WO2018180644A1 - 周面発光型の熱可塑性樹脂成形体 - Google Patents

周面発光型の熱可塑性樹脂成形体 Download PDF

Info

Publication number
WO2018180644A1
WO2018180644A1 PCT/JP2018/010622 JP2018010622W WO2018180644A1 WO 2018180644 A1 WO2018180644 A1 WO 2018180644A1 JP 2018010622 W JP2018010622 W JP 2018010622W WO 2018180644 A1 WO2018180644 A1 WO 2018180644A1
Authority
WO
WIPO (PCT)
Prior art keywords
cladding layer
thermoplastic resin
light
core layer
layer
Prior art date
Application number
PCT/JP2018/010622
Other languages
English (en)
French (fr)
Inventor
金森尚哲
菅原敏晃
大島啓志
片岡大
Original Assignee
フクビ化学工業株式会社
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フクビ化学工業株式会社, 株式会社クラレ filed Critical フクビ化学工業株式会社
Priority to CA3058090A priority Critical patent/CA3058090C/en
Priority to CN201880016018.7A priority patent/CN110383125A/zh
Priority to EP18776795.9A priority patent/EP3605170B1/en
Priority to ES18776795T priority patent/ES2937909T3/es
Priority to JP2019509312A priority patent/JP7083336B2/ja
Priority to US16/494,669 priority patent/US11086062B2/en
Priority to KR1020197025701A priority patent/KR20190129037A/ko
Publication of WO2018180644A1 publication Critical patent/WO2018180644A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/236Light guides characterised by the shape of the light guide
    • F21S43/237Light guides characterised by the shape of the light guide rod-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/242Light guides characterised by the emission area
    • F21S43/245Light guides characterised by the emission area emitting light from one or more of its major surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/247Light guides with a single light source being coupled into the light guide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/26Refractors, transparent cover plates, light guides or filters not provided in groups F21S43/235 - F21S43/255
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted along at least a portion of the lateral surface of the fibre
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2101/00Point-like light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material

Definitions

  • the present invention is an improvement of a peripheral surface light emitting type thermoplastic resin molded body, and more specifically, it is flexibly bent along a shape of a decoration object or a decoration character or a decoration pattern formed in a linear shape.
  • the present invention relates to a peripheral surface light emitting type thermoplastic resin molded article that can be used, has excellent light emitting performance, and suppresses yellowing of a light emission color at a site far from a light source.
  • linear light emitters have been used in many light ornaments such as ornaments, illuminations, and electric signs, but neon lights that have been used for a long time as linear light emitters have a flexible body. Since it is composed of a poor glass tube, it is not possible to bend the linear light emitter along the curved portion of the wall surface or draw decorative characters or patterns.
  • the present applicant has previously developed a soft light guide rod using an acrylic thermoplastic elastomer for the core layer and has filed a patent application, but in this soft light guide rod, further improvement of the light emitting performance has been made.
  • a means for suppressing yellowing of the luminescent color (a phenomenon in which the luminescent color becomes yellowish as it becomes farther from the light source) is also required.
  • the present invention has been made in view of the above problems, and its object is not only to bend flexibly in accordance with the method of light decoration and the object to be fixed, but also the overall emission luminance. It is another object of the present invention to provide a peripheral surface light emitting type thermoplastic resin molded body that can be improved in a continuous manner and that can also suppress yellowing of a light emission color at a site far from a light source.
  • the present invention has at least a core layer 1 mainly composed of a thermoplastic elastomer and a first cladding layer 2 mainly composed of a thermoplastic resin having a refractive index smaller than that of the thermoplastic elastomer of the core layer 1.
  • a light diffusing agent is added to each of the resin materials of the core layer 1 and the first cladding layer 2, and the total light transmittance of the first cladding layer 2 is less than 70%.
  • a light diffusing agent in a ratio of 0.5 ppm to 10 ppm by weight with respect to the resin material of the core layer 1 in order to improve the light emitting performance.
  • a bluing agent in order to suppress yellowing of the emission color, it is preferable to add a bluing agent to the resin material of the core layer 1 at a ratio of 0.1 ppm to 10 ppm by weight.
  • the “blueing agent” means a blue or violet colorant that absorbs visible light in a yellow wavelength range.
  • the thickness of the first cladding layer 2 is set to 0.1 to 0.3 mm in order to improve the light emission performance, and the light diffusing agent is added to the resin material of the first cladding layer 2 in a weight ratio of 0.05 to 1.5. It is preferable to add at a ratio of%.
  • an acrylic thermoplastic elastomer is used as the main material of the core layer 1 and a main material of the first cladding layer 2 in order to obtain a thermoplastic resin molded article having excellent light emitting performance and impact resistance. It is preferable to use a fluororesin.
  • titanium oxide or barium sulfate as a light diffusing agent to be added to the core layer 1 and the first cladding layer 2 in order to improve the light emitting performance.
  • the same resin material as that of the first cladding layer 2 is used as a main material between the core layer 1 and the first cladding layer 2 in order to improve the light emission performance, and a light diffusing agent is added to the resin material. It is preferable to form a second cladding layer 3 that is not formed.
  • the ratio of the thickness of the second cladding layer 3 to the first cladding layer 2 is set to 50% to 150% in order to further improve the light emission performance, and the first cladding layer 3
  • the total thickness of 2 and the second clad layer 3 is 0.15 mm to 0.4 mm, and a light diffusing agent is added to the resin material of the first clad layer 2 at a ratio of 0.05 to 1.5% by weight.
  • a soft light guide bar in the peripheral surface light emitting type thermoplastic resin molded article, can be formed by using an acrylic thermoplastic elastomer as the material of the core layer. It can be bent and fixed to an object to be decorated, or a decorative character or pattern can be formed. This makes it possible to use the light guide bar even in applications that could not be used conventionally.
  • thermoplastic resin molded body of the present invention is configured by adding a light diffusing agent to the resin material of the core layer and the clad layer, respectively, thereby making it possible to improve the overall light emission luminance of the light guide rod.
  • a light diffusing agent to the resin material of the core layer and the clad layer, respectively.
  • the present invention not only can the problem of flexibility of the conventional peripheral light emitting type light guide rod be solved, but also the light emission performance and color unevenness can be obtained by utilizing the action of the light diffusing agent added to the core layer and the clad layer. Since the peripheral surface light emitting type thermoplastic resin molded article suitable for decoration use or display use can be provided, the practical utility value of the present invention is very high.
  • thermoplastic resin molding of 1st embodiment of this invention It is a whole perspective view showing the thermoplastic resin molded object of 1st embodiment of this invention. It is process explanatory drawing showing the manufacturing method of the thermoplastic resin molding of 1st embodiment of this invention. It is an expanded end view showing the thermoplastic resin molding of the second embodiment of the present invention. It is a graph which shows the result of the light-emitting luminance test of the thermoplastic resin molding of this invention. It is a graph which shows the result of the chromaticity change test of the luminescent color of the thermoplastic resin molding of this invention. It is the graph which put together the test result of the impact resistance of the thermoplastic resin molding of this invention for every sample unit. It is the graph which put together the test result of the impact resistance of the thermoplastic resin molding of this invention in a temperature condition unit.
  • thermoplastic resin molding [1] Basic structure of thermoplastic resin molded body First, the basic structure of the thermoplastic resin molded body will be described.
  • a first cladding layer 2 mainly composed of a thermoplastic resin having a refractive index smaller than that of the thermoplastic elastomer is disposed around the core layer 1 mainly composed of a thermoplastic elastomer.
  • a soft light guide rod type thermoplastic resin molded body F To form a soft light guide rod type thermoplastic resin molded body F.
  • a predetermined amount of light diffusing agent is added to each resin material of the core layer 1 and the first cladding layer 2, and the addition of the light diffusing agent to the first cladding layer 2 causes the total light transmission of the first cladding layer 2. This is done so that the rate is less than 70%.
  • thermoplastic resin molded body F As for the thermoplastic resin molded body F, as shown in FIG. 1, a light source is arranged at one or both ends of the thermoplastic resin molded body F so that light is incident on the end surface. By doing so, the peripheral surface of the thermoplastic resin molded body F is made to emit light and used. In the thermoplastic resin molded body F of the present embodiment, since a predetermined amount of light diffusing agent is added to the core layer 1 and the first cladding layer 2, light emission unevenness and Light can be emitted in a state where yellowing of the emission color is suppressed.
  • an acrylic thermoplastic elastomer is used in the present embodiment.
  • an acrylic thermoplastic elastomer a structure in which a polymer block (a1) mainly composed of a methacrylic ester unit is bonded to both ends of a polymer block (a2) mainly composed of an acrylate unit, That is, it is preferable to use an acrylic block copolymer having at least the structure of (a1)-(a2)-(a1) (“-” in the structure indicates a chemical bond).
  • the molecular weight and composition of (a1) at both ends of (a2) may be the same or different from each other. Further, it may further contain a diblock body represented by (a1)-(a2).
  • methacrylic acid ester used as the said methacrylic acid ester unit methyl methacrylate etc. can be mentioned, for example, Even if comprised from 1 type of these methacrylic acid esters, it may be comprised from 2 or more types. Good.
  • the acrylate ester serving as the acrylate ester unit examples include methyl acrylate, n-butyl acrylate, and benzyl acrylate.
  • the acrylate ester unit is composed of one of these acrylate esters. Also, it may be composed of two or more kinds, and is preferably composed of n-butyl acrylate, benzyl acrylate, or n-butyl acrylate and benzyl acrylate.
  • the mass ratio (n-butyl acrylate / benzyl acrylate) is preferably in the range of 50/50 to 90/10. More preferably, it is in the range of 40-80 / 20.
  • MMA-BA block copolymer As a material for the core layer, among them, a block copolymer of methyl methacrylate and butyl acrylate (hereinafter referred to as MMA-BA block copolymer) having a flexural modulus (ASTM D790) of 50 to 500 MPa, in particular.
  • MMA-BA block copolymer having a flexural modulus (ASTM D790) of 50 to 500 MPa, in particular.
  • ASTM D790 flexural modulus
  • the first cladding layer With respect to the material of the first cladding layer 2, it is preferable to use a fluorine-based resin having a refractive index smaller than that of the core layer 1.
  • ETFE copolymerization of ethylene and tetrafluoroethylene is used.
  • EFEP a copolymer of hexafluoropropylene, tetrafluoroethylene, and ethylene.
  • fluorine resins such as PVDF (polyvinylidene fluoride) and other resins can also be used.
  • a resin having a melting point of 230 ° C. or less as the main material of the first cladding layer 2.
  • the core layer 1 is highly compatible with the acrylic thermoplastic elastomer, so that the first clad layer 2 and the core layer 1 are less likely to be peeled off during use.
  • ETFE is used as the fluororesin
  • the elongation of ETFE 350 to 450%) is larger than that of PVDF (200 to 300%)
  • the flexural modulus of ETFE 800 ( ⁇ 1000 MPa) is smaller than the bending elastic modulus (1400 to 1800 MPa) of PVDF, so that the clad layer is less likely to be wrinkled when the thermoplastic resin molded body F is bent.
  • ETFE has a higher visible light transmittance than PVDF, the attenuation factor of light emission luminance can be kept low.
  • Each numerical value of the elongation is a measured value according to ASTM D638, and each numerical value of the flexural modulus is a measured value according to ASTM D790.
  • the light diffusing agent With respect to the light diffusing agent added to the core layer 1 and the first cladding layer 2, although powdered titanium oxide is used in this embodiment, barium sulfate can also be used. .
  • the addition amount of the light diffusing agent it is preferable to add the light diffusing agent to the resin material of the core layer 1 so that the ratio by weight is 0.5 ppm to 10 ppm.
  • the thickness of the first cladding layer 2 is 0.1 to 0.3 mm (preferably 0.2 mm to 0.3 mm)
  • the light diffusing agent is 0.05 to 1.5% by weight with respect to the resin material of the first cladding layer 2. It is preferable to add so that it may become a ratio.
  • the blueing agent yellowing of the emission color of the thermoplastic resin molded body F is suppressed by adding a blueing agent (blue pigment or purple pigment) to the core layer 1. Yes.
  • the amount of the bluing agent is preferably added so that the weight ratio of the bluing agent to the resin material of the core layer 1 is 0.1 ppm to 10 ppm.
  • thermoplastic resin molded body F has a round bar shape, but may be molded into a bar shape having a square cross section or a complicated cross section. Further, the shape of the thermoplastic resin molded body F includes a plate-like shape having a large aspect ratio of the cross-sectional shape.
  • thermoplastic resin molding Next, the manufacturing method of the said thermoplastic resin molded object F is demonstrated.
  • the core layer and the clad layer are simultaneously extruded from the mold of the extrusion molding machine, and after cooling and shaping in an integrated state, they are cut into a predetermined length for production.
  • an acrylic thermoplastic elastomer with an MFR of 2 to 10 g / 10 min under the test conditions of a temperature of 190 ° C and a load of 5 kg is used as the main material of the core layer, and a melting point of 230 ° C or less is used as the main material of the cladding layer.
  • the reference numeral 3 indicates the second cladding layer.
  • the second clad layer 3 is formed between the core layer 1 and the first clad layer 2 to constitute a soft light guide rod type thermoplastic resin molded body F.
  • a light diffusing agent is added to each resin material of the core layer 1 and the outer first cladding layer 2.
  • the main material of the second cladding layer 3 is the same resin material as that of the first cladding layer 2 and is used without adding a light diffusing agent to the resin material.
  • the conditions of the resin material that is the main material of the core layer 1 and the resin material that is the main material of the first cladding layer 2 are the same as those in the first embodiment. .
  • the conditions of the light diffusing agent material, the amount of the light diffusing agent added to the resin material of the core layer 1, the manufacturing method, and the like are the same as in the first embodiment.
  • the thickness of the cladding layer the ratio of the thickness of the second cladding layer 3 to the first cladding layer 2 is 50% to 150%, and the first cladding
  • the total thickness of the layer 2 and the second cladding layer 3 is preferably 0.15 mm to 0.4 mm.
  • the light diffusing agent is preferably added in a weight ratio of 0.05 to 1.5% with respect to the resin material of the first cladding layer 2 formed with this thickness. Also in this embodiment, the light diffusing agent is added to the first cladding layer 2 so that the total light transmittance of the two layers of the first cladding layer 2 and the second cladding layer 3 is less than 70%. preferable.
  • Comparative Example 1 In Comparative Example 1, a round bar-shaped thermoplastic resin molded body was composed of a core layer and a first cladding layer having a thickness of 0.24 mm.
  • the main material of the core layer is MMA-BA block copolymer with MFR 3.1g / 10min and flexural modulus 400MPa under the test conditions of temperature 190 °C and load 2.16kg.
  • the main material is ETFE with a melting point of 192 ° C, elongation of 417%, flexural modulus of 959MPa, temperature of 297 ° C, load of 5kg and MFR of 78.6g / 10min. Made by extrusion.
  • the total light transmittance of the first cladding layer was 65.2%.
  • Comparative Example 2 In Comparative Example 2, a round bar-shaped thermoplastic resin molded body was composed of a core layer, a second cladding layer having a thickness of 0.1 mm, and a first cladding layer having a thickness of 0.11 mm. Further, the same MMA-BA block copolymer as that of Comparative Example 1 is used as the main material of the core layer, and the first cladding layer of Comparative Example 1 is used as the main material of the second cladding layer and the first cladding layer. Using the same ETFE, a thermoplastic resin molding was produced by coextrusion molding.
  • the light diffusing agent is not added to the core layer, but the light diffusing agent is added only to the first cladding layer so that the weight ratio of the light diffusing agent to the resin material of the first cladding layer 2 is 1.3%. did.
  • the total light transmittance of the two layers of the first cladding layer and the second cladding layer was 24.5%.
  • Comparative Example 3 In Comparative Example 3, blue pigments and purple pigments, which are bluing agents, were added so that each pigment had a weight ratio of 1 ppm with respect to the resin material of the core layer, and an antioxidant was added to the core layer. An antioxidant was added to the resin material at a weight ratio of 0.1%. The total light transmittance of the two layers of the first cladding layer and the second cladding layer is 24.5%, and the other conditions are the same as in Comparative Example 2.
  • Example 1 In Example 1, a round bar-shaped thermoplastic resin molded body was composed of a core layer and a first cladding layer having a thickness of 0.24 mm.
  • the main material of the core layer is MMA-BA block copolymer with MFR 3.1g / 10min and flexural modulus 400MPa under the test conditions of temperature 190 °C and load 2.16kg.
  • the main material is ETFE with a melting point of 192 ° C, elongation of 417%, flexural modulus of 959MPa, temperature of 297 ° C, load of 5kg and MFR of 78.6g / 10min. Made by extrusion.
  • a light diffusing agent was added to the core layer so that the weight ratio of the light diffusing agent to the resin material of the core layer was 1 ppm.
  • the light diffusing agent was added to the first cladding layer so that the weight ratio of the light diffusing agent to the resin material of the first cladding layer was 0.065%.
  • a blue pigment and a purple pigment which are blueing agents, are added to the core layer so that each pigment has a weight ratio of 1 ppm to the resin material of the core layer, and an antioxidant is added to the core layer.
  • the antioxidant was added to the resin material so that the ratio by weight was 0.1%.
  • the total light transmittance of the first cladding layer was 65.2%.
  • Example 2 In Example 2, a round rod-shaped thermoplastic resin molding was formed by forming a core layer, a second cladding layer having a thickness of 0.1 mm, and a first cladding layer having a thickness of 0.12 mm.
  • the main material of the core layer is the same MMA-BA block copolymer as in Example 1, and the main material of the second cladding layer and the first cladding layer is the first cladding layer of Example 1.
  • a thermoplastic resin molding was produced by coextrusion molding.
  • the light diffusing agent was added to the core layer so that the weight ratio of the light diffusing agent to the resin material of the core layer was 0.5 ppm.
  • the light diffusing agent is not added to the second cladding layer, the light diffusing agent is added only to the first cladding layer, and the light diffusing agent is 1.3% by weight with respect to the resin material of the first cladding layer.
  • a blue pigment and a purple pigment which are blueing agents, are added to the core layer so that each pigment has a weight ratio of 1 ppm to the resin material of the core layer, and an antioxidant is added to the core layer. The antioxidant was added to the resin material so that the ratio by weight was 0.1%.
  • the total light transmittance of the two layers of the first cladding layer and the second cladding layer was 18.2%.
  • Example 3 In Example 3, the light diffusing agent was added to the core layer so that the weight ratio of the light diffusing agent to the resin material of the core layer was 0.8 ppm. The other conditions are the same as in Example 2.
  • Example 4 In Example 4, a light diffusing agent was added to the core layer so that the weight ratio of the light diffusing agent to the resin material of the core layer was 1 ppm. The other conditions are the same as in Example 2.
  • Example 5" In Example 5, a light diffusing agent was added to the core layer so that the light diffusing agent was 3 ppm by weight with respect to the resin material of the core layer. The other conditions are the same as in Example 2.
  • thermoplastic resin molded body of Example 1 is more preferable than the thermoplastic resin molded body of Comparative Example 1 in the form of a single clad layer. It was also confirmed that the emission luminance was increased overall. Even in the case where the clad layer is composed of two layers, the thermoplastic resin molded bodies of Examples 2 to 5 may have a larger overall luminance than the thermoplastic resin molded bodies of Comparative Examples 2 and 3. It could be confirmed.
  • the following table shows the detailed data of emission luminance and attenuation rate (unit of luminance is cd / m 2 ).
  • the evaluation of the chromaticity change of the emission color is performed by measuring the emission color of the part 100 to 900 mm away from the light source using the CIE chromaticity diagram at 100 mm intervals, and the minimum x value and y value (close to blue) This was done by comparing the magnitude of the change from the coordinates) to the maximum x and y values (yellowish coordinates).
  • Detailed data on the amount of change in chromaticity is shown below. As can be seen from the table below, except for Example 5, the x value and y value of the part close to the light source are minimum, and the x value and y value of the part far from the light source are maximum.
  • Comparative Example 4 a peripheral surface light emitting type thermoplastic resin molded body was formed into a round bar shape having an outer diameter of 3.5 mm composed of a core layer and a first cladding layer.
  • the material for the core layer polyoxypropylene triol and polyoxypropylene diol were used as the polymer polyol, and hexamethylene diisocyanate was used as the hydroxy group-reactive polyfunctional compound.
  • Tetrafluoroethylene / hexafluoropropylene copolymer (FEP) was used as the material for the first cladding layer.
  • FEP Tetrafluoroethylene / hexafluoropropylene copolymer
  • the tube which comprises a 1st clad layer was filled with the material of the core layer in the mixed state, and it heat-hardened, and produced the surface emitting type thermoplastic resin molding.
  • Comparative Example 5 the peripheral surface light emitting type thermoplastic resin molded body was formed into a round bar shape having an outer diameter of 3.0 mm composed of a core layer and a first cladding layer.
  • the core layer is made of a polymerizable monomer (100: 1 by weight, a mixture of n-butyl methacrylate and triethylene glycol dimethacrylate) and bis (4-t-butylcyclohexyl) as a polymerization initiator. What added peroxydicarbonate was used. A tetrafluoroethylene-hexafluoropropylene copolymer was used as the material for the first cladding layer.
  • the first clad layer formed into a tube shape with an extruder was pressurized and filled with a core-forming material to produce a peripheral surface light emitting type thermoplastic resin molded body.
  • Example 6 the peripheral surface light emitting type thermoplastic resin molded body was formed into a round bar shape having an outer diameter of 3.5 mm composed of a core layer and a first cladding layer.
  • the main material of the core layer is MMA-BA block copolymer with MFR 3.1g / 10min and flexural modulus 400MPa under the test conditions of temperature 190 °C and load 2.16kg.
  • the main material is ETFE with a melting point of 192 ° C, elongation of 417%, flexural modulus of 959MPa, temperature of 297 ° C, load of 5kg and MFR of 78.6g / 10min. Made by extrusion.
  • Example 6 manufactured by coextrusion molding using an acrylic thermoplastic elastomer as the main material of the core layer and using a fluorine resin as the main material of the first cladding layer It was confirmed that the sample No. 1 was less susceptible to deterioration in appearance and light emission performance due to impact than the samples of Comparative Examples 4 and 5 employing other materials and production methods.
  • thermoplastic resin molded article of the present invention can be used by flexibly bending it according to the method of light decoration and the object to be fixed, as well as improving the overall emission luminance, and is far from the light source. Since yellowing of the luminescent color at the part can also be suppressed, it can be suitably used as a peripheral surface light emitting type thermoplastic resin molded article excellent in light emitting performance and impact resistance, particularly as a light guide rod.
  • Such a light guide rod can be used as a lighting device for automobile interiors, specifically, auxiliary lighting installed around a vehicle instrument panel, around a car audio car navigation, a door panel, a console box, and a pillar. In addition, it can also be applied to courtesy lamps, map lamps, room lamps, floor lamps, foot lamps, ceiling lamps, and door lamps.
  • automotive exterior lighting devices such as automotive headlamps, tail lamps, brake lamps, side marker lamps, and license plate lamps.
  • transmission of sunlight optical signal transmission such as in-vehicle wiring, mobile wiring, and FA equipment wiring
  • optical sensors such as liquid level sensors and pressure sensors, image guides for endoscopes, and light guides for optical equipment It can also be applied to.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Led Device Packages (AREA)
  • Planar Illumination Modules (AREA)

Abstract

【課題】 光装飾の方法や固定される対象物に合わせて柔軟に屈曲させて使用できるだけでなく、発光輝度も全体的に向上させることができ、しかも、光源から遠い部位での発光色の黄変も抑制できる周面発光型の熱可塑性樹脂成形体を提供すること。 【解決手段】 熱可塑性エラストマーを主材料とするコア層1と、このコア層1の熱可塑性エラストマーよりも屈折率の小さい熱可塑性樹脂を主材料とする第一クラッド層2とを少なくとも有する熱可塑性樹脂成形体において、これらコア層1と第一クラッド層2の各樹脂材料にそれぞれ光拡散剤を添加すると共に、第一クラッド層2の全光線透過率を70%未満とした。

Description

周面発光型の熱可塑性樹脂成形体
 本発明は、周面発光型の熱可塑性樹脂成形体の改良、詳しくは、装飾対象物の形状に沿わせて、或いは線状に形成される装飾文字や装飾模様に合わせて柔軟に屈曲させて使用することができ、更に発光性能にも優れ、光源から遠い部位での発光色の黄変も抑制される周面発光型の熱可塑性樹脂成形体に関するものである。
 近年、飾り具やイルミネーション、電飾看板等の多くの光装飾品に線状発光体が利用されているが、線状発光体として古くから使用されているネオンライトは、本体が可撓性の乏しいガラス管から構成されているため、直線状の発光体を屈曲させて壁面の湾曲部に沿わせたり、装飾文字や装飾模様を描いたりすることができない。
 そのため、従来においては、端面から光を入射して線状発光体として使用できるプラスチック製の周面発光型導光棒も開発されているが(特許文献1~3参照)、コア層に曲げ弾性率の大きい透明樹脂を使用すると導光棒が固くなってしまい、導光棒を大きく湾曲させて使用することができないという問題があった。
 そこで、本件出願人は、以前にコア層にアクリル系熱可塑性エラストマーを使用した軟質導光棒を開発し、特許出願も行っているが、この軟質導光棒においては、発光性能の更なる改良が必要であるだけでなく、発光色の黄変(光源から遠い部位になるほど発光色が黄味がかる現象)を抑制する手段も必要となった。
 一方、従来においては、上記導光棒の発光色の黄変を抑制するために、コア層やクラッド層の樹脂材料に少量のブルーイング剤を添加して導光棒の発光色を若干青色寄りにする技術は知られていたものの、光源から近い部位から遠い部位にかけての発光色の色度変化を小さく抑える技術については知られていなかった。
特開2000―131530号公報 特開2009―276651号公報 特開2013―57924号公報
 本発明は、上記問題に鑑みて為されたものであり、その目的とするところは、光装飾の方法や固定される対象物に合わせて柔軟に屈曲させて使用できるだけでなく、発光輝度も全体的に向上させることができ、しかも、光源から遠い部位での発光色の黄変も抑制できる周面発光型の熱可塑性樹脂成形体を提供することにある。
 本発明者が上記課題を解決するために採用した手段を添付図面を参照して説明すれば次のとおりである。
 即ち、本発明は、熱可塑性エラストマーを主材料とするコア層1と、このコア層1の熱可塑性エラストマーよりも屈折率の小さい熱可塑性樹脂を主材料とする第一クラッド層2とを少なくとも有する熱可塑性樹脂成形体において、これらコア層1と第一クラッド層2の各樹脂材料にそれぞれ光拡散剤を添加すると共に、第一クラッド層2の全光線透過率を70%未満とした点に特徴がある。
 また本発明においては、発光性能を高めるために上記コア層1の樹脂材料に対し光拡散剤が重量比で0.5ppm~10ppmの割合で添加するのが好ましい。
 また本発明では、発光色の黄変を抑制するために上記コア層1の樹脂材料に対しブルーイング剤を重量比で0.1ppm~10ppmの割合で添加することが好ましい。なお本明細書中において「ブルーイング剤」とは、黄色の波長域の可視光を吸収する青色系または紫色系の着色剤のことを意味する。
 また本発明においては、発光性能を高めるために上記第一クラッド層2の厚みを0.1~0.3mmにすると共に、この第一クラッド層2の樹脂材料に対し光拡散剤を重量比で0.05~1.5%の割合で添加するのが好ましい。
 また本発明では、発光性能および耐衝撃性に優れた熱可塑性樹脂成形体とするために上記コア層1の主材料にアクリル系熱可塑性エラストマーを使用すると共に、第一クラッド層2の主材料にフッ素系樹脂を使用するのが好ましい。
 また本発明においては、発光性能を高めるために上記コア層1及び第一クラッド層2に添加する光拡散剤として酸化チタンまたは硫酸バリウムを使用するのが好ましい。
 また更に本発明では、発光性能を高めるために上記コア層1と第一クラッド層2の間に第一クラッド層2と同じ樹脂材料を主材料とし、かつ、樹脂材料に光拡散剤が添加されていない第二クラッド層3を形成するのが好ましい。
 また上記第二クラッド層3を形成する場合には、発光性能をより高めるために第一クラッド層2に対する第二クラッド層3の厚みの比率を50%~150%にすると共に、第一クラッド層2と第二クラッド層3の合計厚みを0.15mm~0.4mmとし、更に第一クラッド層2の樹脂材料に対し光拡散剤を重量比で0.05~1.5%の割合で添加するのが好ましい。
 本発明では、周面発光型の熱可塑性樹脂成形体において、コア層の材料にアクリル系熱可塑性エラストマーを使用したことにより、軟質の導光棒を構成することができるため、導光棒を大きく屈曲させて被装飾物に固定したり、装飾文字や模様模様を形成したりすることができる。これにより従来使用できなかった用途でも導光棒を使用することが可能となる。
 しかも、本発明の熱可塑性樹脂成形体は、コア層とクラッド層の樹脂材料にそれぞれ光拡散剤を添加して構成したことによって、導光棒の発光輝度を全体的に向上させることが可能となり、また光源から近い部位から遠い部位で起こる発光色の色度変化(白色から黄色への変化)を小さく抑えて発光色の黄変を抑制することも可能となる。
 したがって、本発明により、従来の周面発光型導光棒にあった柔軟性の問題を解決できるだけでなく、コア層とクラッド層に添加した光拡散剤の作用を利用して発光性能および色ムラが改善された装飾用途または表示用途に適した周面発光型の熱可塑性樹脂成形体を提供できることから、本発明の実用的利用価値は頗る高い。
本発明の第一実施形態の熱可塑性樹脂成形体を表す全体斜視図である。 本発明の第一実施形態の熱可塑性樹脂成形体の製造方法を表す工程説明図である。 本発明の第二実施形態の熱可塑性樹脂成形体を表す拡大端面図である。 本発明の熱可塑性樹脂成形体の発光輝度試験の結果を示すグラフである。 本発明の熱可塑性樹脂成形体の発光色の色度変化試験の結果を示すグラフである。 本発明の熱可塑性樹脂成形体の耐衝撃性の試験結果をサンプル単位でまとめたグラフである。 本発明の熱可塑性樹脂成形体の耐衝撃性の試験結果を温度条件単位でまとめたグラフである。
 『第一実施形態』
 次に、本発明の第一実施形態について図1及び図2に基づいて説明する。なお図中、符号Fで指示するのものは、周面発光型の熱可塑性樹脂成形体であり、符号1で指示するものは、コア層である。また符号2で指示するものは、第一クラッド層である。
 「熱可塑性樹脂成形体の構成及び使用方法」
 [1]熱可塑性樹脂成形体の基本構成について
 まず熱可塑性樹脂成形体の基本構成について説明する。本実施形態では、図1に示すように、熱可塑性エラストマーを主材料とするコア層1の周囲に、この熱可塑性エラストマーよりも屈折率の小さい熱可塑性樹脂を主材料とする第一クラッド層2を形成して軟質導光棒型の熱可塑性樹脂成形体Fを構成している。またコア層1と第一クラッド層2の各樹脂材料にはそれぞれ所定量の光拡散剤を添加すると共に、第一クラッド層2に対する光拡散剤の添加は、第一クラッド層2の全光線透過率が70%未満となるように行っている。
 [2]熱可塑性樹脂成形体の使用方法について
 また上記熱可塑性樹脂成形体Fについては、図1に示すように熱可塑性樹脂成形体Fの一端若しくは両端に光源を配置して端面に光を入射することにより、熱可塑性樹脂成形体Fの周面を発光させて使用する。なお本実施形態の熱可塑性樹脂成形体Fは、コア層1と第一クラッド層2に所定量の光拡散剤を添加しているため、光拡散剤が添加されていないものよりも発光ムラや発光色の黄変を抑えた状態で発光させることができる。
 [3]コア層について
 次に上記熱可塑性樹脂成形体Fの各構成要素について説明する。まず上記コア層1の材料に関しては、本実施形態ではアクリル系熱可塑性エラストマーを使用している。具体的には、アクリル系熱可塑性エラストマーとして、アクリル酸エステル単位を主体とする重合体ブロック(a2)の両末端にそれぞれメタクリル酸エステル単位を主体とする重合体ブロック(a1)が結合した構造、すなわち、(a1)-(a2)-(a1)の構造(構造中の「-」は、化学結合を示す)を少なくとも有する、アクリル系ブロック共重合体の使用が好ましい。ここで、(a2)の両端の(a1)の分子量、組成などは同じであってもよいし、相互に異なっていてもよい。また(a1)-(a2)で表されるジブロック体を更に含んでいてもよい。
 なお上記メタクリル酸エステル単位となるメタクリル酸エステルとしては、例えば、メタクリル酸メチルなどを挙げることができ、これらのメタクリル酸エステルの1種から構成されていても、2種以上から構成されていてもよい。
 また、上記アクリル酸エステル単位となるアクリル酸エステルとしては、例えば、アクリル酸メチル、アクリル酸n-ブチル、アクリル酸ベンジルなどを挙げることができ、これらのアクリル酸エステルの1種から構成されていても、2種以上から構成されていてもよく、アクリル酸n-ブチル、アクリル酸ベンジル、またはアクリル酸n-ブチル及びアクリル酸ベンジルから構成されていることが好ましい。アクリル酸n-ブチルとアクリル酸ベンジルの共重合体の場合には、その質量比(アクリル酸n-ブチル/アクリル酸ベンジル)は50/50~90/10の範囲にあることが好ましく、60/40~80/20の範囲にあることがより好ましい。
 そして、コア層の材料としては、これらの中でも特に曲げ弾性率(ASTM D790)が50~500MPaである、メタクリル酸メチルとアクリル酸ブチルのブロック共重合体(以下、MMA-BAブロック共重合体と記載)の使用が好ましい。またコア層1の主材料に関しては、製造時における第一クラッド層2との共押出成形を考慮して、温度190℃・荷重5kgの試験条件下におけるMFRが2~10g/minの樹脂を使用することが好ましい。
 [4]第一クラッド層について
 上記第一クラッド層2の材料に関しては、屈折率がコア層1よりも小さいフッ素系樹脂の使用が好ましく、本実施形態ではETFE(エチレンとテトラフルオロエチレンの共重合体)やEFEP(ヘキサフルオロプロピレンとテトラフルオロエチレンとエチレンの共重合体)を使用している。但し、PVDF(ポリフッ化ビニリデン)等のフッ素系樹脂やその他の樹脂を使用することもできる。また第一クラッド層2の主材料には、コア層1との共押出成形を考慮して、融点が230℃以下の樹脂を使用するのが好ましい。
 なお上記第一クラッド層2にPVDFを使用する場合には、コア層1のアクリル系熱可塑性エラストマーに対する相溶性が高いため、使用時に第一クラッド層2とコア層1の剥離が生じ難くなるメリットがある。一方、上記フッ素系樹脂としてETFEを使用する場合には、ETFEの伸度(350~450%)の方がPVDFの伸度(200~300%)よりも大きく、またETFEの曲げ弾性率(800~1000MPa)の方がPVDFの曲げ弾性率(1400~1800MPa)よりも小さくなるため、熱可塑性樹脂成形体Fを曲げたときにクラッド層にシワが生じ難くなる。またETFEはPVDFに比べて可視光線透過率も高いため、発光輝度の減衰率を低く抑えることもできる。なお上記伸度の各数値はASTM D638による計測値であり、上記曲げ弾性率の各数値はASTM D790による計測値である。
 [5]光拡散剤について
 上記コア層1及び第一クラッド層2に添加する光拡散剤に関しては、本実施形態では粉末状の酸化チタンを使用しているが、硫酸バリウムを使用することもできる。また光拡散剤の添加量に関しては、コア層1の樹脂材料に対し光拡散剤が重量比で0.5ppm~10ppmの割合となるように添加するのが好ましい。また第一クラッド層2の厚みを0.1~0.3mm(好ましくは0.2mm~0.3mm)とする場合には、第一クラッド層2の樹脂材料に対し光拡散剤が重量比で0.05~1.5%の割合となるように添加するのが好ましい。
 [6]ブルーイング剤について
 また本実施形態では、上記コア層1に対しブルーイング剤(青色顔料や紫色顔料)を添加することによって熱可塑性樹脂成形体Fの発光色の黄変を抑制している。なおブルーイング剤の添加量については、コア層1の樹脂材料に対しブルーイング剤が重量比で0.1ppm~10ppmの割合となるように添加することが好ましい。
 [7]熱可塑性樹脂成形体の形状について
 また本実施形態では、熱可塑性樹脂成形体Fを丸棒型の形状としているが、角形断面や複雑な断面形状の棒状に成形することもできる。また熱可塑性樹脂成形体Fの形状には、断面形状の縦横比が大きい板状のものも含まれる。
 「熱可塑性樹脂成形体の製造方法」
 次に上記熱可塑性樹脂成形体Fの製造方法について説明する。まず図2に示すように押出成形機の金型からコア層とクラッド層を同時に押出し、これらを一体化させた状態で冷却賦形を行った後、所定長さに切断して製造を行う。なお製造に際しては、コア層の主材に温度190℃・荷重5kgの試験条件下におけるMFRが2~10g/10minのアクリル系熱可塑性エラストマーを使用し、クラッド層の主材に融点が230℃以下のフッ素系樹脂を使用して、270℃以下の成形温度で共押出成形を行うのが好ましい。
 『第二実施形態』
 「熱可塑性樹脂成形体の構成」
 [1]導光棒の基本構成について
 次に本発明の第二実施形態について図3に基づいて以下に説明する。なお図中、符号3で指示するのものは、第二クラッド層である。本実施形態では、コア層1と第一クラッド層2の間に第二クラッド層3を形成して軟質導光棒型の熱可塑性樹脂成形体Fを構成している。そしてコア層1と外側の第一クラッド層2の各樹脂材料にそれぞれ光拡散剤を添加している。また第二クラッド層3の主材料には、第一クラッド層2と同じ樹脂材料を使用し、樹脂材料に光拡散剤を添加せずに使用している。このような構成を採用することで熱可塑性樹脂成形体Fの均一発光性を向上させることができる。
 なお上記コア層1の主材料となる樹脂材料や、第一クラッド層2の主材料となる樹脂材料(第二クラッド層3と同じ樹脂材料)の条件に関しては、第一実施形態と同様である。また光拡散剤の材料や、コア層1の樹脂材料に対する光拡散剤の添加量、製造方法等の条件も第一実施形態と同様である。
 [2]クラッド層の厚みと光拡散剤の添加量について
 一方、クラッド層の厚みに関しては、第一クラッド層2に対する第二クラッド層3の厚みの比率を50%~150%とし、第一クラッド層2と第二クラッド層3の合計厚みが0.15mm~0.4mmとなるようにするのが好ましい。そして、この厚みで形成される第一クラッド層2の樹脂材料に対し光拡散剤を重量比で0.05~1.5%の割合となるように添加するのが好ましい。なお本実施形態においても、第一クラッド層2に対する光拡散剤の添加は、第一クラッド層2と第二クラッド層3の二層の全光線透過率が70%未満となるように行うのが好ましい。
 [効果の実証試験(i)]
 次に本発明の効果の実証試験(i)について説明する。まず本試験では、製造条件(コア層への光拡散剤及びブルーイング剤の添加、光拡散剤の添加量、クラッド層の構成)の異なる複数のサンプル(下記比較例1~3並びに実施例1~5)を作製し、これらの各サンプルについて、発光性能(発光輝度及び減衰率)、発光色の色度変化の評価を行った。なお本試験では、光拡散剤として粉末状の酸化チタンを使用した。以下に比較例1~3並びに実施例1~5の各サンプルの製造条件について記載する。
 「比較例1」
 この比較例1では、丸棒状の熱可塑性樹脂成形体を、コア層と厚み0.24mmの第一クラッド層から構成した。またコア層の主材料には、温度190℃・荷重2.16kgの試験条件下におけるMFRが3.1g/10min、曲げ弾性率が400MPaのMMA-BAブロック共重合体を使用し、第一クラッド層の主材料には、融点192℃、伸度417%、曲げ弾性率959MPa、温度297℃・荷重5kgの試験条件下におけるMFRが78.6g/10minのETFEを使用して、熱可塑性樹脂成形体を共押出成形により作製した。またコア層には光拡散剤を添加せず、第一クラッド層にのみ光拡散剤を、第一クラッド層の樹脂材料に対し光拡散剤が重量比で0.065%の割合となるように添加した。なお第一クラッド層の全光線透過率は65.2%であった。
 「比較例2」
 この比較例2では、丸棒状の熱可塑性樹脂成形体を、コア層と厚み0.1mmの第二クラッド層及び厚み0.11mmの第一クラッド層から構成した。またコア層の主材料には、比較例1と同じMMA-BAブロック共重合体を使用し、また第二クラッド層と第一クラッド層の主材料には、比較例1の第一クラッド層と同じETFEを使用して、熱可塑性樹脂成形体を共押出成形により作製した。またコア層には光拡散剤を添加せず、第一クラッド層にのみ光拡散剤を、第一クラッド層2の樹脂材料に対し光拡散剤が重量比で1.3%の割合となるように添加した。なお第一クラッド層と第二クラッド層の二層の全光線透過率は24.5%であった。
 「比較例3」
 この比較例3では、ブルーイング剤である青色顔料及び紫色顔料を、コア層の樹脂材料に対し各顔料が重量比で1ppmの割合となるようにそれぞれ添加し、また酸化防止剤を、コア層の樹脂材料に対し酸化防止剤が重量比で0.1%の割合となるように添加した。なお第一クラッド層と第二クラッド層の二層の全光線透過率は24.5%であり、その他の条件は比較例2と同様である。
 「実施例1」
 この実施例1では、丸棒状の熱可塑性樹脂成形体を、コア層と厚み0.24mmの第一クラッド層から構成した。またコア層の主材料には、温度190℃・荷重2.16kgの試験条件下におけるMFRが3.1g/10min、曲げ弾性率が400MPaのMMA-BAブロック共重合体を使用し、第一クラッド層の主材料には、融点192℃、伸度417%、曲げ弾性率959MPa、温度297℃・荷重5kgの試験条件下におけるMFRが78.6g/10minのETFEを使用して、熱可塑性樹脂成形体を共押出成形により作製した。
 またコア層には、光拡散剤をコア層の樹脂材料に対し光拡散剤が重量比で1ppmの割合となるように添加した。一方、第一クラッド層には、光拡散剤を、第一クラッド層の樹脂材料に対し光拡散剤が重量比で0.065%の割合となるように添加した。またコア層にはブルーイング剤である青色顔料及び紫色顔料を、コア層の樹脂材料に対し各顔料が重量比で1ppmの割合となるようにそれぞれ添加し、また酸化防止剤を、コア層の樹脂材料に対し酸化防止剤が重量比で0.1%の割合となるように添加した。なお第一クラッド層の全光線透過率は65.2%であった。
 「実施例2」
 この実施例2では、丸棒状の熱可塑性樹脂成形体を、コア層と厚み0.1mmの第二クラッド層及び厚み0.12mmの第一クラッド層を形成して構成した。またコア層の主材料には、実施例1と同じMMA-BAブロック共重合体を使用し、また第二クラッド層と第一クラッド層の主材料には、実施例1の第一クラッド層と同じETFEを使用して、熱可塑性樹脂成形体を共押出成形により作製した。またコア層には、光拡散剤をコア層の樹脂材料に対し光拡散剤が重量比で0.5ppmの割合となるように添加した。
 一方、第二クラッド層には光拡散剤を添加せず、第一クラッド層にのみ光拡散剤を、第一クラッド層の樹脂材料に対し光拡散剤が重量比で1.3%の割合となるように添加した。またコア層にはブルーイング剤である青色顔料及び紫色顔料を、コア層の樹脂材料に対し各顔料が重量比で1ppmの割合となるようにそれぞれ添加し、また酸化防止剤を、コア層の樹脂材料に対し酸化防止剤が重量比で0.1%の割合となるように添加した。なお第一クラッド層と第二クラッド層の二層の全光線透過率は18.2%であった。
 「実施例3」
 この実施例3においては、コア層に光拡散剤を、コア層の樹脂材料に対し光拡散剤が重量比で0.8ppmの割合となるように添加した。なおその他の条件は実施例2と同様である。
 「実施例4」
 この実施例4においては、コア層に光拡散剤を、コア層の樹脂材料に対し光拡散剤が重量比で1ppmの割合となるように添加した。なおその他の条件は実施例2と同様である。
 「実施例5」
 この実施例5においては、コア層に光拡散剤を、コア層の樹脂材料に対し光拡散剤が重量比で3ppmの割合となるように添加した。なおその他の条件は実施例2と同様である。
 以下に比較例1~3及び実施例1~5の各サンプルの製造条件をまとめた表を示す。
Figure JPOXMLDOC01-appb-T000001
 <発光性能の評価>
 次に上記比較例1~3並びに実施例1~5のサンプルについて、寸法を長さ1000mm、直径6.3mmとして、光源からの距離が100~900mmの部位の発光輝度を100mm間隔で測定した。なお本試験では、発光輝度の測定を、サンプルの被測定部位から垂直方向に600mm離れた位置に分光放射輝度計(CS-2000コニカミノルタ製)を配置して行った。また光源には、駆動電流20mA、輝度25cd/m2、指向特性30°のものを使用した。測定条件をまとめた表を以下に示す。
Figure JPOXMLDOC01-appb-T000002
 そして、上記測定結果をグラフ化した図4を見ても分かるように、クラッド層が一層から成る形態において、実施例1の熱可塑性樹脂成形体の方が比較例1の熱可塑性樹脂成形体よりも発光輝度が全体的に大きくなっていることが確認できた。またクラッド層が二層から成る形態においても、実施例2~5の熱可塑性樹脂成形体の方が比較例2及び3の熱可塑性樹脂成形体よりも全体の発光輝度が大きくなっていることも確認できた。下記表に発光輝度と減衰率の詳細なデータを示す(輝度の単位はcd/m2)。
Figure JPOXMLDOC01-appb-T000003
 <発光色の色度変化の評価>
 次に上記比較例1~3並びに実施例1~5のサンプルについて、光源から近い側から遠い側にかけての発光色の色度変化を調べたところ、図5に示すようにクラッド層が一層から成る形態において、実施例1の熱可塑性樹脂成形体の方が比較例1の熱可塑性樹脂成形体よりも発光色の黄変が抑制されていることが確認できた。またクラッド層が二層から成る形態においても、実施例2~5の熱可塑性樹脂成形体の方が比較例2及び3の熱可塑性樹脂成形体よりも発光色の黄変が抑制されていることが確認できた。
 なお上記発光色の色度変化の評価は、CIE色度図を用いて光源からの距離が100~900mmの部位の発光色を100mm間隔で測定し、最小のx値・y値(青色寄りの座標)から最大のx値・y値(黄色寄りの座標)への変化の大きさを比較して行った。色度変化量の詳細なデータを下記に示す。下記表からも分かるように実施例5以外は光源に近い部位のx値・y値が最小で、光源から遠い部位のx値・y値が最大となっている。
Figure JPOXMLDOC01-appb-T000004
 [効果の実証試験(ii)]
 次に本発明の効果の実証試験(ii)について説明する。本試験では、コア層とクラッド層に使用する材料、及び製法が異なる複数のサンプル(下記比較例4・5並びに実施例6)を作製し、これらの各サンプルについて、落球試験を行って試験後における各サンプルの発光性能(発光輝度)の評価を行った。なお本試験では、光拡散剤として粉末状の酸化チタンを使用した。以下に比較例4・5並びに実施例6の各サンプルの製造条件について説明する。
 「比較例4」
 この比較例4では、周面発光型の熱可塑性樹脂成形体を、コア層と第一クラッド層から成る外径3.5mmの丸棒状に構成した。またコア層の材料には、ポリマーポリオールとしてポリオキシプロピレントリオールとポリオキシプロピレンジオールを使用し、ヒドロキシ基反応性多官能化合物としてヘキサメチレンジイソシアネートを使用した。また第一クラッド層の材料には、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)を使用した。そして第一クラッド層を構成するチューブ内に、コア層の材料を混合した状態で充填して加熱硬化させることにより、周面発光型の熱可塑性樹脂成形体を作製した。
 「比較例5」
 この比較例5では、周面発光型の熱可塑性樹脂成形体を、コア層と第一クラッド層から成る外径3.0mmの丸棒状に構成した。またコア層の材料には、重合性モノマー(重量比で100:1の、n-ブチルメタクリレートとトリエチレングリコールジメタクリレートとの混合液)に、重合開始剤としてビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネートを加えたものを使用した。また第一クラッド層の材料には、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体を使用した。そして押出し機でチューブ状に成形した第一クラッド層内に、コア形成材料を加圧充填して重合させることにより、周面発光型の熱可塑性樹脂成形体を作製した。
 「実施例6」
 この実施例6では、周面発光型の熱可塑性樹脂成形体を、コア層と第一クラッド層から成る外径3.5mmの丸棒状に構成した。またコア層の主材料には、温度190℃・荷重2.16kgの試験条件下におけるMFRが3.1g/10min、曲げ弾性率が400MPaのMMA-BAブロック共重合体を使用し、第一クラッド層の主材料には、融点192℃、伸度417%、曲げ弾性率959MPa、温度297℃・荷重5kgの試験条件下におけるMFRが78.6g/10minのETFEを使用して、熱可塑性樹脂成形体を共押出成形により作製した。
 <落球試験について>
 次に上記落球試験の方法について説明する。本試験では、200mmに切断した各サンプルを、任意の温度(常温・-30℃・80℃)に約3時間放置した後、このサンプルの中央部に、質量約1040gの鋼球(サイズ2 1/2インチ)を306mmの高さから落下させて衝撃を与えた。なお試験は、厚さ約30mmの鉄板上に試料を設置して行った。
 <発光性能の評価>
 次に発光性能の評価方法について説明する。上記落球試験を行った各サンプルにおける落下点前、落下点、落下点後の部位の発光輝度を測定した。なお本試験では、発光輝度の測定を、サンプルの被測定部位から垂直方向に600mm離れた位置に分光放射輝度計(CS-2000コニカミノルタ製)を配置して行った。また光源には、駆動電流20mA、輝度25cd/m2、指向特性30°のものを使用した。
 そして、各サンプルの発光輝度を測定した結果、図6及び図7に示されるように、-30℃条件下の落球試験後のサンプルにおいて、実施例6のサンプルの方が比較例4のサンプルよりも、落下点後の部位における発光輝度が明らかに大きいことが確認できた。なお外観面においても、-30℃条件下の落球試験後において、実施例6のサンプルは落下点にへこみが生じただけだったのに対し、比較例4のサンプルは落下点に内部損傷による白化が見られた。
 一方、80℃条件下の落球試験後のサンプルにおいては、実施例6のサンプルの方が比較例5のサンプルよりも、落下点後の部位における発光輝度が明らかに大きいことが確認できた。なお外観面においても、80℃条件下の落球試験後において、実施例6のサンプルは落下点にへこみが生じただけだったのに対し、比較例5のサンプルは落下点に内部損傷による白化が見られた。
 以上の実証試験(ii)の結果により、コア層の主材料にアクリル系熱可塑性エラストマーを使用し、第一クラッド層の主材料にフッ素系樹脂を使用して共押出成形により製造した実施例6のサンプルの方が、その他の材料・製法を採用した比較例4・5のサンプルよりも衝撃による外観悪化や発光性能の低下が起き難いことが確認できた。
 本発明の熱可塑性樹脂成形体は、光装飾の方法や固定される対象物に合わせて柔軟に屈曲させて使用できるだけでなく、発光輝度も全体的に向上させることができ、しかも、光源から遠い部位での発光色の黄変も抑制できることから、発光性能及び耐衝撃性に優れた周面発光型の熱可塑性樹脂成形体、特に導光棒として好適に使用できる。
 かかる導光棒としては、自動車内装用照明装置、具体的には、車両のインストルメントパネル周り、カーオディオ・カーナビ周り、ドアパネル、コンソールボックス、ピラーに設置する補助照明として使用できる。その他、カーテシーランプ、マップランプ、ルームランプ、フロアランプ、フットランプ、天井ランプ、ドアランプに適用することもできる。
 また、自動車外装用照明装置、例えば自動車用ヘッドランプやテールランプ、ブレーキランプ、サイドマーカーランプ、ナンバープレートランプなどにも適用することもできる。また、太陽光の伝送、車載用配線・移動体配線・FA機器配線等の光信号伝送、液面レベルセンサー、感圧センサー等の光学センサー、内視鏡等のイメージガイド、光学機器のライトガイトにも適用することもできる。
 その他、携帯電話、デジカメ、腕時計、パチンコ台、スロット台、自動販売機、犬の首輪、装飾具、交通標識、洗面台、シャワー、浴槽の湯温表示機、OA機器、家庭用電気製品、光学機器、各種建材、階段、手すり、電車のホーム、屋外看板、バリアフリー空間等のイルミネーションや照明、液晶表示部のバックライト、可変表示体、美術館や博物館向けの熱線や紫外線カット照明におけるライトガイド等としても好適に使用することができる。また、この光伝送体に光源を組み合わせて、照明装置として各種のイルミネーションや照明設備にも使用することができる。
 1 コア層
 2 第一クラッド層
 3 第二クラッド層
 F 熱可塑性樹脂成形体

Claims (8)

  1.  熱可塑性エラストマーを主材料とするコア層(1)と、このコア層(1)の熱可塑性エラストマーよりも屈折率の小さい熱可塑性樹脂を主材料とする第一クラッド層(2)を少なくとも有し、かつ、これらコア層(1)と第一クラッド層(2)の各樹脂材料にそれぞれ光拡散剤が添加されており、第一クラッド層(2)の全光線透過率が70%未満であることを特徴とする周面発光型の熱可塑性樹脂成形体。
  2.  コア層(1)の樹脂材料に対し光拡散剤が重量比で0.5ppm~10ppmの割合で添加されていることを特徴とする請求項1記載の周面発光型の熱可塑性樹脂成形体。
  3.  コア層(1)の樹脂材料に対しブルーイング剤が重量比で0.1ppm~10ppmの割合で添加されていることを特徴とする請求項1または2に記載の周面発光型の熱可塑性樹脂成形体。
  4.  第一クラッド層(2)の厚みが0.1~0.3mmであり、かつ、この第一クラッド層(2)の樹脂材料に対し光拡散剤が重量比で0.05~1.5%の割合で添加されていることを特徴とする請求項1~3の何れか一つに記載の周面発光型の熱可塑性樹脂成形体。
  5.  コア層(1)の主材料がアクリル系熱可塑性エラストマーであり、第一クラッド層(2)の主材料がフッ素系樹脂であることを特徴とする請求項1~4の何れか一つに記載の周面発光型の熱可塑性樹脂成形体。
  6.  コア層(1)及び第一クラッド層(2)に添加される光拡散剤として酸化チタンまたは硫酸バリウムが使用されていることを特徴とする請求項1~5の何れか一つに記載の周面発光型の熱可塑性樹脂成形体。
  7.  コア層(1)と第一クラッド層(2)の間に、第一クラッド層(2)と同じ樹脂材料を主材料とし、かつ、樹脂材料に光拡散剤が添加されていない第二クラッド層(3)が形成されていることを特徴とする請求項1~6の何れか一つに記載の周面発光型の熱可塑性樹脂成形体。
  8.  第一クラッド層(2)に対する第二クラッド層(3)の厚みの比率が50%~150%であり、かつ、第一クラッド層(2)と第二クラッド層(3)の合計厚みが0.15mm~0.4mmであって、第一クラッド層(2)の樹脂材料に対し光拡散剤が重量比で0.05~1.5%の割合で添加されていることを特徴とする請求項7記載の周面発光型の熱可塑性樹脂成形体。
PCT/JP2018/010622 2017-03-31 2018-03-16 周面発光型の熱可塑性樹脂成形体 WO2018180644A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3058090A CA3058090C (en) 2017-03-31 2018-03-16 A circumferentially light-emitting type thermoplastic resin molded body
CN201880016018.7A CN110383125A (zh) 2017-03-31 2018-03-16 周面发光型的热塑性树脂成型体
EP18776795.9A EP3605170B1 (en) 2017-03-31 2018-03-16 Thermoplastic resin molding of peripheral surface light-emitting type
ES18776795T ES2937909T3 (es) 2017-03-31 2018-03-16 Moldeado de resina termoplástica de tipo que emite luz superficial periféricamente
JP2019509312A JP7083336B2 (ja) 2017-03-31 2018-03-16 周面発光型の熱可塑性樹脂成形体
US16/494,669 US11086062B2 (en) 2017-03-31 2018-03-16 Circumferentially light-emitting type thermoplastic resin molded body
KR1020197025701A KR20190129037A (ko) 2017-03-31 2018-03-16 주면 발광형의 열 가소성 수지 성형체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017013681 2017-03-31
JPPCT/JP2017/013681 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018180644A1 true WO2018180644A1 (ja) 2018-10-04

Family

ID=63675549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010622 WO2018180644A1 (ja) 2017-03-31 2018-03-16 周面発光型の熱可塑性樹脂成形体

Country Status (8)

Country Link
US (1) US11086062B2 (ja)
EP (1) EP3605170B1 (ja)
JP (1) JP7083336B2 (ja)
KR (1) KR20190129037A (ja)
CN (1) CN110383125A (ja)
CA (1) CA3058090C (ja)
ES (1) ES2937909T3 (ja)
WO (1) WO2018180644A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145107A1 (ja) * 2019-01-09 2020-07-16 フクビ化学工業株式会社 周面発光型導光棒
JP2020112616A (ja) * 2019-01-09 2020-07-27 フクビ化学工業株式会社 周面発光型導光棒
JP2020112617A (ja) * 2019-01-09 2020-07-27 フクビ化学工業株式会社 周面発光型導光棒
JP2020166067A (ja) * 2019-03-28 2020-10-08 フクビ化学工業株式会社 周面発光型導光棒
JP7468302B2 (ja) 2020-11-05 2024-04-16 東レ株式会社 照光プラスチック光ファイバおよび照光プラスチック光ファイバコード

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131530A (ja) 1998-10-28 2000-05-12 Minnesota Mining & Mfg Co <3M> 光ファイバ及びその製造方法
JP2004342411A (ja) * 2003-05-14 2004-12-02 Sharp Corp 照明装置とそれを含む照明システム
JP2009059583A (ja) * 2007-08-31 2009-03-19 Mitsubishi Rayon Co Ltd 側面漏光型照光装置
JP2009276651A (ja) 2008-05-16 2009-11-26 Three M Innovative Properties Co 側面発光型光ファイバ
WO2010001589A1 (ja) * 2008-07-02 2010-01-07 パナソニック株式会社 ガイド装置
JP2010248377A (ja) * 2009-04-16 2010-11-04 Daicel Polymer Ltd As樹脂組成物
JP2012103618A (ja) * 2010-11-12 2012-05-31 Sekisui Chem Co Ltd 光拡散ロッド
JP2012103617A (ja) * 2010-11-12 2012-05-31 Sekisui Chem Co Ltd 光拡散ロッドおよびその製造方法
JP2013058334A (ja) * 2011-09-07 2013-03-28 Mitsubishi Rayon Co Ltd 面光源装置用導光体、その製造方法及び面光源装置
JP2013057924A (ja) 2011-08-18 2013-03-28 Fukuvi Chem Ind Co Ltd 光ファイバ型線状発光体
WO2016064940A1 (en) * 2014-10-23 2016-04-28 Corning Incorporated Light-diffusing optical fiber having nanostructured inner and outer core regions
WO2016190138A1 (ja) * 2015-05-22 2016-12-01 株式会社クラレ アクリル系ブロック共重合体とそれからなる樹脂組成物および成形体並びに光学部材
WO2017038047A1 (ja) * 2015-09-02 2017-03-09 フクビ化学工業株式会社 軟質線状発光体、及びその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325221A (ja) * 1996-04-04 1997-12-16 Hitachi Cable Ltd 照明装置
US6366727B1 (en) * 1996-11-07 2002-04-02 3M Innovative Properties Company Light-illuminating rods
US6123442A (en) * 1997-10-24 2000-09-26 Minnesota Mining And Manufacturing Company Articles with diffuse reflection of light from light fibers
US6091878A (en) * 1997-11-20 2000-07-18 Rohm And Haas Company Flexible light pipe for side-lit applications
JPH11326644A (ja) * 1998-05-20 1999-11-26 Bridgestone Corp 光伝送チューブ及びその製造方法
US6519401B1 (en) * 1998-10-28 2003-02-11 3M Innovative Properties Company Light fibers and methods for producing the same
US6236460B1 (en) * 1999-01-29 2001-05-22 E. I. Du Pont De Nemours And Company Method to determine light scattering efficiency of pigments
JP3998502B2 (ja) * 2002-04-05 2007-10-31 スリーエム イノベイティブ プロパティズ カンパニー 視線誘導照明装置
WO2006046749A1 (en) * 2004-10-28 2006-05-04 Fujifilm Corporation Plastic optical member and producing method thereof
JP2006317844A (ja) * 2005-05-16 2006-11-24 Three M Innovative Properties Co 側面発光型光ファイバー及び発光装置
FR2891455A1 (fr) * 2005-09-30 2007-04-06 Fabre Pierre Dermo Cosmetique Particules diffusantes a base de fibres de xerogel d'organogelifiants, leur procede de preparation et leur utilisation dans des formulations cosmetiques.
CN101300286B (zh) * 2005-11-10 2011-03-30 帝人化成株式会社 光学元件以及色差补正透镜
US8634687B2 (en) * 2009-10-19 2014-01-21 Sumitomo Electric Industries, Ltd. Coated plastic cladding optical fiber and optical fiber cable
US8331750B2 (en) * 2010-02-01 2012-12-11 Enlighting Inc Optical fibers having a surface light field emulation (s-LiFE) segment and method of making the same
CN102673024A (zh) * 2011-03-11 2012-09-19 北京君鹏鑫新技术开发有限公司 线状发光体及其制造方法
CN103814319B (zh) * 2011-09-14 2017-07-14 三菱化学株式会社 塑料光缆
WO2013095981A1 (en) * 2011-12-19 2013-06-27 Corning Incorporated Uniform uv efficient light diffusing fiber
JP5888788B2 (ja) * 2013-09-27 2016-03-22 フクビ化学工業株式会社 線状発光体、及びその製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131530A (ja) 1998-10-28 2000-05-12 Minnesota Mining & Mfg Co <3M> 光ファイバ及びその製造方法
JP2004342411A (ja) * 2003-05-14 2004-12-02 Sharp Corp 照明装置とそれを含む照明システム
JP2009059583A (ja) * 2007-08-31 2009-03-19 Mitsubishi Rayon Co Ltd 側面漏光型照光装置
JP2009276651A (ja) 2008-05-16 2009-11-26 Three M Innovative Properties Co 側面発光型光ファイバ
WO2010001589A1 (ja) * 2008-07-02 2010-01-07 パナソニック株式会社 ガイド装置
JP2010248377A (ja) * 2009-04-16 2010-11-04 Daicel Polymer Ltd As樹脂組成物
JP2012103618A (ja) * 2010-11-12 2012-05-31 Sekisui Chem Co Ltd 光拡散ロッド
JP2012103617A (ja) * 2010-11-12 2012-05-31 Sekisui Chem Co Ltd 光拡散ロッドおよびその製造方法
JP2013057924A (ja) 2011-08-18 2013-03-28 Fukuvi Chem Ind Co Ltd 光ファイバ型線状発光体
JP2013058334A (ja) * 2011-09-07 2013-03-28 Mitsubishi Rayon Co Ltd 面光源装置用導光体、その製造方法及び面光源装置
WO2016064940A1 (en) * 2014-10-23 2016-04-28 Corning Incorporated Light-diffusing optical fiber having nanostructured inner and outer core regions
WO2016190138A1 (ja) * 2015-05-22 2016-12-01 株式会社クラレ アクリル系ブロック共重合体とそれからなる樹脂組成物および成形体並びに光学部材
WO2017038047A1 (ja) * 2015-09-02 2017-03-09 フクビ化学工業株式会社 軟質線状発光体、及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605170A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145107A1 (ja) * 2019-01-09 2020-07-16 フクビ化学工業株式会社 周面発光型導光棒
JP2020112616A (ja) * 2019-01-09 2020-07-27 フクビ化学工業株式会社 周面発光型導光棒
JP2020112617A (ja) * 2019-01-09 2020-07-27 フクビ化学工業株式会社 周面発光型導光棒
JP2020166067A (ja) * 2019-03-28 2020-10-08 フクビ化学工業株式会社 周面発光型導光棒
JP7175823B2 (ja) 2019-03-28 2022-11-21 フクビ化学工業株式会社 周面発光型導光棒
JP7468302B2 (ja) 2020-11-05 2024-04-16 東レ株式会社 照光プラスチック光ファイバおよび照光プラスチック光ファイバコード

Also Published As

Publication number Publication date
KR20190129037A (ko) 2019-11-19
EP3605170A1 (en) 2020-02-05
CA3058090C (en) 2023-01-03
JPWO2018180644A1 (ja) 2020-02-06
US11086062B2 (en) 2021-08-10
CA3058090A1 (en) 2018-10-04
EP3605170B1 (en) 2022-12-28
ES2937909T3 (es) 2023-04-03
JP7083336B2 (ja) 2022-06-10
EP3605170A4 (en) 2020-06-03
CN110383125A (zh) 2019-10-25
US20200018884A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
WO2018180644A1 (ja) 周面発光型の熱可塑性樹脂成形体
KR101640613B1 (ko) 측면 발광 광섬유
KR102150292B1 (ko) 연질 선상 발광체, 및 그 제조 방법
JP4203985B2 (ja) 電飾照明装置
JPWO2009051203A1 (ja) 導光部材、その製造方法及びそれを用いた面光源装置
CN105409327A (zh) 光取出薄膜及其制造方法、以及面发光体
KR102087966B1 (ko) 표시장치용 윈도우 및 이를 포함하는 표시 장치
JP5436384B2 (ja) 発光体
JP6690404B2 (ja) 照光プラスチック光ファイバライトガイドおよびその製造方法
WO2020145107A1 (ja) 周面発光型導光棒
JP6376948B2 (ja) 光伝送体及び照明装置
JP4928760B2 (ja) 光伝送体及び該光伝送体を使用した照明装置
KR101653051B1 (ko) 측면 발광형 광섬유
JP6013814B2 (ja) 光伝送体の製造方法及び照明装置の製造方法。
CN104421722B (zh) 异形截面型的线状发光体
JP7175823B2 (ja) 周面発光型導光棒
JP2013082800A (ja) 導光体用スチレン系樹脂組成物及び導光体
JP7468302B2 (ja) 照光プラスチック光ファイバおよび照光プラスチック光ファイバコード
JP4194099B2 (ja) 光伝送体及び該光伝送体を使用した照明装置
KR101710715B1 (ko) 조명용 형광 확산 보드
JP2021120941A (ja) 周面発光型導光棒
JP2020112617A (ja) 周面発光型導光棒
JP2017083737A (ja) 光伝送体及びその製造方法
JP2008268292A (ja) 光伝送体及びそれを使用した照明装置
JP2005275020A (ja) 光伝送体及び該光伝送体を使用した照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776795

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509312

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197025701

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3058090

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018776795

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018776795

Country of ref document: EP

Effective date: 20191031