WO2018179978A1 - 機能性積層体およびその製造方法 - Google Patents

機能性積層体およびその製造方法 Download PDF

Info

Publication number
WO2018179978A1
WO2018179978A1 PCT/JP2018/005547 JP2018005547W WO2018179978A1 WO 2018179978 A1 WO2018179978 A1 WO 2018179978A1 JP 2018005547 W JP2018005547 W JP 2018005547W WO 2018179978 A1 WO2018179978 A1 WO 2018179978A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
functional laminate
porous
intermediate layer
laminate according
Prior art date
Application number
PCT/JP2018/005547
Other languages
English (en)
French (fr)
Inventor
大詞 桂
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to EP18775920.4A priority Critical patent/EP3587102B1/en
Priority to US16/498,335 priority patent/US11535005B2/en
Priority to CN201880021647.9A priority patent/CN110475662B/zh
Publication of WO2018179978A1 publication Critical patent/WO2018179978A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/14Incorporating or moulding on preformed parts, e.g. inserts or reinforcements the preformed part being a lining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • B32B5/147Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces by treatment of the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0221Vinyl resin
    • B32B2266/0235Vinyl halide, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0264Polyester
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/04Inorganic
    • B32B2266/057Silicon-containing material, e.g. glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/06Open cell foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/08Closed cell foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/10Composition of foam characterised by the foam pores
    • B32B2266/102Nanopores, i.e. with average diameter smaller than 0.1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/10Composition of foam characterised by the foam pores
    • B32B2266/104Micropores, i.e. with average diameter in the range from 0.1 µm to 0.1 mm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/022Foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/10Fibres of continuous length
    • B32B2305/20Fibres of continuous length in the form of a non-woven mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/08Glass
    • B32B2315/085Glass fiber cloth or fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2375/00Polyureas; Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2410/00Agriculture-related articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/10Trains

Definitions

  • the present disclosure relates to a functional laminate and a manufacturing method thereof.
  • a powertrain member including the engine and transmission with a sound absorbing material.
  • a cover material for example, urethane foam and fiber nonwoven fabric are used alone.
  • an integral foam consisting of a latex foam thin layer applied directly to the inner surface of the fabric and a body foam that is directly injected into the inner surface and foamed and cured
  • Patent Document 1 the latex foam thin layer is mechanically bonded so as to embrace the fibers on the inner surface of the fabric in a region close to the fabric to form a bonded region, and the main body foam stock solution is substantially prevented from entering outside. It forms a breathable skin that prevents it.
  • Patent Document 2 a foam molded body in which a sheet material is integrated on the outer surface of the foam molded body is reported.
  • the sheet material is composed of a laminate of a stretched porous film and a non-woven fabric, and has a property of allowing gas to permeate but not liquid.
  • the inventor of the present disclosure has found a new problem that the sound absorption is not sufficiently obtained when the technology related to the foamed product or the foamed molded body is applied to, for example, a cover material for a power train member.
  • the inventor of the present disclosure has found that sufficient sound absorption is not obtained even when foam molding is performed in the mold in the presence of, for example, a glass fiber nonwoven fabric.
  • the present disclosure is intended to provide a functional laminate superior in sound absorption.
  • This disclosure also aims to provide a functional laminate that is superior not only in sound absorption but also in heat insulation.
  • porous intermediate layer having air permeability is laminated,
  • middle layer is related with the functional laminated body which has affinity with the foamable resin which comprises the said resin foam layer.
  • the functional laminate of the present disclosure is superior in sound absorption.
  • the functional laminate of the present disclosure is also superior in heat insulation.
  • the functional laminate of the present disclosure is also superior in vibration damping properties.
  • the typical sectional view of the functional layered product of this indication is shown.
  • molding die for demonstrating the foam preparation stage of the foam molding process in the manufacturing method of the functional laminated body of this indication, and typical sectional drawing of the inside are shown.
  • molding process in the manufacturing method of the functional laminated body of this indication, and typical sectional drawing of the inside are shown.
  • the functional laminate of the present disclosure relates to a laminate having at least sound absorbing properties, and the functionality includes at least one performance among sound absorbing properties, heat insulating properties, vibration damping properties, and the like.
  • the functional laminate 10 includes a specific porous intermediate layer 3 laminated between a porous surface layer 1 and a resin foam layer 2.
  • the resin foam layer 2 and the porous intermediate layer 3 are bonded and integrated with each other. Since the specific porous intermediate layer 3 has affinity for the foamable resin (liquid raw material) constituting the resin foam layer 2 as will be described later, it is easy to cause capillary action due to the affinity. Is more susceptible to capillary action than the porous surface layer 1. Therefore, the porous intermediate layer 3 can easily hold the foamable resin before foaming of the foamable resin (liquid raw material) constituting the resin foam layer 2.
  • the porous intermediate layer 3 moderately hinders the movement (impregnation) of the foamable resin to the porous surface layer 1 before foaming, and when foaming starts, the foamability retained in the porous intermediate layer 3 The resin foams while infiltrating into the porous surface layer 1.
  • the amount of the foamable resin impregnated into the porous surface layer 1 is moderately reduced, and the foamable resin is sufficiently foamed, so that sound absorbing properties, heat insulating properties and vibration damping properties (especially sound absorbing properties) are obtained. Is considered to be sufficiently improved.
  • FIG. 1 is a schematic cross-sectional view of the functional laminate of the present disclosure.
  • the foamable resin constituting the resin foam layer 2 is a foamable resin (liquid raw material) used as a raw material for the resin foam layer 2.
  • the foamable resin is a mixture of a polyol compound and an isocyanate compound.
  • the foamable resin may contain additives such as a foaming agent and a foam stabilizer.
  • the capillary phenomenon is a physical phenomenon related to the behavior of the foamable resin (liquid) in the voids of the porous intermediate layer 3 and the porous surface layer 1.
  • the ease with which the capillary phenomenon occurs can be controlled by adjusting the affinity of the porous intermediate layer 3 and the porous surface layer 1 for the foamable resin. Specifically, the higher the affinity, the easier the capillary phenomenon.
  • the porous intermediate layer 3 has air permeability. “Breathability” possessed by the porous intermediate layer 3 is a characteristic that can be rephrased as “liquid permeability”, that is, the porous intermediate layer 3 forms a foamable resin (liquid) inside itself during the production of the functional laminate.
  • the porous intermediate layer 3 has such air permeability, integration of the porous surface layer 1, the resin foam layer 2, and the porous intermediate layer 3 is achieved. Specifically, the air permeability of the porous intermediate layer 3 is such that the mixed layer portion 11 described later can be formed.
  • the porous intermediate layer 3 has an affinity for the foamable resin constituting the resin foam layer 2 (hereinafter sometimes simply referred to as “affinity”).
  • the porous intermediate layer 3 having the affinity means that the surface of the voids of the porous intermediate layer 3 is easy to become familiar with or wet with the foamable resin. That is, the contact angle ⁇ m of the porous intermediate layer 3 with respect to the foamable resin (hereinafter sometimes simply referred to as “contact angle ⁇ m”) is usually 20 ° or less, and the capillary phenomenon easily occurs in the porous intermediate layer.
  • the porous intermediate layer 3 has such an affinity, the porous intermediate layer 3 can easily hold the foamable resin by capillary action.
  • the contact angle ⁇ m of the porous intermediate layer 3 with respect to the foamable resin is a contact angle of the foamable resin on a plane having a surface having the same composition as that of the material constituting the porous intermediate layer.
  • the affinity of the porous intermediate layer 3 is such that the capillary phenomenon easily occurs in the porous intermediate layer and the sound absorbing property, heat insulating property and vibration damping property of the functional laminate are further improved.
  • affinity Preferably higher than affinity. That the affinity of the porous intermediate layer 3 is higher than the affinity of the porous surface layer 1 is that the contact angle ⁇ m of the porous intermediate layer 3 to the foamable resin is the contact angle of the porous surface layer 1 to the foamable resin. This means that it is smaller than ⁇ s (hereinafter sometimes simply referred to as “contact angle ⁇ s”).
  • the contact angle ⁇ m (°) with respect to the foamable resin of the porous intermediate layer 3 and the contact angle ⁇ s (°) with respect to the foamable resin of the porous surface layer 1 are the ease and functionality of capillary action in the porous intermediate layer. From the viewpoint of further improving the sound absorption, heat insulating properties and vibration damping properties of the laminate, it is preferable to satisfy the following relational expression (p1), more preferably the following relational expression (p2), and the following relational expression: It is more preferable to satisfy (p3), and it is most preferable to satisfy the following relational expression (p4).
  • the contact angles ( ⁇ m and ⁇ s) of the porous intermediate layer and the porous surface layer with respect to the foamable resin are represented by values measured by the following method. Using a contact angle measuring device G-1.2MG manufactured by Elma Optical Co., Ltd., PGM (propylene glycol monomethyl ether) is dropped onto the test piece, and the contact angle after 30 seconds is measured. As the test piece, a flat plate having a surface having the same composition as the material constituting the porous intermediate layer or the porous surface layer is used.
  • the material constituting the porous intermediate layer is not particularly limited as long as it has air permeability and affinity as described above, and may be, for example, a fiber nonwoven fabric or a polymer foam. There may be.
  • specific examples of the fiber nonwoven fabric and the polymer foam inherently having affinity without any treatment will be exemplified.
  • an affinity treatment is performed on the porous intermediate layer to impart affinity, What is necessary is just to use as a porous intermediate
  • ⁇ shown with a specific example is a contact angle that a predetermined material originally shows without any treatment, and is a contact angle with respect to the foamable resin measured by the method described above.
  • Examples of the fiber nonwoven fabric of the porous intermediate layer that can be used after the affinity treatment include the following organic fiber and / or inorganic fiber nonwoven fabric exemplified as the fiber nonwoven fabric of the porous surface layer.
  • the polymer foam of the porous intermediate layer that has inherent affinity has a structure having an open cell structure.
  • the polymer foam of the porous intermediate layer that can be used after the affinity treatment include the polymer foam described below exemplified as the polymer foam of the porous surface layer.
  • the porous intermediate layer is preferably a fiber non-woven fabric, more preferably a non-woven fabric of PET fiber and / or alumina fiber, more preferably from the viewpoint of further improving the sound absorbing property, heat insulating property and vibration damping property of the functional laminate. Is a nonwoven fabric of PET fibers.
  • the porous intermediate layer 3 may have the affinity at least on the porous surface layer side, but preferably has the affinity as a whole.
  • the average porosity Rm (%) of the porous intermediate layer and the average porosity Rs (%) of the porous surface layer indicate the ease of capillary action in the porous intermediate layer and the sound absorption and heat insulation properties of the functional laminate. From the viewpoint of further improving the vibration damping performance, the following relational expression (x1) is preferably satisfied, the following relational expression (x2) is more preferably satisfied, and the following relational expression (x3) is further satisfied. It is preferable that the following relational expression (x4) is satisfied.
  • the average porosity Rm of the porous intermediate layer is usually 60 to 95%, and the capillary layer phenomenon is easily generated in the porous intermediate layer and the sound absorbing property, heat insulating property and vibration damping property of the functional laminate are further improved. From the viewpoint, it is preferably 65 to 90%.
  • the average porosity of the porous intermediate layer is the volume ratio of voids formed between fibers when the porous intermediate layer is a fiber nonwoven fabric, that is, the volume ratio of voids between fibers. Expressed as a percentage.
  • the nonwoven fabric of the porous intermediate layer impregnated with the foamable resin is cut out from the functional laminate, and the foamable resin is formed with an organic solvent that dissolves only the foamable resin among the fibers and the foamable resin constituting the nonwoven fabric. Is dissolved to obtain a fiber nonwoven fabric alone.
  • the volume ratio of voids in this fiber nonwoven fabric is calculated, and this value is converted to the volume ratio of voids when the thickness of the fiber nonwoven fabric is the thickness of a porous intermediate layer described later in the functional laminate.
  • the volume ratio of the voids can be calculated from physical properties such as the volume and mass of the fiber nonwoven fabric and the specific gravity of the fiber material.
  • the mass was measured using an electronic balance (AE160; manufactured by Mettler).
  • AE160 electronic balance
  • it can calculate from the volume of the said fiber nonwoven fabric, and the void volume of the said fiber nonwoven fabric measured by methods, such as a computer tomography method, a liquid immersion method, a water evaporation method, a suspension method, a mercury intrusion method, a gas adsorption method.
  • the nonwoven fabric of the porous intermediate layer impregnated with the foamable resin is cut out from the functional laminate, and the volume of the nonwoven fabric, the computer tomography method, the liquid After obtaining the void volume of the nonwoven fabric measured by a method such as immersion, water evaporation, suspension method, mercury intrusion method, gas adsorption method, etc., only the fiber material among the fibers and foamable resins constituting the nonwoven fabric The fiber material is dissolved with a solvent that dissolves the resin to obtain a foamable resin alone.
  • the void volume in the foamable resin is measured by the same method as described above, and the void volume of the fiber nonwoven fabric is calculated from the volume of the nonwoven fabric ⁇ the void volume of the foamable resin + the void volume of the nonwoven fabric.
  • the volume ratio of the voids in the fiber nonwoven fabric can be calculated from the volume.
  • the average porosity of the porous intermediate layer is the volume ratio of bubbles in the polymer inherently possessed by the polymer foam as the porous intermediate layer when the porous intermediate layer is a polymer foam. Expressed as a percentage measured by the method. From the functional laminate, the polymer foam of the porous intermediate layer impregnated with the foamable resin is cut out. The ratio of the area of the bubble to the total area is measured at an arbitrary 100 locations, and the average value is obtained. The area of the bubble is the area of the bubble inherently possessed by the polymer foam as the porous intermediate layer. Can be distinguished.
  • the parallel cross section when taking an optical microscope or an electron micrograph is a cross section parallel to the outer surface 12, and the vertical cross section is perpendicular to the outer surface 12 of the porous surface layer. It is a cross section.
  • the average porosity of the porous intermediate layer uses the value measured from the functional laminate as described above, but even if measured from the material used for manufacturing (foam molding), the equivalent measured value is can get. That is, it can be calculated from physical properties such as the volume and mass of the porous intermediate layer material used for production (foam molding) and the specific gravity of the fibers or polymer of the porous intermediate layer material. In the present specification, the mass was measured using an electronic balance (AE160; manufactured by Mettler).
  • AE160 electronic balance
  • the volume of the porous interlayer material and the void volume of the porous interlayer material measured by a method such as a computer tomography method, a liquid immersion method, a water evaporation method, a suspension method, a mercury intrusion method, a gas adsorption method, etc.
  • a method such as a computer tomography method, a liquid immersion method, a water evaporation method, a suspension method, a mercury intrusion method, a gas adsorption method, etc.
  • a method such as a computer tomography method, a liquid immersion method, a water evaporation method, a suspension method, a mercury intrusion method, a gas adsorption method, etc.
  • it can calculate by measuring the ratio of the area of the bubble with respect to the total area in arbitrary 100 places, and calculating
  • the thickness of the porous intermediate layer is usually from 0.1 to 2 mm, from the viewpoint of the ease of capillary action in the porous intermediate layer and the further improvement of the sound absorption, heat insulation and vibration damping properties of the functional laminate.
  • the thickness is preferably 0.2 to 1 mm.
  • the thickness of the porous intermediate layer is such that the interface 32 with the porous surface layer 1 in the porous intermediate layer 3 is a case where the porous intermediate layer is a fiber nonwoven fabric or a polymer foam.
  • the thickness of the porous intermediate layer As for the thickness of the porous intermediate layer, the value measured from the functional laminate as described above is used, but an equivalent measurement value can be obtained even when measured from the material used for production (foam molding). . That is, in the optical micrograph of the vertical cross section of the porous intermediate layer material used for production (foam molding), the thickness is measured at 100 arbitrary positions, and the average value is obtained. Moreover, the thickness of the said porous intermediate
  • gauges such as a film thickness meter, a displacement meter, a caliper, and an average value is calculated
  • the average fiber diameter and average fiber length of the fibers constituting the fiber nonwoven fabric are not particularly limited as long as the porous intermediate layer is more susceptible to capillary action than the porous surface layer.
  • the average fiber diameter is usually 0.005 to 50 ⁇ m, preferably from the viewpoint of the ease of capillary action in the porous intermediate layer and the further improvement of the sound absorption, heat insulation and vibration damping properties of the functional laminate. 0.1 to 20 ⁇ m.
  • the average fiber length is usually equal to or greater than the thickness of the porous intermediate layer material, from the viewpoint of the ease of capillary action in the porous intermediate layer and the further improvement of the sound absorption, thermal insulation and damping properties of the functional laminate. Preferably, it is 20 mm or more.
  • the average fiber diameter of the fiber in the porous nonwoven fabric is represented by the average diameter measured by the following method. From the functional laminate, cut out the nonwoven fabric of the porous intermediate layer impregnated with the foamable resin, measure the diameter of any 100 fibers in the optical microscope or electron micrograph of the vertical cross section of the sample, and average Find the value.
  • the average fiber length of the fibers in the fiber nonwoven fabric of the porous intermediate layer is represented by an average value measured by the following method.
  • the non-woven fabric of the porous intermediate layer impregnated with the expandable resin is cut out from the functional laminate, and the expandable resin is formed with an organic solvent that dissolves only the expandable resin out of the fibers and the expandable resin constituting the non-woven fabric. Dissolve.
  • the length of arbitrary 100 fibers is measured from the nonwoven fabric in which the foamable resin is dissolved, and the average value is obtained.
  • the inside of the nonwoven fabric is three-dimensionally imaged by a method such as CT, and the length of an arbitrary 100 fibers is measured to obtain an average value.
  • the average fiber diameter and average fiber length of the fibers of the fiber nonwoven fabric use the values measured from the functional laminate as described above, but they are equivalent even if measured from the material used for manufacturing (foam molding) Is obtained.
  • the average fiber diameter of the fibers of the fiber nonwoven fabric used for production (foam molding) is determined by measuring the diameter of any 100 fibers in an optical microscope or electron micrograph of a vertical cross section of the nonwoven fabric, and calculating the average value.
  • the average fiber length of the fibers of the fiber nonwoven fabric used for production (foam molding) is obtained by measuring the length of any 100 fibers and determining the average value.
  • the inside of the nonwoven fabric is three-dimensionally imaged by a method such as CT, and the length of an arbitrary 100 fibers is measured to obtain an average value.
  • the basis weight of the fiber nonwoven fabric is not particularly limited as long as the porous intermediate layer is more susceptible to capillary action than the porous surface layer, and is usually 5 to 500 g / m 2 . In view of the ease of capillary action in the porous intermediate layer and the further improvement in sound absorption, heat insulation and vibration damping of the functional laminate, it is preferably 10 to 300 g / m 2 .
  • the basis weight of the fiber nonwoven fabric of the porous intermediate layer is represented by a value measured by the following method.
  • the nonwoven fabric of the porous intermediate layer impregnated with the foamable resin is cut out from the functional laminate, and the foamable resin is formed with an organic solvent that dissolves only the foamable resin among the fibers and the foamable resin constituting the nonwoven fabric. Is dissolved to obtain a fiber nonwoven fabric alone.
  • the basis weight can be calculated from the area and mass of the fiber nonwoven fabric. In the present specification, the mass was measured using an electronic balance (AE160; manufactured by Mettler).
  • the nonwoven fabric of the porous intermediate layer impregnated with the foamable resin is cut out from the functional laminate, and only the fiber material is dissolved out of the fibers and the foamable resin constituting the nonwoven fabric.
  • the fiber material is dissolved with a solvent to obtain a solution of the fiber material.
  • the mass of the fiber material in the solid content is calculated from the mass of the solid after evaporation, and the basis weight can be calculated from the area of the nonwoven fabric and the mass of the fiber material.
  • the basis weight of the fiber nonwoven fabric As the basis weight of the fiber nonwoven fabric, the value measured from the functional laminate as described above is used. However, even when measured from the material used for production (foam molding), an equivalent measurement value is obtained. That is, the basis weight can be calculated from the area and mass of the fiber nonwoven fabric used for production (foam molding). In the present specification, the mass was measured using an electronic balance (AE160; manufactured by Mettler). (Porous surface layer)
  • the material which comprises the porous surface layer 1 is not specifically limited as long as it has porosity, For example, a fiber nonwoven fabric may be sufficient, or a polymer foam may be sufficient.
  • the porous surface layer 1 may or may not have an affinity for the foamable resin.
  • the porous surface layer 1 is more foamable than the porous intermediate layer in terms of the ease of capillarity in the porous intermediate layer and the further improvement in sound absorption, heat insulation and vibration damping of the functional laminate. It preferably has no affinity for the resin.
  • the porous surface layer 1 has less affinity than the porous intermediate layer.
  • the contact angle ⁇ s with respect to the foamable resin that the porous surface layer 1 has is that for the foamable resin that the porous intermediate layer has. It means that it is larger than the contact angle ⁇ m.
  • the porous surface layer 1 preferably has the relationship of “ ⁇ s ⁇ m” described above with respect to the porous intermediate layer.
  • the contact angle ⁇ s with respect to the foamable resin of the porous surface layer 1 is usually 1 ° or more, and it is easy for capillary action to occur in the porous intermediate layer, and the sound absorbing property, heat insulating property and vibration damping property of the functional laminate. From the viewpoint of further improvement, it is preferably 1 to 90 °, more preferably 5 to 90 °, still more preferably 5 to 30 °, and most preferably 8 to 30 °.
  • the contact angle ⁇ s with respect to the foamable resin of the porous surface layer 1 is a contact angle of the foamable resin on a plane having a surface having the same composition as that of the material constituting the porous surface layer.
  • porous surface layer 1 Specific examples of fiber nonwoven fabric and polymer foam as materials constituting the porous surface layer 1 are illustrated.
  • a porous surface layer made of a material that does not inherently have a contact angle ⁇ s as described above is used, the porous surface layer is subjected to a surface treatment that increases or decreases the contact angle before and after the treatment. Those having a controlled contact angle may be used as the porous intermediate layer.
  • ⁇ shown with a specific example is a contact angle that a predetermined material originally shows without any treatment, and is a contact angle with respect to the foamable resin measured by the method described above.
  • the surface treatment include non-affinity treatment that increases the contact angle by applying a solution of a fluorine atom-containing resin (for example, a fluorine atom-containing polymer) or a silicone group-containing resin.
  • PP polypropylene
  • fluorine-containing resin fibers such as PTFE
  • silicone-containing resin fibers Non-woven fabrics of organic fibers of at least species are mentioned.
  • the polymer foam of the porous surface layer one having an open cell structure or a closed cell structure is used.
  • the porous surface layer is preferably a fiber non-woven fabric, more preferably a non-woven fabric of inorganic fiber or organic fiber, more preferably glass, from the viewpoint of further improving the sound absorption, heat insulation and vibration damping properties of the functional laminate. It is a nonwoven fabric of fibers.
  • the average porosity Rs of the porous surface layer is usually 80 to 99.5%, and the ease of capillary action in the porous intermediate layer and the sound absorption, heat insulation and vibration damping properties of the functional laminate are further increased. From the viewpoint of improvement, it is preferably 90 to 99%.
  • the average porosity of the porous surface layer is the volume ratio of the voids formed between the fibers when the porous surface layer is a fiber nonwoven fabric, that is, the volume ratio of the voids between the fibers. Expressed as a percentage.
  • the said nonwoven fabric of the porous surface layer part which is not impregnated with foamable resin is cut out from a functional laminated body.
  • the volume ratio of the voids in the fiber nonwoven fabric is calculated, and this value is converted to the volume ratio of the voids when the thickness is the thickness of the porous surface layer described later in the functional laminate.
  • the volume ratio of the voids can be calculated from physical properties such as volume, mass, and specific gravity of the fiber nonwoven fabric.
  • the mass was measured using an electronic balance (AE160; manufactured by Mettler). Moreover, it can calculate from the volume of the said fiber nonwoven fabric, and the void volume of the said fiber nonwoven fabric measured by methods, such as a computer tomography method, a liquid immersion method, a water evaporation method, a suspension method, a mercury intrusion method, a gas adsorption method.
  • AE160 electronic balance
  • the average porosity of the porous surface layer is the volume ratio of bubbles in the polymer inherently possessed by the polymer foam as the porous surface layer. Expressed as a percentage measured by the method. From the functional laminate, the polymer foam in the porous surface layer portion not impregnated with the foamable resin is cut out, and in the optical microscope or electron micrograph of the vertical cross section of the sample, bubbles with respect to the entire area at any 100 locations It can be calculated by measuring the ratio of the area and obtaining the average value.
  • the average porosity of the porous surface layer uses the value measured from the functional laminate as described above, but even if measured from the material used for manufacturing (foam molding), the equivalent measured value is can get. That is, it can be calculated from physical properties such as the volume and mass of the porous surface layer material used for production (foam molding), the specific gravity of the fiber or polymer of the porous surface layer material. In the present specification, the mass was measured using an electronic balance (AE160; manufactured by Mettler).
  • AE160 electronic balance
  • the volume of the porous surface layer material and the void volume of the porous surface layer material measured by a method such as a computer tomography method, a liquid immersion method, a water evaporation method, a suspension method, a mercury intrusion method, a gas adsorption method, etc.
  • a method such as a computer tomography method, a liquid immersion method, a water evaporation method, a suspension method, a mercury intrusion method, a gas adsorption method, etc.
  • a method such as a computer tomography method, a liquid immersion method, a water evaporation method, a suspension method, a mercury intrusion method, a gas adsorption method, etc.
  • the thickness of the porous surface layer is usually 1 to 50 mm, which is preferable from the viewpoint of easy occurrence of capillarity in the porous intermediate layer and further improvement of sound absorption, heat insulation and vibration damping of the functional laminate. Is 2 to 30 mm.
  • the thickness of the porous surface layer is a thickness including a mixed layer portion to be described later, even if the porous surface layer is a fiber nonwoven fabric or a polymer foam.
  • 1 is a thickness from the outer surface 12 to the interface 13 with the porous intermediate layer 3, and is represented by a thickness measured by the following method. In the optical micrograph of the vertical cross section of the functional laminate, the thickness is measured at an arbitrary 100 locations to determine the average value.
  • the thickness of the porous surface layer As for the thickness of the porous surface layer, the value measured from the functional laminate as described above is used, but even if measured from the material used for manufacturing (foam molding), the same measured value can be obtained. . That is, in the optical micrograph of the vertical cross section of the porous surface layer material used for production (foam molding), the thickness is measured at arbitrary 100 locations to obtain the average value. Further, the thickness of the porous surface layer material is measured with a gauge such as a film thickness meter, a displacement meter, or a caliper, and an average value is obtained.
  • a gauge such as a film thickness meter, a displacement meter, or a caliper
  • the average fiber diameter and average fiber length of the fibers constituting the fiber nonwoven fabric are not particularly limited as long as the porous intermediate layer is more likely to cause capillary action than the porous surface layer.
  • the average fiber diameter is usually 0.005 to 50 ⁇ m, preferably from the viewpoint of the ease of capillary action in the porous intermediate layer and the further improvement of the sound absorption, heat insulation and vibration damping properties of the functional laminate.
  • the thickness is 0.1 to 20 ⁇ m, more preferably 1 to 5 ⁇ m.
  • the average fiber length is usually 2 mm or more, and preferably 20 mm or more from the viewpoint of easy occurrence of capillary action in the porous intermediate layer and further improvement of sound absorption, heat insulation and vibration damping of the functional laminate. is there.
  • the average fiber diameter of the fibers in the fiber nonwoven fabric of the porous surface layer is represented by the average diameter measured by the following method. Cut out the nonwoven fabric of the porous surface layer portion not impregnated with the foamable resin from the functional laminate, and measure the diameter of any 100 fibers in the optical microscope and electron micrographs of the vertical cross section of the sample. Find the average value.
  • the average fiber length of the fibers in the fiber nonwoven fabric of the porous surface layer is represented by an average value measured by the following method.
  • the said nonwoven fabric of the porous surface layer part which is not impregnated with foamable resin is cut out from a functional laminated body, the length of arbitrary 100 fibers is measured from the said nonwoven fabric, and an average value is calculated
  • the inside of the nonwoven fabric is three-dimensionally imaged by a method such as CT, and the length of an arbitrary 100 fibers is measured to obtain an average value.
  • the average fiber diameter and average fiber length of the fibers of the fiber nonwoven fabric use the values measured from the functional laminate as described above, but they are equivalent even if measured from the material used for manufacturing (foam molding) Is obtained.
  • the average fiber diameter of the fibers of the fiber nonwoven fabric used for production (foam molding) is determined by measuring the diameter of any 100 fibers in an optical microscope or electron micrograph of a vertical cross section of the nonwoven fabric, and calculating the average value.
  • the average fiber length of the fibers of the fiber nonwoven fabric used for production (foam molding) is obtained by measuring the length of any 100 fibers and determining the average value.
  • the inside of the said fiber nonwoven fabric is made into a three-dimensional image by methods, such as CT, and the length of arbitrary 100 fibers is measured and an average value is calculated
  • the basis weight of the fiber nonwoven fabric is not particularly limited as long as the porous intermediate layer is more susceptible to capillary action than the porous surface layer, and is usually 50 to 6000 g / m 2 . In view of the ease of capillary action in the porous intermediate layer and the further improvement of sound absorption, heat insulation and vibration damping of the functional laminate, it is preferably from 100 to 3000 g / m 2 .
  • the basis weight of the fiber nonwoven fabric of the porous surface layer is represented by a value measured by the following method.
  • the nonwoven fabric of the porous surface layer portion not impregnated with the foamable resin is cut out from the functional laminate, and the basis weight can be calculated from the area and mass of the nonwoven fabric.
  • the mass was measured using an electronic balance (AE160; manufactured by Mettler).
  • the basis weight of the fiber nonwoven fabric As the basis weight of the fiber nonwoven fabric, the value measured from the functional laminate as described above is used. However, even when measured from the material used for production (foam molding), an equivalent measurement value is obtained. That is, the basis weight can be calculated from the area and mass of the fiber nonwoven fabric used for production (foam molding). In the present specification, the mass was measured using an electronic balance (AE160; manufactured by Mettler).
  • AE160 electronic balance
  • the resin foam layer 2 is a polymer foam layer.
  • the polymer constituting the resin foam layer may be any polymer known as a polymer capable of constituting a foam in the plastic field.
  • the resin foam layer include, for example, a polyurethane foam layer; a polyolefin foam layer such as a polyethylene foam layer and a polypropylene foam layer; a polyester foam layer such as a PET foam layer; a silicone foam layer; and a polyvinyl chloride foam layer.
  • Polymer foam layer a polyurethane foam layer
  • a polyolefin foam layer such as a polyethylene foam layer and a polypropylene foam layer
  • a polyester foam layer such as a PET foam layer
  • silicone foam layer such as a PET foam layer
  • silicone foam layer such as a polyvinyl chloride foam layer.
  • the resin foam layer is preferably a polyurethane foam layer from the viewpoint of further improving the sound absorption, heat insulation and vibration damping properties of the functional laminate.
  • the average void diameter Df of the resin foam layer is not particularly limited, and may be, for example, in the range of 0.04 to 800 ⁇ m, particularly 10 to 600 ⁇ m, depending on the frequency of the sound to be absorbed.
  • the average void diameter Df of the resin foam layer is 50 to 500 ⁇ m, particularly 100 to 300 ⁇ m, sound having a frequency of 1000 to 4000 Hz is effectively absorbed.
  • Such sound absorption is suitable when the functional laminate is used for a cover member for a powertrain member of an automobile.
  • the average void diameter Df of the resin foam layer is the diameter of bubbles in the polymer, and is represented by the average diameter measured by the following method.
  • a resin foam layer is cut out from the functional laminate, and the diameter of an arbitrary 100 bubbles is measured in an optical microscope or an electron micrograph of a parallel section of the sample, and an average value is obtained.
  • the average porosity Rf of the resin foam layer is usually 60 to 98%, and the viewpoint of the ease of the capillary phenomenon in the porous intermediate layer and the further improvement of the sound absorption, heat insulation and vibration damping of the functional laminate Therefore, it is preferably 80 to 95%.
  • the average porosity of the resin foam layer is a volume ratio of bubbles in the polymer, and is expressed by a ratio measured by the following method.
  • a resin foam layer is cut out from the functional laminate, and in the optical microscope and electron micrographs of the vertical cross section of the resin foam material, the ratio of the area of bubbles to the total area is measured at an arbitrary 100 locations, and the average value is obtained.
  • it can calculate from physical properties, such as the volume of the said resin foam material, mass, and polymer specific gravity. In the present specification, the mass was measured using an electronic balance (AE160; manufactured by Mettler).
  • volume of the resin foam and the void volume of the resin foam measured by a method such as a computer tomography method, a liquid immersion method, a water evaporation method, a suspension method, a mercury intrusion method, a gas adsorption method.
  • the thickness of the resin foam layer is usually 1 to 100 mm, preferably from the viewpoint of the ease of capillary action in the porous intermediate layer and the further improvement in sound absorption, heat insulation and vibration damping of the functional laminate. 2 to 30 mm.
  • the thickness of the resin foam layer is a thickness in a direction substantially perpendicular to the outer surface 12 of the porous surface layer 1, and is a thickness up to the interface 22 with the porous intermediate layer 3 in the resin foam layer 2. It is represented by the thickness measured by the method. In the optical micrograph of the vertical cross section of the functional laminate, the thickness is measured at an arbitrary 100 locations to determine the average value.
  • the functional laminate 10 of the present disclosure includes a mixed layer portion 11 between the porous intermediate layer 3 and the porous surface layer 1. Specifically, the porous surface layer 1 includes a mixed layer portion 11 on the porous intermediate layer 3 side.
  • a part of the porous surface layer 1 on the porous intermediate layer 3 side is converted to the mixed layer part 11, in other words, a part of the porous surface layer 1 on the porous intermediate layer 3 side is mixed. Part 11 is generated.
  • the rigidity of the functional laminate is improved by the mixed layer portion.
  • the mixed layer portion is a composite layer of a resin foam layer and a porous surface layer formed between the porous intermediate layer and the porous surface layer. More specifically, the mixed layer portion is a layer formed by infiltrating the foamed resin constituting the resin foam layer into the porous surface layer, foaming and curing, in other words, the constituent material of the porous surface layer and the resin foam. It is a layer where the constituent materials of the layer coexist. In the mixed layer portion, bubbles of the foamable resin are formed in the voids of the porous surface layer before the infiltration of the foamable resin.
  • the average void diameter Dx of the mixed layer portion is not particularly limited, and may be, for example, in the range of 0.04 to 800 ⁇ m, particularly 10 to 500 ⁇ m, depending on the frequency of the sound to be absorbed.
  • the average void diameter Dx of the mixed layer portion is 50 to 250 ⁇ m, particularly 60 to 200 ⁇ m, sound having a frequency of 1000 to 4000 Hz is effectively absorbed.
  • Such sound absorption is suitable when the functional laminate is used for a cover member for a powertrain member of an automobile.
  • the average void diameter Dx of the mixed layer portion is the diameter of bubbles in the resin (polymer) formed in the voids of the porous surface layer before the infiltration of the foamable resin, and is measured by the following method. It is represented by In an optical microscope or electron micrograph of a parallel section of the mixed layer portion in the functional laminate, the diameter (longest diameter) of any 100 bubbles is measured, and the average value is obtained.
  • Arbitrary 100 bubbles are arbitrary 100 bubbles formed by foaming of the foamable resin, and the bubbles and the bubbles inherently contained in the polymer foam as the porous surface layer are: It can be easily distinguished by the difference in brightness around the bubble.
  • a mixed layer part is cut out from a functional laminated body, the distribution of the diameter of the space
  • the average porosity Rx of the mixed layer portion is usually 30 to 95%, and preferably 50 to 90% from the viewpoint of further improving the sound absorbing property, heat insulating property and vibration damping property of the functional laminate.
  • the average porosity of the mixed layer portion is a volume ratio of bubbles in the resin (polymer) formed in the void of the porous surface layer before the infiltration of the foamable resin, and is a ratio measured by the following method. expressed. In an optical microscope or electron micrograph of a vertical cross section of the mixed layer portion in the functional laminate, the ratio of the area of bubbles to the total area is measured at an arbitrary 100 locations, and the average value is obtained.
  • the area of the bubbles is the area of bubbles in the resin (polymer) formed by foaming of the foamable resin in the voids of the porous surface layer.
  • a mixed layer portion can be cut out from the functional laminate and calculated from physical properties such as volume, mass, polymer specific gravity and the like of the mixed layer portion. Further, it can be calculated from the volume of the mixed layer portion and the void volume of the mixed layer portion measured by a method such as a computer tomography method, a liquid immersion method, a water evaporation method, a suspension method, a mercury intrusion method, or a gas adsorption method.
  • the thickness of the mixed layer portion is usually 0.05 to 3 mm, which is preferable from the viewpoint of further improving the sound absorbing property, heat insulating property, and vibration damping property (especially sound absorbing property) in a cover member application for an automobile powertrain member. Is 0.1 to 2 mm, more preferably 0.2 to 1.7 mm.
  • the thickness of the mixed layer portion is a thickness in a direction substantially perpendicular to the outer surface 12 of the porous surface layer 1, and from the interface 13 with the porous intermediate layer 3 in the porous surface layer 1, the porous surface layer It is the thickness until the foamable resin is not impregnated in 1, and is represented by the thickness measured by the following method. In an optical microscope or electron micrograph of a vertical cross section in the vicinity of the mixed layer portion in the functional laminate, the thickness is measured at an arbitrary 100 locations to obtain an average value.
  • the functional laminate of the present disclosure can be produced by a production method including the following lamination base material forming step and foam molding step. (Lamination substrate forming process) In this step, the porous surface layer 1 and the porous intermediate layer 3 are superposed to obtain a lamination substrate 40. In order to superimpose, the other layer may simply be placed on one layer, but the porous surface layer 1 and the porous intermediate layer 3 are bonded from the viewpoint of handling of the substrate for lamination. Is preferred.
  • the adhesion method is not particularly limited as long as the bonding between the porous surface layer 1 and the porous intermediate layer 3 is achieved.
  • a method using an adhesive may be adopted.
  • Adhesion may be achieved on a part of the contact surface between the porous surface layer 1 and the porous intermediate layer 3, or may be achieved on the entire surface.
  • adhesion is a contact between the porous surface layer 1 and the porous intermediate layer 3. Preferably it is achieved on part of the surface.
  • the porous surface layer 1 and the porous intermediate layer 3 can be made of the materials described above, and are available as commercial products.
  • a predetermined fiber is formed by adjusting to a desired physical property by a known molding method such as a hot press molding method or a needle punch molding method (sheet) Shaped material) can be used.
  • a known molding method such as a hot press molding method or a needle punch molding method (sheet) Shaped material
  • sheet needle punch molding method
  • foam molding process In this step, foam molding is performed in the molding die 50 as shown in FIG. 2A.
  • the mold 50 is usually composed of an upper mold 51 and a lower mold 52.
  • FIG. 2A shows a mold for explaining the foam preparation stage of the foam molding process and a schematic cross-sectional view of the inside thereof.
  • the foam molding is performed on the porous intermediate layer 3 side of the base material 40 for lamination using the foamable resin 20 as a raw material constituting the resin foam layer 2.
  • foamable resin 20 and the laminate are formed so that the resin foam layer 2 is formed on the porous intermediate layer 3 side of the substrate 40 for lamination.
  • the base material 40 is disposed and foam molding is performed.
  • FIG. 2A after injecting the foamable resin 20 into the molding surface 520 of the lower mold 52, the base material for lamination 40 is placed on the foamable resin 20, and the porous intermediate layer 3 is the foamable resin. 20 so as to be in contact with 20.
  • FIG. 2B shows a mold for explaining the foaming stage of the foam molding process and a schematic cross-sectional view of the inside thereof.
  • the foamable resin 20 is a raw material for the resin foam layer.
  • the foamable resin 20 is a mixture of a polyol compound and an isocyanate compound.
  • the foamable resin 20 may contain additives such as a foaming agent and a foam stabilizer.
  • the foaming conditions are appropriately determined according to the type of the foamable resin 20.
  • the mold 50 may be heated and / or the inside of the mold 50 may be pressurized or depressurized.
  • the functional laminate 10 of the present disclosure is excellent in sound absorbing property, heat insulating property, and vibration damping property (particularly sound absorbing property), it is useful as a sound absorbing material, a heat insulating material and / or a vibration damping material (particularly a sound absorbing material). .
  • Fields in which the functional laminate 10 of the present disclosure is useful include, for example, machines equipped with engines such as vehicles (for example, automobiles, trucks, buses and trains) and agricultural machines (for example, mowers and tillers). Fields.
  • vehicles for example, automobiles, trucks, buses and trains
  • agricultural machines for example, mowers and tillers.
  • the functional laminate 10 of the present disclosure when used as a sound-absorbing heat insulating material in a machine equipped with an engine, it is specifically used as a cover member for a powertrain member including an engine and a transmission. More specifically, the functional laminate 10 is used as a cover member that partially or entirely surrounds the powertrain member.
  • the functional laminate 10 is disposed and used such that the resin foam layer 2 side contacts the power train member. Alternatively, it is used such that the porous surface layer 1 side faces the sound source and / or heat source in a non-contact manner, that is, the engine and transmission are arranged on the porous surface layer 1 side.
  • the glass plate of the same composition as the said glass wool was used for the measurement of the contact angle of glass wool.
  • a PET plate having the same composition as that of the PET nonwoven fabric was used.
  • an alumina plate having the same composition as that of the alumina nonwoven fabric was used.
  • a PP plate having the same composition as that of the PP nonwoven fabric was used.
  • the surface roughness of the plates used for measuring the contact angle was commonly Ra of 1.6 ⁇ m or less.
  • Sound absorption coefficient ( ⁇ ) Normal acoustic absorption coefficient measurement system WinZacMTX, manufactured by Nippon Acoustic Engineering Co., Ltd., and measurement of normal incident acoustic absorption coefficient using an acoustic tube with an inner diameter of 40 mm in a measurement frequency range of 200 to 4800 Hz (1/3 octave band) (JIS A 1405) -2, ISO 10534-2 compliant), and an average normal incidence sound absorption coefficient of 1000 to 4000 Hz was calculated.
  • a functional laminate obtained in each example / comparative example was hollowed out into a columnar shape with a diameter of 40 mm.
  • the functional laminate as a measurement sample was arranged so that sound was incident from the porous surface layer 1 side. It evaluated based on the increase width from the sound absorption rate in the comparative example using the same porous surface layer, without using a porous intermediate
  • X Increase width ⁇ 1.0%.
  • Thermal conductivity Based on JIS A1412-2 Part 2 heat flow meter method, the thermal conductivity in the thickness direction of the functional laminate was measured at 30 ° C using a steady-state thermal conductivity measuring device HFM436 / 3/1 Lambda manufactured by NETZSCH. Measured. (Examples 1 to 4 and Comparative Example 3) -Substrate forming process for lamination Glass wool A having an average fiber diameter of about 7.5 ⁇ m was hot press-molded so as to have the average porosity and thickness shown in Table 1 to obtain a porous surface layer 1. The porous intermediate layer 3 shown in Table 1 was adhered to the porous surface layer 1 to obtain a lamination base material 40.
  • Adhesion was achieved with an adhesive at part of the contact surface between the porous surface layer and the porous intermediate layer.
  • -Foam molding process The raw material of the polyurethane foam of Table 1 was mixed with the mixer as the foamable resin 20, and it inject
  • Example 5 As the porous surface layer 1, glass wool B having an average fiber diameter of about 3.5 ⁇ m was hot-pressed so as to have the average porosity and thickness shown in Table 1, and the porous intermediate layer shown in Table 1 A substrate forming process for lamination and a foam molding process were performed in the same manner as in Example 1 except that 3 was used.
  • Comparative Example 1 Without using the porous intermediate layer, the base material forming step and the foam molding step were performed in the same manner as in Example 1 except that the porous surface layer was used alone instead of the base material for stacking. .
  • Comparative Example 2 Without using the porous intermediate layer, the substrate forming step and the foaming forming step were performed in the same manner as in Example 2 except that the porous surface layer was used alone instead of the substrate for lamination. .
  • Glass wool A Glass fiber having an average fiber diameter of about 7.5 ⁇ m and an average fiber length of about 50 mm (weight per unit area of porous surface layer 1 by glass wool A
  • Glass wool B Glass fiber having an average fiber diameter of about 3.5 ⁇ m and an average fiber length of about 50 mm (weight of porous surface layer 1 by glass wool B
  • Example 5 1920 g / m 2
  • Example 6 960 g / m 2
  • Example 7 480 g / m 2
  • PET nonwoven fabric B H3501AD (manufactured by Toyobo Co., Ltd.
  • the functional laminate of the present disclosure includes a sound absorbing material and a heat insulating material in the field of machines including engines such as vehicles (for example, automobiles, trucks, buses and trains) and agricultural machines (for example, mowers and tillers). And / or useful as a damping material.
  • engines such as vehicles (for example, automobiles, trucks, buses and trains) and agricultural machines (for example, mowers and tillers). And / or useful as a damping material.
  • Porous surface layer 2 Resin foam layer 3: Porous intermediate layer 10: Functional laminate 11: Mixed layer portion 12: Outer surface of porous surface layer 13: Interface of porous surface layer with porous intermediate layer 20: Foamable resin 22: Interface with porous intermediate layer in resin foam layer 32: Interface with porous surface layer in porous intermediate layer 33: Interface with resin foam layer in porous intermediate layer 40: Base for lamination Material 50: Mold 51: Upper mold 52: Lower mold 520: Molding surface of lower mold

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Laminated Bodies (AREA)
  • Molding Of Porous Articles (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

多孔質表面層と樹脂発泡層との間に、通気性を有する多孔質中間層が積層されており、前記多孔質中間層が、前記樹脂発泡層を構成する発泡性樹脂に対する親和性を有している、機能性積層体。

Description

機能性積層体およびその製造方法
 本開示は機能性積層体およびその製造方法に関する。
 近年、車両(例えば、自動車、トラック、バスおよび電車等)および農業機械(例えば、草刈り機および耕耘機等)等のエンジンを備えた機械において、エンジンが発する音を吸音する試みが多くなされている。
 特に、自動車の分野においては、搭乗者の乗り心地の観点から、エンジンおよびトランスミッションを含むパワートレイン部材を吸音材でカバーすることにより、エンジン音を吸音する試みがなされている。カバー材としては、例えば、ウレタン発泡体、繊維不織布が単独で使用されている。
 一方、ヘッドレスト、シート座部、シートバックおよびアームレスト等の一体発泡製品として、布帛の内面に直接適用されたラテックスフォーム薄層と、その内表面に直接注入され発泡硬化した本体フォームとからなる一体発泡製品が報告されている(特許文献1)。このような一体発泡製品において、ラテックスフォーム薄層は、布帛に近い領域で布帛内面の繊維を抱き込むように機械的に結合して結合領域を形成し、外側に、本体フォーム原液の侵入を実質的に阻止する通気性スキンを形成している。
 また、イスおよびクッション等の発泡成形体として、発泡成形体本体の外面にシート材が一体化された発泡成形体が報告されている(特許文献2)。このような発泡成形体において、シート材は、延伸多孔質フィルムと不織布との積層体で構成され、気体を透過させる一方、液体は透過させない性質を有している。
国際公開第93/03904号 特開2011-148204号公報
 本開示の発明者は、上記の発泡製品または発泡成形体に関する技術を、例えばパワートレイン部材のカバー材に適用したところ、吸音性が十分に得られないという新たな課題を見い出した。
 そこで本開示の発明者は、成形型内において、例えばガラス繊維不織布の存在下で発泡成形を行っても、やはり吸音性が十分に得られないことを見い出した。
 本開示は、吸音性により優れている機能性積層体を提供することを課題とする。
 本開示はまた、吸音性だけでなく、断熱性にもより優れている機能性積層体を提供することを課題とする。
 本開示は、
 多孔質表面層と樹脂発泡層との間に、通気性を有する多孔質中間層が積層されており、
 前記多孔質中間層が、前記樹脂発泡層を構成する発泡性樹脂に対する親和性を有している、機能性積層体に関する。
 本開示の機能性積層体は吸音性により優れている。
 本開示の機能性積層体はまた、断熱性にもより優れている。
 本開示の機能性積層体はまた、制振性にもより優れている。
本開示の機能性積層体の模式的断面図を示す。 本開示の機能性積層体の製造方法における発泡成形工程の発泡準備段階を説明するための成形型およびその内部の模式的断面図を示す。 本開示の機能性積層体の製造方法における発泡成形工程の発泡段階を説明するための成形型およびその内部の模式的断面図を示す。
[機能性積層体]
 本開示の機能性積層体は少なくとも吸音性を備えた積層体に関するものであり、機能性は、吸音性、断熱性および制振性等のうちの少なくとも1つの性能を包含する。
 本開示の機能性積層体10は、図1に示すように、多孔質表面層1と樹脂発泡層2との間に、特定の多孔質中間層3が積層されており、多孔質表面層1、樹脂発泡層2および多孔質中間層3は相互に結合し一体化されている。当該特定の多孔質中間層3は後述するように、樹脂発泡層2を構成する発泡性樹脂(液体原料)に対する親和性を有するので、当該親和性に起因して、毛細管現象を起こし易く、好ましくは多孔質表面層1よりも毛細管現象を起こし易い。従って、樹脂発泡層2を構成する発泡性樹脂(液体原料)の発泡前において多孔質中間層3は当該発泡性樹脂を保持し易い。このため、多孔質中間層3は発泡前において発泡性樹脂の多孔質表面層1への移動(含浸)を適度に阻害し、発泡が始まると、多孔質中間層3に保持されていた発泡性樹脂は多孔質表面層1に滲入しながら発泡する。その結果、発泡性樹脂の多孔質表面層1への含浸量が適度に低減され、また発泡性樹脂が十分に発泡するようになるため、吸音性、断熱性および制振性(特に吸音性)が十分に向上するものと考えられる。多孔質中間層が積層されない場合および多孔質中間層が発泡性樹脂に対する親和性を有さない場合には、発泡前において発泡性樹脂の多孔質表面層1への移動が過度に起こり、発泡時において発泡性樹脂が過剰量で多孔質表面層に移動(含浸)しているため、発泡性樹脂は多孔質表面層内で十分に発泡しない。その結果、吸音性、断熱性および制振性が低下するものと考えられる。図1は本開示の機能性積層体の模式的断面図を示す。
 樹脂発泡層2を構成する発泡性樹脂は樹脂発泡層2の原料として使用される発泡性樹脂のこと(液体原料)である。例えば樹脂発泡層2がポリウレタン発泡層の場合、発泡性樹脂はポリオール化合物およびイソシアネート化合物の混合物である。発泡性樹脂には発泡剤および整泡剤等の添加剤が含有されていてもよい。
 本開示において毛細管現象は、多孔質中間層3および多孔質表面層1が有する空隙内における発泡性樹脂(液体)の挙動に関する物理現象のことである。毛細管現象の起こり易さは、多孔質中間層3および多孔質表面層1が有する発泡性樹脂に対する親和性を調整することにより、制御することができる。詳しくは、当該親和性が高いほど、毛細管現象は起こり易い。
(多孔質中間層)
 多孔質中間層3は通気性を有する。多孔質中間層3が有する「通気性」は「通液性」と換言可能な特性であり、すなわち当該多孔質中間層3が機能性積層体の製造時に自己の内部を発泡性樹脂(液体)に適度に通過させ得る特性のことである。多孔質中間層3はこのような通気性を有するため、多孔質表面層1と樹脂発泡層2と多孔質中間層3との一体化が達成される。多孔質中間層3が有する通気性は、詳しくは、後述の混層部11が形成され得る程度の通気性である。
 多孔質中間層3は、樹脂発泡層2を構成する発泡性樹脂に対する親和性(以下、単に「親和性」ということがある)を有している。多孔質中間層3が当該親和性を有しているとは、多孔質中間層3が有する空隙の表面は発泡性樹脂に対してなじみ易いまたは濡れ易いという意味である。すなわち多孔質中間層3の発泡性樹脂に対する接触角θm(以下、単に「接触角θm」ということがある)は通常、20°以下であり、多孔質中間層での毛細管現象の起こり易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは1~20°、より好ましくは1~15°、さらに好ましくは1~10°である。多孔質中間層3はこのような親和性を有するため、多孔質中間層3は毛細管現象により当該発泡性樹脂を保持し易くなる。例えば、多孔質中間層3の親和性が高いほど、多孔質中間層3の接触角θmは小さい。また例えば、多孔質中間層3の親和性が低いほど、多孔質中間層3の接触角θmは大きい。
 多孔質中間層3の発泡性樹脂に対する接触角θmとは、多孔質中間層を構成する材料と同等組成の表面を有する平面上での発泡性樹脂の接触角のことである。
 多孔質中間層3の親和性は、多孔質中間層での毛細管現象の起こり易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、多孔質表面層1の親和性よりも高いことが好ましい。多孔質中間層3の親和性が多孔質表面層1の親和性よりも高いとは、多孔質中間層3の発泡性樹脂に対する接触角θmは、多孔質表面層1の発泡性樹脂に対する接触角θs(以下、単に「接触角θs」ということがある)よりも小さいという意味である。多孔質中間層3の発泡性樹脂に対する接触角θm(°)および多孔質表面層1の発泡性樹脂に対する接触角θs(°)は、多孔質中間層での毛細管現象の起こり易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、以下の関係式(p1)を満たすことが好ましく、以下の関係式(p2)を満たすことがより好ましく、以下の関係式(p3)を満たすことがさらに好ましく、以下の関係式(p4)を満たすことが最も好ましい。
 1°≦θs-θm         (p1)
 1°≦θs-θm≦30°     (p2)
 3°≦θs-θm≦20°     (p3)
 5°≦θs-θm≦20°     (p4)
 多孔質中間層および多孔質表面層の発泡性樹脂に対する接触角(θmおよびθs)は以下の方法で測定された値で表される。エルマ光学社製接触角測定装置G-1.2MGを使用し、PGM(プロピレングリコールモノメチルエーテル)を試験片に滴下し、30秒後の接触角を測定する。試験片は、多孔質中間層または多孔質表面層を構成する材料と同等組成の表面を有する平板を用いる。
 多孔質中間層を構成する材料は、上記のような通気性を有し、かつ親和性を有するものである限り特に限定されず、例えば、繊維不織布であってもよいし、またはポリマー発泡体であってもよい。以下、あらゆる処理なしに本来的に親和性を有する繊維不織布およびポリマー発泡体の具体例を例示する。本来的に親和性を有していない材料からなる多孔質中間層を用いる場合は、親和性を付与するための親和処理を当該多孔質中間層に対して行い、親和性が付与されたものを多孔質中間層として用いればよい。なお、以下で具体例と共に示すθは所定の材料があらゆる処理なしで本来的に示す接触角であって、上記した方法により測定された発泡性樹脂に対する接触角のことである。
 本来的に親和性を有する多孔質中間層の繊維不織布の具体例として、例えば、ポリエチレンテレフタレート(PET)繊維(θ=4°)等のポリエステル繊維からなる群から選択される1種以上の有機繊維の不織布が挙げられる。多孔質中間層の繊維不織布はまた、アルミナ繊維(θ=4°)等からなる群から選択される1種以上の無機繊維の不織布であってもよい。有機繊維と無機繊維との混合繊維の不織布であってもよい。親和処理して用いることができる多孔質中間層の繊維不織布として、多孔質表面層の繊維不織布として例示する後述の有機繊維および/または無機繊維の不織布が挙げられる。
 本来的に親和性を有する多孔質中間層のポリマー発泡体は連続気泡構造を有するものが使用される。そのようなポリマー発泡体の具体例として、例えば、PET発泡層(θ=4°)等のポリエステル発泡層からなる群から選択されるポリマー発泡層が挙げられる。親和処理して用いることができる多孔質中間層のポリマー発泡体として、多孔質表面層のポリマー発泡体として例示する後述のポリマー発泡体が挙げられる。
 多孔質中間層は、機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、繊維不織布であることが好ましく、より好ましくはPET繊維および/またはアルミナ繊維の不織布、さらに好ましくはPET繊維の不織布である。
 多孔質中間層3は、少なくとも多孔質表面層側で上記親和性を有していればよいが、好ましくは全体で上記親和性を有している。
 多孔質中間層の平均空隙率Rm(%)および多孔質表面層の平均空隙率Rs(%)は、多孔質中間層での毛細管現象の起こり易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、以下の関係式(x1)を満たすことが好ましく、以下の関係式(x2)を満たすことがより好ましく、以下の関係式(x3)を満たすことがさらに好ましく、以下の関係式(x4)を満たすことがさらに好ましい。
 1.01≦Rs/Rm         (x1)
 1.05≦Rs/Rm≦2.0     (x2)
 1.10≦Rs/Rm≦1.5     (x3)
 1.15≦Rs/Rm≦1.3     (x4)
 多孔質中間層の平均空隙率Rmは通常、60~95%であり、多孔質中間層での毛細管現象の起こり易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは65~90%である。
 多孔質中間層の平均空隙率は、多孔質中間層が繊維不織布である場合、繊維間に形成される空隙の体積割合、すなわち繊維間の空隙の体積割合のことであり、以下の方法で測定された割合で表される。機能性積層体から、発泡性樹脂が含浸された多孔質中間層の当該不織布を切り出し、当該不織布を構成する繊維および発泡性樹脂のうち、発泡性樹脂のみを溶解する有機溶剤により、発泡性樹脂を溶解し、繊維不織布を単独で得る。この繊維不織布における空隙の体積割合を算出し、この値を、当該繊維不織布において厚みが機能性積層体における後述の多孔質中間層の厚みであるときの空隙の体積割合に換算する。空隙の体積割合は、当該繊維不織布の体積、質量、繊維材料の比重等の物性より算出できる。本明細書中、質量の測定は、電子天秤(AE160;メトラー社製)を用いて行った。また、当該繊維不織布の体積と、計算機トモグラフィー法、液浸法、水蒸発法、懸吊法、水銀圧入法、ガス吸着法等の方法で測定した当該繊維不織布の空隙体積より算出できる。
 また、別の繊維間の空隙の体積割合の測定方法として、機能性積層体から、発泡性樹脂が含浸された多孔質中間層の当該不織布を切り出し、当該不織布の体積と、計算機トモグラフィー法、液浸法、水蒸発法、懸吊法、水銀圧入法、ガス吸着法等の方法で測定した当該不織布の空隙体積を得た後、当該不織布を構成する繊維および発泡性樹脂のうち、繊維材料のみを溶解する溶剤により、繊維材料を溶解し、発泡性樹脂を単独で得る。この発泡性樹脂における空隙体積を上記同様の手法で測定し、当該不織布の体積-当該発泡性樹脂の空隙体積+当該不織布の空隙体積から繊維不織布の空隙体積を算出し、この値と当該不織布の体積から繊維不織布における空隙の体積割合を算出することができる。
 多孔質中間層の平均空隙率は、多孔質中間層がポリマー発泡体である場合、多孔質中間層としてのポリマー発泡体が本来的に有するポリマー中の気泡の体積割合のことであり、以下の方法で測定された割合で表される。機能性積層体から、発泡性樹脂が含浸された多孔質中間層の当該ポリマー発泡体を切り出し、当該試料の垂直断面の光学顕微鏡や電子顕微鏡写真において、発泡性樹脂の発泡が起こっていないところの任意の100カ所で全面積に対する気泡の面積の割合を測定し、平均値を求める。気泡の面積は、多孔質中間層としてのポリマー発泡体が本来的に有する気泡の面積であり、当該気泡と、発泡性樹脂の発泡による気泡とは、気泡周囲の明度等の差異により、容易に区別することができる。本明細書中、光学顕微鏡や電子顕微鏡写真を撮影する際の平行断面は当該外表面12に対して平行な断面のことであり、垂直断面は多孔質表面層の外表面12に対して垂直な断面のことである。
 多孔質中間層の平均空隙率は、上記のように機能性積層体から測定された値を用いているが、製造(発泡成形)に使用される材料から測定しても、同等の測定値が得られる。つまり、製造(発泡成形)に使用される当該多孔質中間層材料の体積、質量、多孔質中間層材料の繊維またはポリマーの比重等の物性より算出できる。本明細書中、質量の測定は、電子天秤(AE160;メトラー社製)を用いて行った。また、当該多孔質中間層材料の体積と、計算機トモグラフィー法、液浸法、水蒸発法、懸吊法、水銀圧入法、ガス吸着法等の方法で測定した当該多孔質中間層材料の空隙体積より算出できる。また、当該多孔質中間層材料の垂直断面の光学顕微鏡や電子顕微鏡写真において、任意の100カ所で全面積に対する気泡の面積の割合を測定し、平均値を求めることより算出できる。
 多孔質中間層の厚みは通常、0.1~2mmであり、多孔質中間層での毛細管現象の起こり易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは0.2~1mmである。
 多孔質中間層の厚みは、多孔質中間層が繊維不織布である場合であっても、またはポリマー発泡体である場合であっても、多孔質中間層3における多孔質表面層1との界面32から、樹脂発泡層2との界面33までの厚みであり、以下の方法で測定された厚みで表される。機能性積層体の垂直断面の光学顕微鏡写真において、任意の100カ所で厚みを測定し、平均値を求める)。
 多孔質中間層の厚みは、上記のように機能性積層体から測定された値を用いているが、製造(発泡成形)に使用される材料から測定しても、同等の測定値が得られる。つまり、製造(発泡成形)に使用される当該多孔質中間層材料の垂直断面の光学顕微鏡写真において、任意の100カ所で厚みを測定し、平均値を求める。また、膜厚計、変位計、ノギス等の計器で当該多孔質中間層材料の厚みを測定し、平均値を求める。
 多孔質中間層が特に繊維不織布である場合、当該繊維不織布を構成する繊維の平均繊維径および平均繊維長は、多孔質中間層が多孔質表面層よりも毛細管現象を起こし易い限り特に限定されない。平均繊維径は通常、0.005~50μmであり、多孔質中間層での毛細管現象の起こり易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは0.1~20μmである。平均繊維長は通常、多孔質中間層材料の厚み以上であり、多孔質中間層での毛細管現象の起こり易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは20mm以上である。
 多孔質中間層の繊維不織布における繊維の平均繊維径は以下の方法で測定された平均直径で表される。機能性積層体から、発泡性樹脂が含浸された多孔質中間層の当該不織布を切り出し、当該試料の垂直断面の光学顕微鏡や電子顕微鏡写真において、任意の100本の繊維の直径を測定し、平均値を求める。
 多孔質中間層の繊維不織布における繊維の平均繊維長は以下の方法で測定された平均値で表される。機能性積層体から、発泡性樹脂が含浸された多孔質中間層の当該不織布を切り出し、繊維不織布を構成する繊維および発泡性樹脂のうち、発泡性樹脂のみを溶解する有機溶剤により、発泡性樹脂を溶解する。発泡性樹脂が溶解された不織布より、任意の100本の繊維の長さを測定し、平均値を求める。また、CT等の手法で当該不織布内部を3次元画像化し、任意の100本の繊維の長さを測定して平均値を求める。
 繊維不織布の繊維の平均繊維径および平均繊維長は、上記のように機能性積層体から測定された値を用いているが、製造(発泡成形)に使用される材料から測定しても、同等の測定値が得られる。つまり、製造(発泡成形)に使用される繊維不織布の繊維の平均繊維径は、当該不織布の垂直断面の光学顕微鏡や電子顕微鏡写真において、任意の100本の繊維の直径を測定し、平均値を求める。製造(発泡成形)に使用される繊維不織布の繊維の平均繊維長は、任意の100本の繊維の長さを測定し、平均値を求める。また、CT等の手法で当該不織布内部を3次元画像化し、任意の100本の繊維の長さを測定して平均値を求める。
 多孔質中間層が特に繊維不織布である場合、当該繊維不織布の目付は、多孔質中間層が多孔質表面層よりも毛細管現象を起こし易い限り特に限定されず、通常は5~500g/mであり、多孔質中間層での毛細管現象の起こり易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは10~300g/mである。
 多孔質中間層の繊維不織布における目付は以下の方法で測定された値で表される。機能性積層体から、発泡性樹脂が含浸された多孔質中間層の当該不織布を切り出し、当該不織布を構成する繊維および発泡性樹脂のうち、発泡性樹脂のみを溶解する有機溶剤により、発泡性樹脂を溶解し、繊維不織布を単独で得る。当該繊維不織布の面積、質量より目付を算出できる。本明細書中、質量の測定は、電子天秤(AE160;メトラー社製)を用いて行った。また、別の測定方法として、機能性積層体から、発泡性樹脂が含浸された多孔質中間層の当該不織布を切り出し、当該不織布を構成する繊維および発泡性樹脂のうち、繊維材料のみを溶解する溶剤により、繊維材料を溶解し、繊維材料の溶解液を得る。この繊維材料の溶解液の液体分を蒸発させた後に、蒸発後の固体分の質量から固体分における繊維材料の質量を算出し、当該不織布の面積と繊維材料の質量から目付を算出できる。
 繊維不織布の目付は、上記のように機能性積層体から測定された値を用いているが、製造(発泡成形)に使用される材料から測定しても、同等の測定値が得られる。つまり、製造(発泡成形)に使用される繊維不織布の面積、質量より目付を算出できる。本明細書中、質量の測定は、電子天秤(AE160;メトラー社製)を用いて行った。
(多孔質表面層)
 多孔質表面層1を構成する材料は、多孔性を有するものである限り特に限定されず、例えば、繊維不織布であってもよいし、またはポリマー発泡体であってもよい。
 多孔質表面層1は発泡性樹脂に対する親和性を有していてもよいが、有していなくてもよい。多孔質表面層1は、多孔質中間層での毛細管現象の起こり易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、多孔質中間層よりも、発泡性樹脂に対する親和性を有してないことが好ましい。多孔質表面層1が多孔質中間層よりも、当該親和性を有していないとは、多孔質表面層1が有する発泡性樹脂に対する接触角θsが、多孔質中間層が有する発泡性樹脂に対する接触角θmよりも大きいという意味である。同様の観点から好ましくは多孔質表面層1は多孔質中間層に対して上記した「θs-θm」の関係を有する。
 多孔質表面層1の発泡性樹脂に対する接触角θsは通常、1°以上であり、多孔質中間層での毛細管現象の起こり易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは1~90°、より好ましくは5~90°、さらに好ましくは5~30°であり、最も好ましくは8~30°である。多孔質表面層1の発泡性樹脂に対する接触角θsとは、多孔質表面層を構成する材料と同等組成の表面を有する平面上での発泡性樹脂の接触角のことである。
 多孔質表面層1を構成する材料としての繊維不織布およびポリマー発泡体の具体例を例示する。本来的に上記のような接触角θsを有していない材料からなる多孔質表面層を用いる場合は、処理の前後で接触角が増加または減少する表面処理を当該多孔質表面層に対して行い、接触角を制御したものを多孔質中間層として用いてもよい。なお、以下で具体例と共に示すθは所定の材料があらゆる処理なしで本来的に示す接触角であって、上記した方法により測定された発泡性樹脂に対する接触角のことである。表面処理としては、例えば、フッ素原子含有樹脂(例えばフッ素原子含有ポリマー)やシリコーン基含有樹脂の溶液を適用により、接触角を増加させる非親和処理が挙げられる。
 多孔質表面層の繊維不織布の具体例として、例えば、ポリプロピレン(PP)繊維(θ=20°)等のポリオレフィン繊維、PTFE等のフッ素含有樹脂繊維、シリコーン含有樹脂繊維からなる群から選択される1種以上の有機繊維の不織布が挙げられる。多孔質表面層の繊維不織布はまた、ガラス繊維(θ=12°)、シリカ繊維(θ=15°)等からなる群から選択される1種以上の無機繊維の不織布であってもよい。有機繊維と無機繊維との混合繊維の不織布であってもよい。
 多孔質表面層のポリマー発泡体は連続気泡構造または独立気泡構造を有するものが使用される。そのようなポリマー発泡体の具体例として、例えば、ポリプロピレン発泡層(θ=20°)等のポリオレフィン発泡層;フッ素含有樹脂発泡層(θ=30°);シリコーン樹脂発泡層(θ=30°)からなる群から選択されるポリマー発泡層が挙げられる。)
 多孔質表面層は、機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、繊維不織布であることが好ましく、より好ましくは無機繊維または有機繊維の不織布、さらに好ましくはガラス繊維の不織布である。
 多孔質表面層の平均空隙率Rsは通常、80~99.5%であり、多孔質中間層での毛細管現象の起こり易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは90~99%である。
 多孔質表面層の平均空隙率は、多孔質表面層が繊維不織布である場合、繊維間に形成される空隙の体積割合、すなわち繊維間の空隙の体積割合のことであり、以下の方法で測定された割合で表される。機能性積層体から、発泡性樹脂が含浸されていない多孔質表面層部分の当該不織布を切り出す。この繊維不織布における空隙の体積割合を算出し、この値を、当該繊維不織布において厚みが機能性積層体における後述の多孔質表面層の厚みであるときの空隙の体積割合に換算する。空隙の体積割合は、当該繊維不織布の体積、質量、繊維の比重等の物性より算出できる。本明細書中、質量の測定は、電子天秤(AE160;メトラー社製)を用いて行った。また、当該繊維不織布の体積と、計算機トモグラフィー法、液浸法、水蒸発法、懸吊法、水銀圧入法、ガス吸着法等の方法で測定した当該繊維不織布の空隙体積より算出できる。
 多孔質表面層の平均空隙率は、多孔質表面層がポリマー発泡体である場合、多孔質表面層としてのポリマー発泡体が本来的に有するポリマー中の気泡の体積割合のことであり、以下の方法で測定された割合で表される。機能性積層体から、発泡性樹脂が含浸されていない多孔質表面層部分の当該ポリマー発泡体を切り出し、当該試料の垂直断面の光学顕微鏡や電子顕微鏡写真において、任意の100カ所で全面積に対する気泡の面積の割合を測定し、平均値を求めることより算出できる。
 多孔質表面層の平均空隙率は、上記のように機能性積層体から測定された値を用いているが、製造(発泡成形)に使用される材料から測定しても、同等の測定値が得られる。つまり、製造(発泡成形)に使用される当該多孔質表面層材料の体積、質量、当該多孔質表面層材料の繊維またはポリマーの比重等の物性より算出できる。本明細書中、質量の測定は、電子天秤(AE160;メトラー社製)を用いて行った。また、当該多孔質表面層材料の体積と、計算機トモグラフィー法、液浸法、水蒸発法、懸吊法、水銀圧入法、ガス吸着法等の方法で測定した当該多孔質表面層材料の空隙体積より算出できる。また、当該多孔質表面層材料の垂直断面の光学顕微鏡や電子顕微鏡写真において、任意の100カ所で全面積に対する気泡の面積の割合を測定し、平均値を求めることより算出できる。
 多孔質表面層の厚みは通常、1~50mmであり、多孔質中間層での毛細管現象の起こり易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは2~30mmである。
 多孔質表面層の厚みは、多孔質表面層が繊維不織布である場合であっても、またはポリマー発泡体である場合であっても、後述の混層部を含む厚みであって、多孔質表面層1における外表面12から、多孔質中間層3との界面13までの厚みであり、以下の方法で測定された厚みで表される。機能性積層体の垂直断面の光学顕微鏡写真において、任意の100カ所で厚みを測定し、平均値を求める。
 多孔質表面層の厚みは、上記のように機能性積層体から測定された値を用いているが、製造(発泡成形)に使用される材料から測定しても、同等の測定値が得られる。つまり、製造(発泡成形)に使用される当該多孔質表面層材料の垂直断面の光学顕微鏡写真において、任意の100カ所で厚みを測定し、平均値を求める。また、膜厚計、変位計、ノギス等の計器で当該多孔質表面層材料の厚みを測定し、平均値を求める。
 多孔質表面層が特に繊維不織布である場合、当該繊維不織布を構成する繊維の平均繊維径および平均繊維長は、多孔質中間層が多孔質表面層よりも毛細管現象を起こし易い限り特に限定されない。平均繊維径は通常、0.005~50μmであり、多孔質中間層での毛細管現象の起こり易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは0.1~20μmであり、より好ましくは1~5μmである。平均繊維長は通常、2mm以上であり、多孔質中間層での毛細管現象の起こり易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは20mm以上である。
 多孔質表面層の繊維不織布における繊維の平均繊維径は以下の方法で測定された平均直径で表される。機能性積層体から、発泡性樹脂が含浸されていない多孔質表面層部分の当該不織布を切り出し、当該試料の垂直断面の光学顕微鏡や電子顕微鏡写真において、任意の100本の繊維の直径を測定し、平均値を求める。
 多孔質表面層の繊維不織布における繊維の平均繊維長は以下の方法で測定された平均値で表される。機能性積層体から、発泡性樹脂が含浸されていない多孔質表面層部分の当該不織布を切り出し、当該不織布より、任意の100本の繊維の長さを測定し、平均値を求める。また、CT等の手法で当該不織布内部を3次元画像化し、任意の100本の繊維の長さを測定して平均値を求める。
 繊維不織布の繊維の平均繊維径および平均繊維長は、上記のように機能性積層体から測定された値を用いているが、製造(発泡成形)に使用される材料から測定しても、同等の測定値が得られる。つまり、製造(発泡成形)に使用される繊維不織布の繊維の平均繊維径は、当該不織布の垂直断面の光学顕微鏡や電子顕微鏡写真において、任意の100本の繊維の直径を測定し、平均値を求める。製造(発泡成形)に使用される繊維不織布の繊維の平均繊維長は、任意の100本の繊維の長さを測定し、平均値を求める。また、CT等の手法で当該繊維不織布内部を3次元画像化し、任意の100本の繊維の長さを測定して平均値を求める。
 多孔質表面層が特に繊維不織布である場合、当該繊維不織布の目付は、多孔質中間層が多孔質表面層よりも毛細管現象を起こし易い限り特に限定されず、通常は50~6000g/mであり、多孔質中間層での毛細管現象の起こり易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは100~3000g/mである。
 多孔質表面層の繊維不織布における目付は以下の方法で測定された値で表される。機能性積層体から、発泡性樹脂が含浸されていない多孔質表面層部分の当該不織布を切り出し、当該不織布の面積、質量より目付を算出できる。本明細書中、質量の測定は、電子天秤(AE160;メトラー社製)を用いて行った。
 繊維不織布の目付は、上記のように機能性積層体から測定された値を用いているが、製造(発泡成形)に使用される材料から測定しても、同等の測定値が得られる。つまり、製造(発泡成形)に使用される繊維不織布の面積、質量より目付を算出できる。本明細書中、質量の測定は、電子天秤(AE160;メトラー社製)を用いて行った。
(樹脂発泡層)
 樹脂発泡層2はポリマーの発泡層である。樹脂発泡層を構成するポリマーは、プラスチックの分野で発泡体を構成し得るポリマーとして知られているあらゆるポリマーであってもよい。樹脂発泡層の具体例として、例えば、ポリウレタン発泡層;ポリエチレン発泡層、ポリプロピレン発泡層等のポリオレフィン発泡層;PET発泡層等のポリエステル発泡層;シリコーン発泡層;ポリ塩化ビニル発泡層からなる群から選択されるポリマー発泡層が挙げられる。
 樹脂発泡層は、機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、ポリウレタン発泡層であることが好ましい。
 樹脂発泡層の平均空隙径Dfは特に限定されず、吸音対象の音の周波数に応じて、例えば、0.04~800μm、特に10~600μmの範囲内であってもよい。樹脂発泡層の平均空隙径Dfが上記範囲内で大きいほど、吸音される音の周波数は大きくなる。一方、樹脂発泡層の平均空隙径Dfが上記範囲内で小さいほど、吸音される音の周波数は小さくなる。
 例えば、樹脂発泡層の平均空隙径Dfが50~500μm、特に100~300μmのとき、周波数1000~4000Hzの音が有効に吸音される。このような吸音は、機能性積層体を自動車のパワートレイン部材のためのカバー部材用途で使用する場合に好適である。
 樹脂発泡層の平均空隙径Dfは、ポリマー中の気泡の直径のことであり、以下の方法で測定された平均直径で表される。機能性積層体から、樹脂発泡層を切り出し、当該試料の平行断面の光学顕微鏡や電子顕微鏡写真において、任意の100個の気泡の直径を測定し、平均値を求める。
 樹脂発泡層の平均空隙率Rfは通常、60~98%であり、多孔質中間層での毛細管現象の起こり易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは80~95%である。
 樹脂発泡層の平均空隙率は、ポリマー中の気泡の体積割合のことであり、以下の方法で測定された割合で表される。機能性積層体から、樹脂発泡層を切り出し、当該樹脂発泡材の垂直断面の光学顕微鏡や電子顕微鏡写真において、任意の100カ所で全面積に対する気泡の面積の割合を測定し、平均値を求める。また、当該樹脂発泡材の体積、質量、ポリマーの比重等の物性より算出できる。本明細書中、質量の測定は、電子天秤(AE160;メトラー社製)を用いて行った。また、当該樹脂発泡材の体積と、計算機トモグラフィー法、液浸法、水蒸発法、懸吊法、水銀圧入法、ガス吸着法等の方法で測定した当該樹脂発泡材の空隙体積より算出できる。
 樹脂発泡層の厚みは通常、1~100mmであり、多孔質中間層での毛細管現象の起こり易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは2~30mmである。
 樹脂発泡層の厚みは、多孔質表面層1の外表面12に対して略垂直方向の厚みであって、樹脂発泡層2における多孔質中間層3との界面22までの厚みであり、以下の方法で測定された厚みで表される。機能性積層体の垂直断面の光学顕微鏡写真において、任意の100カ所で厚みを測定し、平均値を求める。
(混層部)
 本開示の機能性積層体10は、多孔質中間層3と多孔質表面層1との間に、混層部11を備えている。詳しくは、多孔質表面層1が多孔質中間層3側に、混層部11を備えている。より詳しくは、多孔質表面層1における多孔質中間層3側の一部が混層部11に変換されており、換言すると、多孔質表面層1内における多孔質中間層3側の一部において混層部11が生成している。混層部により、機能性積層体の剛性が向上する。
 混層部は、多孔質中間層と多孔質表面層との間に形成される、樹脂発泡層と多孔質表面層との複合層である。混層部は、詳しくは、樹脂発泡層を構成する発泡性樹脂が多孔質表面層に滲入し、発泡および硬化して形成された層であり、換言すると、多孔質表面層の構成材料と樹脂発泡層の構成材料とが共存する層のことである。混層部においては、発泡性樹脂の滲入前の多孔質表面層の空隙内において、発泡性樹脂による気泡が形成されている。
 混層部の平均空隙径Dxは特に限定されず、吸音対象の音の周波数に応じて、例えば、0.04~800μm、特に10~500μmの範囲内であってもよい。混層部の平均空隙径Dxが上記範囲内で大きいほど、吸音される音の周波数は大きくなる。一方、混層部の平均空隙径Dxが上記範囲内で小さいほど、吸音される音の周波数は小さくなる。
 例えば、混層部の平均空隙径Dxが50~250μm、特に60~200μmのとき、周波数1000~4000Hzの音が有効に吸音される。このような吸音は、機能性積層体を自動車のパワートレイン部材のためのカバー部材用途で使用する場合に好適である。
 混層部の平均空隙径Dxは、発泡性樹脂の滲入前における多孔質表面層の空隙内において形成された樹脂(ポリマー)中の気泡の直径のことであり、以下の方法で測定された平均直径で表される。機能性積層体における混層部の平行断面の光学顕微鏡や電子顕微鏡写真において、任意の100個の気泡の直径(最長径)を測定し、平均値を求める。任意の100個の気泡は、発泡性樹脂の発泡により形成された任意の100個の気泡のことであり、当該気泡と、多孔質表面層としてのポリマー発泡体が本来的に有する気泡とは、気泡周囲の明度等の差異により、容易に区別することができる。また、機能性積層体から、混層部を切り出し、この混層部における空隙の直径の分布を、水銀圧入法、ガス吸着法等の方法で測定し、平均直径を算出できる。
 混層部の平均空隙率Rxは通常、30~95%であり、機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは50~90%である。
 混層部の平均空隙率は、発泡性樹脂の滲入前における多孔質表面層の空隙内において形成された樹脂(ポリマー)中の気泡の体積割合のことであり、以下の方法で測定された割合で表される。機能性積層体における混層部の垂直断面の光学顕微鏡や電子顕微鏡写真において、任意の100カ所で全面積に対する気泡の面積の割合を測定し、平均値を求める。気泡の面積は、多孔質表面層の空隙内において発泡性樹脂の発泡により形成された樹脂(ポリマー)中の気泡の面積であり、多孔質中間層がポリマー発泡体の場合、当該気泡と、当該ポリマー発泡体が本来的に有する気泡とは、気泡周囲の明度等の差異により、容易に区別することができる。また、別の測定方法として、機能性積層体から、混層部を切り出し、当該混層部の体積、質量、ポリマーの比重等の物性より算出できる。また、当該混層部の体積と、計算機トモグラフィー法、液浸法、水蒸発法、懸吊法、水銀圧入法、ガス吸着法等の方法で測定した当該混層部の空隙体積より算出できる。
 混層部の厚みは通常、0.05~3mmであり、自動車のパワートレイン部材のためのカバー部材用途での吸音性、断熱性および制振性(特に吸音性)のさらなる向上の観点から、好ましくは0.1~2mmであり、より好ましくは0.2~1.7mmである。
 混層部の厚みは、多孔質表面層1の外表面12に対して略垂直方向の厚みのことであって、多孔質表面層1における多孔質中間層3との界面13から、多孔質表面層1内に発泡性樹脂が含浸されなくなるまでの厚みであり、以下の方法で測定された厚みで表される。機能性積層体における混層部近傍の垂直断面の光学顕微鏡や電子顕微鏡写真において、任意の100カ所で厚みを測定し、平均値を求める。当該光学顕微鏡や電子顕微鏡写真において、多孔質表面層1内に発泡性樹脂が含浸されていること、および含浸されていないことは、多孔質表面層1の空隙内での発泡性樹脂の存在/不存在により容易に区別できる。
[機能性積層体の製造方法]
 本開示の機能性積層体は以下の積層用基材形成工程および発泡成形工程を含む製造方法により製造することができる。
(積層用基材形成工程)
 本工程においては、多孔質表面層1および多孔質中間層3を重ね合わせ、積層用基材40を得る。重ね合わせは、単に、一方の層の上に、他方の層を載置すればよいが、積層用基材の取り扱い性の観点から多孔質表面層1と多孔質中間層3とは接着することが好ましい。
 接着方法は、多孔質表面層1と多孔質中間層3との結合が達成される限り特に限定されず、例えば、接着剤を用いる方法を採用すればよい。接着は多孔質表面層1と多孔質中間層3との接触面の一部で達成されてもよいし、または全面で達成されてもよい。自動車のパワートレイン部材のためのカバー部材用途での吸音性、断熱性および制振性(特に吸音性)のさらなる向上の観点から、接着は多孔質表面層1と多孔質中間層3との接触面の一部で達成されることが好ましい。
 多孔質表面層1および多孔質中間層3はそれぞれ前記した材料が使用可能であり、市販品として入手可能である。特に多孔質表面層1および多孔質中間層3が繊維不織布の場合、所定の繊維を熱プレス成形法またはニードルパンチ成形法等の公知の成形法により所望の物性に調整して成形したもの(シート状材料)を使用することができる。
(発泡成形工程)
 本工程においては、図2Aに示すように、成形型50内において、発泡成形を行う。成形型50は通常、上型51および下型52からなっている。図2Aは、発泡成形工程の発泡準備段階を説明するための成形型およびその内部の模式的断面図を示す。
 発泡成形は、樹脂発泡層2を構成する原料として発泡性樹脂20を用いて、積層用基材40の多孔質中間層3側で行う。発泡成形を積層用基材40の多孔質中間層3側で行うとは、積層用基材40の多孔質中間層3側で樹脂発泡層2が形成されるように、発泡性樹脂20および積層用基材40を配置して、発泡成形を行うという意味である。例えば、図2Aに示すように、下型52の成形面520に発泡性樹脂20を注入した後、当該発泡性樹脂20の上に積層用基材40を、多孔質中間層3が発泡性樹脂20と接触するように、配置させる。(積層用基材40を、多孔質中間層3が発泡性樹脂20と接触するように、上型51に配置させてもよい。)その後、図2Bに示すように、上型51を閉じ、発泡が開始されると、発泡性樹脂20が膨張し、上型51と下型52との間のキャビティ内を充たし、樹脂発泡層2が形成される。成形体を脱型することにより、多孔質表面層1、樹脂発泡層2および多孔質中間層3が一体化された機能性積層体が得られる。図2Bは、発泡成形工程の発泡段階を説明するための成形型およびその内部の模式的断面図を示す。
 発泡性樹脂20は樹脂発泡層の原料であり、例えば樹脂発泡層がポリウレタン発泡層の場合、発泡性樹脂20はポリオール化合物およびイソシアネート化合物の混合物が使用される。発泡性樹脂20には発泡剤および整泡剤等の添加剤が含有されていてもよい。
 発泡条件は、発泡性樹脂20の種類に応じて、適宜決定され、例えば、成形型50を加熱してもよいし、かつ/または成形型50内を加圧または減圧してもよい。
[用途]
 本開示の機能性積層体10は、吸音性、断熱性および制振性(特に吸音性)に優れているため、吸音材、断熱材かつ/または制振材(特に吸音材)として有用である。
 本開示の機能性積層体10が有用な分野として、例えば、車両(例えば、自動車、トラック、バスおよび電車等)および農業機械(例えば、草刈り機および耕耘機等)等のエンジンを備えた機械等の分野が挙げられる。
 本開示の機能性積層体10が、例えば、エンジンを備えた機械における吸音断熱材として使用される場合、詳しくは、エンジンおよびトランスミッションを含むパワートレイン部材のためのカバー部材として使用される。このとき機能性積層体10は、より詳しくは、パワートレイン部材を部分的または全体的に包囲するカバー部材として使用される。機能性積層体10は、樹脂発泡層2側がパワートレイン部材に接触するように配置され使用される。あるいは、多孔質表面層1側が音源および/または熱源に非接触で対向するように、すなわち多孔質表面層1側にエンジンおよびトランスミッションが配置されるように、使用される。
(測定方法)
 各層の各種物性は前記した方法により測定した。なお、グラスウールの接触角の測定には当該グラスウールと同等組成のガラス板を用いた。PET不織布の接触角の測定には当該PET不織布と同等組成のPET板を用いた。アルミナ不織布の接触角の測定には当該アルミナ不織布と同等組成のアルミナ板を用いた。PP不織布の接触角の測定には当該PP不織布と同等組成のPP板を用いた。接触角の測定に使用した上記板の表面粗さは共通してRaが1.6μm以下であった。
(評価方法)
 吸音率(α):
 日本音響エンジニアリング社製 垂直入射吸音率測定システム WinZacMTXを使用し、測定周波数範囲 200~4800Hz(1/3オクターブバンド)にて、内径40mmの音響管を用いた垂直入射吸音率の測定(JIS A 1405-2、ISO 10534-2準拠)を行い、1000~4000Hzの平均垂直入射吸音率を算出した。測定試料は、各実施例/比較例で得られた機能性積層体から直径40mmの円柱状にくり抜いたものを使用した。測定試料としての機能性積層体は、多孔質表面層1側から音が入射されるように配置した。多孔質中間層を用いることなく、同じ多孔質表面層を用いた比較例における吸音率からの増加幅に基づいて評価した。
◎:3.5%≦増加幅;(最良)
○:2.0%≦増加幅<3.5%;(良)
△:1.0%≦増加幅<2.0%;(実用上問題なし)
×:増加幅<1.0%。
 熱伝導率:
 NETZSCH社製 定常法熱伝導率測定装置 HFM436/3/1Lambdaを使用し、測定温度30℃にて、機能性積層体の厚み方向の熱伝導率をJIS A1412-2第2部熱流計法に基づいて測定した。
(実施例1~4および比較例3)
・積層用基材形成工程
 平均繊維径約7.5μmのグラスウールAを、表1に記載の平均空隙率および厚みになるよう熱プレス成形し、多孔質表面層1を得た。この多孔質表面層1に、表1の多孔質中間層3を接着して、積層用基材40を得た。接着は多孔質表面層と多孔質中間層との接触面の一部で接着剤により達成した。
・発泡成形工程
 発泡性樹脂20として表1のポリウレタンフォームの原料をミキサーで混合し、図2Aに示すように、下型52の成形面520上に注入した。次いで、当該発泡性樹脂20の上に積層用基材40を、多孔質中間層3が発泡性樹脂20と接触するように、配置させた。その後、25℃および常圧の環境下で、図2Bに示すように、上型51を閉じ、発泡が開始されると、発泡性樹脂20が膨張し、上型51と下型52との間のキャビティ(寸法100mm×100mm×25mm)内を充たし、樹脂発泡層2が形成された。冷却後、成形体を脱型することにより、多孔質表面層1、樹脂発泡層2および多孔質中間層3が一体化された機能性積層体を得た。
(実施例5~7)
 多孔質表面層1として平均繊維径約3.5μmのグラスウールBを、表1に記載の平均空隙率および厚みになるよう、熱プレス成形したものを用いたこと、および表1の多孔質中間層3を用いたこと以外、実施例1と同様の方法により、積層用基材形成工程および発泡成形工程を行った。
(比較例1)
 多孔質中間層を用いることなく、積層用基材の代わりに多孔質表面層を単独で用いたこと以外、実施例1と同様の方法により、積層用基材形成工程および発泡成形工程を行った。
(比較例2)
 多孔質中間層を用いることなく、積層用基材の代わりに多孔質表面層を単独で用いたこと以外、実施例2と同様の方法により、積層用基材形成工程および発泡成形工程を行った。
Figure JPOXMLDOC01-appb-T000001
 グラスウールA:平均繊維径約7.5μmおよび平均繊維長約50mmの硝子繊維(グラスウールAによる多孔質表面層1の目付 実施例1~4:960g/m、比較例1:960g/m、比較例3:960g/m
 グラスウールB:平均繊維径約3.5μmおよび平均繊維長約50mmの硝子繊維(グラスウールBによる多孔質表面層1の目付 実施例5:1920g/m、実施例6:960g/m、実施例7:480g/m、比較例2:960g/m
 PET不織布A:4061P(東洋紡(株)製、目付70g/m
 PET不織布B:H3501AD(東洋紡(株)製、目付50.7g/m
 PET不織布C:H3A11A(東洋紡(株)製、目付111.4g/m
 アルミナクロス:3025-T((株)ニチビ製、目付280g/m
 PP(ポリプロピレン)不織布:SP-1017E(前田工繊(株)製、目付17g/m
 ポリウレタンフォームAの原料:DKシステム(第一工業製薬(株)製)
 本開示の機能性積層体は、車両(例えば、自動車、トラック、バスおよび電車等)および農業機械(例えば、草刈り機および耕耘機等)等のエンジンを備えた機械等の分野における吸音材、断熱材かつ/または制振材として有用である。
  1:多孔質表面層
  2:樹脂発泡層
  3:多孔質中間層
  10:機能性積層体
  11:混層部
  12:多孔質表面層の外表面
  13:多孔質表面層における多孔質中間層との界面
  20:発泡性樹脂
  22:樹脂発泡層における多孔質中間層との界面
  32:多孔質中間層における多孔質表面層との界面
  33:多孔質中間層における樹脂発泡層との界面
  40:積層用基材
  50:成形型
  51:上型
  52:下型
  520:下型の成形面

Claims (28)

  1.  多孔質表面層と樹脂発泡層との間に、通気性を有する多孔質中間層が積層されており、
     前記多孔質中間層が、前記樹脂発泡層を構成する発泡性樹脂に対する親和性を有している、機能性積層体。
  2.  前記多孔質中間層の前記親和性が、前記多孔質表面層の前記親和性よりも高い、請求項1に記載の機能性積層体。
  3.  前記多孔質中間層の前記発泡性樹脂に対する接触角θmが、前記多孔質表面層の前記発泡性樹脂に対する接触角θsよりも小さい、請求項2に記載の機能性積層体。
  4.  前記多孔質中間層の前記発泡性樹脂に対する接触角θmおよび前記多孔質表面層の前記発泡性樹脂に対する接触角θsは以下の関係式を満たす、請求項3に記載の機能性積層体。
     3°≦θs-θm≦20°
  5.  前記多孔質中間層が、前記親和性に起因して、前記多孔質表面層よりも毛細管現象を起こし易い、請求項2~4のいずれかに記載の機能性積層体。
  6.  前記多孔質中間層の前記発泡性樹脂に対する接触角θmが1~15°である、請求項1~5のいずれかに記載の機能性積層体。
  7.  前記多孔質中間層が60~95%の平均空隙率を有する、請求項1~6のいずれかに記載の機能性積層体。
  8.  前記多孔質中間層が0.1~2mmの厚みを有する、請求項1~7のいずれかに記載の機能性積層体。
  9.  前記多孔質中間層が繊維不織布である、請求項1~8のいずれかに記載の機能性積層体。
  10.  前記多孔質中間層がポリエステル系繊維からなる群から選択される有機繊維の不織布である、請求項1~9のいずれかに記載の機能性積層体。
  11.  前記多孔質中間層の繊維不織布を構成する繊維が0.005~50μmの平均繊維径を有する、請求項9または10に記載の機能性積層体。
  12.  前記多孔質中間層の平均空隙率Rmおよび前記多孔質表面層の平均空隙率Rsは、以下の関係式を満たす、請求項1~11のいずれかに記載の機能性積層体。
     1.10≦Rs/Rm≦1.5
  13.  前記多孔質表面層の前記発泡性樹脂に対する接触角θsが5~30°である、請求項1~12のいずれかに記載の機能性積層体。
  14.  前記多孔質表面層が80~99.5%の平均空隙率を有する、請求項1~13のいずれかに記載の機能性積層体。
  15.  前記多孔質表面層が1~50mmの厚みを有する、請求項1~14のいずれかに記載の機能性積層体。
  16.  前記多孔質表面層が繊維不織布である、請求項1~15のいずれかに記載の機能性積層体。
  17.  前記多孔質表面層が無機繊維の不織布である、請求項1~16のいずれかに記載の機能性積層体。
  18.  前記多孔質表面層の繊維不織布を構成する繊維が0.005~50μmの平均繊維径を有する、請求項16または17に記載の機能性積層体。
  19.  前記樹脂発泡層が0.04~800μmの平均空隙径を有する、請求項1~18のいずれかに記載の機能性積層体。
  20.  前記樹脂発泡層がポリウレタン発泡層、ポリオレフィン発泡層、ポリエステル発泡層、シリコーン発泡層およびポリ塩化ビニル発泡層からなる群から選択されるポリマー発泡層である、請求項1~19のいずれかに記載の機能性積層体。
  21.  前記多孔質表面層が前記多孔質中間層側に、前記樹脂発泡層と前記多孔質表面層との混層部を備えている、請求項1~20のいずれかに記載の機能性積層体。
  22.  前記混層部が0.2~1.7mmの厚みを有する、請求項21に記載の機能性積層体。
  23.  前記混層部が60~200μmの平均空隙径を有する、請求項21または22に記載の機能性積層体。
  24.  前記混層部が50~90%の平均空隙率を有する、請求項21~23のいずれかに記載の機能性積層体。
  25.  前記機能性積層体は吸音材、断熱材かつ/または制振材として使用される、請求項1~24のいずれかに記載の機能性積層体。
  26.  前記機能性積層体は、前記樹脂発泡層側が熱源および/または音源に接触するように配置され使用される、あるいは、前記多孔質表面層側が熱源および/または音源に非接触で対向するように配置され使用される、請求項1~25のいずれかに記載の機能性積層体。
  27.  前記機能性積層体は、自動車のエンジンおよびトランスミッションを含むパワートレイン部材のためのカバー部材として、使用される、請求項1~26のいずれかに記載の機能性積層体。
  28.  請求項1~27のいずれかに記載の機能性積層体の製造方法であって、
     前記多孔質表面層および前記多孔質中間層を重ね合わせ、積層用基材を得る工程;および
     成形型内において、前記樹脂発泡層を構成する発泡性樹脂の発泡成形を、前記積層用基材の多孔質中間層側で行う、方法。
PCT/JP2018/005547 2017-03-31 2018-02-16 機能性積層体およびその製造方法 WO2018179978A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18775920.4A EP3587102B1 (en) 2017-03-31 2018-02-16 Functional laminate and production method therefor
US16/498,335 US11535005B2 (en) 2017-03-31 2018-02-16 Functional laminate and production method therefor
CN201880021647.9A CN110475662B (zh) 2017-03-31 2018-02-16 功能性层叠体及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-072518 2017-03-31
JP2017072518A JP6500930B2 (ja) 2017-03-31 2017-03-31 機能性積層体およびその製造方法

Publications (1)

Publication Number Publication Date
WO2018179978A1 true WO2018179978A1 (ja) 2018-10-04

Family

ID=63675000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005547 WO2018179978A1 (ja) 2017-03-31 2018-02-16 機能性積層体およびその製造方法

Country Status (5)

Country Link
US (1) US11535005B2 (ja)
EP (1) EP3587102B1 (ja)
JP (1) JP6500930B2 (ja)
CN (1) CN110475662B (ja)
WO (1) WO2018179978A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3603951A4 (en) * 2017-03-31 2020-02-12 Mazda Motor Corporation FUNCTIONAL LAMINATE AND PRODUCTION METHOD THEREFOR

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141405A (ja) * 1990-10-03 1992-05-14 Mitsui Petrochem Ind Ltd 発泡成形品用補強材
WO1993003904A1 (en) 1991-08-27 1993-03-04 Namba Press Works Co., Ltd. Skin material back-coated with thin-film latex foam and integrated foamed product utilizing the skin material
JPH06171002A (ja) * 1992-12-11 1994-06-21 Toyobo Co Ltd ウレタン発泡成形用補強基布とその製造方法及び製品
JPH08142245A (ja) * 1994-11-18 1996-06-04 Matsushita Electric Works Ltd 積層不織布、その積層不織布を用いた電気カーペット、及びその積層不織布の製造方法
JP2000062061A (ja) * 1998-08-26 2000-02-29 Asahi Chem Ind Co Ltd 発泡成型用補強材基布
JP2002275749A (ja) * 2001-03-21 2002-09-25 Unitika Ltd 積層不織布および不織布補強ウレタンフォーム
JP2005144060A (ja) * 2003-11-19 2005-06-09 Toyo Tire & Rubber Co Ltd シート用パッド
JP2005288873A (ja) * 2004-03-31 2005-10-20 Nippon Petrochemicals Co Ltd ウレタン樹脂発泡成形に用いられる補強材および該補強材を有するウレタン発泡成形品
JP2009534241A (ja) * 2006-04-21 2009-09-24 リーター テクノロジーズ アクチエンゲゼルシャフト 遮音複合材および前記複合材を含むツインシェル型軽量トリム部品
JP2011148204A (ja) 2010-01-22 2011-08-04 Tokai Kogyo Co Ltd 発泡成形体及びその発泡成形方法並びに発泡成形体用のシート材
WO2014157080A1 (ja) * 2013-03-27 2014-10-02 株式会社クラレ ポリビニルブチラール繊維及びそれを含有する繊維集合体
JP2014531356A (ja) * 2011-08-24 2014-11-27 フォルシア オートモーティブ インダストリーFaurecia Automotive Industrie 自動車車体用防音アセンブリ
JP2015138055A (ja) * 2014-01-20 2015-07-30 名古屋油化株式会社 吸音性内装材

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855743B1 (en) * 2001-10-29 2005-02-15 Nanosystems Research, Inc. Reinforced, laminated, impregnated, and composite-like materials as crosslinked polyvinyl alcohol hydrogel structures
JP2006039379A (ja) * 2004-07-29 2006-02-09 Nishikawa Rubber Co Ltd 遮音性シート
JP5459838B2 (ja) * 2009-09-18 2014-04-02 ニチアス株式会社 防音カバー及びその製造方法
KR101269207B1 (ko) * 2010-01-25 2013-05-31 에스케이이노베이션 주식회사 내열성이 우수한 다층 다공막
US9314995B2 (en) * 2013-03-15 2016-04-19 National Nonwovens Inc. Composites comprising nonwoven structures and foam
DE202013012568U1 (de) * 2013-05-07 2017-07-17 Johann Borgers GmbH Hinterschäumbares Akustikelement eines Kraftfahrzeugkarosserieverkleidungsbauteils

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141405A (ja) * 1990-10-03 1992-05-14 Mitsui Petrochem Ind Ltd 発泡成形品用補強材
WO1993003904A1 (en) 1991-08-27 1993-03-04 Namba Press Works Co., Ltd. Skin material back-coated with thin-film latex foam and integrated foamed product utilizing the skin material
JPH06171002A (ja) * 1992-12-11 1994-06-21 Toyobo Co Ltd ウレタン発泡成形用補強基布とその製造方法及び製品
JPH08142245A (ja) * 1994-11-18 1996-06-04 Matsushita Electric Works Ltd 積層不織布、その積層不織布を用いた電気カーペット、及びその積層不織布の製造方法
JP2000062061A (ja) * 1998-08-26 2000-02-29 Asahi Chem Ind Co Ltd 発泡成型用補強材基布
JP2002275749A (ja) * 2001-03-21 2002-09-25 Unitika Ltd 積層不織布および不織布補強ウレタンフォーム
JP2005144060A (ja) * 2003-11-19 2005-06-09 Toyo Tire & Rubber Co Ltd シート用パッド
JP2005288873A (ja) * 2004-03-31 2005-10-20 Nippon Petrochemicals Co Ltd ウレタン樹脂発泡成形に用いられる補強材および該補強材を有するウレタン発泡成形品
JP2009534241A (ja) * 2006-04-21 2009-09-24 リーター テクノロジーズ アクチエンゲゼルシャフト 遮音複合材および前記複合材を含むツインシェル型軽量トリム部品
JP2011148204A (ja) 2010-01-22 2011-08-04 Tokai Kogyo Co Ltd 発泡成形体及びその発泡成形方法並びに発泡成形体用のシート材
JP2014531356A (ja) * 2011-08-24 2014-11-27 フォルシア オートモーティブ インダストリーFaurecia Automotive Industrie 自動車車体用防音アセンブリ
WO2014157080A1 (ja) * 2013-03-27 2014-10-02 株式会社クラレ ポリビニルブチラール繊維及びそれを含有する繊維集合体
JP2015138055A (ja) * 2014-01-20 2015-07-30 名古屋油化株式会社 吸音性内装材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3587102A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3603951A4 (en) * 2017-03-31 2020-02-12 Mazda Motor Corporation FUNCTIONAL LAMINATE AND PRODUCTION METHOD THEREFOR
US11260620B2 (en) 2017-03-31 2022-03-01 Mazda Motor Corporation Functional laminate and production method therefor

Also Published As

Publication number Publication date
CN110475662B (zh) 2021-09-07
EP3587102A1 (en) 2020-01-01
JP6500930B2 (ja) 2019-04-17
US20200023610A1 (en) 2020-01-23
CN110475662A (zh) 2019-11-19
JP2018171821A (ja) 2018-11-08
US11535005B2 (en) 2022-12-27
EP3587102B1 (en) 2022-07-27
EP3587102A4 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
US4769278A (en) Resilient multi layered member incorporating skin layer, foam layer cushion layer and core, and method of manufacture thereof
US20060246799A1 (en) Sound attenuating/absorbing laminates and methods of making same
JP4997057B2 (ja) 車両用防音材
WO2018179977A1 (ja) 機能性積層体およびその製造方法
WO1996026822A1 (fr) Feuille a estamper fabriquee selon les techniques de papeterie, et procede de fabrication d'une feuille a estamper moulee et legere
JP6693459B2 (ja) 機能性積層体およびその製造方法
KR101874882B1 (ko) 자동차의 인슐레이션용 폴리우레탄 폼 시트의 제조방법, 인슐레이션 제조방법 및 그 인슐레이션
MX2007009627A (es) Revestimiento fonoabsorbente para vehiculos automotrices en particular revestimiento del cofre del motor.
JP5283886B2 (ja) 防音緩衝材
JP6986386B2 (ja) 車両用シート部材
KR101874305B1 (ko) 차량용 플로워카페트 및 그의 제조방법
AU2002343969B2 (en) Floor laying material, piece mat, and arranging structure thereof
WO2018179978A1 (ja) 機能性積層体およびその製造方法
JP6589924B2 (ja) 機能性積層体およびその製造方法
JP6558391B2 (ja) 機能性積層体およびその製造方法
JPH03277537A (ja) 吸音・制振材及びその製造方法
KR20140131120A (ko) 방수기능을 갖는 고강성 자동차용 루프 패널 패드 및 그 제조방법
KR102029924B1 (ko) 자동차용 인슐레이션의 제조방법 및 그 인슐레이션
CN109836609B (zh) 复合结构材料、树脂组件、和生产树脂组件的方法
JP3180765U (ja) 自動車内装材用多孔質発泡成形体
KR102328692B1 (ko) 저중량 열가소성 폴리에틸렌 차음코팅을 이용한 자동차용 플로어 카펫 및 그 제조방법
JP7351429B1 (ja) 吸音材及び車両部材
JP2024084095A (ja) 吸音材及び車両部材
KR20220066705A (ko) 자동차용 카페트 및 그 제조방법
US20040033348A1 (en) Laminar shaped body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018775920

Country of ref document: EP

Effective date: 20190926