling property and a method for producing the same described in Patent Document 4 will be described.
 まず、図11を参照して、特許文献4の合成高分子膜36の製造方法および合成高分子膜36の構造を説明する。図11(a)~(c)は、合成高分子膜36の製造方法および合成高分子膜36の構造を説明するための模式的な断面図である。 First, with reference to FIG. 11, the manufacturing method of the synthetic polymer film 36 and the structure of the synthetic polymer film 36 of Patent Document 4 will be described. FIGS. 11A to 11C are schematic cross-sectional views for explaining the method for producing the synthetic polymer film 36 and the structure of the synthetic polymer film 36.
 なお、後述するように、本発明の実施形態による液膜形成方法または液膜形成装置は、例えば合成高分子膜36を形成する工程において好適に用いることができる。従って、図11~図13を参照して行う合成高分子膜36についての説明は、本発明の実施形態による液膜形成方法または液膜形成装置を用いて製造される合成高分子膜の一例についてもあてはまる。 As will be described later, the liquid film forming method or the liquid film forming apparatus according to the embodiment of the present invention can be suitably used, for example, in the process of forming the synthetic polymer film 36. Therefore, the description of the synthetic polymer film 36 performed with reference to FIGS. 11 to 13 is an example of the synthetic polymer film manufactured using the liquid film forming method or the liquid film forming apparatus according to the embodiment of the present invention. Also applies.
 図11(c)に示すように、合成高分子膜36は、表面に複数の凸部36pを有している。複数の凸部36pは、モスアイ構造を構成している。ここでは、合成高分子膜36は、ベースフィルム42上に形成されている。図11(c)に示すフィルム30は、ベースフィルム42と、ベースフィルム42上に形成された合成高分子膜36とを有している。合成高分子膜36の法線方向から見たとき、凸部36pの2次元的な大きさDは20nm超500nm未満の範囲内にある。ここで、凸部36pの「2次元的な大きさ」とは、表面の法線方向から見たときの凸部36pの面積円相当径を指す。例えば、凸部36pが円錐形の場合、凸部36pの2次元的な大きさは、円錐の底面の直径に相当する。また、凸部36pの典型的な隣接間距離Dintは20nm超1000nm以下である。図11(c)に例示するように、凸部36pが密に配列されており、隣接する凸部36p間に間隙が存在しない(例えば、円錐の底面が部分的に重なる)場合には、凸部36pの2次元的な大きさDは隣接間距離Dintと等しい。凸部36pの典型的な高さDは、50nm以上500nm未満である。合成高分子膜36の厚さtに特に制限はなく、凸部36pの高さDより大きければよい。 As shown in FIG. 11C, the synthetic polymer film 36 has a plurality of convex portions 36p on the surface. The plurality of convex portions 36p form a moth-eye structure. Here, the synthetic polymer film 36 is formed on the base film 42. A film 30 shown in FIG. 11C has a base film 42 and a synthetic polymer film 36 formed on the base film 42. When viewed from the normal direction of the synthetic polymer film 36, the two-dimensional size D p of the convex portion 36p is in the range of more than 20 nm and less than 500 nm. Here, the “two-dimensional size” of the convex portion 36p refers to the area equivalent circle diameter of the convex portion 36p when viewed from the normal direction of the surface. For example, when the convex portion 36p is conical, the two-dimensional size of the convex portion 36p corresponds to the diameter of the bottom surface of the cone. Further, a typical inter-adjacent distance D int of the convex portion 36p is more than 20 nm and not more than 1000 nm. As illustrated in FIG. 11C, when the convex portions 36p are densely arranged and there is no gap between the adjacent convex portions 36p (for example, the bottom surfaces of the cones partially overlap), the convex portions 36p the two-dimensional size of a section 36p D p is equal to the distance between adjacent D int. A typical height D h of the convex portion 36p is not less than 50 nm and less than 500 nm. There is no particular limitation on the thickness t s of the synthetic polymer film 36 may be larger than the height D h of the convex portion 36p.
 合成高分子膜36は、フッ素元素を含み、フッ素含有率が厚さ方向に連続的に変化しており、凸部36p側において凸部36p側と反対側よりもフッ素含有率が高いプロファイルを有する。フッ素含有率とは、例えばフッ素元素濃度をいう。 The synthetic polymer film 36 contains fluorine element, the fluorine content continuously changes in the thickness direction, and has a profile in which the fluorine content is higher on the convex portion 36p side than on the opposite side to the convex portion 36p side. . The fluorine content refers to, for example, the concentration of fluorine element.
 合成高分子膜36は、反射防止機能を有し、かつ、防汚性(例えば、表面に付着した油脂の目立ち難さ、油脂の拭き取り易さ、耐擦傷性)に優れている。 The synthetic polymer film 36 has an antireflection function and is excellent in antifouling properties (for example, difficulty in conspicuously attaching oil and fat adhering to the surface, easy wiping of the oil and fat, and scratch resistance).
 合成高分子膜36に優れた反射防止機能を発現させるためには、表面に平坦な部分がなく、凸部36pが密に配列されていることが好ましい。また、凸部36pは、空気側からベースフィルム42側に向かって、断面積(入射光線に直交する面に平行な断面、例えばベースフィルム42の面に平行な断面)が増加する形状、例えば、円錐形であることが好ましい。また、光の干渉を抑制するために、凸部36pを規則性がないように、好ましくはランダムに、配列することが好ましい。しかしながら、合成高分子膜36の用途によっては、これらの特徴は必須ではない。例えば、凸部36pは密に配列される必要はなく、また、規則的に配列されてもよい。 In order for the synthetic polymer film 36 to exhibit an excellent antireflection function, it is preferable that the surface has no flat portion and the convex portions 36p are densely arranged. Further, the convex portion 36p has a shape in which a cross-sectional area (a cross section parallel to the plane orthogonal to the incident light, for example, a cross section parallel to the surface of the base film 42) increases from the air side toward the base film 42 side, for example, A conical shape is preferred. In order to suppress the interference of light, it is preferable to arrange the protrusions 36p preferably at random so that there is no regularity. However, depending on the application of the synthetic polymer film 36, these characteristics are not essential. For example, the convex portions 36p do not need to be densely arranged, and may be regularly arranged.
 合成高分子膜36の製造方法を説明する。 A method for producing the synthetic polymer film 36 will be described.
 まず、モスアイ用型100を用意する。モスアイ用型100は、表面に、表面の法線方向から見たときの2次元的な大きさが20nm以上500nm未満の複数の凹部を有するポーラスアルミナ層を有する。複数の凹部は反転されたモスアイ構造を構成する。モスアイ用型100は、例えば、特許文献3に記載されている方法を用いて、アルミニウムの陽極酸化とエッチングとを繰り返すことによって得られる。モスアイ用型100の製造方法は、後に詳述する。 First, a moth-eye mold 100 is prepared. The moth-eye mold 100 has on its surface a porous alumina layer having a plurality of recesses having a two-dimensional size of 20 nm or more and less than 500 nm when viewed from the normal direction of the surface. The plurality of recesses constitute an inverted moth-eye structure. The moth-eye mold 100 is obtained, for example, by repeating anodization and etching of aluminum using the method described in Patent Document 3. The method for manufacturing the moth-eye mold 100 will be described in detail later.
 次いで、図11(a)に示すように、ベースフィルム42の表面に下層樹脂(「第1樹脂」ということがある。)36a’を付与する。モスアイ用型100が有する反転されたモスアイ構造の上に上層樹脂(「第2樹脂」ということがある。)36b’を付与する。 Next, as shown in FIG. 11A, a lower layer resin (sometimes referred to as “first resin”) 36 a ′ is applied to the surface of the base film 42. An upper resin (sometimes referred to as “second resin”) 36 b ′ is applied on the inverted moth eye structure of the moth eye mold 100.
 下層樹脂36a’は、例えばアクリル系樹脂(アクリレートモノマー)を用いることができる。なお、本明細書において、モノマーは、光硬化性樹脂の原料の典型的な例として挙げるものであり、オリゴマーを排除しない。下層樹脂36a’は、例えば、紫外線硬化性樹脂を含む。下層樹脂36a’にはフッ素が含まれていなくてもよく、フッ素が含まれていてもよいが、下層樹脂36a’のフッ素含有率は上層樹脂36b’のフッ素含有率よりも低いことが好ましい。下層樹脂36a’は、例えばグラビア方式またはスロットダイ方式で付与される。スリットコータまたはバーコータ等を用いて付与されてもよい。ベースフィルム42の表面に付与されたときの下層樹脂36a’の厚さは、例えば3μm~30μmであり、例えば5μm~7μmであることが好ましい。下層樹脂36a’の粘度は、例えば50cP~200cPであり、例えば100cPであることが好ましい。 As the lower layer resin 36a ', for example, an acrylic resin (acrylate monomer) can be used. In addition, in this specification, a monomer is given as a typical example of a raw material of a photocurable resin, and does not exclude oligomers. The lower layer resin 36a 'includes, for example, an ultraviolet curable resin. The lower layer resin 36a 'may not contain fluorine or may contain fluorine, but the fluorine content of the lower layer resin 36a' is preferably lower than the fluorine content of the upper layer resin 36b '. The lower layer resin 36a 'is applied by, for example, a gravure method or a slot die method. It may be applied using a slit coater or a bar coater. The thickness of the lower layer resin 36a 'when applied to the surface of the base film 42 is, for example, 3 μm to 30 μm, and preferably 5 μm to 7 μm, for example. The viscosity of the lower layer resin 36a 'is, for example, 50 cP to 200 cP, and preferably 100 cP, for example.
 ベースフィルム42は、例えば、PET(ポリエチレンテレフタレート)フィルムまたはTAC(トリアセチルセルロース)フィルムである。 The base film 42 is, for example, a PET (polyethylene terephthalate) film or a TAC (triacetyl cellulose) film.
 上層樹脂36b’は、フッ素含有モノマー38を有する。フッ素含有モノマー38は、例えば、フッ素含有アクリル樹脂である。フッ素含有モノマー38は、例えば、フッ素含有炭化水素鎖38cと、末端にアクリレート基38tとを有する。フッ素含有炭化水素鎖38cは、エーテル結合を含んでいてもよい。フッ素含有モノマー38は、紫外線照射によって硬化することが好ましい。上層樹脂36b’は、例えばスプレー法、グラビア方式またはスロットダイ方式で付与される。スリットコータまたはバーコータ等を用いて付与されてもよい。スプレー法を用いる場合は、例えば、超音波ノズル、二流体ノズル、スワールノズル、または静電ノズルを用いて上層樹脂36b’をモスアイ用型100上に付与する。モスアイ用型100上に付与されたときの上層樹脂36b’の厚さは、特に下限はなく、5μmを超えないことが好ましく、例えば0μm超3μm以下であり、2μm以下がさらに好ましい。上層樹脂36b’の粘度は、例えば1cP~100cPである。上層樹脂36b’をスプレー法で付与する場合には、上層樹脂36b’の粘度は、例えば、23℃において100cP以下であることが好ましく、20cP以下であることがさらに好ましい。 The upper layer resin 36 b ′ has a fluorine-containing monomer 38. The fluorine-containing monomer 38 is, for example, a fluorine-containing acrylic resin. The fluorine-containing monomer 38 has, for example, a fluorine-containing hydrocarbon chain 38c and an acrylate group 38t at the terminal. The fluorine-containing hydrocarbon chain 38c may include an ether bond. The fluorine-containing monomer 38 is preferably cured by ultraviolet irradiation. The upper layer resin 36b 'is applied by, for example, a spray method, a gravure method, or a slot die method. It may be applied using a slit coater or a bar coater. When using the spray method, for example, the upper layer resin 36 b ′ is applied onto the moth-eye mold 100 using an ultrasonic nozzle, a two-fluid nozzle, a swirl nozzle, or an electrostatic nozzle. The thickness of the upper layer resin 36b 'when applied on the moth-eye mold 100 is not particularly limited and preferably does not exceed 5m, for example, more than 0m and 3m or less, and more preferably 2m or less. The viscosity of the upper layer resin 36b 'is, for example, 1 cP to 100 cP. When the upper layer resin 36b 'is applied by a spray method, the viscosity of the upper layer resin 36b' is preferably 100 cP or less, more preferably 20 cP or less at 23 ° C, for example.
 上層樹脂36b’は、例えば反応性希釈剤をさらに有する。反応性希釈剤は、例えば4-アクリロイルモルホリンを用いることができる。4-アクリロイルモルホリンの化学構造式を[化1]に示すように、4-アクリロイルモルホリンは、アクリロイル基(H2C=CH-C(=O)-)を有し、窒素元素を有する。 The upper layer resin 36b ′ further includes, for example, a reactive diluent. As the reactive diluent, for example, 4-acryloylmorpholine can be used. The chemical structural formula of 4-acryloylmorpholine is represented by [Chemical Formula 1], and 4-acryloylmorpholine has an acryloyl group (H 2 C═CH—C (═O) —) and has an elemental nitrogen.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 下層樹脂36a’に溶剤が含まれている場合は、図11(b)に示す工程の前に、溶剤を蒸発させる工程(例えば加熱処理)を行う。上層樹脂36b’に溶剤が含まれている場合は、例えば、図11(b)に示す工程の前に、溶剤を蒸発させる工程(例えば加熱処理)を行う。下層樹脂36a’および上層樹脂36b’は、溶剤を含まないことが好ましい。下層樹脂36a’および上層樹脂36b’が溶剤を含まないと、溶剤の使用に掛かるコスト、および、環境面での負荷(例えば使用時の臭気等)を低減することができる。さらに、溶剤を蒸発させる工程に掛かる時間、溶剤を蒸発させる装置に掛かるコスト、場所等を抑制することができる。 When the lower layer resin 36a 'contains a solvent, a step of evaporating the solvent (for example, heat treatment) is performed before the step shown in FIG. When the upper layer resin 36b 'contains a solvent, for example, a step of evaporating the solvent (for example, heat treatment) is performed before the step shown in FIG. The lower layer resin 36a 'and the upper layer resin 36b' preferably contain no solvent. If the lower layer resin 36 a ′ and the upper layer resin 36 b ′ do not contain a solvent, it is possible to reduce the cost of using the solvent and the environmental load (for example, odor during use). Furthermore, the time required for the process of evaporating the solvent, the cost, the location, etc. required for the apparatus for evaporating the solvent can be suppressed.
 合成高分子膜36の下層樹脂36a’が溶剤を含有する場合は、上層樹脂36b’中のフッ素含有モノマー38が下層樹脂36a’と混ざりやすい傾向があるので、フッ素元素が合成高分子膜36の凸部36p側に偏在し難くなる懸念がある。合成高分子膜36の下層樹脂36a’が溶剤を含有する場合は、溶剤の乾燥が不充分であると、ベースフィルム42と合成高分子膜36(下層部分36a)との密着性が低下する懸念がある。 When the lower layer resin 36a ′ of the synthetic polymer film 36 contains a solvent, the fluorine-containing monomer 38 in the upper layer resin 36b ′ tends to be mixed with the lower layer resin 36a ′. There is a concern that it is difficult to be unevenly distributed on the convex portion 36p side. When the lower layer resin 36a ′ of the synthetic polymer film 36 contains a solvent, if the solvent is insufficiently dried, the adhesion between the base film 42 and the synthetic polymer film 36 (lower layer portion 36a) may be reduced. There is.
 特に、円筒状のモスアイ用型100を用いて合成高分子膜36を製造するためには、上層樹脂36b’には、溶剤が含まれていないことが好ましい。溶剤を含まない上層樹脂36b’の粘度は、例えば100cP以下であることが好ましい。 In particular, in order to produce the synthetic polymer film 36 using the cylindrical moth-eye mold 100, it is preferable that the upper layer resin 36b 'does not contain a solvent. The viscosity of the upper layer resin 36b 'not containing a solvent is preferably 100 cP or less, for example.
 モスアイ用型100は、離型処理されていてもよい。すなわち、上層樹脂36b’が付与される前に、モスアイ用型100の反転されたモスアイ構造に離型剤が付与されていてもよい。モスアイ用型100に離型処理を施すと、フッ素含有モノマー38のフッ素含有炭化水素鎖38cが離型剤に引き寄せられ、上層部分36bのモスアイ用型100側のフッ素元素含有率が高くなり得る。 The moth-eye mold 100 may be subjected to a mold release process. That is, the release agent may be applied to the inverted moth-eye structure of the moth-eye mold 100 before the upper layer resin 36b 'is applied. When the release treatment is performed on the moth-eye mold 100, the fluorine-containing hydrocarbon chain 38c of the fluorine-containing monomer 38 is attracted to the release agent, and the fluorine element content on the moth-eye mold 100 side of the upper layer portion 36b can be increased.
 次に、図11(b)に示すように、ベースフィルム42をモスアイ用型100に押し付けた状態で、紫外線(UV)を照射する。ベースフィルム42をモスアイ用型100に押し付けると、下層樹脂36a’と上層樹脂36b’とが互いに接触し、界面において互いに混ざり合う。ベースフィルム42をモスアイ用型100に押し付けるとき、下層樹脂36a’および上層樹脂36b’は硬化されていないので、下層樹脂36a’と上層樹脂36b’との間に、明確な界面は形成されない。下層樹脂36a’と上層樹脂36b’とが混ざり合った状態で、下層樹脂36a’および上層樹脂36b’に紫外線が照射され、下層樹脂36a’および上層樹脂36b’は硬化される。 Next, as shown in FIG. 11 (b), ultraviolet light (UV) is irradiated in a state where the base film 42 is pressed against the moth-eye mold 100. When the base film 42 is pressed against the moth-eye mold 100, the lower layer resin 36a 'and the upper layer resin 36b' come into contact with each other and mix with each other at the interface. When the base film 42 is pressed against the moth-eye mold 100, since the lower layer resin 36a 'and the upper layer resin 36b' are not cured, a clear interface is not formed between the lower layer resin 36a 'and the upper layer resin 36b'. In a state where the lower layer resin 36a 'and the upper layer resin 36b' are mixed, the lower layer resin 36a 'and the upper layer resin 36b' are irradiated with ultraviolet rays, and the lower layer resin 36a 'and the upper layer resin 36b' are cured.
 硬化されることにより、図11(c)に示すように、フッ素含有モノマー38は、反応性希釈剤と反応する。フッ素含有モノマー38は、他のアクリレートモノマー(下層樹脂に含まれるものを含む)とも反応する。反応後のアクリレート基38tの参照符号に(r)を付して反応済であることを示す。その後、ベースフィルム42からモスアイ用型100を分離することによって、モスアイ用型100の反転されたモスアイ構造が転写された合成高分子膜36がベースフィルム42の表面に形成される。合成高分子膜36が有する凸部36pの、2次元的な大きさD、高さDおよび隣接間距離Dintは、合成高分子膜36の製造に用いるモスアイ用型100の凹部の形状によって決められる。 By being cured, as shown in FIG. 11C, the fluorine-containing monomer 38 reacts with the reactive diluent. The fluorine-containing monomer 38 also reacts with other acrylate monomers (including those contained in the lower layer resin). (R) is added to the reference symbol of the acrylate group 38t after the reaction to indicate that the reaction has been completed. Thereafter, by separating the moth-eye mold 100 from the base film 42, a synthetic polymer film 36 to which the inverted moth-eye structure of the moth-eye mold 100 is transferred is formed on the surface of the base film 42. The two-dimensional size D p , height D h and adjacent distance D int of the convex part 36 p of the synthetic polymer film 36 are the shape of the concave part of the moth-eye mold 100 used for manufacturing the synthetic polymer film 36. It is decided by.
 合成高分子膜36は、例えば、下層樹脂を主に有する下層部分36aと、上層樹脂を主に有する上層部分36bとを有する。上層部分36bのフッ素含有率は、下層部分36aのフッ素含有率よりも高い。上層部分36bと下層部分36aとの間に明確な界面は形成されない。 The synthetic polymer film 36 has, for example, a lower layer portion 36a mainly including a lower layer resin and an upper layer portion 36b mainly including an upper layer resin. The fluorine content of the upper layer portion 36b is higher than the fluorine content of the lower layer portion 36a. A clear interface is not formed between the upper layer portion 36b and the lower layer portion 36a.
 合成高分子膜36は、上層部分36bがフッ素含有モノマー38を有するので、合成高分子膜36に付着した指紋等の油脂が広がり難い。従って、合成高分子膜36に指紋等の油脂が付着しても目立ち難い。さらに、合成高分子膜36は、付着した指紋等の油脂を容易に拭き取ることができる。油脂を容易に拭き取ることができるので、凸部36pが破壊される恐れも少ない。合成高分子膜36は、耐擦傷性に優れる。 In the synthetic polymer film 36, since the upper layer portion 36b has the fluorine-containing monomer 38, oil such as fingerprints attached to the synthetic polymer film 36 is difficult to spread. Therefore, even if oil such as fingerprints adheres to the synthetic polymer film 36, it is not noticeable. Further, the synthetic polymer film 36 can easily wipe off oils and fats such as attached fingerprints. Since the oils and fats can be easily wiped off, there is little fear that the protrusions 36p will be destroyed. The synthetic polymer film 36 is excellent in scratch resistance.
 図12は、合成高分子膜36のフッ素(F)および窒素(N)の元素濃度の厚さ方向における変化(デプスプロファイル)を模式的に示す図である。図12の横軸は、合成高分子膜36の表面(複数の凸部36pを有する表面)からの深さ(法線方向の深さ)を示し、縦軸は各元素の元素濃度(at%)を示す。 FIG. 12 is a diagram schematically showing changes (depth profiles) in the thickness direction of the elemental concentrations of fluorine (F) and nitrogen (N) in the synthetic polymer film 36. The horizontal axis in FIG. 12 represents the depth (depth in the normal direction) from the surface of the synthetic polymer film 36 (the surface having the plurality of convex portions 36p), and the vertical axis represents the element concentration (at%) of each element. ).
 図12に示すように、合成高分子膜36のフッ素元素濃度は、合成高分子膜36の表面からの深さが大きくなると、上層部分36bのフッ素元素濃度から下層部分36aのフッ素元素濃度へと連続的に(緩やかに)変化する。窒素元素濃度についても、合成高分子膜36の表面からの深さが大きくなると、上層部分36bの窒素元素濃度から下層部分36aの窒素元素濃度へと連続的に(緩やかに)変化する。 As shown in FIG. 12, the fluorine concentration of the synthetic polymer film 36 increases from the fluorine element concentration of the upper layer portion 36b to the fluorine element concentration of the lower layer portion 36a as the depth from the surface of the synthetic polymer film 36 increases. It changes continuously (slowly). The nitrogen element concentration also changes continuously (slowly) from the nitrogen element concentration in the upper layer portion 36b to the nitrogen element concentration in the lower layer portion 36a as the depth from the surface of the synthetic polymer film 36 increases.
 合成高分子膜36の表面からの深さが大きくなると、各元素濃度は、下層樹脂中の元素濃度に漸近してもよい。合成高分子膜36の、複数の凸部36pを有する表面の反対側の面(「ベースフィルム42側の面」ということがある。)の組成は、下層樹脂の組成とほぼ等しい。ここで、合成高分子膜36の、ベースフィルム42側の面の組成は、合成高分子膜36のうち、ベースフィルム42側の面を構成する部分の組成をいう。例えば、合成高分子膜36の、ベースフィルム42側の面に含まれる窒素元素の濃度は、合成高分子膜36のうち、ベースフィルム42側の面を構成する部分に含まれる窒素元素の濃度をいう。例えば、ベースフィルム42側の面から、合成高分子膜36の法線方向に、合成高分子膜36の厚さtの少なくとも1/5までの範囲においては、下層樹脂と同じ組成を有すると考えられる。従って、ベースフィルム42側の面の組成を得るためには、例えば上記範囲における組成を測定すればよい。 As the depth from the surface of the synthetic polymer film 36 increases, the concentration of each element may gradually approach the element concentration in the lower layer resin. The composition of the surface of the synthetic polymer film 36 opposite to the surface having the plurality of convex portions 36p (also referred to as “surface on the base film 42 side”) is substantially equal to the composition of the lower layer resin. Here, the composition of the surface of the synthetic polymer film 36 on the side of the base film 42 refers to the composition of the portion constituting the surface of the synthetic polymer film 36 on the side of the base film 42. For example, the concentration of nitrogen element contained in the surface on the base film 42 side of the synthetic polymer film 36 is the concentration of nitrogen element contained in the portion constituting the surface on the base film 42 side of the synthetic polymer film 36. Say. For example, the surface of the base film 42 side, in the direction normal to the synthetic polymer film 36, in the range up to at least 1/5 of the thickness t s of the synthetic polymer film 36 and has the same composition as the lower layer resin Conceivable. Therefore, in order to obtain the composition of the surface on the base film 42 side, for example, the composition in the above range may be measured.
 合成高分子膜36のベースフィルム42側の面から、合成高分子膜36の法線方向に、合成高分子膜36の厚さtの例えば少なくとも1/5までの範囲内においては、上層樹脂に含まれる成分はほぼ存在せず、下層樹脂と同じ組成を有すると考えることができる理由について説明する。図11を参照して上述したように、合成高分子膜36の製造工程において、ベースフィルム42をモスアイ用型100に押し付ける際に下層樹脂36a’と上層樹脂36b’とが互いに接触する。この境界近傍では相互拡散によって混ざり合うが、上層樹脂36b’に含まれる成分、特にフッ素元素は、下層樹脂36a’全体に拡散するわけではない。フッ素元素は、モスアイ用型100側に存在しようとする傾向があるからである。下層樹脂36a’と上層樹脂36b’とが互いに接触してから、紫外線を照射するまでの時間が短いと、拡散の度合いはさらに少なくなり得る。下層樹脂36a’と上層樹脂36b’とが互いに接触してから、紫外線を照射するまでの時間は、例えば3秒~5秒である。 From the surface of the base film 42 side of the synthetic polymer film 36, in a direction normal to the synthetic polymer film 36, in the range up to, for example, at least 1/5 the thickness t s of the synthetic polymer film 36, the upper resin The reason why it can be considered that almost no components are present and has the same composition as the lower layer resin will be described. As described above with reference to FIG. 11, in the manufacturing process of the synthetic polymer film 36, the lower layer resin 36 a ′ and the upper layer resin 36 b ′ come into contact with each other when the base film 42 is pressed against the moth-eye mold 100. In the vicinity of this boundary, they are mixed by mutual diffusion, but the components contained in the upper layer resin 36b ′, particularly the fluorine element, do not diffuse throughout the lower layer resin 36a ′. This is because the fluorine element tends to exist on the moth-eye mold 100 side. If the time from when the lower layer resin 36a ′ and the upper layer resin 36b ′ come into contact with each other until the ultraviolet ray is irradiated is short, the degree of diffusion can be further reduced. The time from when the lower layer resin 36a ′ and the upper layer resin 36b ′ come into contact with each other until the ultraviolet ray is irradiated is, for example, 3 to 5 seconds.
 合成高分子膜36の各元素の元素濃度の厚さ方向に対する変化は、もちろん図示した例に限られない。例えば、図示する例においては、下層部分36aは、ケイ素元素およびフッ素元素を有しないが、下層樹脂の材料を任意に選択することによって、ケイ素元素およびフッ素元素の元素濃度は変化し得る。下層樹脂が、フッ素系潤滑剤および/またはシリコーン系潤滑剤を有してもよい。上層樹脂が反応性希釈剤を有すると、上層部分36bは、例えば窒素元素とアクリロイル基とを有する。 Of course, the change of the element concentration of each element of the synthetic polymer film 36 in the thickness direction is not limited to the illustrated example. For example, in the illustrated example, the lower layer portion 36a does not contain a silicon element and a fluorine element, but the element concentrations of the silicon element and the fluorine element can be changed by arbitrarily selecting the material of the lower layer resin. The lower layer resin may have a fluorine-based lubricant and / or a silicone-based lubricant. When the upper layer resin has a reactive diluent, the upper layer portion 36b has, for example, a nitrogen element and an acryloyl group.
 本発明者は、防汚性に優れる合成高分子膜36をロール・ツー・ロール方式で製造することを検討した。本発明者によると、合成高分子膜36をロール・ツー・ロール方式で製造する場合、製造歩留りが低下することがあることが分かった。図13、図14および図15を参照して、本発明者が見出した問題について説明する。図13は、ロール・ツー・ロール方式により合成高分子膜36を製造する方法を説明するための模式的な断面図である。図14および図15は、合成高分子膜36をロール・ツー・ロール方式で製造する場合に生じる問題を説明するための模式的な断面図である。 The present inventor has studied the production of a synthetic polymer film 36 having excellent antifouling properties by a roll-to-roll method. According to the present inventors, it has been found that when the synthetic polymer film 36 is manufactured by a roll-to-roll method, the manufacturing yield may be lowered. The problem found by the present inventor will be described with reference to FIGS. FIG. 13 is a schematic cross-sectional view for explaining a method of manufacturing the synthetic polymer film 36 by the roll-to-roll method. 14 and 15 are schematic cross-sectional views for explaining problems that occur when the synthetic polymer film 36 is manufactured by the roll-to-roll method.
 図13を参照して、ロール・ツー・ロール方式により合成高分子膜36を製造する方法を説明する。 Referring to FIG. 13, a method for producing the synthetic polymer film 36 by the roll-to-roll method will be described.
 まず、円柱状または円筒状のモスアイ用型100Aを用意する。モスアイ用型100Aは、表面に、表面の法線方向から見たときの2次元的な大きさが20nm以上500nm未満の複数の凹部14pを有するポーラスアルミナ層14を有する。複数の凹部14pは反転されたモスアイ構造を構成する。円柱状または円筒状のモスアイ用型100Aの製造方法は、後に詳述する。 First, a columnar or cylindrical moth-eye mold 100A is prepared. The moth-eye mold 100A has a porous alumina layer 14 having a plurality of recesses 14p having a two-dimensional size of 20 nm or more and less than 500 nm when viewed from the normal direction of the surface. The plurality of recesses 14p constitute an inverted moth-eye structure. A method for manufacturing the columnar or cylindrical moth-eye mold 100A will be described in detail later.
 モスアイ用型100Aは、例えば、モスアイ用型100Aの軸方向が水平方向(鉛直方向に垂直な方向)と実質的に平行になるように配置されている。図13は、モスアイ用型100Aの軸方向から見たときの模式的な断面図である。図14および図15も同様である。 The moth-eye mold 100A is arranged, for example, so that the axial direction of the moth-eye mold 100A is substantially parallel to the horizontal direction (direction perpendicular to the vertical direction). FIG. 13 is a schematic cross-sectional view when viewed from the axial direction of the moth-eye mold 100A. 14 and 15 are the same.
 続いて、図13に示すように、下層樹脂36a’が表面に付与されたベースフィルム42を、上層樹脂36b’が表面に付与されたモスアイ用型100Aに押し付けた状態で、(すなわち、モスアイ用型100Aとベースフィルム42の表面との間で下層樹脂36a’および上層樹脂36b’を互いに接触させた状態で、)下層樹脂36a’および上層樹脂36b’に紫外線(UV)を照射することによって、下層樹脂36a’および上層樹脂36b’を硬化させる。 Subsequently, as shown in FIG. 13, the base film 42 provided with the lower layer resin 36a ′ on the surface is pressed against the moth-eye mold 100A provided with the upper layer resin 36b ′ (that is, for the moth eye). By irradiating the lower layer resin 36a ′ and the upper layer resin 36b ′ with ultraviolet rays (UV) with the lower layer resin 36a ′ and the upper layer resin 36b ′ in contact with each other between the mold 100A and the surface of the base film 42, The lower layer resin 36a ′ and the upper layer resin 36b ′ are cured.
 ベースフィルム42は、図示しない巻き出しローラから巻き出され、その後、表面に、例えばスリットコータ等により下層樹脂36a’が付与される。ベースフィルム42は、図13に示すように、支持ローラ46および48によって支持されている。支持ローラ46および48は、回転機構を有し、ベースフィルム42を搬送する。支持ローラ46は、表面に下層樹脂36a’が付与されたベースフィルム42を搬送するためのニップローラであり、支持ローラ48は、硬化された合成高分子膜36を表面に有するベースフィルム42をモスアイ用型100Aから剥離するためのローラである。モスアイ用型100A、支持ローラ46および48は、それぞれ、ベースフィルム42の搬送速度に対応する回転速度で、図13に矢印で示す方向に回転される。 The base film 42 is unwound from an unillustrated unwinding roller, and then a lower layer resin 36a 'is applied to the surface by, for example, a slit coater. The base film 42 is supported by support rollers 46 and 48, as shown in FIG. The support rollers 46 and 48 have a rotation mechanism and convey the base film 42. The support roller 46 is a nip roller for transporting the base film 42 with the lower layer resin 36a ′ applied on the surface, and the support roller 48 is a base film 42 having a cured synthetic polymer film 36 on the surface for the moth eye. It is a roller for peeling from the mold 100A. The moth-eye mold 100A and the support rollers 46 and 48 are rotated in the directions indicated by the arrows in FIG. 13 at a rotation speed corresponding to the conveyance speed of the base film 42, respectively.
 円柱状または円筒状のモスアイ用型100Aの表面(外周面)に上層樹脂36b’を付与するためには、スプレー法が好適に用いられる。スプレー法は、曲面に均一な液膜を容易に形成することできるので、ロール・ツー・ロール方式に好適に用いられる。また、スプレー法は、例えば、形成する液膜の厚さを制御し易い、形成する液膜に対して必要な材料(ここでは樹脂材料)の量が少なくてすむ、装置設置のためのコストおよびスペースを抑えることができる、等の利点を有する。 In order to apply the upper layer resin 36b 'to the surface (outer peripheral surface) of the columnar or cylindrical moth-eye mold 100A, a spray method is preferably used. Since the spray method can easily form a uniform liquid film on a curved surface, it is preferably used for a roll-to-roll method. In addition, the spray method is easy to control the thickness of the liquid film to be formed, and requires a small amount of material (resin material in this case) for the liquid film to be formed. It has the advantage that space can be reduced.
 ここでは、図13に示すように、スプレーノズル92からモスアイ用型100Aの外周面に向かって上層樹脂36b’が噴霧される。モスアイ用型100Aの軸方向に沿って、複数のスプレーノズル92が配列されていてもよい。スプレーノズル92には、例えば液体供給装置93(図14参照)から上層樹脂36b’が供給される。スプレーノズル92は、モスアイ用型100Aの外周面のうち、ベースフィルム42が押し付けられていない部分に向かって上層樹脂36b’を噴霧する。図示する例では、スプレーノズル92はモスアイ用型100Aに対して鉛直方向(水平方向に垂直な方向)下方に設置され、スプレーノズル92から上層樹脂36b’が噴き出される角度は水平方向よりも上向きである。また、図示する例では、紫外線(UV)はモスアイ用型100Aの上側から照射される。例えば露光装置はモスアイ用型100Aに対して鉛直方向上方に配置されている。ただし、スプレーノズル92および露光装置の配置は図示する例に限られない。スプレーノズル92はモスアイ用型100Aの鉛直方向上方に設置され、スプレーノズル92から水平方向よりも下向きに上層樹脂36b’が噴き出されてもよい。この場合、例えば、露光装置はモスアイ用型100Aの鉛直方向下方に配置され、紫外線(UV)はモスアイ用型100Aの鉛直方向下方から照射され得る。 Here, as shown in FIG. 13, the upper layer resin 36b 'is sprayed from the spray nozzle 92 toward the outer peripheral surface of the moth-eye mold 100A. A plurality of spray nozzles 92 may be arranged along the axial direction of the moth-eye mold 100A. For example, the upper layer resin 36 b ′ is supplied to the spray nozzle 92 from a liquid supply device 93 (see FIG. 14). The spray nozzle 92 sprays the upper layer resin 36b 'toward the portion of the outer peripheral surface of the moth-eye mold 100A where the base film 42 is not pressed. In the illustrated example, the spray nozzle 92 is installed below the moth-eye mold 100A in the vertical direction (direction perpendicular to the horizontal direction), and the angle at which the upper layer resin 36b ′ is ejected from the spray nozzle 92 is higher than the horizontal direction. It is. In the example shown in the figure, ultraviolet rays (UV) are irradiated from above the moth-eye mold 100A. For example, the exposure apparatus is arranged vertically above the moth-eye mold 100A. However, the arrangement of the spray nozzle 92 and the exposure apparatus is not limited to the illustrated example. The spray nozzle 92 may be installed above the moth-eye mold 100A in the vertical direction, and the upper resin 36b 'may be ejected from the spray nozzle 92 downward in the horizontal direction. In this case, for example, the exposure apparatus is disposed below the moth-eye mold 100A in the vertical direction, and ultraviolet (UV) can be irradiated from below the moth-eye mold 100A.
 下層樹脂36a’および上層樹脂36b’を硬化させた後、ベースフィルム42からモスアイ用型100Aを分離することによって、モスアイ用型100Aの反転されたモスアイ構造が転写された合成高分子膜36がベースフィルム42の表面に形成される。表面に合成高分子膜36が形成されたベースフィルム42は、図示しない巻き取りローラにより巻き取られる。表面に合成高分子膜36が形成されたベースフィルム42をモスアイ用型100Aから分離した後、合成高分子膜36に再度紫外線を照射してもよい。 After the lower layer resin 36a ′ and the upper layer resin 36b ′ are cured, the moth-eye mold 100A is separated from the base film 42 to thereby transfer the inverted moth-eye structure of the moth-eye mold 100A to the base. It is formed on the surface of the film 42. The base film 42 having the synthetic polymer film 36 formed on the surface is wound up by a winding roller (not shown). After the base film 42 having the synthetic polymer film 36 formed on the surface is separated from the moth-eye mold 100A, the synthetic polymer film 36 may be irradiated with ultraviolet rays again.
 合成高分子膜36の表面は、モスアイ用型100Aのナノ表面構造を反転したナノ表面構造を有する。モスアイ用型のナノ表面構造を適宜調整することにより、所望のナノ表面構造を有する合成高分子膜を製造することができる。 The surface of the synthetic polymer film 36 has a nano surface structure obtained by inverting the nano surface structure of the moth-eye mold 100A. By appropriately adjusting the moth-eye mold nano-surface structure, a synthetic polymer film having a desired nano-surface structure can be produced.
 下層樹脂36a’は、紫外線硬化性樹脂に限られず、可視光で硬化可能な光硬化性樹脂を含んでいてもよい。 The lower layer resin 36a 'is not limited to the ultraviolet curable resin, and may include a photocurable resin that can be cured with visible light.
 本発明者の検討によると、円柱状または円筒状のモスアイ用型100Aの外周面100sにスプレー法で上層樹脂36b’を付与する工程において、上層樹脂36b’が周辺に飛散することによって製造歩留りが低下することがあった。図14に示すように、スプレーノズル92から上層樹脂36b’を噴霧すると、上層樹脂36b’は、例えばモスアイ用型100Aの外周面100sを伝って、周辺に飛散することがある。モスアイ用型100Aの周囲には、モスアイ用型100A、支持ローラ46および48の回転によって、図15中の矢印で示すような気流が発生すると考えられる。噴霧された上層樹脂36b’は、この気流に乗ってモスアイ用型100Aの周囲に拡散すると考えられる。図15中には、モスアイ用型100A、支持ローラ46および48の回転方向を示す矢印も示している。図示する例では、スプレーノズル92から噴出される気体の流れと、モスアイ用型100Aの回転方向とが相まって、モスアイ用型100Aの外周面を伝って支持ローラ46側へ流れる気流が強く形成される傾向にある。また、モスアイ用型100Aと支持ローラ46との間で、モスアイ用型100Aの表面と支持ローラ46の表面とが互いに近付くように回転している箇所では、特に強い気流が生じていた。なお、モスアイ用型100Aの周囲に回転するローラがない場合であっても、図14に示すように、スプレーノズル92から噴霧された液体がモスアイ用型100Aの外周面100sを伝って周辺に飛散するという問題が生じ得る。 According to the study of the present inventor, in the step of applying the upper layer resin 36b ′ to the outer peripheral surface 100s of the columnar or cylindrical moth-eye mold 100A by the spray method, the production yield is increased by the upper layer resin 36b ′ being scattered around. There was a decline. As shown in FIG. 14, when the upper layer resin 36 b ′ is sprayed from the spray nozzle 92, the upper layer resin 36 b ′ may scatter around the outer peripheral surface 100 s of the moth-eye mold 100 </ b> A, for example. Around the moth-eye mold 100A, it is considered that an air flow as indicated by arrows in FIG. 15 is generated by the rotation of the moth-eye mold 100A and the support rollers 46 and 48. It is considered that the sprayed upper layer resin 36b 'is diffused around the moth-eye mold 100A in this air stream. In FIG. 15, arrows indicating the rotational directions of the moth-eye mold 100A and the support rollers 46 and 48 are also shown. In the example shown in the drawing, the flow of the gas ejected from the spray nozzle 92 and the rotation direction of the moth-eye mold 100A combine to form a strong airflow that flows along the outer peripheral surface of the moth-eye mold 100A toward the support roller 46. There is a tendency. Further, a particularly strong air flow was generated between the moth-eye mold 100A and the support roller 46 at a location where the surface of the moth-eye mold 100A and the surface of the support roller 46 were rotated so as to approach each other. Even when there is no rotating roller around the moth-eye mold 100A, as shown in FIG. 14, the liquid sprayed from the spray nozzle 92 travels along the outer peripheral surface 100s of the moth-eye mold 100A and scatters to the periphery. Problems may occur.
 上述したように、モスアイ用型100A上に付与されたときの上層樹脂36b’の厚さは、5μmを超えないことが好ましく、例えば0μm超3μm以下であり、2μm以下がさらに好ましい。このような薄い液膜を形成するために、スプレー法が好適に用いられる。上層樹脂36b’は、ミストとして噴霧されるので、モスアイ用型100Aの周辺の気流に影響され易く、飛散し易い。特に、モスアイ用型100A上に厚さが2μm以下の上層樹脂36b’を形成するためには、スプレーノズル92からミストとして噴霧される上層樹脂36b’の平均径は、例えば20μm以下であることが好ましい。 As described above, the thickness of the upper resin 36b 'when applied on the moth-eye mold 100A is preferably not more than 5 μm, for example, more than 0 μm and 3 μm or less, and more preferably 2 μm or less. In order to form such a thin liquid film, a spray method is preferably used. Since the upper layer resin 36b 'is sprayed as a mist, it is easily influenced by the air current around the moth-eye mold 100A and easily scattered. In particular, in order to form the upper resin 36b ′ having a thickness of 2 μm or less on the moth-eye mold 100A, the average diameter of the upper resin 36b ′ sprayed as mist from the spray nozzle 92 is, for example, 20 μm or less. preferable.
 上記では、円柱状または円筒状のモスアイ用型100Aの外周面100sにスプレー法で上層樹脂36b’を付与する工程における、製造歩留りが低下する問題を説明した。この問題は、防汚性に優れた合成高分子膜を製造する工程に限られるものではなく、また、モスアイ用型を用いる工程に限られるものでもない。円柱状または円筒状の基材の外周面に液膜を形成する工程に共通の問題である。 In the above, the problem that the manufacturing yield is lowered in the step of applying the upper layer resin 36b 'to the outer peripheral surface 100s of the columnar or cylindrical moth-eye mold 100A by the spray method has been described. This problem is not limited to the process of producing a synthetic polymer film excellent in antifouling property, and is not limited to the process of using a moth-eye mold. This is a common problem in the process of forming a liquid film on the outer peripheral surface of a columnar or cylindrical base material.
 以下で、図面を参照して、本発明の実施形態による液膜形成方法および液膜形成装置を説明する。なお、本発明は以下で例示する実施形態に限られない。以下の図面において、実質的に同じ機能を有する構成要素は共通の参照符号で示し、その説明を省略することがある。 Hereinafter, a liquid film forming method and a liquid film forming apparatus according to an embodiment of the present invention will be described with reference to the drawings. In addition, this invention is not restricted to embodiment illustrated below. In the following drawings, components having substantially the same function are denoted by common reference numerals, and description thereof may be omitted.
 図1、図2および図3を参照して、本発明の実施形態による、円柱状または円筒状の基材の外周面に液膜を形成する方法(「液膜形成方法」ということがある。)および円柱状または円筒状の基材の外周面に液膜を形成する装置(「液膜形成装置」ということがある。)を説明する。図1、図2および図3は、本発明の実施形態による液膜形成方法および液膜形成装置50を説明するための模式的な図であり、図2は、図1中のA-A’線に沿った断面を示している。図1および図3は、基材100Aの軸方向から見たときの模式的な断面図である。 With reference to FIG. 1, FIG. 2, and FIG. 3, there is a method of forming a liquid film on the outer peripheral surface of a columnar or cylindrical base material (an “liquid film forming method”) according to an embodiment of the present invention. ) And a device for forming a liquid film on the outer peripheral surface of a columnar or cylindrical substrate (sometimes referred to as a “liquid film forming device”). 1, FIG. 2 and FIG. 3 are schematic views for explaining a liquid film forming method and a liquid film forming apparatus 50 according to an embodiment of the present invention. FIG. A cross section along the line is shown. 1 and 3 are schematic cross-sectional views when viewed from the axial direction of the base material 100A.
 本発明の実施形態による液膜形成方法は、円柱状または円筒状の基材の外周面に向かって液体を噴霧する工程(a)と、外周面の周辺の気体を吸引する工程(b)とを包含する。工程(b)は、工程(a)と同時に行う工程を包含する。工程(b)において吸引する気体の流量は、工程(a)において噴霧される液体を含む気体の流量よりも多い。 The liquid film forming method according to the embodiment of the present invention includes a step (a) of spraying a liquid toward an outer peripheral surface of a columnar or cylindrical base material, and a step (b) of sucking a gas around the outer peripheral surface. Is included. Step (b) includes a step performed simultaneously with step (a). The flow rate of the gas sucked in the step (b) is larger than the flow rate of the gas containing the liquid sprayed in the step (a).
 本発明の実施形態による液膜形成方法によると、噴霧された液体が周辺に飛散することが抑制される。本発明の実施形態による液膜形成方法によると、円柱状または円筒状の基材の外周面に液膜を形成する工程における製造歩留りの低下を抑制することができる。 According to the liquid film forming method according to the embodiment of the present invention, the sprayed liquid is suppressed from being scattered around. According to the liquid film forming method according to the embodiment of the present invention, it is possible to suppress a decrease in manufacturing yield in the step of forming a liquid film on the outer peripheral surface of a columnar or cylindrical base material.
 基材の外周面に向かって液体を噴霧すると同時に、外周面の周辺の気体を吸引することによって、噴霧された液体を周囲に拡散させる気流の生成が抑制される。本発明の実施形態による液膜形成方法によると、基材に接触することなく、噴霧された液体の周囲への拡散を抑制することができる。 When the liquid is sprayed toward the outer peripheral surface of the base material and the gas around the outer peripheral surface is sucked, the generation of an air flow that diffuses the sprayed liquid around is suppressed. According to the liquid film forming method according to the embodiment of the present invention, diffusion of the sprayed liquid to the surroundings can be suppressed without contacting the substrate.
 本発明の実施形態による液膜形成方法は、例えばロール・ツー・ロール方式において用いられる場合は、基材の軸方向が水平方向と実質的に平行になるように基材を配置した状態で、基材の軸を中心に、基材を回転させる工程(c)をさらに包含してもよい。工程(c)において、基材の回転速度は、例えば0rpm超20rpm以下であることが好ましい。 When the liquid film forming method according to the embodiment of the present invention is used in, for example, a roll-to-roll method, in a state where the substrate is arranged so that the axial direction of the substrate is substantially parallel to the horizontal direction, You may further include the process (c) which rotates a base material centering on the axis | shaft of a base material. In the step (c), the rotation speed of the substrate is preferably, for example, more than 0 rpm and 20 rpm or less.
 本発明の実施形態による液膜形成方法は、ロール・ツー・ロール方式にも好適に用いられる。本発明の実施形態による液膜形成方法は、基材に接触することなく、噴霧された液体の周囲への拡散を抑制することができるので、回転している基材に液体を噴霧する場合に好適に用いられる。また、ロール・ツー・ロール方式では、上層樹脂を噴霧する工程を、他の工程(例えば、下層樹脂をベースフィルムの表面に付与する工程、紫外線を照射する工程等)を含む一連の流れの中で行うので、本発明の実施形態による液膜形成方法が好適に用いられる。ロール・ツー・ロール方式では、例えば、モスアイ用型の表面を、他の支持ローラや他の機材から切り離して密閉することは難しい。また、ロール・ツー・ロール方式ではモスアイ用型は回転しているので、モスアイ用型に接触するカバー部材を用いて表面の一部を密閉しようとすると、モスアイ用型の表面に傷が付くことが懸念される。 The liquid film forming method according to the embodiment of the present invention is also suitably used for a roll-to-roll method. Since the liquid film forming method according to the embodiment of the present invention can suppress the diffusion of the sprayed liquid to the surroundings without contacting the base material, when the liquid is sprayed on the rotating base material. Preferably used. In the roll-to-roll method, the process of spraying the upper layer resin is included in a series of flows including other processes (for example, a process of applying a lower layer resin to the surface of the base film, a process of irradiating ultraviolet rays, etc.). Therefore, the liquid film forming method according to the embodiment of the present invention is preferably used. In the roll-to-roll method, for example, it is difficult to seal the surface of the moth-eye mold separately from other support rollers and other equipment. In addition, since the moth-eye mold rotates in the roll-to-roll system, if a part of the surface is sealed with a cover member that contacts the moth-eye mold, the surface of the moth-eye mold will be damaged. Is concerned.
 本発明の実施形態による液膜形成方法は、例えば液膜形成装置50を用いて行うことができる。 The liquid film forming method according to the embodiment of the present invention can be performed using, for example, the liquid film forming apparatus 50.
 図1および図2に示すように、液膜形成装置50は、円柱状または円筒状の基材100Aの外周面100s上に液膜を形成する。円柱状または円筒状の基材は例えばモスアイ用型である。簡単のために、円柱状または円筒状の基材に、モスアイ用型100Aと同じ参照符号を付す。 1 and 2, the liquid film forming apparatus 50 forms a liquid film on the outer peripheral surface 100s of the columnar or cylindrical base material 100A. The columnar or cylindrical substrate is, for example, a moth-eye mold. For simplicity, the same reference numerals as those of the moth-eye mold 100A are attached to the columnar or cylindrical base material.
 液膜形成装置50は、液体を噴霧する吹出し口51と、吹出し口51に液体を供給する液体供給装置52と、吹出し口51を画定する筒状の内側カバー部53と、内側カバー部53の外側に配置されている外側カバー部54と、内側カバー部53と外側カバー部54とによって画定される吸込み口55と、吸込み口55を介して気体を吸引する気体吸引装置56とを有する。 The liquid film forming apparatus 50 includes an outlet 51 that sprays liquid, a liquid supply device 52 that supplies liquid to the outlet 51, a cylindrical inner cover portion 53 that defines the outlet 51, and an inner cover portion 53. It has the outer cover part 54 arrange | positioned on the outer side, the suction inlet 55 demarcated by the inner cover part 53 and the outer cover part 54, and the gas suction apparatus 56 which attracts | sucks gas through the suction inlet 55. FIG.
 図2に示すように、吹出し口51の第1方向(図中のx軸方向)における長さLi1は、第1方向と直交する第2方向(図中のy軸方向)における吹出し口51の長さLi2よりも大きい。基材100Aの外周面100sに向かって液体を噴霧するとき、吹出し口51は、第1方向が基材100Aの軸方向と実質的に平行となるように外周面100sに向けられる。図1では、基材100Aは、基材100Aの軸方向が第1方向と略平行となるように配置されている。図1および図2中では、液膜形成装置50に対してxyz直交座標系を示しているが、液体供給装置52および気体吸引装置56についてはこの限りではない。図示する例では、内側カバー部53および外側カバー部54は、第1方向および第2方向と直交する第3方向(図中のz軸方向)と略平行に延びる筒状である。ただし、内側カバー部53および外側カバー部54が延びる方向は、第3方向と略平行でなくてもよい。 As shown in FIG. 2, the length Li1 of the outlet 51 in the first direction (x-axis direction in the figure) is the length of the outlet 51 in the second direction (y-axis direction in the figure) orthogonal to the first direction. It is larger than the length Li2. When spraying liquid toward the outer peripheral surface 100s of the base material 100A, the outlet 51 is directed toward the outer peripheral surface 100s so that the first direction is substantially parallel to the axial direction of the base material 100A. In FIG. 1, the base material 100A is arranged so that the axial direction of the base material 100A is substantially parallel to the first direction. In FIG. 1 and FIG. 2, an xyz orthogonal coordinate system is shown for the liquid film forming device 50, but the liquid supply device 52 and the gas suction device 56 are not limited to this. In the illustrated example, the inner cover portion 53 and the outer cover portion 54 have a cylindrical shape extending substantially parallel to a third direction (z-axis direction in the drawing) orthogonal to the first direction and the second direction. However, the direction in which the inner cover portion 53 and the outer cover portion 54 extend may not be substantially parallel to the third direction.
 吸込み口55は、吹出し口51と第2方向(図中のy軸方向)に隣接して第1方向(図中のx軸方向)に延びる部分55mを含む。 The suction port 55 includes a portion 55m extending in the first direction (x-axis direction in the drawing) adjacent to the blowout port 51 and in the second direction (y-axis direction in the drawing).
 ここでは、内側カバー部53と外側カバー部54とによって1つの吸込み口55が画定されている。この例では、吹出し口51および吸込み口55を含む断面において、内側カバー部53は、外側カバー部54に囲まれている。この例では、吸込み口55の第1方向(図中のx軸方向)における長さLo1は、吹出し口51の第1方向における長さLi1よりも大きく、吸込み口55の第2方向(図中のy軸方向)における長さLo2は、吹出し口51の第2方向における長さLi2よりも大きい。ただし、内側カバー部53および外側カバー部54の形状、ならびにこれらの配置関係は図示するものに限られない。内側カバー部53と外側カバー部54とによって2つ以上の吸込み口が画定されてもよい。 Here, one suction port 55 is defined by the inner cover portion 53 and the outer cover portion 54. In this example, the inner cover portion 53 is surrounded by the outer cover portion 54 in the cross section including the blowout port 51 and the suction port 55. In this example, the length Lo1 in the first direction (x-axis direction in the drawing) of the suction port 55 is larger than the length Li1 in the first direction of the outlet 51, and the second direction (in the drawing) of the suction port 55. The length Lo2 in the y-axis direction) is larger than the length Li2 in the second direction of the outlet 51. However, the shapes of the inner cover portion 53 and the outer cover portion 54 and the arrangement relationship thereof are not limited to those illustrated. Two or more suction ports may be defined by the inner cover portion 53 and the outer cover portion 54.
 気体吸引装置56は、吹出し口51から噴霧される液体を含む気体の流量よりも多い流量の気体を吸引するように構成されている。 The gas suction device 56 is configured to suck a gas having a flow rate higher than the flow rate of the gas containing the liquid sprayed from the outlet 51.
 図2に示すように、液膜形成装置50は、例えば、吹出し口51内に、第1方向に沿って配列されており、液体を噴霧する複数のノズル57をさらに有する。また、液膜形成装置50は、例えば、吸込み口55内に、気体吸引装置56に接続されている複数の吸引口58をさらに有する。図1に示すように、例えば、ノズル57は接続部67を介して液体供給装置52と接続されている。例えば、吸引口58は接続部65を介して気体吸引装置56と接続されている。 As shown in FIG. 2, the liquid film forming apparatus 50 further includes, for example, a plurality of nozzles 57 arranged in the first direction in the outlet 51 and spraying liquid. The liquid film forming apparatus 50 further includes, for example, a plurality of suction ports 58 connected to the gas suction device 56 in the suction port 55. As shown in FIG. 1, for example, the nozzle 57 is connected to the liquid supply device 52 via a connection portion 67. For example, the suction port 58 is connected to the gas suction device 56 via the connection portion 65.
 液膜形成装置50によると、円柱状または円筒状の基材の外周面に向かって噴霧された液体が周辺に飛散することが抑制される。本発明の実施形態による液膜形成方法によると、円柱状または円筒状の基材の外周面に液膜を形成する工程における製造歩留りの低下を抑制することができる。 According to the liquid film forming apparatus 50, the liquid sprayed toward the outer peripheral surface of the columnar or cylindrical base material is suppressed from being scattered to the periphery. According to the liquid film forming method according to the embodiment of the present invention, it is possible to suppress a decrease in manufacturing yield in the step of forming a liquid film on the outer peripheral surface of a columnar or cylindrical base material.
 気体吸引装置56が、吹出し口51から噴霧される液体を含む気体の流量よりも多い流量の気体を吸引することで、噴霧された液体が基材100Aの外周面100sを伝って拡散することが抑制される。図1中には、斜線を施した矢印で吸込み口55を介して気体吸引装置56が吸引する気体の流れを表し、白抜きの矢印で吹出し口51から噴霧された液体を含む気体の流れを表し、黒塗りの矢印で外側カバー部54の外側の気体の流れを表している。吹出し口51から基材100Aの外周面100sに向かって噴霧された液体を含む気体は、基材100Aの外周面100sに到達した後、吸込み口55から吸引されるので、外周面100sを伝って拡散することが抑制される。特に、吹出し口51の第2方向の長さLi2に対する第1方向における長さLi1のアスペクト比(Li1/Li2)が大きい場合は、吸込み口55の内の部分55mから気体を吸引する気流の寄与が大きい。吸込み口55の内の部分55mは、吹出し口51と基材100Aの円周方向に隣接して基材100Aの軸方向に延びているためである。さらに、外側カバー部54と基材100Aとの間に、外側カバー部54の外側から内側に向かって流れる気流が生成されていることにもよっても、噴霧された液体が外周面100sを伝って拡散することが抑制される。吹出し口51から噴霧される液体は、ミスト化されており、気体とともに噴霧される。吹出し口51からミストとして噴霧される液体の平均径は、例えば20μm以下である。 When the gas suction device 56 sucks the gas having a flow rate higher than the flow rate of the gas including the liquid sprayed from the outlet 51, the sprayed liquid diffuses along the outer peripheral surface 100s of the base material 100A. It is suppressed. In FIG. 1, a hatched arrow indicates a gas flow sucked by the gas suction device 56 through the suction port 55, and a white arrow indicates a gas flow including the liquid sprayed from the outlet 51. The gas flow outside the outer cover portion 54 is represented by a black arrow. Since the gas containing the liquid sprayed from the outlet 51 toward the outer peripheral surface 100s of the base material 100A reaches the outer peripheral surface 100s of the base material 100A and is sucked from the suction port 55, the gas passes through the outer peripheral surface 100s. Diffusion is suppressed. In particular, when the aspect ratio (Li1 / Li2) of the length Li1 in the first direction with respect to the length Li2 in the second direction of the outlet 51 is large, the contribution of the air flow that sucks the gas from the portion 55m in the suction port 55 Is big. This is because the portion 55m in the suction port 55 extends in the axial direction of the base material 100A adjacent to the outlet 51 and the circumferential direction of the base material 100A. Further, the sprayed liquid travels along the outer peripheral surface 100s even though an airflow is generated between the outer cover portion 54 and the base material 100A from the outer side to the inner side. Diffusion is suppressed. The liquid sprayed from the outlet 51 is misted and sprayed with gas. The average diameter of the liquid sprayed as mist from the outlet 51 is, for example, 20 μm or less.
 図2に示すように、吹出し口51は、第1方向および第2方向に垂直な第3方向(図中のz軸方向)に貫通していることが好ましい。液体を噴霧する間、上述した気流を生成し続ける観点から、吹出し口51内の気圧が一定に保たれることが好ましいためである。また、吸込み口55を介して気体吸引装置56から効率よく気体を吸引する観点から、吸込み口55は、第3方向に貫通していないことが好ましい。図示する例では、液膜形成装置50は、吸込み口55の基材100A側と反対側を覆う底面部62をさらに有する。底面部62は、吹出し口51の基材100A側と反対側を覆わないように形成されている。 As shown in FIG. 2, the outlet 51 preferably penetrates in a third direction (z-axis direction in the drawing) perpendicular to the first direction and the second direction. This is because the air pressure in the outlet 51 is preferably kept constant from the viewpoint of continuing to generate the airflow described above while spraying the liquid. Further, from the viewpoint of efficiently sucking gas from the gas suction device 56 through the suction port 55, it is preferable that the suction port 55 does not penetrate in the third direction. In the illustrated example, the liquid film forming apparatus 50 further includes a bottom surface portion 62 that covers the suction port 55 on the side opposite to the base material 100A side. The bottom surface portion 62 is formed so as not to cover the side opposite to the base material 100 </ b> A side of the outlet 51.
 図3を参照して、基材100Aと液膜形成装置50との位置関係を説明する。 With reference to FIG. 3, the positional relationship between the substrate 100A and the liquid film forming apparatus 50 will be described.
 基材100Aと液膜形成装置50との位置関係は、例えば、ノズル57の噴出し孔の先端からモスアイ用型100Aの外周面100sまで最短距離wd、内側カバー部53とモスアイ用型100Aの外周面100sとの最短距離dm1、外側カバー部54とモスアイ用型100Aの外周面100sとの最短距離dm2等によって決められる。図3には、内側カバー部53が筒状に延びる方向における、内側カバー部53とモスアイ用型100Aの外周面100sとの距離dv1および外側カバー部54が筒状に延びる方向における、外側カバー部54とモスアイ用型100Aの外周面100sとの距離dv2もあわせて図示している。また、内側カバー部53が筒状に延びる方向における、内側カバー部53の長さをLi3とし、外側カバー部54が筒状に延びる方向における、外側カバー部54の長さをLo3とする。 The positional relationship between the substrate 100A and the liquid film forming apparatus 50 is, for example, the shortest distance wd from the tip of the ejection hole of the nozzle 57 to the outer peripheral surface 100s of the moth-eye mold 100A, and the outer periphery of the inner cover 53 and the moth-eye mold 100A. It is determined by the shortest distance dm1 between the surface 100s and the shortest distance dm2 between the outer cover portion 54 and the outer peripheral surface 100s of the moth-eye mold 100A. 3 shows the distance dv1 between the inner cover portion 53 and the outer peripheral surface 100s of the moth-eye mold 100A in the direction in which the inner cover portion 53 extends in a cylindrical shape, and the outer cover portion in the direction in which the outer cover portion 54 extends in a cylindrical shape. The distance dv2 between 54 and the outer peripheral surface 100s of the moth-eye mold 100A is also shown. Further, the length of the inner cover portion 53 in the direction in which the inner cover portion 53 extends in a cylindrical shape is Li3, and the length of the outer cover portion 54 in the direction in which the outer cover portion 54 extends in a cylindrical shape is Lo3.
 液膜形成装置50は、基材100Aの外周面100sに接触することなく、噴霧された液体が周辺に飛散することを抑制することができる。液膜形成装置50は、例えば、基材100Aの外周面100sに向かって液体を噴霧するとき、内側カバー部53および外側カバー部54は、基材100Aの外周面100sに接触しないことが可能であるように構成されている。 The liquid film forming apparatus 50 can suppress the sprayed liquid from being scattered around without contacting the outer peripheral surface 100s of the base material 100A. For example, when the liquid film forming apparatus 50 sprays liquid toward the outer peripheral surface 100s of the base material 100A, the inner cover portion 53 and the outer cover portion 54 can not contact the outer peripheral surface 100s of the base material 100A. It is configured to be.
 本発明者が検討した結果を後述するように、気体吸引装置56が吸引する気体の流量と、内側カバー部53および外側カバー部54と基材100Aとの距離とを調節することで、外側カバー部54の外側から内側に向かって流れる気流(図1中の黒塗りの矢印)を制御することができる。外側カバー部54の外側から内側に向かって流れる気流の速度(流速)が適切な値を有し、かつ、位置による流速のむらが小さくなるように制御することで、円柱状または円筒状の基材100Aの外周面100sに向かって噴霧した液体が周辺に飛散することを抑制し、かつ、基材100Aの外周面100sに均一に液膜を形成することができる。例えば、外側カバー部54の外側から内側に向かって流れる気流の流速が十分でないと、噴霧された液体の飛散を抑制することができないが、気流の流速が大き過ぎると、形成された液膜にむらが生じ得る。なお、本発明の実施形態は、例示する条件に限られるものではない。基材を含む系のスケール(サイズ)、液膜を形成する基材のサイズ、噴霧する液体の特性、形成する液膜の厚さ等に応じて適宜調整され得る。 As will be described later, the outer cover is adjusted by adjusting the flow rate of the gas sucked by the gas suction device 56 and the distance between the inner cover portion 53 and the outer cover portion 54 and the base material 100A. It is possible to control the airflow (the black arrow in FIG. 1) flowing from the outside to the inside of the portion 54. By controlling so that the velocity (flow velocity) of the airflow flowing from the outside to the inside of the outer cover portion 54 has an appropriate value and the unevenness of the flow velocity depending on the position becomes small, a columnar or cylindrical base material The liquid sprayed toward the outer peripheral surface 100s of 100A can be prevented from scattering to the periphery, and a liquid film can be uniformly formed on the outer peripheral surface 100s of the substrate 100A. For example, if the flow velocity of the airflow flowing from the outside to the inside of the outer cover portion 54 is not sufficient, scattering of the sprayed liquid cannot be suppressed, but if the flow velocity of the airflow is too large, the formed liquid film Unevenness can occur. Note that the embodiment of the present invention is not limited to the exemplified conditions. It can be appropriately adjusted according to the scale (size) of the system including the substrate, the size of the substrate forming the liquid film, the characteristics of the liquid to be sprayed, the thickness of the liquid film to be formed, and the like.
 液膜形成装置50は、例えば、基材100Aの外周面100sに向かって液体を噴霧するときの、内側カバー部53と基材100Aの外周面100sとの距離または外側カバー部54と基材100Aの外周面100sとの距離の少なくとも一方を変えることができるように構成されていてもよい。例えば、後述する図9に示す例では、外側カバー部54は、内側カバー部53と略平行に延びる筒状部54aと、筒状部54aの基材100A側の端に設けられ、筒状部54aに沿ってスライド可能なスライド部54sとを有する。スライド部54sを筒状部54aに沿ってスライドさせることによって、スライド部54sと基材100Aの外周面100sとの距離を変えることができ、これにより、外側カバー部54と基材100Aの外周面100sとの距離を変えることができる。 For example, when the liquid film forming apparatus 50 sprays liquid toward the outer peripheral surface 100s of the base material 100A, the distance between the inner cover portion 53 and the outer peripheral surface 100s of the base material 100A or the outer cover portion 54 and the base material 100A. It may be configured such that at least one of the distances to the outer peripheral surface 100s can be changed. For example, in the example shown in FIG. 9 described later, the outer cover portion 54 is provided at a cylindrical portion 54a extending substantially parallel to the inner cover portion 53 and an end of the cylindrical portion 54a on the base material 100A side. 54s, which can slide along 54a. By sliding the slide portion 54s along the cylindrical portion 54a, the distance between the slide portion 54s and the outer peripheral surface 100s of the base material 100A can be changed, whereby the outer cover surface 54 and the outer peripheral surface of the base material 100A can be changed. The distance from 100s can be changed.
 なお、図3に示すように、内側カバー部53および外側カバー部54は、支持台66に支持されていてもよい。図示する例では、ノズル57も支持台66に支持されている。支持台66は、車輪(キャスタ)68を有していてもよい。内側カバー部53および外側カバー部54が支持台66の上に設置されていると、これらと基材100Aとの距離を容易に調節することができる。支持台66が車輪68を有していると、調節がさらに行いやすい。また、内側カバー部53および外側カバー部54が支持台66に支持されていることによって、内側カバー部53および外側カバー部54を容易に移動させることができ、かつ、液膜形成装置50を設置するためのスペースを削減することができるという利点も得られる。なお、図3では、液体供給装置52および気体吸引装置56の図示を省略している。 In addition, as shown in FIG. 3, the inner cover portion 53 and the outer cover portion 54 may be supported by a support base 66. In the illustrated example, the nozzle 57 is also supported by the support base 66. The support base 66 may have wheels (casters) 68. When the inner cover portion 53 and the outer cover portion 54 are installed on the support base 66, the distance between them and the base material 100A can be easily adjusted. If the support 66 has wheels 68, the adjustment is easier. Further, since the inner cover portion 53 and the outer cover portion 54 are supported by the support base 66, the inner cover portion 53 and the outer cover portion 54 can be easily moved, and the liquid film forming apparatus 50 is installed. The advantage that the space for doing so can be reduced is also obtained. In FIG. 3, illustration of the liquid supply device 52 and the gas suction device 56 is omitted.
 本発明者の検討によると、例えば、気体吸引装置56が吸引する気体の流量が、吹出し口51から噴霧される液体を含む気体の流量の9倍以上15倍以下であるように構成されていると、円柱状または円筒状の基材100Aの外周面100sに向かって噴霧した液体が周辺に飛散することを抑制し、かつ、基材100Aの外周面100sに均一に液膜を形成することができる。気体吸引装置56が吸引する気体の流量が、吹出し口51から噴霧される液体を含む気体の流量の9倍未満であると、噴霧された液体が外側カバー部54の外側に付着した。気体吸引装置56が吸引する気体の流量が、吹出し口51から噴霧される液体を含む気体の流量の15倍超であると、基材100Aの外周面100sに形成された液膜にむらが生じた。 According to the study of the present inventor, for example, the flow rate of the gas sucked by the gas suction device 56 is configured to be not less than 9 times and not more than 15 times the flow rate of the gas containing the liquid sprayed from the outlet 51. And the liquid sprayed toward the outer peripheral surface 100s of the columnar or cylindrical base material 100A is prevented from scattering to the periphery, and a liquid film is uniformly formed on the outer peripheral surface 100s of the base material 100A. it can. When the flow rate of the gas sucked by the gas suction device 56 is less than 9 times the flow rate of the gas including the liquid sprayed from the outlet 51, the sprayed liquid adhered to the outside of the outer cover portion 54. If the flow rate of the gas sucked by the gas suction device 56 is more than 15 times the flow rate of the gas containing the liquid sprayed from the outlet 51, the liquid film formed on the outer peripheral surface 100s of the base material 100A is uneven. It was.
 本発明者は、図3および図4に示す構造の液膜形成装置50を用いて、適切な吸引流量について検討した。図4は、液膜形成装置50の構成の一例を説明するための模式的な図である。 The present inventor examined an appropriate suction flow rate using the liquid film forming apparatus 50 having the structure shown in FIGS. FIG. 4 is a schematic diagram for explaining an example of the configuration of the liquid film forming apparatus 50.
 ノズル57として超音波ノズル(Sono-Tek社製、製品名:vortex)を用いた。図4に示すように、吹出し口51内には、15個のノズル57が段違いに配置されている(図5および図6参照。図6における角度θa=53°、θb=62°とした。)。吸込み口55には、吹出し口51の両側に8個ずつ吸引口58が設けられている。内側カバー部53および外側カバー部54のサイズ、内側カバー部53および外側カバー部54と基材との距離dv1、dv2、最短距離dm1、dm2は、以下の通りである。
  Li1=1420mm、Li2=107mm、Li3=152mm
  Lo1=1442mm、Lo2=213mm、Lo3=189mm
  dL1=50mm、dL2=8mm
  dm1=15.2mm、dm2=22.5mm
  dv1=25mm、dv2=25mm
ここでは、内側カバー部53は、第1方向において外側カバー部54の中央に配置されており、第2方向において外側カバー部54の中央に配置されている。吸込み口55は、内側カバー部53を包囲するように形成されている。図4には、吸込み口55の第1方向に延びる部分の幅dL2、および第2方向に延びる部分の幅dL1もあわせて示している。
An ultrasonic nozzle (manufactured by Sono-Tek, product name: vortex) was used as the nozzle 57. As shown in FIG. 4, fifteen nozzles 57 are arranged in steps in the outlet 51 (see FIG. 5 and FIG. 6. The angles θa = 53 ° and θb = 62 ° in FIG. 6 were set. ). The suction port 55 is provided with eight suction ports 58 on both sides of the blowout port 51. The sizes of the inner cover portion 53 and the outer cover portion 54, the distances dv1, dv2, and the shortest distances dm1, dm2 between the inner cover portion 53 and the outer cover portion 54 and the base material are as follows.
Li1 = 1420mm, Li2 = 107mm, Li3 = 152mm
Lo1 = 1442mm, Lo2 = 213mm, Lo3 = 189mm
dL1 = 50mm, dL2 = 8mm
dm1 = 15.2mm, dm2 = 22.5mm
dv1 = 25mm, dv2 = 25mm
Here, the inner cover portion 53 is disposed at the center of the outer cover portion 54 in the first direction, and is disposed at the center of the outer cover portion 54 in the second direction. The suction port 55 is formed so as to surround the inner cover portion 53. FIG. 4 also shows the width dL2 of the portion extending in the first direction of the suction port 55 and the width dL1 of the portion extending in the second direction.
 用いた基材100Aの軸方向の長さは1600mm、底面の直径は300mmである。液体を噴霧したときの、ノズル57の先端と基材100Aの外周面100sとの最短距離wdは110.45mmであった。 The base material 100A used has an axial length of 1600 mm and a bottom surface diameter of 300 mm. When the liquid was sprayed, the shortest distance wd between the tip of the nozzle 57 and the outer peripheral surface 100s of the substrate 100A was 110.45 mm.
 吹出し口51から噴霧される液体を含む気体の流量は2m/minとした。吸引口58と気体吸引装置56との間に設けられたバルブによって、気体吸引装置56が吸引する気体の流量を変化させた。気体吸引装置56が吸引する気体の流量が17.3m/minの場合には、噴霧された液体が外側カバー部54の外側に付着し、気体吸引装置56が吸引する気体の流量が30.9m/minの場合には、基材100Aの外周面100sに形成された液膜にむらが生じた。気体吸引装置56が吸引する気体の流量が24.3m/minの場合には、噴霧した液体が周辺に飛散することを抑制され、かつ、基材100Aの外周面100sに均一に液膜を形成することができた。 The flow rate of the gas containing the liquid sprayed from the outlet 51 was set to 2 m 3 / min. The flow rate of the gas sucked by the gas suction device 56 was changed by a valve provided between the suction port 58 and the gas suction device 56. When the flow rate of the gas sucked by the gas suction device 56 is 17.3 m 3 / min, the sprayed liquid adheres to the outside of the outer cover portion 54, and the flow rate of the gas sucked by the gas suction device 56 is 30. In the case of 9 m 3 / min, the liquid film formed on the outer peripheral surface 100 s of the base material 100 A was uneven. When the flow rate of the gas sucked by the gas suction device 56 is 24.3 m 3 / min, the sprayed liquid is prevented from scattering to the periphery, and a liquid film is uniformly formed on the outer peripheral surface 100s of the base material 100A. Could be formed.
 なお、本発明者は、気体吸引装置56が吸引する気体の流量を、吸込み口55の断面積と、吸込み口55を通過する気流の流速との積から見積もった。吸込み口55の断面積は、Lo1×dL2×2とした。吸込み口55の第2方向に延びる部分の幅dL1が、第1方向に延びる部分の幅dL2に比べて小さいので、断面積をこのように近似した。吸込み口55を通過する気流の流速は、図4に白抜きの矢印で示す24箇所で測定した値の平均値とした。流速の測定には(KANOMAX製、製品名:アネモマスタ―風速計6006-00)を用いた。吸引口58と気体吸引装置56との間に設けられたバルブによって、気体吸引装置56が吸引する気体の流量を4通りに変化させ、それぞれの場合の吸引流量を見積もったところ、17.3m/min、24.3m/min、30.9m/minおよび42m/minであった。なお、42m/minと見積もられた場合は、バルブを全開にした場合である。バルブを全開にした場合について、異なる方法で気体吸引装置56の吸引流量を見積もったところ、44m/minであり、ほぼ同じ値が得られた。よって、上記見積もりの妥当性が確かめられた。異なる方法としては、気体吸引装置56の性能と、吸引口58と気体吸引装置56との間に設けられた配管の圧力損失とから、気体吸引装置56の吸引流量を見積もった。 The inventor estimated the flow rate of the gas sucked by the gas suction device 56 from the product of the cross-sectional area of the suction port 55 and the flow velocity of the airflow passing through the suction port 55. The cross-sectional area of the suction port 55 was Lo1 × dL2 × 2. Since the width dL1 of the portion extending in the second direction of the suction port 55 is smaller than the width dL2 of the portion extending in the first direction, the cross-sectional area is approximated in this way. The flow velocity of the airflow passing through the suction port 55 is an average value of values measured at 24 points indicated by white arrows in FIG. For measurement of the flow velocity, a product manufactured by KANOMAX (product name: Anemomaster-anemometer 6006-00) was used. When the flow rate of the gas sucked by the gas suction device 56 is changed in four ways by a valve provided between the suction port 58 and the gas suction device 56, the suction flow rate in each case is estimated to be 17.3 m 3. /min,24.3m was 3 /min,30.9m 3 / min and 42m 3 / min. In addition, when it is estimated as 42 m < 3 > / min, it is a case where a valve | bulb is fully opened. When the valve was fully opened, the suction flow rate of the gas suction device 56 was estimated by a different method. As a result, it was 44 m 3 / min, and almost the same value was obtained. Therefore, the validity of the above estimate was confirmed. As a different method, the suction flow rate of the gas suction device 56 was estimated from the performance of the gas suction device 56 and the pressure loss of the piping provided between the suction port 58 and the gas suction device 56.
 本発明者の検討によると、基材100Aの外周面100sに向かって液体を噴霧するとき、内側カバー部53と基材100Aの外周面100sとの最短距離dm1および外側カバー部54と基材100Aの外周面100sとの最短距離dm2は、それぞれ小さいことが好ましい。後述するように、内側カバー部53と基材100Aの外周面100sとの最短距離dm1および外側カバー部54と基材100Aの外周面100sとの最短距離dm2が大きいと、位置による流速のむらが大きくなる。上述した検討結果から、液膜形成装置50は、例えば、基材100Aの外周面100sに向かって液体を噴霧するとき、内側カバー部53と基材100Aの外周面100sとの最短距離dm1および外側カバー部54と基材100Aの外周面100sとの最短距離dm2を、それぞれ、30mm以下とすることができるように構成されていることが好ましく、25mm以下とすることができるように構成されていることがさらに好ましい。 According to the study of the present inventors, when the liquid is sprayed toward the outer peripheral surface 100s of the base material 100A, the shortest distance dm1 between the inner cover portion 53 and the outer peripheral surface 100s of the base material 100A and the outer cover portion 54 and the base material 100A. Each of the shortest distances dm2 to the outer peripheral surface 100s is preferably small. As will be described later, when the shortest distance dm1 between the inner cover portion 53 and the outer peripheral surface 100s of the base material 100A and the shortest distance dm2 between the outer cover portion 54 and the outer peripheral surface 100s of the base material 100A are large, the unevenness of the flow velocity depending on the position is large. Become. From the examination results described above, when the liquid film forming apparatus 50 sprays liquid toward the outer peripheral surface 100s of the base material 100A, for example, the shortest distance dm1 between the inner cover portion 53 and the outer peripheral surface 100s of the base material 100A and the outer side The shortest distances dm2 between the cover portion 54 and the outer peripheral surface 100s of the base material 100A are preferably configured to be 30 mm or less, and are configured to be 25 mm or less. More preferably.
 本発明者は、図4とは別の実験系で、外側カバー部54の外側から内側に向かって流れる気流の流速を複数の位置で計測し、そのばらつきの程度を調べた。例えば図4に白抜きの矢印で示しているように、外側カバー部54の第1方向(図中のx軸方向)に延びる辺に沿って測定位置を変え、気流の流速の変化を調べた。ここでは吸引口58は1つのみ設け、測定位置によって吸引口58からの距離が異なるようにした。本発明者の測定によると、内側カバー部53と基材100Aの外周面100sとの最短距離dm1および外側カバー部54と基材100Aの外周面100sとの最短距離dm2を30mmとすると、気流の流速は吸引口58からの距離に依存(例えば吸引口58からの距離に反比例)し、吸引口58からの距離が近いほど流速が大きかった。これに対して、内側カバー部53と基材100Aの外周面100sとの最短距離dm1および外側カバー部54と基材100Aの外周面100sとの最短距離dm2を10mmとすると、吸引口58からの距離が変化しても流速の変化が小さかった。すなわち、外側カバー部54の外側から内側に向かって流れる気流の速度をほぼ一定にすることができた。なお、最短距離dm1およびdm2の好ましい範囲は、例えば基材を含む系のスケール(サイズ)によって変化すると考えられる。 The inventor measured the flow velocity of the airflow flowing from the outside to the inside of the outer cover portion 54 at a plurality of positions in an experimental system different from that shown in FIG. For example, as shown by the white arrow in FIG. 4, the measurement position was changed along the side extending in the first direction (x-axis direction in the drawing) of the outer cover portion 54, and the change in the flow velocity of the airflow was examined. . Here, only one suction port 58 is provided, and the distance from the suction port 58 differs depending on the measurement position. According to the measurement of the present inventor, when the shortest distance dm1 between the inner cover portion 53 and the outer peripheral surface 100s of the base material 100A and the shortest distance dm2 between the outer cover portion 54 and the outer peripheral surface 100s of the base material 100A are 30 mm, The flow rate depends on the distance from the suction port 58 (for example, inversely proportional to the distance from the suction port 58), and the closer to the distance from the suction port 58, the larger the flow rate. In contrast, when the shortest distance dm1 between the inner cover portion 53 and the outer peripheral surface 100s of the base material 100A and the shortest distance dm2 between the outer cover portion 54 and the outer peripheral surface 100s of the base material 100A are 10 mm, The change in flow rate was small even when the distance changed. That is, the velocity of the airflow flowing from the outside to the inside of the outer cover portion 54 can be made almost constant. In addition, it is thought that the preferable range of the shortest distances dm1 and dm2 varies depending on, for example, the scale (size) of the system including the substrate.
 液膜形成装置50は、ロール・ツー・ロール方式にも好適に用いられる。液膜形成装置50は、基材100Aに接触することなく、噴霧された液体の周囲への拡散を抑制することができるので、回転している基材100Aに液体を噴霧する場合に好適に用いられる。また、ロール・ツー・ロール方式では、上層樹脂を噴霧する工程を、他の工程(例えば、下層樹脂をベースフィルムの表面に付与する工程、紫外線を照射する工程等)を含む一連の流れの中で行うので、液膜形成装置50が好適に用いられる。ロール・ツー・ロール方式では、例えば、モスアイ用型の表面を、他の支持ローラや他の機材から切り離して密閉することは難しい。また、ロール・ツー・ロール方式ではモスアイ用型は回転しているので、モスアイ用型に接触するカバー部材を用いて表面の一部を密閉すると、モスアイ用型の表面に傷が付くことが懸念される。 The liquid film forming apparatus 50 is also suitably used for a roll-to-roll system. Since the liquid film forming apparatus 50 can suppress the diffusion of the sprayed liquid to the surroundings without contacting the base material 100A, it is preferably used when spraying the liquid onto the rotating base material 100A. It is done. In the roll-to-roll method, the process of spraying the upper layer resin is included in a series of flows including other processes (for example, a process of applying a lower layer resin to the surface of the base film, a process of irradiating ultraviolet rays, etc.). Therefore, the liquid film forming apparatus 50 is preferably used. In the roll-to-roll method, for example, it is difficult to seal the surface of the moth-eye mold separately from other support rollers and other equipment. In addition, since the moth-eye mold rotates in the roll-to-roll system, there is a concern that the surface of the moth-eye mold may be damaged if a part of the surface is sealed with a cover member that contacts the moth-eye mold. Is done.
 特許文献6は、平板状の基板の洗浄に用いられる基板処理装置を開示している。特許文献6の基板処理装置は、基板に向けて処理液(例えば洗浄液)を噴出する噴出ノズルと、噴出ノズルの両側に配置され、基板の洗浄に用いられた処理液を周囲の気体とともに吸引する2つの吸引ノズルとを有する。特許文献6の基板処理装置は、基板の表面に洗浄液を衝突させることによって、基板の表面に付着した異物を除去し、基板を洗浄する。特許文献6の基板処理装置は、吸引ノズルを有することによって、基板の洗浄に用いられた処理液が基板に再び付着し基板が汚染されることを抑制することができる。なお、基板の洗浄処理を効率よく行う観点からは、噴出ノズルから基板の表面に向かって噴出される洗浄液の速度は大きいことが好ましく、例えば噴出ノズルは一流体ノズルよりも二流体ノズルであることが好ましいとされている。 Patent Document 6 discloses a substrate processing apparatus used for cleaning a flat substrate. The substrate processing apparatus of Patent Document 6 is arranged on both sides of a jet nozzle for jetting a processing liquid (for example, a cleaning liquid) toward the substrate, and sucks the processing liquid used for cleaning the substrate together with the surrounding gas. And two suction nozzles. The substrate processing apparatus of Patent Document 6 cleans the substrate by removing foreign substances adhering to the surface of the substrate by causing the cleaning liquid to collide with the surface of the substrate. Since the substrate processing apparatus of Patent Document 6 has the suction nozzle, it is possible to prevent the processing liquid used for cleaning the substrate from adhering to the substrate again and contaminating the substrate. From the viewpoint of efficiently performing the substrate cleaning process, it is preferable that the speed of the cleaning liquid ejected from the ejection nozzle toward the surface of the substrate is high. For example, the ejection nozzle is a two-fluid nozzle rather than a one-fluid nozzle. Is preferred.
 これに対して、液膜形成装置50は円柱状または円筒状の基材の外周面に液膜を形成することを目的としている。従って、液膜形成装置50において、噴霧される液体の速度および方向は、円柱状または円筒状の基材の外周面に液膜が均一に付与される観点から調節されることが好ましい。液膜形成装置50が有する、液体を噴霧するノズル57としては、例えば、超音波ノズル、二流体ノズル、スワールノズル、または静電ノズル等を用いることができる。 In contrast, the liquid film forming apparatus 50 is intended to form a liquid film on the outer peripheral surface of a columnar or cylindrical base material. Therefore, in the liquid film forming apparatus 50, the speed and direction of the sprayed liquid are preferably adjusted from the viewpoint that the liquid film is uniformly applied to the outer peripheral surface of the columnar or cylindrical base material. As the nozzle 57 that sprays the liquid that the liquid film forming apparatus 50 has, for example, an ultrasonic nozzle, a two-fluid nozzle, a swirl nozzle, an electrostatic nozzle, or the like can be used.
 [ノズルについて]
 超音波ノズルは、液体を超音波の振動によって霧化して噴霧する方式のスプレーノズルである。二流体ノズルは、2系統に分けられた圧縮空気と液体とを混合して噴出する方式のスプレーノズルである。超音波ノズルを用いることにより、二流体ノズルを用いる場合に比べて噴霧されるミストの平均径を小さくすることができる。例えば超音波ノズルによって噴霧されるミストの平均径は、数μm~数十μm程度である。また、超音波ノズルでは、液体および気体に圧力が加えられないので、噴霧した液体の飛散や跳ね返りを抑制することができる。超音波ノズルは塗着効率の観点からも優れている。例えば噴霧した液体の塗着効率は、二流体ノズルでは60%以上であるのに対し、超音波ノズルでは95%以上である。
[Nozzles]
The ultrasonic nozzle is a spray nozzle that sprays a liquid by atomizing the liquid by ultrasonic vibration. The two-fluid nozzle is a spray nozzle that mixes and ejects compressed air and liquid divided into two systems. By using an ultrasonic nozzle, the average diameter of the mist sprayed can be made smaller than when using a two-fluid nozzle. For example, the average diameter of the mist sprayed by the ultrasonic nozzle is about several μm to several tens of μm. In addition, since no pressure is applied to the liquid and the gas in the ultrasonic nozzle, the sprayed liquid can be prevented from being scattered or rebounded. The ultrasonic nozzle is excellent from the viewpoint of coating efficiency. For example, the application efficiency of the sprayed liquid is 60% or more for the two-fluid nozzle, and 95% or more for the ultrasonic nozzle.
 スワールノズルを用いることもできる。スワールノズルを用いることにより、螺旋状の気流を発生させることができるので、液滴を旋回させながら、基材の外周面に付与することができる。このとき、液滴が基材の外周面に到達する際の衝撃を小さくすることができるので、基材の外周面で跳ねる液滴を低減することができる。また、液膜の形成は、静電ノズルを用いて行ってもよい。静電ノズルは、帯電させた液滴を噴霧する方式のスプレーノズルである。例えば、基材の表面とノズルとの間に電圧を印加することによって、液滴を帯電させ、基材の表面に液滴を効率よく付着させることができる。静電ノズルを用いて噴霧した液体の塗着効率は、例えば98%である。 A swirl nozzle can also be used. By using the swirl nozzle, a spiral air flow can be generated, and thus the liquid droplets can be applied to the outer peripheral surface of the substrate while swirling. At this time, since the impact when the droplets reach the outer peripheral surface of the substrate can be reduced, the droplets that splash on the outer peripheral surface of the substrate can be reduced. The liquid film may be formed using an electrostatic nozzle. The electrostatic nozzle is a spray nozzle that sprays charged droplets. For example, by applying a voltage between the surface of the substrate and the nozzle, the droplets can be charged and the droplets can be efficiently attached to the surface of the substrate. The application efficiency of the liquid sprayed using the electrostatic nozzle is, for example, 98%.
 本発明者の検討によると、超音波ノズルを用いることが好ましく、特に螺旋状の気流を発生させることができる超音波ノズルを用いることが好ましい。詳細な検討結果は後述する。 According to the study of the present inventor, it is preferable to use an ultrasonic nozzle, and it is particularly preferable to use an ultrasonic nozzle that can generate a spiral airflow. Detailed examination results will be described later.
 [ミスト化に適した液体]
 本発明者は、超音波ノズル(Sono-Tek社製、製品名:vortex)を用いて、ミスト化できる液体の特性を検討した。
[Liquid suitable for mist]
The inventor examined the characteristics of a liquid that can be misted using an ultrasonic nozzle (product name: vortex) manufactured by Sono-Tek.
 噴霧する液体として、3種類の異なる液体(水、A液およびB液)を用い、ミスト化(霧化)された状態が安定かどうかを判定した。液体の流量は3ml/minとし、電力は1~3Wとした。 As the liquid to be sprayed, three different liquids (water, liquid A and liquid B) were used, and it was determined whether the mist (atomized) state was stable. The liquid flow rate was 3 ml / min, and the power was 1 to 3 W.
 表1には、判定結果とともに、各液体の特性をあわせて示す。各液体の粘度、静的表面張力、および動的表面張力の測定は、23℃で行った。 Table 1 shows the characteristics of each liquid together with the determination results. The viscosity, static surface tension, and dynamic surface tension of each liquid were measured at 23 ° C.
 粘度は、東機産業社製のTV25形粘度計(製品名:TVE-25L)を用いて測定した。 Viscosity was measured using a TV25 viscometer (product name: TVE-25L) manufactured by Toki Sangyo Co., Ltd.
 静的表面張力は、浸透速度法を用いて測定した。浸透速度法は、カラム中に対象物を一定の圧力で押し固めて充填し、関係式:l/t=(r・γcosθ)/2ηから、水で測定したときの対象物の表面張力を決定する方法である。上記関係式中、lは水の浸透高さを示し、tは時間を示し、rは充填された対象物の毛管半径を示し、γは表面張力を示し、ηは水の粘度を示し、θは接触角を示す。表面張力が小さいほど接触角が大きくなり、撥水性がより高いことを示す。 Static surface tension was measured using the penetration rate method. In the permeation rate method, an object is pressed and packed in a column at a constant pressure, and the surface tension of the object as measured with water is calculated from the relational expression: l 2 / t = (r · γ cos θ) / 2η. It is a method of determination. In the above relational expression, l indicates the penetration depth of water, t indicates time, r indicates the capillary radius of the filled object, γ indicates the surface tension, η indicates the viscosity of water, θ Indicates a contact angle. The smaller the surface tension, the greater the contact angle, indicating higher water repellency.
 動的表面張力は、最大泡圧法により求めた。自動動的表面張力計(BP-D5、協和界面科学社製)を用いて、各液体(塗工液)中に挿したプローブ(細管)から気泡を連続的に発生させたときの最大圧力(最大泡圧)を測定し、表面張力を求めた。具体的には、ライフタイム(プローブ先端内で新しい界面が生成した時点から最大泡圧となるまでの時間;「表面寿命」と呼ばれることもある。)が100msである場合の表面張力の値を測定した。 Dynamic surface tension was determined by the maximum bubble pressure method. Using an automatic dynamic surface tension meter (BP-D5, manufactured by Kyowa Interface Science Co., Ltd.), the maximum pressure when bubbles are continuously generated from a probe (capillary tube) inserted in each liquid (coating liquid) ( Maximum bubble pressure) was measured to determine the surface tension. Specifically, the value of the surface tension when the lifetime (the time from when a new interface is generated in the probe tip to the time when the maximum bubble pressure is reached; sometimes referred to as “surface life”) is 100 ms. It was measured.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、水およびA液では霧化状態が安定していたが、B液では安定していなかった。A液とB液は、ほぼ同じ値の静的表面張力を有するにもかかわらず、ミスト化された場合の安定性には差があった。ミスト化された場合の安定性には、液体の静的表面張力は寄与しないことが分かる。超音波ノズルとしてvortexを用いた場合、噴霧する液体は、例えば、最大泡圧法による23℃での表面寿命が100msである時の動的表面張力が31mN/m以上であることが好ましいことが分かった。また、噴霧する液体は、例えば、23℃における粘度が20cP以下であることが好ましい。 As shown in Table 1, the atomization state was stable with water and liquid A, but was not stable with liquid B. Although A liquid and B liquid have the static surface tension of about the same value, there was a difference in stability when misted. It can be seen that the static surface tension of the liquid does not contribute to the stability when misted. When vortex is used as the ultrasonic nozzle, it is found that the liquid to be sprayed preferably has a dynamic surface tension of 31 mN / m or more when the surface lifetime at 23 ° C. by the maximum bubble pressure method is 100 ms. It was. The liquid to be sprayed preferably has a viscosity at 23 ° C. of 20 cP or less, for example.
 [ノズルの配置]
 図5および図6を参照して、液膜形成装置50が有する複数のノズル57の配置を説明する。図5は、基材100Aの外周面100sに向かって液体を噴霧するときの、基材100Aと液膜形成装置50との配置関係を説明するための模式的な斜視図であり、図6は、基材100Aの軸方向と平行な方向から液膜形成装置50を見たときの模式的な側面図である。図5および図6においては、見やすさのために、内側カバー部53および外側カバー部54の図示を省略している。
[Nozzle arrangement]
With reference to FIGS. 5 and 6, the arrangement of the plurality of nozzles 57 included in the liquid film forming apparatus 50 will be described. FIG. 5 is a schematic perspective view for explaining the positional relationship between the base material 100A and the liquid film forming apparatus 50 when the liquid is sprayed toward the outer peripheral surface 100s of the base material 100A. FIG. 4 is a schematic side view of the liquid film forming apparatus 50 viewed from a direction parallel to the axial direction of the base material 100A. In FIGS. 5 and 6, illustration of the inner cover portion 53 and the outer cover portion 54 is omitted for ease of viewing.
 図5に示すように、液膜形成装置50は、例えば、基材100Aを、基材100Aの軸方向が水平方向と実質的に平行になるように、かつ、基材100Aの軸の周りに回転可能に支持する回転支持構造体59をさらに有する。 As shown in FIG. 5, for example, the liquid film forming apparatus 50 is configured so that the base material 100A is placed so that the axial direction of the base material 100A is substantially parallel to the horizontal direction and around the axis of the base material 100A. It further has a rotation support structure 59 that supports the rotation.
 図5に示すように、基材100Aの外周面100sに向かって液体を噴霧するとき、複数のノズル57は、基材100Aの軸方向と略平行に配列されている。図5および図6に示すように、複数のノズル57は、隣接するノズル57の高さが互いに異なるように配置されていることが好ましい。すなわち、複数のノズル57は、段違いに配置されていることが好ましい。また、複数のノズル57は、隣接するノズル57の噴出し孔の水平方向に対する角度が互いに異なるように配置されていることがさらに好ましい。図5および図6に示す例では、複数のノズル57は、互いに高さの異なる第1ノズル57aおよび第2ノズル57bを有している。第2ノズル57bは、第1ノズル57aに比べ、鉛直方向上方に配置されている。図6には、第1ノズル57aの位置と第2ノズル57bの位置との鉛直方向における差Δvおよび水平方向における差Δhを図示している。また、第1ノズル57aおよび第2ノズル57bは、噴出し孔の水平方向に対する角度が互いに異なる。第2ノズル57bの噴出し孔の水平方向に対する角度θbは、第1ノズル57aの噴出し孔の水平方向に対する角度θaに比べて大きい。第1ノズル57aおよび第2ノズル57bは、交互に配置されている。 As shown in FIG. 5, when the liquid is sprayed toward the outer peripheral surface 100s of the substrate 100A, the plurality of nozzles 57 are arranged substantially parallel to the axial direction of the substrate 100A. As shown in FIGS. 5 and 6, the plurality of nozzles 57 are preferably arranged such that the heights of the adjacent nozzles 57 are different from each other. That is, it is preferable that the plurality of nozzles 57 are arranged in a different manner. Further, it is more preferable that the plurality of nozzles 57 are arranged so that the angles of the ejection holes of the adjacent nozzles 57 with respect to the horizontal direction are different from each other. In the example shown in FIGS. 5 and 6, the plurality of nozzles 57 includes a first nozzle 57 a and a second nozzle 57 b having different heights. The second nozzle 57b is disposed vertically above the first nozzle 57a. FIG. 6 illustrates a difference Δv in the vertical direction and a difference Δh in the horizontal direction between the position of the first nozzle 57a and the position of the second nozzle 57b. Further, the first nozzle 57a and the second nozzle 57b have different angles with respect to the horizontal direction of the ejection holes. The angle θb with respect to the horizontal direction of the ejection hole of the second nozzle 57b is larger than the angle θa with respect to the horizontal direction of the ejection hole of the first nozzle 57a. The first nozzle 57a and the second nozzle 57b are alternately arranged.
 本発明者の検討によると、隣接するノズル57の高さが同じであり、隣接するノズル57の噴出し孔の水平方向に対する角度が同じであると、図7に示すように、基材100Aの外周面100sに形成した液膜に円周方向に延びる筋状のむらが生じることがあった。図7は、基材100Aの外周面100sに形成した液膜に生じる円周方向に延びる筋状のむらを示す図である。本発明者の検討によると、この筋状のむらは、ノズル57の位置や数によって変化し、例えば隣接するノズル57の間隔に対応して形成されていた。また、筋状のむらは、基材100Aの回転速度が速い方が生じやすい傾向にあった。隣接するノズル57の高さが互いに異なるように配置されていると、複数のノズル57から噴霧された液体が基材100Aの外周面100sに均一に付与され、筋状のむらの形成が抑制された。 According to the study of the present inventor, when the height of the adjacent nozzles 57 is the same and the angle of the ejection holes of the adjacent nozzles 57 with respect to the horizontal direction is the same, as shown in FIG. In some cases, streaky irregularities extending in the circumferential direction occur in the liquid film formed on the outer peripheral surface 100s. FIG. 7 is a diagram showing streaky irregularities extending in the circumferential direction generated in the liquid film formed on the outer peripheral surface 100s of the base material 100A. According to the study of the present inventor, this uneven stripe varies depending on the position and number of the nozzles 57 and is formed, for example, corresponding to the interval between the adjacent nozzles 57. In addition, streaky irregularities tend to occur more easily when the rotation speed of the base material 100A is faster. When the adjacent nozzles 57 are arranged so that their heights are different from each other, the liquid sprayed from the plurality of nozzles 57 is uniformly applied to the outer peripheral surface 100s of the base material 100A, and the formation of streaky irregularities is suppressed. .
 本発明者は、表2に示すように、複数のノズル57の配置および基材100Aの回転速度について検討した。なお、ここでは気体の吸引は行わずに実験を行った。 The present inventor examined the arrangement of the plurality of nozzles 57 and the rotation speed of the base material 100A as shown in Table 2. Here, the experiment was carried out without sucking the gas.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示すように、複数のノズル57の配置および基材100Aの回転速度を変えて、基材100Aの外周面100sに向かって液体を噴霧し、外周面100sに均一に液膜が形成されるかどうかを調べた。条件AおよびBでは、複数のノズル57は直線上に配列されている。条件Aでは液膜にむらが生じたが、基材100Aの回転速度を小さくすると(条件B)、液膜にむらが生じなかった。また、複数のノズル57を段違いに配列すると(条件C)、液膜にむらが生じなかった。 As shown in Table 2, by changing the arrangement of the plurality of nozzles 57 and the rotation speed of the base material 100A, the liquid is sprayed toward the outer peripheral surface 100s of the base material 100A, and a liquid film is uniformly formed on the outer peripheral surface 100s. I investigated whether or not. Under conditions A and B, the plurality of nozzles 57 are arranged on a straight line. Under the condition A, the liquid film was uneven, but when the rotation speed of the substrate 100A was decreased (condition B), the liquid film was not uneven. In addition, when the plurality of nozzles 57 were arranged in steps (Condition C), the liquid film was not uneven.
 [送液ポンプ]
 吹出し口51に液体を供給する液体供給装置52は、例えば、液体を収容する容器と、容器と吹出し口51との間に配置された送液ポンプとを含む。送液ポンプは、例えば、容器と、容器と吹出し口51とを連結するチューブに設けられている。基材100Aの外周面100sに液膜を均一に形成する観点からは、送液ポンプから供給される液体の流量の時間依存性が小さいことが好ましい。例えば、脈動を有しないまたは脈動が小さい送液ポンプを用いることが好ましい。弁構造を有しないポンプを用いてもよい。
[Feed pump]
The liquid supply device 52 that supplies the liquid to the outlet 51 includes, for example, a container that stores the liquid and a liquid feed pump that is disposed between the container and the outlet 51. The liquid feed pump is provided in, for example, a tube that connects the container and the outlet 51 to the container. From the viewpoint of uniformly forming a liquid film on the outer peripheral surface 100s of the base material 100A, it is preferable that the time dependency of the flow rate of the liquid supplied from the liquid feed pump is small. For example, it is preferable to use a liquid feed pump that has no pulsation or small pulsation. A pump without a valve structure may be used.
 本発明者は、液体を収容する容器と送液ポンプとの間に液体流量センサー(センシリオン株式会社製、製品名:SLI-2000)を設置し、送液ポンプから供給される液体の流量の時間依存性を測定した。送液ポンプとしてシリンジポンプ(株式会社ミナトコンセプト製、製品名:MCIP-BOi)を用いて液体を供給した(流量:5ml/min)場合は、およそ4秒周期の脈動が生じていた。これに対し、送液ポンプとしてチューブポンプ(株式会社ミナトコンセプト製、製品名:MCRP204型)を用いて液体を供給した(流量:5ml/min)場合はほとんど脈動が生じていなかった。 The present inventor installed a liquid flow rate sensor (manufactured by Sensirion Co., Ltd., product name: SLI-2000) between the container for storing the liquid and the liquid feed pump, and the flow time of the liquid supplied from the liquid feed pump Dependency was measured. When a liquid was supplied using a syringe pump (product name: MCIP-BOi, manufactured by Minato Concept Co., Ltd.) as a liquid feed pump (flow rate: 5 ml / min), pulsations with a cycle of about 4 seconds were generated. In contrast, when a liquid was supplied using a tube pump (product name: MCRP204 type, manufactured by Minato Concept Co., Ltd.) as a liquid feed pump (flow rate: 5 ml / min), almost no pulsation occurred.
 [気体吸引装置]
 図8を参照して、液膜形成装置50の構成の一例を説明する。図8は、液膜形成装置50の構成の一例を説明するための模式的な図である。
[Gas suction device]
An example of the configuration of the liquid film forming apparatus 50 will be described with reference to FIG. FIG. 8 is a schematic diagram for explaining an example of the configuration of the liquid film forming apparatus 50.
 吸込み口55を介して気体を吸引する気体吸引装置56は、例えば、吸引ファン56である。図8に示すように、液膜形成装置50は、例えば、吸込み口55から吸引した気体から液体(ミストを含む)を取り除く分離器(不図示)と、分離器によって気体から分離された液体を収容するドレインタンク72とをさらに有する。吸引ファン56は、分離器によって液体が取り除かれた気体を、フィルター73を介して例えば屋外に排出する。例えば、複数の吸引口58のそれぞれに配管71aが接続され、配管71aは配管71bに接続されている。配管71bの内径は、配管71aの内径よりも大きくてもよい。1つの配管71bに対して複数の配管71aが接続されていてもよい。複数の吸引口58から吸引された気体は、配管71a、71bを通って分離器およびドレインタンク72に送られ、吸引ファン56に送られる。配管71aおよび/または配管71bには、気体吸引装置56が吸引する気体の流量を調節するバルブ(不図示)が設けられていてもよい。 The gas suction device 56 that sucks gas through the suction port 55 is, for example, a suction fan 56. As shown in FIG. 8, the liquid film forming apparatus 50 includes, for example, a separator (not shown) that removes liquid (including mist) from the gas sucked from the suction port 55, and liquid separated from the gas by the separator. A drain tank 72 is further included. The suction fan 56 discharges the gas from which the liquid has been removed by the separator, for example, to the outside through the filter 73. For example, a pipe 71a is connected to each of the plurality of suction ports 58, and the pipe 71a is connected to the pipe 71b. The inner diameter of the pipe 71b may be larger than the inner diameter of the pipe 71a. A plurality of pipes 71a may be connected to one pipe 71b. The gas sucked from the plurality of suction ports 58 is sent to the separator and drain tank 72 through the pipes 71 a and 71 b and sent to the suction fan 56. The pipe 71a and / or the pipe 71b may be provided with a valve (not shown) for adjusting the flow rate of the gas sucked by the gas suction device 56.
 液膜形成装置50は、内側カバー部53に接して吹出し口51内に設けられた液受け部61(図9参照)をさらに有してもよい。本発明者の検討によると、数時間に亘って液体を噴霧し続けると、内側カバー部53に付着したミストが内側カバー部53を伝って流れることがあった。特に、吹出し口51が第3方向(図中のz軸方向)に貫通していると、内側カバー部53に付着したミストが内側カバー部53を伝って流れ、液滴となって落下することがあった。液膜形成装置50が液受け部61をさらに有すると、このような液滴が落下することを防ぐことができる。液受け部61には、例えば管またはチューブ(不図示)が接続され、管またはチューブを介して液受け部61内に収容した液滴を回収するように構成されている。 The liquid film forming apparatus 50 may further include a liquid receiving portion 61 (see FIG. 9) provided in the outlet 51 in contact with the inner cover portion 53. According to the study of the present inventor, when the liquid is continuously sprayed for several hours, the mist attached to the inner cover portion 53 may flow along the inner cover portion 53. In particular, when the outlet 51 penetrates in the third direction (z-axis direction in the figure), the mist attached to the inner cover portion 53 flows along the inner cover portion 53 and falls as a droplet. was there. If the liquid film forming apparatus 50 further includes the liquid receiving portion 61, it is possible to prevent such droplets from falling. For example, a tube or a tube (not shown) is connected to the liquid receiving unit 61, and the liquid droplets stored in the liquid receiving unit 61 are collected via the tube or the tube.
 液膜形成装置50は、吹出し口51の基材100A側の一部を覆う液受け部64(図9参照)をさらに有していてもよい。液受け部64は、例えば金属材料で形成されている。本発明者の検討によると、図9に示すようにロール・ツー・ロール方式による合成高分子膜の製造を行う場合、数時間に亘って液体を噴霧し続けると、外側カバー部54の基材100A側の部分にミストが付着することがあり、外側カバー部54に付着した液滴が支持ローラ48に付着することがあった。本発明者の検討によると、支持ローラ48によってベースフィルム42をモスアイ用型100Aから剥離する際にベースフィルム42の表面に静電気が発生することによって、外側カバー部54に付着した液滴が支持ローラ48に付着すると考えられる。液膜形成装置50が液受け部64を有することによって、このような液滴の飛散が抑制される。 The liquid film forming apparatus 50 may further include a liquid receiving portion 64 (see FIG. 9) that covers a part of the outlet 51 on the base material 100A side. The liquid receiving part 64 is made of, for example, a metal material. According to the study of the present inventor, when the synthetic polymer film is manufactured by the roll-to-roll method as shown in FIG. 9, if the liquid is continuously sprayed for several hours, the base material of the outer cover portion 54 is obtained. Mist may adhere to the portion on the 100A side, and droplets adhering to the outer cover portion 54 may adhere to the support roller 48. According to the study of the present inventor, when the base film 42 is peeled from the moth-eye mold 100A by the support roller 48, static electricity is generated on the surface of the base film 42, so that the droplets attached to the outer cover portion 54 are transferred to the support roller. 48. Since the liquid film forming apparatus 50 includes the liquid receiving portion 64, such scattering of droplets is suppressed.
 [合成高分子膜の製造方法]
 上述したように、本発明の実施形態による液膜形成装置または液膜形成方法は、合成高分子膜の製造方法にも用いることができる。本発明の実施形態による液膜形成装置または液膜形成方法は、防汚性に優れる合成高分子膜の製造方法に好適に用いることができる。図9を参照して、本発明の実施形態による合成高分子膜の製造方法を説明する。図9は、合成高分子膜36をロール・ツー・ロール方式で製造する方法を説明するための模式的な断面図である。図9は、モスアイ用型100Aの軸方向から見たときの断面図である。図11~図13を参照して説明した合成高分子膜36の製造方法と共通の事項については説明を省略することがある。また、実質的に同じ機能を有する構成要素は、共通の参照符号を付して、その説明を省略する。
[Method for producing synthetic polymer film]
As described above, the liquid film forming apparatus or the liquid film forming method according to the embodiment of the present invention can also be used in a method for producing a synthetic polymer film. The liquid film forming apparatus or the liquid film forming method according to the embodiment of the present invention can be suitably used for a method for producing a synthetic polymer film having excellent antifouling properties. With reference to FIG. 9, the manufacturing method of the synthetic polymer film by embodiment of this invention is demonstrated. FIG. 9 is a schematic cross-sectional view for explaining a method of manufacturing the synthetic polymer film 36 by a roll-to-roll method. FIG. 9 is a cross-sectional view of the moth-eye mold 100A viewed from the axial direction. Descriptions of matters common to the method of manufacturing the synthetic polymer film 36 described with reference to FIGS. 11 to 13 may be omitted. In addition, components having substantially the same function are denoted by common reference numerals, and description thereof is omitted.
 本発明の実施形態による合成高分子膜の製造方法は、表面の法線方向から見たときの2次元的な大きさが20nm以上500nm未満である複数の凹部を有する、反転されたモスアイ構造を表面に有するポーラスアルミナ層を有する、円柱状または円筒状の型を用いて、合成高分子膜を製造する方法である。本発明の実施形態による合成高分子膜の製造方法は、型と、被加工物とを用意する工程(A)と、被加工物の表面に紫外線硬化性樹脂を含む第1樹脂を付与する工程(B)と、本発明の実施形態による液膜形成装置を用いてまたは本発明の実施形態による液膜形成方法によって、型の表面にフッ素含有モノマーを含む第2樹脂を付与する工程(C)と、型と被加工物の表面との間で第1樹脂および第2樹脂を互いに接触させた状態で、第1樹脂および第2樹脂に紫外線を照射することによって第1樹脂および第2樹脂を硬化させる工程(D)とを包含する。 A method for producing a synthetic polymer film according to an embodiment of the present invention includes an inverted moth-eye structure having a plurality of recesses having a two-dimensional size of 20 nm or more and less than 500 nm when viewed from the normal direction of the surface. This is a method for producing a synthetic polymer film using a columnar or cylindrical mold having a porous alumina layer on the surface. A method for producing a synthetic polymer film according to an embodiment of the present invention includes a step (A) of preparing a mold and a workpiece, and a step of applying a first resin containing an ultraviolet curable resin to the surface of the workpiece. (B) and a step (C) of applying a second resin containing a fluorine-containing monomer to the surface of the mold by using the liquid film forming apparatus according to the embodiment of the present invention or by the liquid film forming method according to the embodiment of the present invention. And irradiating the first resin and the second resin with ultraviolet rays in a state where the first resin and the second resin are in contact with each other between the mold and the surface of the workpiece, Curing (D).
 本発明の実施形態による合成高分子膜の製造方法によると、製造歩留りの低下を抑制しつつ、ロール・ツー・ロール方式で防汚性に優れた合成高分子膜を製造することができる。 According to the method for producing a synthetic polymer film according to the embodiment of the present invention, it is possible to produce a synthetic polymer film excellent in antifouling property by a roll-to-roll method while suppressing a decrease in production yield.
 例えば図9に示すように、ノズル57の噴出し孔の先端とモスアイ用型100Aの中心100oとを結ぶ直線と、モスアイ用型100Aの中心100oと支持ローラ48の中心48oとを結ぶ直線とのなす角度をθnとする。支持ローラ46の中心46oは、例えば、モスアイ用型100Aの中心100oと支持ローラ48の中心48oとを結ぶ直線上にあってもよい。 For example, as shown in FIG. 9, a straight line connecting the tip of the ejection hole of the nozzle 57 and the center 100o of the moth-eye mold 100A, and a straight line connecting the center 100o of the moth-eye mold 100A and the center 48o of the support roller 48 The angle formed is θn. The center 46o of the support roller 46 may be, for example, on a straight line connecting the center 100o of the moth-eye mold 100A and the center 48o of the support roller 48.
 本発明の実施形態による液膜形成装置または液膜形成方法は、上述した合成高分子膜の製造方法に限られず用いることができる。例えば、噴霧する液体は、表面処理剤、離型剤等、型の表面に付与される公知の種々の材料であり得る。また、例えば、本出願人による国際公開第2018/012340号に記載の合成高分子膜の製造方法のうち、製法3においては、離型剤(例えば光反応性基を有するフッ素含有モノマーを含む離型剤)を含む樹脂を型の表面に付与する。この工程において、本発明の実施形態による液膜形成装置または液膜形成方法が用いられ得る。参考のために国際公開第2018/012340号の開示内容のすべてを本明細書に援用する。 The liquid film forming apparatus or the liquid film forming method according to the embodiment of the present invention can be used without being limited to the synthetic polymer film manufacturing method described above. For example, the liquid to be sprayed may be various known materials applied to the surface of the mold, such as a surface treatment agent and a release agent. Further, for example, among the methods for producing a synthetic polymer film described in International Publication No. 2018/012340 by the present applicant, in production method 3, a release agent (for example, a release agent containing a fluorine-containing monomer having a photoreactive group) is used. A resin containing a mold agent is applied to the surface of the mold. In this step, the liquid film forming apparatus or the liquid film forming method according to the embodiment of the present invention can be used. The entire disclosure of WO2018 / 012340 is incorporated herein for reference.
 [モスアイ用型の製造方法]
 図10(a)~(e)を参照して、モスアイ用型100Aの製造方法を説明する。図10(a)~(e)は、モスアイ用型100Aの製造方法を説明するための模式的な断面図である。
[Method for manufacturing moth-eye mold]
A manufacturing method of the moth-eye mold 100A will be described with reference to FIGS. FIGS. 10A to 10E are schematic cross-sectional views for explaining a method for manufacturing the moth-eye mold 100A.
 まず、図10(a)に示すように、型基材として、円筒状のアルミニウム基材12と、アルミニウム基材12の表面に形成された無機材料層16と、無機材料層16の上に堆積されたアルミニウム膜18とを有する型基材10を用意する。 First, as shown in FIG. 10A, a cylindrical aluminum substrate 12, an inorganic material layer 16 formed on the surface of the aluminum substrate 12, and an inorganic material layer 16 are deposited as a mold substrate. The mold base 10 having the aluminum film 18 thus prepared is prepared.
 アルミニウム基材12としては、アルミニウムの純度が99.50mass%以上99.99mass%未満である比較的剛性の高いアルミニウム基材を用いる。アルミニウム基材12に含まれる不純物としては、鉄(Fe)、ケイ素(Si)、銅(Cu)、マンガン(Mn)、亜鉛(Zn)、ニッケル(Ni)、チタン(Ti)、鉛(Pb)、スズ(Sn)およびマグネシウム(Mg)からなる群から選択された少なくとも1つの元素を含むことが好ましく、特にMgが好ましい。エッチング工程におけるピット(窪み)が形成されるメカニズムは、局所的な電池反応であるので、理想的にはアルミニウムよりも貴な元素を全く含まず、卑な金属であるMg(標準電極電位が-2.36V)を不純物元素として含むアルミニウム基材12を用いることが好ましい。アルミニウムよりも貴な元素の含有率が10ppm以下であれば、電気化学的な観点からは、当該元素を実質的に含んでいないと言える。Mgの含有率は、全体の0.1mass%以上であることが好ましく、約3.0mass%以下の範囲であることがさらに好ましい。Mgの含有率が0.1mass%未満では十分な剛性が得られない。一方、含有率が大きくなると、Mgの偏析が起こり易くなる。モスアイ用型を形成する表面付近に偏析が生じても電気化学的には問題とならないが、Mgはアルミニウムとは異なる形態の陽極酸化膜を形成するので、不良の原因となる。不純物元素の含有率は、アルミニウム基材12の形状、厚さおよび大きさに応じて、必要とされる剛性に応じて適宜設定すればよい。例えば圧延加工によって板状のアルミニウム基材12を作製する場合には、Mgの含有率は約3.0mass%が適当であるし、押出加工によって円筒などの立体構造を有するアルミニウム基材12を作製する場合には、Mgの含有率は2.0mass%以下であることが好ましい。Mgの含有率が2.0mass%を超えると、一般に押出加工性が低下する。 As the aluminum substrate 12, a relatively rigid aluminum substrate having an aluminum purity of 99.50 mass% or more and less than 99.99 mass% is used. As impurities contained in the aluminum substrate 12, iron (Fe), silicon (Si), copper (Cu), manganese (Mn), zinc (Zn), nickel (Ni), titanium (Ti), lead (Pb) It is preferable that at least one element selected from the group consisting of tin (Sn) and magnesium (Mg) is included, and Mg is particularly preferable. The mechanism by which pits (dents) are formed in the etching process is a local cell reaction, and therefore ideally contains no noble elements than aluminum and is a base metal, Mg (standard electrode potential − It is preferable to use an aluminum substrate 12 containing 2.36V) as an impurity element. If the content of an element nobler than aluminum is 10 ppm or less, it can be said that the said element is not included substantially from an electrochemical viewpoint. The Mg content is preferably 0.1% by mass or more, and more preferably in the range of about 3.0% by mass or less. If the Mg content is less than 0.1 mass%, sufficient rigidity cannot be obtained. On the other hand, when the content rate increases, Mg segregation easily occurs. Even if segregation occurs in the vicinity of the surface forming the moth-eye mold, there is no electrochemical problem. However, Mg forms an anodic oxide film having a form different from that of aluminum, which causes defects. What is necessary is just to set suitably the content rate of an impurity element according to the rigidity required according to the shape of the aluminum base material 12, thickness, and a magnitude | size. For example, when the plate-shaped aluminum substrate 12 is produced by rolling, an appropriate Mg content is about 3.0 mass%, and the aluminum substrate 12 having a three-dimensional structure such as a cylinder is produced by extrusion. When it does, it is preferable that the content rate of Mg is 2.0 mass% or less. If the Mg content exceeds 2.0 mass%, extrusion processability generally decreases.
 アルミニウム基材12として、例えば、JIS A1050、Al-Mg系合金(例えばJIS A5052)、またはAl-Mg-Si系合金(例えばJIS A6063)で形成された円筒状のアルミニウム管を用いる。 As the aluminum substrate 12, for example, a cylindrical aluminum tube formed of JIS A1050, Al—Mg alloy (for example, JIS A5052), or Al—Mg—Si alloy (for example, JIS A6063) is used.
 アルミニウム基材12の表面は、バイト切削が施されていることが好ましい。アルミニウム基材12の表面に、例えば砥粒が残っていると、砥粒が存在する部分において、アルミニウム膜18とアルミニウム基材12との間で導通しやすくなる。砥粒以外にも、凹凸が存在するところでは、アルミニウム膜18とアルミニウム基材12との間で局所的に導通しやすくなる。アルミニウム膜18とアルミニウム基材12との間で局所的に導通すると、アルミニウム基材12内の不純物とアルミニウム膜18との間で局所的に電池反応が起こる可能性がある。 The surface of the aluminum substrate 12 is preferably subjected to cutting by cutting. If, for example, abrasive grains remain on the surface of the aluminum base 12, electrical conduction between the aluminum film 18 and the aluminum base 12 is facilitated in a portion where the abrasive grains exist. In addition to the abrasive grains, where there are irregularities, local conduction between the aluminum film 18 and the aluminum substrate 12 is likely to occur. When local conduction is made between the aluminum film 18 and the aluminum base 12, there is a possibility that a battery reaction occurs locally between the impurities in the aluminum base 12 and the aluminum film 18.
 無機材料層16の材料としては、例えば酸化タンタル(Ta)または二酸化シリコン(SiO)を用いることができる。無機材料層16は、例えばスパッタ法により形成することができる。無機材料層16として、酸化タンタル層を用いる場合、酸化タンタル層の厚さは、例えば、200nmである。 As a material of the inorganic material layer 16, for example, tantalum oxide (Ta 2 O 5 ) or silicon dioxide (SiO 2 ) can be used. The inorganic material layer 16 can be formed by sputtering, for example. When a tantalum oxide layer is used as the inorganic material layer 16, the thickness of the tantalum oxide layer is, for example, 200 nm.
 無機材料層16の厚さは、100nm以上500nm未満であることが好ましい。無機材料層16の厚さが100nm未満であると、アルミニウム膜18に欠陥(主にボイド、すなわち結晶粒間の間隙)が生じることがある。また、無機材料層16の厚さが500nm以上であると、アルミニウム基材12の表面状態によって、アルミニウム基材12とアルミニウム膜18との間が絶縁されやすくなる。アルミニウム基材12側からアルミニウム膜18に電流を供給することによってアルミニウム膜18の陽極酸化を行うためには、アルミニウム基材12とアルミニウム膜18との間に電流が流れる必要がある。円筒状のアルミニウム基材12の内面から電流を供給する構成を採用すると、アルミニウム膜18に電極を設ける必要がないので、アルミニウム膜18を全面にわたって陽極酸化できるとともに、陽極酸化の進行に伴って電流が供給され難くなるという問題も起こらず、アルミニウム膜18を全面にわたって均一に陽極酸化することができる。 The thickness of the inorganic material layer 16 is preferably 100 nm or more and less than 500 nm. If the thickness of the inorganic material layer 16 is less than 100 nm, defects (mainly voids, that is, gaps between crystal grains) may occur in the aluminum film 18 in some cases. Further, when the thickness of the inorganic material layer 16 is 500 nm or more, the aluminum base 12 and the aluminum film 18 are easily insulated from each other depending on the surface state of the aluminum base 12. In order to anodize the aluminum film 18 by supplying current to the aluminum film 18 from the aluminum substrate 12 side, it is necessary that a current flow between the aluminum substrate 12 and the aluminum film 18. If a configuration is adopted in which current is supplied from the inner surface of the cylindrical aluminum substrate 12, it is not necessary to provide an electrode on the aluminum film 18, so that the aluminum film 18 can be anodized over the entire surface, and the current is increased as the anodization proceeds. Therefore, the aluminum film 18 can be uniformly anodized over the entire surface without causing a problem that it is difficult to be supplied.
 また、厚い無機材料層16を形成するためには、一般的には成膜時間を長くする必要がある。成膜時間が長くなると、アルミニウム基材12の表面温度が不必要に上昇し、その結果、アルミニウム膜18の膜質が悪化し、欠陥(主にボイド)が生じることがある。無機材料層16の厚さが500nm未満であれば、このような不具合の発生を抑制することもできる。 Further, in order to form the thick inorganic material layer 16, it is generally necessary to lengthen the film formation time. When the film formation time is lengthened, the surface temperature of the aluminum base 12 is unnecessarily increased. As a result, the film quality of the aluminum film 18 is deteriorated, and defects (mainly voids) may occur. If the thickness of the inorganic material layer 16 is less than 500 nm, the occurrence of such a problem can be suppressed.
 アルミニウム膜18は、例えば、国際公開第2011/125486号に記載されているように、純度が99.99mass%以上のアルミニウムで形成された膜(以下、「高純度アルミニウム膜」ということがある。」)である。アルミニウム膜18は、例えば、真空蒸着法またはスパッタ法を用いて形成される。アルミニウム膜18の厚さは、約500nm以上約1500nm以下の範囲にあることが好ましく、例えば、約1μmである。 For example, as described in International Publication No. 2011/125486, the aluminum film 18 may be a film formed of aluminum having a purity of 99.99 mass% or more (hereinafter referred to as “high-purity aluminum film”). ]). The aluminum film 18 is formed using, for example, a vacuum deposition method or a sputtering method. The thickness of the aluminum film 18 is preferably in the range of about 500 nm or more and about 1500 nm or less, for example, about 1 μm.
 また、アルミニウム膜18として、高純度アルミニウム膜に代えて、国際公開第2013/183576号に記載されている、アルミニウム合金膜を用いてもよい。国際公開第2013/183576号に記載のアルミニウム合金膜は、アルミニウムと、アルミニウム以外の金属元素と、窒素とを含む。本明細書において、「アルミニウム膜」は、高純度アルミニウム膜だけでなく、国際公開第2013/183576号に記載のアルミニウム合金膜を含むものとする。 As the aluminum film 18, an aluminum alloy film described in International Publication No. 2013/183576 may be used instead of the high-purity aluminum film. The aluminum alloy film described in International Publication No. 2013/183576 includes aluminum, a metal element other than aluminum, and nitrogen. In the present specification, the “aluminum film” includes not only a high-purity aluminum film but also an aluminum alloy film described in International Publication No. 2013/183576.
 上記アルミニウム合金膜を用いると、反射率が80%以上の鏡面を得ることができる。アルミニウム合金膜を構成する結晶粒の、アルミニウム合金膜の法線方向から見たときの平均粒径は、例えば、100nm以下であり、アルミニウム合金膜の最大表面粗さRmaxは60nm以下である。アルミニウム合金膜に含まれる窒素の含有率は、例えば、0.5mass%以上5.7mass%以下である。アルミニウム合金膜に含まれるアルミニウム以外の金属元素の標準電極電位とアルミニウムの標準電極電位との差の絶対値は0.64V以下であり、アルミニウム合金膜中の金属元素の含有率は、1.0mass%以上1.9mass%以下であることが好ましい。金属元素は、例えば、TiまたはNdである。但し、金属元素はこれに限られず、金属元素の標準電極電位とアルミニウムの標準電極電位との差の絶対値が0.64V以下である他の金属元素(例えば、Mn、Mg、Zr、VおよびPb)であってもよい。さらに、金属元素は、Mo、NbまたはHfであってもよい。アルミニウム合金膜は、これらの金属元素を2種類以上含んでもよい。アルミニウム合金膜は、例えば、DCマグネトロンスパッタ法で形成される。アルミニウム合金膜の厚さも約500nm以上約1500nm以下の範囲にあることが好ましく、例えば、約1μmである。 When using the aluminum alloy film, a mirror surface with a reflectance of 80% or more can be obtained. The average grain size of the crystal grains constituting the aluminum alloy film as viewed from the normal direction of the aluminum alloy film is, for example, 100 nm or less, and the maximum surface roughness Rmax of the aluminum alloy film is 60 nm or less. The content rate of nitrogen contained in the aluminum alloy film is, for example, not less than 0.5 mass% and not more than 5.7 mass%. The absolute value of the difference between the standard electrode potential of a metal element other than aluminum contained in the aluminum alloy film and the standard electrode potential of aluminum is 0.64 V or less, and the content of the metal element in the aluminum alloy film is 1.0 mass. % Or more and 1.9 mass% or less is preferable. The metal element is, for example, Ti or Nd. However, the metal element is not limited to this, and other metal elements whose absolute value of the difference between the standard electrode potential of the metal element and the standard electrode potential of aluminum is 0.64 V or less (for example, Mn, Mg, Zr, V, and Pb). Furthermore, the metal element may be Mo, Nb, or Hf. The aluminum alloy film may contain two or more of these metal elements. The aluminum alloy film is formed by, for example, a DC magnetron sputtering method. The thickness of the aluminum alloy film is also preferably in the range of about 500 nm to about 1500 nm, for example, about 1 μm.
 次に、図10(b)に示すように、アルミニウム膜18の表面18sを陽極酸化することによって、複数の凹部(細孔)14pを有するポーラスアルミナ層14を形成する。ポーラスアルミナ層14は、凹部14pを有するポーラス層と、バリア層(凹部(細孔)14pの底部)とを有している。隣接する凹部14pの間隔(中心間距離)は、バリア層の厚さのほぼ2倍に相当し、陽極酸化時の電圧にほぼ比例することが知られている。この関係は、図10(e)に示す最終的なポーラスアルミナ層14についても成立する。 Next, as shown in FIG. 10B, the surface 18s of the aluminum film 18 is anodized to form a porous alumina layer 14 having a plurality of recesses (pores) 14p. The porous alumina layer 14 has a porous layer having a recess 14p and a barrier layer (the bottom of the recess (pore) 14p). It is known that the interval between the adjacent recesses 14p (center-to-center distance) corresponds to approximately twice the thickness of the barrier layer and is approximately proportional to the voltage during anodization. This relationship also holds for the final porous alumina layer 14 shown in FIG.
 ポーラスアルミナ層14は、例えば、酸性の電解液中で表面18sを陽極酸化することによって形成される。ポーラスアルミナ層14を形成する工程で用いられる電解液は、例えば、蓚酸、酒石酸、燐酸、硫酸、クロム酸、クエン酸、リンゴ酸からなる群から選択される酸を含む水溶液である。例えば、アルミニウム膜18の表面18sを、蓚酸水溶液(濃度0.3mass%、液温10℃)を用いて、印加電圧80Vで55秒間陽極酸化を行うことにより、ポーラスアルミナ層14を形成する。 The porous alumina layer 14 is formed, for example, by anodizing the surface 18s in an acidic electrolytic solution. The electrolytic solution used in the step of forming the porous alumina layer 14 is, for example, an aqueous solution containing an acid selected from the group consisting of oxalic acid, tartaric acid, phosphoric acid, sulfuric acid, chromic acid, citric acid, and malic acid. For example, the porous alumina layer 14 is formed by anodizing the surface 18 s of the aluminum film 18 using an oxalic acid aqueous solution (concentration 0.3 mass%, liquid temperature 10 ° C.) at an applied voltage of 80 V for 55 seconds.
 次に、図10(c)に示すように、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによって所定の量だけエッチングすることにより凹部14pの開口部を拡大する。エッチング液の種類・濃度、およびエッチング時間を調整することによって、エッチング量(すなわち、凹部14pの大きさおよび深さ)を制御することができる。エッチング液としては、例えば10mass%の燐酸や、蟻酸、酢酸、クエン酸などの有機酸や硫酸の水溶液やクロム酸燐酸混合水溶液を用いることができる。例えば、燐酸水溶液(10mass%、30℃)を用いて20分間エッチングを行う。 Next, as shown in FIG. 10C, the opening of the recess 14p is enlarged by etching the porous alumina layer 14 by a predetermined amount by contacting the alumina layer 14 with an alumina etchant. The amount of etching (that is, the size and depth of the recess 14p) can be controlled by adjusting the type / concentration of the etching solution and the etching time. As an etchant, for example, 10 mass% phosphoric acid, an organic acid such as formic acid, acetic acid, or citric acid, an aqueous solution of sulfuric acid, or a mixed aqueous solution of chromic phosphoric acid can be used. For example, etching is performed for 20 minutes using a phosphoric acid aqueous solution (10 mass%, 30 ° C.).
 次に、図10(d)に示すように、再び、アルミニウム膜18を部分的に陽極酸化することにより、凹部14pを深さ方向に成長させるとともにポーラスアルミナ層14を厚くする。ここで凹部14pの成長は、既に形成されている凹部14pの底部から始まるので、凹部14pの側面は階段状になる。 Next, as shown in FIG. 10 (d), the aluminum film 18 is partially anodized again to grow the recess 14p in the depth direction and to thicken the porous alumina layer 14. Here, since the growth of the recess 14p starts from the bottom of the already formed recess 14p, the side surface of the recess 14p is stepped.
 さらにこの後、必要に応じて、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによってさらにエッチングすることにより凹部14pの孔径をさらに拡大する。エッチング液としては、ここでも上述したエッチング液を用いることが好ましく、現実的には、同じエッチング浴を用いればよい。 Further thereafter, if necessary, the porous alumina layer 14 is further etched by bringing it into contact with an alumina etchant to further enlarge the hole diameter of the recess 14p. As the etchant, it is preferable to use the above-described etchant, and in practice, the same etch bath may be used.
 このように、上述した陽極酸化工程およびエッチング工程を交互に複数回(例えば5回:陽極酸化を5回とエッチングを4回)繰り返すことによって、図10(e)に示すように、反転されたモスアイ構造を有するポーラスアルミナ層14を有するモスアイ用型100Aが得られる。陽極酸化工程で終わることによって、凹部14pの底部を点にできる。すなわち、先端が尖った凸部を形成することができる型が得られる。 In this way, the above-described anodizing step and etching step are alternately repeated a plurality of times (for example, five times: five times of anodization and four times of etching), thereby being inverted as shown in FIG. A moth-eye mold 100A having a porous alumina layer 14 having a moth-eye structure is obtained. By finishing with the anodizing step, the bottom of the recess 14p can be pointed. That is, a mold capable of forming a convex part with a sharp tip is obtained.
 図10(e)に示すポーラスアルミナ層14(厚さt)は、ポーラス層(厚さは凹部14pの深さDに相当)とバリア層(厚さt)とを有する。ポーラスアルミナ層14は、合成高分子膜36が有するモスアイ構造を反転した構造を有するので、その大きさを特徴づける対応するパラメータに同じ記号を用いることがある。 The porous alumina layer 14 (thickness t p ) shown in FIG. 10 (e) has a porous layer (thickness corresponds to the depth D d of the recess 14p) and a barrier layer (thickness t b ). Since the porous alumina layer 14 has a structure obtained by inverting the moth-eye structure of the synthetic polymer film 36, the same symbol may be used for the corresponding parameter characterizing the size.
 ポーラスアルミナ層14が有する凹部14pは、例えば円錐形であり、階段状の側面を有してもよい。凹部14pの二次元的な大きさ(表面の法線方向から見たときの凹部の面積円相当径)Dは20nm超500nm未満で、深さDは50nm以上1000nm(1μm)未満程度であることが好ましい。また、凹部14pの底部は尖っている(最底部は点になっている)ことが好ましい。凹部14pは密に充填されている場合、ポーラスアルミナ層14の法線方向から見たときの凹部14pの形状を円と仮定すると、隣接する円は互いに重なり合い、隣接する凹部14pの間に鞍部が形成される。なお、略円錐形の凹部14pが鞍部を形成するように隣接しているときは、凹部14pの二次元的な大きさDは隣接間距離Dintと等しい。ポーラスアルミナ層14の厚さtは、例えば、約1μm以下である。 The concave portion 14p of the porous alumina layer 14 is, for example, conical and may have stepped side surfaces. Two-dimensional size of the recess 14p is D p (area equivalent circle diameter of the recess when viewed from the direction normal to the surface) is less than 20nm ultra 500 nm, the depth D d in the order of less than 50nm over 1000 nm (1 [mu] m) Preferably there is. Moreover, it is preferable that the bottom part of the recessed part 14p is pointed (the bottom is a point). When the recesses 14p are densely packed, assuming that the shape of the recesses 14p when viewed from the normal direction of the porous alumina layer 14 is a circle, the adjacent circles overlap with each other, and a flange portion is formed between the adjacent recesses 14p. It is formed. Incidentally, when the concave portion 14p of the substantially conical adjacent so as to form a saddle, two-dimensional size D p of the concave portion 14p is equal to the distance between adjacent D int. The thickness t p of the porous alumina layer 14 is, for example, about 1μm or less.
 なお、図10(e)に示すポーラスアルミナ層14の下には、アルミニウム膜18のうち、陽極酸化されなかったアルミニウム残存層18rが存在している。必要に応じて、アルミニウム残存層18rが存在しないように、アルミニウム膜18を実質的に完全に陽極酸化してもよい。例えば、無機材料層16が薄い場合には、アルミニウム基材12側から容易に電流を供給することができる。 In addition, under the porous alumina layer 14 shown in FIG. 10 (e), an aluminum remaining layer 18r that has not been anodized in the aluminum film 18 is present. If necessary, the aluminum film 18 may be anodized substantially completely so that the remaining aluminum layer 18r does not exist. For example, when the inorganic material layer 16 is thin, current can be easily supplied from the aluminum substrate 12 side.
 高精細な表示パネルに用いられる反射防止膜には、高い均一性が要求されるので、上記のようにアルミニウム基材の材料の選択、アルミニウム基材の鏡面加工、アルミニウム膜の純度や成分の制御を行うことが好ましい。一方で、高い均一性が求められない用途の合成高分子膜を製造する場合は、上記の型の製造方法を簡略化することができる。例えば、アルミニウム基材の表面を直接、陽極酸化してもよい。また、このときアルミニウム基材に含まれる不純物の影響でピットが形成されても、最終的に得られる合成高分子膜36のモスアイ構造に局所的な構造の乱れが生じるだけで、例えば合成高分子膜36の殺菌作用に与える影響はほとんどないと考えられる。 Anti-reflective coatings used in high-definition display panels are required to have high uniformity. Therefore, as described above, the selection of the aluminum base material, mirror finishing of the aluminum base, and control of the purity and composition of the aluminum film It is preferable to carry out. On the other hand, when producing a synthetic polymer film for applications where high uniformity is not required, the above-described mold production method can be simplified. For example, the surface of the aluminum substrate may be directly anodized. At this time, even if pits are formed due to the influence of impurities contained in the aluminum base material, only a local structural disorder occurs in the moth-eye structure of the synthetic polymer film 36 finally obtained. It is considered that there is almost no influence on the bactericidal action of the membrane 36.
 上述の型の製造方法によると、反射防止膜の作製に好適な、凹部の配列の規則性が低い型を製造することができる。また、規則的に配列された凸部を有するモスアイ構造を形成するための型は、例えば、以下のようにして製造することができる。 According to the above-described mold manufacturing method, it is possible to manufacture a mold having a low regularity of the arrangement of recesses, which is suitable for the production of an antireflection film. Further, a mold for forming a moth-eye structure having regularly arranged convex portions can be manufactured as follows, for example.
 例えば厚さが約10μmのポーラスアルミナ層を形成した後、生成されたポーラスアルミナ層をエッチングにより除去してから、上述のポーラスアルミナ層を生成する条件で陽極酸化を行えばよい。厚さが10μmのポーラスアルミナ層は、陽極酸化時間を長くすることによって形成される。このように比較的厚いポーラスアルミナ層を生成し、このポーラスアルミナ層を除去すると、アルミニウム膜またはアルミニウム基材の表面に存在するグレインによる凹凸や加工ひずみの影響を受けることなく、規則的に配列された凹部を有するポーラスアルミナ層を形成することができる。なお、ポーラスアルミナ層の除去には、クロム酸と燐酸との混合液を用いることが好ましい。長時間にわたるエッチングを行うとガルバニック腐食が発生することがあるが、クロム酸と燐酸との混合液はガルバニック腐食を抑制する効果がある。 For example, after a porous alumina layer having a thickness of about 10 μm is formed, the produced porous alumina layer is removed by etching, and then anodization is performed under conditions for producing the porous alumina layer described above. The porous alumina layer having a thickness of 10 μm is formed by increasing the anodic oxidation time. When a relatively thick porous alumina layer is generated in this way and this porous alumina layer is removed, the porous alumina layer is regularly arranged without being affected by irregularities or processing strain caused by grains present on the surface of the aluminum film or the aluminum substrate. A porous alumina layer having a concave portion can be formed. In addition, it is preferable to use the liquid mixture of chromic acid and phosphoric acid for the removal of a porous alumina layer. When etching is performed for a long time, galvanic corrosion may occur, but a mixed solution of chromic acid and phosphoric acid has an effect of suppressing galvanic corrosion.
 [ノズルの選定]
 超音波ノズル57の種類を変えて、合成高分子膜36を作製し、作製した合成高分子膜36について評価した。合成高分子膜36は、図13を参照して説明した方法で作製した。すなわち、本発明の実施形態による液膜形成装置および液膜形成方法は用いずに作製した。
[Nozzle selection]
The synthetic polymer film 36 was produced by changing the type of the ultrasonic nozzle 57, and the produced synthetic polymer film 36 was evaluated. The synthetic polymer film 36 was produced by the method described with reference to FIG. That is, it was produced without using the liquid film forming apparatus and the liquid film forming method according to the embodiment of the present invention.
 表3に示すように、3種類の超音波ノズル(いずれもSono-Tek社製、製品名:Vortex、AccuMistおよびImpact)を周波数120Hzで用いた。Vortexは螺旋状の気流を発生させる。例えば水を噴霧する場合には平均径18μmのミストを噴霧することができる。ただし、噴霧する液体の粘度、表面張力等によってミストの平均径は異なり得る。ミスト化できる液体の条件の検討結果は、例えば表3を参照して述べた。AccuMistおよびImpactは、螺旋状の気流を発生させない。AccuMistは点状のスプレーパターンを生成できる。Impactを用いたスプレー幅は、AccuMistを用いたスプレー幅よりも広い。 As shown in Table 3, three types of ultrasonic nozzles (all manufactured by Sono-Tek, product names: Vortex, AccuMist, and Impact) were used at a frequency of 120 Hz. Vortex generates a spiral airflow. For example, when water is sprayed, mist having an average diameter of 18 μm can be sprayed. However, the average diameter of the mist may vary depending on the viscosity, surface tension, etc. of the liquid to be sprayed. The examination results of the conditions of the liquid that can be misted are described with reference to Table 3, for example. AccuMist and Impact do not generate a spiral airflow. AccuMist can generate a point spray pattern. The spray width using Impact is wider than the spray width using AccuMist.
 表3には、ノズルの種類の他に、スプレー条件として、噴出する気体の圧力(psi)、電力(W)、基材との距離(mm)、温度、噴霧した液体の流量(ml/min)、スキャン速度(mm/sec)、塗布回数を示している。 In Table 3, in addition to the type of nozzle, the spraying gas pressure (psi), power (W), distance to the substrate (mm), temperature, flow rate of sprayed liquid (ml / min) ), Scanning speed (mm / sec), and number of coatings.
 表3の「噴出する気体の圧力」は、噴霧する液体とともに噴出する気体の圧力である。ここで、1psi=6894.76Paである。 “The pressure of the gas to be ejected” in Table 3 is the pressure of the gas to be ejected together with the liquid to be sprayed. Here, 1 psi = 6894.76 Pa.
 表3の「電力」は、超音波ノズルに供給した電力である。 “Power” in Table 3 is the power supplied to the ultrasonic nozzle.
 表3の「基材との距離」は、超音波ノズルの先端とモスアイ用型100Aとの最短距離である。 “Distance to substrate” in Table 3 is the shortest distance between the tip of the ultrasonic nozzle and the moth-eye mold 100A.
 表3の「温度」は、噴霧を行った空間の温度であり、「R.T」は室温を示す。 “Temperature” in Table 3 is the temperature of the sprayed space, and “RT” represents room temperature.
 表3の「液体の流量」は、噴霧した液体の流量である。 “The flow rate of liquid” in Table 3 is the flow rate of the sprayed liquid.
 表3の「スキャン速度」は、液体噴霧時の超音波ノズルの移動速度である。 “Scanning speed” in Table 3 is the moving speed of the ultrasonic nozzle during liquid spraying.
 表3の「塗布回数」は、上層樹脂36b’の塗布回数である。 “Number of times of application” in Table 3 is the number of times of application of the upper layer resin 36b ′.
 また、表3には、ベースフィルム42上に付与したときの下層樹脂36a’の厚さを「下層樹脂の厚さ」として示し、モスアイ用型100Aの表面に付与したときの上層樹脂36b’の厚さを、「上層樹脂の厚さ」として示している。さらに、作製された合成高分子膜36の評価結果も示している。具体的な評価方法は後述する。 Table 3 shows the thickness of the lower layer resin 36a ′ when applied on the base film 42 as “thickness of the lower layer resin”, and shows the thickness of the upper layer resin 36b ′ when applied to the surface of the moth-eye mold 100A. The thickness is shown as “the thickness of the upper layer resin”. Furthermore, the evaluation result of the produced synthetic polymer film 36 is also shown. A specific evaluation method will be described later.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 超音波ノズルとして、条件1ではVortexを用い、条件2~4ではAccuMistを用い、条件5~7ではImpactを用いた。条件2~4では、噴霧する液体(ここでは上層樹脂)の流量を変えることによって、異なる厚さの上層樹脂36b’を付与して合成高分子膜36を得た。条件5~7では、噴霧する液体(上層樹脂)および上層樹脂の塗布回数を変えることによって、異なる厚さの上層樹脂36b’を付与して合成高分子膜36を得た。 As an ultrasonic nozzle, Vortex was used in condition 1, AccuMist was used in conditions 2 to 4, and Impact was used in conditions 5 to 7. Under conditions 2 to 4, the synthetic polymer film 36 was obtained by changing the flow rate of the liquid to be sprayed (here, the upper layer resin) to give the upper layer resin 36b 'having different thicknesses. Under conditions 5 to 7, the synthetic polymer film 36 was obtained by applying the upper layer resin 36b 'having different thicknesses by changing the number of times of application of the liquid to be sprayed (upper layer resin) and the upper layer resin.
 表3に示すように、超音波ノズルとしてVortexを用いる条件1で作製された合成高分子膜36(モスアイ用型100Aの表面に付与したときの上層樹脂36b’の厚さ:1.3μm)は、撥水性を有し、かつ、撥油性、耐擦傷性、滑り易さ、および油脂の拭き取り易さに優れている。 As shown in Table 3, the synthetic polymer film 36 (the thickness of the upper layer resin 36b ′ when applied to the surface of the moth-eye mold 100A: 1.3 μm) produced under the condition 1 using Vortex as the ultrasonic nozzle is It has water repellency and is excellent in oil repellency, scratch resistance, slipperiness, and ease of wiping off oils and fats.
 超音波ノズルとしてAccuMistを用いる条件2で作製された合成高分子膜36は、条件1で作製された合成高分子膜36とほぼ同じ厚さ(1.2μm)の上層樹脂36b’を有するのにもかかわらず、撥水性、撥油性、耐擦傷性、滑り易さ、および油脂の拭き取り易さにおいて劣っていた。そこで、条件3および4として、付与する上層樹脂36b’の厚さを増加させて合成高分子膜36を作製して評価を行った。上層樹脂36b’の厚さが増加すると、評価結果は向上した。条件4で作製された合成高分子膜36(モスアイ用型100Aの表面に付与したときの上層樹脂36b’の厚さ:4.5μm)は、条件1で作製された合成高分子膜36と同程度に、撥水性、撥油性、耐擦傷性、滑り易さ、および油脂の拭き取り易さに優れていた。 The synthetic polymer film 36 produced under Condition 2 using AccuMist as an ultrasonic nozzle has the upper layer resin 36b ′ having the same thickness (1.2 μm) as the synthetic polymer film 36 produced under Condition 1. Nevertheless, it was inferior in water repellency, oil repellency, scratch resistance, slipperiness, and ease of wiping oils and fats. Therefore, as conditions 3 and 4, the synthetic polymer film 36 was produced by evaluating the thickness of the upper resin 36b 'to be applied and evaluated. The evaluation results improved as the thickness of the upper layer resin 36b 'increased. The synthetic polymer film 36 produced under condition 4 (the thickness of the upper resin 36b ′ when applied to the surface of the moth-eye mold 100A: 4.5 μm) is the same as that of the synthetic polymer film 36 produced under condition 1. It was excellent in water repellency, oil repellency, scratch resistance, slipperiness, and ease of wiping off oils and fats.
 超音波ノズルとしてImpactを用いた場合(条件5~7)についても、付与する上層樹脂36b’の厚さを5.4μmまで増加させること(条件7)で、条件1で作製された合成高分子膜36と同程度に、撥水性、撥油性、耐擦傷性、滑り易さ、および油脂の拭き取り易さに優れる合成高分子膜36が得られた。 In the case where Impact is used as the ultrasonic nozzle (conditions 5 to 7), the synthetic polymer produced under condition 1 can be obtained by increasing the thickness of the upper layer resin 36b ′ to be applied to 5.4 μm (condition 7). A synthetic polymer film 36 having excellent water repellency, oil repellency, scratch resistance, slipperiness, and easy wiping of fats and oils was obtained to the same extent as the film 36.
 以上の結果から、効率よく、撥水性、撥油性、耐擦傷性、滑り易さ、および油脂の拭き取り易さに優れる合成高分子膜を得るためには、超音波ノズルとしてVortexを用いることが好ましいことが分かった。 From the above results, in order to efficiently obtain a synthetic polymer film excellent in water repellency, oil repellency, scratch resistance, slipperiness, and oil wiping ease, it is preferable to use vortex as an ultrasonic nozzle. I understood that.
 作製された合成高分子膜36の各評価は以下のように行った。 Each evaluation of the produced synthetic polymer film 36 was performed as follows.
 ・接触角
 水およびヘキサデカンの静的接触角(単に「接触角」ということがある。)を測定した。接触角は、協和界面科学社製のポータブル接触角計(製品名:PCA-1)を用い、θ/2法で、θ/2=arctan(h/r)の式により得た。ここで、θは接触角を示し、rは液滴の半径を示し、hは液滴の高さを示す。表3の「接触角」には3箇所の接触角の平均値を示す。ここで、1箇所目の測定点としては、試料の中央部分を選択し、2箇所目および3箇所目の測定点としては、1箇所目の測定点から20mm以上離れ、かつ、1箇所目の測定点に対して互いに点対称な位置にある2点を選択して測定した。
Contact angle The static contact angle of water and hexadecane (sometimes simply referred to as “contact angle”) was measured. The contact angle was obtained by the equation θ / 2 = arctan (h / r) by the θ / 2 method using a portable contact angle meter (product name: PCA-1) manufactured by Kyowa Interface Science Co., Ltd. Here, θ represents the contact angle, r represents the radius of the droplet, and h represents the height of the droplet. The “contact angle” in Table 3 shows an average value of the contact angles at three locations. Here, the central portion of the sample is selected as the first measurement point, and the second and third measurement points are 20 mm or more away from the first measurement point and the first measurement point. Measurement was performed by selecting two points that are symmetrical with respect to the measurement point.
 ・耐擦傷性
 作製された合成高分子膜36のスチールウール(SW)耐性を調べることで、合成高分子膜36の耐擦傷性を評価した。具体的には、合成高分子膜36の表面を、日本スチールウール社製のスチールウール(製品名:#0000)に所定の荷重を加えた状態で擦り、傷が付いた時点の荷重を測定した。この荷重値(表3中の「SW耐性」の値)が大きいほど耐擦傷性に優れている。具体的な擦り方は、新東科学社製の表面性測定機(製品名:14FW)を用い、ストローク幅30mm、速度100mm/sで10往復擦った。また、傷の有無は、照度100lx(蛍光灯)の環境下で目視観察して判断した。
-Scratch resistance The scratch resistance of the synthetic polymer film 36 was evaluated by examining the steel wool (SW) resistance of the prepared synthetic polymer film 36. Specifically, the surface of the synthetic polymer film 36 was rubbed in a state where a predetermined load was applied to steel wool (product name: # 0000) manufactured by Nippon Steel Wool Co., and the load at the time when the scratch was applied was measured. . The greater the load value (“SW resistance” in Table 3), the better the scratch resistance. As a specific rubbing method, a surface property measuring machine (product name: 14 FW) manufactured by Shinto Kagaku Co., Ltd. was used, and rubbing was performed 10 times at a stroke width of 30 mm and a speed of 100 mm / s. The presence or absence of scratches was judged by visual observation in an environment with an illuminance of 100 lx (fluorescent lamp).
 ・滑り易さ
 合成高分子膜36の滑り易さを、綿棒による触診によって評価した。評価指標として、◎:非常に滑りやすい、○:滑りやすい、△:滑る、×:滑らない、を用いた。
-Ease of sliding The easiness of sliding of the synthetic polymer film 36 was evaluated by palpation with a cotton swab. As evaluation indexes, ◎: very slippery, ○: slippery, Δ: slippery, ×: not slippery were used.
 ・透明性
 合成高分子膜36の透明性を、白濁の有無によって評価した。具体的には、照度100lx(蛍光灯)の環境下で、合成高分子膜36を透過した像を目視で観察し、像が白濁しているかどうかを調べた。評価指標として、○:白濁しているのが見えなかった、△:僅かに白濁が視認された、×:白濁しているのが見えた、を用いた。
-Transparency The transparency of the synthetic polymer film 36 was evaluated by the presence or absence of white turbidity. Specifically, an image transmitted through the synthetic polymer film 36 was visually observed in an environment with an illuminance of 100 lx (fluorescent lamp) to examine whether the image was clouded. As evaluation indexes, ◯: no white turbidity was observed, Δ: slight white turbidity was visually recognized, and x: white turbidity was observed were used.
 ・油脂の拭き取り易さ
 油脂の拭き取り易さは、合成高分子膜36の表面に付着した油分が容易に拭き取れるかどうかを評価した。具体的には、まず、各試料サンプルの表面に、ニベア花王社製のニベアクリーム(登録商標)を付着させて、温度25℃、湿度40%~60%の環境下で3日間放置した。その後、不織布(KBセーレン社製、製品名:ザヴィーナ(登録商標))を用いて、各試料サンプルを一方向に50回拭いた。照度100lx(蛍光灯)の環境下において、油分が拭き取れたかどうかを、目視で観察した。評価指標として、◎:汚れが完全に拭き取れた、○:完全ではないものの汚れが拭き取れた、△:大分部の汚れが拭き取れなかった、×:汚れが全く拭き取れなかった、を用いた。
-Ease of wiping oils and fats The ease of wiping oils and fats evaluated whether the oil adhering to the surface of the synthetic polymer film 36 could be wiped off easily. Specifically, first, Nivea cream (registered trademark) manufactured by Nivea Kao Co., Ltd. was attached to the surface of each sample sample, and left for 3 days in an environment of a temperature of 25 ° C. and a humidity of 40% to 60%. Thereafter, each sample sample was wiped 50 times in one direction using a non-woven fabric (manufactured by KB Seiren, product name: Xavina (registered trademark)). In an environment with an illuminance of 100 lx (fluorescent lamp), it was visually observed whether or not the oil was wiped off. As evaluation indexes, ◎: dirt was completely wiped off, ○: not perfect dirt was wiped off, Δ: most of the dirt was not wiped off, x: dirt was not wiped off at all.
 ・Y値
 合成高分子膜36の視感反射率(Y値)を測定した。具体的には、光源を各例のサンプルの表面に対して極角5°の方位から照射し、入射光の各波長に対する各例のサンプルの正反射率を測定した。波長550nmにおける反射率(Y値)を表3に示す。反射率は、日本分光社製の分光光度計(製品名:V-560)を用い、250nm~850nmの波長範囲で測定した。反射率の測定は、合成高分子膜36を支持するベースフィルム42に、三菱レイヨン社製の黒色のアクリル板(製品名:アクリライト(登録商標)EX-502)を貼り付けた状態で行い、光源としてC光源を用いた。
Y value The luminous reflectance (Y value) of the synthetic polymer film 36 was measured. Specifically, the light source was irradiated from the orientation of a polar angle of 5 ° with respect to the surface of the sample of each example, and the regular reflectance of the sample of each example with respect to each wavelength of incident light was measured. Table 3 shows the reflectance (Y value) at a wavelength of 550 nm. The reflectance was measured in a wavelength range of 250 nm to 850 nm using a spectrophotometer (product name: V-560) manufactured by JASCO Corporation. The reflectance is measured in a state where a black acrylic plate (product name: Acrylite (registered trademark) EX-502) manufactured by Mitsubishi Rayon Co. is attached to the base film 42 supporting the synthetic polymer film 36. A C light source was used as the light source.
 ・ヘイズ
 合成高分子膜36のヘイズ(拡散度)を測定した。具体的には、日本電色工業株式会社製のヘーズメーターNDH2000を用いて拡散透過率および全光線透過率を測定し、ヘイズ(%)=(拡散透過率/全光線透過率)×100から求めた。
-Haze The haze (diffusivity) of the synthetic polymer film 36 was measured. Specifically, the diffuse transmittance and the total light transmittance were measured using a haze meter NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. and obtained from haze (%) = (diffuse transmittance / total light transmittance) × 100. It was.
 [実施例1~実施例8]
 以下に、実施例1~実施例8を示す。
[Examples 1 to 8]
Examples 1 to 8 are shown below.
 表4に示す条件を用いる実施例1~実施例8の製造方法によって、合成高分子膜36を有するフィルム30を作製し、作製した試料フィルムの評価を行った。合成高分子膜36の製造方法は、特筆しない限り、図4および図9を参照して説明した方法と同じである。具体的には、液膜形成装置50を除いて、特許文献4に記載の実施例3と同様にしてフィルム30を作製した。図9中の角度θnは65°とした。支持ローラ46および48の底面の直径は、210mmであった。また、用いた液膜形成装置50およびモスアイ用型100Aの構成は、特筆しない限り図4を参照して説明したものと同じである。試料フィルムの作製に用いた材料および硬化条件、ならびに試料フィルムが有するモスアイ構造を以下に示す。
 (ベースフィルム42)
 ・易接着処理が施された東洋紡社製のPETフィルム(製品名:コスモシャイン(登録商標)A4300)
 (下層樹脂36a’)
 ・ウレタンアクリレート(新中村化学工業社製、製品名:UA-7100):31重量%
 ・多官能アクリレート(新中村化学工業社製、製品名:ATM-35E):40重量%
 ・多官能アクリレート(新中村化学工業社製、製品名:A-TMM-3LM-N):27.5重量%
 ・光重合開始剤(BASF社製、製品名:IRGACURE819):1.5重量%
 (上層樹脂36b’)
 ・フッ素含有モノマー(ダイキン工業社製、フッ素系添加剤製品名:オプツールDAC-HP):10重量%
 ・反応性希釈剤(アミド基含有モノマー(KJケミカルズ社製、製品名:ACMO)):90重量%
 (硬化条件)
 上層樹脂36b’が付与されたモスアイ用型100Aを、ベースフィルム42上に付与された下層樹脂36a’に押し付けた状態で、ベースフィルム42側から、Fusion UV systems社製のUVランプ(製品名:LIGHT HAMMAR6J6P3)を用いて、紫外線(照射量:200mJ/cm)を照射し、下層樹脂36a’および上層樹脂36b’を硬化させた。
 (試料フィルムのモスアイ構造)
  凸部の形状:円錐状(釣鐘状)
  凸部の隣接間距離(Dint):200nm
  凸部の高さ(D):200~250nm 
A film 30 having a synthetic polymer film 36 was produced by the production methods of Examples 1 to 8 using the conditions shown in Table 4, and the produced sample films were evaluated. The manufacturing method of the synthetic polymer film 36 is the same as the method described with reference to FIGS. 4 and 9 unless otherwise specified. Specifically, a film 30 was produced in the same manner as in Example 3 described in Patent Document 4 except for the liquid film forming apparatus 50. The angle θn in FIG. 9 was 65 °. The diameter of the bottom surfaces of the support rollers 46 and 48 was 210 mm. Further, the configurations of the liquid film forming apparatus 50 and the moth-eye mold 100A used are the same as those described with reference to FIG. 4 unless otherwise specified. The materials and curing conditions used for preparing the sample film, and the moth-eye structure of the sample film are shown below.
(Base film 42)
-PET film manufactured by Toyobo Co., Ltd. (Product name: Cosmo Shine (registered trademark) A4300)
(Lower layer resin 36a ')
Urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product name: UA-7100): 31% by weight
-Multifunctional acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product name: ATM-35E): 40% by weight
Multifunctional acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product name: A-TMM-3LM-N): 27.5% by weight
Photopolymerization initiator (manufactured by BASF, product name: IRGACURE 819): 1.5% by weight
(Upper layer resin 36b ')
Fluorine-containing monomer (Daikin Industries, Ltd., fluorine additive product name: OPTOOL DAC-HP): 10% by weight
Reactive diluent (amide group-containing monomer (manufactured by KJ Chemicals, product name: ACMO)): 90% by weight
(Curing conditions)
In a state where the moth-eye mold 100A provided with the upper layer resin 36b 'is pressed against the lower layer resin 36a' provided on the base film 42, a UV lamp manufactured by Fusion UV systems (product name: The lower layer resin 36a ′ and the upper layer resin 36b ′ were cured by irradiating with ultraviolet rays (irradiation amount: 200 mJ / cm 2 ) using LIGHT HAMMAR6J6P3).
(Mosaic structure of sample film)
Convex shape: conical shape (bell shape)
Distance between adjacent protrusions (D int ): 200 nm
Convex height (D h ): 200 to 250 nm
 表4に示す評価項目の内、「油脂の拭き取り易さ」および「透明性」は、表3を参照して説明した方法と同様に評価した。 Among the evaluation items shown in Table 4, “easy wiping off of oil” and “transparency” were evaluated in the same manner as the method described with reference to Table 3.
 表4の「ミストの飛散」は、支持ローラ48に支持され搬送されているベースフィルム42に上層樹脂が付着しているかどうかを評価した結果を示す。評価指標として、○:支持ローラ48上のベースフィルム42に上層樹脂が付着していなかった、△:支持ローラ48上のベースフィルム42に上層樹脂が少し付着していた、×:支持ローラ48上のベースフィルム42に上層樹脂が付着していた、を用いた。 “Mist scattering” in Table 4 shows the result of evaluating whether or not the upper layer resin adheres to the base film 42 supported and conveyed by the support roller 48. As an evaluation index, ◯: No upper layer resin adhered to the base film 42 on the support roller 48, Δ: A little upper layer resin adhered to the base film 42 on the support roller 48, ×: On the support roller 48 The base film 42 of the upper layer resin was used.
 表4の「むら」は、試料フィルムに色味の変化があるかどうかを評価した結果を示す。付与された上層樹脂の厚さにむらがあると、色味の変化(干渉色のむら)として観察される。具体的には、以下の方法によって評価された。まず、黒色のアクリル板を、試料フィルムのベースフィルム42に、粘着剤(パナック社製、PDS1)を介して貼り付けた。そして、照度100lx(蛍光灯)の環境下で、試料フィルムの合成高分子膜36側の表面を、表面の法線方向からの極角およそ60°から目視で観察し、色味の変化があるかどうかを評価した。評価指標として、○:色味の変化が見えなかった、△:わずかに色味の変化が視認された、×:色味の変化が見えた、を用いた。 “Unevenness” in Table 4 shows the result of evaluating whether there is a change in the color of the sample film. If there is unevenness in the thickness of the applied upper layer resin, it is observed as a change in color (interference color unevenness). Specifically, it was evaluated by the following method. First, the black acrylic board was affixed on the base film 42 of the sample film via the adhesive (Panak make, PDS1). The surface of the sample film on the side of the synthetic polymer film 36 is visually observed from a polar angle of about 60 ° from the normal direction of the surface under an environment with an illuminance of 100 lx (fluorescent lamp), and there is a change in color. Evaluated whether or not. As evaluation indexes, ◯: change in color was not visible, Δ: slight change in color was visually recognized, and x: change in color was visible were used.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 ・実施例1
 吹出し口51から噴霧される液体(上層樹脂36b’)の流量を3.0ml/minとし、吹出し口51から噴霧される液体を含む気体の流量および圧力を2.0m/minおよび0.03MPaとした。気体吸引装置56が吸引する気体の流量は18m/minとした。外側カバー部54の外側から内側に向かって流れる気体の流速は2.0m/sであった。流速は、図4に白抜きの矢印で示す24箇所で測定した値の平均値とした。ベースフィルム42の搬送速度を2.0m/minとし、モスアイ用型100Aの温度は30℃として、10mの長さの試料フィルムを作製した。ベースフィルム42の搬送速度は、モスアイ用型100Aおよび支持ローラ46、48の回転速度に対応する。モスアイ用型100の底面の直径を100d(m)とすると、1分間あたりの回転数を表す1rpmは、(π×100d)(m/min)に相当する。従って、実施例1の製造方法におけるモスアイ用型100Aの回転速度は、2.12rpmである。
Example 1
The flow rate of the liquid (upper layer resin 36b ′) sprayed from the blowout port 51 is 3.0 ml / min, and the flow rate and pressure of the gas containing the liquid sprayed from the blowout port 51 are 2.0 m 3 / min and 0.03 MPa. It was. The flow rate of the gas sucked by the gas suction device 56 was 18 m 3 / min. The flow velocity of the gas flowing from the outside to the inside of the outer cover portion 54 was 2.0 m / s. The flow rate was the average of the values measured at 24 points indicated by white arrows in FIG. A sample film having a length of 10 m was prepared by setting the conveying speed of the base film 42 to 2.0 m / min and the temperature of the moth-eye mold 100A to 30 ° C. The conveyance speed of the base film 42 corresponds to the rotation speed of the moth-eye mold 100A and the support rollers 46 and 48. If the diameter of the bottom surface of the moth-eye mold 100 is 100 d (m), 1 rpm representing the number of rotations per minute corresponds to (π × 100 d) (m / min). Therefore, the rotational speed of the moth-eye mold 100A in the manufacturing method of Example 1 is 2.12 rpm.
 実施例1の製造方法では、ミストの周辺への飛散を抑制できず、また、得られた合成高分子膜36は、油脂の拭き取り易さおよび透明性に優れず、むらが生じていた。 In the production method of Example 1, scattering of mist to the periphery could not be suppressed, and the obtained synthetic polymer film 36 was not excellent in oil and fat wiping property and transparency, resulting in unevenness.
 ・実施例2
 実施例2の製造方法は、ベースフィルム42の搬送速度が大きい点において、実施例1の製造方法と異なる。実施例2の製造方法においては、ベースフィルム42の搬送速度を5.0m/minとした。すなわち、モスアイ用型100Aの回転速度を5.31rpmとした。
Example 2
The manufacturing method of Example 2 differs from the manufacturing method of Example 1 in that the conveyance speed of the base film 42 is high. In the manufacturing method of Example 2, the conveyance speed of the base film 42 was set to 5.0 m / min. That is, the rotational speed of the moth-eye mold 100A was set to 5.31 rpm.
 実施例2の製造方法で製造された合成高分子膜36は、透明性において実施例1よりも優れていた。しかしながら、油脂の拭き取り易さにおいては実施例1よりも劣り、むらも生じていた。 The synthetic polymer film 36 produced by the production method of Example 2 was superior to Example 1 in transparency. However, the ease of wiping off oils and fats was inferior to that of Example 1, and unevenness occurred.
 ・実施例3
 実施例3の製造方法は、吹出し口51から噴霧される液体の流量が多い点および吹出し口51から噴出される気体の圧力が大きい点において、実施例2の製造方法と異なる。実施例3の製造方法においては、吹出し口51から噴霧される液体の流量を5.0ml/minとし、吹出し口51から噴出される気体の圧力は0.10MPaとした。また、ここでは50mの長さの試料フィルムを作製した。
Example 3
The manufacturing method of the third embodiment differs from the manufacturing method of the second embodiment in that the flow rate of the liquid sprayed from the outlet 51 is large and the pressure of the gas ejected from the outlet 51 is large. In the manufacturing method of Example 3, the flow rate of the liquid sprayed from the outlet 51 was 5.0 ml / min, and the pressure of the gas ejected from the outlet 51 was 0.10 MPa. Here, a sample film having a length of 50 m was produced.
 実施例3の製造方法で製造された合成高分子膜36は、実施例2に比べて上層部分36bの厚さが大きいので、油脂の拭き取り易さにおいて実施例2よりも優れていた。しかしながら、周辺への飛散したミストの量が実施例2よりも増加した。 The synthetic polymer film 36 manufactured by the manufacturing method of Example 3 was superior to Example 2 in the ease of wiping off oil and fat because the upper layer portion 36b was thicker than that of Example 2. However, the amount of mist scattered to the periphery increased more than in Example 2.
 ・実施例4
 実施例4の製造方法は、気体吸引装置56が吸引する気体の流量および外側カバー部54の外側から内側に向かって流れる気体の流速の値が大きい点において、実施例3の製造方法と異なる。実施例4の製造方法においては、それぞれ、31m/minおよび3.6m/sとした。
Example 4
The manufacturing method of the fourth embodiment is different from the manufacturing method of the third embodiment in that the flow rate of the gas sucked by the gas suction device 56 and the value of the flow velocity of the gas flowing from the outside to the inside of the outer cover portion 54 are large. In the manufacturing method of Example 4, it was 31 m 3 / min and 3.6 m / s, respectively.
 実施例4の製造方法で製造された合成高分子膜36は、むらの程度において実施例3よりも優れていた。モスアイ用型100Aに付与された上層樹脂の厚さのむらは、実施例3よりも低減された。周辺への飛散したミストの量は、実施例3と同程度であった。 The synthetic polymer film 36 produced by the production method of Example 4 was superior to Example 3 in terms of unevenness. The unevenness of the thickness of the upper layer resin applied to the moth-eye mold 100A was reduced as compared with Example 3. The amount of mist scattered to the periphery was about the same as in Example 3.
 ・実施例5
 実施例5の製造方法は、気体吸引装置56が吸引する気体の流量および外側カバー部54の外側から内側に向かって流れる気体の流速の値が、実施例3よりも大きく、実施例4よりも小さい点において、実施例3および4の製造方法と異なる。実施例5の製造方法においては、それぞれ、24m/minおよび2.8m/sとした。また、ここでは100mの長さの試料フィルムを作製した。
Example 5
In the manufacturing method of the fifth embodiment, the flow rate of the gas sucked by the gas suction device 56 and the value of the flow velocity of the gas flowing from the outer side to the inner side of the outer cover portion 54 are larger than those of the third embodiment and are larger than those of the fourth embodiment. In a small point, it differs from the manufacturing method of Example 3 and 4. In the manufacturing method of Example 5, they were set to 24 m 3 / min and 2.8 m / s, respectively. Here, a sample film having a length of 100 m was produced.
 実施例5の製造方法によると、ミストが周辺に飛散することが防止された。また、実施例5の製造方法で製造された合成高分子膜36は、むらの程度において実施例4よりも優れていた。実施例5の製造方法によると、モスアイ用型100Aの外周面100sに向かって噴霧した液体が周辺に飛散することを抑制し、かつ、基材100Aの外周面100sに均一に液膜を形成することができた。 According to the manufacturing method of Example 5, the mist was prevented from being scattered around. Further, the synthetic polymer film 36 manufactured by the manufacturing method of Example 5 was superior to Example 4 in the degree of unevenness. According to the manufacturing method of the fifth embodiment, the liquid sprayed toward the outer peripheral surface 100s of the moth-eye mold 100A is prevented from scattering to the periphery, and a liquid film is uniformly formed on the outer peripheral surface 100s of the base material 100A. I was able to.
 ・実施例6
 実施例6の製造方法は、噴霧される液体の流量が多い点において、実施例5の製造方法と異なる。実施例6の製造方法においては、吹出し口51から噴霧される液体の流量を6.0ml/minとした。また、ここでは50mの長さの試料フィルムを作製した。
Example 6
The manufacturing method of Example 6 differs from the manufacturing method of Example 5 in that the flow rate of the sprayed liquid is large. In the manufacturing method of Example 6, the flow rate of the liquid sprayed from the outlet 51 was 6.0 ml / min. Here, a sample film having a length of 50 m was produced.
 実施例6の製造方法は、ミストが周辺に飛散することを抑制する観点からは実施例5よりも劣っていた。実施例6の製造方法で製造された合成高分子膜36は、油脂の拭き取り易さにおいて実施例5よりも優れていたが、透明性においては実施例5よりも劣っていた。 The manufacturing method of Example 6 was inferior to Example 5 from the viewpoint of suppressing the mist from scattering around. The synthetic polymer film 36 manufactured by the manufacturing method of Example 6 was superior to Example 5 in the ease of wiping off oils and fats, but was inferior to Example 5 in transparency.
 ・実施例7
 実施例7の製造方法は、モスアイ用型100Aの温度が高い点において、実施例5の製造方法と異なる。実施例7の製造方法においては、モスアイ用型100Aの温度を50℃とした。
-Example 7
The manufacturing method of Example 7 differs from the manufacturing method of Example 5 in that the temperature of the moth-eye mold 100A is high. In the manufacturing method of Example 7, the temperature of the moth-eye mold 100A was set to 50 ° C.
 実施例7の製造方法で製造された合成高分子膜36は、油脂の拭き取り易さにおいて実施例5よりも優れていた。モスアイ用型100Aの温度が高いと、モスアイ用型100Aの表面に付与された上層樹脂の粘度が下がる。これにより、上層樹脂に含まれるフッ素含有モノマーが移動しやすくなり、合成高分子膜36の表面のフッ素元素含有率が高くなったためと考えられる。 The synthetic polymer film 36 produced by the production method of Example 7 was superior to Example 5 in the ease of wiping off fats and oils. When the temperature of the moth-eye mold 100A is high, the viscosity of the upper layer resin applied to the surface of the moth-eye mold 100A decreases. This is considered to be because the fluorine-containing monomer contained in the upper layer resin is easily moved and the fluorine element content on the surface of the synthetic polymer film 36 is increased.
 ・実施例8
 実施例8の製造方法は、ベースフィルム42の搬送速度が大きい点において、実施例7の製造方法と異なる。また、ここでは300mの長さの試料フィルムを作製した。
Example 8
The manufacturing method of Example 8 differs from the manufacturing method of Example 7 in that the conveying speed of the base film 42 is high. Here, a sample film having a length of 300 m was prepared.
 実施例8の製造方法および実施例8の製造方法で製造された合成高分子膜36は、実施例7と同程度優れていた。 The synthetic polymer membrane 36 produced by the production method of Example 8 and the production method of Example 8 was as excellent as Example 7.
 本発明の実施形態による液膜形成方法および液膜形成装置ならびに合成高分子膜の製造方法は、スプレー法を用いて円柱状または円筒状の基材の外周面に液膜を形成する工程に好適に用いられる。 A liquid film forming method, a liquid film forming apparatus, and a synthetic polymer film manufacturing method according to an embodiment of the present invention are suitable for the step of forming a liquid film on the outer peripheral surface of a columnar or cylindrical substrate using a spray method. Used for.
 30 フィルム 
 36 合成高分子膜
 36a  下層部分
 36a’ 下層樹脂
 36b  上層部分
 36b’ 上層樹脂
 36p  凸部
 42   ベースフィルム
 46、48 支持ローラ
 50  液膜形成装置
 51  吹出し口
 52  液体供給装置
 53  内側カバー部
 54  外側カバー部
 55  吸込み口
 56  気体吸引装置
 57  ノズル
 58  吸引口
 100 モスアイ用型
 100A 基材(モスアイ用型)
 100s 外周面
30 films
36 Synthetic polymer film 36a Lower layer part 36a 'Lower layer resin 36b Upper layer part 36b' Upper layer resin 36p Convex part 42 Base film 46, 48 Support roller 50 Liquid film forming apparatus 51 Outlet 52 Liquid supply apparatus 53 Inner cover part 54 Outer cover part 55 Suction port 56 Gas suction device 57 Nozzle 58 Suction port 100 Mosaic mold 100A Substrate (Moss eye mold)
100s outer peripheral surface

Claims (20)

  1.  円柱状または円筒状の基材の外周面上に液膜を形成する装置であって、
     液体を噴霧する吹出し口であって、前記吹出し口の第1方向における長さは、前記第1方向と直交する第2方向における前記吹出し口の長さよりも大きく、前記外周面に向かって前記液体を噴霧するとき、前記第1方向が前記基材の軸方向と実質的に平行となるように前記外周面に向けられる吹出し口と、
     前記吹出し口に前記液体を供給する液体供給装置と、
     前記吹出し口を画定する筒状の内側カバー部と、
     前記内側カバー部の外側に配置されている外側カバー部と、
     前記内側カバー部と前記外側カバー部とによって画定される少なくとも1つの吸込み口であって、前記吹出し口と前記第2方向に隣接して前記第1方向に延びる部分を含む少なくとも1つの吸込み口と、
     前記少なくとも1つの吸込み口を介して気体を吸引する気体吸引装置と
    を有し、
     前記気体吸引装置は、前記吹出し口から噴霧される前記液体を含む気体の流量よりも多い流量の気体を吸引するように構成されている、液膜形成装置。
    An apparatus for forming a liquid film on the outer peripheral surface of a columnar or cylindrical base material,
    An outlet for spraying liquid, wherein a length of the outlet in a first direction is larger than a length of the outlet in a second direction orthogonal to the first direction, and the liquid is directed toward the outer peripheral surface. A spray port directed to the outer peripheral surface so that the first direction is substantially parallel to the axial direction of the base material,
    A liquid supply device for supplying the liquid to the outlet;
    A cylindrical inner cover that defines the outlet;
    An outer cover portion disposed outside the inner cover portion;
    At least one suction port defined by the inner cover portion and the outer cover portion, the at least one suction port including a portion extending in the first direction adjacent to the blowout port and the second direction; ,
    A gas suction device for sucking gas through the at least one suction port;
    The said gas suction apparatus is a liquid film formation apparatus comprised so that the gas of the flow volume larger than the flow volume of the gas containing the said liquid sprayed from the said blower outlet may be attracted | sucked.
  2.  前記吹出し口から噴霧される前記液体の平均径は、20μm以下である、請求項1に記載の液膜形成装置。 The liquid film forming apparatus according to claim 1, wherein an average diameter of the liquid sprayed from the outlet is 20 μm or less.
  3.  前記吹出し口は、前記第1方向および前記第2方向に垂直な第3方向に貫通している、請求項1または2に記載の液膜形成装置。 3. The liquid film forming apparatus according to claim 1, wherein the outlet port penetrates in a third direction perpendicular to the first direction and the second direction.
  4.  前記吹出し口内に、前記第1方向に沿って配列されており、前記液体を噴霧する複数のノズルをさらに有する、請求項1から3のいずれかに記載の液膜形成装置。 The liquid film forming apparatus according to any one of claims 1 to 3, further comprising a plurality of nozzles arranged in the first direction in the outlet and spraying the liquid.
  5.  前記複数のノズルは、超音波ノズルである、請求項4に記載の液膜形成装置。 The liquid film forming apparatus according to claim 4, wherein the plurality of nozzles are ultrasonic nozzles.
  6.  前記複数のノズルは、段違いに配置されている、請求項4または5に記載の液膜形成装置。 The liquid film forming apparatus according to claim 4 or 5, wherein the plurality of nozzles are arranged at different levels.
  7.  前記複数のノズルは、隣接するノズルの噴出し孔の水平方向に対する角度が互いに異なるように配置されている、請求項4から6のいずれかに記載の液膜形成装置。 The liquid film forming apparatus according to any one of claims 4 to 6, wherein the plurality of nozzles are arranged so that angles of the ejection holes of adjacent nozzles with respect to the horizontal direction are different from each other.
  8.  前記外周面に向かって前記液体を噴霧するとき、前記内側カバー部および前記外側カバー部が前記外周面に接触しないことが可能であるように構成されている、請求項1から7のいずれかに記載の液膜形成装置。 8. The device according to claim 1, wherein when the liquid is sprayed toward the outer peripheral surface, the inner cover portion and the outer cover portion are configured not to contact the outer peripheral surface. The liquid film forming apparatus described.
  9.  前記外周面に向かって前記液体を噴霧するときの、前記内側カバー部と前記外周面との距離および/または前記外側カバー部と前記外周面との距離を変えることができるように構成されている、請求項1から8のいずれかに記載の液膜形成装置。 When spraying the liquid toward the outer peripheral surface, the distance between the inner cover portion and the outer peripheral surface and / or the distance between the outer cover portion and the outer peripheral surface can be changed. The liquid film forming apparatus according to claim 1.
  10.  前記外周面に向かって前記液体を噴霧するとき、前記内側カバー部と前記外周面との最短距離および前記外側カバー部と前記外周面との最短距離をそれぞれ30mm以下とすることができるように構成されている、請求項1から9のいずれかに記載の液膜形成装置。 When spraying the liquid toward the outer peripheral surface, the shortest distance between the inner cover portion and the outer peripheral surface and the shortest distance between the outer cover portion and the outer peripheral surface can each be 30 mm or less. The liquid film forming apparatus according to claim 1, wherein
  11.  前記気体吸引装置は、前記吹出し口から噴霧される前記液体を含む気体の流量の、9倍以上15倍以下の流量の気体を吸引するように構成されている、請求項1から10のいずれかに記載の液膜形成装置。 The said gas suction device is comprised so that the gas of the flow volume 9 times or more and 15 times or less of the flow volume of the gas containing the said liquid sprayed from the said blower outlet may be attracted | sucked. The liquid film forming apparatus described in 1.
  12.  前記基材を、前記基材の軸方向が水平方向と実質的に平行になるように、かつ、前記基材の軸の周りに回転可能に支持する、回転支持構造体をさらに有する、請求項1から11のいずれかに記載の液膜形成装置。 The rotation support structure further supporting the base material so that an axial direction of the base material is substantially parallel to a horizontal direction and rotatably about an axis of the base material. The liquid film forming apparatus according to any one of 1 to 11.
  13.  円柱状または円筒状の基材の外周面に液膜を形成する方法であって、
     前記外周面に向かって液体を噴霧する工程(a)と、
     前記外周面の周辺の気体を吸引する工程(b)と
    を包含し、
     前記工程(b)は、前記工程(a)と同時に行う工程を包含し、前記工程(b)において吸引する気体の流量は、前記工程(a)において噴霧される前記液体を含む気体の流量よりも多い、液膜形成方法。
    A method of forming a liquid film on the outer peripheral surface of a columnar or cylindrical substrate,
    Spraying liquid toward the outer peripheral surface (a),
    A step (b) of sucking a gas around the outer peripheral surface,
    The step (b) includes a step performed simultaneously with the step (a), and the flow rate of the gas sucked in the step (b) is higher than the flow rate of the gas containing the liquid sprayed in the step (a). Many liquid film formation methods.
  14.  前記工程(a)において噴霧する前記液体の平均径は、20μm以下である、請求項13に記載の液膜形成方法。 The liquid film forming method according to claim 13, wherein an average diameter of the liquid sprayed in the step (a) is 20 μm or less.
  15.  前記工程(a)において噴霧する前記液体の23℃における粘度は、20cP以下である、請求項13または14に記載の液膜形成方法。 The liquid film forming method according to claim 13 or 14, wherein a viscosity at 23 ° C of the liquid sprayed in the step (a) is 20 cP or less.
  16.  前記工程(a)において噴霧する前記液体の、最大泡圧法による23℃での表面寿命が100msである時の動的表面張力は、31mN/m以上である、請求項13から15のいずれかに記載の液膜形成方法。 The dynamic surface tension of the liquid sprayed in the step (a) when the surface lifetime at 23 ° C. according to the maximum bubble pressure method is 100 ms is 31 mN / m or more. The liquid film formation method of description.
  17.  前記基材の軸方向が水平方向と実質的に平行になるように前記基材を配置した状態で、前記基材の軸を中心に、前記基材を回転させる工程(c)をさらに包含する、請求項13から16のいずれかに記載の液膜形成方法。   The method further includes a step (c) of rotating the base material about the axis of the base material in a state where the base material is arranged so that an axial direction of the base material is substantially parallel to a horizontal direction. The liquid film forming method according to claim 13. *
  18.  前記工程(c)において、前記基材の回転速度は、0rpm超20rpm以下である、請求項17に記載の液膜形成方法。 The liquid film forming method according to claim 17, wherein in the step (c), the rotation speed of the base material is more than 0 rpm and not more than 20 rpm.
  19.  厚さが2μm以下である液膜を形成する、請求項13から18のいずれかに記載の液膜形成方法。 The liquid film forming method according to claim 13, wherein a liquid film having a thickness of 2 μm or less is formed.
  20.  表面の法線方向から見たときの2次元的な大きさが20nm以上500nm未満である複数の凹部を有する、反転されたモスアイ構造を表面に有するポーラスアルミナ層を有する、円柱状または円筒状の型を用いて、合成高分子膜を製造する方法であって、
     前記型と、被加工物とを用意する工程(A)と、
     前記被加工物の表面に紫外線硬化性樹脂を含む第1樹脂を付与する工程(B)と、
     請求項1から12のいずれかに記載の液膜形成装置を用いてまたは請求項13から19のいずれかに記載の液膜形成方法によって、前記型の表面にフッ素含有モノマーを含む第2樹脂を付与する工程(C)と、
     前記型と前記被加工物の表面との間で前記第1樹脂および前記第2樹脂を互いに接触させた状態で、前記第1樹脂および前記第2樹脂に紫外線を照射することによって前記第1樹脂および前記第2樹脂を硬化させる工程(D)と
    を包含する、合成高分子膜の製造方法。
    A cylindrical or cylindrical shape having a porous alumina layer having an inverted moth-eye structure on its surface, having a plurality of recesses having a two-dimensional size of 20 nm or more and less than 500 nm when viewed from the normal direction of the surface A method for producing a synthetic polymer film using a mold,
    Preparing the mold and the workpiece (A);
    A step (B) of applying a first resin containing an ultraviolet curable resin to the surface of the workpiece;
    A second resin containing a fluorine-containing monomer on the surface of the mold is obtained by using the liquid film forming apparatus according to any one of claims 1 to 12 or by the liquid film forming method according to any one of claims 13 to 19. Applying step (C);
    The first resin and the second resin are irradiated with ultraviolet rays in a state where the first resin and the second resin are in contact with each other between the mold and the surface of the workpiece. And a step (D) of curing the second resin.
PCT/JP2018/012419 2017-03-30 2018-03-27 Device and method for forming liquid film, and method for producing synthetic polymer film WO2018181303A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019509883A JP6789380B2 (en) 2017-03-30 2018-03-27 Liquid film forming device
CN201880023090.2A CN110536754A (en) 2017-03-30 2018-03-27 The manufacturing method of liquid film forming device, liquid film forming method and synthetic polymeric membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-068126 2017-03-30
JP2017068126 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018181303A1 true WO2018181303A1 (en) 2018-10-04

Family

ID=63678138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012419 WO2018181303A1 (en) 2017-03-30 2018-03-27 Device and method for forming liquid film, and method for producing synthetic polymer film

Country Status (3)

Country Link
JP (1) JP6789380B2 (en)
CN (1) CN110536754A (en)
WO (1) WO2018181303A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075629A (en) * 1973-11-07 1975-06-20
JPS6095957U (en) * 1983-12-02 1985-06-29 株式会社クボタ Coating device with dust collector
JPH07213961A (en) * 1994-02-01 1995-08-15 Kyowa Hakko Kogyo Co Ltd Spray apparatus as well as coating apparatus and granulating device using the spray apparatus
JP2006175348A (en) * 2004-12-22 2006-07-06 Konica Minolta Photo Imaging Inc Spray application method, spray application apparatus, and ink jet recording paper
JP2011240315A (en) * 2010-05-21 2011-12-01 Kansai Paint Co Ltd Nozzle for coating and coating apparatus using nozzle for coating
JP2012005949A (en) * 2010-06-24 2012-01-12 Fuji Xerox Co Ltd Method for production of nozzle and coating film
JP2012143278A (en) * 2011-01-07 2012-08-02 Seiko Epson Corp Fluid injection device and medical instrument
JP2013188694A (en) * 2012-03-14 2013-09-26 Sharp Corp Film forming device
JP5951165B1 (en) * 2015-04-30 2016-07-13 シャープ株式会社 Optical film manufacturing method and optical film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075629A (en) * 1973-11-07 1975-06-20
JPS6095957U (en) * 1983-12-02 1985-06-29 株式会社クボタ Coating device with dust collector
JPH07213961A (en) * 1994-02-01 1995-08-15 Kyowa Hakko Kogyo Co Ltd Spray apparatus as well as coating apparatus and granulating device using the spray apparatus
JP2006175348A (en) * 2004-12-22 2006-07-06 Konica Minolta Photo Imaging Inc Spray application method, spray application apparatus, and ink jet recording paper
JP2011240315A (en) * 2010-05-21 2011-12-01 Kansai Paint Co Ltd Nozzle for coating and coating apparatus using nozzle for coating
JP2012005949A (en) * 2010-06-24 2012-01-12 Fuji Xerox Co Ltd Method for production of nozzle and coating film
JP2012143278A (en) * 2011-01-07 2012-08-02 Seiko Epson Corp Fluid injection device and medical instrument
JP2013188694A (en) * 2012-03-14 2013-09-26 Sharp Corp Film forming device
JP5951165B1 (en) * 2015-04-30 2016-07-13 シャープ株式会社 Optical film manufacturing method and optical film

Also Published As

Publication number Publication date
JPWO2018181303A1 (en) 2020-01-09
CN110536754A (en) 2019-12-03
JP6789380B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
JP6939573B2 (en) Translucent structure
JP4976593B2 (en) Mold release processing method, mold, antireflection film manufacturing method, mold release processing apparatus and mold cleaning / drying apparatus
KR102078293B1 (en) Glass Etching Media and Methods
JP6322294B2 (en) Mold manufacturing method and antireflection film manufacturing method
WO2012014774A1 (en) Manufacturing device for nanoimprint mold and manufacturing method for nanoimprint mold
JP6854660B2 (en) Anti-reflection film manufacturing method and mold manufacturing method
JP2019143042A (en) Synthetic polymer membrane and manufacturing method of synthetic polymer membrane
JP4610251B2 (en) Gravure coating apparatus and method for producing flexible strip-shaped support
JP5329496B2 (en) Gravure coating apparatus and method for producing flexible strip-shaped support
WO2018181303A1 (en) Device and method for forming liquid film, and method for producing synthetic polymer film
WO2015159797A1 (en) Mold, method for producing mold, anti-reflection film and method for producing anti-reflection film
CN103415381A (en) Die, manufacturing method for die, and manufacturing method for nanoimprinted film
US20110206837A1 (en) Method of producing laminate film
WO2012133390A1 (en) Mold release treatment method, and antireflective film production method
JP6605612B2 (en) Synthetic polymer membrane having surface with bactericidal action, method for producing synthetic polymer membrane, and bactericidal method using surface of synthetic polymer membrane
JP6568563B2 (en) Mold release treatment method, mold and method for producing antireflection film
JP6626898B2 (en) Substrate surface treatment method and mold manufacturing method
CN107635740B (en) Mold release treatment method, the manufacturing method of antireflection film and demoulding processing unit
US20180141080A1 (en) Discontinuous coatings and methods of forming the same
JP2015086402A (en) Method for producing roll-shaped die for imprint
JP2017077982A (en) Glass substrate with antiglare film, method for producing glass substrate with antiglare film and article
JP2003071356A (en) Coating apparatus and coating method
JP2005000717A (en) Coating liquid applying method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509883

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777595

Country of ref document: EP

Kind code of ref document: A1