WO2018179038A1 - Semiconductor device production method, program and substrate processing device - Google Patents

Semiconductor device production method, program and substrate processing device Download PDF

Info

Publication number
WO2018179038A1
WO2018179038A1 PCT/JP2017/012314 JP2017012314W WO2018179038A1 WO 2018179038 A1 WO2018179038 A1 WO 2018179038A1 JP 2017012314 W JP2017012314 W JP 2017012314W WO 2018179038 A1 WO2018179038 A1 WO 2018179038A1
Authority
WO
WIPO (PCT)
Prior art keywords
active species
ratio
hydrogen
gas
oxygen
Prior art date
Application number
PCT/JP2017/012314
Other languages
French (fr)
Japanese (ja)
Inventor
雄一郎 竹島
雅則 中山
克典 舟木
康寿 坪田
博登 井川
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to SG11201907092YA priority Critical patent/SG11201907092YA/en
Priority to PCT/JP2017/012314 priority patent/WO2018179038A1/en
Priority to CN201780088328.5A priority patent/CN110431653B/en
Priority to JP2019508339A priority patent/JP6748779B2/en
Priority to KR1020197022040A priority patent/KR102315002B1/en
Publication of WO2018179038A1 publication Critical patent/WO2018179038A1/en
Priority to US16/528,048 priority patent/US10796900B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • H01L21/02326Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels

Definitions

  • the present invention relates to a semiconductor device manufacturing method, a program, and a substrate processing apparatus.
  • a step of performing a predetermined process such as an oxidation process or a nitridation process on the substrate may be performed as a process of the manufacturing process.
  • Patent Document 1 discloses a substrate processing chamber having a substrate processing space communicating with a plasma generation space, an inductive coupling structure arranged outside the plasma generation space, and a silicon-containing layer formed on the surface of the substrate processing space.
  • a configuration having a substrate mounting table for mounting a substrate having a groove formed thereon and a gas supply unit having an oxygen gas supply system for supplying an oxygen-containing gas to the plasma generation space is disclosed.
  • a film formed on the inner surface of a concave structure such as a trench structure or a hole structure with a high aspect ratio is modified from the film surface to form a modified layer, in the depth direction of the concave structure
  • the thickness of the modified layer is required to have a desired distribution.
  • the thickness of the modified layer in the depth direction of the concave structure has a desired distribution. To improve the electrical characteristics of the device.
  • a process gas including an oxygen-containing gas and a hydrogen-containing gas is excited to generate an oxygen active species and a hydrogen active species, and the oxygen active species and the hydrogen active species are formed into a concave structure.
  • the ratio of the hydrogen active species in the total flow rate of the oxygen active species and the hydrogen active species is greater than a first ratio that maximizes the rate at which the oxide layer is formed at the upper end of the concave structure.
  • the film formed on the inner surface of the concave structure having a high aspect ratio is modified so that the thickness of the modified layer in the depth direction of the concave structure has a desired distribution, so that the electrical Techniques for enhancing properties are provided.
  • FIG. 5 is a diagram schematically showing hydrogen active species and oxygen active species in a hole 304.
  • the ratio of H 2 at a total flow rate of H 2 gas and O 2 gas supplied into the processing chamber is a diagram showing the relationship between the thickness of the oxide layer formed on the upper surface of the planar wafer.
  • A) is a figure which shows the board
  • (B) is the board
  • the total flow rate of the mixed gas of H 2 gas and O 2 gas supplied into the processing chamber is a diagram illustrating a thickness relationship between the oxide layer formed on the planar wafer surface.
  • FIG. 6 is a diagram schematically showing the relationship between the gas flow velocity at the upper end of the hole 304 and the gas flow velocity in the hole 304.
  • (A) is a figure which shows an example of the hole pattern of the aspect-ratio 20
  • (B) is a figure which shows the thickness of the oxide layer of the hole inner surface which concerns on a comparative example.
  • (C) is a figure which shows the thickness of the oxide layer of the hole inner surface which concerns on a present Example.
  • (A) is a diagram showing an example of a hole pattern with an aspect ratio of 20, and (B) shows the flow rate of the mixed gas of H 2 gas and O 2 gas supplied to the processing chamber at 1.0 slm and 0.6 slm. , 2.0 slm is a diagram showing the thickness of the oxide layer on the inner surface of the hole when the oxide layer is formed.
  • the processing apparatus 100 includes a processing furnace 202 that performs plasma processing on the wafer 200.
  • the processing furnace 202 includes a processing container 203 that constitutes a processing chamber 201.
  • the processing container 203 includes a dome-shaped upper container 210 that is a first container and a bowl-shaped lower container 211 that is a second container.
  • the processing chamber 201 is formed by covering the upper container 210 on the lower container 211.
  • a gate valve 244 is provided on the lower side wall of the lower container 211.
  • the gate valve 244 When the gate valve 244 is open, the wafer 200 can be loaded into the processing chamber 201 via the loading / unloading port 245. Alternatively, the wafer 200 can be carried out of the processing chamber 201 via the loading / unloading port 245.
  • the gate valve 244 When the gate valve 244 is closed, the gate valve 244 serves as a gate valve that maintains airtightness in the processing chamber 201.
  • the processing chamber 201 has a plasma generation space 201a around which a coil 212 is provided as will be described later, and a substrate processing space 201b that communicates with the plasma generation space 201a and in which the wafer 200 is processed.
  • the plasma generation space 201a is a space where plasma is generated, and refers to a space above the lower end of the coil 212 (one-dot chain line in FIG. 1) in the processing chamber, for example.
  • the substrate processing space 201b is a space where the substrate is processed with plasma, and is a space below the lower end of the coil 212.
  • a susceptor 217 is disposed as a substrate placement portion on which the wafer 200 is placed.
  • a heater 217b as a heating mechanism is integrally embedded.
  • the heater 217b is configured to be able to heat the surface of the wafer 200 from, for example, about 25 ° C. to about 1000 ° C. when electric power is supplied through the heater power adjustment mechanism 276.
  • the susceptor 217 is electrically insulated from the lower container 211.
  • An impedance adjustment electrode 217c is provided inside the susceptor 217.
  • the impedance adjustment electrode 217c is grounded via an impedance variable mechanism 275 as an impedance adjustment unit.
  • the variable impedance mechanism 275 includes a coil and a variable capacitor. By controlling the inductance and resistance of the coil and the capacitance value of the variable capacitor, the impedance is changed within a range from about 0 ⁇ to the parasitic impedance value of the processing chamber 201. It is configured to be able to. Accordingly, the potential (bias voltage) of the wafer 200 can be controlled via the impedance adjustment electrode 217c and the susceptor 217.
  • the susceptor 217 is provided with a susceptor elevating mechanism 268 that elevates and lowers the susceptor.
  • the susceptor 217 is provided with through holes 217 a, while the bottom surface of the lower container 211 is provided with at least three wafer push-up pins 266 at positions facing the through holes 217 a. When the susceptor 217 is lowered, the wafer push-up pins 266 penetrate the through holes 217a.
  • the susceptor 217, the heater 217b, and the impedance adjustment electrode 217c constitute the substrate mounting portion according to the present embodiment.
  • a gas supply head 236 is provided above the processing chamber 201, that is, above the upper container 210.
  • the gas supply head 236 includes a cap-shaped lid 233, a gas introduction port 234, a buffer chamber 237, an opening 238, a shielding plate 240, and a gas outlet 239, and the reaction gas is introduced into the processing chamber 201. It is configured so that it can be supplied.
  • the buffer chamber 237 has a function as a dispersion space for dispersing the reaction gas introduced from the gas introduction port 234.
  • the gas inlet 234 has a downstream end of a gas supply pipe 232a for supplying hydrogen (H 2 ) gas as a hydrogen-containing gas and a downstream of a gas supply pipe 232b for supplying oxygen (O 2 ) gas as an oxygen-containing gas.
  • the end and a gas supply pipe 232c that supplies nitrogen (N 2 ) gas as an inert gas or a nitrogen-containing gas are connected so as to merge.
  • the gas supply pipe 232a is provided with an H 2 gas supply source 250a, a mass flow controller (MFC) 252a as a flow rate control device, and a valve 253a as an on-off valve in order from the upstream side.
  • MFC mass flow controller
  • the gas supply pipe 232b is provided with an O 2 gas supply source 250b, an MFC 252b, and a valve 253b in this order from the upstream side.
  • the gas supply pipe 232c is provided with an N 2 gas supply source 250c, an MFC 252c, and a valve 253c in order from the upstream side.
  • a valve 243a is provided on the downstream side where the gas supply pipe 232a, the gas supply pipe 232b, and the gas supply pipe 232c merge, and is connected to the upstream end of the gas inlet 234.
  • valves 253a, 253b, 253c, and 243a By opening and closing the valves 253a, 253b, 253c, and 243a, the flow rates of the respective gases are adjusted by the MFCs 252a, 252b, and 252c, and the hydrogen-containing gas, the oxygen-containing gas, A processing gas such as a nitrogen-containing gas can be supplied into the processing chamber 201.
  • the hydrogen supply head 236 (the lid 233, the gas inlet 234, the buffer chamber 237, the opening 238, the shielding plate 240, the gas outlet 239), the gas supply pipe 232a, the MFC 252a, and the valves 253a and 243a are used to provide hydrogen according to the present embodiment.
  • a contained gas supply system is configured.
  • the gas supply head 236, the gas supply pipe 232b, the MFC 252b, and the valves 253b and 243a constitute the oxygen-containing gas supply system according to this embodiment.
  • the nitrogen-containing gas supply system is configured by the gas supply head 236, the gas supply pipe 232c, the MFC 252c, and the valves 253c and 243a.
  • a gas supply unit is configured by a hydrogen-containing gas supply system, an oxygen-containing gas supply system, and a nitrogen-containing gas supply system.
  • a gas exhaust port 235 for exhausting the reaction gas from the processing chamber 201 is provided on the side wall of the lower container 211.
  • the upstream end of the gas exhaust pipe 231 is connected to the gas exhaust port 235.
  • the gas exhaust pipe 231 is provided with an APC (Auto Pressure Controller) valve 242 as a pressure regulator (pressure adjusting unit), a valve 243b, and a vacuum pump 246 as a vacuum exhaust device in order from the upstream side.
  • APC Auto Pressure Controller
  • the gas exhaust port 235, the gas exhaust pipe 231, the APC valve 242, and the valve 243b constitute the exhaust unit according to the present embodiment.
  • a spiral resonance coil 212 is provided on the outer periphery of the processing chamber 201, that is, outside the side wall of the upper container 210 so as to surround the processing chamber 201.
  • An RF sensor 272, a high frequency power supply 273 and a frequency matching unit 274 are connected to the resonance coil 212.
  • the high frequency power supply 273 supplies high frequency power to the resonance coil 212.
  • the RF sensor 272 is provided on the output side of the high frequency power supply 273.
  • the RF sensor 272 monitors information on high-frequency traveling waves and reflected waves that are supplied.
  • the frequency matching unit (frequency control unit) 274 controls the high frequency power supply 273 so as to minimize the reflected wave based on the information of the reflected wave monitored by the RF sensor 272, and performs frequency matching.
  • Both ends of the resonance coil 212 are electrically grounded, but at least one end of the resonance coil 212 finely adjusts the electrical length of the resonance coil during initial installation of the apparatus or when processing conditions are changed, In order to make the resonance characteristic substantially equal to that of the high-frequency power source 273, it is grounded via the movable tap 213.
  • Reference numeral 214 in FIG. 1 indicates the other fixed ground.
  • a power feeding unit is configured by a movable tap 215 between the grounded ends of the resonance coil 212. ing.
  • the shielding plate 223 shields the leakage of electromagnetic waves to the outside of the resonance coil 212 and forms a capacitance component necessary for constituting a resonance circuit between the resonance coil 212 and the resonance coil 212.
  • the resonance coil 212, the RF sensor 272, and the frequency matching unit 274 constitute the plasma generation unit according to the present embodiment.
  • the resonance coil 212 forms a standing wave of a predetermined wavelength, the winding diameter, the winding pitch, and the number of turns are set so as to resonate in all wavelength modes. That is, the electrical length of the resonance coil 212 is set to an integral multiple of one wavelength at a predetermined frequency of the power supplied from the high frequency power supply 273.
  • the resonance coil 212 has a frequency of 800 kHz to 50 MHz, a power of 0.5 to 5 kW, and more preferably 1.
  • the plasma generating space has an effective cross-sectional area of 50 to 300 mm 2 and a coil diameter of 200 to 500 mm so that a magnetic field of about 0.01 to 10 gauss can be generated by a high frequency power of 0 to 4.0 kW. It is wound about 2 to 60 times on the outer peripheral side of the room forming 201a.
  • the high frequency power supply 273 includes a power supply control means including a high frequency oscillation circuit and a preamplifier for defining an oscillation frequency and an output, and an amplifier for amplifying to a predetermined output.
  • the power control means controls the amplifier based on output conditions relating to the frequency and power set in advance through the operation panel, and the amplifier supplies constant high frequency power to the resonance coil 212 via the transmission line.
  • the frequency matching unit 274 detects the reflected wave power from the resonance coil 212 when plasma is generated, and the preset frequency is set so that the reflected wave power is minimized. Increase or decrease the oscillation frequency.
  • the frequency matching unit 274 includes a frequency control circuit that corrects a preset oscillation frequency, and detects the reflected wave power in the transmission line on the output side of the amplifier of the high frequency power supply 273, An RF sensor 272 that feeds back a voltage signal to the frequency control circuit is interposed.
  • the frequency control circuit oscillates at the no-load resonance frequency of the resonance coil 212 before plasma lighting, and oscillates at a frequency obtained by increasing or decreasing the preset frequency so that the reflected power is minimized after plasma lighting. As a result, a frequency signal is given to the high frequency power supply 273 so that the reflected wave in the transmission line becomes zero.
  • the resonance coil 212 is more accurate.
  • the controller 221 as a control unit is configured as a computer including a CPU (Central Processing Unit) 221a, a RAM (Random Access Memory) 221b, a storage device 221c, and an I / O port 221d.
  • the RAM 221b, the storage device 221c, and the I / O port 221d are configured to exchange data with the CPU 221a via the internal bus 221e.
  • a touch panel, a mouse, a keyboard, an operation terminal, or the like may be connected to the controller 221 as the input / output device 225.
  • a display or the like may be connected to the controller 221 as a display unit.
  • the storage device 221c includes, for example, a flash memory, an HDD (Hard Disk Drive), a CD-ROM, and the like.
  • a control program that controls the operation of the substrate processing apparatus 100, a process recipe that describes the procedure and conditions of the substrate processing, and the like are stored in a readable manner.
  • the process recipe is a combination of functions so that a predetermined result can be obtained by causing the controller 221 to execute each procedure in a substrate processing step to be described later, and functions as a program.
  • the RAM 221b is configured as a memory area (work area) in which a program or data read by the CPU 221a is temporarily stored.
  • the I / O port 221d includes the above-described MFCs 252a to 252c, valves 253a to 253c, 243a and 243b, gate valve 244, APC valve 242, vacuum pump 246, heater 217b, RF sensor 272, high frequency power supply 273, frequency matching unit 274, The susceptor elevating mechanism 268 and the impedance variable mechanism 275 are connected.
  • the CPU 221a is configured to read and execute a control program from the storage device 221c, and to read a process recipe from the storage device 221c in response to an operation command input from the input / output device 225 or the like. As shown in FIG. 1, the CPU 221a adjusts the opening degree of the APC valve 242, the opening / closing operation of the valve 243b, and the vacuum through the I / O port 221d and the signal line A in accordance with the contents of the read process recipe.
  • the pump 246 is started and stopped, the lifting / lowering operation of the susceptor lifting / lowering mechanism 268 through the signal line B, the power supply amount adjusting operation (temperature adjusting operation) to the heater 217b based on the temperature sensor by the heater power adjusting mechanism 276 through the signal line C, The impedance value adjusting operation by the impedance variable mechanism 275, the opening / closing operation of the gate valve 244 through the signal line D, the operation of the RF sensor 272, the frequency matching unit 274 and the high frequency power supply 273 through the signal line E, and the MFCs 252a to 252c through the signal line F. Adjusting the flow rate of various gases by the valve and valve 2 It is configured to control the opening / closing operations of 53a to 253c and 243a, respectively.
  • FIG. 4A shows a substrate having a trench structure processed in the substrate processing step according to this embodiment
  • FIG. 4B shows a hole (hole) processed in the substrate processing step according to this embodiment.
  • FIG. 5 is a diagram illustrating an example of the configuration of the substrate illustrated in FIG. 4, and illustrates an example of a cross section along the depth direction of the trench structure or the hole structure.
  • the substrate processing process according to this embodiment is performed by the above-described processing apparatus 100 as one process of manufacturing a semiconductor device such as a flash memory. In the following description, the operation of each part constituting the processing apparatus 100 is controlled by the controller 221.
  • a pattern having a three-dimensional structure as shown in FIG. 5 is formed on a substrate having a concave structure such as a trench structure or a hole structure processed in the substrate processing step according to the present embodiment.
  • the structure is, for example, a hole-shaped 3D-NAND structure having an aspect ratio (that is, a ratio of depth to hole diameter) of 20 or more, and is formed by the following procedure.
  • the aspect ratio is not limited to that in the hole structure, but may include, for example, the ratio of the depth to the trench width in the trench structure.
  • titanium nitride films 302 and silicon oxide films 300a as metal-containing films are alternately and continuously stacked on a wafer 200 made of single crystal silicon (c-Si) or the like. Then, etching is performed from the top to the bottom of the laminated film in a hole shape (see FIG. 6A).
  • a silicon oxide film 300b is formed on the inner surface of the hole 304 (see FIG. 6B).
  • a silicon nitride film 306 is formed on the inner surface of the silicon oxide film 300b (see FIG. 6C).
  • a silicon oxide film 300c is formed on the inner surface of the silicon nitride film 306 (see FIG. 6D).
  • a polysilicon film 308 is formed on the inner surface of the silicon oxide film 300c (see FIG. 6E).
  • a silicon oxide film 300d is filled inside the polysilicon film 308 to form a hole-like 3D-NAND structure (see FIG. 6F), and this polysilicon film 308 is used as a channel portion.
  • the exposed surface of the silicon oxide film 300a at the bottom of the hole 304 can be damaged, resulting in a damaged layer.
  • the damage of the silicon oxide film mainly means that the oxygen component escapes from the film and does not have a desired composition.
  • the damaged silicon oxide film has a reduced function as an insulating film. Since the etching is performed by drawing ions with a bias, the degree of damage increases toward the bottom of the hole, and the damage at the bottom is most noticeable.
  • the silicon oxide film which is an insulating film
  • the electrical characteristics such as the withstand voltage characteristics change, so if there is significant damage to the silicon oxide film at the bottom, the silicon oxide film in other parts As a result, variations in withstand voltage characteristics occur.
  • an oxidation process is performed to repair damage, for example, the silicon oxide film in other parts that are not damaged (or less) is excessively oxidized, or oxidation of a metal-containing film such as a metal gate is also advanced. There are times when it falls. Accordingly, it is desirable to locally (selectively) oxidize only the vicinity of the bottom of the hole 304 in order to repair the damaged silicon oxide film.
  • the film thickness of the silicon oxide film 300c is increased above the hole 304 due to the microloading effect.
  • the film thickness of the silicon oxide film 300c may become thinner as it approaches the bottom of the hole. That is, the thickness of the silicon oxide film may be nonuniform between the upper and lower portions of the hole 304. If the film thickness of the silicon oxide film 300c is not uniform between the upper part and the lower part of the hole 304, variations in electrical characteristics such as withstand voltage characteristics occur.
  • the inner surface of the hole 304 is oxidized.
  • the silicon nitride film 306 which is the base film of the silicon oxide film 300c is subjected to an oxidation process such that the closer to the bottom of the hole 304, the greater the thickness of the oxide layer formed by the oxidation process.
  • the thickness of the silicon oxide film 300c including the oxide layer formed in (1) can be corrected so as to be nearly uniform.
  • a silicon oxide film which is a film formed on the inner surface of a concave structure such as a hole structure having a high aspect ratio of 20 or more or a trench structure, or the like is provided.
  • the silicon nitride film as the base film is modified (oxidized) from the film surface exposed in the internal space of the hole 304, and the oxide layer is formed so that the thickness of the oxidized layer by the modification process increases toward the bottom surface of the hole 304. Form.
  • damage to the silicon oxide film at the bottom of the hole 304 can be repaired, and variations in the oxide film thickness formed on the inner surface of the hole 304 can be corrected.
  • the aspect ratio of the hole 304 is 20.
  • the wafer 200 on which the hole 304 to be repaired is formed is carried into the processing chamber 201.
  • the susceptor elevating mechanism 268 lowers the susceptor 217 and causes the wafer push-up pins 266 to protrude from the through hole 217a of the susceptor 217 by a predetermined height from the surface of the susceptor 217.
  • the gate valve 244 is opened, and the wafer 200 is loaded into the processing chamber 201.
  • the wafer 200 is supported in a horizontal posture on the wafer push-up pins 266 protruding from the surface of the susceptor 217.
  • the susceptor elevating mechanism 268 raises the susceptor 217 so as to be at a predetermined position between the lower end 203a of the resonance coil 212 and the upper end 245a of the loading / unloading port 245.
  • the wafer 200 is supported on the upper surface of the susceptor 217.
  • the heater 217b is preheated, and the wafer 200 loaded thereon is held on the susceptor 217 in which the heater 217b is embedded, so that the temperature is within a range of 100 to 1000 ° C., for example, 700 ° C.
  • the wafer 200 is heated.
  • the inside of the processing chamber 201 is evacuated by the vacuum pump 246 through the gas exhaust pipe 231 so that the pressure in the processing chamber 201 is 0.5 Pa or more and 250 Pa or less, more preferably 10 Pa or more.
  • the predetermined value is within a range of 200 Pa or less.
  • the vacuum pump 246 is operated until at least a substrate unloading step S150 described later is completed.
  • a gas containing hydrogen atoms and oxygen atoms is supplied into the processing chamber 201 as a processing gas, and plasma processing is performed on the inner surface of the hole 304 by plasma-exciting the gas.
  • a mixed gas of H 2 gas that is hydrogen-containing gas and O 2 gas that is oxygen-containing gas is supplied.
  • valves 243a, 253a, and 253b are opened, and H 2 gas is supplied into the processing chamber 201 through the buffer chamber 237 while controlling the flow rate with the MFC 252a.
  • O 2 gas is supplied into the processing chamber 201 through the buffer chamber 237 while controlling the flow rate with the MFC 252b.
  • the reforming process is performed by increasing the ratio of H 2 gas in the mixed gas supplied into the processing chamber 201 to 10 to 50%, the upper end portion of the hole 304 in the inner space of the hole 304
  • the ratio of the active hydrogen species generated from the mixed gas decreases as the distance from (that is, the hole opening) toward the bottom surface in the hole 304 decreases.
  • a desired distribution of an oxidation rate which is a rate at which an oxide layer is formed on the surface of the film to be modified, in a direction (depth direction) from the upper end portion of the hole toward the bottom surface.
  • the ratio of hydrogen active species and oxygen active species supplied to the surface of the wafer 200 is controlled.
  • the thickness distribution of the oxide layer by the reforming process is controlled to be a desired distribution in the hole depth direction.
  • the flow ratio of the mixed gas or the ratio of hydrogen active species to oxygen active species
  • the oxidation rate or the thickness of the oxide layer
  • the ratio of the supply amount of active hydrogen species and active oxygen species (flow rate of active species) at the bottom of the hole is particularly around 5:95 (that is, the ratio of active hydrogen species in the total supply amount is around 5%).
  • the oxidation rate at the bottom of the hole is maximized.
  • the amount of H 2 gas introduced into the processing chamber 201 is 200 sccm
  • the amount of O 2 gas introduced is 800 sccm.
  • the opening of the APC valve 242 is adjusted so that the pressure in the processing chamber 201 becomes a predetermined pressure of, for example, 150 Pa, and the processing chamber 201 is exhausted.
  • H 2 gas and O 2 gas are activated and dissociated by the excited plasma, and oxygen active species (O radicals) and hydrogen active species (H radicals) are generated.
  • oxygen active species O radicals
  • hydrogen active species H radicals
  • a hydroxyl radical, an oxygen ion, or the like may be generated as a reactive species containing oxygen.
  • hydrogen ions or the like may be generated as reactive species containing hydrogen.
  • the silicon oxide film 300a and the like formed on the inner surface of the hole 304 is modified and oxidized from the surface to form an oxide layer 400a. .
  • the thickness increases toward the bottom surface of the hole 304 as shown in FIG.
  • the oxide layer 400a can be formed to have a large thickness. That is, the damaged silicon oxide film 300a at the bottom can be modified to form an oxide layer 400a as a repaired silicon oxide film. The reason will be described later.
  • the configuration using a mixed gas of H 2 gas, which is a hydrogen-containing gas, and O 2 gas, which is an oxygen-containing gas has been described as the gas containing hydrogen atoms and oxygen atoms.
  • a mixed gas of a hydrogen-containing gas other than H 2 gas and an oxygen-containing gas other than O 2 gas can be used.
  • O 3 (ozone) gas may be used as the oxygen-containing gas.
  • a gas containing deuterium D may be used as the hydrogen-containing gas.
  • the ratio of H radicals and O radicals supplied into the holes is adjusted in order to form the oxide layer so that the thickness increases relatively toward the bottom surface of the holes 304.
  • the ratio of H radicals to O radicals on the bottom surface of the hole is adjusted to 5:95 in order to maximize the formation rate (oxidation rate) of the oxide layer on the bottom surface of the hole. .
  • the reason why this ratio is set to 5:95 will be described below.
  • FIG. 10 is a diagram schematically showing H radicals and O radicals in the hole 304.
  • FIG. 11 is supplied into the processing chamber 201 when the same oxidation treatment as in this embodiment is performed on a silicon film formed on a planar wafer having no concave structure or the like formed on the surface.
  • the ratio of the flow rate of H 2 gas in the total flow rate of H 2 gas and O 2 gas is a diagram showing the relationship between the thickness of the oxide layer formed on the upper surface of the wafer. That is, FIG. 11, in the reforming target layer which the concave structure is not present, shows the relationship between the thickness of the ratio of the flow rate of H 2 gas in the total flow rate of H 2 gas and O 2 gas, oxidized layer formed thereon ing.
  • H radicals are easier to deactivate than O radicals and have a shorter lifetime. Therefore, H radicals tend to be deactivated faster than O radicals when they collide with the wall surface of the hole while entering the bottom surface of the hole 304 from the upper end (opening) of the hole 304. Due to the difference in lifetime between the H radical and the O radical, the ratio of the H radical is lower at the bottom surface of the hole 304 than at the upper end.
  • the oxide layer is formed using a mixed gas of H 2 gas and O 2 gas
  • the oxidation rate peaks when the ratio of H 2 in the mixed gas is around 5%.
  • the ratio of H 2 is increased from 5%
  • the oxidation rate tends to decrease.
  • the oxidation rate tends to decrease. That is, the oxidation rate becomes the highest when the ratio of H 2 in the mixed gas is around 5%.
  • the ratio of H 2 gas and O 2 gas before plasma excitation supplied into the processing chamber 201 is substantially equal to the ratio of H radical and O radical supplied on the wafer surface. Is done. Therefore, it is considered that the oxidation rate becomes the highest when the ratio of H radicals to O radicals supplied to the film to be modified is about 5:95 (that is, the ratio of H radicals is about 5%).
  • the oxidation rate with respect to the silicon film formed on the wafer having no concave structure on the surface is maximized as shown in FIG.
  • the oxidation rate becomes the highest at the upper end of the hole 304 (the opening of the hole), and the oxidation rate decreases with decreasing the ratio of H radicals toward the bottom of the hole. Becomes smaller.
  • the ratio of H radicals to O radicals supplied to the wafer 200 is set to a predetermined ratio larger than the ratio (first ratio) at which the oxidation rate at the upper end portion of the holes 304 is maximized.
  • the oxide layer can be formed so that the thickness is larger on the inner surface (that is, the surface on the bottom side than the upper end) than on the upper end.
  • the flow rate ratio of the H 2 gas in the mixed gas supplied into the processing chamber 201 is set to a predetermined ratio higher than 5% at which the oxidation rate peaks at the upper end portion of the hole 304.
  • the thickness of the oxide layer can be adjusted so that the thickness of the inner surface of the hole 304 is larger than that of the upper end portion.
  • the ratio of the H radical to the O radical supplied to the upper surface of the wafer 200 is such that the thickness distribution of the oxide layer (that is, the oxidation rate distribution) in the depth direction toward the bottom surface of the hole 304 is substantially uniform.
  • the ratio is set to a predetermined ratio that is larger than the second ratio, the oxide layer can be formed so that the thickness becomes relatively larger toward the bottom surface of the hole 304 than the substantially uniform distribution. it can.
  • the flow rate ratio of the H 2 gas in the mixed gas supplied into the processing chamber 201 is set to a predetermined ratio higher than the ratio at which the thickness distribution of the oxide layer becomes substantially uniform. Note that the second ratio is larger than the first ratio.
  • the ratio of H radicals to O radicals supplied to the upper surface of the wafer 200 is equal to or larger than a ratio (third ratio) that maximizes the oxidation rate at the bottom surface of the hole 304, and By doing so, the oxide layer can be formed so that the thickness is relatively increased toward the bottom surface of the hole 304 and the thickness at the bottom surface of the hole is maximized in the layer thickness distribution on the inner surface of the hole.
  • the ratio of H radicals to O radicals supplied to the upper surface of the wafer 200 as the third ratio, the oxidation rate at the bottom surface of the hole 304 can be maximized.
  • the above-mentioned third ratio is such that the ratio of H radicals to O radicals on the bottom surface of the hole 304 is around 5%.
  • the third ratio is larger than the first ratio and the second ratio.
  • the ratio of the supply amount of H radicals at the bottom surface of the hole 304 having an aspect ratio of 20 to around 5% is set to 10%. It may be ⁇ 30%, for example, around 20%.
  • the ratio of the supply amount of H radicals at the upper end of the hole 304 is set to 10 to 30%, so that the flow rate ratio of H 2 gas and O 2 gas introduced into the processing chamber 201 is 10:90. Adjust to ⁇ 30: 70.
  • the ratio of H radicals supplied at the upper end of the hole 304 as the substrate has a higher aspect ratio.
  • the higher the aspect ratio the higher the probability that the H radical will be deactivated before reaching the bottom of the hole. If the H radical is completely deactivated before reaching the bottom of the hole, the oxidation rate is higher than the peak value. It is because it falls.
  • the thickness of the oxide layer 400a formed on the surface of the silicon oxide film 300a at the bottom of the hole is changed to the upper end of the hole. Since the thickness of the oxide layer 400a formed on the surface of the silicon oxide film 300a can be made relatively larger, the silicon oxide film 300a at the bottom of the hole damaged by the etching is selectively repaired, and electrical characteristics (for example, withstand voltage) Characteristics, etc.) can be improved.
  • the substrate processing steps in steps S110 to S150 described above are performed.
  • a part of the silicon nitride film 306 which is a base film is formed at a portion where the silicon oxide film 300c is thin at the bottom of the hole 304.
  • the thickness of the silicon oxide film 300c formed on the bottom of the hole 304 and the thickness of the silicon oxynitride layer 400b formed on the lower layer are set to the thickness of the silicon oxide film 300c on the top of the hole 304. Correct to get closer. Note that it is considered that nitrogen contained in the silicon oxynitride layer 400b gradually escapes and becomes closer to the silicon oxide layer.
  • the ratio of H radicals to O radicals supplied to the wafer is made larger than the reference ratio based on the ratio that makes the thickness distribution of the oxide layer uniform in the hole depth direction.
  • a distribution in which the thickness of the oxide layer increases toward the bottom surface of the hole can be obtained.
  • the ratio of the supply flow rates of the hydrogen-containing gas and the oxygen-containing gas supplied into the processing chamber 201 is adjusted by controlling the opening degree of each of the MFCs 252a and 252b, and supplied into the hall 304.
  • the ratio of H radical and O radical to be adjusted is adjusted.
  • the ratio of the supply amount of H radicals and O radicals can be adjusted by controlling the susceptor elevating mechanism 268 and changing the distance between the wafer 200 and the resonance coil 212.
  • the mixed gas can be plasma-excited outside the processing chamber 201 and the generated reactive species such as active species can be introduced into the processing chamber 201.
  • the flow rate ratio of the activated species to be introduced is adjusted. By doing so, the ratio of the active species may be controlled.
  • the flow rate of the gas flowing through the upper end of the hole 304 (more generally, the flow rate of the gas flowing through the upper surface of the wafer 200) is controlled, and the reforming process is performed in the high aspect ratio hole 304.
  • the thickness of the oxide layer formed in is increased so as to increase toward the bottom of the hole.
  • the upper end portion of the hole 304 is controlled by controlling the flow rate of the mixed gas of H 2 gas and O 2 gas supplied into the processing chamber 201 in the processing gas supply and plasma processing step of step S130 described above. To control the flow rate of the gas flowing through.
  • the opening of the APC valve 242 is adjusted so that the pressure in the processing chamber 201 is 50 to 200 Pa, for example, a predetermined pressure of 150 Pa, and the processing chamber 201 is exhausted. In this way, while the inside of the processing chamber 201 is appropriately evacuated, the supply of the mixed gas of H 2 gas and O 2 gas is continued until the plasma processing step described later is completed.
  • the silicon oxide film 300a formed on the inner surface of the hole 304 is modified from the surface as shown in FIG. 400a is formed.
  • a silicon oxynitride layer (SiON layer) 400b is formed by modifying a part of the silicon nitride film 306 as a base film at a thin portion of the silicon oxide film 300c at the bottom of the hole 304. To do.
  • FIG. 13 is supplied into the processing chamber 201 when the same oxidation treatment as in this embodiment is performed on a silicon film formed on a planar wafer having no concave structure or the like formed on the surface.
  • the total flow rate of the mixed gas of H 2 gas and O 2 gas is a diagram showing the relationship between the thickness of the oxide layer formed on the upper surface of the wafer.
  • the pressure in the processing chamber 201 is constant, the flow rate of the supplied mixed gas and the flow velocity of the gas flowing on the upper surface of the wafer are substantially proportional.
  • the thickness of the oxide layer formed is small if the flow velocity of the gas flowing on the surface of the film to be modified is high, and is formed if the flow velocity of the gas flowing on the surface of the film to be modified is slow. It can be seen that the thickness of the oxidized layer tends to increase.
  • FIGS. 14A and 14B are diagrams schematically showing the relationship between the flow velocity of the gas at the upper end of the hole 304 and the flow velocity of the gas containing H radicals and O radicals in the hole 304.
  • FIG. The direction of the arrow shown in FIGS. 14A and 14B indicates the direction in which the gas flows, and the size of the arrow indicates the flow rate of the gas.
  • the gas flow rate at the upper end of the hole 304 that is, the flow rate of gas flowing on the surface of the wafer 200
  • the bottom surface of the hole 304 is higher than the upper end of the hole 304.
  • the flow rate becomes relatively slower toward the.
  • the upper end portion of the hole 304 is increased by increasing the flow velocity at the upper end portion of the hole 304 as compared with the case shown in FIG. Compared to the bottom surface, the dwell time of H radicals and O radicals becomes relatively longer as it approaches the bottom surface. Therefore, the closer to the bottom surface from the upper end of the hole, the higher the oxidation rate with respect to the formed film. It is considered that the thickness of the lower oxide layer can be increased. That is, by selecting the flow velocity at the upper end of the hole 304, the thickness distribution of the oxide layer on the inner surface of the hole 304 can be formed to be different in the depth direction.
  • the oxide layer can be formed so that the thickness increases toward the bottom surface of the hole 304.
  • the flow rate of the gas flowing through the substrate surface is adjusted by adjusting the supply flow rate of the mixed gas supplied into the processing chamber 201 so that the film thickness distribution inside the hole differs in the depth direction. To do. More specifically, the flow rate of the mixed gas is adjusted by controlling the opening degrees of the MFCs 252a and 252b.
  • the ratio of the supply flow rates of the hydrogen-containing gas and the oxygen-containing gas is also controlled, so that the film thickness distribution inside the hole can be controlled. You may control.
  • the same gas as in the first embodiment can be used.
  • plasma excitation may be performed by supplying a molecular gas containing both hydrogen atoms and oxygen atoms.
  • H 2 O gas or H 2 O 2 gas may be used.
  • the present invention is not limited to this, and as the processing gas, only O 2 gas, only H 2 gas, N
  • the present invention can also be applied to the case of using only two gases, only ammonia gas, or a mixed gas of N 2 gas and H 2 gas.
  • the configuration in which the total flow rate of the mixed gas supplied into the processing chamber 201 is controlled to control the flow rate of the gas has been described.
  • the configuration is not limited thereto, and the height of the susceptor 217 is increased.
  • the flow rate of the gas at the upper end of the hole may be controlled by adjusting or changing the shape in the processing chamber 201.
  • FIG. 15A is a diagram illustrating an example of a hole pattern.
  • FIG. 15B is a diagram showing the thickness of the oxide layer formed on the inner surface of the hole by the modification process according to the comparative example.
  • FIG. 15C shows the modification process according to this example. It is a figure which shows the thickness of the oxide layer formed in the hole inner surface by.
  • FIG. 15B shows, as a comparative example, a case where plasma processing is performed using a mixed gas of H 2 gas and O 2 gas using the above-described substrate processing step, and H introduced into the processing chamber is shown in FIG. This shows the case where the plasma treatment is performed with the flow rate ratio of 2 gas to O 2 gas set to 5:95.
  • FIG. 15C shows a case where plasma processing is performed using the above-described substrate processing step with a flow rate ratio of H 2 gas and O 2 gas introduced into the processing chamber of 20:80.
  • plasma processing was performed on a hole-shaped wafer having an aspect ratio of 20 at a wafer temperature of 700 ° C., a pressure in the processing chamber 201 of 150 Pa, and an excitation power of 3.5 kW.
  • the ratio of H 2 gas and O 2 gas supplied into the processing chamber 201 is 20:80, the ratio of the supply amount of H radicals and O radicals at the bottom of the hole 304 is about 5:95. Presumed to have approached. Accordingly, it was confirmed that the ratio of H radicals supplied at the upper part and the lower part of the hole 304 can be changed using the fact that H radicals have a shorter lifetime than O radicals.
  • FIG. 16A shows an example of a hole pattern with an aspect ratio of 20
  • FIG. 16B shows the flow rate of the mixed gas of H 2 gas and O 2 gas supplied into the processing chamber at 1.0 slm, 0
  • the O radical is deactivated before reaching the bottom surface, and the thickness of the oxide layer becomes closer to the bottom surface. Became smaller.
  • a sufficient amount of radicals can reach the bottom before the O radicals are deactivated, and the oxide layer is uniformly formed in the depth direction of the holes 304. Been formed.
  • the film is formed at a flow rate of 2.0 slm, the effect of the flow velocity difference between the top and bottom of the hole increases, and the thickness of the oxide layer increases toward the bottom due to the difference in radical residence time. A layer was formed.
  • the oxide layer is directed toward the bottom surface of the hole 304. It was confirmed that the thickness of the film tends to increase. That is, by controlling the flow rate of the mixed gas, the flow rate of the gas flowing through the upper end of the hole is controlled to increase the speed, and a gas flow rate difference is generated in the hole. It was confirmed that the thickness of the oxide layer formed in the lower part can be made larger than that in the upper part.
  • the surface of the inner surface of the hole is formed by surface-treating the substrate on which the hole 304 is formed at a predetermined gas flow rate or a predetermined mixing ratio.
  • the film thickness distribution can be arbitrarily controlled in the depth direction.
  • the oxide layer is formed by modifying the surface of the film so that the film thickness becomes thicker toward the bottom of the hole 304, so that the oxide film at the bottom is easily damaged and the upper portion of the hole 304 due to the microloading effect. It is possible to solve the problem that the film thickness is uneven at the lower portion, and the electrical characteristics of the device can be improved.
  • the present invention is applied to the manufacture of a 3D-NAND flash memory or the like in the manufacturing process of a semiconductor device, and is used to treat a surface on which any one of a silicon-containing film and a metal-containing film (or any combination thereof) is exposed. Applied.
  • silicon-containing film for example, a silicon film, a silicon oxide film, a silicon nitride film, an amorphous silicon film, a polysilicon film, or the like is applied.
  • metal-containing film for example, a tungsten film, a titanium film, a titanium nitride film, an aluminum oxide film, a hafnium oxide film, or the like is applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Provided is a technique whereby, in a semiconductor device production step, when a film formed on an inner surface of a recessed structure having a high aspect ratio is modified from the film surface to form a modified layer, the modification is performed in such a manner that the thickness of the modified layer in the depth direction of the recessed structure exhibits an intended distribution to raise the electric characteristics of the device. The invention comprises the step of exciting a processing gas containing an oxygen-containing gas and a hydrogen-containing gas to generate an oxygen active species and a hydrogen active species, and the step of supplying the oxygen active species and the hydrogen active species to a substrate having formed therein the recessed structure, to oxidize the film formed on the inner surface of the recessed structure, from the surface thereof, to form an oxidized layer. In the step of forming the oxidized layer, the oxidized layer is formed such that the thickness on the inner surface of the recessed structure becomes greater than the thickness in the top end portion thereof by setting the ratio of the hydrogen active species in the total flow rate of the oxygen active species and the hydrogen active species supplied to the substrate to a predetermined ratio that is greater than a first ratio at which the speed of oxidized layer formation in the top end portion of the recessed structure is maximum.

Description

半導体装置の製造方法、プログラム及び基板処理装置Semiconductor device manufacturing method, program, and substrate processing apparatus
 本発明は、半導体装置の製造方法、プログラム及び基板処理装置に関する。 The present invention relates to a semiconductor device manufacturing method, a program, and a substrate processing apparatus.
 近年、フラッシュメモリ等の半導体装置のパターンを形成する際、製造工程の一工程として、基板に酸化処理や窒化処理等の所定の処理を行う工程が実施される場合がある。 In recent years, when a pattern of a semiconductor device such as a flash memory is formed, a step of performing a predetermined process such as an oxidation process or a nitridation process on the substrate may be performed as a process of the manufacturing process.
 特許文献1は、プラズマ生成空間に連通した基板処理空間を有する基板処理室と、プラズマ生成空間の外側に配された誘導結合構造と、基板処理空間内に設けられ、表面にシリコン含有層が形成された溝を有する基板を載置する基板載置台と、プラズマ生成空間に酸素含有ガスを供給する酸素ガス供給系を有するガス供給部とを有する構成を開示している。 Patent Document 1 discloses a substrate processing chamber having a substrate processing space communicating with a plasma generation space, an inductive coupling structure arranged outside the plasma generation space, and a silicon-containing layer formed on the surface of the substrate processing space. A configuration having a substrate mounting table for mounting a substrate having a groove formed thereon and a gas supply unit having an oxygen gas supply system for supplying an oxygen-containing gas to the plasma generation space is disclosed.
特開2014-75579号公報JP 2014-75579 A
 半導体デバイスの製造工程において、高アスペクト比のトレンチ構造やホール構造等の凹状構造内面に形成された膜を膜表面から改質して改質層を形成する際に、凹状構造の深さ方向における改質層の厚さを所望の分布にすることを求められる場合がある。 In the manufacturing process of a semiconductor device, when a film formed on the inner surface of a concave structure such as a trench structure or a hole structure with a high aspect ratio is modified from the film surface to form a modified layer, in the depth direction of the concave structure In some cases, the thickness of the modified layer is required to have a desired distribution.
 本発明は、高アスペクト比の凹状構造内面に形成された膜を膜表面から改質して改質層を形成する際に、凹状構造の深さ方向における改質層の厚さが所望の分布になるように改質して、デバイスの電気的特性を高める技術を提供するものである。 In the present invention, when a film formed on the inner surface of a concave structure having a high aspect ratio is modified from the film surface to form a modified layer, the thickness of the modified layer in the depth direction of the concave structure has a desired distribution. To improve the electrical characteristics of the device.
 本発明の一態様によれば、酸素含有ガスと水素含有ガスを含む処理ガスを励起して、酸素活性種と水素活性種を生成する工程と、前記酸素活性種と前記水素活性種を凹状構造が形成された基板に供給し、前記凹状構造の内面に形成された膜を表面から酸化して酸化層を形成する工程と、を有し、前記酸化層を形成する工程では、前記基板に供給される前記酸素活性種と前記水素活性種の総流量における前記水素活性種の比率を、前記凹状構造の上端部において前記酸化層が形成される速度が最大となる第1の比率よりも大きい所定の比率にして、前記凹状構造の内面において前記上端部における厚さよりも厚さが大きくなるように前記酸化層を形成する技術が提供される。 According to one aspect of the present invention, a process gas including an oxygen-containing gas and a hydrogen-containing gas is excited to generate an oxygen active species and a hydrogen active species, and the oxygen active species and the hydrogen active species are formed into a concave structure. And supplying the substrate with the step of forming the oxide layer by oxidizing the film formed on the inner surface of the concave structure from the surface to form an oxide layer. The ratio of the hydrogen active species in the total flow rate of the oxygen active species and the hydrogen active species is greater than a first ratio that maximizes the rate at which the oxide layer is formed at the upper end of the concave structure. Thus, there is provided a technique for forming the oxide layer so that the inner surface of the concave structure is thicker than the thickness at the upper end.
 本発明によれば、高アスペクト比の凹状構造内面に形成された膜を、凹状構造の深さ方向における改質層の厚さが所望の分布になるように改質して、デバイスの電気的特性を高める技術が提供される。 According to the present invention, the film formed on the inner surface of the concave structure having a high aspect ratio is modified so that the thickness of the modified layer in the depth direction of the concave structure has a desired distribution, so that the electrical Techniques for enhancing properties are provided.
本発明の実施形態に係る基板処理装置の断面図である。It is sectional drawing of the substrate processing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る基板処理装置のプラズマ生成原理を説明する説明図である。It is explanatory drawing explaining the plasma production | generation principle of the substrate processing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る制御装置を説明する図である。It is a figure explaining the control apparatus which concerns on embodiment of this invention. (A)は、本発明の実施形態に係る基板処理工程で処理される凹状構造が形成された基板の一例を示す図であって、トレンチ構造が形成された基板を示す図である。(B)は、本発明の実施形態に係る基板処理工程で処理される凹状構造が形成された基板の一例を示す図であって、ホール(孔)構造が形成された基板を示す図である。(A) is a figure which shows an example of the board | substrate with which the concave structure processed by the board | substrate processing process which concerns on embodiment of this invention was formed, Comprising: It is a figure which shows the board | substrate with which the trench structure was formed. (B) is a figure which shows an example of the board | substrate with which the concave structure processed by the substrate processing process which concerns on embodiment of this invention was formed, Comprising: It is a figure which shows the board | substrate with which the hole (hole) structure was formed. . 図4に示す基板の構成の一例を示す図である。It is a figure which shows an example of a structure of the board | substrate shown in FIG. 本発明の実施形態に係る基板処理工程が適用される基板処理工程を説明する図である。It is a figure explaining the substrate processing process to which the substrate processing process concerning the embodiment of the present invention is applied. 本発明の実施形態に係る基板処理工程が適用される基板の一例を示す図である。It is a figure which shows an example of the board | substrate with which the substrate processing process which concerns on embodiment of this invention is applied. 本発明の実施形態に係る基板処理工程を示すフロー図である。It is a flowchart which shows the substrate processing process which concerns on embodiment of this invention. (A)は、本発明の実施形態に係る基板処理工程を適用前の基板構成を示す図であって、(B)は、本発明の実施形態に係る基板処理工程を適用後の基板構成を示す図である。(A) is a figure which shows the board | substrate structure before applying the substrate processing process which concerns on embodiment of this invention, (B) is the board | substrate structure after applying the substrate processing process which concerns on embodiment of this invention. FIG. ホール304内の水素活性種と酸素活性種を模式的に示した図である。FIG. 5 is a diagram schematically showing hydrogen active species and oxygen active species in a hole 304. 処理室に供給されるH2ガスとO2ガスの総流量におけるH2の比率と、平面状のウエハの上面に形成される酸化層の厚さとの関係を示した図である。The ratio of H 2 at a total flow rate of H 2 gas and O 2 gas supplied into the processing chamber is a diagram showing the relationship between the thickness of the oxide layer formed on the upper surface of the planar wafer. (A)は、本発明の実施形態に係る基板処理工程を適用前の基板構成を示す図であって、(B)は、本発明の実施形態に係る基板処理工程を適用後の基板構成を示す図である。(A) is a figure which shows the board | substrate structure before applying the substrate processing process which concerns on embodiment of this invention, (B) is the board | substrate structure after applying the substrate processing process which concerns on embodiment of this invention. FIG. 処理室に供給されるH2ガスとO2ガスの混合ガスの総流量と、平面状のウエハ表面に形成される酸化層の厚さの関係を示す図である。The total flow rate of the mixed gas of H 2 gas and O 2 gas supplied into the processing chamber is a diagram illustrating a thickness relationship between the oxide layer formed on the planar wafer surface. ホール304の上端部におけるガスの流速とホール304内におけるガスの流速の関係を模式的に示した図である。FIG. 6 is a diagram schematically showing the relationship between the gas flow velocity at the upper end of the hole 304 and the gas flow velocity in the hole 304. (A)は、アスペクト比20のホールパターンの一例を示す図であり、(B)は、比較例に係るホール内面の酸化層の厚さを示す図である。(C)は、本実施例に係るホール内面の酸化層の厚さを示す図である。(A) is a figure which shows an example of the hole pattern of the aspect-ratio 20, (B) is a figure which shows the thickness of the oxide layer of the hole inner surface which concerns on a comparative example. (C) is a figure which shows the thickness of the oxide layer of the hole inner surface which concerns on a present Example. (A)は、アスペクト比20のホールパターンの一例を示す図であり、(B)は、処理室に供給されるH2ガスとO2ガスの混合ガスの流量を1.0slm、0.6slm、2.0slmとして、それぞれ酸化層を形成した場合のホール内面の酸化層の厚さを示す図である。(A) is a diagram showing an example of a hole pattern with an aspect ratio of 20, and (B) shows the flow rate of the mixed gas of H 2 gas and O 2 gas supplied to the processing chamber at 1.0 slm and 0.6 slm. , 2.0 slm is a diagram showing the thickness of the oxide layer on the inner surface of the hole when the oxide layer is formed.
(1)基板処理装置の構成
 本発明の一実施形態に係る基板処理装置について、図1から図3を用いて以下に説明する。
(1) Configuration of Substrate Processing Apparatus A substrate processing apparatus according to an embodiment of the present invention will be described below with reference to FIGS.
(処理室)
 処理装置100は、ウエハ200をプラズマ処理する処理炉202を備えている。処理炉202は、処理室201を構成する処理容器203を備えている。処理容器203は、第1の容器であるドーム型の上側容器210と、第2の容器である碗型の下側容器211とを備えている。上側容器210が下側容器211の上に被さることにより、処理室201が形成される。
(Processing room)
The processing apparatus 100 includes a processing furnace 202 that performs plasma processing on the wafer 200. The processing furnace 202 includes a processing container 203 that constitutes a processing chamber 201. The processing container 203 includes a dome-shaped upper container 210 that is a first container and a bowl-shaped lower container 211 that is a second container. The processing chamber 201 is formed by covering the upper container 210 on the lower container 211.
 また、下側容器211の下部側壁には、ゲートバルブ244が設けられている。ゲートバルブ244は、開いているとき、搬入出口245を介して処理室201内へウエハ200を搬入できる。または、搬入出口245を介して処理室201外へとウエハ200を搬出することができる。ゲートバルブ244は、閉まっているときには、処理室201内の気密性を保持する仕切弁となる。 Also, a gate valve 244 is provided on the lower side wall of the lower container 211. When the gate valve 244 is open, the wafer 200 can be loaded into the processing chamber 201 via the loading / unloading port 245. Alternatively, the wafer 200 can be carried out of the processing chamber 201 via the loading / unloading port 245. When the gate valve 244 is closed, the gate valve 244 serves as a gate valve that maintains airtightness in the processing chamber 201.
 処理室201は、後述するように周囲にコイル212が設けられているプラズマ生成空間201aと、プラズマ生成空間201aに連通し、ウエハ200が処理される基板処理空間201bを有する。プラズマ生成空間201aはプラズマが生成される空間であって、処理室の内、例えばコイル212の下端(図1における一点鎖線)より上方の空間を言う。一方、基板処理空間201bは基板がプラズマで処理される空間であって、コイル212の下端より下方の空間を言う。 The processing chamber 201 has a plasma generation space 201a around which a coil 212 is provided as will be described later, and a substrate processing space 201b that communicates with the plasma generation space 201a and in which the wafer 200 is processed. The plasma generation space 201a is a space where plasma is generated, and refers to a space above the lower end of the coil 212 (one-dot chain line in FIG. 1) in the processing chamber, for example. On the other hand, the substrate processing space 201b is a space where the substrate is processed with plasma, and is a space below the lower end of the coil 212.
(サセプタ)
 処理室201の底側中央には、ウエハ200を載置する基板載置部としてのサセプタ217が配置されている。
(Susceptor)
In the center of the bottom side of the processing chamber 201, a susceptor 217 is disposed as a substrate placement portion on which the wafer 200 is placed.
 サセプタ217の内部には、加熱機構としてのヒータ217bが一体的に埋め込まれている。ヒータ217bは、ヒータ電力調整機構276を介して電力が供給されると、ウエハ200表面を例えば25℃から1000℃程度まで加熱することができるように構成されている。 In the susceptor 217, a heater 217b as a heating mechanism is integrally embedded. The heater 217b is configured to be able to heat the surface of the wafer 200 from, for example, about 25 ° C. to about 1000 ° C. when electric power is supplied through the heater power adjustment mechanism 276.
 サセプタ217は、下側容器211とは電気的に絶縁されている。サセプタ217内部にはインピーダンス調整電極217cが装備されている。インピーダンス調整電極217cは、インピーダンス調整部としてのインピーダンス可変機構275を介して接地されている。インピーダンス可変機構275はコイルや可変コンデンサから構成されており、コイルのインダクタンス及び抵抗並びに可変コンデンサの容量値を制御することにより、インピーダンスを約0Ωから処理室201の寄生インピーダンス値の範囲内で変化させることができるように構成されている。これによって、インピーダンス調整電極217c及びサセプタ217を介して、ウエハ200の電位(バイアス電圧)を制御できる。 The susceptor 217 is electrically insulated from the lower container 211. An impedance adjustment electrode 217c is provided inside the susceptor 217. The impedance adjustment electrode 217c is grounded via an impedance variable mechanism 275 as an impedance adjustment unit. The variable impedance mechanism 275 includes a coil and a variable capacitor. By controlling the inductance and resistance of the coil and the capacitance value of the variable capacitor, the impedance is changed within a range from about 0Ω to the parasitic impedance value of the processing chamber 201. It is configured to be able to. Accordingly, the potential (bias voltage) of the wafer 200 can be controlled via the impedance adjustment electrode 217c and the susceptor 217.
 サセプタ217には、サセプタを昇降させるサセプタ昇降機構268が設けられている。そしてサセプタ217には貫通孔217aが設けられ、一方、下側容器211の底面には貫通孔217aと互いに対向する位置にウエハ突上げピン266が少なくとも各3箇所ずつ設けられている。サセプタ217が下降させられたときには、ウエハ突上げピン266が貫通孔217aを突き抜けるようになっている。 The susceptor 217 is provided with a susceptor elevating mechanism 268 that elevates and lowers the susceptor. The susceptor 217 is provided with through holes 217 a, while the bottom surface of the lower container 211 is provided with at least three wafer push-up pins 266 at positions facing the through holes 217 a. When the susceptor 217 is lowered, the wafer push-up pins 266 penetrate the through holes 217a.
 主に、サセプタ217及びヒータ217b、インピーダンス調整電極217cにより、本実施形態に係る基板載置部が構成されている。 Mainly, the susceptor 217, the heater 217b, and the impedance adjustment electrode 217c constitute the substrate mounting portion according to the present embodiment.
(ガス供給部)
 処理室201の上方、つまり上側容器210の上部には、ガス供給ヘッド236が設けられている。ガス供給ヘッド236は、キャップ状の蓋体233と、ガス導入口234と、バッファ室237と、開口238と、遮蔽プレート240と、ガス吹出口239とを備え、反応ガスを処理室201内へ供給できるように構成されている。バッファ室237は、ガス導入口234より導入される反応ガスを分散する分散空間としての機能を持つ。
(Gas supply part)
A gas supply head 236 is provided above the processing chamber 201, that is, above the upper container 210. The gas supply head 236 includes a cap-shaped lid 233, a gas introduction port 234, a buffer chamber 237, an opening 238, a shielding plate 240, and a gas outlet 239, and the reaction gas is introduced into the processing chamber 201. It is configured so that it can be supplied. The buffer chamber 237 has a function as a dispersion space for dispersing the reaction gas introduced from the gas introduction port 234.
 ガス導入口234には、水素含有ガスとしての水素(H2)ガスを供給するガス供給管232aの下流端と、酸素含有ガスとしての酸素(O2)ガスを供給するガス供給管232bの下流端と、不活性ガスや窒素含有ガスとしての窒素(N2)ガスを供給するガス供給管232cと、が合流するように接続されている。ガス供給管232aには、上流側から順に、H2ガス供給源250a、流量制御装置としてのマスフローコントローラ(MFC)252a、開閉弁としてのバルブ253aが設けられている。ガス供給管232bには、上流側から順に、O2ガス供給源250b、MFC252b、バルブ253bが設けられている。ガス供給管232cには、上流側から順に、N2ガス供給源250c、MFC252c、バルブ253cが設けられている。ガス供給管232aとガス供給管232bとガス供給管232cとが合流した下流側には、バルブ243aが設けられ、ガス導入口234の上流端に接続されている。バルブ253a、253b、253c、243aを開閉させることによって、MFC252a、252b、252cによりそれぞれのガスの流量を調整しつつ、ガス供給管232a、232b、232cを介して、水素含有ガス、酸素含有ガス、窒素含有ガス等の処理ガスをそれぞれ処理室201内へ供給することができる。 The gas inlet 234 has a downstream end of a gas supply pipe 232a for supplying hydrogen (H 2 ) gas as a hydrogen-containing gas and a downstream of a gas supply pipe 232b for supplying oxygen (O 2 ) gas as an oxygen-containing gas. The end and a gas supply pipe 232c that supplies nitrogen (N 2 ) gas as an inert gas or a nitrogen-containing gas are connected so as to merge. The gas supply pipe 232a is provided with an H 2 gas supply source 250a, a mass flow controller (MFC) 252a as a flow rate control device, and a valve 253a as an on-off valve in order from the upstream side. The gas supply pipe 232b is provided with an O 2 gas supply source 250b, an MFC 252b, and a valve 253b in this order from the upstream side. The gas supply pipe 232c is provided with an N 2 gas supply source 250c, an MFC 252c, and a valve 253c in order from the upstream side. A valve 243a is provided on the downstream side where the gas supply pipe 232a, the gas supply pipe 232b, and the gas supply pipe 232c merge, and is connected to the upstream end of the gas inlet 234. By opening and closing the valves 253a, 253b, 253c, and 243a, the flow rates of the respective gases are adjusted by the MFCs 252a, 252b, and 252c, and the hydrogen-containing gas, the oxygen-containing gas, A processing gas such as a nitrogen-containing gas can be supplied into the processing chamber 201.
 ガス供給ヘッド236(蓋体233、ガス導入口234、バッファ室237、開口238、遮蔽プレート240、ガス吹出口239)、ガス供給管232a、MFC252a、バルブ253a,243aにより、本実施形態に係る水素含有ガス供給系が構成されている。 The hydrogen supply head 236 (the lid 233, the gas inlet 234, the buffer chamber 237, the opening 238, the shielding plate 240, the gas outlet 239), the gas supply pipe 232a, the MFC 252a, and the valves 253a and 243a are used to provide hydrogen according to the present embodiment. A contained gas supply system is configured.
 ガス供給ヘッド236、ガス供給管232b、MFC252b、バルブ253b,243aにより、本実施形態に係る酸素含有ガス供給系が構成されている。 The gas supply head 236, the gas supply pipe 232b, the MFC 252b, and the valves 253b and 243a constitute the oxygen-containing gas supply system according to this embodiment.
 ガス供給ヘッド236、ガス供給管232c、MFC252c、バルブ253c,243aにより、本実施形態に係る窒素含有ガス供給系が構成されている。 The nitrogen-containing gas supply system according to this embodiment is configured by the gas supply head 236, the gas supply pipe 232c, the MFC 252c, and the valves 253c and 243a.
 さらに、水素含有ガス供給系、酸素含有ガス供給系、窒素含有ガス供給系により、本実施形態に係るガス供給部が構成されている。 Furthermore, a gas supply unit according to this embodiment is configured by a hydrogen-containing gas supply system, an oxygen-containing gas supply system, and a nitrogen-containing gas supply system.
(排気部)
 下側容器211の側壁には、処理室201内から反応ガスを排気するガス排気口235が設けられている。ガス排気口235には、ガス排気管231の上流端が接続されている。ガス排気管231には、上流側から順に圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ242、バルブ243b、真空排気装置としての真空ポンプ246が設けられている。
(Exhaust part)
A gas exhaust port 235 for exhausting the reaction gas from the processing chamber 201 is provided on the side wall of the lower container 211. The upstream end of the gas exhaust pipe 231 is connected to the gas exhaust port 235. The gas exhaust pipe 231 is provided with an APC (Auto Pressure Controller) valve 242 as a pressure regulator (pressure adjusting unit), a valve 243b, and a vacuum pump 246 as a vacuum exhaust device in order from the upstream side.
 主に、ガス排気口235、ガス排気管231、APCバルブ242、バルブ243bにより、本実施形態に係る排気部が構成されている。尚、真空ポンプ246を排気部に含めても良い。 Mainly, the gas exhaust port 235, the gas exhaust pipe 231, the APC valve 242, and the valve 243b constitute the exhaust unit according to the present embodiment. In addition, you may include the vacuum pump 246 in an exhaust part.
(プラズマ生成部)
 処理室201の外周部、すなわち上側容器210の側壁の外側には、処理室201を囲うように螺旋状の共振コイル212が設けられている。共振コイル212には、RFセンサ272、高周波電源273と周波数整合器274が接続される。
(Plasma generator)
A spiral resonance coil 212 is provided on the outer periphery of the processing chamber 201, that is, outside the side wall of the upper container 210 so as to surround the processing chamber 201. An RF sensor 272, a high frequency power supply 273 and a frequency matching unit 274 are connected to the resonance coil 212.
 高周波電源273は、共振コイル212に高周波電力を供給する。RFセンサ272は高周波電源273の出力側に設けられている。RFセンサ272は、供給される高周波の進行波や反射波の情報をモニタする。周波数整合器(周波数制御部)274は、RFセンサ272でモニタされた反射波の情報に基づいて、反射波が最小となるよう、高周波電源273を制御し、周波数の整合を行う。 The high frequency power supply 273 supplies high frequency power to the resonance coil 212. The RF sensor 272 is provided on the output side of the high frequency power supply 273. The RF sensor 272 monitors information on high-frequency traveling waves and reflected waves that are supplied. The frequency matching unit (frequency control unit) 274 controls the high frequency power supply 273 so as to minimize the reflected wave based on the information of the reflected wave monitored by the RF sensor 272, and performs frequency matching.
 共振コイル212の両端は電気的に接地されるが、共振コイル212の少なくとも一端は、装置の最初の設置の際又は処理条件の変更の際に当該共振コイルの電気的長さを微調整し、共振特性を高周波電源273と略等しくするため、可動タップ213を介して接地される。図1中の符号214は他方の固定グランドを示す。さらに、装置の最初の設置の際又は処理条件の変更の際に共振コイル212のインピーダンスを微調整するため、共振コイル212の接地された両端の間には、可動タップ215によって給電部が構成されている。 Both ends of the resonance coil 212 are electrically grounded, but at least one end of the resonance coil 212 finely adjusts the electrical length of the resonance coil during initial installation of the apparatus or when processing conditions are changed, In order to make the resonance characteristic substantially equal to that of the high-frequency power source 273, it is grounded via the movable tap 213. Reference numeral 214 in FIG. 1 indicates the other fixed ground. Further, in order to finely adjust the impedance of the resonance coil 212 when the apparatus is first installed or when processing conditions are changed, a power feeding unit is configured by a movable tap 215 between the grounded ends of the resonance coil 212. ing.
 遮蔽板223は、共振コイル212の外側への電磁波の漏れを遮蔽するとともに、共振回路を構成するのに必要な容量成分を共振コイル212との間に形成する。 The shielding plate 223 shields the leakage of electromagnetic waves to the outside of the resonance coil 212 and forms a capacitance component necessary for constituting a resonance circuit between the resonance coil 212 and the resonance coil 212.
 主に、共振コイル212、RFセンサ272、周波数整合器274により、本実施形態に係るプラズマ生成部が構成されている。尚、プラズマ生成部として高周波電源273を含めても良い。 Mainly, the resonance coil 212, the RF sensor 272, and the frequency matching unit 274 constitute the plasma generation unit according to the present embodiment. In addition, you may include the high frequency power supply 273 as a plasma production | generation part.
 ここで、本実施形態に係る装置のプラズマ生成原理および生成されるプラズマの性質について図2を用いて説明する。 Here, the plasma generation principle of the apparatus according to this embodiment and the properties of the generated plasma will be described with reference to FIG.
 共振コイル212は、所定の波長の定在波を形成するため、全波長モードで共振する様に巻径、巻回ピッチ、巻数が設定される。すなわち、共振コイル212の電気的長さは、高周波電源273から与えられる電力の所定周波数における1波長の整数倍に設定される。 Since the resonance coil 212 forms a standing wave of a predetermined wavelength, the winding diameter, the winding pitch, and the number of turns are set so as to resonate in all wavelength modes. That is, the electrical length of the resonance coil 212 is set to an integral multiple of one wavelength at a predetermined frequency of the power supplied from the high frequency power supply 273.
 具体的には、印加する電力や発生させる磁界強度または適用する装置の外形などを勘案し、共振コイル212は、例えば、周波数は800kHz~50MHz、電力は0.5~5kW、より好ましくは1.0~4.0kWの高周波電力によって、0.01~10ガウス程度の磁場を発生し得る様に、50~300mm2の有効断面積であって且つ200~500mmのコイル直径とされ、プラズマ生成空間201aを形成する部屋の外周側に2~60回程度巻回される。 Specifically, considering the power to be applied, the strength of the generated magnetic field, or the external shape of the device to be applied, the resonance coil 212 has a frequency of 800 kHz to 50 MHz, a power of 0.5 to 5 kW, and more preferably 1. The plasma generating space has an effective cross-sectional area of 50 to 300 mm 2 and a coil diameter of 200 to 500 mm so that a magnetic field of about 0.01 to 10 gauss can be generated by a high frequency power of 0 to 4.0 kW. It is wound about 2 to 60 times on the outer peripheral side of the room forming 201a.
 高周波電源273は、発振周波数および出力を規定するための高周波発振回路およびプリアンプを含む電源制御手段と、所定の出力に増幅するための増幅器とを備えている。電源制御手段は、操作パネルを通じて予め設定された周波数および電力に関する出力条件に基づいて増幅器を制御し、増幅器は、上記の共振コイル212に伝送線路を介して一定の高周波電力を供給する。 The high frequency power supply 273 includes a power supply control means including a high frequency oscillation circuit and a preamplifier for defining an oscillation frequency and an output, and an amplifier for amplifying to a predetermined output. The power control means controls the amplifier based on output conditions relating to the frequency and power set in advance through the operation panel, and the amplifier supplies constant high frequency power to the resonance coil 212 via the transmission line.
 本実施形態においては、上記の周波数整合器274は、プラズマが発生した際の前記の共振コイル212からの反射波電力を検出し、反射波電力が最小となる様に前記の予め設定された周波数に対して発振周波数を増加または減少させる。具体的には、周波数整合器274は、予め設定された発振周波数を補正する周波数制御回路を備え、かつ、高周波電源273の増幅器の出力側には、伝送線路における反射波電力を検出し、その電圧信号を周波数制御回路にフィードバックするRFセンサ272が介装される。 In the present embodiment, the frequency matching unit 274 detects the reflected wave power from the resonance coil 212 when plasma is generated, and the preset frequency is set so that the reflected wave power is minimized. Increase or decrease the oscillation frequency. Specifically, the frequency matching unit 274 includes a frequency control circuit that corrects a preset oscillation frequency, and detects the reflected wave power in the transmission line on the output side of the amplifier of the high frequency power supply 273, An RF sensor 272 that feeds back a voltage signal to the frequency control circuit is interposed.
 周波数制御回路は、プラズマ点灯前は共振コイル212の無負荷共振周波数で発振し、プラズマ点灯後は反射電力が最小となる様に前記の予め設定された周波数を増加または減少させた周波数を発振し、結果的には、伝送線路における反射波がゼロとなる様に周波数信号を高周波電源273に与える。 The frequency control circuit oscillates at the no-load resonance frequency of the resonance coil 212 before plasma lighting, and oscillates at a frequency obtained by increasing or decreasing the preset frequency so that the reflected power is minimized after plasma lighting. As a result, a frequency signal is given to the high frequency power supply 273 so that the reflected wave in the transmission line becomes zero.
 本実施形態の共振装置においては、プラズマ発生時およびプラズマ生成条件の変動時の共振コイル212の共振点のずれに応じて、正確に共振する周波数の高周波を出力するため、共振コイル212で一層正確に定在波を形成できる。すなわち、図2に示す様に、共振コイル212においては、プラズマを含む当該共振器の実際の共振周波数の送電により、位相電圧と逆位相電圧が常に相殺される状態の定在波が形成され、コイルの電気的中点(電圧がゼロのノード)に最も高い位相電流が生起される。従って、上記の電気的中点において励起された誘導プラズマは、処理室壁や基板載置台との容量結合が殆どなく、プラズマ生成空間201a中には、電気的ポテンシャルの極めて低いドーナツ状のプラズマを生成できる。 In the resonance apparatus of the present embodiment, since the high frequency of the frequency that resonates accurately is output according to the deviation of the resonance point of the resonance coil 212 when plasma is generated and when the plasma generation conditions vary, the resonance coil 212 is more accurate. Can form a standing wave. That is, as shown in FIG. 2, in the resonance coil 212, a standing wave in a state where the phase voltage and the antiphase voltage are always canceled is formed by power transmission at the actual resonance frequency of the resonator including plasma, The highest phase current occurs at the electrical midpoint of the coil (node with zero voltage). Therefore, the induction plasma excited at the electrical midpoint has almost no capacitive coupling with the processing chamber wall or the substrate mounting table, and a donut-shaped plasma having an extremely low electrical potential is generated in the plasma generation space 201a. Can be generated.
(制御部)
 図3に示すように、制御部としてのコントローラ221は、CPU(Central Processing Unit)221a、RAM(Random Access Memory)221b、記憶装置221c、I/Oポート221dを備えたコンピュータとして構成されている。RAM221b、記憶装置221c、I/Oポート221dは、内部バス221eを介して、CPU221aとデータ交換可能なように構成されている。コントローラ221には、入出力装置225として、例えばタッチパネル、マウス、キーボード、操作端末等が接続されていてもよい。また、コントローラ221には、表示部として、例えばディスプレイ等が接続されていてもよい。
(Control part)
As shown in FIG. 3, the controller 221 as a control unit is configured as a computer including a CPU (Central Processing Unit) 221a, a RAM (Random Access Memory) 221b, a storage device 221c, and an I / O port 221d. The RAM 221b, the storage device 221c, and the I / O port 221d are configured to exchange data with the CPU 221a via the internal bus 221e. For example, a touch panel, a mouse, a keyboard, an operation terminal, or the like may be connected to the controller 221 as the input / output device 225. Further, for example, a display or the like may be connected to the controller 221 as a display unit.
 記憶装置221cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)、CD-ROM等で構成されている。記憶装置221c内には、基板処理装置100の動作を制御する制御プログラムや、基板処理の手順や条件などが記載されたプロセスレシピ等が、読み出し可能に格納されている。なお、プロセスレシピは、後述する基板処理工程における各手順をコントローラ221に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。RAM221bは、CPU221aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。 The storage device 221c includes, for example, a flash memory, an HDD (Hard Disk Drive), a CD-ROM, and the like. In the storage device 221c, a control program that controls the operation of the substrate processing apparatus 100, a process recipe that describes the procedure and conditions of the substrate processing, and the like are stored in a readable manner. Note that the process recipe is a combination of functions so that a predetermined result can be obtained by causing the controller 221 to execute each procedure in a substrate processing step to be described later, and functions as a program. The RAM 221b is configured as a memory area (work area) in which a program or data read by the CPU 221a is temporarily stored.
 I/Oポート221dは、上述のMFC252a~252c、バルブ253a~253c、243a、243b、ゲートバルブ244、APCバルブ242、真空ポンプ246、ヒータ217b、RFセンサ272、高周波電源273、周波数整合器274、サセプタ昇降機構268、インピーダンス可変機構275等に接続されている。 The I / O port 221d includes the above-described MFCs 252a to 252c, valves 253a to 253c, 243a and 243b, gate valve 244, APC valve 242, vacuum pump 246, heater 217b, RF sensor 272, high frequency power supply 273, frequency matching unit 274, The susceptor elevating mechanism 268 and the impedance variable mechanism 275 are connected.
 CPU221aは、記憶装置221cから制御プログラムを読み出して実行すると共に、入出力装置225からの操作コマンドの入力等に応じて記憶装置221cからプロセスレシピを読み出すように構成されている。そして、図1に示すように、CPU221aは、読み出したプロセスレシピの内容に沿うように、I/Oポート221d及び信号線Aを通じてAPCバルブ242の開度調整動作、バルブ243bの開閉動作、及び真空ポンプ246の起動・停止を、信号線Bを通じてサセプタ昇降機構268の昇降動作を、信号線Cを通じてヒータ電力調整機構276による温度センサに基づくヒータ217bへの供給電力量調整動作(温度調整動作)やインピーダンス可変機構275によるインピーダンス値調整動作を、信号線Dを通じてゲートバルブ244の開閉動作を、信号線Eを通じてRFセンサ272、周波数整合器274及び高周波電源273の動作を、信号線Fを通じてMFC252a~252cによる各種ガスの流量調整動作、及びバルブ253a~253c、243aの開閉動作を、それぞれ制御するように構成されている。 The CPU 221a is configured to read and execute a control program from the storage device 221c, and to read a process recipe from the storage device 221c in response to an operation command input from the input / output device 225 or the like. As shown in FIG. 1, the CPU 221a adjusts the opening degree of the APC valve 242, the opening / closing operation of the valve 243b, and the vacuum through the I / O port 221d and the signal line A in accordance with the contents of the read process recipe. The pump 246 is started and stopped, the lifting / lowering operation of the susceptor lifting / lowering mechanism 268 through the signal line B, the power supply amount adjusting operation (temperature adjusting operation) to the heater 217b based on the temperature sensor by the heater power adjusting mechanism 276 through the signal line C, The impedance value adjusting operation by the impedance variable mechanism 275, the opening / closing operation of the gate valve 244 through the signal line D, the operation of the RF sensor 272, the frequency matching unit 274 and the high frequency power supply 273 through the signal line E, and the MFCs 252a to 252c through the signal line F. Adjusting the flow rate of various gases by the valve and valve 2 It is configured to control the opening / closing operations of 53a to 253c and 243a, respectively.
(2)基板処理工程
 次に、本実施形態に係る基板処理工程について説明する。図4(A)は、本実施形態に係る基板処理工程で処理されるトレンチ構造の基板を示しており、図4(B)は、本実施形態に係る基板処理工程で処理されるホール(孔)構造の基板を示している。また、図5は、図4に示す基板の構成の一例を示す図であり、トレンチ構造又はホール構造の深さ方向に沿った断面の一例を示している。本実施形態に係る基板処理工程は、例えばフラッシュメモリ等の半導体デバイスの製造工程の一工程として、上述の処理装置100により実施される。なお以下の説明において、処理装置100を構成する各部の動作は、コントローラ221により制御される。
(2) Substrate Processing Step Next, the substrate processing step according to the present embodiment will be described. FIG. 4A shows a substrate having a trench structure processed in the substrate processing step according to this embodiment, and FIG. 4B shows a hole (hole) processed in the substrate processing step according to this embodiment. ) Shows the structure substrate. FIG. 5 is a diagram illustrating an example of the configuration of the substrate illustrated in FIG. 4, and illustrates an example of a cross section along the depth direction of the trench structure or the hole structure. The substrate processing process according to this embodiment is performed by the above-described processing apparatus 100 as one process of manufacturing a semiconductor device such as a flash memory. In the following description, the operation of each part constituting the processing apparatus 100 is controlled by the controller 221.
 本実施形態に係る基板処理工程で処理されるトレンチ構造又はホール構造等の凹状構造の基板には、例えば図5に示すような3次元構造を有するパターンが形成されている。具体的には、当該構造は例えば、アスペクト比(すなわちホール径に対する深さの比)が20以上であるホール状の3D-NAND構造であり、以下の手順で形成される。以下、ホール構造の基板が形成される基板処理工程について説明する。なお、本明細書においてアスペクト比とは、ホール構造におけるものに限らず、例えばトレンチ構造におけるトレンチ幅に対する深さの比のことを含む場合がある。 For example, a pattern having a three-dimensional structure as shown in FIG. 5 is formed on a substrate having a concave structure such as a trench structure or a hole structure processed in the substrate processing step according to the present embodiment. Specifically, the structure is, for example, a hole-shaped 3D-NAND structure having an aspect ratio (that is, a ratio of depth to hole diameter) of 20 or more, and is formed by the following procedure. Hereinafter, a substrate processing process in which a substrate having a hole structure is formed will be described. In this specification, the aspect ratio is not limited to that in the hole structure, but may include, for example, the ratio of the depth to the trench width in the trench structure.
 最初に、単結晶シリコン(c-Si)等で構成されたウエハ200の上に金属含有膜としてのチタン窒化膜302とシリコン酸化膜300aとが交互に連続的に積層される。そして、その積層膜の上から下までをホール(孔)状にエッチングする(図6(A)参照)。 First, titanium nitride films 302 and silicon oxide films 300a as metal-containing films are alternately and continuously stacked on a wafer 200 made of single crystal silicon (c-Si) or the like. Then, etching is performed from the top to the bottom of the laminated film in a hole shape (see FIG. 6A).
 次に、ホール304の内面に、シリコン酸化膜300bを形成する(図6(B)参照)。 Next, a silicon oxide film 300b is formed on the inner surface of the hole 304 (see FIG. 6B).
 次に、シリコン酸化膜300bの内面にシリコン窒化膜306を形成する(図6(C)参照)。 Next, a silicon nitride film 306 is formed on the inner surface of the silicon oxide film 300b (see FIG. 6C).
 次に、シリコン窒化膜306の内面にシリコン酸化膜300cを形成する(図6(D)参照)。 Next, a silicon oxide film 300c is formed on the inner surface of the silicon nitride film 306 (see FIG. 6D).
 次に、シリコン酸化膜300cの内面にポリシリコン膜308を形成する(図6(E)参照)。 Next, a polysilicon film 308 is formed on the inner surface of the silicon oxide film 300c (see FIG. 6E).
 そして、ポリシリコン膜308の内側にシリコン酸化膜300dを充填してホール状の3D-NAND構造が形成され(図6(F)参照)、このポリシリコ膜308がチャネル部として用いられる。 Then, a silicon oxide film 300d is filled inside the polysilicon film 308 to form a hole-like 3D-NAND structure (see FIG. 6F), and this polysilicon film 308 is used as a channel portion.
 ここで、上述した図6(A)の積層膜の上から下までをホール状にエッチングする際に、例えば図7(A)に示すように、ホール304の底部のシリコン酸化膜300aの露出面が損傷を受けて、損傷した層ができることがある。ここで、シリコン酸化膜の損傷とは、膜中から酸素成分が抜けて所望の組成を有しなくなることを主に意味している。損傷を受けたシリコン酸化膜は、絶縁膜としての機能が低下する。エッチングは、イオンをバイアスで引き込んで行う為、ホール底部ほど損傷の程度が大きくなり、底部における損傷が最も顕著になる。絶縁膜であるシリコン酸化膜が損傷していると耐電圧特性等の電気的特性が変化するため、底部におけるシリコン酸化膜に顕著な損傷が存在すると、他の部位におけるシリコン酸化膜との間で、耐電圧特性のばらつきが発生してしまう。また、損傷を修復するために酸化処理を行うと、例えば、損傷のない(又は少ない)他の部位におけるシリコン酸化膜を過度に酸化したり、メタルゲート等の金属含有膜の酸化も進行させてしまったりすることがある。従って、損傷しているシリコン酸化膜の修復のために、ホール304の底部近傍のみを局所的に(選択的に)酸化処理することが望ましい。 Here, when etching from above to below the laminated film of FIG. 6A in a hole shape, for example, as shown in FIG. 7A, the exposed surface of the silicon oxide film 300a at the bottom of the hole 304 Can be damaged, resulting in a damaged layer. Here, the damage of the silicon oxide film mainly means that the oxygen component escapes from the film and does not have a desired composition. The damaged silicon oxide film has a reduced function as an insulating film. Since the etching is performed by drawing ions with a bias, the degree of damage increases toward the bottom of the hole, and the damage at the bottom is most noticeable. If the silicon oxide film, which is an insulating film, is damaged, the electrical characteristics such as the withstand voltage characteristics change, so if there is significant damage to the silicon oxide film at the bottom, the silicon oxide film in other parts As a result, variations in withstand voltage characteristics occur. In addition, when an oxidation process is performed to repair damage, for example, the silicon oxide film in other parts that are not damaged (or less) is excessively oxidized, or oxidation of a metal-containing film such as a metal gate is also advanced. There are times when it falls. Accordingly, it is desirable to locally (selectively) oxidize only the vicinity of the bottom of the hole 304 in order to repair the damaged silicon oxide film.
 また、例えば上述した図6(D)のシリコン酸化膜300cの成膜工程において、図7(B)に示すように、マイクロローディング効果により、ホール304の上部でシリコン酸化膜300cの膜厚が厚く、ホール底部に近づくほどシリコン酸化膜300cの膜厚が薄く形成されてしまうことがある。つまり、ホール304の上部と下部とでシリコン酸化膜の膜厚が不均一となってしまうことがある。ホール304の上部と下部とでシリコン酸化膜300cの膜厚が不均一となると、耐電圧特性等の電気特性にばらつきが発生してしまう。そこで、ホール304の内面においてシリコン酸化膜300cの厚さのばらつきを補正するために、ホール304の内面に対して酸化処理を施すことが考えられる。その際、例えばシリコン酸化膜300cの下地膜であるシリコン窒化膜306に対して、ホール304の底部に近いほど酸化処理による酸化層の厚みが大きくなるように酸化処理を行うことにより、当該酸化処理で形成された酸化層を含んだシリコン酸化膜300cの厚さが均一に近くなるように補正することができる。 Further, for example, in the above-described film formation step of the silicon oxide film 300c of FIG. 6D, as shown in FIG. 7B, the film thickness of the silicon oxide film 300c is increased above the hole 304 due to the microloading effect. The film thickness of the silicon oxide film 300c may become thinner as it approaches the bottom of the hole. That is, the thickness of the silicon oxide film may be nonuniform between the upper and lower portions of the hole 304. If the film thickness of the silicon oxide film 300c is not uniform between the upper part and the lower part of the hole 304, variations in electrical characteristics such as withstand voltage characteristics occur. Therefore, in order to correct the variation in the thickness of the silicon oxide film 300c on the inner surface of the hole 304, it can be considered that the inner surface of the hole 304 is oxidized. At that time, for example, the silicon nitride film 306 which is the base film of the silicon oxide film 300c is subjected to an oxidation process such that the closer to the bottom of the hole 304, the greater the thickness of the oxide layer formed by the oxidation process. The thickness of the silicon oxide film 300c including the oxide layer formed in (1) can be corrected so as to be nearly uniform.
 本実施形態においては、これらの課題を解消するために、例えばアスペクト比20以上の高アスペクト比のホール状構造又はトレンチ構造等の凹状構造の内面に形成される膜であるシリコン酸化膜やその下地膜であるシリコン窒化膜を、ホール304の内部空間に露出した膜表面から改質(酸化)し、改質処理による酸化層の厚さがホール304の底面に向かって大きくなるように酸化層を形成する。これにより、ホール304の底部におけるシリコン酸化膜の損傷を修復したり、ホール304内面に形成される酸化膜厚のばらつきを補正することができる。 In the present embodiment, in order to solve these problems, for example, a silicon oxide film which is a film formed on the inner surface of a concave structure such as a hole structure having a high aspect ratio of 20 or more or a trench structure, or the like is provided. The silicon nitride film as the base film is modified (oxidized) from the film surface exposed in the internal space of the hole 304, and the oxide layer is formed so that the thickness of the oxidized layer by the modification process increases toward the bottom surface of the hole 304. Form. Thereby, damage to the silicon oxide film at the bottom of the hole 304 can be repaired, and variations in the oxide film thickness formed on the inner surface of the hole 304 can be corrected.
 まずは、図7(A)に示すようなホール304内面の底部におけるシリコン酸化膜300aの損傷を修復する例について説明する。本実施形態におけるホール304のアスペクト比は20である。 First, an example of repairing damage to the silicon oxide film 300a at the bottom of the inner surface of the hole 304 as shown in FIG. 7A will be described. In this embodiment, the aspect ratio of the hole 304 is 20.
 上述した図6(A)のエッチング後に、図8に示すステップS110~ステップS150の基板処理工程を行う。 After the above-described etching shown in FIG. 6A, the substrate processing process of steps S110 to S150 shown in FIG. 8 is performed.
(基板搬入工程S110)
 まず、修復対象であるホール304が面上に形成されたウエハ200を処理室201内に搬入する。具体的には、サセプタ昇降機構268がサセプタ217を下降させて、サセプタ217の貫通孔217aから、ウエハ突き上げピン266をサセプタ217表面よりも所定の高さ分だけ突出させる。
(Substrate carrying-in process S110)
First, the wafer 200 on which the hole 304 to be repaired is formed is carried into the processing chamber 201. Specifically, the susceptor elevating mechanism 268 lowers the susceptor 217 and causes the wafer push-up pins 266 to protrude from the through hole 217a of the susceptor 217 by a predetermined height from the surface of the susceptor 217.
 続いて、ゲートバルブ244を開き、処理室201内にウエハ200を搬入する。その結果、ウエハ200は、サセプタ217の表面から突出したウエハ突上げピン266上に水平姿勢で支持される。そして、サセプタ昇降機構268が、共振コイル212の下端203aと搬入出口245の上端245aの間の所定の位置となるよう、サセプタ217を上昇させる。その結果、ウエハ200はサセプタ217の上面に支持される。 Subsequently, the gate valve 244 is opened, and the wafer 200 is loaded into the processing chamber 201. As a result, the wafer 200 is supported in a horizontal posture on the wafer push-up pins 266 protruding from the surface of the susceptor 217. Then, the susceptor elevating mechanism 268 raises the susceptor 217 so as to be at a predetermined position between the lower end 203a of the resonance coil 212 and the upper end 245a of the loading / unloading port 245. As a result, the wafer 200 is supported on the upper surface of the susceptor 217.
(昇温・真空排気工程S120)
 続いて、処理室201内に搬入されたウエハ200の昇温を行う。ヒータ217bは予め加熱されており、ヒータ217bが埋め込まれたサセプタ217上に、搬入されたウエハ200を保持することで、100~1000℃の範囲内であって、例えば700℃の所定の温度にウエハ200を加熱する。また、ウエハ200の昇温を行う間、真空ポンプ246によりガス排気管231を介して処理室201内を真空排気し、処理室201内の圧力を0.5Pa以上250Pa以下、より好ましくは10Pa以上200Pa以下の範囲内の所定値とする。真空ポンプ246は、少なくとも後述の基板搬出工程S150が終了するまで作動させておく。
(Temperature raising / evacuation process S120)
Subsequently, the temperature of the wafer 200 carried into the processing chamber 201 is increased. The heater 217b is preheated, and the wafer 200 loaded thereon is held on the susceptor 217 in which the heater 217b is embedded, so that the temperature is within a range of 100 to 1000 ° C., for example, 700 ° C. The wafer 200 is heated. Further, while the temperature of the wafer 200 is raised, the inside of the processing chamber 201 is evacuated by the vacuum pump 246 through the gas exhaust pipe 231 so that the pressure in the processing chamber 201 is 0.5 Pa or more and 250 Pa or less, more preferably 10 Pa or more. The predetermined value is within a range of 200 Pa or less. The vacuum pump 246 is operated until at least a substrate unloading step S150 described later is completed.
(処理ガス供給およびプラズマ処理工程S130)
 次に、処理ガスとして水素原子と酸素原子を含有するガスを処理室201内に供給し、当該ガスをプラズマ励起することによりホール304の内面に対するプラズマ処理を実施する。本実施形態では、水素含有ガスであるH2ガスと酸素含有ガスであるO2ガスの混合ガスを供給する。
(Processing gas supply and plasma processing step S130)
Next, a gas containing hydrogen atoms and oxygen atoms is supplied into the processing chamber 201 as a processing gas, and plasma processing is performed on the inner surface of the hole 304 by plasma-exciting the gas. In the present embodiment, a mixed gas of H 2 gas that is hydrogen-containing gas and O 2 gas that is oxygen-containing gas is supplied.
 具体的には、バルブ243a,253a,253bを開け、MFC252aにて流量制御しながら、バッファ室237を介して処理室201内へH2ガスを供給する。また同時に、MFC252bにて流量制御しながら、バッファ室237を介して処理室201内へO2ガスを供給する。 Specifically, the valves 243a, 253a, and 253b are opened, and H 2 gas is supplied into the processing chamber 201 through the buffer chamber 237 while controlling the flow rate with the MFC 252a. At the same time, O 2 gas is supplied into the processing chamber 201 through the buffer chamber 237 while controlling the flow rate with the MFC 252b.
 ここで、処理室201内へ供給される混合ガス中のH2ガスの比率を10~50%と高めて改質処理を行った場合、ホール304の内部空間の中において、ホール304の上端部(すなわちホール開口部)からホール304内の底面に向かうほど、混合ガスから生成された水素活性種の存在する比率が低下する。詳細には後述するが、本実施形態では、ホールの上端部から底面に向かう方向(深さ方向)において、改質対象膜の表面に酸化層が形成される速度である酸化レートを所望の分布とするために、例えば処理室201内に供給される混合ガスにおけるH2ガスとO2ガスの流量比を制御することによって、ウエハ200の表面に供給される水素活性種と酸素活性種の比率を制御する。すなわち、MFC252a,252bそれぞれの開度を調整する事で、ホールの深さ方向において、改質処理による酸化層の厚さの分布を、所望の分布となるように制御する。特に、ホールの上端部から底面に向かって酸化レート(もしくは酸化層の厚さ)が大きくなっていくように、混合ガスの流量比(もしくは水素活性種と酸素活性種の比率)を制御する。また、ホール底面における水素活性種と酸素活性種の供給量(活性種の流量)の比率を特に5:95前後(すなわち、総供給量における水素活性種の比率が5%前後)となるように条件を調整することによって、ホール底面における酸化レートを最大化する。本実施形態では、処理室201内へのH2ガスの導入量は200sccm、O2ガスの導入量は800sccmとしている。 Here, when the reforming process is performed by increasing the ratio of H 2 gas in the mixed gas supplied into the processing chamber 201 to 10 to 50%, the upper end portion of the hole 304 in the inner space of the hole 304 The ratio of the active hydrogen species generated from the mixed gas decreases as the distance from (that is, the hole opening) toward the bottom surface in the hole 304 decreases. As will be described in detail later, in the present embodiment, a desired distribution of an oxidation rate, which is a rate at which an oxide layer is formed on the surface of the film to be modified, in a direction (depth direction) from the upper end portion of the hole toward the bottom surface. In order to achieve this, for example, by controlling the flow ratio of H 2 gas and O 2 gas in the mixed gas supplied into the processing chamber 201, the ratio of hydrogen active species and oxygen active species supplied to the surface of the wafer 200 is controlled. To control. That is, by adjusting the opening degree of each of the MFCs 252a and 252b, the thickness distribution of the oxide layer by the reforming process is controlled to be a desired distribution in the hole depth direction. In particular, the flow ratio of the mixed gas (or the ratio of hydrogen active species to oxygen active species) is controlled so that the oxidation rate (or the thickness of the oxide layer) increases from the upper end of the hole toward the bottom. Further, the ratio of the supply amount of active hydrogen species and active oxygen species (flow rate of active species) at the bottom of the hole is particularly around 5:95 (that is, the ratio of active hydrogen species in the total supply amount is around 5%). By adjusting the conditions, the oxidation rate at the bottom of the hole is maximized. In this embodiment, the amount of H 2 gas introduced into the processing chamber 201 is 200 sccm, and the amount of O 2 gas introduced is 800 sccm.
 また、処理室201内の圧力が、例えば150Paの所定圧力となるように、APCバルブ242の開度を調整して処理室201内を排気する。 Further, the opening of the APC valve 242 is adjusted so that the pressure in the processing chamber 201 becomes a predetermined pressure of, for example, 150 Pa, and the processing chamber 201 is exhausted.
(プラズマ励起開始工程)
 H2ガスとO2ガスの混合ガスの導入を開始して所定時間経過後(例えば数秒経過後)、共振コイル212に対して高周波電源273から高周波電力の印加を開始する。このとき、例えば27.12MHzの高周波電力を、0.1~3.5kWの範囲内の電力(本実施形態では2.5kW)で印加する。これにより、プラズマ生成空間の共振コイル212の電気的中点に相当する高さ位置にドーナツ状の誘導プラズマが励起される。励起されたプラズマによりH2ガス、O2ガスは活性化されて解離し、酸素活性種(Oラジカル)と水素活性種(Hラジカル)が生成される。なお、酸素を含む反応種として、水酸基ラジカルや酸素イオン等が生成されることもある。また、水素を含む反応種として水素イオン等が生成されることもある。
(Plasma excitation start process)
After the introduction of the mixed gas of H 2 gas and O 2 gas is started, application of high frequency power from the high frequency power supply 273 to the resonance coil 212 is started after a predetermined time has elapsed (for example, after several seconds have elapsed). At this time, for example, a high frequency power of 27.12 MHz is applied at a power within a range of 0.1 to 3.5 kW (2.5 kW in the present embodiment). Thereby, the donut-shaped induction plasma is excited at a height position corresponding to the electrical middle point of the resonance coil 212 in the plasma generation space. H 2 gas and O 2 gas are activated and dissociated by the excited plasma, and oxygen active species (O radicals) and hydrogen active species (H radicals) are generated. Note that a hydroxyl radical, an oxygen ion, or the like may be generated as a reactive species containing oxygen. Further, hydrogen ions or the like may be generated as reactive species containing hydrogen.
 このプラズマにより生成されたHラジカルとOラジカル等が基板の表面を処理することで、ホール304内面に形成されたシリコン酸化膜300a等を表面から改質して酸化し、酸化層400aを形成する。 By treating the surface of the substrate with H radicals and O radicals generated by the plasma, the silicon oxide film 300a and the like formed on the inner surface of the hole 304 is modified and oxidized from the surface to form an oxide layer 400a. .
 このとき、ホール304の内面に供給されるHラジカルとOラジカルのうち、Hラジカルの比率を所定の比率にすることによって、図9(B)に示すように、ホール304の底面に向かって厚さが大きくなるように酸化層400aを形成することができる。すなわち、底部の損傷したシリコン酸化膜300aを改質して、修復されたシリコン酸化膜としての酸化層400aを形成することができる。なお、その理由については後述する。 At this time, by setting the ratio of H radicals out of H radicals and O radicals supplied to the inner surface of the hole 304 to a predetermined ratio, the thickness increases toward the bottom surface of the hole 304 as shown in FIG. The oxide layer 400a can be formed to have a large thickness. That is, the damaged silicon oxide film 300a at the bottom can be modified to form an oxide layer 400a as a repaired silicon oxide film. The reason will be described later.
 なお、本実施形態においては、水素原子と酸素原子を含有するガスとして、水素含有ガスであるH2ガスと酸素含有ガスであるO2ガスの混合ガスを用いる構成について説明したが、これに限らず、H2ガス以外の水素含有ガスとO2ガス以外の酸素含有ガスの混合ガスを用いることができる。例えば、酸素含有ガスとしてO3(オゾン)ガスを用いてもよい。また、水素含有ガスとして重水素Dを含むガスを用いてもよい。また、必要に応じてAr等の希ガスを添加してもよい。 In the present embodiment, the configuration using a mixed gas of H 2 gas, which is a hydrogen-containing gas, and O 2 gas, which is an oxygen-containing gas, has been described as the gas containing hydrogen atoms and oxygen atoms. Alternatively, a mixed gas of a hydrogen-containing gas other than H 2 gas and an oxygen-containing gas other than O 2 gas can be used. For example, O 3 (ozone) gas may be used as the oxygen-containing gas. A gas containing deuterium D may be used as the hydrogen-containing gas. Moreover, you may add rare gas, such as Ar, as needed.
 本実施形態では、ホール304の底面に向かって厚さが相対的に大きくなっていくように酸化層を形成するためにホール内に供給されるHラジカルとOラジカルの比率を調整する。また、本実施形態では特に、ホール底面において酸化層の形成速度(酸化レート)が最大となるようにするために、ホール底面におけるHラジカルとOラジカルの比率を5:95となるように調整する。この比率を5:95とする理由を以下で説明する。 In this embodiment, the ratio of H radicals and O radicals supplied into the holes is adjusted in order to form the oxide layer so that the thickness increases relatively toward the bottom surface of the holes 304. In this embodiment, in particular, the ratio of H radicals to O radicals on the bottom surface of the hole is adjusted to 5:95 in order to maximize the formation rate (oxidation rate) of the oxide layer on the bottom surface of the hole. . The reason why this ratio is set to 5:95 will be described below.
 図10は、ホール304内のHラジカルとOラジカルを模式的に示した図である。図11は、表面に凹状構造等が形成されていない平面状のウエハ上に形成されたシリコン膜に対して本実施形態と同様の酸化処理を行った場合において、処理室201内に供給されたH2ガスとO2ガスの総流量におけるH2ガスの流量の比率と、このウエハ上面に形成される酸化層の厚さとの関係を示した図である。すなわち図11は、凹状構造が存在しない改質対象膜における、H2ガスとO2ガスの総流量におけるH2ガスの流量の比率と、そこに形成される酸化層の厚さとの関係を示している。 FIG. 10 is a diagram schematically showing H radicals and O radicals in the hole 304. FIG. 11 is supplied into the processing chamber 201 when the same oxidation treatment as in this embodiment is performed on a silicon film formed on a planar wafer having no concave structure or the like formed on the surface. the ratio of the flow rate of H 2 gas in the total flow rate of H 2 gas and O 2 gas is a diagram showing the relationship between the thickness of the oxide layer formed on the upper surface of the wafer. That is, FIG. 11, in the reforming target layer which the concave structure is not present, shows the relationship between the thickness of the ratio of the flow rate of H 2 gas in the total flow rate of H 2 gas and O 2 gas, oxidized layer formed thereon ing.
 一般的に、HラジカルはOラジカルよりも失活し易く寿命が短い。そのため、Hラジカルは、ホール304の上端部(開口部)からホール304の底面に入り込む途中でホールの壁面への衝突等を起こすと、Oラジカルよりも速く失活する傾向がある。このようなHラジカルとOラジカルの寿命の差異により、ホール304の底面では、上端部よりもHラジカルの割合が低くなる。 Generally, H radicals are easier to deactivate than O radicals and have a shorter lifetime. Therefore, H radicals tend to be deactivated faster than O radicals when they collide with the wall surface of the hole while entering the bottom surface of the hole 304 from the upper end (opening) of the hole 304. Due to the difference in lifetime between the H radical and the O radical, the ratio of the H radical is lower at the bottom surface of the hole 304 than at the upper end.
 そして、図11に示すように、H2ガスとO2ガスの混合ガスを用いて酸化層を形成する場合に、混合ガス中のH2の比率が5%前後のときに酸化レートがピークとなり、H2の比率を5%よりも高めていくと酸化レートは低下する傾向がある。また、図11に示すように、混合ガス中のH2の比率を5%よりも低くしても、酸化レートが低下する傾向がある。つまり、混合ガス中のH2の比率が5%前後の場合に、最も酸化レートが高くなる。 As shown in FIG. 11, when the oxide layer is formed using a mixed gas of H 2 gas and O 2 gas, the oxidation rate peaks when the ratio of H 2 in the mixed gas is around 5%. When the ratio of H 2 is increased from 5%, the oxidation rate tends to decrease. Moreover, as shown in FIG. 11, even if the ratio of H 2 in the mixed gas is lower than 5%, the oxidation rate tends to decrease. That is, the oxidation rate becomes the highest when the ratio of H 2 in the mixed gas is around 5%.
 なお、本実施形態の場合、処理室201内に供給されるプラズマ励起前のH2ガスとO2ガスの比率と、ウエハ表面上に供給されるHラジカルとOラジカルの比率は略等しいと推測される。したがって、改質対象膜に供給されるHラジカルとOラジカルの比率が5:95程度(すなわちHラジカルの比率が5%程度)の場合に、最も酸化レートが高くなると考えられる。 In this embodiment, it is assumed that the ratio of H 2 gas and O 2 gas before plasma excitation supplied into the processing chamber 201 is substantially equal to the ratio of H radical and O radical supplied on the wafer surface. Is done. Therefore, it is considered that the oxidation rate becomes the highest when the ratio of H radicals to O radicals supplied to the film to be modified is about 5:95 (that is, the ratio of H radicals is about 5%).
 ここで、ホール304が形成されたウエハ200の上面に対して、図11に示す場合のように、表面に凹状構造が形成されていないウエハ上に形成されたシリコン膜に対する酸化レートが最大となるような供給量の比率でHラジカルとOラジカルを供給した場合、ホール304の上端部(ホールの開口部)において酸化レートが最も大きくなり、ホール底部に向かうほど、Hラジカルの比率低下と共に酸化レートが小さくなる。従って、ウエハ200に対して供給するOラジカルに対するHラジカルの比率を、ホール304の上端部における酸化レートが最大となる比率(第1の比率)よりも大きい所定の比率にすることにより、ホール304の内面(すなわち上端部より底面側の面)において厚さが上端部より大きくなるように酸化層を形成することができる。例えば、本実施形態によれば、処理室201内に供給する混合ガスにおけるH2ガスの流量比率を、ホール304の上端部において酸化レートがピークとなる5%よりも高い所定の比率にすることにより、ホール304の内面において厚さが上端部よりも大きくなるように酸化層の厚さを調整することができる。 Here, with respect to the upper surface of the wafer 200 in which the holes 304 are formed, the oxidation rate with respect to the silicon film formed on the wafer having no concave structure on the surface is maximized as shown in FIG. When H radicals and O radicals are supplied at such a supply ratio, the oxidation rate becomes the highest at the upper end of the hole 304 (the opening of the hole), and the oxidation rate decreases with decreasing the ratio of H radicals toward the bottom of the hole. Becomes smaller. Accordingly, the ratio of H radicals to O radicals supplied to the wafer 200 is set to a predetermined ratio larger than the ratio (first ratio) at which the oxidation rate at the upper end portion of the holes 304 is maximized. The oxide layer can be formed so that the thickness is larger on the inner surface (that is, the surface on the bottom side than the upper end) than on the upper end. For example, according to the present embodiment, the flow rate ratio of the H 2 gas in the mixed gas supplied into the processing chamber 201 is set to a predetermined ratio higher than 5% at which the oxidation rate peaks at the upper end portion of the hole 304. Thus, the thickness of the oxide layer can be adjusted so that the thickness of the inner surface of the hole 304 is larger than that of the upper end portion.
 また、ウエハ200の上面に対して供給するOラジカルに対するHラジカルの比率を、ホール304の底面に向かう深さ方向における酸化層の厚さの分布(すなわち酸化レートの分布)が略均一となるような比率(第2の比率)よりも大きい所定の比率とすることにより、略均一な分布に比べてホール304の底面に向かって厚さが相対的に大きくなるように酸化層を形成することができる。例えば、本実施形態によれば、処理室201内に供給する混合ガスにおけるH2ガスの流量比率を、酸化層の厚さ分布が略均一となる比率よりも高い所定の比率とする。なお、第2の比率は第1の比率よりも大きい。 Further, the ratio of the H radical to the O radical supplied to the upper surface of the wafer 200 is such that the thickness distribution of the oxide layer (that is, the oxidation rate distribution) in the depth direction toward the bottom surface of the hole 304 is substantially uniform. By setting the ratio to a predetermined ratio that is larger than the second ratio, the oxide layer can be formed so that the thickness becomes relatively larger toward the bottom surface of the hole 304 than the substantially uniform distribution. it can. For example, according to this embodiment, the flow rate ratio of the H 2 gas in the mixed gas supplied into the processing chamber 201 is set to a predetermined ratio higher than the ratio at which the thickness distribution of the oxide layer becomes substantially uniform. Note that the second ratio is larger than the first ratio.
 また、ウエハ200の上面に対して供給するOラジカルに対するHラジカルの比率を、ホール304の底面において酸化レートが最大化させるような比率(第3の比率)と等しい、またはより大きい所定の比率とすることにより、ホール304の底面に向かって厚さが相対的に大きくなり、ホール内面の層厚分布においてホール底面での厚さが最大となるように酸化層を形成することができる。特にウエハ200の上面に対して供給するOラジカルに対するHラジカルの比率を第3の比率とすることにより、ホール304の底面における酸化レートを最大化することができる。 Further, the ratio of H radicals to O radicals supplied to the upper surface of the wafer 200 is equal to or larger than a ratio (third ratio) that maximizes the oxidation rate at the bottom surface of the hole 304, and By doing so, the oxide layer can be formed so that the thickness is relatively increased toward the bottom surface of the hole 304 and the thickness at the bottom surface of the hole is maximized in the layer thickness distribution on the inner surface of the hole. In particular, by setting the ratio of H radicals to O radicals supplied to the upper surface of the wafer 200 as the third ratio, the oxidation rate at the bottom surface of the hole 304 can be maximized.
 ホール304の底面におけるOラジカルに対するHラジカルの比率が5%前後である時に、底面における酸化レートが最大化される。従って、上述の第3の比率は、ホール304の底面におけるOラジカルに対するHラジカルの比率が5%前後となるような比率である。なお、第3の比率は第1の比率及び第2の比率よりも大きい。 When the ratio of H radical to O radical at the bottom surface of the hole 304 is around 5%, the oxidation rate at the bottom surface is maximized. Therefore, the above-mentioned third ratio is such that the ratio of H radicals to O radicals on the bottom surface of the hole 304 is around 5%. The third ratio is larger than the first ratio and the second ratio.
 例えば、アスペクト比20であるホール304の底面におけるHラジカルの供給量の比率を5%前後とするためには、第3の比率であるホール304の上端部におけるHラジカルの供給量の比率を10~30%、例えば20%前後とすればよい。本実施形態においては、ホール304の上端部におけるHラジカルの供給量の比率を10~30%とするため、処理室201内に導入されるH2ガスとO2ガスの流量比を10:90~30:70に調整する。 For example, in order to set the ratio of the supply amount of H radicals at the bottom surface of the hole 304 having an aspect ratio of 20 to around 5%, the ratio of the supply amount of H radicals at the upper end portion of the hole 304 that is the third ratio is set to 10%. It may be ˜30%, for example, around 20%. In the present embodiment, the ratio of the supply amount of H radicals at the upper end of the hole 304 is set to 10 to 30%, so that the flow rate ratio of H 2 gas and O 2 gas introduced into the processing chamber 201 is 10:90. Adjust to ~ 30: 70.
 また、ホール底面で酸化レートが最大化されるようなHラジカルの比率にするためには、アスペクト比が高い基板ほど、ホール304の上端部において供給されるHラジカルの比率を高くする必要がある。アスペクト比が高いほど、ホール底面に到達するまでにHラジカルが失活する確率は高くなり、ホール底面に到達する前にHラジカルが完全に失活してしまうと、酸化レートがピーク値よりも低下してしまうからである。 Further, in order to obtain a ratio of H radicals that maximizes the oxidation rate at the bottom of the hole, it is necessary to increase the ratio of H radicals supplied at the upper end of the hole 304 as the substrate has a higher aspect ratio. . The higher the aspect ratio, the higher the probability that the H radical will be deactivated before reaching the bottom of the hole. If the H radical is completely deactivated before reaching the bottom of the hole, the oxidation rate is higher than the peak value. It is because it falls.
 そして、高周波電力の印加を開始してから所定の処理時間経過後、高周波電源273からの電力の出力を停止して、処理室201内におけるプラズマ放電を停止する。また、バルブ253a,253bを閉めて、H2ガス、O2ガスの処理室201内への供給を停止する。 Then, after a predetermined processing time has elapsed since the start of application of high-frequency power, output of power from the high-frequency power source 273 is stopped, and plasma discharge in the processing chamber 201 is stopped. Further, the valves 253a and 253b are closed, and the supply of H 2 gas and O 2 gas into the processing chamber 201 is stopped.
(真空排気工程S140)
 所定の処理時間が経過してH2ガス、O2ガスの供給を停止したら、ガス排気管231を用いて処理室201内を真空排気する。これにより、処理室201内のH2ガス、O2ガスや、その他の残留物が含まれる排ガス等を処理室201外へと排気する。その後、APCバルブ242の開度を調整し、処理室201内の圧力を処理室201に隣接する真空搬送室と同じ圧力に調整する。
(Evacuation step S140)
When the supply of H 2 gas and O 2 gas is stopped after a predetermined processing time has elapsed, the inside of the processing chamber 201 is evacuated using the gas exhaust pipe 231. As a result, H 2 gas, O 2 gas in the processing chamber 201, exhaust gas containing other residues, and the like are exhausted out of the processing chamber 201. Thereafter, the opening degree of the APC valve 242 is adjusted, and the pressure in the processing chamber 201 is adjusted to the same pressure as the vacuum transfer chamber adjacent to the processing chamber 201.
(基板搬出工程S150)
 処理室201内が所定の圧力となったら、サセプタ217をウエハ200の搬送位置まで下降させ、ウエハ突上げピン266上にウエハ200を支持させる。そして、ゲートバルブ244を開き、図中省略の搬送機構を用いてウエハ200を処理室201外へ搬出する。以上により、本実施形態に係る基板処理工程を終了する。
(Substrate unloading step S150)
When the inside of the processing chamber 201 reaches a predetermined pressure, the susceptor 217 is lowered to the transfer position of the wafer 200 and the wafer 200 is supported on the wafer push-up pins 266. Then, the gate valve 244 is opened, and the wafer 200 is carried out of the processing chamber 201 using a transfer mechanism not shown in the drawing. Thus, the substrate processing process according to this embodiment is completed.
 このように、水素活性種と酸素活性種を所定の比率で用いて改質処理を行うことにより、ホール底部のシリコン酸化膜300aの表面に形成される酸化層400aの厚さを、ホール上端部のシリコン酸化膜300aの表面に形成される酸化層400aの厚さよりも相対的に大きくできるため、エッチングにより損傷したホール底部のシリコン酸化膜300aを選択的に修復し、電気的特性(例えば耐電圧特性等)を改善することができる。 In this way, by performing the reforming process using the hydrogen active species and the oxygen active species at a predetermined ratio, the thickness of the oxide layer 400a formed on the surface of the silicon oxide film 300a at the bottom of the hole is changed to the upper end of the hole. Since the thickness of the oxide layer 400a formed on the surface of the silicon oxide film 300a can be made relatively larger, the silicon oxide film 300a at the bottom of the hole damaged by the etching is selectively repaired, and electrical characteristics (for example, withstand voltage) Characteristics, etc.) can be improved.
 次に、図7(B)に示すようなホール304内面に形成される酸化膜厚のばらつきを補正する例について説明する。 Next, an example of correcting variations in the oxide film thickness formed on the inner surface of the hole 304 as shown in FIG. 7B will be described.
 上述した図6(D)のシリコン酸化膜300cの成膜後に、上述したステップS110~ステップS150の基板処理工程を行う。 After the formation of the silicon oxide film 300c in FIG. 6D described above, the substrate processing steps in steps S110 to S150 described above are performed.
 上述したステップS110~ステップS150を行うことにより、図12(B)に示すように、ホール304の底部においてシリコン酸化膜300cが薄くなっている箇所について、下地膜であるシリコン窒化膜306の一部を選択的に改質(酸化)してシリコン酸窒化層(SiON層)400bを形成する。つまり、ホール304底部に形成されたシリコン酸化膜300cの厚さと、その下層に形成されたシリコン酸窒化層400bの厚さを合わせた厚さを、ホール304上部のシリコン酸化膜300cの膜厚に近づくように補正する。なお、シリコン酸窒化層400bに含まれている窒素は次第に抜け、シリコン酸化層に近くなると考えられる。 By performing Steps S110 to S150 described above, as shown in FIG. 12B, a part of the silicon nitride film 306 which is a base film is formed at a portion where the silicon oxide film 300c is thin at the bottom of the hole 304. Is selectively modified (oxidized) to form a silicon oxynitride layer (SiON layer) 400b. In other words, the thickness of the silicon oxide film 300c formed on the bottom of the hole 304 and the thickness of the silicon oxynitride layer 400b formed on the lower layer are set to the thickness of the silicon oxide film 300c on the top of the hole 304. Correct to get closer. Note that it is considered that nitrogen contained in the silicon oxynitride layer 400b gradually escapes and becomes closer to the silicon oxide layer.
 上述の実施形態では主に、ホール304の底部において酸化レートが最大となるように、HラジカルとOラジカルの供給量の比率を調整する例について説明した。しかし、ホールの底部において酸化レートが最大となる場合に限らず、Hラジカルの供給量の比率を調整することにより、ホールの深さ方向における任意の位置において酸化レートが最大になるように改質処理を行うこともできる。すなわち、改質処理により形成される酸化層の深さ方向における厚さの分布を任意に調整することができる。
 特に、ウエハに対して供給されるOラジカルに対するHラジカルの比率を、ホールの深さ方向における酸化層の厚さ分布が均一になるような比率を基準として、その基準となる比率よりも大きくすることにより、ホールの底面に向かって酸化層の厚さが大きくなる分布を得ることができる。
In the above-described embodiment, an example in which the ratio of the supply amount of H radicals and O radicals is adjusted so that the oxidation rate is maximized at the bottom of the hole 304 has been described. However, it is not limited to the case where the oxidation rate is maximized at the bottom of the hole, but by modifying the ratio of the supply amount of H radicals, the modification is performed so that the oxidation rate is maximized at an arbitrary position in the depth direction of the hole. Processing can also be performed. That is, the thickness distribution in the depth direction of the oxide layer formed by the modification process can be arbitrarily adjusted.
In particular, the ratio of H radicals to O radicals supplied to the wafer is made larger than the reference ratio based on the ratio that makes the thickness distribution of the oxide layer uniform in the hole depth direction. Thus, a distribution in which the thickness of the oxide layer increases toward the bottom surface of the hole can be obtained.
 また、上述の実施形態では、処理室201内に供給される水素含有ガスと酸素含有ガスの供給流量の比率を、MFC252a,252bそれぞれの開度を制御する事で調整し、ホール304内に供給されるHラジカルとOラジカルの比率を調整している。しかし、HラジカルとOラジカルの供給量の比率の調整は、サセプタ昇降機構268を制御して、ウエハ200と共振コイル212との距離を変化させることで行うこともできる。 In the above-described embodiment, the ratio of the supply flow rates of the hydrogen-containing gas and the oxygen-containing gas supplied into the processing chamber 201 is adjusted by controlling the opening degree of each of the MFCs 252a and 252b, and supplied into the hall 304. The ratio of H radical and O radical to be adjusted is adjusted. However, the ratio of the supply amount of H radicals and O radicals can be adjusted by controlling the susceptor elevating mechanism 268 and changing the distance between the wafer 200 and the resonance coil 212.
 また、処理室201の外で混合ガスをプラズマ励起し、生成された活性種等の反応種を処理室201内に導入することもできる。また、さらに他の例として、H2ガスとO2ガスを別々にプラズマ励起し、それぞれで生成された活性種を処理室201内に導入する際に、導入する活性種の流量の比率を調整することで活性種の比率を制御してもよい。 Alternatively, the mixed gas can be plasma-excited outside the processing chamber 201 and the generated reactive species such as active species can be introduced into the processing chamber 201. As still another example, when H 2 gas and O 2 gas are separately plasma-excited and the activated species generated by each are introduced into the processing chamber 201, the flow rate ratio of the activated species to be introduced is adjusted. By doing so, the ratio of the active species may be controlled.
(3)第2の実施形態
 次に、高アスペクト比のホール状構造又はトレンチ構造等の凹状構造の内面に形成される膜を表面から改質して、厚さが底面に向かって大きくなるように酸化層を形成する他の実施形態について説明する。
(3) Second Embodiment Next, a film formed on the inner surface of a concave structure such as a high-aspect-ratio hole structure or a trench structure is modified from the surface so that the thickness increases toward the bottom surface. Another embodiment for forming an oxide layer will be described.
 第2の実施形態においては、ホール304の上端部を流れるガスの流速(より一般的にはウエハ200の上面を流れるガスの流速)を制御して、高アスペクト比のホール304において、改質処理で形成される酸化層の厚さを、ホール底面に向かって大きくなるように形成する。 In the second embodiment, the flow rate of the gas flowing through the upper end of the hole 304 (more generally, the flow rate of the gas flowing through the upper surface of the wafer 200) is controlled, and the reforming process is performed in the high aspect ratio hole 304. The thickness of the oxide layer formed in is increased so as to increase toward the bottom of the hole.
 具体的には、上述したステップS130の処理ガス供給およびプラズマ処理工程において、処理室201内に供給されるH2ガスとO2ガスの混合ガスの流量を制御することによって、ホール304の上端部を流れるガスの流速を制御する。 Specifically, the upper end portion of the hole 304 is controlled by controlling the flow rate of the mixed gas of H 2 gas and O 2 gas supplied into the processing chamber 201 in the processing gas supply and plasma processing step of step S130 described above. To control the flow rate of the gas flowing through.
(処理ガス供給およびプラズマ処理工程S130)
 バルブ243a,253a,253bを開け、MFC252aにて流量制御しながら、バッファ室237を介して処理室201内へH2ガスを供給する。同時に、MFC252bにて流量制御しながら、バッファ室237を介して処理室201内へO2ガスを供給する。このとき、H2ガスとO2ガスの全流量(総流量)を0.5~3slmとする。
(Processing gas supply and plasma processing step S130)
The valves 243a, 253a, and 253b are opened, and H 2 gas is supplied into the processing chamber 201 through the buffer chamber 237 while controlling the flow rate with the MFC 252a. At the same time, O 2 gas is supplied into the processing chamber 201 through the buffer chamber 237 while controlling the flow rate with the MFC 252b. At this time, the total flow rate (total flow rate) of H 2 gas and O 2 gas is set to 0.5 to 3 slm.
 また、処理室201内の圧力が、50~200Paであって、例えば150Paの所定圧力となるように、APCバルブ242の開度を調整して処理室201内を排気する。このように、処理室201内を適度に排気しつつ、後述のプラズマ処理工程の終了時までH2ガスとO2ガスの混合ガスの供給を継続する。 Further, the opening of the APC valve 242 is adjusted so that the pressure in the processing chamber 201 is 50 to 200 Pa, for example, a predetermined pressure of 150 Pa, and the processing chamber 201 is exhausted. In this way, while the inside of the processing chamber 201 is appropriately evacuated, the supply of the mixed gas of H 2 gas and O 2 gas is continued until the plasma processing step described later is completed.
(プラズマ励起開始工程)
 第1の実施形態と同様に、H2ガスとO2ガスの混合ガスの導入後、共振コイル212に対して高周波電源273から高周波電力の印加を開始する。
(Plasma excitation start process)
Similarly to the first embodiment, after introducing the mixed gas of H 2 gas and O 2 gas, application of high frequency power from the high frequency power source 273 to the resonance coil 212 is started.
 このプラズマにより生成されたHラジカルやOラジカル等が基板の表面を処理することで、図9に示すように、ホール304内面に形成されたシリコン酸化膜300aを表面から改質して、酸化層400aを形成する。また、図12に示すように、ホール304の底部におけるシリコン酸化膜300cの薄い箇所において、下地膜であるシリコン窒化膜306の一部を改質してシリコン酸窒化層(SiON層)400bを形成する。 By treating the surface of the substrate with H radicals or O radicals generated by this plasma, the silicon oxide film 300a formed on the inner surface of the hole 304 is modified from the surface as shown in FIG. 400a is formed. Further, as shown in FIG. 12, a silicon oxynitride layer (SiON layer) 400b is formed by modifying a part of the silicon nitride film 306 as a base film at a thin portion of the silicon oxide film 300c at the bottom of the hole 304. To do.
 図13は、表面に凹状構造等が形成されていない平面状のウエハ上に形成されたシリコン膜に対して本実施形態と同様の酸化処理を行った場合において、処理室201内に供給されたH2ガスとO2ガスの混合ガスの総流量と、このウエハ上面に形成される酸化層の厚さの関係を示す図である。ここでは、処理室201内の圧力は一定としているため、供給される混合ガスの流量と、ウエハ上面を流れるガスの流速はほぼ比例関係にある。 FIG. 13 is supplied into the processing chamber 201 when the same oxidation treatment as in this embodiment is performed on a silicon film formed on a planar wafer having no concave structure or the like formed on the surface. the total flow rate of the mixed gas of H 2 gas and O 2 gas is a diagram showing the relationship between the thickness of the oxide layer formed on the upper surface of the wafer. Here, since the pressure in the processing chamber 201 is constant, the flow rate of the supplied mixed gas and the flow velocity of the gas flowing on the upper surface of the wafer are substantially proportional.
 したがって、図13に示すように、改質対象膜の表面を流れるガスの流速が速ければ形成される酸化層の厚さは小さく、改質対象膜の表面を流れるガスの流速が遅ければ形成される酸化層の厚さは大きくなる傾向があることが分かる。 Therefore, as shown in FIG. 13, the thickness of the oxide layer formed is small if the flow velocity of the gas flowing on the surface of the film to be modified is high, and is formed if the flow velocity of the gas flowing on the surface of the film to be modified is slow. It can be seen that the thickness of the oxidized layer tends to increase.
 図14(A)と図14(B)は、ホール304の上端部におけるガスの流速とホール304内におけるHラジカルやOラジカルが含まれるガスの流速の関係を模式的に示した図である。図14(A)及び図14(B)に示す矢印の向きがガスの流れる方向を、矢印の大きさがガスの流速を示している。図14(B)に示すように、ホール304の上端部のガスの流速(すなわちウエハ200の表面を流れるガスの流速)を速くした場合には、ホール304の上端部に比べてホール304の底面に向かうほど流速が相対的に遅くなる。すなわち、ホール304内では上部に比べて底面に近づくほど流速差が大きくなり、ホール304内におけるHラジカルやOラジカルの滞留時間が、ホール304の上部に比べて長くなることが分かる。一方、図14(A)に示すように、ホール304の上端部のガスの流速が遅い場合には、ホール304内で上部と下部との流速差が小さいことが分かる。これはホール内を流れるガスがホール内面との摩擦抵抗により減速するためである。 FIGS. 14A and 14B are diagrams schematically showing the relationship between the flow velocity of the gas at the upper end of the hole 304 and the flow velocity of the gas containing H radicals and O radicals in the hole 304. FIG. The direction of the arrow shown in FIGS. 14A and 14B indicates the direction in which the gas flows, and the size of the arrow indicates the flow rate of the gas. As shown in FIG. 14B, when the gas flow rate at the upper end of the hole 304 (that is, the flow rate of gas flowing on the surface of the wafer 200) is increased, the bottom surface of the hole 304 is higher than the upper end of the hole 304. The flow rate becomes relatively slower toward the. That is, it can be seen that in the hole 304, the flow velocity difference increases as it approaches the bottom surface as compared with the upper part, and the residence time of H radicals and O radicals in the hole 304 becomes longer than in the upper part of the hole 304. On the other hand, as shown in FIG. 14A, when the gas flow rate at the upper end of the hole 304 is slow, it can be seen that the flow rate difference between the upper part and the lower part in the hole 304 is small. This is because the gas flowing in the hole decelerates due to frictional resistance with the inner surface of the hole.
 つまり、ホール状のウエハでは、図14(B)に示すように、図14(A)に示す場合と比較して、ホール304の上端部の流速を高速化することで、ホール304の上端部に比べて、底面に近づくほどHラジカルやOラジカルの滞留時間が相対的に長くなるため、ホール上端部から底面に近づくほど、形成された膜に対する酸化レートが大きくなり、ホール304上部に比べて下部の酸化層の厚さを大きくすることができると考えられる。つまり、ホール304の上端部の流速を選択することにより、ホール304内面の酸化層の厚さ分布を深さ方向に異なるように形成することができる。
 特に、ホール304の上端部を流れる酸素活性種及び水素活性種の流速を、ホール304の深さ方向における酸化層の厚さの分布が均一になる流速よりも大きい所定の流速にすることにより、厚さがホール304の底面に向かって大きくなるように酸化層を形成することができる。
That is, in the hole-shaped wafer, as shown in FIG. 14B, the upper end portion of the hole 304 is increased by increasing the flow velocity at the upper end portion of the hole 304 as compared with the case shown in FIG. Compared to the bottom surface, the dwell time of H radicals and O radicals becomes relatively longer as it approaches the bottom surface. Therefore, the closer to the bottom surface from the upper end of the hole, the higher the oxidation rate with respect to the formed film. It is considered that the thickness of the lower oxide layer can be increased. That is, by selecting the flow velocity at the upper end of the hole 304, the thickness distribution of the oxide layer on the inner surface of the hole 304 can be formed to be different in the depth direction.
In particular, by setting the flow rates of the oxygen active species and hydrogen active species flowing through the upper end of the hole 304 to a predetermined flow rate higher than the flow rate at which the thickness distribution of the oxide layer in the depth direction of the hole 304 becomes uniform, The oxide layer can be formed so that the thickness increases toward the bottom surface of the hole 304.
 また、処理室201内の圧力一定で、酸化処理に用いるガスの総流量を増加させると、ガスの排出速度も上がる為、基板表面を流れるガスの流速は速くなる。したがって、本実施形態では、処理室201内に供給する混合ガスの供給流量を調整することによって、基板表面を流れるガスの流速を調整し、ホール内側の膜厚分布を深さ方向に異なるようにする。より具体的には、MFC252a,252bそれぞれの開度を制御する事で混合ガスの流量を調整する。
 さらに、MFC252a,252bそれぞれの開度を制御する場合、第1の実施形態のように、水素含有ガスと酸素含有ガスの供給流量の比率も併せて制御することにより、ホール内側の膜厚分布を制御してもよい。
Further, when the total flow rate of the gas used for the oxidation treatment is increased while the pressure in the processing chamber 201 is constant, the gas discharge rate is increased, so that the flow rate of the gas flowing on the substrate surface is increased. Therefore, in the present embodiment, the flow rate of the gas flowing through the substrate surface is adjusted by adjusting the supply flow rate of the mixed gas supplied into the processing chamber 201 so that the film thickness distribution inside the hole differs in the depth direction. To do. More specifically, the flow rate of the mixed gas is adjusted by controlling the opening degrees of the MFCs 252a and 252b.
Furthermore, when controlling the opening degree of each of the MFCs 252a and 252b, as in the first embodiment, the ratio of the supply flow rates of the hydrogen-containing gas and the oxygen-containing gas is also controlled, so that the film thickness distribution inside the hole can be controlled. You may control.
 なお、ホール内面を所望する膜厚分布にするためには、ガス流量毎に形成される膜厚分布のデータを記憶装置221cや外部記憶装置226に記録する。そして、ホール状やトレンチ状等の凹状構造の基板に所望する膜厚分布にする際に、所定のガス流量を選択して成膜処理を実行する。 In order to obtain a desired film thickness distribution on the inner surface of the hole, data on the film thickness distribution formed for each gas flow rate is recorded in the storage device 221c and the external storage device 226. Then, when a desired film thickness distribution is formed on the substrate having a concave structure such as a hole shape or a trench shape, a film forming process is performed by selecting a predetermined gas flow rate.
 なお、第2の実施形態においては、第1実施形態と同様のガスを用いることができる。さらに、水素原子と酸素原子を含有するガスとして、水素原子と酸素原子の両方を含む分子のガスを供給して、プラズマ励起するようにしてもよい。例えば、H2OガスやH22ガスを用いてもよい。 In the second embodiment, the same gas as in the first embodiment can be used. Further, as a gas containing hydrogen atoms and oxygen atoms, plasma excitation may be performed by supplying a molecular gas containing both hydrogen atoms and oxygen atoms. For example, H 2 O gas or H 2 O 2 gas may be used.
 また、第2の実施形態において、H2ガスとO2ガスの混合ガスの流速を制御する例について説明したが、これに限らず、処理ガスとして、O2ガスのみ、H2ガスのみ、N2ガスのみ、アンモニアガスのみ、若しくは、N2ガスとH2ガスの混合ガスを用いる場合にも、適用することができる。 In the second embodiment, the example of controlling the flow rate of the mixed gas of H 2 gas and O 2 gas has been described. However, the present invention is not limited to this, and as the processing gas, only O 2 gas, only H 2 gas, N The present invention can also be applied to the case of using only two gases, only ammonia gas, or a mixed gas of N 2 gas and H 2 gas.
 また、第2の実施形態では、処理室201内に供給される混合ガスの総流量を制御して、ガスの流速を制御する構成について説明したが、これに限らず、サセプタ217の高さを調整したり、処理室201内の形状を変化させる等して、ホール上端部のガスの流速を制御するようにしてもよい。 In the second embodiment, the configuration in which the total flow rate of the mixed gas supplied into the processing chamber 201 is controlled to control the flow rate of the gas has been described. However, the configuration is not limited thereto, and the height of the susceptor 217 is increased. The flow rate of the gas at the upper end of the hole may be controlled by adjusting or changing the shape in the processing chamber 201.
(4)実験例 (4) Experimental example
<実験1>
 図15(A)は、ホールパターンの一例を示す図である。また、図15(B)は、比較例に係る改質処理によりホール内面に形成された酸化層の厚さを示す図であって、図15(C)は、本実施例に係る改質処理によりホール内面に形成された酸化層の厚さを示す図である。
<Experiment 1>
FIG. 15A is a diagram illustrating an example of a hole pattern. FIG. 15B is a diagram showing the thickness of the oxide layer formed on the inner surface of the hole by the modification process according to the comparative example. FIG. 15C shows the modification process according to this example. It is a figure which shows the thickness of the oxide layer formed in the hole inner surface by.
 図15(B)は、比較例として、上述した基板処理工程を用いて、H2ガスとO2ガスの混合ガスを用いてプラズマ処理を行った場合を示しており、処理室に導入するH2ガスとO2ガスの流量比を5:95にしてプラズマ処理を行った場合を示している。また、図15(C)は、上述した基板処理工程を用いて、処理室に導入するH2ガスとO2ガスの流量比を20:80にしてプラズマ処理を行った場合を示している。なお、比較例及び実施例では、ウエハの温度700℃、処理室201内の圧力150Pa、励起電力3.5kWでアスペクト比20のホール状のウエハに対してプラズマ処理を行った。 FIG. 15B shows, as a comparative example, a case where plasma processing is performed using a mixed gas of H 2 gas and O 2 gas using the above-described substrate processing step, and H introduced into the processing chamber is shown in FIG. This shows the case where the plasma treatment is performed with the flow rate ratio of 2 gas to O 2 gas set to 5:95. FIG. 15C shows a case where plasma processing is performed using the above-described substrate processing step with a flow rate ratio of H 2 gas and O 2 gas introduced into the processing chamber of 20:80. In the comparative example and the example, plasma processing was performed on a hole-shaped wafer having an aspect ratio of 20 at a wafer temperature of 700 ° C., a pressure in the processing chamber 201 of 150 Pa, and an excitation power of 3.5 kW.
 図15(B)に示すように、H2ガスとO2ガスの比が5:95の場合には、ホール304の底面に向かって酸化層の厚さが大きくなる傾向は確認されなかった。一方、図15(C)に示すように、H2ガスとO2ガスの比が20:80の場合には、ホール304の底面に向かって酸化層の厚さが大きくなり、底面において最も大きくなる傾向が確認された。また、本実施例によれば、ホール304上部付近の酸化層の厚さが、比較例と比べて薄くなる傾向が確認された。 As shown in FIG. 15B, when the ratio of H 2 gas to O 2 gas was 5:95, the tendency for the thickness of the oxide layer to increase toward the bottom surface of the hole 304 was not confirmed. On the other hand, as shown in FIG. 15C, when the ratio of H 2 gas to O 2 gas is 20:80, the thickness of the oxide layer increases toward the bottom surface of the hole 304, and is the largest at the bottom surface. The tendency to become was confirmed. Further, according to this example, it was confirmed that the thickness of the oxide layer near the upper portion of the hole 304 tends to be thinner than that of the comparative example.
 つまり、処理室201内に供給されるH2ガスとO2ガスの比を20:80とした場合に、ホール304の底面におけるHラジカルとOラジカルの供給量の比が5:95程度にまで近づいたと推測される。これにより、HラジカルがOラジカルに比べて寿命が短いことを利用して、ホール304の上部と下部とで供給されるHラジカルの比を変化させることができることが確認された。 That is, when the ratio of H 2 gas and O 2 gas supplied into the processing chamber 201 is 20:80, the ratio of the supply amount of H radicals and O radicals at the bottom of the hole 304 is about 5:95. Presumed to have approached. Accordingly, it was confirmed that the ratio of H radicals supplied at the upper part and the lower part of the hole 304 can be changed using the fact that H radicals have a shorter lifetime than O radicals.
<実験2>
 図16(A)は、アスペクト比20のホールパターンの一例を示す図であり、(B)は、処理室内に供給されるH2ガスとO2ガスの混合ガスの流量を1.0slm、0.6slm、2.0slmとして、それぞれ酸化層を形成した場合のホール内面の酸化層の厚さを示す図である。
<Experiment 2>
FIG. 16A shows an example of a hole pattern with an aspect ratio of 20, and FIG. 16B shows the flow rate of the mixed gas of H 2 gas and O 2 gas supplied into the processing chamber at 1.0 slm, 0 It is a figure which shows the thickness of the oxide layer of the hole inner surface at the time of forming an oxide layer as .6 slm and 2.0 slm, respectively.
 図16(B)に示されているように、混合ガスの流量を0.6slmで成膜した場合には、Oラジカルが底面に到達する前に失活し、底面に近づくほど酸化層の厚さが小さくなった。混合ガスの流量を1.0slmで成膜した場合には、Oラジカルが失活する前に十分な量のラジカルを底部に到達させることができ、ホール304の深さ方向に均一に酸化層が形成された。そして、流量を2.0slmで成膜した場合には、ホール上部と底部の流速差の影響が大きくなり、ラジカル滞留時間の差によって、底面に向かって酸化層の厚さが大きくなるように酸化層が形成された。 As shown in FIG. 16B, when the mixed gas is flowed at a flow rate of 0.6 slm, the O radical is deactivated before reaching the bottom surface, and the thickness of the oxide layer becomes closer to the bottom surface. Became smaller. In the case of forming a film with a mixed gas flow rate of 1.0 slm, a sufficient amount of radicals can reach the bottom before the O radicals are deactivated, and the oxide layer is uniformly formed in the depth direction of the holes 304. Been formed. When the film is formed at a flow rate of 2.0 slm, the effect of the flow velocity difference between the top and bottom of the hole increases, and the thickness of the oxide layer increases toward the bottom due to the difference in radical residence time. A layer was formed.
 つまり、厚さが底面に向かって均一になるように酸化層が形成される混合ガスの流量1.0slmに比べて、流量を多く(流速を速く)すると、ホール304の底面に向かって酸化層の厚さが大きくなる傾向があることを確認した。すなわち、混合ガスの流量を制御することによって、ホールの上端部を流れるガスの流速を制御して、高速化し、ホール内にガス流速差を発生させる事で、ホール内のガスを滞留させ、ホール上部に比べて下部に形成される酸化層の厚さを大きくすることができることが確認された。 That is, when the flow rate is increased (the flow rate is increased) compared to the flow rate of 1.0 slm of the mixed gas in which the oxide layer is formed so that the thickness becomes uniform toward the bottom surface, the oxide layer is directed toward the bottom surface of the hole 304. It was confirmed that the thickness of the film tends to increase. That is, by controlling the flow rate of the mixed gas, the flow rate of the gas flowing through the upper end of the hole is controlled to increase the speed, and a gas flow rate difference is generated in the hole. It was confirmed that the thickness of the oxide layer formed in the lower part can be made larger than that in the upper part.
 つまり、上述の第1の実施形態及び第2の実施形態によれば、ホール304が形成された基板に対して、所定のガス流速、又は所定の混合比率で表面処理することで、ホール内面の膜厚分布を深さ方向に任意に制御することができる。 That is, according to the first embodiment and the second embodiment described above, the surface of the inner surface of the hole is formed by surface-treating the substrate on which the hole 304 is formed at a predetermined gas flow rate or a predetermined mixing ratio. The film thickness distribution can be arbitrarily controlled in the depth direction.
 すなわち、ホール304の底部ほど膜厚が厚くなるように膜の表面を改質して酸化層を形成することで、底部における酸化膜が損傷を受けやすいといった課題やマイクロローディング効果によりホール304の上部と下部において膜厚が不均等になるといった課題を解消することが可能となり、デバイスの電気特性を改善することができることができる。 That is, the oxide layer is formed by modifying the surface of the film so that the film thickness becomes thicker toward the bottom of the hole 304, so that the oxide film at the bottom is easily damaged and the upper portion of the hole 304 due to the microloading effect. It is possible to solve the problem that the film thickness is uneven at the lower portion, and the electrical characteristics of the device can be improved.
 本発明は、半導体装置の製造工程において、3D-NANDフラッシュメモリの製造等に適用され、シリコン含有膜や金属含有膜等の何れか(若しくは、それらの任意の組み合わせ)が露出した表面の処理に適用される。 The present invention is applied to the manufacture of a 3D-NAND flash memory or the like in the manufacturing process of a semiconductor device, and is used to treat a surface on which any one of a silicon-containing film and a metal-containing film (or any combination thereof) is exposed. Applied.
 シリコン含有膜として、例えば、シリコン膜、シリコン酸化膜、シリコン窒化膜、アモルファスシリコン膜、ポリシリコン膜等が適用される。 As the silicon-containing film, for example, a silicon film, a silicon oxide film, a silicon nitride film, an amorphous silicon film, a polysilicon film, or the like is applied.
 金属含有膜として、例えば、タングステン膜、チタン膜、窒化チタン膜、酸化アルミニウム膜、酸化ハフニウム膜等が適用される。 As the metal-containing film, for example, a tungsten film, a titanium film, a titanium nitride film, an aluminum oxide film, a hafnium oxide film, or the like is applied.
 また、上記実施形態において、ホール状構造の基板を用いて説明したが、これに限らず、アスペクト比20以上のトレンチ状構造、スリット状の溝、円筒状の細孔等が形成された基板に、好適に適用することが可能となる。なお、アスペクト比が大きいほど凹状構造内に形成される膜厚分布差は大きくなる。 Further, in the above embodiment, the description has been given using the hole-shaped substrate, but the present invention is not limited to this. Therefore, it can be preferably applied. Note that as the aspect ratio increases, the difference in film thickness distribution formed in the concave structure increases.
  100・・・・処理装置
  200・・・・ウエハ
  201・・・・処理室
  201a・・・プラズマ生成空間
  201b・・・ 基板処理空間
  202・・・・ 処理炉
DESCRIPTION OF SYMBOLS 100 ... Processing apparatus 200 ... Wafer 201 ... Processing chamber 201a ... Plasma generation space 201b ... Substrate processing space 202 ... Processing furnace

Claims (17)

  1.  酸素含有ガスと水素含有ガスを含む処理ガスを励起して、酸素活性種と水素活性種を生成する工程と、
     前記酸素活性種と前記水素活性種を凹状構造が形成された基板に供給し、前記凹状構造の内面に形成された膜を表面から酸化して酸化層を形成する工程と、を有し、
     前記酸化層を形成する工程では、前記基板に供給される前記酸素活性種と前記水素活性種の総流量における前記水素活性種の比率を、前記凹状構造の上端部において前記酸化層が形成される速度が最大となる第1の比率よりも大きい所定の比率にして、前記凹状構造の内面において前記上端部における厚さよりも厚さが大きくなるように前記酸化層を形成する、
     半導体装置の製造方法。
    Exciting a process gas containing an oxygen-containing gas and a hydrogen-containing gas to generate oxygen active species and hydrogen active species;
    Supplying the oxygen active species and the hydrogen active species to a substrate having a concave structure, and oxidizing a film formed on the inner surface of the concave structure from the surface to form an oxide layer,
    In the step of forming the oxide layer, the ratio of the hydrogen active species to the total flow rate of the oxygen active species supplied to the substrate and the hydrogen active species is determined, and the oxide layer is formed at the upper end of the concave structure. The oxide layer is formed so that the thickness is larger than the thickness at the upper end portion on the inner surface of the concave structure at a predetermined ratio larger than the first ratio at which the speed is maximum.
    A method for manufacturing a semiconductor device.
  2.  前記酸化層を形成する工程では、前記基板に供給される前記酸素活性種と前記水素活性種の総流量における前記水素活性種の比率を、前記凹状構造の深さ方向における前記酸化層の厚さの分布が均一となる第2の比率よりも大きい前記所定の比率にして、前記酸化層を、厚さが前記凹状構造の底面に向かって大きくなり、前記底面において最大となるように形成する、
     請求項1記載の半導体装置の製造方法。
    In the step of forming the oxide layer, the ratio of the hydrogen active species in the total flow rate of the oxygen active species and the hydrogen active species supplied to the substrate is determined by the thickness of the oxide layer in the depth direction of the concave structure. The oxide layer is formed such that the thickness increases toward the bottom surface of the concave structure and is maximized at the bottom surface, with the predetermined ratio being greater than the second ratio at which the distribution of
    A method for manufacturing a semiconductor device according to claim 1.
  3.  前記酸化層を形成する工程では、前記基板に供給される前記酸素活性種と前記水素活性種の総流量における前記水素活性種の比率を、前記凹状構造の底面において前記酸化層の形成される速度が最大となる第3の比率と等しい又はより大きい所定の比率にして、前記酸化層を厚さが前記凹状構造の底面に向かって大きくなり、前記底面において最大となるように前記酸化層を形成する、
     請求項1記載の半導体装置の製造方法。
    In the step of forming the oxide layer, the ratio of the hydrogen active species in the total flow rate of the oxygen active species and the hydrogen active species supplied to the substrate is determined according to the rate at which the oxide layer is formed on the bottom surface of the concave structure. The oxide layer is formed so that the thickness of the oxide layer increases toward the bottom surface of the concave structure and is maximized at the bottom surface, with a predetermined ratio equal to or greater than the third ratio at which To
    A method for manufacturing a semiconductor device according to claim 1.
  4.  前記第3の比率は、前記第1の比率よりも大きい請求項3記載の半導体装置の製造方法。 4. The method of manufacturing a semiconductor device according to claim 3, wherein the third ratio is larger than the first ratio.
  5.  前記酸素活性種と水素活性種を生成する工程において、前記処理ガスの総流量における前記水素含有ガスの流量比は、生成される前記水素活性種の比率が前記所定の比率となる比率である請求項1記載の半導体装置の製造方法。 In the step of generating the oxygen active species and the hydrogen active species, the flow ratio of the hydrogen-containing gas to the total flow rate of the processing gas is a ratio at which the ratio of the generated hydrogen active species is the predetermined ratio. Item 14. A method for manufacturing a semiconductor device according to Item 1.
  6.  前記酸素活性種と水素活性種を生成する工程において、前記処理ガスの総流量における前記水素含有ガスの流量比は、生成される前記水素活性種の比率が前記所定の比率となる比率である請求項3記載の半導体装置の製造方法。 In the step of generating the oxygen active species and the hydrogen active species, the flow ratio of the hydrogen-containing gas to the total flow rate of the processing gas is a ratio at which the ratio of the generated hydrogen active species is the predetermined ratio. Item 4. A method for manufacturing a semiconductor device according to Item 3.
  7.  前記流量比は5%より大きい請求項5記載の半導体装置の製造方法。 6. The method of manufacturing a semiconductor device according to claim 5, wherein the flow rate ratio is larger than 5%.
  8.  前記流量比は5%より大きく20%以下である請求項6記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 6, wherein the flow rate ratio is greater than 5% and 20% or less.
  9.  前記酸素活性種と水素活性種を生成する工程の前に、処理室内に前記基板を搬入する工程を有し、
     前記酸素活性種と水素活性種を生成する工程では、前記処理室内に供給された前記処理ガスをプラズマ励起することにより前記酸素活性種と前記水素活性種を生成する請求項6記載の半導体装置の製造方法。
    Before the step of generating the oxygen active species and the hydrogen active species, the step of carrying the substrate into a processing chamber,
    The semiconductor device according to claim 6, wherein in the step of generating the oxygen active species and the hydrogen active species, the oxygen active species and the hydrogen active species are generated by plasma-exciting the processing gas supplied into the processing chamber. Production method.
  10.  前記酸素活性種と水素活性種を生成する工程では、前記酸素含有ガスの供給系と前記水素含有ガスの供給系をそれぞれ制御して、前記酸素含有ガスと前記水素含有ガスの流量比を調整する請求項9記載の半導体装置の製造方法。 In the step of generating the oxygen-activated species and the hydrogen-activated species, the flow rate ratio of the oxygen-containing gas and the hydrogen-containing gas is adjusted by controlling the oxygen-containing gas supply system and the hydrogen-containing gas supply system, respectively. A method for manufacturing a semiconductor device according to claim 9.
  11.  前記凹状構造の内面に形成された膜は、エッチング処理により酸素濃度が低下した露出した層を含み、前記凹状構造の底部における前記露出した層の酸素濃度が最も低い請求項3記載の半導体装置の製造方法。 4. The semiconductor device according to claim 3, wherein the film formed on the inner surface of the concave structure includes an exposed layer having an oxygen concentration reduced by an etching process, and the oxygen concentration of the exposed layer at the bottom of the concave structure is the lowest. Production method.
  12.  前記凹状構造の内面に形成された膜は、厚さが前記凹状構造の底面に向かって小さくなるように形成された酸化膜と、前記酸化膜の下地膜と、により構成されている請求項1記載の半導体装置の製造方法。 The film formed on the inner surface of the concave structure is constituted by an oxide film formed so that the thickness decreases toward the bottom surface of the concave structure, and a base film of the oxide film. The manufacturing method of the semiconductor device of description.
  13.  酸素含有ガスと水素含有ガスを含む処理ガスを励起して、酸素活性種と水素活性種を生成する工程と、
     前記酸素活性種と前記水素活性種を凹状構造が形成された基板に供給し、前記凹状構造の内面に形成された膜を表面から酸化して酸化層を形成する工程と、を有し、
     前記酸化層を形成する工程では、前記基板に供給される前記酸素活性種と前記水素活性種の総流量における前記水素活性種の比率を、前記凹状構造の深さ方向において前記酸化層が形成される速度の分布が所望の分布となるような比率とする、
     半導体装置の製造方法。
    Exciting a process gas containing an oxygen-containing gas and a hydrogen-containing gas to generate oxygen active species and hydrogen active species;
    Supplying the oxygen active species and the hydrogen active species to a substrate having a concave structure, and oxidizing a film formed on the inner surface of the concave structure from the surface to form an oxide layer,
    In the step of forming the oxide layer, the ratio of the hydrogen active species to the total flow rate of the oxygen active species and the hydrogen active species supplied to the substrate is determined in the depth direction of the concave structure. The ratio is such that the desired speed distribution is the desired distribution.
    A method for manufacturing a semiconductor device.
  14.  酸素含有ガスと水素含有ガスを含む処理ガスを励起して、酸素活性種と水素活性種を生成する工程と、
     前記酸素活性種と前記水素活性種を凹状構造が形成された基板に供給し、前記凹状構造の内面に形成された膜を表面から酸化して酸化層を形成する工程と、を有し、
     前記酸化層を形成する工程では、前記基板の表面を流れる前記酸素活性種及び前記水素活性種の流速を調整して、前記酸化層を、厚さが前記凹状構造の底面に向かって大きくなるように形成する、
     半導体装置の製造方法。
    Exciting a process gas containing an oxygen-containing gas and a hydrogen-containing gas to generate oxygen active species and hydrogen active species;
    Supplying the oxygen active species and the hydrogen active species to a substrate having a concave structure, and oxidizing a film formed on the inner surface of the concave structure from the surface to form an oxide layer,
    In the step of forming the oxide layer, the flow rate of the oxygen active species and the hydrogen active species flowing on the surface of the substrate is adjusted so that the thickness of the oxide layer increases toward the bottom surface of the concave structure. To form,
    A method for manufacturing a semiconductor device.
  15.  前記酸化層を形成する工程では、前記基板の表面を流れる前記酸素活性種及び前記水素活性種の流速を、前記凹状構造の深さ方向における前記酸化層の厚さの分布が均一になる流速よりも大きい所定の流速にして、前記酸化層を、厚さが前記凹状構造の底面に向かって大きくなるように形成する、
     請求項14記載の半導体装置の製造方法。
    In the step of forming the oxide layer, the flow rate of the oxygen active species and the hydrogen active species flowing on the surface of the substrate is set to a flow rate at which the thickness distribution of the oxide layer in the depth direction of the concave structure is uniform. A larger predetermined flow rate, and the oxide layer is formed so that the thickness increases toward the bottom surface of the concave structure,
    The method for manufacturing a semiconductor device according to claim 14.
  16.  酸素含有ガスと水素含有ガスを含む処理ガスを励起して、酸素活性種と水素活性種を生成する手順と、
     前記酸素活性種と前記水素活性種を凹状構造が形成された基板に供給し、前記凹状構造の内面に形成された膜を表面から酸化して酸化層を形成する際に、前記基板に供給される前記酸素活性種と前記水素活性種の総流量における前記水素活性種の比率を、前記凹状構造の上端部において前記酸化層が形成される速度が最大となる第1の比率よりも大きい所定の比率にして、前記凹状構造の内面において前記上端部における厚さよりも厚さが大きくなるように前記酸化層を形成する手順と、を
     コンピュータにより基板処理装置に実行させるプログラム。
    A procedure for generating an oxygen active species and a hydrogen active species by exciting a processing gas including an oxygen-containing gas and a hydrogen-containing gas;
    The oxygen active species and the hydrogen active species are supplied to a substrate having a concave structure, and the film formed on the inner surface of the concave structure is oxidized from the surface to form an oxide layer. The ratio of the hydrogen active species to the total flow rate of the oxygen active species and the hydrogen active species is greater than a first ratio that maximizes the rate at which the oxide layer is formed at the upper end of the concave structure. A program for causing a substrate processing apparatus to execute, by a computer, a procedure for forming the oxide layer so that the thickness of the inner surface of the concave structure is larger than the thickness of the upper end portion.
  17.  供給された処理ガスがプラズマ励起されるプラズマ生成空間と、前記プラズマ生成空間に連通し基板が載置される基板処理空間と、を有する処理室と、
     前記プラズマ生成空間に供給された前記処理ガスをプラズマ励起するよう構成されたプラズマ生成部と、
     前記プラズマ生成空間に、前記処理ガスとして水素含有ガスと酸素含有ガスを供給するガス供給系と、
     前記基板処理空間内に設けられ、凹状構造が形成された基板を載置する基板載置台と、
     前記ガス供給系を制御して前記処理ガスを前記プラズマ生成空間に供給すると共に、前記プラズマ生成部を制御して前記プラズマ生成空間に供給された前記処理ガスをプラズマ励起することにより酸素活性種と水素活性種を前記基板に供給して、前記凹状構造の内面に形成された膜を表面から酸化して酸化層を形成する工程を行うよう構成された制御部と、を備え、
     前記制御部は、前記酸化層を形成する工程において、前記基板に供給される前記酸素活性種と前記水素活性種の総流量における前記水素活性種の比率を、前記凹状構造の上端部において前記酸化層が形成される速度が最大となる第1の比率よりも大きい所定の比率にして、前記凹状構造の内面において前記上端部における厚さよりも厚さが大きくなるように前記酸化層を形成するよう構成されている、
     基板処理装置。
    A processing chamber having a plasma generation space in which the supplied processing gas is plasma-excited, and a substrate processing space in which the substrate is placed in communication with the plasma generation space;
    A plasma generation unit configured to excite the processing gas supplied to the plasma generation space;
    A gas supply system for supplying a hydrogen-containing gas and an oxygen-containing gas as the processing gas to the plasma generation space;
    A substrate mounting table provided in the substrate processing space for mounting a substrate having a concave structure;
    The gas supply system is controlled to supply the processing gas to the plasma generation space, and the plasma generation unit is controlled to plasma-excite the processing gas supplied to the plasma generation space. A control unit configured to supply a hydrogen active species to the substrate and oxidize a film formed on the inner surface of the concave structure from the surface to form an oxide layer; and
    In the step of forming the oxide layer, the control unit determines a ratio of the hydrogen active species to a total flow rate of the oxygen active species and the hydrogen active species supplied to the substrate at the upper end portion of the concave structure. The oxide layer is formed to have a predetermined ratio larger than the first ratio at which the speed at which the layer is formed is maximized so that the thickness of the inner surface of the concave structure is greater than the thickness at the upper end. It is configured,
    Substrate processing equipment.
PCT/JP2017/012314 2017-03-27 2017-03-27 Semiconductor device production method, program and substrate processing device WO2018179038A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11201907092YA SG11201907092YA (en) 2017-03-27 2017-03-27 Semiconductor device production method, program and substrate processing device
PCT/JP2017/012314 WO2018179038A1 (en) 2017-03-27 2017-03-27 Semiconductor device production method, program and substrate processing device
CN201780088328.5A CN110431653B (en) 2017-03-27 2017-03-27 Method for manufacturing semiconductor device, recording medium, and substrate processing apparatus
JP2019508339A JP6748779B2 (en) 2017-03-27 2017-03-27 Semiconductor device manufacturing method, program, and substrate processing apparatus
KR1020197022040A KR102315002B1 (en) 2017-03-27 2017-03-27 Semiconductor device manufacturing method, program and substrate processing apparatus
US16/528,048 US10796900B2 (en) 2017-03-27 2019-07-31 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/012314 WO2018179038A1 (en) 2017-03-27 2017-03-27 Semiconductor device production method, program and substrate processing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/528,048 Continuation US10796900B2 (en) 2017-03-27 2019-07-31 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2018179038A1 true WO2018179038A1 (en) 2018-10-04

Family

ID=63677698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012314 WO2018179038A1 (en) 2017-03-27 2017-03-27 Semiconductor device production method, program and substrate processing device

Country Status (6)

Country Link
US (1) US10796900B2 (en)
JP (1) JP6748779B2 (en)
KR (1) KR102315002B1 (en)
CN (1) CN110431653B (en)
SG (1) SG11201907092YA (en)
WO (1) WO2018179038A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210119303A (en) 2020-03-24 2021-10-05 가부시키가이샤 코쿠사이 엘렉트릭 Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
JP2022144780A (en) * 2021-03-19 2022-10-03 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing method, program, and substrate processing apparatus
WO2023053262A1 (en) * 2021-09-29 2023-04-06 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing method, substrate processing device, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7030858B2 (en) * 2020-01-06 2022-03-07 株式会社Kokusai Electric Semiconductor device manufacturing methods, substrate processing devices and programs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280369A (en) * 2001-03-19 2002-09-27 Canon Sales Co Inc Apparatus and method of forming oxide film on silicon substrate
WO2008041601A1 (en) * 2006-09-29 2008-04-10 Tokyo Electron Limited Plasma oxidizing method, plasma oxidizing apparatus, and storage medium
JP2008251855A (en) * 2007-03-30 2008-10-16 Tokyo Electron Ltd Formation method of silicon oxide film
JP2009200483A (en) * 2008-01-24 2009-09-03 Tokyo Electron Ltd Method for forming silicon oxide film
JP2012516577A (en) * 2009-01-28 2012-07-19 アプライド マテリアルズ インコーポレイテッド Method for forming a conformal oxide layer on a semiconductor device
JP2012216667A (en) * 2011-03-31 2012-11-08 Tokyo Electron Ltd Plasma treatment method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100427537B1 (en) 2002-06-04 2004-04-28 주식회사 하이닉스반도체 Method of forming a isolation layer in a semiconductor device and manufacturing a flash memory cell using the same
JP2007157854A (en) * 2005-12-01 2007-06-21 Toshiba Corp Nonvolatile semiconductor memory device, and manufacturing method thereof
JP5679581B2 (en) * 2011-12-27 2015-03-04 東京エレクトロン株式会社 Deposition method
JP6257071B2 (en) 2012-09-12 2018-01-10 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280369A (en) * 2001-03-19 2002-09-27 Canon Sales Co Inc Apparatus and method of forming oxide film on silicon substrate
WO2008041601A1 (en) * 2006-09-29 2008-04-10 Tokyo Electron Limited Plasma oxidizing method, plasma oxidizing apparatus, and storage medium
JP2008251855A (en) * 2007-03-30 2008-10-16 Tokyo Electron Ltd Formation method of silicon oxide film
JP2009200483A (en) * 2008-01-24 2009-09-03 Tokyo Electron Ltd Method for forming silicon oxide film
JP2012516577A (en) * 2009-01-28 2012-07-19 アプライド マテリアルズ インコーポレイテッド Method for forming a conformal oxide layer on a semiconductor device
JP2012216667A (en) * 2011-03-31 2012-11-08 Tokyo Electron Ltd Plasma treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210119303A (en) 2020-03-24 2021-10-05 가부시키가이샤 코쿠사이 엘렉트릭 Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
JP2022144780A (en) * 2021-03-19 2022-10-03 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing method, program, and substrate processing apparatus
JP7393376B2 (en) 2021-03-19 2023-12-06 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing method, program and substrate processing device
WO2023053262A1 (en) * 2021-09-29 2023-04-06 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing method, substrate processing device, and program

Also Published As

Publication number Publication date
US10796900B2 (en) 2020-10-06
US20190355575A1 (en) 2019-11-21
KR102315002B1 (en) 2021-10-20
JPWO2018179038A1 (en) 2019-11-07
CN110431653B (en) 2024-01-12
KR20190099311A (en) 2019-08-26
CN110431653A (en) 2019-11-08
JP6748779B2 (en) 2020-09-02
SG11201907092YA (en) 2019-09-27

Similar Documents

Publication Publication Date Title
JP6257071B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
KR102287835B1 (en) Substrate processing apparatus, semiconductor device manufacturing method and recording medium
US10796900B2 (en) Method of manufacturing semiconductor device
JP6285052B2 (en) Semiconductor device manufacturing method, program, and substrate processing apparatus
JP6752357B2 (en) Semiconductor device manufacturing methods, substrate processing devices and programs
KR102516580B1 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
JP6281964B2 (en) Semiconductor device manufacturing method, program, and substrate processing apparatus
JP6976279B2 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
KR102465993B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
KR102452913B1 (en) Semiconductor device manufacturing method, substrate processing apparatus and recording medium
TWI814137B (en) Substrate processing apparatus, semiconductor device manufacturing method, substrate processing method and program
JP7393376B2 (en) Semiconductor device manufacturing method, substrate processing method, program and substrate processing device
WO2020188744A1 (en) Method for manufacturing semiconductor device, substrate processing device, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508339

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197022040

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904125

Country of ref document: EP

Kind code of ref document: A1