WO2018179064A1 - スラリ及び研磨方法 - Google Patents

スラリ及び研磨方法 Download PDF

Info

Publication number
WO2018179064A1
WO2018179064A1 PCT/JP2017/012428 JP2017012428W WO2018179064A1 WO 2018179064 A1 WO2018179064 A1 WO 2018179064A1 JP 2017012428 W JP2017012428 W JP 2017012428W WO 2018179064 A1 WO2018179064 A1 WO 2018179064A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
polishing
mass
slurry
abrasive grains
Prior art date
Application number
PCT/JP2017/012428
Other languages
English (en)
French (fr)
Inventor
友洋 岩野
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020197027411A priority Critical patent/KR102278257B1/ko
Priority to JP2019508363A priority patent/JP6708994B2/ja
Priority to US16/497,512 priority patent/US11566150B2/en
Priority to SG11201908858S priority patent/SG11201908858SA/en
Priority to CN201780088760.4A priority patent/CN110462791B/zh
Priority to PCT/JP2017/012428 priority patent/WO2018179064A1/ja
Priority to TW107109353A priority patent/TWI768008B/zh
Publication of WO2018179064A1 publication Critical patent/WO2018179064A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability

Definitions

  • the present invention relates to a slurry and a polishing method.
  • the present invention relates to a slurry and a polishing method used in a planarization process of a substrate surface, which is a semiconductor element manufacturing technique. More particularly, the present invention relates to a slurry and a polishing method used in a planarization process of a shallow trench isolation (shallow trench isolation, hereinafter referred to as “STI”) insulating material, a premetal insulating material, an interlayer insulating material, and the like.
  • shallow trench isolation shallow trench isolation
  • CMP Chemical Mechanical Polishing
  • Examples of the most frequently used polishing liquid include silica-based polishing liquids containing silica (silicon oxide) particles such as fumed silica and colloidal silica as abrasive grains.
  • the silica-based polishing liquid is characterized by high versatility, and a wide variety of materials can be polished regardless of insulating materials and conductive materials by appropriately selecting the abrasive content, pH, additives, and the like.
  • a polishing liquid mainly for an insulating material such as silicon oxide the demand for a polishing liquid containing cerium compound particles as an abrasive is also increasing.
  • a cerium oxide-based polishing liquid containing cerium oxide (ceria) particles as abrasive grains can polish silicon oxide at high speed even with a lower abrasive grain content than a silica-based polishing liquid (see, for example, Patent Documents 1 and 2 below).
  • polishing liquids using hydroxide particles of tetravalent metal elements have been studied (for example, see Patent Documents 3 to 5 below). Further, a method for producing particles of tetravalent metal element hydroxide has also been studied (see, for example, Patent Documents 6 and 7 below). These techniques try to reduce polishing scratches caused by particles by making the mechanical action as small as possible while taking advantage of the chemical action of the hydroxide particles of the tetravalent metal element.
  • JP-A-10-106994 Japanese Patent Application Laid-Open No. 08-022970 International Publication No. 2002/067309 International Publication No. 2012/070541 International Publication No. 2012/070542 JP 2006-249129 A International Publication No. 2012/070544
  • the step of the insulating material at the time of cell formation is several times higher than that of the conventional planar type. Accordingly, in order to maintain the device manufacturing throughput, it is necessary to quickly eliminate the high step as described above in the CMP process or the like, and it is necessary to improve the polishing rate of the insulating material.
  • the present invention is intended to solve the above-described problems, and an object thereof is to provide a slurry capable of improving the polishing rate of an insulating material and a polishing method using the slurry.
  • the slurry according to the present invention includes abrasive grains and a liquid medium, and the abrasive grains include first particles and second particles in contact with the first particles, The particles contain ceria, the first particles have a negative zeta potential, the second particles contain a tetravalent metal element hydroxide, and the second particles have a positive zeta potential. is there.
  • the polishing rate of the insulating material can be improved, and the insulating material can be polished at a high polishing rate.
  • these insulating materials can be highly planarized in CMP technology for planarizing STI insulating materials, pre-metal insulating materials, interlayer insulating materials, and the like.
  • polishing flaws are likely to occur as the abrasive grain content increases.
  • a sufficient polishing rate can be obtained even with a small amount of abrasive grains. Therefore, by using a small amount of abrasive grains, an insulating material can be obtained while achieving a sufficient polishing rate. Polishing with low polishing scratches is also possible.
  • the tetravalent metal element hydroxide preferably contains at least one selected from the group consisting of rare earth metal hydroxides and zirconium hydroxides.
  • the zeta potential of the abrasive grains is preferably +10 mV or more.
  • the content of the abrasive grains is preferably 0.01 to 10% by mass.
  • One aspect of the present invention relates to the use of the slurry to polish a surface to be polished containing silicon oxide. That is, the slurry according to the present invention is preferably used for polishing a surface to be polished containing silicon oxide.
  • the polishing method according to the present invention may include a step of polishing a surface to be polished using the slurry. According to such a polishing method, the same effect as the slurry according to the present invention can be obtained by using the slurry.
  • a slurry capable of improving the polishing rate of an insulating material for example, silicon oxide
  • a polishing method using the slurry can be provided.
  • these insulating materials can be highly planarized in CMP technology for planarizing STI insulating materials, pre-metal insulating materials, interlayer insulating materials, and the like. Further, according to the present invention, it is possible to polish the insulating material with low polishing scratches while achieving a sufficient polishing rate.
  • slurry for the planarization process of the substrate surface it is possible to provide the use of a slurry for a planarization process of an STI insulating material, a premetal insulating material, or an interlayer insulating material.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value of a numerical range in a certain step may be replaced with the upper limit value or the lower limit value of a numerical range in another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • “A or B” only needs to include either A or B, and may include both.
  • the materials exemplified in the present specification can be used singly or in combination of two or more unless otherwise specified.
  • the content of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. Means.
  • the slurry according to the present embodiment contains abrasive grains.
  • Abrasive grains are also referred to as “abrasive particles”, but are referred to herein as “abrasive grains”.
  • the abrasive grains are generally solid particles, and the object to be removed is removed (removed) by the mechanical action of the abrasive grains and the chemical action of the abrasive grains (mainly the surface of the abrasive grains) during polishing.
  • the present invention is not limited to this.
  • the weight average molecular weight in this specification can be measured on condition of the following by the gel permeation chromatography method (GPC) using the calibration curve of a standard polystyrene, for example.
  • Equipment used Hitachi L-6000 type [manufactured by Hitachi, Ltd.]
  • Eluent Tetrahydrofuran Measurement temperature: 40 ° C
  • Flow rate 1.75 mL / min
  • Detector L-3300RI [manufactured by Hitachi, Ltd.]
  • the slurry according to this embodiment contains abrasive grains and a liquid medium as essential components.
  • the slurry according to the present embodiment can be used as, for example, a polishing liquid (CMP polishing liquid).
  • CMP polishing liquid polishing liquid
  • “polishing liquid” is defined as a composition that touches a surface to be polished during polishing.
  • the phrase “polishing liquid” itself does not limit the components contained in the polishing liquid.
  • essential components and optional components will be described.
  • Abrasive grains are composite particles including first particles and second particles in contact with the first particles.
  • the first particles contain ceria, and the zeta potential of the first particles in the slurry is negative.
  • the second particle contains a tetravalent metal element hydroxide, and the zeta potential of the second particle in the slurry is positive.
  • the polishing rate of the insulating material can be improved.
  • the polishing rate of the insulating material is improved as described above, for example, the following reasons can be given. That is, the first particles (particles containing ceria) have a strong physical action (mechanical property) on the insulating material.
  • the second particles are highly reactive with an insulating material based on chemical action (chemical properties).
  • chemical action chemical properties
  • the hydroxyl group acts to obtain high reactivity between the second particle and the insulating material.
  • an insulating material for example, silicon oxide
  • high reactivity between the second particles and the insulating material is easily obtained.
  • the polishing rate of the insulating material is improved by a synergistic effect obtained by using the first particles having a strong physical action and the second particles having a strong chemical action.
  • Abrasive grains can be used singly or in combination of two or more.
  • the slurry according to the present embodiment may contain particles other than the composite particles including the first particles and the second particles. Examples of such other particles include the first particles that are not in contact with the second particles; the second particles that are not in contact with the first particles; silica, alumina, zirconia, and yttria. And the like (particles not including the first particles and the second particles).
  • the average particle size (average secondary particle size) of the first particles in the slurry is preferably in the following range.
  • the lower limit of the average particle size of the first particles is preferably 15 nm or more, more preferably 25 nm or more, still more preferably 35 nm or more, and particularly preferably 40 nm or more from the viewpoint of further improving the polishing rate of the insulating material.
  • the upper limit of the average particle size of the first particles is preferably 1000 nm or less, more preferably 800 nm or less, from the viewpoint of improving the dispersibility of the abrasive grains and further suppressing the surface to be polished from being scratched. 600 nm or less is more preferable, and 500 nm or less is particularly preferable. From the above viewpoint, the average particle diameter of the first particles is more preferably 15 to 1000 nm.
  • the average particle size (average secondary particle size) of the second particles in the slurry is preferably in the following range.
  • the lower limit of the average particle diameter of the second particles is preferably 1 nm or more, more preferably 2 nm or more, and further preferably 3 nm or more.
  • the upper limit of the average particle diameter of the second particles is preferably 25 nm or less, more preferably 20 nm or less, from the viewpoint of improving the dispersibility of the abrasive grains and further suppressing the surface to be polished from being scratched. 15 nm or less is more preferable. From the above viewpoint, the average particle diameter of the second particles is more preferably 1 to 25 nm.
  • the average particle size of the second particles is preferably smaller than the average particle size of the first particles.
  • particles having a small particle size have a high reaction activity because they have a larger surface area per unit mass than particles having a large particle size.
  • the mechanical action (mechanical polishing force) of particles having a small particle size is smaller than that of particles having a large particle size.
  • the synergistic effect of the first particles and the second particles can be easily expressed. Therefore, it is possible to easily achieve both excellent reaction activity and mechanical action.
  • the average particle size (average secondary particle size) of the abrasive grains in the slurry is preferably in the following range.
  • the lower limit of the average grain size of the abrasive grains is preferably 20 nm or more, more preferably 30 nm or more, further preferably 40 nm or more, particularly preferably 50 nm or more, and particularly preferably 100 nm or more, from the viewpoint of further improving the polishing rate of the insulating material. 120 nm or more is very preferable, 150 nm or more is more preferable, 200 nm or more is further preferable, and 300 nm or more is particularly preferable.
  • the upper limit of the average particle size of the abrasive grains is preferably 1000 nm or less, more preferably 800 nm or less, and more preferably 600 nm from the viewpoint of improving the dispersibility of the abrasive grains and further suppressing the surface to be polished from being scratched.
  • the following is more preferable, 500 nm or less is particularly preferable, and 400 nm or less is very preferable.
  • the average grain size of the abrasive grains is more preferably 20 to 1000 nm.
  • the average particle size is measured using, for example, a light diffraction / scattering particle size distribution analyzer (for example, Beckman Coulter, Inc., trade name: N5, or Microtrack Bell, trade name: Microtrack MT3300EXII). Can do.
  • a light diffraction / scattering particle size distribution analyzer for example, Beckman Coulter, Inc., trade name: N5, or Microtrack Bell, trade name: Microtrack MT3300EXII). Can do.
  • the first particles in the slurry have a negative zeta potential from the viewpoint of causing the first particles and the second particles to act appropriately and improving the polishing rate of the insulating material.
  • the upper limit of the zeta potential of the first particles in the slurry is preferably ⁇ 20 mV or less, more preferably ⁇ 25 mV or less, further preferably ⁇ 30 mV or less, and ⁇ 35 mV or less from the viewpoint of further improving the polishing rate of the insulating material. Particularly preferred.
  • the lower limit of the zeta potential of the first particles is not particularly limited, and is, for example, ⁇ 200 mV or more.
  • the second particles in the slurry have a positive zeta potential from the viewpoint of causing the second particles and the first particles to act appropriately and improving the polishing rate of the insulating material.
  • the lower limit of the zeta potential of the second particles in the slurry is preferably +20 mV or more, more preferably +25 mV or more, further preferably +30 mV or more, and particularly preferably +35 mV or more from the viewpoint of further improving the polishing rate of the insulating material.
  • the upper limit of the zeta potential of the second particle is not particularly limited, and is, for example, +200 mV or less.
  • the lower limit of the zeta potential of the abrasive grains (abrasive grains including composite grains) in the slurry (the zeta potential of the entire abrasive grains) is preferably +10 mV or higher, more preferably +20 mV or higher, from the viewpoint of further improving the polishing rate of the insulating material. +25 mV or more is more preferable, +30 mV or more is particularly preferable, +40 mV or more is very preferable, and +50 mV or more is very preferable.
  • the upper limit of the zeta potential of the abrasive grains is not particularly limited and is, for example, +200 mV or less.
  • Zeta potential represents the surface potential of particles.
  • the zeta potential can be measured using, for example, a dynamic light scattering type zeta potential measuring device (for example, trade name: Delsa Nano C manufactured by Beckman Coulter, Inc.).
  • the zeta potential of the particles can be adjusted using additives.
  • particles having a negative zeta potential can be obtained by bringing a material having a carboxyl group (polyacrylic acid or the like) into contact with particles containing ceria.
  • the lower limit of the ceria content in the abrasive grains is preferably 50% by mass or more based on the entire abrasive grains (the entire abrasive grains contained in the slurry; the same applies hereinafter) from the viewpoint of further improving the polishing rate of the insulating material. More preferably, it is more preferably 70% by weight or more, and particularly preferably 80% by weight or more. From the viewpoint of further improving the polishing rate of the insulating material, the upper limit of the ceria content in the abrasive grains is preferably 95% by mass or less, more preferably 92% by mass or less, and more preferably 90% by mass or less, based on the entire abrasive grain. Further preferred is 88% by mass or less, and particularly preferred is 85% by mass or less. From the above viewpoint, the content of ceria in the abrasive grains is more preferably 50 to 95% by mass based on the entire abrasive grains.
  • the lower limit of the content of ceria in the first particle is based on the entire first particle (the entire first particle contained in the slurry; the same applies hereinafter). 50 mass% or more is preferable, 70 mass% or more is more preferable, 90 mass% or more is further more preferable, and 95 mass% or more is especially preferable.
  • the first particle may be in an aspect substantially consisting of ceria (an aspect in which 100% by mass of the first particle is substantially ceria).
  • the lower limit of the content of the first particles is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, based on the total mass of the slurry. 0.1 mass% or more is still more preferable, 0.3 mass% or more is especially preferable, 0.4 mass% or more is very preferable, and 0.5 mass% or more is very preferable.
  • the upper limit of the content of the first particles is preferably 10% by mass or less, more preferably 5% by mass or less, and more preferably 1% by mass or less, based on the total mass of the slurry, from the viewpoint of increasing the storage stability of the slurry. Further preferred. From the above viewpoint, the content of the first particles is more preferably 0.01 to 10% by mass based on the total mass of the slurry.
  • the lower limit of the content of the tetravalent metal element hydroxide in the abrasive grains is 5% by mass or more on the basis of the entire abrasive grains (the entire abrasive grains contained in the slurry). Is preferably 8% by mass or more, more preferably 10% by mass or more, particularly preferably 12% by mass or more, and extremely preferably 15% by mass or more.
  • the upper limit of the content of the hydroxide of the tetravalent metal element in the abrasive grains is preferably 50% by mass or less, based on the entire abrasive grains, from the viewpoint of easy preparation of the slurry and further excellent polishing characteristics, and 40 masses.
  • the content of the tetravalent metal element hydroxide in the abrasive grains is more preferably 5 to 50% by mass based on the entire abrasive grains.
  • the lower limit of the content of the tetravalent metal element hydroxide in the second particles is the entire second particles (the entire second particles contained in the slurry). 50% by mass or more is preferable, 70% by mass or more is more preferable, 90% by mass or more is further preferable, and 95% by mass or more is particularly preferable.
  • the second particle may be in an aspect substantially composed of a hydroxide of a tetravalent metal element (an aspect in which 100% by mass of the second particle is a hydroxide of a tetravalent metal element). .
  • a hydroxide of a tetravalent metal element is a compound containing a tetravalent metal (M 4+ ) and at least one hydroxide ion (OH ⁇ ).
  • the hydroxide of the tetravalent metal element may contain anions other than hydroxide ions (for example, nitrate ions NO 3 ⁇ and sulfate ions SO 4 2 ⁇ ).
  • a hydroxide of a tetravalent metal element may include an anion (for example, nitrate ion NO 3 ⁇ and sulfate ion SO 4 2 ⁇ ) bonded to the tetravalent metal element.
  • Abrasive grains containing a hydroxide of a tetravalent metal element have higher reactivity with an insulating material (for example, silicon oxide) than abrasive grains made of silica, ceria, etc., and polish the insulating material at a high polishing rate. be able to.
  • an insulating material for example, silicon oxide
  • the tetravalent metal element hydroxide preferably contains at least one selected from the group consisting of rare earth metal hydroxides and zirconium hydroxides. From the viewpoint of further improving the polishing rate of the insulating material, the tetravalent metal element hydroxide is more preferably a rare earth metal element hydroxide. Examples of rare earth metal elements that can be tetravalent include lanthanoids such as cerium, praseodymium, and terbium. Among these, lanthanoids are preferable and cerium is more preferable from the viewpoint of further improving the polishing rate of the insulating material. A rare earth metal hydroxide and a zirconium hydroxide may be used in combination, or two or more rare earth metal hydroxides may be selected and used.
  • the lower limit of the content of the second particles is preferably 5% by mass or more, preferably 8% by mass or more, based on the total amount of the first particles and the second particles, from the viewpoint of further improving the polishing rate of the insulating material. Is more preferably 10% by mass or more, particularly preferably 12% by mass or more, and extremely preferably 15% by mass or more.
  • the upper limit of the content of the second particles is preferably 50% by mass or less, preferably 40% by mass or less, based on the total amount of the first particles and the second particles, from the viewpoint of further improving the polishing rate of the insulating material. Is more preferable, 30 mass% or less is still more preferable, and 20 mass% or less is especially preferable. From the above viewpoint, the content of the second particles is more preferably 5 to 50% by mass based on the total amount of the first particles and the second particles.
  • the lower limit of the content of the second particles is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, based on the total mass of the slurry. 0.03 mass% or more is still more preferable, 0.05 mass% or more is especially preferable, and 0.1 mass% or more is very preferable.
  • the upper limit of the content of the second particles makes it easy to avoid agglomeration of the abrasive grains, improves the chemical interaction between the abrasive grains and the surface to be polished, and can effectively utilize the characteristics of the abrasive grains.
  • the content of the second particles is more preferably 0.005 to 5% by mass based on the total mass of the slurry.
  • the lower limit of the content of the hydroxide of the tetravalent metal element is based on the total mass of the slurry from the viewpoint of improving the chemical interaction between the abrasive grains and the surface to be polished and further improving the polishing rate of the insulating material.
  • 0.005 mass% or more is preferable, 0.01 mass% or more is more preferable, 0.03 mass% or more is further more preferable, 0.05 mass% or more is especially preferable, and 0.1 mass% or more is very preferable. .
  • the upper limit of the content of the hydroxide of the tetravalent metal element makes it easy to avoid agglomeration of the abrasive grains, improves the chemical interaction between the abrasive grains and the surface to be polished, and improves the characteristics of the abrasive grains. From the viewpoint of effective utilization, it is preferably 5% by mass or less, more preferably 4% by mass or less, still more preferably 3% by mass or less, particularly preferably 2% by mass or less, based on the total mass of the slurry, and 1% by mass or less. Is very preferable, and 0.5% by mass or less is very preferable. From the above viewpoint, the content of the tetravalent metal element hydroxide is more preferably 0.005 to 5% by mass based on the total mass of the slurry.
  • the lower limit of the content of abrasive grains is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, based on the total mass of the slurry, from the viewpoint of further improving the polishing rate of the insulating material. 05% by mass or more is more preferable, 0.07% by mass or more is particularly preferable, 0.1% by mass or more is extremely preferable, 0.15% by mass or more is very preferable, and 0.3% by mass or more is even more preferable. 0.5 mass% or more is still more preferable.
  • the upper limit of the abrasive content is preferably 10% by mass or less, more preferably 8% by mass or less, and still more preferably 6% by mass or less, based on the total mass of the slurry, from the viewpoint of increasing the storage stability of the slurry. .
  • the content of the abrasive grains is more preferably 0.01 to 10% by mass based on the total mass of the slurry.
  • the cost and polishing scratches can be further reduced by further reducing the content of abrasive grains.
  • the content of abrasive grains decreases, the polishing rate of an insulating material or the like tends to decrease.
  • abrasive grains containing particles containing a hydroxide of a tetravalent metal element can obtain a predetermined polishing rate even with a small amount, so there are advantages of reducing the polishing rate and the content of abrasive grains.
  • the content of the abrasive grains can be further reduced while maintaining the balance.
  • the upper limit of the content of the abrasive grains is preferably 5% by mass or less, more preferably 4% by mass or less, further preferably 3% by mass or less, particularly preferably 2% by mass or less, and 1% by mass or less. Is very preferred.
  • the second particles preferably contain a hydroxide of a tetravalent metal element and satisfy at least one of the following conditions (a) and (b).
  • the “aqueous dispersion” in which the content of the second particles is adjusted to a predetermined amount means a liquid containing a predetermined amount of the second particles and water.
  • grains give the light absorbency 1.00 or more with respect to the light of wavelength 400nm in the water dispersion liquid which adjusted content of the said 2nd particle
  • the second particles give an absorbance of 1.000 or more to light having a wavelength of 290 nm in an aqueous dispersion in which the content of the second particles is adjusted to 0.0065% by mass.
  • the polishing rate is further improved by using particles that give an absorbance of 1.00 or more with respect to light having a wavelength of 400 nm in an aqueous dispersion in which the content of the second particles is adjusted to 1.0 mass%. Can be made. Although this reason is not necessarily clear, this inventor thinks as follows.
  • the electron-withdrawing anion (X c ⁇ ) acts to improve the reactivity of hydroxide ions, and the amount of M (OH) a X b increases.
  • polishing rate is improved along with this.
  • grains containing M (OH) a Xb absorb the light of wavelength 400nm, since the abundance of M (OH) a Xb increases and the light absorbency with respect to the light of wavelength 400nm becomes high, polishing rate Is thought to improve.
  • particles containing a tetravalent metal element hydroxide may contain not only M (OH) a X b but also M (OH) 4 , MO 2 and the like.
  • examples of the anion (X c ⁇ ) include NO 3 ⁇ and SO 4 2 ⁇ .
  • the particles containing a tetravalent metal element hydroxide contain M (OH) a X b after the particles are thoroughly washed with pure water and then subjected to FT-IR ATR (Fourier transform Infrared Spectrometer Attenuated Total Reflection). And a method of detecting a peak corresponding to an anion (X c ⁇ ) by a Fourier transform infrared spectrophotometer total reflection measurement method). The presence of anions (X c ⁇ ) can also be confirmed by XPS (X-ray Photoelectron Spectroscopy, X-ray photoelectron spectroscopy).
  • the absorption peak at a wavelength of 400 nm of M (OH) a X b (for example, M (OH) 3 X) is much smaller than the absorption peak at a wavelength of 290 nm described later.
  • the present inventor examined the magnitude of absorbance using an aqueous dispersion having a content of 1.0% by mass with a relatively large particle content and a large absorbance that is easily detected. It has been found that the use of particles that give an absorbance of 1.00 or more with respect to light having a wavelength of 400 nm in the liquid is excellent in the polishing rate improvement effect.
  • the lower limit of the absorbance with respect to light having a wavelength of 400 nm is preferably 1.50 or more, more preferably 1.55 or more, and further preferably 1.60 or more, from the viewpoint that the insulating material can be easily polished at an excellent polishing rate.
  • the absorbance with respect to light having a wavelength near 290 nm tends to be detected as it exceeds the measurement limit.
  • the present inventor has studied the magnitude of absorbance using an aqueous dispersion having a content of 0.0065% by mass with a relatively small content of particles and a low absorbance that is easily detected. It has been found that the use of particles that give an absorbance of 1.000 or more with respect to light having a wavelength of 290 nm in the liquid is excellent in the polishing rate improvement effect.
  • the lower limit of the absorbance with respect to light having a wavelength of 290 nm is more preferably 1.050 or more, further preferably 1.100 or more, particularly preferably 1.130 or more, from the viewpoint of polishing the insulating material at a further excellent polishing rate. 150 or more is very preferable.
  • the upper limit of absorbance for light having a wavelength of 290 nm is not particularly limited, but is preferably 10.00 or less, for example.
  • the second particles that give an absorbance of 1.00 or more with respect to light having a wavelength of 400 nm have an absorbance of 1.000 or more with respect to light with a wavelength of 290 nm in an aqueous dispersion in which the content of the second particles is adjusted to 0.0065% by mass.
  • the insulating material can be polished at a further excellent polishing rate.
  • a hydroxide of a tetravalent metal element (for example, M (OH) a X b ) tends not to absorb light having a wavelength of 450 nm or more (particularly, a wavelength of 450 to 600 nm). Therefore, from the viewpoint of polishing the insulating material at an excellent polishing rate by suppressing the adverse effect on the polishing due to the inclusion of impurities, the second particles have a content of the second particles of 0. 0. 0.
  • An aqueous dispersion adjusted to 0065 mass% (65 ppm) preferably gives an absorbance of 0.010 or less for light having a wavelength of 450 to 600 nm.
  • the absorbance with respect to all light in the wavelength range of 450 to 600 nm does not exceed 0.010 in the aqueous dispersion in which the content of the second particles is adjusted to 0.0065% by mass.
  • the upper limit of the absorbance for light having a wavelength of 450 to 600 nm is more preferably less than 0.010.
  • the lower limit of the absorbance with respect to light having a wavelength of 450 to 600 nm is preferably 0.
  • the absorbance in the aqueous dispersion can be measured using, for example, a spectrophotometer (device name: U3310) manufactured by Hitachi, Ltd. Specifically, for example, an aqueous dispersion in which the content of the second particles is adjusted to 1.0% by mass or 0.0065% by mass is prepared as a measurement sample. About 4 mL of this measurement sample is put into a 1 cm square cell, and the cell is set in the apparatus. Next, the absorbance is measured in the wavelength range of 200 to 600 nm, and the absorbance is judged from the obtained chart.
  • a spectrophotometer device name: U3310
  • the second particles contained in the slurry according to the present embodiment have a light transmittance of 50% / cm with respect to light having a wavelength of 500 nm in an aqueous dispersion in which the content of the second particles is adjusted to 1.0 mass%. It is preferable to provide the above. Thereby, since the fall of the grinding
  • the particles present in the aqueous dispersion are relatively large particles (hereinafter referred to as “coarse particles”). It is thought that there are many.
  • an additive for example, polyvinyl alcohol (PVA)
  • PVA polyvinyl alcohol
  • FIG. 1 the number of particles acting on the surface to be polished per unit area (the number of effective particles) decreases, and the specific surface area of the particles in contact with the surface to be polished decreases, which is thought to cause a decrease in the polishing rate.
  • the slurry is visually transparent (high light transmittance) and visually turbid ( It has been found that there may be ones with low light transmittance. From this, it is considered that the coarse particles capable of causing the above-described action contribute to the reduction of the polishing rate even if the amount is so small that it cannot be detected by a general particle size measuring apparatus.
  • the present inventor has found that the above problem can be solved by using particles having high light transmittance in the aqueous dispersion by devising a method for producing particles.
  • the light transmittance is a transmittance for light having a wavelength of 500 nm.
  • the light transmittance can be measured with a spectrophotometer. Specifically, for example, it can be measured with a spectrophotometer U3310 (device name) manufactured by Hitachi, Ltd.
  • an aqueous dispersion in which the content of the second particles is adjusted to 1.0% by mass is prepared as a measurement sample. About 4 mL of this measurement sample is put into a 1 cm square cell, and the measurement is performed after setting the cell in the apparatus.
  • the absorbance and light transmittance that the second particles contained in the slurry give in the aqueous dispersion are obtained by removing a solid component other than the second particles and a liquid component other than water, and then an aqueous dispersion having a predetermined content. Can be prepared and measured using the aqueous dispersion. Although it depends on the components contained in the slurry, the solid component or the liquid component can be removed by, for example, centrifugal separation using a centrifuge capable of applying a gravitational acceleration of several thousand G or less, or a gravitational acceleration of tens of thousands G or more.
  • Centrifugal methods such as ultracentrifugation using an ultracentrifuge; chromatography methods such as partition chromatography, adsorption chromatography, gel permeation chromatography, ion exchange chromatography; natural filtration, vacuum filtration, pressure filtration, ultrafiltration Filtration methods such as filtration; distillation methods such as vacuum distillation and atmospheric distillation can be used, and these may be combined as appropriate.
  • examples of the separation method of the second particles include a chromatography method and a filtration method. At least one selected from the group consisting of external filtration is preferred.
  • examples of the separation method of the second particles include a chromatography method, a filtration method, and a distillation method. At least one selected from the group consisting of filtration and vacuum distillation is preferred.
  • the second particle separation method includes a filtration method, a centrifugal separation method, and the like.
  • a filtration method in the filtrate, in the liquid phase in the case of centrifugation, a tetravalent metal element. More particles containing the hydroxide of are contained.
  • the solid components can be separated under the following centrifugation conditions. Centrifuge: Optima MAX-TL (Beckman Coulter, Inc.) Centrifugal acceleration: 40000G Processing time: 5 minutes Processing temperature: 25 ° C
  • the second particles can be fractionated and / or other components can be fractionated under the following conditions.
  • Sample solution Slurry 100 ⁇ L Detector: manufactured by Hitachi, Ltd., UV-VIS detector, trade name “L-4200” Wavelength: 400nm Integrator: Hitachi, Ltd., GPC integrator, product name “D-2500” Pump: Hitachi, Ltd., trade name “L-7100”
  • Eluent Deionized water Measurement temperature: 23 ° C Flow rate: 1 mL / min (pressure is about 40-50 kg / cm 2 ) Measurement time: 60 minutes
  • the second particles may not be collected even under the above conditions. In that case, by optimizing the amount of sample solution, column type, eluent type, measurement temperature, flow rate, etc. Can be separated. Further, by adjusting the pH of the slurry, there is a possibility that the distillation time of the components contained in the slurry can be adjusted and separated from the second particles. When there are insoluble components in the slurry, it is preferable to remove the insoluble components by filtration, centrifugation, or the like, if necessary.
  • a hydroxide of a tetravalent metal element can be produced by reacting a salt (metal salt) of a tetravalent metal element with an alkali source (base).
  • the hydroxide of the tetravalent metal element is preferably prepared by mixing a salt of the tetravalent metal element and an alkali solution (for example, an alkaline aqueous solution).
  • an alkali solution for example, an alkaline aqueous solution.
  • a hydroxide of a tetravalent metal element can be obtained by mixing a metal salt solution of a salt of a tetravalent metal element (for example, an aqueous metal salt solution) and an alkali solution.
  • a salt of a tetravalent metal element a conventionally known salt can be used without particular limitation, and M (NO 3 ) 4 , M (SO 4 ) 2 , M (NH 4 ) 2 (NO 3 ) 6 , M (NH 4). ) 4 (SO 4 ) 4 (M represents a rare earth metal element), Zr (SO 4 ) 2 .4H 2 O, and the like.
  • M is preferably chemically active cerium (Ce).
  • the slurry according to this embodiment may further contain an optional additive for the purpose of adjusting polishing characteristics.
  • Optional additives include materials having a carboxyl group (excluding polyoxyalkylene compounds or compounds corresponding to water-soluble polymers), polyoxyalkylene compounds, water-soluble polymers, oxidizing agents (for example, hydrogen peroxide), and the like. Can be mentioned.
  • Each of the additives can be used singly or in combination of two or more.
  • Arbitrary additives can increase the dispersion stability of abrasive grains in the slurry and have an effect of polishing an insulating material (for example, silicon oxide) at a higher speed.
  • an insulating material for example, silicon oxide
  • the step elimination can be improved and high flatness can be obtained. This is considered to be because the polishing rate of the convex portion is significantly improved as compared with the concave portion.
  • Materials having a carboxyl group include monocarboxylic acids such as acetic acid, propionic acid, butyric acid and valeric acid; hydroxy acids such as lactic acid, malic acid and citric acid; dicarboxylic acids such as malonic acid, succinic acid, fumaric acid and maleic acid Polycarboxylic acids such as polyacrylic acid and polymaleic acid; amino acids such as arginine, histidine and lysine.
  • monocarboxylic acids such as acetic acid, propionic acid, butyric acid and valeric acid
  • hydroxy acids such as lactic acid, malic acid and citric acid
  • dicarboxylic acids such as malonic acid, succinic acid, fumaric acid and maleic acid
  • Polycarboxylic acids such as polyacrylic acid and polymaleic acid
  • amino acids such as arginine, histidine and lysine.
  • the upper limit of the weight average molecular weight of the material having a carboxyl group is preferably 100000 or less, more preferably 80000 or less, still more preferably 60000 or less, particularly preferably 50000 or less, from the viewpoint of easily exhibiting a high polishing rate of the insulating material.
  • the following are highly preferred.
  • the lower limit of the weight average molecular weight of the material having a carboxyl group is preferably 1000 or more, more preferably 1500 or more, still more preferably 2000 or more, and particularly preferably 5000 or more, from the viewpoint of maintaining appropriate dispersibility.
  • the content of the carboxyl group-containing material is preferably 0.01 to 10% by mass based on the total mass of the slurry. Thereby, it is easy to polish the insulating material at a high polishing rate while suppressing aggregation of the abrasive grains.
  • polyoxyalkylene compound examples include polyalkylene glycol and polyoxyalkylene derivatives.
  • polyalkylene glycol examples include polyethylene glycol, polypropylene glycol, polybutylene glycol and the like.
  • the polyalkylene glycol is preferably at least one selected from the group consisting of polyethylene glycol and polypropylene glycol, and more preferably polyethylene glycol.
  • the polyoxyalkylene derivative is, for example, a compound obtained by introducing a functional group or a substituent into polyalkylene glycol, or a compound obtained by adding polyalkylene oxide to an organic compound.
  • the functional group or substituent include an alkyl ether group, an alkyl phenyl ether group, a phenyl ether group, a styrenated phenyl ether group, a glyceryl ether group, an alkyl amine group, a fatty acid ester group, and a glycol ester group.
  • polyoxyalkylene derivative examples include polyoxyethylene alkyl ether, polyoxyethylene bisphenol ether (for example, BA glycol series manufactured by Nippon Emulsifier Co., Ltd.), polyoxyethylene styrenated phenyl ether (for example, manufactured by Kao Corporation, Emulgen Series), polyoxyethylene alkylphenyl ether (for example, Neugen EA series manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), polyoxyalkylene polyglyceryl ether (for example, SC-E series and SC-P series manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) , Polyoxyethylene sorbitan fatty acid ester (for example, Daiichi Kogyo Seiyaku Co., Ltd., Sorgen TW series), polyoxyethylene fatty acid ester (for example, Kao Corporation, Emanon series), Reoxyethylene alkylamine (for example, Amiradin D manufactured by Daiichi Kogyo Seiyaku
  • the upper limit of the weight average molecular weight of the polyoxyalkylene compound is not particularly limited, but is preferably 100000 or less, more preferably 50000 or less, and still more preferably 20000 or less, from the viewpoint that appropriate workability and foamability are easily obtained. 10000 or less is particularly preferable, and 5000 or less is very preferable. From the viewpoint of further improving the flatness, the lower limit of the weight average molecular weight of the polyoxyalkylene compound is preferably 200 or more, more preferably 400 or more, and even more preferably 500 or more.
  • the lower limit of the content of the polyoxyalkylene compound is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, based on the total mass of the slurry. More preferably, it is more preferably 0.2% by mass or more.
  • the upper limit of the content of the polyoxyalkylene compound is preferably 5% by mass or less, more preferably 2% by mass or less, and further preferably 1% by mass or less, based on the total mass of the slurry, from the viewpoint of easily obtaining an appropriate polishing rate. preferable.
  • Water-soluble polymers are dispersion stability of abrasive grains, flatness, in-plane uniformity, polishing selectivity of silicon oxide to silicon nitride (silicon oxide polishing rate / silicon nitride polishing rate), silicon oxide to polysilicon This has the effect of adjusting polishing characteristics such as polishing selectivity (silicon oxide polishing rate / polysilicon polishing rate).
  • the “water-soluble polymer” is defined as a polymer that dissolves 0.1 g or more in 100 g of water. The polymer corresponding to the polyoxyalkylene compound is not included in the “water-soluble polymer”.
  • the water-soluble polymer is not particularly limited, and is an acrylic polymer such as polyacrylamide or polydimethylacrylamide; polysaccharides such as carboxymethylcellulose, agar, curdlan, dextrin, cyclodextrin, pullulan; polyvinyl alcohol, polyvinylpyrrolidone, poly Examples thereof include vinyl polymers such as acrolein; glycerin polymers such as polyglycerol and polyglycerol derivatives; polyethylene glycol and the like.
  • a water-soluble polymer can be used individually by 1 type or in combination of 2 or more types.
  • the lower limit of the content of the water-soluble polymer is 0 on the basis of the total mass of the slurry from the viewpoint of obtaining the effect of adding the water-soluble polymer while suppressing the settling of the abrasive grains.
  • 0.001% by mass or more is preferable, 0.01% by mass or more is more preferable, 0.1% by mass or more is further preferable, 0.3% by mass or more is particularly preferable, and 0.5% by mass or more is extremely preferable.
  • the upper limit of the content of the water-soluble polymer is preferably 10% by mass or less, based on the total mass of the slurry, and preferably 8% by mass from the viewpoint of obtaining the effect of adding the water-soluble polymer while suppressing sedimentation of the abrasive grains.
  • the following is more preferable, 6% by mass or less is further preferable, 5% by mass or less is particularly preferable, 3% by mass or less is extremely preferable, and 1% by mass or less is very preferable.
  • the content of the oxidizing agent is preferably 0.0001 to 10% by mass based on the total mass of the slurry from the viewpoint of obtaining the additive effect while suppressing the settling of the abrasive grains.
  • the liquid medium in the slurry according to this embodiment is not particularly limited, but water such as deionized water or ultrapure water is preferable.
  • the content of the liquid medium may be the remainder of the slurry excluding the content of other components, and is not particularly limited.
  • the lower limit of the pH of the slurry according to this embodiment is preferably 2.0 or more, more preferably 2.5 or more, still more preferably 2.8 or more, from the viewpoint of further improving the polishing rate of the insulating material.
  • the above is particularly preferable, 3.2 or more is very preferable, and 3.5 or more is very preferable.
  • the upper limit of the pH is preferably 7.0 or less, more preferably 6.5 or less, still more preferably 6.0 or less, particularly preferably 5.0 or less, from the viewpoint of further improving the storage stability of the slurry. Very preferably 0 or less. From the above viewpoint, the pH is more preferably 2.0 to 7.0.
  • the pH of the slurry is defined as the pH at a liquid temperature of 25 ° C.
  • the pH of the slurry can be adjusted by an acid component such as an inorganic acid or an organic acid; an alkali component such as ammonia, sodium hydroxide, tetramethylammonium hydroxide (TMAH), imidazole or alkanolamine.
  • a buffer may be added to stabilize the pH.
  • you may add a buffer as a buffer (liquid containing a buffer). Examples of such a buffer include acetate buffer and phthalate buffer.
  • the pH of the slurry according to this embodiment can be measured with a pH meter (for example, model number PHL-40 manufactured by Electrochemical Instrument Co., Ltd.). Specifically, for example, after calibrating two pH meters using a phthalate pH buffer solution (pH: 4.01) and a neutral phosphate pH buffer solution (pH: 6.86) as standard buffers, The pH meter electrode is placed in a slurry, and the value is measured after 2 minutes have passed and stabilized. The temperature of the standard buffer and slurry are both 25 ° C.
  • the constituents of the polishing liquid may be stored as a one-pack type polishing liquid.
  • the additive liquid may contain, for example, an oxidizing agent.
  • the constituents of the polishing liquid may be stored as a polishing liquid set divided into three or more liquids.
  • the slurry and additive liquid are mixed immediately before or during polishing to prepare a polishing liquid.
  • the one-component polishing liquid may be stored as a polishing liquid storage liquid in which the content of the liquid medium is reduced, and may be diluted with the liquid medium during polishing.
  • the multi-liquid type polishing liquid set may be stored as a slurry storage liquid and an additive liquid storage liquid with a reduced content of the liquid medium, and may be diluted with the liquid medium during polishing.
  • the polishing liquid is supplied onto the polishing surface plate by directly supplying the polishing liquid; supplying the polishing liquid storage liquid and the liquid medium through separate pipes. , A method of supplying them by merging and mixing them; a method of supplying the polishing liquid stock solution and the liquid medium by mixing them in advance, and the like.
  • the polishing rate can be adjusted by arbitrarily changing the composition of these liquids.
  • a polishing liquid set there are the following methods for supplying the polishing liquid onto the polishing surface plate. For example, a method in which slurry and additive liquid are sent through separate pipes, and these pipes are combined and mixed to supply; a slurry storage liquid, a storage liquid for additive liquid, and a liquid medium are sent through separate pipes.
  • a method of supplying them by mixing and mixing them; a method of supplying the slurry and the additive solution after mixing them; a method of supplying the slurry storage solution, the additive solution storage solution and the liquid medium after mixing them in advance, etc. Can be used. Further, it is possible to use a method of supplying the slurry and the additive liquid in the polishing liquid set onto the polishing surface plate, respectively. In this case, the surface to be polished is polished using a polishing liquid obtained by mixing the slurry and the additive liquid on the polishing surface plate.
  • the polishing method according to the present embodiment includes a polishing step of polishing a surface to be polished (surface to be polished of the substrate or the like) using the slurry.
  • the slurry in the polishing step may be a polishing liquid obtained by mixing the slurry in the polishing liquid set and the additive liquid.
  • the slurry is supplied between the material to be polished and the polishing pad in a state where the material to be polished of the substrate having the material to be polished is pressed against the polishing pad (polishing cloth) of the polishing surface plate,
  • the surface to be polished of the material to be polished is polished by relatively moving the substrate and the polishing surface plate.
  • at least a part of the material to be polished is removed by polishing.
  • Examples of the substrate to be polished include a substrate to be polished.
  • Examples of the substrate to be polished include a substrate in which a material to be polished is formed on a substrate related to semiconductor element manufacturing (for example, a semiconductor substrate on which an STI pattern, a gate pattern, a wiring pattern, etc. are formed).
  • Examples of the material to be polished include insulating materials such as silicon oxide.
  • the material to be polished may be a single material or a plurality of materials. When a plurality of materials are exposed on the surface to be polished, they can be regarded as materials to be polished.
  • the material to be polished may be a film (film to be polished) or an insulating film such as a silicon oxide film.
  • the material to be polished (such as an insulating material such as silicon oxide) formed on such a substrate is polished with the slurry and the excess portions are removed to eliminate the unevenness of the surface of the material to be polished, A smooth surface can be obtained over the entire surface of the abrasive material.
  • the slurry according to this embodiment is preferably used for polishing a surface to be polished containing silicon oxide.
  • Examples of a method for producing a material to be polished by the slurry according to this embodiment include a low pressure CVD method, a quasi-atmospheric pressure CVD method, a plasma CVD method, and other CVD methods; a spin coating method in which a liquid material is applied to a rotating substrate Is mentioned.
  • a polishing apparatus for example, a substrate having an insulating material formed on a semiconductor substrate
  • a polishing apparatus a general polishing apparatus having a holder capable of holding a substrate having a surface to be polished and a polishing surface plate to which a polishing pad can be attached can be used.
  • Each of the holder and the polishing surface plate is provided with a motor capable of changing the rotation speed.
  • a polishing apparatus manufactured by Ebara Manufacturing Co., Ltd .: F-REX300, or a polishing apparatus manufactured by APPLIED MATERIALS: Reflexion can be used.
  • polishing pad general nonwoven fabric, foam, non-foam, etc.
  • the material of the polishing pad is polyurethane, acrylic resin, polyester, acrylic-ester copolymer, polytetrafluoroethylene, polypropylene, polyethylene, poly-4-methylpentene, cellulose, cellulose ester, polyamide (for example, nylon (trade name)) And aramid), polyimide, polyimide amide, polysiloxane copolymer, oxirane compound, phenol resin, polystyrene, polycarbonate, epoxy resin and the like.
  • the material of the polishing pad is preferably at least one selected from the group consisting of foamed polyurethane and non-foamed polyurethane, particularly from the viewpoint of further improving the polishing rate and flatness. It is preferable that the polishing pad is grooved so that slurry is accumulated.
  • the upper limit of the rotation speed of the polishing platen is preferably 200 min ⁇ 1 or less so that the substrate does not pop out, and the upper limit of the polishing pressure (working load) applied to the substrate causes polishing flaws. From the viewpoint of sufficiently suppressing this, 100 kPa or less is preferable.
  • the supply amount is not limited, but it is preferable that the surface of the polishing pad is always covered with slurry.
  • the substrate after polishing is preferably washed well under running water to remove particles adhering to the substrate.
  • dilute hydrofluoric acid or ammonia water may be used in addition to pure water, and a brush may be used in combination to increase cleaning efficiency.
  • the slurry and polishing method according to this embodiment can be suitably used for STI formation and high-speed polishing of an interlayer insulating film.
  • the lower limit of the polishing rate of the insulating material is preferably 500 nm / min or more, more preferably 800 nm / min or more, further preferably 1000 nm / min or more, particularly preferably 1100 nm / min or more, and 1200 nm / min or more. Highly preferred.
  • the slurry and polishing method according to this embodiment can also be used for polishing a premetal insulating material.
  • a premetal insulating material for example, phosphorus-silicate glass or boron-phosphorus-silicate glass is used in addition to silicon oxide, and silicon oxyfluoride, fluorinated amorphous carbon, and the like can also be used.
  • the slurry and polishing method according to this embodiment can be applied to materials other than insulating materials such as silicon oxide.
  • materials include high dielectric constant materials such as Hf-based, Ti-based, and Ta-based oxides; semiconductor materials such as silicon, amorphous silicon, SiC, SiGe, Ge, GaN, GaP, GaAs, and organic semiconductors; GeSbTe Inorganic conductive materials such as ITO; Polymer resins such as polyimides, polybenzoxazoles, acrylics, epoxies, and phenols.
  • the slurry and polishing method according to the present embodiment can be applied not only to a film-like object to be polished, but also to various substrates composed of glass, silicon, SiC, SiGe, Ge, GaN, GaP, GaAs, sapphire, plastic, and the like. .
  • the slurry and polishing method according to this embodiment include not only the manufacture of semiconductor elements, but also image display devices such as TFTs and organic ELs; optical parts such as photomasks, lenses, prisms, optical fibers, and single crystal scintillators; optical switching elements, It can be used for the production of optical elements such as optical waveguides; light emitting elements such as solid state lasers and blue laser LEDs; and magnetic storage devices such as magnetic disks and magnetic heads.
  • image display devices such as TFTs and organic ELs
  • optical parts such as photomasks, lenses, prisms, optical fibers, and single crystal scintillators
  • optical switching elements It can be used for the production of optical elements such as optical waveguides; light emitting elements such as solid state lasers and blue laser LEDs; and magnetic storage devices such as magnetic disks and magnetic heads.
  • the first particles containing ceria and having a negative zeta potential are brought into contact with the second particles containing a hydroxide of a tetravalent metal element and having a positive zeta potential.
  • the manufacturing method of an abrasive grain provided with the process to make can be provided.
  • the manufacturing method of a slurry provided with the process of obtaining an abrasive grain with the manufacturing method of the said abrasive grain can be provided.
  • the pH was measured using model number PHL-40 manufactured by Electrochemical Instrument Co., Ltd.
  • cerium oxide particles Particles containing cerium oxide (first particles; hereinafter referred to as “cerium oxide particles”) and trade name: polyacrylic acid 5000 (weight average molecular weight: 5000) manufactured by Wako Pure Chemical Industries, Ltd. are mixed.
  • a cerium oxide slurry (pH: 5.0) containing 5.0% by mass (solid content) of cerium oxide particles was prepared.
  • the blending amount of polyacrylic acid was adjusted such that the content of polyacrylic acid in the CMP polishing liquid described later is the content shown in Table 1.
  • the obtained precipitate (precipitate containing cerium hydroxide) was centrifuged (4000 min ⁇ 1 , 5 minutes) and then subjected to solid-liquid separation by removing the liquid phase by decantation. After 10 g of particles obtained by solid-liquid separation and 990 g of water are mixed, the particles are dispersed in water using an ultrasonic cleaner to obtain particles containing cerium hydroxide (second particles; hereinafter, A cerium hydroxide slurry (content of particles: 1.0 mass%) containing “cerium hydroxide particles” was prepared.
  • the refractive index of the measurement sample information of N5 software was set to 1.333, the viscosity was set to 0.887 mPa ⁇ s, the measurement was performed at 25 ° C., and the value displayed as the Unimodal Size Mean was read.
  • the cerium hydroxide particles contained at least a part of particles having nitrate ions bonded to the cerium element. Moreover, since the particles having hydroxide ions bonded to the cerium element are contained in at least a part of the cerium hydroxide particles, it was confirmed that the cerium hydroxide particles contain cerium hydroxide. From these results, it was confirmed that the hydroxide of cerium contains hydroxide ions bonded to the cerium element.
  • Example 1 While stirring at a rotation speed of 500 rpm using a two-blade stirring blade, 600 g of the cerium oxide slurry, 600 g of the cerium hydroxide slurry, and 800 g of ion-exchanged water were mixed for 30 minutes to obtain a mixed solution 1 Prepared.
  • a CMP polishing liquid containing composite particles containing 300 g of the mixed liquid 1 and 600 g of ion-exchanged water and containing cerium oxide particles and cerium hydroxide particles in contact with the cerium oxide particles ( The content of cerium oxide particles having a negative zeta potential: 0.5% by mass, the content of cerium hydroxide particles having a positive zeta potential: 0.1% by mass, pH: 4.0) was prepared. .
  • Example 2 15 g of polyethylene glycol PEG600 (weight average molecular weight: 600) manufactured by Wako Pure Chemical Industries, Ltd. was added to the liquid mixture 1 of Example 1 to prepare a liquid mixture 2A.
  • a CMP polishing liquid content of cerium oxide particles having a negative zeta potential: 0.5% by mass, cerium hydroxide having a positive zeta potential
  • the content of the product particles 0.1% by mass, pH: 4.0
  • Example 3 15 g of polyethylene glycol PEG4000 (weight average molecular weight: 4000) manufactured by Wako Pure Chemical Industries, Ltd. was added to the liquid mixture 1 of Example 1 to prepare a liquid mixture 2B.
  • a CMP polishing liquid content of cerium oxide particles having a negative zeta potential: 0.5% by mass, cerium hydroxide having a positive zeta potential
  • the content of the product particles 0.1% by mass, pH: 4.0
  • Example 4 15 g of PGL # 750 (polyglycerin (water-soluble polymer), weight average molecular weight: 750) manufactured by Sakamoto Yakuhin Kogyo Co., Ltd. was added to the mixed liquid 1 of Example 1 to prepare a mixed liquid 2C.
  • a CMP polishing liquid content of cerium oxide particles having a negative zeta potential: 0.5% by mass, cerium hydroxide having a positive zeta potential
  • the content of the product particles 0.1% by mass, pH: 4.0
  • a CMP polishing liquid (content of cerium oxide particles having a negative zeta potential: 0.5 mass%, pH: 4.0) was prepared by mixing 100 g of cerium oxide slurry and 900 g of ion-exchanged water.
  • a CMP polishing liquid (content of cerium hydroxide particles having a positive zeta potential: 0.1 mass%, pH: 4.0) is prepared by mixing 100 g of cerium hydroxide slurry and 900 g of ion-exchanged water. did.
  • the average particle size (average secondary particle size) of the abrasive grains (cerium hydroxide particles) in the CMP polishing liquid of Comparative Example 2 was measured using a product name: N5 manufactured by Beckman Coulter, Inc.
  • the average particle size of Comparative Example 2 was 25 nm.
  • ⁇ Zeta potential of abrasive grains> An appropriate amount of CMP polishing liquid was put into Delsa Nano C manufactured by Beckman Coulter, Inc. The measurement was performed twice at 25 ° C., and the displayed average value of zeta potential was adopted. The measurement results are shown in Table 1.
  • the zeta potentials of the abrasive grains of Examples 1 to 4 and Comparative Example 2 were 50 to 55 mV, and the zeta potential of Comparative Example 1 was ⁇ 62 mV.
  • Polishing device F-REX300 (manufactured by Ebara Corporation) CMP polishing liquid flow rate: 250 mL / min
  • Substrate to be polished As a blanket wafer on which no pattern was formed, a substrate to be polished having a silicon oxide film with a thickness of 2 ⁇ m formed by plasma CVD on a silicon substrate was used.
  • polishing rate (SiO 2 RR) of the silicon oxide film polished and cleaned under the above conditions was determined from the following formula.
  • the difference in thickness of the silicon oxide film before and after polishing was determined using an optical interference type film thickness measuring device (trade name: F80, manufactured by Filmetrics). The measurement results are shown in Table 1.
  • Polishing rate (RR) (thickness difference of silicon oxide film before and after polishing [nm]) / (polishing time: 0.5 [min])

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

砥粒と、液状媒体と、を含有し、前記砥粒が、第1の粒子と、当該第1の粒子に接触した第2の粒子と、を含み、前記第1の粒子がセリアを含有し、前記第1の粒子のゼータ電位が負であり、前記第2の粒子が4価金属元素の水酸化物を含有し、前記第2の粒子のゼータ電位が正である、スラリ。

Description

スラリ及び研磨方法
 本発明は、スラリ及び研磨方法に関する。特に、本発明は、半導体素子の製造技術である基体表面の平坦化工程に用いられるスラリ及び研磨方法に関する。更に詳しくは、本発明は、シャロートレンチ分離(シャロー・トレンチ・アイソレーション。以下「STI」という。)絶縁材料、プリメタル絶縁材料、層間絶縁材料等の平坦化工程において用いられるスラリ及び研磨方法に関する。
 近年の半導体素子の製造工程では、高密度化及び微細化のための加工技術の重要性がますます高まっている。加工技術の一つであるCMP(ケミカル・メカニカル・ポリッシング:化学機械研磨)技術は、半導体素子の製造工程において、STIの形成、プリメタル絶縁材料又は層間絶縁材料の平坦化、プラグ又は埋め込み金属配線の形成等に必須の技術となっている。
 最も多用されている研磨液としては、例えば、砥粒として、ヒュームドシリカ、コロイダルシリカ等のシリカ(酸化珪素)粒子を含むシリカ系研磨液が挙げられる。シリカ系研磨液は、汎用性が高いことが特徴であり、砥粒含有量、pH、添加剤等を適切に選択することで、絶縁材料及び導電材料を問わず幅広い種類の材料を研磨できる。
 一方で、主に酸化珪素等の絶縁材料を対象とした研磨液として、セリウム化合物粒子を砥粒として含む研磨液の需要も拡大している。例えば、酸化セリウム(セリア)粒子を砥粒として含む酸化セリウム系研磨液は、シリカ系研磨液よりも低い砥粒含有量でも高速に酸化珪素を研磨できる(例えば、下記特許文献1及び2参照)。
 ところで、近年、半導体素子の製造工程では、更なる配線の微細化を達成することが求められており、研磨時に発生する研磨傷が問題となっている。すなわち、従来の酸化セリウム系研磨液を用いて研磨を行った際に微小な研磨傷が発生しても、この研磨傷の大きさが従来の配線幅より小さいものであれば問題にならなかったが、更なる配線の微細化を達成しようとする場合には、研磨傷が微小であっても問題となってしまう。
 この問題に対し、4価金属元素の水酸化物の粒子を用いた研磨液が検討されている(例えば、下記特許文献3~5参照)。また、4価金属元素の水酸化物の粒子の製造方法についても検討されている(例えば、下記特許文献6及び7参照)。これらの技術は、4価金属元素の水酸化物の粒子が有する化学的作用を活かしつつ機械的作用を極力小さくすることによって、粒子による研磨傷を低減しようとするものである。
特開平10-106994号公報 特開平08-022970号公報 国際公開第2002/067309号 国際公開第2012/070541号 国際公開第2012/070542号 特開2006-249129号公報 国際公開第2012/070544号
 ところで、近年、デバイスのセル部を縦方向に積層させる3D-NANDデバイスが台頭してきている。本技術では、セル形成時の絶縁材料の段差が従来のプレーナ型と比べて数倍高くなっている。それに伴い、デバイス製造のスループットを維持するためには、前記のとおりの高い段差をCMP工程等において素早く解消する必要があり、絶縁材料の研磨速度を向上させる必要がある。
 本発明は、前記課題を解決しようとするものであり、絶縁材料の研磨速度を向上させることが可能なスラリ、及び、当該スラリを用いた研磨方法を提供することを目的とする。
 本発明に係るスラリは、砥粒と、液状媒体と、を含有し、前記砥粒が、第1の粒子と、当該第1の粒子に接触した第2の粒子と、を含み、前記第1の粒子がセリアを含有し、前記第1の粒子のゼータ電位が負であり、前記第2の粒子が4価金属元素の水酸化物を含有し、前記第2の粒子のゼータ電位が正である。
 本発明に係るスラリによれば、絶縁材料の研磨速度を向上させることが可能であり、絶縁材料を高い研磨速度で研磨できる。本発明に係るスラリによれば、STI絶縁材料、プリメタル絶縁材料、層間絶縁材料等を平坦化するCMP技術において、これらの絶縁材料を高度に平坦化することができる。
 ところで、一般的に、砥粒含有量が増加するに伴い研磨傷が発生しやすい傾向がある。一方、本発明に係るスラリによれば、砥粒が少量であっても充分な研磨速度を得ることができるため、少量の砥粒を用いることにより、充分な研磨速度を達成しつつ絶縁材料を低研磨傷で研磨することもできる。
 前記4価金属元素の水酸化物は、希土類金属元素の水酸化物及びジルコニウムの水酸化物からなる群より選択される少なくとも一種を含むことが好ましい。前記砥粒のゼータ電位は、+10mV以上であることが好ましい。前記砥粒の含有量は、0.01~10質量%であることが好ましい。
 本発明の一側面は、酸化珪素を含む被研磨面の研磨への前記スラリの使用に関する。すなわち、本発明に係るスラリは、酸化珪素を含む被研磨面を研磨するために使用されることが好ましい。
 本発明に係る研磨方法は、前記スラリを用いて被研磨面を研磨する工程を備えていてもよい。このような研磨方法によれば、前記スラリを用いることにより、本発明に係るスラリと同様の前記効果を得ることができる。
 本発明によれば、絶縁材料(例えば酸化珪素)の研磨速度を向上させることが可能なスラリを提供することができる。本発明によれば、前記スラリを用いた研磨方法を提供することができる。
 本発明によれば、STI絶縁材料、プリメタル絶縁材料、層間絶縁材料等を平坦化するCMP技術において、これらの絶縁材料を高度に平坦化することもできる。また、本発明によれば、充分な研磨速度を達成しつつ絶縁材料を低研磨傷で研磨することもできる。
 本発明によれば、基体表面の平坦化工程へのスラリの使用を提供することができる。本発明によれば、STI絶縁材料、プリメタル絶縁材料又は層間絶縁材料の平坦化工程へのスラリの使用を提供することができる。
添加剤を添加した際に砥粒が凝集する様子を示す模式図である。 添加剤を添加した際に砥粒が凝集する様子を示す模式図である。
 以下、本発明の実施形態に係るスラリ、及び、当該スラリを用いた研磨方法について詳細に説明する。
<定義>
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 後述するように、本実施形態に係るスラリは砥粒(abrasive grain)を含有する。砥粒は、「研磨粒子」(abrasive particle)ともいわれるが、本明細書では「砥粒」という。砥粒は、一般的には固体粒子であって、研磨時に、砥粒が有する機械的作用、及び、砥粒(主に砥粒の表面)の化学的作用によって、除去対象物が除去(remove)されると考えられるが、これに限定されない。
 本明細書における重量平均分子量は、例えば、標準ポリスチレンの検量線を用いてゲルパーミエーションクロマトグラフィー法(GPC)により下記の条件で測定することができる。
 使用機器:日立L-6000型[株式会社日立製作所製]
 カラム:ゲルパックGL-R420+ゲルパックGL-R430+ゲルパックGL-R440[日立化成株式会社製 商品名、計3本]
 溶離液:テトラヒドロフラン
 測定温度:40℃
 流量:1.75mL/分
 検出器:L-3300RI[株式会社日立製作所製]
<スラリ>
 本実施形態に係るスラリは、必須成分として砥粒と液状媒体とを含有する。本実施形態に係るスラリは、例えば、研磨液(CMP研磨液)として用いることができる。本明細書において、「研磨液」(polishing liquid、abrasive)とは、研磨時に被研磨面に触れる組成物として定義される。「研磨液」という語句自体は、研磨液に含有される成分を何ら限定しない。以下、必須成分及び任意成分について説明する。
(砥粒)
 砥粒は、第1の粒子と、当該第1の粒子に接触した第2の粒子と、を含む複合粒子である。第1の粒子はセリアを含有し、スラリ中における第1の粒子のゼータ電位は負である。第2の粒子は4価金属元素の水酸化物を含有し、スラリ中における第2の粒子のゼータ電位は正である。このような砥粒を用いることにより、絶縁材料の研磨速度を向上させることができる。このように絶縁材料の研磨速度が向上する理由としては、例えば、下記の理由が挙げられる。すなわち、第1の粒子(セリアを含有する粒子)は、絶縁材料に対する物理的作用(メカニカル性)が強い。一方、第2の粒子(4価金属元素の水酸化物を含有する粒子)は、化学的作用(ケミカル性)に基づく絶縁材料との反応性が高い。例えば、水酸基が作用して第2の粒子と絶縁材料との高い反応性が得られる。また、絶縁材料(例えば酸化珪素)と静電的に引き合う力が強い場合には、第2の粒子と絶縁材料との高い反応性が得られやすい。このように、物理的作用が強い第1の粒子と、化学的作用が強い第2の粒子と、を併用することにより得られる相乗効果によって絶縁材料の研磨速度が向上すると推測される。
 砥粒は、一種を単独で又は二種以上を組み合わせて使用することができる。本実施形態に係るスラリは、前記第1の粒子及び前記第2の粒子を含む複合粒子以外の他の粒子を含有していてもよい。このような他の粒子としては、例えば、前記第2の粒子に接触していない前記第1の粒子;前記第1の粒子に接触していない前記第2の粒子;シリカ、アルミナ、ジルコニア、イットリア等からなる粒子(第1の粒子及び第2の粒子を含まない粒子)が挙げられる。
 スラリ中の第1の粒子の平均粒径(平均二次粒径)は、下記の範囲が好ましい。第1の粒子の平均粒径の下限は、絶縁材料の研磨速度が更に向上する観点から、15nm以上が好ましく、25nm以上がより好ましく、35nm以上が更に好ましく、40nm以上が特に好ましい。第1の粒子の平均粒径の上限は、砥粒の分散性が向上する観点、及び、被研磨面に傷がつくことが更に抑制される観点から、1000nm以下が好ましく、800nm以下がより好ましく、600nm以下が更に好ましく、500nm以下が特に好ましい。前記観点から、第1の粒子の平均粒径は、15~1000nmであることがより好ましい。
 スラリ中の第2の粒子の平均粒径(平均二次粒径)は、下記の範囲が好ましい。第2の粒子の平均粒径の下限は、絶縁材料の研磨速度が更に向上する観点から、1nm以上が好ましく、2nm以上がより好ましく、3nm以上が更に好ましい。第2の粒子の平均粒径の上限は、砥粒の分散性が向上する観点、及び、被研磨面に傷がつくことが更に抑制される観点から、25nm以下が好ましく、20nm以下がより好ましく、15nm以下が更に好ましい。前記観点から、第2の粒子の平均粒径は、1~25nmであることがより好ましい。
 第2の粒子の平均粒径は、第1の粒子の平均粒径より小さいことが好ましい。一般的に、粒径が小さい粒子では、粒径が大きい粒子に比べて単位質量当たりの表面積が大きいことから反応活性が高い。一方、粒径が小さい粒子の機械的作用(機械的研磨力)は、粒径が大きい粒子に比べて小さい。しかしながら、本実施形態においては、第2の粒子の平均粒径が第1の粒子の平均粒径より小さい場合において、第1の粒子及び第2の粒子の相乗効果を容易に発現させることが可能であり、優れた反応活性及び機械的作用を容易に両立することができる。
 スラリ中の砥粒(複合粒子を含む砥粒全体)の平均粒径(平均二次粒径)は、下記の範囲が好ましい。砥粒の平均粒径の下限は、絶縁材料の研磨速度が更に向上する観点から、20nm以上が好ましく、30nm以上がより好ましく、40nm以上が更に好ましく、50nm以上が特に好ましく、100nm以上が極めて好ましく、120nm以上が非常に好ましく、150nm以上がより一層好ましく、200nm以上が更に好ましく、300nm以上が特に好ましい。砥粒の平均粒径の上限は、砥粒の分散性が向上する観点、及び、被研磨面に傷がつくことが更に抑制される観点から、1000nm以下が好ましく、800nm以下がより好ましく、600nm以下が更に好ましく、500nm以下が特に好ましく、400nm以下が極めて好ましい。前記観点から、砥粒の平均粒径は、20~1000nmであることがより好ましい。
 平均粒径は、例えば、光回折散乱式粒度分布計(例えば、ベックマンコールター株式会社製、商品名:N5、又は、マイクロトラック・ベル社製、商品名:マイクロトラックMT3300EXII)を用いて測定することができる。
 スラリ中における第1の粒子は、第1の粒子と第2の粒子とを適切に作用させ、絶縁材料の研磨速度を向上させる観点から、負のゼータ電位を有する。スラリ中における第1の粒子のゼータ電位の上限は、絶縁材料の研磨速度が更に向上する観点から、-20mV以下が好ましく、-25mV以下がより好ましく、-30mV以下が更に好ましく、-35mV以下が特に好ましい。第1の粒子のゼータ電位の下限は、特に限定されず、例えば-200mV以上である。
 スラリ中における第2の粒子は、第2の粒子と第1の粒子とを適切に作用させ、絶縁材料の研磨速度を向上させる観点から、正のゼータ電位を有する。スラリ中における第2の粒子のゼータ電位の下限は、絶縁材料の研磨速度が更に向上する観点から、+20mV以上が好ましく、+25mV以上がより好ましく、+30mV以上が更に好ましく、+35mV以上が特に好ましい。第2の粒子のゼータ電位の上限は、特に限定されず、例えば+200mV以下である。
 スラリ中における砥粒(複合粒子を含む砥粒)のゼータ電位(砥粒全体のゼータ電位)の下限は、絶縁材料の研磨速度が更に向上する観点から、+10mV以上が好ましく、+20mV以上がより好ましく、+25mV以上が更に好ましく、+30mV以上が特に好ましく、+40mV以上が極めて好ましく、+50mV以上が非常に好ましい。砥粒のゼータ電位の上限は、特に限定されず、例えば+200mV以下である。
 ゼータ電位とは、粒子の表面電位を表す。ゼータ電位は、例えば、動的光散乱式ゼータ電位測定装置(例えば、ベックマンコールター株式会社製、商品名:DelsaNano C)を用いて測定することができる。粒子のゼータ電位は、添加剤を用いて調整できる。例えば、セリアを含有する粒子に、カルボキシル基を有する材料(ポリアクリル酸等)を接触させることにより、負のゼータ電位を有する粒子を得ることができる。
 砥粒におけるセリアの含有量の下限は、絶縁材料の研磨速度が更に向上する観点から、砥粒全体(スラリに含まれる砥粒全体。以下同様)を基準として、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上が更に好ましく、80質量%以上が特に好ましい。砥粒におけるセリアの含有量の上限は、絶縁材料の研磨速度が更に向上する観点から、砥粒全体を基準として、95質量%以下が好ましく、92質量%以下がより好ましく、90質量%以下が更に好ましく、88質量%以下が特に好ましく、85質量%以下が極めて好ましい。前記観点から、砥粒におけるセリアの含有量は、砥粒全体を基準として50~95質量%であることがより好ましい。
 第1の粒子におけるセリアの含有量の下限は、絶縁材料の研磨速度が更に向上する観点から、第1の粒子の全体(スラリに含まれる第1の粒子の全体。以下同様)を基準として、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましく、95質量%以上が特に好ましい。第1の粒子は、実質的にセリアからなる態様(実質的に第1の粒子の100質量%がセリアである態様)であってもよい。
 第1の粒子の含有量の下限は、絶縁材料の研磨速度が更に向上する観点から、スラリの全質量を基準として、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、0.3質量%以上が特に好ましく、0.4質量%以上が極めて好ましく、0.5質量%以上が非常に好ましい。第1の粒子の含有量の上限は、スラリの保存安定性を高くする観点から、スラリの全質量を基準として、10質量%以下が好ましく、5質量%以下がより好ましく、1質量%以下が更に好ましい。前記観点から、第1の粒子の含有量は、スラリの全質量を基準として0.01~10質量%であることがより好ましい。
 砥粒における4価金属元素の水酸化物の含有量の下限は、絶縁材料の研磨速度が更に向上する観点から、砥粒全体(スラリに含まれる砥粒全体)を基準として、5質量%以上が好ましく、8質量%以上がより好ましく、10質量%以上が更に好ましく、12質量%以上が特に好ましく、15質量%以上が極めて好ましい。砥粒における4価金属元素の水酸化物の含有量の上限は、スラリの調製が容易であると共に研磨特性に更に優れる観点から、砥粒全体を基準として、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下が更に好ましく、20質量%以下が特に好ましい。前記観点から、砥粒における4価金属元素の水酸化物の含有量は、砥粒全体を基準として5~50質量%であることがより好ましい。
 第2の粒子における4価金属元素の水酸化物の含有量の下限は、絶縁材料の研磨速度が更に向上する観点から、第2の粒子の全体(スラリに含まれる第2の粒子の全体。以下同様)を基準として、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましく、95質量%以上が特に好ましい。第2の粒子は、実質的に4価金属元素の水酸化物からなる態様(実質的に第2の粒子の100質量%が4価金属元素の水酸化物である態様)であってもよい。
 本明細書において、「4価金属元素の水酸化物」とは、4価の金属(M4+)と、少なくとも1つの水酸化物イオン(OH)とを含む化合物である。4価金属元素の水酸化物は、水酸化物イオン以外の陰イオン(例えば、硝酸イオンNO 及び硫酸イオンSO 2-)を含んでいてもよい。例えば、4価金属元素の水酸化物は、4価金属元素に結合した陰イオン(例えば、硝酸イオンNO 及び硫酸イオンSO 2-)を含んでいてもよい。
 4価金属元素の水酸化物を含む砥粒は、シリカ、セリア等からなる砥粒と比較して、絶縁材料(例えば酸化珪素)との反応性が高く、絶縁材料を高い研磨速度で研磨することができる。
 4価金属元素の水酸化物は、希土類金属元素の水酸化物及びジルコニウムの水酸化物からなる群より選択される少なくとも一種を含むことが好ましい。4価金属元素の水酸化物は、絶縁材料の研磨速度が更に向上する観点から、希土類金属元素の水酸化物であることがより好ましい。4価をとり得る希土類金属元素としては、セリウム、プラセオジム、テルビウム等のランタノイドなどが挙げられ、中でも、絶縁材料の研磨速度に更に優れる観点から、ランタノイドが好ましく、セリウムがより好ましい。希土類金属元素の水酸化物とジルコニウムの水酸化物とを併用してもよく、希土類金属元素の水酸化物から二種以上を選択して使用することもできる。
 第2の粒子の含有量の下限は、絶縁材料の研磨速度が更に向上する観点から、第1の粒子及び第2の粒子の合計量を基準として、5質量%以上が好ましく、8質量%以上がより好ましく、10質量%以上が更に好ましく、12質量%以上が特に好ましく、15質量%以上が極めて好ましい。第2の粒子の含有量の上限は、絶縁材料の研磨速度が更に向上する観点から、第1の粒子及び第2の粒子の合計量を基準として、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下が更に好ましく、20質量%以下が特に好ましい。前記観点から、第2の粒子の含有量は、第1の粒子及び第2の粒子の合計量を基準として5~50質量%であることがより好ましい。
 第2の粒子の含有量の下限は、絶縁材料の研磨速度が更に向上する観点から、スラリの全質量を基準として、0.005質量%以上が好ましく、0.01質量%以上がより好ましく、0.03質量%以上が更に好ましく、0.05質量%以上が特に好ましく、0.1質量%以上が極めて好ましい。第2の粒子の含有量の上限は、砥粒の凝集を避けることが容易になると共に、砥粒と被研磨面との化学的な相互作用が良好となり、砥粒の特性を有効に活用できる観点から、スラリの全質量を基準として、5質量%以下が好ましく、4質量%以下がより好ましく、3質量%以下が更に好ましく、2質量%以下が特に好ましく、1質量%以下が極めて好ましく、0.5質量%以下が非常に好ましい。前記観点から、第2の粒子の含有量は、スラリの全質量を基準として0.005~5質量%であることがより好ましい。
 4価金属元素の水酸化物の含有量の下限は、砥粒と被研磨面との化学的な相互作用が向上し、絶縁材料の研磨速度が更に向上する観点から、スラリの全質量を基準として、0.005質量%以上が好ましく、0.01質量%以上がより好ましく、0.03質量%以上が更に好ましく、0.05質量%以上が特に好ましく、0.1質量%以上が極めて好ましい。4価金属元素の水酸化物の含有量の上限は、砥粒の凝集を避けることが容易になると共に、砥粒と被研磨面との化学的な相互作用が良好となり、砥粒の特性を有効に活用できる観点から、スラリの全質量を基準として、5質量%以下が好ましく、4質量%以下がより好ましく、3質量%以下が更に好ましく、2質量%以下が特に好ましく、1質量%以下が極めて好ましく、0.5質量%以下が非常に好ましい。前記観点から、4価金属元素の水酸化物の含有量は、スラリの全質量を基準として、0.005~5質量%であることがより好ましい。
 砥粒の含有量の下限は、絶縁材料の研磨速度が更に向上する観点から、スラリの全質量を基準として、0.01質量%以上が好ましく、0.03質量%以上がより好ましく、0.05質量%以上が更に好ましく、0.07質量%以上が特に好ましく、0.1質量%以上が極めて好ましく、0.15質量%以上が非常に好ましく、0.3質量%以上がより一層好ましく、0.5質量%以上が更に好ましい。砥粒の含有量の上限は、スラリの保存安定性を高くする観点から、スラリの全質量を基準として、10質量%以下が好ましく、8質量%以下がより好ましく、6質量%以下が更に好ましい。前記観点から、砥粒の含有量は、スラリの全質量を基準として0.01~10質量%であることがより好ましい。
 また、砥粒の含有量を更に少なくすることにより、コスト及び研磨傷を更に低減できる点で好ましい。一般的に、砥粒の含有量が少なくなると、絶縁材料等の研磨速度も低下する傾向がある。一方、4価金属元素の水酸化物を含有する粒子を含む砥粒は、少量でも所定の研磨速度を得ることができるため、研磨速度と、砥粒の含有量を少なくすることによる利点とのバランスをとりつつ、砥粒の含有量を更に低減することができる。このような観点から、砥粒の含有量の上限は、5質量%以下が好ましく、4質量%以下がより好ましく、3質量%以下が更に好ましく、2質量%以下が特に好ましく、1質量%以下が極めて好ましい。
[吸光度]
 第2の粒子は、4価金属元素の水酸化物を含有し、且つ、下記条件(a)及び(b)の少なくとも一方の条件を満たすことが好ましい。なお、第2の粒子の含有量を所定量に調整した「水分散液」とは、所定量の第2の粒子と水とを含む液を意味する。
 (a)第2の粒子が、当該第2の粒子の含有量を1.0質量%に調整した水分散液において波長400nmの光に対して吸光度1.00以上を与える。
 (b)第2の粒子が、当該第2の粒子の含有量を0.0065質量%に調整した水分散液において波長290nmの光に対して吸光度1.000以上を与える。
 前記条件(a)に関して、第2の粒子の含有量を1.0質量%に調整した水分散液において波長400nmの光に対する吸光度1.00以上を与える粒子を用いることにより、研磨速度を更に向上させることができる。この理由は必ずしも明らかではないが、本発明者は次のように考えている。すなわち、4価金属元素の水酸化物の製造条件等に応じて、4価の金属(M4+)、1~3個の水酸化物イオン(OH)及び1~3個の陰イオン(Xc-)からなるM(OH)(式中、a+b×c=4である)を含む粒子が生成するものと考えられる(なお、このような粒子も「4価金属元素の水酸化物を含む粒子」である)。M(OH)では、電子吸引性の陰イオン(Xc-)が作用して水酸化物イオンの反応性が向上しており、M(OH)の存在量が増加するに伴い研磨速度が向上するものと考えられる。そして、M(OH)を含む粒子が波長400nmの光を吸光するため、M(OH)の存在量が増加して波長400nmの光に対する吸光度が高くなるに伴い、研磨速度が向上するものと考えられる。
 4価金属元素の水酸化物を含む粒子は、M(OH)だけでなく、M(OH)、MO等も含み得ると考えられる。陰イオン(Xc-)としては、例えば、NO 及びSO 2-が挙げられる。
 なお、4価金属元素の水酸化物を含む粒子がM(OH)を含むことは、粒子を純水でよく洗浄した後に、FT-IR ATR法(Fourier transform Infra Red Spectrometer Attenuated Total Reflection法、フーリエ変換赤外分光光度計全反射測定法)で、陰イオン(Xc-)に該当するピークを検出する方法により確認できる。XPS法(X-ray Photoelectron Spectroscopy、X線光電子分光法)により、陰イオン(Xc-)の存在を確認することもできる。
 ここで、M(OH)(例えばM(OH)X)の波長400nmの吸収ピークは、後述する波長290nmの吸収ピークよりもはるかに小さいことが確認されている。これに対し、本発明者は、粒子の含有量が比較的多く、吸光度が大きく検出されやすい含有量1.0質量%の水分散液を用いて吸光度の大きさを検討した結果、当該水分散液において波長400nmの光に対する吸光度1.00以上を与える粒子を用いる場合に、研磨速度の向上効果に優れることを見出した。
 波長400nmの光に対する吸光度の下限は、更に優れた研磨速度で絶縁材料を研磨しやすくなる観点から、1.50以上が好ましく、1.55以上がより好ましく、1.60以上が更に好ましい。
 前記条件(b)に関して、第2の粒子の含有量を0.0065質量%に調整した水分散液において波長290nmの光に対する吸光度1.000以上を与える第2の粒子を用いることにより、研磨速度を更に向上させることができる。この理由は必ずしも明らかではないが、本発明者は次のように考えている。すなわち、4価金属元素の水酸化物の製造条件等に応じて生成するM(OH)(例えばM(OH)X)を含む粒子は、計算上、波長290nm付近に吸収のピークを有し、例えばCe4+(OHNO からなる粒子は波長290nmに吸収のピークを有する。そのため、M(OH)の存在量が増加して波長290nmの光に対する吸光度が高くなるに伴い、研磨速度が向上するものと考えられる。
 ここで、波長290nm付近の光に対する吸光度は、測定限界を超えるほど大きく検出される傾向がある。これに対し、本発明者は、粒子の含有量が比較的少なく、吸光度が小さく検出されやすい含有量0.0065質量%の水分散液を用いて吸光度の大きさを検討した結果、当該水分散液において波長290nmの光に対する吸光度1.000以上を与える粒子を用いる場合に、研磨速度の向上効果に優れることを見出した。
 波長290nmの光に対する吸光度の下限は、更に優れた研磨速度で絶縁材料を研磨する観点から、1.050以上がより好ましく、1.100以上が更に好ましく、1.130以上が特に好ましく、1.150以上が極めて好ましい。波長290nmの光に対する吸光度の上限は、特に制限はないが、例えば10.00以下が好ましい。
 波長400nmの光に対する吸光度1.00以上を与える第2の粒子が、第2の粒子の含有量を0.0065質量%に調整した水分散液において波長290nmの光に対して吸光度1.000以上を与える場合には、更に優れた研磨速度で絶縁材料を研磨することができる。
 また、4価金属元素の水酸化物(例えばM(OH))は、波長450nm以上(特に波長450~600nm)の光を吸光しない傾向がある。したがって、不純物を含むことにより研磨に対して悪影響が生じることを抑制して更に優れた研磨速度で絶縁材料を研磨する観点から、第2の粒子は、当該第2の粒子の含有量を0.0065質量%(65ppm)に調整した水分散液において波長450~600nmの光に対して吸光度0.010以下を与えるものであることが好ましい。すなわち、第2の粒子の含有量を0.0065質量%に調整した水分散液において波長450~600nmの範囲における全ての光に対する吸光度が0.010を超えないことが好ましい。波長450~600nmの光に対する吸光度の上限は、0.010未満がより好ましい。波長450~600nmの光に対する吸光度の下限は、0が好ましい。
 水分散液における吸光度は、例えば、株式会社日立製作所製の分光光度計(装置名:U3310)を用いて測定できる。具体的には例えば、第2の粒子の含有量を1.0質量%又は0.0065質量%に調整した水分散液を測定サンプルとして調製する。この測定サンプルを1cm角のセルに約4mL入れ、装置内にセルを設置する。次に、波長200~600nmの範囲で吸光度測定を行い、得られたチャートから吸光度を判断する。
[光透過率]
 本実施形態に係るスラリに含まれる第2の粒子は、当該第2の粒子の含有量を1.0質量%に調整した水分散液において波長500nmの光に対して光透過率50%/cm以上を与えるものであることが好ましい。これにより、添加剤の添加に起因する研磨速度の低下を更に抑制することができるため、研磨速度を維持しつつ他の特性を得ることが容易になる。この観点から、前記光透過率の下限は、60%/cm以上がより好ましく、70%/cm以上が更に好ましく、80%/cm以上が特に好ましく、90%/cm以上が極めて好ましく、92%/cm以上が非常に好ましい。光透過率の上限は100%/cmである。
 このように粒子の光透過率を調整することで研磨速度の低下を抑制することが可能な理由は詳しくはわかっていないが、本発明者は以下のように考えている。4価金属元素(セリウム等)の水酸化物を含む粒子では、機械的作用よりも化学的作用の方が支配的になると考えられる。そのため、粒子の大きさよりも粒子の数の方が、より研磨速度に寄与すると考えられる。
 粒子の含有量が1.0質量%である水分散液において光透過率が低い場合、その水分散液に存在する粒子は、粒径の大きい粒子(以下「粗大粒子」という。)が相対的に多く存在すると考えられる。このような粒子を含むスラリに添加剤(例えばポリビニルアルコール(PVA))を添加すると、図1に示すように、粗大粒子を核として他の粒子が凝集する。その結果として、単位面積当たりの被研磨面に作用する粒子数(有効粒子数)が減少し、被研磨面に接する粒子の比表面積が減少するため、研磨速度の低下が引き起こされると考えられる。
 一方、粒子の含有量が1.0質量%である水分散液において光透過率が高い場合、その水分散液に存在する粒子は、「粗大粒子」が少ない状態であると考えられる。このように粗大粒子の存在量が少ない場合は、図2に示すように、スラリに添加剤(例えばポリビニルアルコール)を添加しても、凝集の核になるような粗大粒子が少ないため、粒子同士の凝集が抑えられるか、又は、凝集粒子の大きさが図1に示す凝集粒子と比べて小さくなる。その結果として、単位面積当たりの被研磨面に作用する粒子数(有効粒子数)が維持され、被研磨面に接する粒子の比表面積が維持されるため、研磨速度の低下が生じ難くなると考えられる。
 本発明者の検討では、一般的な粒径測定装置において測定される粒径が同じスラリであっても、目視で透明である(光透過率の高い)もの、及び、目視で濁っている(光透過率の低い)ものがありえることがわかっている。このことから、前記のような作用を起こしうる粗大粒子は、一般的な粒径測定装置で検知できないほどのごくわずかの量でも、研磨速度の低下に寄与すると考えられる。
 また、粗大粒子を減らすためにろ過を複数回繰り返しても、添加剤により研磨速度が低下する現象はさほど改善せず、吸光度に起因する研磨速度の前記向上効果が充分に発揮されない場合があることがわかっている。そこで、本発明者は、粒子の製造方法を工夫する等して、水分散液において光透過率の高い粒子を使用することによって前記問題を解決できることを見出した。
 前記光透過率は、波長500nmの光に対する透過率である。前記光透過率は、分光光度計で測定することができる。具体的には例えば、株式会社日立製作所製の分光光度計U3310(装置名)で測定することができる。
 より具体的な測定方法としては、第2の粒子の含有量を1.0質量%に調整した水分散液を測定サンプルとして調製する。この測定サンプルを1cm角のセルに約4mL入れ、装置内にセルをセットした後に測定を行う。
 スラリに含まれる第2の粒子が水分散液において与える吸光度及び光透過率は、第2の粒子以外の固体成分、及び、水以外の液体成分を除去した後、所定の含有量の水分散液を調製し、当該水分散液を用いて測定することができる。スラリに含まれる成分によっても異なるが、固体成分又は液体成分の除去には、例えば、数千G以下の重力加速度をかけられる遠心機を用いた遠心分離、数万G以上の重力加速度をかけられる超遠心機を用いた超遠心分離等の遠心分離法;分配クロマトグラフィー、吸着クロマトグラフィー、ゲル浸透クロマトグラフィー、イオン交換クロマトグラフィー等のクロマトグラフィー法;自然ろ過、減圧ろ過、加圧ろ過、限外ろ過等のろ過法;減圧蒸留、常圧蒸留等の蒸留法を用いることができ、これらを適宜組み合わせてもよい。
 例えば、重量平均分子量が数万以上(例えば5万以上)の化合物を含む場合、第2の粒子の分離方法としては、クロマトグラフィー法、ろ過法等が挙げられ、中でも、ゲル浸透クロマトグラフィー及び限外ろ過からなる群より選択される少なくとも一種が好ましい。ろ過法を用いる場合、スラリに含まれる粒子は、適切な条件の設定により、フィルタを通過させることができる。重量平均分子量が数万以下(例えば5万未満)の化合物を含む場合、第2の粒子の分離方法としては、クロマトグラフィー法、ろ過法、蒸留法等が挙げられ、ゲル浸透クロマトグラフィー、限外ろ過及び減圧蒸留からなる群より選択される少なくとも一種が好ましい。複数種類の粒子が含まれる場合、第2の粒子の分離方法としては、ろ過法、遠心分離法等が挙げられ、ろ過の場合はろ液に、遠心分離の場合は液相に、4価金属元素の水酸化物を含む粒子がより多く含まれる。
 第2の粒子以外の固体成分を分離する方法としては、例えば、下記遠心分離条件によって分離することができる。
 遠心分離機:Optima MAX-TL(ベックマンコールター株式会社製)
 遠心加速度:40000G
 処理時間:5分
 処理温度:25℃
 クロマトグラフィー法で第2の粒子を分離する方法として、例えば、下記条件によって、第2の粒子を分取する、及び/又は、他成分を分取することができる。
 試料溶液:スラリ100μL
 検出器:株式会社日立製作所製、UV-VISディテクター、商品名「L-4200」
 波長:400nm
 インテグレータ:株式会社日立製作所製、GPCインテグレータ、商品名「D-2500」
 ポンプ:株式会社日立製作所製、商品名「L-7100」
 カラム:日立化成株式会社製、水系HPLC用充填カラム、商品名「GL-W550S」
 溶離液:脱イオン水
 測定温度:23℃
 流速:1mL/分(圧力は40~50kg/cm程度)
 測定時間:60分
 スラリに含まれる成分によっては、前記条件でも第2の粒子を分取できない可能性があるが、その場合、試料溶液量、カラム種類、溶離液種類、測定温度、流速等を最適化することで分離することができる。また、スラリのpHを調整することで、スラリに含まれる成分の留出時間を調整し、第2の粒子と分離できる可能性がある。スラリに不溶成分がある場合、必要に応じ、ろ過、遠心分離等で不溶成分を除去することが好ましい。
[第2の粒子の作製方法]
 4価金属元素の水酸化物は、4価金属元素の塩(金属塩)と、アルカリ源(塩基)とを反応させることにより作製できる。4価金属元素の水酸化物は、4価金属元素の塩とアルカリ液(例えばアルカリ水溶液)とを混合することにより作製されることが好ましい。これにより、粒径が極めて細かい粒子を得ることができ、研磨傷の低減効果に更に優れたスラリを得ることができる。このような手法は、例えば、特許文献6及び7に開示されている。4価金属元素の水酸化物は、4価金属元素の塩の金属塩溶液(例えば金属塩水溶液)とアルカリ液とを混合することにより得ることができる。4価金属元素の塩としては、従来公知のものを特に制限なく使用でき、M(NO、M(SO、M(NH(NO、M(NH(SO(Mは希土類金属元素を示す。)、Zr(SO・4HO等が挙げられる。Mとしては、化学的に活性なセリウム(Ce)が好ましい。
(任意成分)
 本実施形態に係るスラリは、研磨特性を調整する等の目的で、任意の添加剤を更に含有していてもよい。任意の添加剤としては、カルボキシル基を有する材料(ポリオキシアルキレン化合物又は水溶性高分子に該当する化合物を除く)、ポリオキシアルキレン化合物、水溶性高分子、酸化剤(例えば過酸化水素)等が挙げられる。添加剤のそれぞれは、一種を単独で又は二種以上を組み合わせて使用することができる。
 任意の添加剤(水溶性高分子等)は、スラリにおける砥粒の分散安定性を高めることができ、絶縁材料(例えば酸化珪素)を更に高速に研磨できる効果がある。また、絶縁材料(例えば酸化珪素)を高速に研磨できることにより、段差解消性が向上し、高い平坦性を得ることもできる。これは、凸部の研磨速度が凹部と比較して大幅に向上するためであると考える。
 カルボキシル基を有する材料としては、酢酸、プロピオン酸、酪酸、吉草酸等のモノカルボン酸;乳酸、リンゴ酸、クエン酸等のヒドロキシ酸;マロン酸、コハク酸、フマル酸、マレイン酸等のジカルボン酸;ポリアクリル酸、ポリマレイン酸等のポリカルボン酸;アルギニン、ヒスチジン、リシン等のアミノ酸などが挙げられる。
 カルボキシル基を有する材料の重量平均分子量の上限は、絶縁材料の高い研磨速度を発現させやすい観点から、100000以下が好ましく、80000以下がより好ましく、60000以下が更に好ましく、50000以下が特に好ましく、10000以下が極めて好ましい。カルボキシル基を有する材料の重量平均分子量の下限は、適切な分散性を維持できる観点から、1000以上が好ましく、1500以上がより好ましく、2000以上が更に好ましく、5000以上が特に好ましい。
 カルボキシル基を有する材料の含有量は、スラリの全質量を基準として、0.01~10質量%であることが好ましい。これにより、砥粒同士の凝集を抑制しつつ、絶縁材料を高い研磨速度で研磨しやすい。
 ポリオキシアルキレン化合物としては、ポリアルキレングリコール、ポリオキシアルキレン誘導体等が挙げられる。
 ポリアルキレングリコールとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等が挙げられる。ポリアルキレングリコールとしては、ポリエチレングリコール及びポリプロピレングリコールからなる群より選択される少なくとも一種が好ましく、ポリエチレングリコールがより好ましい。
 ポリオキシアルキレン誘導体は、例えば、ポリアルキレングリコールに官能基若しくは置換基を導入した化合物、又は、有機化合物にポリアルキレンオキシドを付加した化合物である。前記官能基又は置換基としては、例えば、アルキルエーテル基、アルキルフェニルエーテル基、フェニルエーテル基、スチレン化フェニルエーテル基、グリセリルエーテル基、アルキルアミン基、脂肪酸エステル基、及び、グリコールエステル基が挙げられる。ポリオキシアルキレン誘導体としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンビスフェノールエーテル(例えば、日本乳化剤株式会社製、BAグリコールシリーズ)、ポリオキシエチレンスチレン化フェニルエーテル(例えば、花王株式会社製、エマルゲンシリーズ)、ポリオキシエチレンアルキルフェニルエーテル(例えば、第一工業製薬株式会社製、ノイゲンEAシリーズ)、ポリオキシアルキレンポリグリセリルエーテル(例えば、阪本薬品工業株式会社製、SC-Eシリーズ及びSC-Pシリーズ)、ポリオキシエチレンソルビタン脂肪酸エステル(例えば、第一工業製薬株式会社製、ソルゲンTWシリーズ)、ポリオキシエチレン脂肪酸エステル(例えば、花王株式会社製、エマノーンシリーズ)、ポリオキシエチレンアルキルアミン(例えば、第一工業製薬株式会社製、アミラヂンD)、並びに、ポリアルキレンオキシドを付加したその他の化合物(例えば、日信化学工業株式会社製、サーフィノール465、及び、日本乳化剤株式会社製、TMPシリーズ)が挙げられる。
 ポリオキシアルキレン化合物の重量平均分子量の上限は、特に制限はないが、適切な作業性及び起泡性が得られやすい観点から、100000以下が好ましく、50000以下がより好ましく、20000以下が更に好ましく、10000以下が特に好ましく、5000以下が極めて好ましい。ポリオキシアルキレン化合物の重量平均分子量の下限は、平坦性が更に向上する観点から、200以上が好ましく、400以上がより好ましく、500以上が更に好ましい。
 ポリオキシアルキレン化合物の含有量の下限は、平坦性が更に向上する観点から、スラリの全質量を基準として、0.01質量%以上が好ましく、0.02質量%以上がより好ましく、0.1質量%以上が更に好ましく、0.2質量%以上が特に好ましい。ポリオキシアルキレン化合物の含有量の上限は、適度な研磨速度を得やすい観点から、スラリの全質量を基準として、5質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下が更に好ましい。
 水溶性高分子は、砥粒の分散安定性、平坦性、面内均一性、窒化珪素に対する酸化珪素の研磨選択性(酸化珪素の研磨速度/窒化珪素の研磨速度)、ポリシリコンに対する酸化珪素の研磨選択性(酸化珪素の研磨速度/ポリシリコンの研磨速度)等の研磨特性を調整する効果がある。ここで、「水溶性高分子」とは、水100gに対して0.1g以上溶解する高分子として定義する。なお、前記ポリオキシアルキレン化合物に該当する高分子は「水溶性高分子」に含まれないものとする。
 水溶性高分子としては、特に制限はなく、ポリアクリルアミド、ポリジメチルアクリルアミド等のアクリル系ポリマ;カルボキシメチルセルロース、寒天、カードラン、デキストリン、シクロデキストリン、プルラン等の多糖類;ポリビニルアルコール、ポリビニルピロリドン、ポリアクロレイン等のビニル系ポリマ;ポリグリセリン、ポリグリセリン誘導体等のグリセリン系ポリマ;ポリエチレングリコールなどが挙げられる。水溶性高分子は、一種を単独で又は二種以上を組み合わせて使用することができる。
 水溶性高分子を使用する場合、水溶性高分子の含有量の下限は、砥粒の沈降を抑制しつつ水溶性高分子の添加効果が得られる観点から、スラリの全質量を基準として、0.001質量%以上が好ましく、0.01質量%以上がより好ましく、0.1質量%以上が更に好ましく、0.3質量%以上が特に好ましく、0.5質量%以上が極めて好ましい。水溶性高分子の含有量の上限は、砥粒の沈降を抑制しつつ水溶性高分子の添加効果が得られる観点から、スラリの全質量を基準として、10質量%以下が好ましく、8質量%以下がより好ましく、6質量%以下が更に好ましく、5質量%以下が特に好ましく、3質量%以下が極めて好ましく、1質量%以下が非常に好ましい。水溶性高分子として複数の化合物を用いる場合、各化合物の含有量の合計が前記範囲を満たしていることが好ましい。
 酸化剤を使用する場合、酸化剤の含有量は、砥粒の沈降を抑制しつつ添加剤の添加効果が得られる観点から、スラリの全質量を基準として0.0001~10質量%が好ましい。
(液状媒体)
 本実施形態に係るスラリにおける液状媒体としては、特に制限はないが、脱イオン水、超純水等の水が好ましい。液状媒体の含有量は、他の構成成分の含有量を除いたスラリの残部でよく、特に限定されない。
(スラリの特性)
 本実施形態に係るスラリのpHの下限は、絶縁材料の研磨速度が更に向上する観点から、2.0以上が好ましく、2.5以上がより好ましく、2.8以上が更に好ましく、3.0以上が特に好ましく、3.2以上が極めて好ましく、3.5以上が非常に好ましい。pHの上限は、スラリの保存安定性が更に向上する観点から、7.0以下が好ましく、6.5以下がより好ましく、6.0以下が更に好ましく、5.0以下が特に好ましく、4.0以下が極めて好ましい。前記観点から、pHは、2.0~7.0であることがより好ましい。スラリのpHは、液温25℃におけるpHと定義する。
 スラリのpHは、無機酸、有機酸等の酸成分;アンモニア、水酸化ナトリウム、テトラメチルアンモニウムヒドロキシド(TMAH)、イミダゾール、アルカノールアミン等のアルカリ成分などによって調整できる。また、pHを安定化させるため、緩衝剤を添加してもよい。また、緩衝液(緩衝剤を含む液)として緩衝剤を添加してもよい。このような緩衝液としては、酢酸塩緩衝液、フタル酸塩緩衝液等が挙げられる。
 本実施形態に係るスラリのpHは、pHメータ(例えば、電気化学計器株式会社製の型番PHL-40)で測定することができる。具体的には例えば、フタル酸塩pH緩衝液(pH:4.01)及び中性リン酸塩pH緩衝液(pH:6.86)を標準緩衝液として用いてpHメータを2点校正した後、pHメータの電極をスラリに入れて、2分以上経過して安定した後の値を測定する。標準緩衝液及びスラリの液温は、共に25℃とする。
 本実施形態に係るスラリをCMP研磨液として用いる場合、研磨液の構成成分を一液式研磨液として保存してもよく、砥粒及び液状媒体を含むスラリ(第1の液)と、添加剤及び液状媒体を含む添加液(第2の液)とを混合して前記研磨液となるように前記研磨液の構成成分をスラリと添加液とに分けた複数液式(例えば二液式)の研磨液セットとして保存してもよい。添加液は、例えば酸化剤を含んでいてもよい。前記研磨液の構成成分は、三液以上に分けた研磨液セットとして保存してもよい。
 前記研磨液セットにおいては、研磨直前又は研磨時に、スラリ及び添加液が混合されて研磨液が作製される。また、一液式研磨液は、液状媒体の含有量を減じた研磨液用貯蔵液として保存されると共に、研磨時に液状媒体で希釈して用いられてもよい。複数液式の研磨液セットは、液状媒体の含有量を減じたスラリ用貯蔵液及び添加液用貯蔵液として保存されると共に、研磨時に液状媒体で希釈して用いられてもよい。
 一液式研磨液の場合、研磨定盤上への研磨液の供給方法としては、研磨液を直接送液して供給する方法;研磨液用貯蔵液及び液状媒体を別々の配管で送液し、これらを合流及び混合させて供給する方法;あらかじめ研磨液用貯蔵液及び液状媒体を混合しておき供給する方法等を用いることができる。
 スラリと添加液とに分けた複数液式の研磨液セットとして保存する場合、これらの液の配合を任意に変えることにより研磨速度を調整することができる。研磨液セットを用いて研磨する場合、研磨定盤上への研磨液の供給方法としては、下記に示す方法がある。例えば、スラリと添加液とを別々の配管で送液し、これらの配管を合流及び混合させて供給する方法;スラリ用貯蔵液、添加液用貯蔵液及び液状媒体を別々の配管で送液し、これらを合流及び混合させて供給する方法;あらかじめスラリ及び添加液を混合しておき供給する方法;あらかじめスラリ用貯蔵液、添加液用貯蔵液及び液状媒体を混合しておき供給する方法等を用いることができる。また、前記研磨液セットにおけるスラリと添加液とをそれぞれ研磨定盤上へ供給する方法を用いることもできる。この場合、研磨定盤上においてスラリ及び添加液が混合されて得られる研磨液を用いて被研磨面が研磨される。
<研磨方法>
 本実施形態に係る研磨方法(基体の研磨方法等)は、前記スラリを用いて被研磨面(基体の被研磨面等)を研磨する研磨工程を備えている。研磨工程におけるスラリは、前記研磨液セットにおけるスラリと添加液とを混合して得られる研磨液であってもよい。
 研磨工程では、例えば、被研磨材料を有する基体の当該被研磨材料を研磨定盤の研磨パッド(研磨布)に押圧した状態で、前記スラリを被研磨材料と研磨パッドとの間に供給し、基体と研磨定盤とを相対的に動かして被研磨材料の被研磨面を研磨する。研磨工程では、例えば、被研磨材料の少なくとも一部を研磨により除去する。
 研磨対象である基体としては、被研磨基板等が挙げられる。被研磨基板としては、例えば、半導体素子製造に係る基板(例えば、STIパターン、ゲートパターン、配線パターン等が形成された半導体基板)上に被研磨材料が形成された基体が挙げられる。被研磨材料としては、酸化珪素等の絶縁材料などが挙げられる。被研磨材料は、単一の材料であってもよく、複数の材料であってもよい。複数の材料が被研磨面に露出している場合、それらを被研磨材料と見なすことができる。被研磨材料は、膜状(被研磨膜)であってもよく、酸化珪素膜等の絶縁膜などであってもよい。
 このような基板上に形成された被研磨材料(例えば、酸化珪素等の絶縁材料)を前記スラリで研磨し、余分な部分を除去することによって、被研磨材料の表面の凹凸を解消し、被研磨材料の表面全体にわたって平滑な面を得ることができる。本実施形態に係るスラリは、酸化珪素を含む被研磨面を研磨するために使用されることが好ましい。
 本実施形態に係るスラリにより研磨される被研磨材料の作製方法としては、低圧CVD法、準常圧CVD法、プラズマCVD法等のCVD法;回転する基板に液体原料を塗布する回転塗布法などが挙げられる。
 以下、基体(例えば、半導体基板上に形成された絶縁材料を有する基体)の研磨方法を一例に挙げて、本実施形態に係る研磨方法を説明する。本実施形態に係る研磨方法において、研磨装置としては、被研磨面を有する基体を保持可能なホルダーと、研磨パッドを貼り付け可能な研磨定盤とを有する一般的な研磨装置を使用できる。ホルダー及び研磨定盤のそれぞれには、回転数が変更可能なモータ等が取り付けてある。研磨装置としては、例えば、株式会社荏原製作所製の研磨装置:F-REX300、又は、APPLIED MATERIALS社製の研磨装置:Reflexionを使用できる。
 研磨パッドとしては、一般的な不織布、発泡体、非発泡体等が使用できる。研磨パッドの材質としては、ポリウレタン、アクリル樹脂、ポリエステル、アクリル-エステル共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリ4-メチルペンテン、セルロース、セルロースエステル、ポリアミド(例えば、ナイロン(商標名)及びアラミド)、ポリイミド、ポリイミドアミド、ポリシロキサン共重合体、オキシラン化合物、フェノール樹脂、ポリスチレン、ポリカーボネート、エポキシ樹脂等の樹脂が使用できる。研磨パッドの材質としては、特に、研磨速度及び平坦性に更に優れる観点から、発泡ポリウレタン及び非発泡ポリウレタンからなる群より選択される少なくとも一種が好ましい。研磨パッドには、スラリがたまるような溝加工が施されていることが好ましい。
 研磨条件に制限はないが、研磨定盤の回転速度の上限は、基体が飛び出さないように200min-1以下が好ましく、基体にかける研磨圧力(加工荷重)の上限は、研磨傷が発生することを充分に抑制する観点から、100kPa以下が好ましい。研磨している間、ポンプ等で連続的にスラリを研磨パッドに供給することが好ましい。この供給量に制限はないが、研磨パッドの表面が常にスラリで覆われていることが好ましい。
 研磨終了後の基体は、流水中でよく洗浄して、基体に付着した粒子を除去することが好ましい。洗浄には、純水以外に希フッ酸又はアンモニア水を併用してもよく、洗浄効率を高めるためにブラシを併用してもよい。また、洗浄後は、スピンドライヤ等を用いて、基体に付着した水滴を払い落としてから基体を乾燥させることが好ましい。
 本実施形態に係るスラリ及び研磨方法は、STIの形成及び層間絶縁膜の高速研磨に好適に使用できる。絶縁材料(例えば酸化珪素)の研磨速度の下限は、500nm/分以上が好ましく、800nm/分以上がより好ましく、1000nm/分以上が更に好ましく、1100nm/分以上が特に好ましく、1200nm/分以上が極めて好ましい。
 本実施形態に係るスラリ及び研磨方法は、プリメタル絶縁材料の研磨にも使用できる。プリメタル絶縁材料としては、酸化珪素の他、例えば、リン-シリケートガラス又はボロン-リン-シリケートガラスが使用され、さらに、シリコンオキシフロリド、フッ化アモルファスカーボン等も使用できる。
 本実施形態に係るスラリ及び研磨方法は、酸化珪素等の絶縁材料以外の材料にも適用できる。このような材料としては、Hf系、Ti系、Ta系酸化物等の高誘電率材料;シリコン、アモルファスシリコン、SiC、SiGe、Ge、GaN、GaP、GaAs、有機半導体等の半導体材料;GeSbTe等の相変化材料;ITO等の無機導電材料;ポリイミド系、ポリベンゾオキサゾール系、アクリル系、エポキシ系、フェノール系等のポリマ樹脂材料などが挙げられる。
 本実施形態に係るスラリ及び研磨方法は、膜状の研磨対象だけでなく、ガラス、シリコン、SiC、SiGe、Ge、GaN、GaP、GaAs、サファイヤ、プラスチック等から構成される各種基板にも適用できる。
 本実施形態に係るスラリ及び研磨方法は、半導体素子の製造だけでなく、TFT、有機EL等の画像表示装置;フォトマスク、レンズ、プリズム、光ファイバー、単結晶シンチレータ等の光学部品;光スイッチング素子、光導波路等の光学素子;固体レーザ、青色レーザLED等の発光素子;磁気ディスク、磁気ヘッド等の磁気記憶装置などの製造に用いることができる。
 本実施形態によれば、セリアを含有すると共に負のゼータ電位を有する第1の粒子と、4価金属元素の水酸化物を含有すると共に正のゼータ電位を有する第2の粒子と、を接触させる工程を備える砥粒の製造方法を提供することができる。本実施形態によれば、前記砥粒の製造方法により砥粒を得る工程を備える、スラリの製造方法を提供することができる。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。なお、pHは、電気化学計器株式会社製の型番PHL-40を用いて測定した。
<セリウム酸化物スラリの準備>
 セリウム酸化物を含む粒子(第1の粒子。以下、「セリウム酸化物粒子」という)と、和光純薬工業株式会社製の商品名:ポリアクリル酸5000(重量平均分子量:5000)とを混合して、セリウム酸化物粒子を5.0質量%(固形分含量)含有するセリウム酸化物スラリ(pH:5.0)を調製した。ポリアクリル酸の配合量は、後述するCMP研磨液におけるポリアクリル酸の含有量が表1の含有量となるように調整した。
 マイクロトラック・ベル社製の商品名:マイクロトラックMT3300EXII内にセリウム酸化物スラリを適量投入し、セリウム酸化物粒子の平均粒径の測定を行った。表示された平均粒径値を平均粒径(平均二次粒径)として得た。セリウム酸化物スラリにおける平均粒径は340nmであった。
[ゼータ電位の測定]
 ベックマンコールター株式会社製の商品名:DelsaNano C内に適量のセリウム酸化物スラリを投入し、25℃において測定を2回行った。表示されたゼータ電位の平均値をゼータ電位として得た。セリウム酸化物スラリ中におけるセリウム酸化物粒子のゼータ電位は-55mVであった。
<セリウム水酸化物スラリの準備>
(4価金属元素の水酸化物の合成)
 350gのCe(NH(NO50質量%水溶液(日本化学産業株式会社製、商品名:CAN50液)を7825gの純水と混合して溶液を得た。次いで、この溶液を撹拌しながら、750gのイミダゾール水溶液(10質量%水溶液、1.47mol/L)を5mL/分の混合速度で滴下して、セリウム水酸化物を含む沈殿物を得た。セリウム水酸化物の合成は、温度25℃、撹拌速度400min-1で行った。撹拌は、羽根部全長5cmの3枚羽根ピッチパドルを用いて行った。
 得られた沈殿物(セリウム水酸化物を含む沈殿物)を遠心分離(4000min-1、5分間)した後に、デカンテーションで液相を除去することによって固液分離を施した。固液分離により得られた粒子10gと、水990gと、を混合した後、超音波洗浄機を用いて粒子を水に分散させて、セリウム水酸化物を含む粒子(第2の粒子。以下、「セリウム水酸化物粒子」という)を含有するセリウム水酸化物スラリ(粒子の含有量:1.0質量%)を調製した。
(平均粒径の測定)
 ベックマンコールター株式会社製、商品名:N5を用いてセリウム水酸化物スラリにおけるセリウム水酸化物粒子の平均粒径(平均二次粒径)を測定したところ、25nmであった。測定法は下記のとおりである。まず、1.0質量%のセリウム水酸化物粒子を含む測定サンプル(セリウム水酸化物スラリ、水分散液)を1cm角のセルに約1mL入れ、N5内にセルを設置した。N5ソフトの測定サンプル情報の屈折率を1.333、粘度を0.887mPa・sに設定し、25℃において測定を行い、Unimodal Size Meanとして表示される値を読み取った。
(ゼータ電位の測定)
 ベックマンコールター株式会社製の商品名:DelsaNano C内に適量のセリウム水酸化物スラリを投入し、25℃において測定を2回行った。表示されたゼータ電位の平均値をゼータ電位として得た。セリウム水酸化物スラリ中におけるセリウム水酸化物粒子のゼータ電位は+50mVであった。
(セリウム水酸化物粒子の構造分析)
 セリウム水酸化物スラリを適量採取し、真空乾燥してセリウム水酸化物粒子を単離した後に、純水で充分に洗浄して試料を得た。得られた試料について、FT-IR ATR法による測定を行ったところ、水酸化物イオン(OH)に基づくピークの他に、硝酸イオン(NO )に基づくピークが観測された。また、同試料について、窒素に対するXPS(N-XPS)測定を行ったところ、NH に基づくピークは観測されず、硝酸イオンに基づくピークが観測された。これらの結果より、セリウム水酸化物粒子は、セリウム元素に結合した硝酸イオンを有する粒子を少なくとも一部含有することが確認された。また、セリウム元素に結合した水酸化物イオンを有する粒子がセリウム水酸化物粒子の少なくとも一部に含有されることから、セリウム水酸化物粒子がセリウム水酸化物を含有することが確認された。これらの結果より、セリウムの水酸化物が、セリウム元素に結合した水酸化物イオンを含むことが確認された。
(吸光度及び光透過率の測定)
 セリウム水酸化物スラリを適量採取し、粒子の含有量が0.0065質量%(65ppm)となるように水で希釈して測定サンプル(水分散液)を得た。この測定サンプルを1cm角のセルに約4mL入れ、株式会社日立製作所製の分光光度計(装置名:U3310)内にセルを設置した。波長200~600nmの範囲で吸光度測定を行い、波長290nmの光に対する吸光度と、波長450~600nmの光に対する吸光度とを測定した。波長290nmの光に対する吸光度は1.192であり、波長450~600nmの光に対する吸光度は0.010未満であった。
 セリウム水酸化物スラリ(粒子の含有量:1.0質量%)を1cm角のセルに約4mL入れ、株式会社日立製作所製の分光光度計(装置名:U3310)内にセルを設置した。波長200~600nmの範囲で吸光度測定を行い、波長400nmの光に対する吸光度と、波長500nmの光に対する光透過率とを測定した。波長400nmの光に対する吸光度は2.25であり、波長500nmの光に対する光透過率は92%/cmであった。
<CMP研磨液の調製>
(実施例1)
 2枚羽根の撹拌羽根を用いて500rpmの回転数で撹拌しながら、前記セリウム酸化物スラリ600gと、前記セリウム水酸化物スラリ600gと、イオン交換水800gとを30分間混合して混合液1を調製した。300gの混合液1と、600gのイオン交換水とを混合して、セリウム酸化物粒子と、当該セリウム酸化物粒子に接触したセリウム水酸化物粒子と、を含む複合粒子を含有するCMP研磨液(負のゼータ電位を有するセリウム酸化物粒子の含有量:0.5質量%、正のゼータ電位を有するセリウム水酸化物粒子の含有量:0.1質量%、pH:4.0)を調製した。
(実施例2)
 実施例1の混合液1に和光純薬工業株式会社製のポリエチレングリコールPEG600(重量平均分子量:600)を15g添加して混合液2Aを調製した。300gの混合液2Aと、600gのイオン交換水とを混合してCMP研磨液(負のゼータ電位を有するセリウム酸化物粒子の含有量:0.5質量%、正のゼータ電位を有するセリウム水酸化物粒子の含有量:0.1質量%、pH:4.0)を調製した。
(実施例3)
 実施例1の混合液1に和光純薬工業株式会社製のポリエチレングリコールPEG4000(重量平均分子量:4000)を15g添加して混合液2Bを調製した。300gの混合液2Bと、600gのイオン交換水とを混合してCMP研磨液(負のゼータ電位を有するセリウム酸化物粒子の含有量:0.5質量%、正のゼータ電位を有するセリウム水酸化物粒子の含有量:0.1質量%、pH:4.0)を調製した。
(実施例4)
 実施例1の混合液1に阪本薬品工業株式会社製のPGL#750(ポリグリセリン(水溶性高分子)、重量平均分子量:750)を15g添加して混合液2Cを調製した。300gの混合液2Cと、600gのイオン交換水とを混合してCMP研磨液(負のゼータ電位を有するセリウム酸化物粒子の含有量:0.5質量%、正のゼータ電位を有するセリウム水酸化物粒子の含有量:0.1質量%、pH:4.0)を調製した。
(比較例1)
 セリウム酸化物スラリ100gと、イオン交換水900gとを混合してCMP研磨液(負のゼータ電位を有するセリウム酸化物粒子の含有量:0.5質量%、pH:4.0)を調製した。
(比較例2)
 セリウム水酸化物スラリ100gと、イオン交換水900gとを混合してCMP研磨液(正のゼータ電位を有するセリウム水酸化物粒子の含有量:0.1質量%、pH:4.0)を調製した。
<砥粒の平均粒径>
 マイクロトラック・ベル社製の商品名:マイクロトラックMT3300EXII内に実施例1~4及び比較例1のCMP研磨液を適量投入し、砥粒の平均粒径の測定を行った。表示された平均粒径値を平均粒径(平均二次粒径)として得た。測定結果を表1に示す。実施例1~4及び比較例1の平均粒径は340~342nmであった。
 ベックマンコールター株式会社製の商品名:N5を用いて比較例2のCMP研磨液における砥粒(セリウム水酸化物粒子)の平均粒径(平均二次粒径)を測定した。比較例2の平均粒径は25nmであった。
<砥粒のゼータ電位>
 ベックマンコールター株式会社製の商品名:DelsaNano C内に適量のCMP研磨液を投入した。25℃において測定を2回行い、表示されたゼータ電位の平均値を採用した。測定結果を表1に示す。実施例1~4及び比較例2の砥粒のゼータ電位は50~55mVであり、比較例1のゼータ電位は-62mVであった。
<CMP評価>
 前記CMP研磨液を用いて下記研磨条件で被研磨基板を研磨した。
[CMP研磨条件]
 研磨装置:F-REX300(株式会社荏原製作所製)
 CMP研磨液の流量:250mL/分
 被研磨基板:パターンが形成されていないブランケットウエハとして、プラズマCVD法で形成された厚さ2μmの酸化珪素膜をシリコン基板上に有する被研磨基板を用いた。
 研磨パッド:独立気泡を有する発泡ポリウレタン樹脂(ローム・アンド・ハース・ジャパン株式会社製、型番IC1010)
 研磨圧力:30kPa(4.2psi)
 被研磨基板及び研磨定盤の回転数:被研磨基板/研磨定盤=93/87rpm
 研磨時間:0.5分(30秒)
 ウエハの洗浄:CMP処理後、超音波を印加しながら水で洗浄した後、スピンドライヤで乾燥させた。
 前記条件で研磨及び洗浄した酸化珪素膜の研磨速度(SiORR)を下記式より求めた。なお、研磨前後における酸化珪素膜の膜厚差は、光干渉式膜厚測定装置(フィルメトリクス社製、商品名:F80)を用いて求めた。測定結果を表1に示す。
 研磨速度(RR)=(研磨前後での酸化珪素膜の膜厚差[nm])/(研磨時間:0.5[分])
Figure JPOXMLDOC01-appb-T000001

Claims (6)

  1.  砥粒と、液状媒体と、を含有し、
     前記砥粒が、第1の粒子と、当該第1の粒子に接触した第2の粒子と、を含み、
     前記第1の粒子がセリアを含有し、
     前記第1の粒子のゼータ電位が負であり、
     前記第2の粒子が4価金属元素の水酸化物を含有し、
     前記第2の粒子のゼータ電位が正である、スラリ。
  2.  前記4価金属元素の水酸化物が、希土類金属元素の水酸化物及びジルコニウムの水酸化物からなる群より選択される少なくとも一種を含む、請求項1に記載のスラリ。
  3.  前記砥粒のゼータ電位が+10mV以上である、請求項1又は2に記載のスラリ。
  4.  前記砥粒の含有量が0.01~10質量%である、請求項1~3のいずれか一項に記載のスラリ。
  5.  酸化珪素を含む被研磨面を研磨するために使用される、請求項1~4のいずれか一項に記載のスラリ。
  6.  請求項1~5のいずれか一項に記載のスラリを用いて被研磨面を研磨する工程を備える、研磨方法。
PCT/JP2017/012428 2017-03-27 2017-03-27 スラリ及び研磨方法 WO2018179064A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020197027411A KR102278257B1 (ko) 2017-03-27 2017-03-27 슬러리 및 연마 방법
JP2019508363A JP6708994B2 (ja) 2017-03-27 2017-03-27 スラリ及び研磨方法
US16/497,512 US11566150B2 (en) 2017-03-27 2017-03-27 Slurry and polishing method
SG11201908858S SG11201908858SA (en) 2017-03-27 2017-03-27 Slurry and polishing method
CN201780088760.4A CN110462791B (zh) 2017-03-27 2017-03-27 悬浮液和研磨方法
PCT/JP2017/012428 WO2018179064A1 (ja) 2017-03-27 2017-03-27 スラリ及び研磨方法
TW107109353A TWI768008B (zh) 2017-03-27 2018-03-20 研漿以及研磨方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/012428 WO2018179064A1 (ja) 2017-03-27 2017-03-27 スラリ及び研磨方法

Publications (1)

Publication Number Publication Date
WO2018179064A1 true WO2018179064A1 (ja) 2018-10-04

Family

ID=63674621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012428 WO2018179064A1 (ja) 2017-03-27 2017-03-27 スラリ及び研磨方法

Country Status (7)

Country Link
US (1) US11566150B2 (ja)
JP (1) JP6708994B2 (ja)
KR (1) KR102278257B1 (ja)
CN (1) CN110462791B (ja)
SG (1) SG11201908858SA (ja)
TW (1) TWI768008B (ja)
WO (1) WO2018179064A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020065723A1 (ja) * 2018-09-25 2021-08-30 昭和電工マテリアルズ株式会社 スラリ及び研磨方法
US20220119270A1 (en) * 2020-10-16 2022-04-21 Research & Business Foundation Sungkyunkwan University Ceria nanoparticles and ceria nanoparticles preparation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102679084B1 (ko) * 2021-08-30 2024-06-27 주식회사 케이씨텍 산화세륨 연마입자 및 연마 슬러리 조성물

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269170A (ja) * 1999-03-18 2000-09-29 Toshiba Corp 半導体装置の製造に用いる化学機械研磨用水系分散体
WO2002067309A1 (fr) * 2001-02-20 2002-08-29 Hitachi Chemical Co., Ltd. Pate a polir et procede de polissage d'un substrat
JP2006306924A (ja) * 2005-04-26 2006-11-09 Kao Corp 研磨液組成物
JP2010153782A (ja) * 2008-11-20 2010-07-08 Hitachi Chem Co Ltd 基板の研磨方法

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941430B1 (ja) 1970-08-25 1974-11-08
JP3278532B2 (ja) 1994-07-08 2002-04-30 株式会社東芝 半導体装置の製造方法
TW311905B (ja) 1994-07-11 1997-08-01 Nissan Chemical Ind Ltd
WO1997029510A1 (fr) 1996-02-07 1997-08-14 Hitachi Chemical Company, Ltd. Abrasif d'oxyde de cerium, microplaquette semi-conductrice, dispositif semi-conducteur, procede pour les produire et procede pour polir les substrats
JPH10106994A (ja) 1997-01-28 1998-04-24 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法
EP1036836B1 (en) * 1999-03-18 2004-11-03 Kabushiki Kaisha Toshiba Aqueous dispersion for chemical mechanical polishing
TWI272249B (en) * 2001-02-27 2007-02-01 Nissan Chemical Ind Ltd Crystalline ceric oxide sol and process for producing the same
US6821897B2 (en) 2001-12-05 2004-11-23 Cabot Microelectronics Corporation Method for copper CMP using polymeric complexing agents
US7071105B2 (en) 2003-02-03 2006-07-04 Cabot Microelectronics Corporation Method of polishing a silicon-containing dielectric
US6939211B2 (en) 2003-10-09 2005-09-06 Micron Technology, Inc. Planarizing solutions including abrasive elements, and methods for manufacturing and using such planarizing solutions
US7112123B2 (en) 2004-06-14 2006-09-26 Amcol International Corporation Chemical-mechanical polishing (CMP) slurry containing clay and CeO2 abrasive particles and method of planarizing surfaces
US20050119360A1 (en) 2003-11-28 2005-06-02 Kabushiki Kaisha Kobe Seiko Sho Method for producing porous material
JP2005353681A (ja) * 2004-06-08 2005-12-22 Hitachi Chem Co Ltd 半導体絶縁膜用cmp研磨剤、その製造方法及び基板の研磨方法
JP2006249129A (ja) 2005-03-08 2006-09-21 Hitachi Chem Co Ltd 研磨剤の製造方法及び研磨剤
US7655057B2 (en) 2005-08-31 2010-02-02 Fujimi Incorporated Polishing composition and polishing method
JP5105869B2 (ja) 2006-04-27 2012-12-26 花王株式会社 研磨液組成物
JP2008112990A (ja) 2006-10-04 2008-05-15 Hitachi Chem Co Ltd 研磨剤及び基板の研磨方法
JP5281758B2 (ja) 2007-05-24 2013-09-04 ユシロ化学工業株式会社 研磨用組成物
KR101184731B1 (ko) 2008-03-20 2012-09-20 주식회사 엘지화학 산화세륨 제조 방법, 이로부터 얻어진 산화세륨 및 이를 포함하는 cmp슬러리
TWI546373B (zh) 2008-04-23 2016-08-21 日立化成股份有限公司 研磨劑及其製造方法、基板研磨方法以及研磨劑套組及其製造方法
JP5287174B2 (ja) 2008-04-30 2013-09-11 日立化成株式会社 研磨剤及び研磨方法
DE102008002321A1 (de) * 2008-06-10 2009-12-17 Evonik Degussa Gmbh Ceroxid und partikuläres Additiv enthaltende Dispersion
JP2010153781A (ja) 2008-11-20 2010-07-08 Hitachi Chem Co Ltd 基板の研磨方法
KR101268615B1 (ko) * 2008-12-11 2013-06-04 히타치가세이가부시끼가이샤 Cmp용 연마액 및 이것을 이용한 연마 방법
JP5418590B2 (ja) 2009-06-09 2014-02-19 日立化成株式会社 研磨剤、研磨剤セット及び基板の研磨方法
WO2011007588A1 (ja) 2009-07-16 2011-01-20 日立化成工業株式会社 パラジウム研磨用cmp研磨液及び研磨方法
WO2011048889A1 (ja) 2009-10-22 2011-04-28 日立化成工業株式会社 研磨剤、濃縮1液式研磨剤、2液式研磨剤及び基板の研磨方法
JP2011142284A (ja) 2009-12-10 2011-07-21 Hitachi Chem Co Ltd Cmp研磨液、基板の研磨方法及び電子部品
CN102666014B (zh) * 2010-03-12 2017-10-31 日立化成株式会社 悬浮液、研磨液套剂、研磨液以及使用它们的基板的研磨方法
RU2577281C2 (ru) 2010-09-08 2016-03-10 Басф Се Водная полирующая композиция и способ химико-механического полирования материалов подложек для электрических, механических и оптических устройств
WO2012070542A1 (ja) 2010-11-22 2012-05-31 日立化成工業株式会社 スラリー、研磨液セット、研磨液、基板の研磨方法及び基板
US9039796B2 (en) 2010-11-22 2015-05-26 Hitachi Chemical Company, Ltd. Method for producing abrasive grains, method for producing slurry, and method for producing polishing liquid
CN103500706A (zh) 2010-11-22 2014-01-08 日立化成株式会社 悬浮液、研磨液套剂、研磨液、基板的研磨方法及基板
KR20140005963A (ko) 2011-01-25 2014-01-15 히타치가세이가부시끼가이샤 Cmp 연마액 및 그의 제조 방법, 복합 입자의 제조 방법, 및 기체의 연마 방법
JP2012186339A (ja) 2011-03-07 2012-09-27 Hitachi Chem Co Ltd 研磨液及びこの研磨液を用いた基板の研磨方法
JP2015088495A (ja) 2012-02-21 2015-05-07 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
US9932497B2 (en) 2012-05-22 2018-04-03 Hitachi Chemical Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
SG11201501334RA (en) * 2012-08-30 2015-05-28 Hitachi Chemical Co Ltd Polishing agent, polishing agent set and method for polishing base
JP2014060205A (ja) 2012-09-14 2014-04-03 Fujimi Inc 研磨用組成物
JP6139975B2 (ja) 2013-05-15 2017-05-31 株式会社フジミインコーポレーテッド 研磨用組成物
US10155886B2 (en) 2013-06-12 2018-12-18 Hitachi Chemical Company, Ltd. Polishing liquid for CMP, and polishing method
WO2014208414A1 (ja) 2013-06-27 2014-12-31 コニカミノルタ株式会社 酸化セリウム研磨材、酸化セリウム研磨材の製造方法及び研磨加工方法
US9340706B2 (en) 2013-10-10 2016-05-17 Cabot Microelectronics Corporation Mixed abrasive polishing compositions
WO2015052988A1 (ja) 2013-10-10 2015-04-16 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
JP6223786B2 (ja) 2013-11-12 2017-11-01 花王株式会社 硬脆材料用研磨液組成物
US10030172B2 (en) 2013-12-26 2018-07-24 Hitachi Chemical Company, Ltd. Abrasive, abrasive set, and method for polishing substrate
JP6360311B2 (ja) 2014-01-21 2018-07-18 株式会社フジミインコーポレーテッド 研磨用組成物およびその製造方法
KR102298256B1 (ko) * 2014-03-20 2021-09-07 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물, 연마 방법 및 기판의 제조 방법
CN106471090A (zh) 2014-07-09 2017-03-01 日立化成株式会社 Cmp用研磨液和研磨方法
JP6435689B2 (ja) 2014-07-25 2018-12-12 Agc株式会社 研磨剤と研磨方法、および研磨用添加液
CN106661429B (zh) 2014-08-26 2019-07-05 凯斯科技股份有限公司 抛光浆料组合物
JP2016069535A (ja) 2014-09-30 2016-05-09 株式会社フジミインコーポレーテッド 研磨用組成物及びその製造方法並びに研磨方法
US9422455B2 (en) 2014-12-12 2016-08-23 Cabot Microelectronics Corporation CMP compositions exhibiting reduced dishing in STI wafer polishing
JP2016154208A (ja) 2015-02-12 2016-08-25 旭硝子株式会社 研磨剤、研磨方法および半導体集積回路装置の製造方法
WO2016136447A1 (ja) * 2015-02-26 2016-09-01 堺化学工業株式会社 負帯電性基板の研磨方法、及び、高表面平滑性の負帯電性基板の製造方法
US10946494B2 (en) 2015-03-10 2021-03-16 Showa Denko Materials Co., Ltd. Polishing agent, stock solution for polishing agent, and polishing method
JP6570382B2 (ja) 2015-09-09 2019-09-04 デンカ株式会社 研磨用シリカ添加剤及びそれを用いた方法
CN107949615B (zh) 2015-09-09 2023-08-04 株式会社力森诺科 研磨液、研磨液套剂和基体的研磨方法
KR101737938B1 (ko) 2015-12-15 2017-05-19 주식회사 케이씨텍 다기능성 연마 슬러리 조성물
KR101761789B1 (ko) 2015-12-24 2017-07-26 주식회사 케이씨텍 첨가제 조성물 및 이를 포함하는 포지티브 연마 슬러리 조성물
CN108603076A (zh) 2016-02-16 2018-09-28 3M创新有限公司 抛光***以及制备和使用抛光***的方法
JP2017203076A (ja) 2016-05-10 2017-11-16 日立化成株式会社 Cmp研磨剤及びこれを用いた研磨方法
US20190256742A1 (en) 2016-07-15 2019-08-22 Fujimi Incorporated Polishing composition, method for producing polishing composition, and polishing method
KR101823083B1 (ko) 2016-09-07 2018-01-30 주식회사 케이씨텍 표면개질된 콜로이달 세리아 연마입자, 그의 제조방법 및 그를 포함하는 연마 슬러리 조성물
JP6720791B2 (ja) 2016-09-13 2020-07-08 Agc株式会社 研磨剤と研磨方法、および研磨用添加液
KR102619722B1 (ko) 2016-10-27 2024-01-02 삼성디스플레이 주식회사 트랜지스터 표시판의 제조 방법 및 이에 이용되는 연마 슬러리
SG11202001013YA (en) 2017-08-14 2020-03-30 Hitachi Chemical Co Ltd Polishing liquid, polishing liquid set and polishing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269170A (ja) * 1999-03-18 2000-09-29 Toshiba Corp 半導体装置の製造に用いる化学機械研磨用水系分散体
WO2002067309A1 (fr) * 2001-02-20 2002-08-29 Hitachi Chemical Co., Ltd. Pate a polir et procede de polissage d'un substrat
JP2006306924A (ja) * 2005-04-26 2006-11-09 Kao Corp 研磨液組成物
JP2010153782A (ja) * 2008-11-20 2010-07-08 Hitachi Chem Co Ltd 基板の研磨方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020065723A1 (ja) * 2018-09-25 2021-08-30 昭和電工マテリアルズ株式会社 スラリ及び研磨方法
US20220119270A1 (en) * 2020-10-16 2022-04-21 Research & Business Foundation Sungkyunkwan University Ceria nanoparticles and ceria nanoparticles preparation method

Also Published As

Publication number Publication date
KR20190120285A (ko) 2019-10-23
JP6708994B2 (ja) 2020-06-10
US11566150B2 (en) 2023-01-31
US20210207002A1 (en) 2021-07-08
SG11201908858SA (en) 2019-10-30
TW201840765A (zh) 2018-11-16
CN110462791A (zh) 2019-11-15
JPWO2018179064A1 (ja) 2019-12-19
KR102278257B1 (ko) 2021-07-15
TWI768008B (zh) 2022-06-21
CN110462791B (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
JP6107826B2 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
JP6966000B2 (ja) スラリ及び研磨方法
WO2014034379A1 (ja) 研磨剤、研磨剤セット及び基体の研磨方法
WO2018179787A1 (ja) 研磨液、研磨液セット及び研磨方法
JP2017149798A (ja) 研磨液、研磨液セット及び基体の研磨方法
WO2019182061A1 (ja) 研磨液、研磨液セット及び研磨方法
WO2018179064A1 (ja) スラリ及び研磨方法
JP2016003278A (ja) 研磨液、研磨液セット及び基体の研磨方法
JP6888744B2 (ja) スラリ及び研磨方法
JP6947216B2 (ja) スラリ及び研磨方法
JP6753518B2 (ja) 研磨液、研磨液セット、添加液及び研磨方法
JP2017220588A (ja) 研磨液、研磨液セット及び基体の研磨方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902613

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508363

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197027411

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902613

Country of ref document: EP

Kind code of ref document: A1