WO2018176621A1 - 空调器制热运行的控制方法 - Google Patents

空调器制热运行的控制方法 Download PDF

Info

Publication number
WO2018176621A1
WO2018176621A1 PCT/CN2017/086058 CN2017086058W WO2018176621A1 WO 2018176621 A1 WO2018176621 A1 WO 2018176621A1 CN 2017086058 W CN2017086058 W CN 2017086058W WO 2018176621 A1 WO2018176621 A1 WO 2018176621A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
coil
temperature
air conditioner
indoor
Prior art date
Application number
PCT/CN2017/086058
Other languages
English (en)
French (fr)
Inventor
徐贝贝
刘聚科
马林
苗建
李相军
刘金龙
王荟桦
程永甫
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Priority to US16/475,074 priority Critical patent/US11181287B2/en
Priority to EP17903129.9A priority patent/EP3564596B1/en
Publication of WO2018176621A1 publication Critical patent/WO2018176621A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention belongs to the field of air conditioning technology, and more particularly to the control of air conditioners, more specifically
  • the air conditioner adjusts the indoor temperature, and most of the air conditioner adjusts the frequency of the compressor according to the difference between the detected temperature of the intake air sensor and the target temperature set by the user, and the indoor frequency is operated by the compressor.
  • the temperature is stable at the target temperature.
  • This control method represents the temperature of the entire room with the detected temperature of the intake air sensor. If the detected temperature of the intake air sensor reaches the target value, the room temperature is considered to reach the target temperature.
  • the frequency operation causes the average temperature of the room, especially the temperature at the active area of the human body, to fail to reach the set target temperature, resulting in poor heating effect and poor comfort.
  • An object of the present invention is to provide a control method for heating operation of an air conditioner, which improves the heating performance of the air conditioner by increasing the air outlet temperature to improve the heating effect.
  • a method for controlling heating operation of an air conditioner comprising:
  • the air conditioner heating operation obtaining the indoor temperature, calculating the difference between the indoor temperature and the indoor target temperature, and obtaining the indoor temperature difference;
  • the indoor coil temperature is obtained, and the compressor of the air conditioner is frequency-controlled according to the indoor coil temperature and the coil target temperature.
  • the frequency of the compressor of the air conditioner is performed according to the indoor coil temperature and the coil target temperature.
  • Rate control including:
  • the coil temperature difference is less than the first coil temperature difference threshold
  • the first target frequency is used as the indoor unit frequency
  • the air conditioner compressor is frequency-controlled according to the indoor unit frequency;
  • the first coil temperature difference threshold is less than o °c;
  • the coil temperature difference is greater than the second coil temperature difference threshold
  • the first target frequency is used as the indoor unit frequency
  • the air conditioner compressor is frequency-controlled according to the indoor unit frequency
  • the wind speed of the indoor unit of the air conditioner; the temperature difference threshold of the second coil is greater than o °c;
  • the first target frequency is used as the indoor unit frequency
  • the compressor of the air conditioner is frequency-controlled according to the indoor unit frequency; meanwhile, the wind speed of the indoor unit of the air conditioner is kept unchanged.
  • the indoor unit of the air conditioner is controlled to operate at a set wind speed that is smaller, and the first The target frequency is used as the indoor unit frequency, and the compressor of the air conditioner is frequency-controlled according to the indoor unit frequency; the first coil temperature difference threshold is less than o°c;
  • the coil temperature difference is less than the first coil temperature difference threshold, and the set wind speed of the air conditioner indoor unit becomes larger, controlling the air conditioner indoor unit to operate at a set wind speed after the enlargement, and calculating the The sum of the first target frequency and the compensation frequency, the sum value is taken as the indoor unit frequency, and the compressor of the air conditioner is frequency-controlled according to the indoor unit frequency; the compensation frequency is greater than 0 Hz;
  • the indoor unit of the air conditioner is controlled to operate at a set wind speed after the enlargement, and the first The target frequency is used as the indoor unit frequency, and the compressor of the air conditioner is frequency-controlled according to the indoor unit frequency; the second coil temperature difference threshold is greater than o°c;
  • the indoor unit of the air conditioner is controlled to run at a set wind speed that is smaller, and the first a difference between the target frequency and the compensation frequency, using the difference as the indoor unit frequency, and performing frequency control on the compressor of the air conditioner according to the indoor unit frequency;
  • the indoor temperature difference preset range is [ ⁇ tl° C., t2° C.], and the t1 and t2 satisfy: 0 ⁇ t l ⁇ t2.
  • the method further includes:
  • the air conditioner indoor unit is controlled to operate at a set wind speed.
  • the compressor of the control air conditioner operates at a minimum frequency, and the indoor unit of the air conditioner is controlled to operate at a minimum wind speed.
  • the indoor temperature difference reaches the indoor temperature difference preset range ⁇ , that is, the indoor temperature and the indoor The target temperature is closer to ⁇ , and the disk temperature control process is performed, and the compressor of the air conditioner is frequency-controlled according to the indoor coil temperature and the target temperature of the coil, instead of frequency control of the compressor according to the indoor temperature;
  • the target temperature of the tube can be controlled at a higher frequency based on the indoor coil temperature and the target temperature of the coil when the indoor temperature is closer to the indoor target temperature, and the compressor can be operated at a higher frequency.
  • Indoor coil temperature by increasing the indoor coil temperature, the indoor air temperature can be increased, and the indoor air temperature can be increased by using the high air temperature; thereby avoiding frequency reduction due to misinterpretation of the indoor temperature close to the indoor target temperature.
  • the operation results in poor heating due to the fact that the actual temperature in the room cannot reach the set target temperature.
  • FIG. 1 is a flow chart of an embodiment of a control method for heating operation of an air conditioner according to the present invention
  • FIG. 2 is a flow chart showing another embodiment of a control method for heating operation of an air conditioner according to the present invention
  • FIGS. 1 and 2 are specific flow charts of the disk temperature control process of FIGS. 1 and 2;
  • FIG. 1 there is shown a flow chart of an embodiment of a control method for heating operation of an air conditioner according to the present invention.
  • the control process for implementing the heating operation of the air conditioner according to this embodiment includes the following steps:
  • Step 101 The air conditioner is heated to obtain the indoor temperature, and the difference between the indoor temperature and the indoor target temperature is calculated to obtain the indoor temperature difference.
  • the indoor temperature refers to the indoor temperature of the room in which the air conditioner is located after the air conditioner is turned off and the heating mode is operated, and the frequency is set according to the set frequency.
  • the indoor temperature can be obtained by the prior art, for example, by detecting and acquiring the inlet air temperature as a room temperature by a temperature sensor disposed at or near the air inlet of the air conditioner.
  • the indoor target temperature is the target temperature set by the user, or recommended by the air conditioner, or defaulted by the air conditioner. The difference between the indoor temperature and the indoor target temperature is calculated, and the difference is taken as the indoor temperature difference.
  • Step 102 The indoor temperature difference reaches the indoor temperature difference preset range ⁇ , and the disk temperature control process is performed.
  • the indoor temperature difference preset range is a known temperature range. If the indoor temperature difference reaches the indoor temperature difference preset range, the indoor temperature is compared with the indoor target temperature. In this case, the disk temperature control process will be performed. Specifically, the indoor coil temperature is acquired, and the compressor of the air conditioner is frequency-controlled according to the indoor coil temperature and the coil target temperature.
  • the indoor coil temperature is the coil temperature of the indoor unit heat exchanger obtained according to the set sampling frequency.
  • the coil temperature can be obtained by setting a temperature sensor on the indoor unit heat exchanger coil.
  • the target temperature of the coil is the target temperature of the coil that can be achieved by the indoor heat exchanger. It can be a default temperature value preset in the control program, or it can be a temperature value set by the air conditioner user. If it is set by the user, it is recommended that the air conditioner recommend a reference temperature value for the user's reference.
  • the preset coil target temperature or recommended coil target temperature range is 42-56 ° C, preferably 50. C.
  • the frequency control of the compressor of the air conditioner according to the indoor coil temperature and the coil target temperature includes:
  • calculating the difference between the indoor coil temperature and the target temperature of the coil obtaining the temperature difference of the coil, performing the disk temperature PID calculation according to the temperature difference of the coil, obtaining the first target frequency, and performing the compressor of the air conditioner according to the first target frequency.
  • Frequency control The method of obtaining the target frequency for controlling the compressor by the disk temperature PID operation can refer to the method of calculating the target frequency of the compressor by referring to the room temperature PID operation in the prior art.
  • the initial frequency of the disk temperature PID operation may be a set initial frequency.
  • the initial frequency of the disk temperature PID operation is determined indoor The temperature difference reaches the preset range of the indoor temperature difference, and the current operating frequency of the compressor is to be performed.
  • the disk temperature control process may also employ the flow of FIG. 3 or FIG. 4, as specifically described below with respect to FIGS. 3 and 4.
  • the disk temperature control process is performed, according to the indoor coil temperature and the disk.
  • the target temperature of the tube controls the frequency of the compressor of the air conditioner, rather than the frequency of the compressor based on the indoor temperature.
  • the frequency operation can increase the indoor coil temperature, and by increasing the indoor coil temperature, the indoor unit outlet temperature can be increased, and the indoor air temperature can be increased by using the high outlet air temperature. Therefore, the problem of poor heating performance caused by the fact that the indoor temperature is misjudged to be close to the indoor target temperature and the indoor actual temperature cannot reach the set target temperature is avoided, and the heating performance of the air conditioner is improved.
  • FIG. 2 there is shown a flow chart of another embodiment of a control method for heating operation of an air conditioner according to the present invention.
  • control process of the air conditioner heating operation in this embodiment includes the following steps:
  • Step 201 The air conditioner is heated to obtain the indoor temperature, and the difference between the indoor temperature and the indoor target temperature is calculated to obtain the indoor temperature difference.
  • Step 202 The indoor temperature difference reaches the preset range of the indoor temperature difference? If yes, go to step 203; otherwise, go to step 204.
  • Step 203 Perform a disk temperature control process after the indoor temperature difference reaches the indoor temperature difference preset range.
  • the indoor temperature difference is preset to [-tl°C, t2°C], and tl and t2 satisfy: 0 ⁇ tl ⁇ t2.
  • tl 0.5 ° C
  • t2 3 ° C. That is, if the indoor temperature is lower than the indoor target temperature, and the indoor temperature is lower than the indoor target temperature by 0.5 ° C or less, the disk temperature control process is performed; the indoor temperature is higher than the indoor target temperature, and the indoor temperature is higher than the indoor target temperature The disc temperature control process is performed at not less than 3 °C. The requirement that t2 is greater than tl is to extend the disk temperature control process to avoid the heating effect caused by the cooling of the heating device.
  • Step 204 If it is determined in step 202 that the indoor temperature difference does not reach the indoor temperature difference preset range, it is further determined whether the indoor temperature difference is less than -tl °C. If yes, go to step 205; otherwise, go to step 206.
  • Step 205 Perform a room temperature control process when the indoor temperature difference is less than -tl°C, and control the indoor unit to operate at the set wind speed.
  • step 204 determines that the indoor temperature difference is less than -tl ° C, indicating that the current indoor temperature is still much smaller than the indoor target temperature, in this case, the room temperature control process is performed, and the compressor is frequency-controlled based on the indoor temperature and the indoor target temperature.
  • the room temperature control process includes: performing a room temperature PID operation according to the indoor temperature difference to obtain a second target frequency, and performing frequency control on the compressor of the air conditioner according to the second target frequency.
  • the air conditioner indoor unit is controlled to set the wind speed operation.
  • Step 206 The indoor temperature difference is not less than -tl ° C, the compressor is controlled to operate at a minimum frequency, and the indoor unit is controlled to operate at a minimum wind speed.
  • step 204 determines that the indoor temperature is not less than -tl ° C ⁇ , since step 202 has determined that the indoor temperature is not within the indoor temperature difference preset range of [-tl ° C, t 2 ° C], the indoor temperature difference is greater than t2 ° C, that is, the indoor temperature is much larger than the indoor target temperature.
  • the compressor will be controlled to operate at the minimum frequency, and the indoor unit will be controlled to operate at the minimum wind speed, achieving heat without smashing and saving energy.
  • FIG. 3 is a specific flow chart of the disk temperature control process in FIG. 1 and FIG. 2, specifically, the air conditioner user is not allowed to change the set wind speed to perform the disk temperature control.
  • Process ⁇ A specific flow chart for controlling wind speed and frequency.
  • Step 301 Calculate a difference between the indoor coil temperature and the target temperature of the coil, obtain a temperature difference of the coil, and perform a disk temperature PID operation according to the temperature difference of the coil to obtain a first target frequency.
  • Step 302 The coil temperature difference is less than the first coil temperature difference threshold? If yes, go to step 303; otherwise, go to step 304.
  • the first coil temperature difference threshold is a preset temperature threshold, and the first coil temperature difference threshold is less than 0 ° C, which is a threshold temperature reflecting that the coil temperature is lower than the coil target temperature.
  • the first coil temperature difference threshold is -0.6. C.
  • Step 303 Perform frequency control on the compressor by using the first target frequency as the indoor unit frequency; and reduce the wind speed of the indoor unit.
  • step 302 determines that the coil temperature difference is less than the first coil temperature difference threshold, indicating that the current coil temperature is less than the coil target temperature and the coil target temperature is significantly different, the current coil temperature is lower.
  • the first target frequency is used as the indoor unit frequency, and the compressor is frequency-controlled, the wind speed of the air conditioner indoor unit is lowered, and the heat exchange of the coil is reduced.
  • Step 304 The temperature difference of the coil is greater than the temperature difference threshold of the second coil? If yes, go to step 306; otherwise, go to step 305.
  • step 302 determines that the coil temperature difference is not less than the first coil temperature difference threshold, it is further determined whether the coil temperature difference is greater than the second coil temperature difference threshold.
  • the second coil temperature difference threshold is also a preset temperature threshold.
  • the second coil temperature difference threshold is greater than o°c, which is a threshold temperature that reflects the coil temperature above the target temperature of the coil.
  • o°c is a threshold temperature that reflects the coil temperature above the target temperature of the coil.
  • the second coil temperature difference threshold is 0.6 °C.
  • Step 305 Perform frequency control on the compressor by using the first target frequency as the indoor unit frequency; and keep the wind speed of the indoor unit unchanged.
  • step 304 determines that the temperature difference of the coil is not greater than the temperature difference threshold of the second coil, the same as the determination of step 302, the temperature difference of the coil is not less than the temperature difference threshold of the first coil, indicating the coil temperature and the coil target.
  • the temperature is close.
  • the first target frequency is used as the indoor unit frequency, and the compressor is frequency-controlled; at the same time, the wind speed of the indoor unit of the air conditioner is kept constant. That is, there is no need to make additional adjustments to the wind speed of the indoor unit, that is, a more comfortable heating effect can be achieved.
  • Step 306 Perform frequency control on the compressor by using the first target frequency as the indoor unit frequency; and increase the wind speed of the indoor unit.
  • step 304 determines that the coil temperature difference is greater than the second coil temperature difference threshold, indicating that the current coil temperature is higher than the coil target temperature, and the coil target temperature is significantly different, the current coil temperature is too high.
  • the first target frequency is used as the indoor unit frequency, and the compressor is frequency-controlled, the wind speed of the air conditioner indoor unit is increased, and the heat exchange of the coil is accelerated.
  • FIG. 4 is another specific flowchart of the disk temperature control process of FIG. 1 and FIG. 2. Specifically, the air conditioner user can change the set wind speed to perform the disk temperature control.
  • Process ⁇ A specific flow chart for controlling wind speed and frequency.
  • the specific process of the disk temperature control process is as follows:
  • Step 401 Calculate a difference between the indoor coil temperature and the target temperature of the coil, obtain a temperature difference of the coil, and perform a disk temperature PID operation according to the temperature difference of the coil to obtain a first target frequency.
  • Step 402 The coil temperature difference is less than the first coil temperature difference threshold? If so, the control process of step 403 or step 404 or step 405 is performed. Otherwise, go to step 406.
  • the first coil temperature difference threshold is a preset temperature threshold, and the first coil temperature difference threshold is less than 0 ° C, which is a threshold temperature that reflects the coil temperature being lower than the coil target temperature.
  • the first coil temperature difference threshold is -0.6 °C. If the coil temperature difference is less than the first coil temperature difference threshold, it indicates that the current coil temperature is less than the coil target temperature and the coil target temperature is different, and the current coil temperature is lower. In order to improve heating comfort, it is desirable to raise the coil temperature to the coil target temperature as soon as possible.
  • the control process of step 403 or step 404 or step 405 will be employed depending on whether the set wind speed is changed.
  • Step 403 Set the wind speed to decrease, control the indoor unit to run at a set wind speed after the small unit is reduced; and use the first target frequency as the indoor unit frequency to perform frequency control on the compressor.
  • the coil temperature difference is smaller than the first coil temperature difference threshold, if the set wind speed becomes smaller, it indicates that the user manually reduces the set wind speed. Since the temperature difference between the coils is less than the first coil temperature difference threshold, that is, the current coil temperature is less than the coil target temperature, in order to make the coil temperature rise to the coil target temperature as soon as possible, it is desirable to reduce the wind speed of the indoor unit, and the user It is also to set the wind speed to be small. Therefore, in order to balance the user's controllability and heating comfort, the indoor unit will be controlled to operate at a set wind speed after being reduced. Similarly, the first target frequency is used as the indoor unit frequency. Frequency control of the compressor.
  • Step 404 Set the wind speed to increase, and control the indoor unit to run at the set wind speed after the indoor unit is increased; and use the sum of the first target frequency and the compensation frequency as the indoor unit frequency to perform frequency control on the compressor.
  • the coil temperature difference is less than the first coil temperature difference threshold, if the set wind speed becomes larger, it indicates that the user manually increases the set wind speed. Since the temperature difference between the coils is less than the first coil temperature difference threshold, that is, the current coil temperature is less than the coil target temperature, in order to make the coil temperature rise to the coil target temperature as soon as possible, it is desirable to reduce the wind speed of the indoor unit, and the user The wind speed is set to be large. Therefore, in order to balance the user's controllability and heating comfort, the indoor unit will be controlled to operate at a set wind speed to increase the user's speed. Control requirements.
  • the compressor will be subjected to forced up-conversion control, specifically, the sum of the first target frequency and the compensation frequency obtained in step 401,
  • the value is used as the indoor unit frequency, and the compressor of the air conditioner is frequency-controlled according to the indoor unit frequency.
  • the compensation frequency is greater than 0 Hz , which is a preset frequency value, such as a preset of 3-10 ⁇ .
  • Step 405 After the wind speed is set to ⁇ , the indoor unit is controlled to operate at a difference between the set wind speed and the compensated wind speed; and the first target frequency is used as the indoor unit frequency, and the compressor is frequency-controlled.
  • the coil temperature difference is less than the first coil temperature difference threshold, if the set wind speed is unchanged, it indicates that the user has not manually changed the set wind speed.
  • a control means for reducing the wind speed of the indoor unit is adopted. Specifically, the difference between the currently set wind speed and the compensated wind speed is calculated, and the difference is taken as the operating wind speed of the indoor unit of the air conditioner; and the first target frequency is used as the indoor unit frequency, and the air conditioner is used according to the indoor unit frequency.
  • the compressor is frequency controlled.
  • the compensation wind speed is greater than Or pm, which is a preset wind speed value.
  • Step 406 The temperature difference of the coil is greater than the temperature difference threshold of the second coil? If so, the control process of step 407 or step 408 or step 409 is performed. Otherwise, go to step 410.
  • the step 402 determines that the coil temperature difference is not less than the first coil temperature difference threshold, it is further determined whether the coil temperature difference is greater than the second coil temperature difference threshold.
  • the second coil temperature difference threshold is also a preset temperature threshold, and the second coil temperature difference threshold is greater than o°c, which is a threshold temperature reflecting the coil temperature being higher than the coil target temperature.
  • o°c is a threshold temperature reflecting the coil temperature being higher than the coil target temperature.
  • the second coil temperature difference threshold is 0.6 °C.
  • the coil temperature difference is greater than the second coil temperature difference threshold, indicating that the current coil temperature is higher than the coil target temperature and the coil target temperature is different, the current coil temperature is higher. In order to improve heating comfort, it is desirable to reduce the coil temperature to the coil target temperature as soon as possible. Considering that the user may change the indoor unit set wind speed during the disk temperature control, the control process of step 407 or step 408 or step 409 will be adopted depending on whether the set wind speed is changed.
  • Step 407 Set the wind speed to become larger, control the indoor unit to run at the set wind speed after the enlargement; and use the first target frequency as the indoor unit frequency to perform frequency control on the compressor.
  • the coil temperature difference is greater than the second coil temperature difference threshold, if the set wind speed becomes larger, it indicates that the user manually increases the set wind speed. Since the temperature difference between the coils is greater than the second coil temperature difference threshold, that is, the current coil temperature is higher than the coil target temperature, in order to reduce the coil temperature to the coil target temperature as soon as possible, it is desirable to increase the air speed of the air conditioner indoor unit. To speed up the heat exchange of the coil.
  • the indoor unit Since the user also adjusts the set wind speed, in order to balance the user's controllability and heating comfort, the indoor unit will be controlled to operate at a set wind speed after being enlarged; meanwhile, the first target frequency is used as the indoor Machine frequency, frequency control of the compressor.
  • Step 408 Set the wind speed to decrease, and control the indoor unit to run at the set wind speed after the smaller; the difference between the first target frequency and the compensation frequency is used as the indoor unit frequency, and the compressor is frequency-controlled.
  • the coil temperature difference is greater than the second temperature difference threshold, if the set wind speed becomes smaller, it indicates that the user manually reduces the set wind speed. Since the coil temperature difference is greater than the second temperature difference threshold and the current coil temperature is higher than the coil target temperature, in order to reduce the coil temperature to the coil target temperature as soon as possible, it is desirable to increase the wind speed of the air conditioner indoor unit, and the user will The wind speed is set to be small. Therefore, in order to balance the user's controllability and heating comfort, the indoor unit is controlled to operate at a set wind speed that is reduced to meet the user's requirements for wind speed control. Then, in order to still be able to reduce the coil temperature to the coil target temperature as quickly as possible, the compressor will be forced down-converted.
  • the difference between the first target frequency and the compensation frequency obtained in step 401 is calculated, and the difference is taken as the indoor unit frequency, and the compressor of the air conditioner is frequency-controlled according to the indoor unit frequency.
  • the compressor operating frequency is reduced, so that the coil temperature is lowered to the coil target temperature as soon as possible, and the heating comfort is improved.
  • Step 409 After the wind speed is set to ⁇ , the indoor unit is controlled to operate at a set value of the set wind speed and the compensated wind speed; and the first target frequency is used as the indoor unit frequency, and the compressor is frequency-controlled.
  • the coil temperature difference is greater than the second coil temperature difference threshold, if the set wind speed is unchanged, it indicates that the user has not manually changed the set wind speed.
  • a control means for increasing the wind speed of the indoor unit is adopted. Specifically, the sum of the current set wind speed and the compensated wind speed is calculated, and the sum value is used as the operating wind speed of the indoor unit of the air conditioner; and the first target frequency is used as the indoor unit frequency, and the air conditioner is used according to the indoor unit frequency.
  • the compressor is frequency controlled.
  • Step 410 Perform frequency control on the compressor by using the first target frequency as the indoor unit frequency; and keep the wind speed of the indoor unit unchanged.
  • step 406 If it is determined in step 406 that the temperature difference of the coil is not greater than the temperature difference threshold of the second coil, and the determination of step 402 is that the temperature difference of the coil is not less than the temperature difference threshold of the first coil, indicating that the coil temperature is close to the target temperature of the coil.
  • the first target frequency is used as the indoor unit frequency, and the compressor is frequency-controlled; in the same way, the wind speed of the indoor unit of the air conditioner is kept constant. That is, there is no need to make additional adjustments to the wind speed of the indoor unit and the frequency of the compressor, that is, a more comfortable heating effect can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器制热运行的控制方法,包括:步骤101,空调器制热运行,获取室内温度,计算室内温度与室内目标温度的差值,获得室内温差;步骤102,在室内温差达到室内温差预设范围时,执行下述的盘温控制过程:获取室内盘管温度,根据室内盘管温度与盘管目标温度对空调器的压缩机进行频率控制。应用该方法可以通过提高出风温度达到提升制热效果的目的,提高空调器制热性能。

Description

说明书 发明名称:空调器制热运行的控制方法 技术领域
[0001] 本发明属于空气调节技术领域, 具体地说, 是涉及空调器的控制, 更具体地说
, 是涉及空调器制热运行的控制方法。
背景技术
[0002] 现有技术中, 空调器调节室内温度大多数是根据进风传感器的检测温度与用户 设定的目标温度的差值大小来调节压缩机的频率, 通过压缩机运行不同的频率 将室内温度稳定在目标温度。 这种控制方法以进风传感器的检测温度代表整个 房间的温度, 如果进风传感器的检测温度达到目标值, 即认为房间温度达到目 标温度。 但是在实际中, 对于空调器、 尤其是壁挂式空调器而言, 由于进风传 感器的安装位置较高, 所以会在制热吋传感器检测温度值比房间平均温度偏高 , 压缩机过早降频运行, 导致房间平均温度、 尤其是人体活动区域处的温度不 能达到设定的目标温度, 造成制热效果差, 体感舒适性差。
技术问题
[0003] 本发明的目的是提供一种空调器制热运行的控制方法, 通过提高出风温度达到 提升制热效果的目的, 提高空调器制热性能。
问题的解决方案
技术解决方案
[0004] 为实现上述发明目的, 本发明采用下述技术方案予以实现:
[0005] 一种空调器制热运行的控制方法, 所述方法包括:
[0006] 空调器制热运行, 获取室内温度, 计算所述室内温度与室内目标温度的差值, 获得室内温差;
[0007] 在所述室内温差达到室内温差预设范围吋, 执行下述的盘温控制过程:
[0008] 获取室内盘管温度, 根据所述室内盘管温度与盘管目标温度对空调器的压缩机 进行频率控制。
[0009] 优选的, 所述根据所述室内盘管温度与盘管目标温度对空调器的压缩机进行频 率控制, 具体包括:
[0010] 计算所述室内盘管温度与所述盘管目标温度的差值, 获得盘管温差, 根据所述 盘管温差进行盘温 PID运算, 获得第一目标频率, 根据所述第一目标频率对空调 器的压缩机进行频率控制。
[0011] 如上所述的方法, 对于用户不能更改设定风速的空调器, 在所述盘温控制过程 中:
[0012] 若所述盘管温差小于第一盘管温差阈值, 将所述第一目标频率作为室内机频率 , 根据所述室内机频率对空调器的压缩机进行频率控制; 同吋, 降低空调器室 内机的风速; 所述第一盘管温差阈值小于 o°c;
[0013] 若所述盘管温差大于第二盘管温差阈值, 将所述第一目标频率作为室内机频率 , 根据所述室内机频率对空调器的压缩机进行频率控制; 同吋, 增大空调器室 内机的风速; 所述第二盘管温差阈值大于 o°c;
[0014] 否则, 将所述第一目标频率作为室内机频率, 根据所述室内机频率对空调器的 压缩机进行频率控制; 同吋, 保持空调器室内机的风速不变。
[0015] 如上所述的方法, 对于允许用户更改设定风速的空调器, 在所述盘温控制过程 中:
[0016] 若所述盘管温差小于第一盘管温差阈值、 且空调器室内机的设定风速变小, 控 制空调器室内机以变小后的设定风速运行, 并将所述第一目标频率作为室内机 频率, 根据所述室内机频率对空调器的压缩机进行频率控制; 所述第一盘管温 差阈值小于 o°c;
[0017] 若所述盘管温差小于所述第一盘管温差阈值、 且空调器室内机的设定风速变大 , 控制空调器室内机以变大后的设定风速运行, 并计算所述第一目标频率与补 偿频率之和, 将和值作为室内机频率, 根据所述室内机频率对空调器的压缩机 进行频率控制; 所述补偿频率大于 0Hz;
[0018] 若所述盘管温差小于所述第一盘管温差阈值、 且空调器室内机的设定风速不变 , 计算所述设定风速与补偿风速之差, 将差值作为空调器室内机的运行风速, 并将所述第一目标频率作为室内机频率, 根据所述室内机频率对空调器的压缩 机进行频率控制; 所述补偿风速大于 0rpm。 [0019] 如上所述的方法, 在所述盘温控制过程中:
[0020] 若所述盘管温差大于第二盘管温差阈值、 且空调器室内机的设定风速变大, 控 制空调器室内机以变大后的设定风速运行, 并将所述第一目标频率作为室内机 频率, 根据所述室内机频率对空调器的压缩机进行频率控制; 所述第二盘管温 差阈值大于 o°c;
[0021] 若所述盘管温差大于所述第二盘管温差阈值、 且空调器室内机的设定风速变小 , 控制空调器室内机以变小后的设定风速运行, 计算所述第一目标频率与所述 补偿频率之差, 将差值作为室内机频率, 根据所述室内机频率对空调器的压缩 机进行频率控制;
[0022] 若所述盘管温差大于所述第二盘管温差阈值、 且空调器室内机的设定风速不变 , 计算所述设定风速与补偿风速之和, 将和值作为空调器室内机的运行风速, 并将所述第一目标频率作为室内机频率, 根据所述室内机频率对空调器的压缩 机进行频率控制。
[0023] 如上所述的方法, 在所述盘温控制过程中, 若所述盘管温差不小于所述第一盘 管温差阈值、 且不大于所述第二盘管温差阈值, 将所述第一目标频率作为室内 机频率, 根据所述室内机频率对空调器的压缩机进行频率控制; 同吋, 保持空 调器室内机的风速不变。
[0024] 如上所述的方法, 所述室内温差预设范围为 [-tl°C, t2°C],所述 tl和 t2满足: 0< t l < t2。
[0025] 如上所述的方法, 还包括:
[0026] 若所述室内温差小于 -tl°C, 执行下述的室温控制过程:
[0027] 根据所述室内温差进行室温 PID运算, 获得第二目标频率, 根据所述第二目标 频率对空调器的压缩机进行频率控制。
[0028] 优选的, 所述方法还包括:
[0029] 在执行所述室温控制过程中, 控制空调器室内机以设定风速运行。
[0030] 如上所述的方法, 还包括:
[0031] 若所述室内温差大于 t2°C, 控制空调器的压缩机以最小频率运行, 控制空调器 室内机以最小风速运行。 发明的有益效果
有益效果
[0032] 与现有技术相比, 本发明的优点和积极效果是: 本发明提供的空调器制热运行 的控制方法中, 在室内温差达到室内温差预设范围吋、 也即室内温度与室内目 标温度较为接近吋, 执行盘温控制过程, 根据室内盘管温度与盘管目标温度对 空调器的压缩机进行频率控制, 而非根据室内温度对压缩机进行频率控制; 通 过合理设定的盘管目标温度, 能够在室内温度与室内目标温度较为较近的情况 下、 基于室内盘管温度与盘管目标温度得到较大的压缩机运行频率, 控制压缩 机以较高的频率运行, 能提高室内盘管温度, 而通过提高室内盘管温度能够提 高室内机出风温度, 进而能够利用高出风温度提高室内空气温度; 从而, 避免 了因将室内温度误判为接近室内目标温度而降频运行导致室内实际温度不能达 到设定目标温度所造成的制热效果差的问题的发生, 提高了空调器的制热性能
[0033] 结合附图阅读本发明的具体实施方式后, 本发明的其他特点和优点将变得更加 清楚。
对附图的简要说明
附图说明
[0034] 图 1是基于本发明空调器制热运行的控制方法一个实施例的流程图;
[0035] 图 2是基于本发明空调器制热运行的控制方法另一个实施例的流程图;
[0036] 图 3是图 1和图 2中盘温控制过程的一个具体流程图;
[0037] 图 4是图 1和图 2中盘温控制过程的另一个具体流程图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0038] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下将结合附图和实施 例, 对本发明作进一步详细说明。
[0039] 请参见图 1, 该图所示为基于本发明空调器制热运行的控制方法一个实施例的 流程图。 [0040] 如图 1所示, 该实施例实现空调器制热运行的控制过程包括如下步骤:
[0041] 步骤 101 : 空调器制热运行, 获取室内温度, 计算室内温度与室内目标温度的 差值, 获得室内温差。
[0042] 具体来说, 室内温度是指在空调器幵机并运行制热模式吋、 按照设定采用频率 实吋获取的空调器所处房间的室内温度。 该室内温度的获取可以采用现有技术 来实现, 例如, 通过设置在空调进风口处或靠近空调进风口的位置的温度传感 器检测和获取进风温度, 作为室内温度。 室内目标温度是指用户设定的、 或空 调器推荐的、 或空调器默认的、 期望室内所达到的目标温度。 计算室内温度与 室内目标温度的差值, 将该差值作为室内温差。
[0043] 步骤 102: 室内温差达到室内温差预设范围吋, 执行盘温控制过程。
[0044] 室内温差预设范围是已知的一个温度范围, 如果室内温差达到该室内温差预设 范围, 表征室内温度与室内目标温度较为接近。 此情况下, 将执行盘温控制过 程, 具体来说, 是获取室内盘管温度, 根据室内盘管温度与盘管目标温度对空 调器的压缩机进行频率控制。
[0045] 其中, 室内盘管温度是按照设定采样频率所获取的、 室内机换热器的盘管温度 。 盘管温度的获取可以通过在室内机换热器盘管上设置温度传感器检测获取。 盘管目标温度是期望室内换热器所能达到的盘管目标温度, 可以是出厂吋预置 在控制程序中的一个默认温度值, 也可以是由空调器用户自行设定的一个温度 值。 如果是由用户自行设定, 优选空调器推荐一个参考温度值, 供用户参考。 优选的, 预置的盘管目标温度或推荐的盘管目标温度范围是 42-56°C, 优选值为 5 0。C。
[0046] 作为优选实施方式, 根据室内盘管温度与盘管目标温度对空调器的压缩机进行 频率控制, 具体包括:
[0047] 计算室内盘管温度与盘管目标温度的差值, 获得盘管温差, 根据盘管温差进行 盘温 PID运算, 获得第一目标频率, 根据第一目标频率对空调器的压缩机进行频 率控制。 盘温 PID运算获得对压缩机进行控制的目标频率的方法可以参考现有技 术中的室温 PID运算而获得压缩机目标频率的方法。 其中, 盘温 PID运算的初始 频率可以为一个设定的初始频率。 优选的, 盘温 PID运算的初始频率为确定室内 温差达到室内温差预设范围、 要执行盘温控制吋压缩机的当前运行频率。
[0048] 盘温控制过程还可以采用图 3或图 4的流程, 具体参见下面对图 3和图 4的描述。
[0049] 采用该实施例的制热运行控制方法, 在室内温差达到室内温差预设范围吋、 也 即室内温度与室内目标温度较为接近吋, 执行盘温控制过程, 根据室内盘管温 度与盘管目标温度对空调器的压缩机进行频率控制, 而非根据室内温度对压缩 机进行频率控制。 通过合理设定的盘管目标温度, 能够在室内温度与室内目标 温度较为较近的情况下、 基于室内盘管温度与盘管目标温度得到较大的压缩机 运行频率, 控制压缩机以较高的频率运行, 能提高室内盘管温度, 而通过提高 室内盘管温度能够提高室内机出风温度, 进而能够利用高出风温度提高室内空 气温度。 从而, 避免了因将室内温度误判为接近室内目标温度而降频运行导致 室内实际温度不能达到设定目标温度所造成的制热效果差的问题的发生, 提高 了空调器的制热性能。
[0050] 请参见图 2, 该图所示为基于本发明空调器制热运行的控制方法另一个实施例 的流程图。
[0051] 如图 2所示, 该实施例实现空调器制热运行的控制过程包括如下步骤:
[0052] 步骤 201 : 空调器制热运行, 获取室内温度, 计算室内温度与室内目标温度的 差值, 获得室内温差。
[0053] 该步骤的具体过程和参数的含义可参考图 1实施例的描述。
[0054] 步骤 202: 室内温差达到室内温差预设范围?若是, 执行步骤 203; 否则, 转至 步骤 204。
[0055] 步骤 203: 在室内温差达到室内温差预设范围吋, 执行盘温控制过程。
[0056] 在该实施例中, 室内温差预设范围为 [-tl°C, t2°C],且 tl和 t2满足: 0< tl < t2。
譬如, tl=0.5°C, t2=3°C。 也即, 如果室内温度低于室内目标温度、 且室内温度 低于室内目标温度小于等于 0.5°C吋, 执行盘温控制过程; 在室内温度高于室内 目标温度、 且室内温度高于室内目标温度不小于 3°C吋, 均执行盘温控制过程。 而要求 t2大于 tl, 目的是延长盘温控制过程, 避免制热吋因达温停机而降低制热 效果。
[0057] 盘管控制过程的具体实现可以采用图 3或图 4的流程, 具体参见下面对图 3和图 4 的描述。
[0058] 步骤 204: 在步骤 202判定室内温差未达到室内温差预设范围的情况下, 进一步 判断室内温差是否小于 -tl°C。 若是, 执行步骤 205; 否则, 执行步骤 206。
[0059] 步骤 205: 在室内温差小于 -tl°C吋, 执行室温控制过程, 控制室内机以设定风 速运行。
[0060] 如果步骤 204判定室内温差小于 -tl°C, 表示当前室内温度还远小于室内目标温 度, 此情况下, 执行室温控制过程, 基于室内温度和室内目标温度对压缩机作 频率控制。 作为优选实施方式, 室温控制过程包括: 根据室内温差进行室温 PID 运算, 获得第二目标频率, 根据第二目标频率对空调器的压缩机进行频率控制 。 同吋, 在执行室温控制过程中, 控制空调器室内机以设定风速运行。
[0061] 步骤 206: 在室内温差不小于 -tl°C吋, 控制压缩机以最小频率运行, 控制室内 机以最小风速运行。
[0062] 如果步骤 204判定室内温度不小于 -tl°C吋, 由于步骤 202已经判定室内温度不在 [-tl°C, t2°C]的室内温差预设范围, 则此吋室内温差大于 t2°C, 也即, 室内温度 远大于室内目标温度。 此情况下, 将控制压缩机以最小频率运行, 控制室内机 以最小风速运行, 达到热而不躁、 节约能耗的目的。
[0063] 请参见图 3, 该图所示为图 1和图 2中盘温控制过程的一个具体流程图, 具体来 说, 是空调器用户不允许更改设定风速的情况下执行盘温控制过程吋对风速和 频率进行控制的具体流程图。
[0064] 如图 3所示, 盘温控制过程的具体方法如下:
[0065] 步骤 301 : 计算室内盘管温度与盘管目标温度的差值, 获得盘管温差, 根据盘 管温差进行盘温 PID运算, 获得第一目标频率。
[0066] 该过程的具体实现方法可以参考图 1实施例的描述, 在次不作复述。
[0067] 步骤 302: 盘管温差小于第一盘管温差阈值?若是, 执行步骤 303; 否则, 转至 步骤 304。
[0068] 第一盘管温差阈值是预设的一个温度阈值, 第一盘管温差阈值小于 0°C, 是反 映盘管温度低于盘管目标温度大小的一个阈值温度。 譬如, 第一盘管温差阈值 为 -0.6。C。 [0069] 步骤 303: 将第一目标频率作为室内机频率, 对压缩机进行频率控制; 降低室 内机的风速。
[0070] 如果步骤 302判定盘管温差小于第一盘管温差阈值, 表明当前盘管温度小于盘 管目标温度、 且与盘管目标温度差别较大, 当前盘管温度较低。 为了尽快将盘 管温度升高至盘管目标温度, 在将第一目标频率作为室内机频率, 对压缩机进 行频率控制的同吋, 降低空调器室内机的风速, 降低盘管的热交换。
[0071] 步骤 304: 盘管温差大于第二盘管温差阈值?若是, 执行步骤 306; 否则, 执行 步骤 305。
[0072] 如果步骤 302判定盘管温差不小于第一盘管温差阈值, 进一步判断盘管温差是 否大于第二盘管温差阈值。 其中, 第二盘管温差阈值也是预设的一个温度阈值
, 第二盘管温差阈值大于 o°c, 是反映盘管温度高于盘管目标温度大小的一个阈 值温度。 譬如, 第二盘管温差阈值为 0.6°C。
[0073] 步骤 305: 将第一目标频率作为室内机频率, 对压缩机进行频率控制; 保持室 内机的风速不变。
[0074] 如果步骤 304判定盘管温差不大于第二盘管温差阈值, 同吋, 经过步骤 302的判 定可知, 盘管温差还不小于第一盘管温差阈值, 表明盘管温度与盘管目标温度 较为接近。 此情况下, 将第一目标频率作为室内机频率, 对压缩机进行频率控 制; 同吋, 保持空调器室内机的风速不变。 也即, 无需对室内机的风速作额外 调整, 即能达到较为舒适的制热效果。
[0075] 步骤 306: 将第一目标频率作为室内机频率, 对压缩机进行频率控制; 增大室 内机的风速。
[0076] 如果步骤 304判定盘管温差大于第二盘管温差阈值, 表明当前盘管温度高于盘 管目标温度, 且与盘管目标温度差别较大, 当前盘管温度过高。 为了尽快将盘 管温度降低至盘管目标温度, 在将第一目标频率作为室内机频率, 对压缩机进 行频率控制的同吋, 增大空调器室内机的风速, 加快盘管的热交换。
[0077] 请参见图 4, 该图所示为图 1和图 2中盘温控制过程的另一个具体流程图, 具体 来说, 是空调器用户可以更改设定风速的情况下执行盘温控制过程吋对风速和 频率进行控制的具体流程图。 [0078] 如图 4所示, 盘温控制过程的具体过程如下:
[0079] 步骤 401 : 计算室内盘管温度与盘管目标温度的差值, 获得盘管温差, 根据盘 管温差进行盘温 PID运算, 获得第一目标频率。
[0080] 该过程的具体实现方法可以参考图 1实施例的描述, 在次不作复述。
[0081] 步骤 402: 盘管温差小于第一盘管温差阈值?若是, 执行步骤 403或步骤 404或 步骤 405的控制过程。 否则, 转至步骤 406。
[0082] 第一盘管温差阈值是预设的一个温度阈值, 第一盘管温差阈值小于 0°C, 是反 映盘管温度低于盘管目标温度大小的一个阈值温度。 譬如, 第一盘管温差阈值 为 -0.6°C。 如果盘管温差小于第一盘管温差阈值, 表明当前盘管温度小于盘管目 标温度、 且与盘管目标温度差别较大, 当前盘管温度较低。 为了提高制热舒适 性, 希望尽快将盘管温度升高至盘管目标温度。 考虑到用户可能会在盘温控制 过程中改变室内机设定风速, 将根据设定风速是否被更改而采用步骤 403或步骤 404或步骤 405的控制过程。
[0083] 步骤 403: 设定风速变小吋, 控制室内机以变小后的设定风速运行; 并将第一 目标频率作为室内机频率, 对压缩机进行频率控制。
[0084] 在盘管温差小于第一盘管温差阈值的情况下, 如果设定风速变小, 表明用户手 动将设定风速调小。 由于在盘管温差小于第一盘管温差阈值、 也即当前盘管温 度小于盘管目标温度吋, 为了使得盘管温度能够尽快升高至盘管目标温度, 希 望降低室内机的风速, 而用户也是将设定风速调小, 因此, 为兼顾用户调节主 控性和制热舒适性, 将控制室内机以变小后的设定风速运行; 同吋, 将第一目 标频率作为室内机频率, 对压缩机进行频率控制。
[0085] 步骤 404: 设定风速变大吋, 控制室内机以变大后的设定风速运行; 将第一目 标频率与补偿频率的和值作为室内机频率, 对压缩机进行频率控制。
[0086] 在盘管温差小于第一盘管温差阈值的情况下, 如果设定风速变大, 表明用户手 动将设定风速调大。 由于在盘管温差小于第一盘管温差阈值、 也即当前盘管温 度小于盘管目标温度吋, 为了使得盘管温度能够尽快升高至盘管目标温度, 希 望降低室内机的风速, 而用户是将设定风速调大, 因此, 为兼顾用户调节主控 性和制热舒适性, 将控制室内机以变大后的设定风速运行, 以满足用户对风速 控制的要求。 那么, 为了仍能够将盘管温度尽快升高至盘管目标温度, 将对压 缩机进行强制升频控制, 具体来说, 是计算步骤 401获得的第一目标频率与补偿 频率之和, 将和值作为室内机频率, 根据室内机频率对空调器的压缩机进行频 率控制。 其中, 补偿频率大于 0Hz, 是预置的一个频率值, 譬如预置为 3-10Ηζ。 通过对盘温 PID计算得出的第一目标频率作频率补偿, 提升压缩机运行频率, 以 便将盘管温度尽快升高至盘管目标温度, 提高制热舒适性。
[0087] 步骤 405: 设定风速不变吋, 控制室内机以设定风速与补偿风速的差值运行; 并将第一目标频率作为室内机频率, 对压缩机进行频率控制。
[0088] 在盘管温差小于第一盘管温差阈值的情况下, 如果设定风速不变, 表明用户未 手动更改设定风速。 为了使得盘管温度能够尽快升高至盘管目标温度, 采取降 低室内机的风速的控制手段。 具体来说, 是计算当前设定风速与补偿风速之差 , 将差值作为空调器室内机的运行风速; 同吋, 并将第一目标频率作为室内机 频率, 根据室内机频率对空调器的压缩机进行频率控制。 其中, 补偿风速大于 Or pm, 是预置的一个风速值。 通过对设定风速作风速补偿, 降低室内机的实际运 行风速, 降低盘管的热交换, 使得盘管温度尽快上升至盘管目标温度。
[0089] 步骤 406: 盘管温差大于第二盘管温差阈值?若是, 执行步骤 407或步骤 408或 步骤 409的控制过程。 否则, 转至步骤 410。
[0090] 如果步骤 402判定盘管温差不小于第一盘管温差阈值, 进一步判断盘管温差是 否大于第二盘管温差阈值。 其中, 第二盘管温差阈值也是预设的一个温度阈值 , 第二盘管温差阈值大于 o°c, 是反映盘管温度高于盘管目标温度大小的一个阈 值温度。 譬如, 第二盘管温差阈值为 0.6°C。
[0091] 如果盘管温差大于第二盘管温差阈值, 表明当前盘管温度高于盘管目标温度、 且与盘管目标温度差别较大, 当前盘管温度较高。 为了提高制热舒适性, 希望 尽快将盘管温度降低至盘管目标温度。 考虑到用户可能会在盘温控制过程中改 变室内机设定风速, 将根据设定风速是否被更改而采用步骤 407或步骤 408或步 骤 409的控制过程。
[0092] 步骤 407: 设定风速变大吋, 控制室内机以变大后的设定风速运行; 并将第一 目标频率作为室内机频率, 对压缩机进行频率控制。 [0093] 在盘管温差大于第二盘管温差阈值的情况下, 如果设定风速变大, 表明用户手 动将设定风速调大。 由于在盘管温差大于第二盘管温差阈值、 也即当前盘管温 度高于盘管目标温度吋, 为了使得盘管温度能够尽快降低至盘管目标温度, 希 望增大空调器室内机的风速, 以加快盘管的热交换。 而由于用户也是将设定风 速调大, 因此, 为兼顾用户调节主控性和制热舒适性, 将控制室内机以变大后 的设定风速运行; 同吋, 将第一目标频率作为室内机频率, 对压缩机进行频率 控制。
[0094] 步骤 408: 设定风速变小吋, 控制室内机以变小后的设定风速运行; 将第一目 标频率与补偿频率的差值作为室内机频率, 对压缩机进行频率控制。
[0095] 在盘管温差大于第二温差阈值的情况下, 如果设定风速变小, 表明用户手动将 设定风速调小。 由于在盘管温差大于第二温差阈值、 当前盘管温度高于盘管目 标温度吋, 为了使得盘管温度能够尽快降低至盘管目标温度, 希望增大空调器 室内机的风速, 而用户将设定风速调小, 因此, 为兼顾用户调节主控性和制热 舒适性, 将控制室内机以变小后的设定风速运行, 以满足用户对风速控制的要 求。 那么, 为了仍能够将盘管温度尽快降低至盘管目标温度, 将对压缩机进行 强制降频控制。 具体来说, 是计算步骤 401获得的第一目标频率与补偿频率之差 , 将差值作为室内机频率, 根据室内机频率对空调器的压缩机进行频率控制。 通过对盘温 PID计算得出的第一目标频率作频率补偿, 降低压缩机运行频率, 以 便将盘管温度尽快降低至盘管目标温度, 提高制热舒适性。
[0096] 步骤 409: 设定风速不变吋, 控制室内机以设定风速与补偿风速的和值运行; 并将第一目标频率作为室内机频率, 对压缩机进行频率控制。
[0097] 在盘管温差大于第二盘管温差阈值的情况下, 如果设定风速不变, 表明用户未 手动更改设定风速。 为了使得盘管温度能够尽快降低至盘管目标温度, 采取增 大室内机的风速的控制手段。 具体来说, 是计算当前设定风速与补偿风速之和 , 将和值作为空调器室内机的运行风速; 同吋, 并将第一目标频率作为室内机 频率, 根据室内机频率对空调器的压缩机进行频率控制。 通过对设定风速作风 速补偿, 增大了室内机的实际运行风速, 加快盘管的热交换, 使得盘管温度尽 快降低至盘管目标温度。 [0098] 步骤 410: 将第一目标频率作为室内机频率, 对压缩机进行频率控制; 保持室 内机的风速不变。
[0099] 如果步骤 406判断盘管温差不大于第二盘管温差阈值, 且通过步骤 402的判定可 知盘管温差又不小于第一盘管温差阈值, 表明盘管温度与盘管目标温度较为接 近。 此情况下, 将第一目标频率作为室内机频率, 对压缩机进行频率控制; 同 吋, 保持空调器室内机的风速不变。 也即, 无需对室内机的风速和压缩机的频 率作额外调整, 即能达到较为舒适的制热效果。
[0100] 以上实施例仅用以说明本发明的技术方案, 而非对其进行限制; 尽管参照前述 实施例对本发明进行了详细的说明, 对于本领域的普通技术人员来说, 依然可 以对前述实施例所记载的技术方案进行修改, 或者对其中部分技术特征进行等 同替换; 而这些修改或替换, 并不使相应技术方案的本质脱离本发明所要求保 护的技术方案的精神和范围。

Claims

权利要求书
[权利要求 1] 一种空调器制热运行的控制方法, 其特征在于, 所述方法包括: 空调器制热运行, 获取室内温度, 计算所述室内温度与室内目标温度 的差值, 获得室内温差;
在所述室内温差达到室内温差预设范围吋, 执行下述的盘温控制过程 获取室内盘管温度, 根据所述室内盘管温度与盘管目标温度对空调器 的压缩机进行频率控制。
[权利要求 2] 根据权利要求 1所述的方法, 其特征在于, 所述根据所述室内盘管温 度与盘管目标温度对空调器的压缩机进行频率控制, 具体包括: 计算所述室内盘管温度与所述盘管目标温度的差值, 获得盘管温差, 根据所述盘管温差进行盘温 PID运算, 获得第一目标频率, 根据所述 第一目标频率对空调器的压缩机进行频率控制。
[权利要求 3] 根据权利要求 2所述的方法, 其特征在于, 所述方法还包括, 在所述 盘温控制过程中:
若所述盘管温差小于第一盘管温差阈值, 将所述第一目标频率作为室 内机频率, 根据所述室内机频率对空调器的压缩机进行频率控制; 同 吋, 降低空调器室内机的风速; 所述第一盘管温差阈值小于 0°C; 若所述盘管温差大于第二盘管温差阈值, 将所述第一目标频率作为室 内机频率, 根据所述室内机频率对空调器的压缩机进行频率控制; 同 吋, 增大空调器室内机的风速; 所述第二盘管温差阈值大于 0°C; 否则, 将所述第一目标频率作为室内机频率, 根据所述室内机频率对 空调器的压缩机进行频率控制; 同吋, 保持空调器室内机的风速不变
[权利要求 4] 根据权利要求 2所述的方法, 其特征在于, 所述方法还包括, 在所述 盘温控制过程中:
若所述盘管温差小于第一盘管温差阈值、 且空调器室内机的设定风速 变小, 控制空调器室内机以变小后的设定风速运行, 并将所述第一目 标频率作为室内机频率, 根据所述室内机频率对空调器的压缩机进行 频率控制; 所述第一盘管温差阈值小于 o°c;
若所述盘管温差小于所述第一盘管温差阈值、 且空调器室内机的设定 风速变大, 控制空调器室内机以变大后的设定风速运行, 并计算所述 第一目标频率与补偿频率之和, 将和值作为室内机频率, 根据所述室 内机频率对空调器的压缩机进行频率控制; 所述补偿频率大于 0Hz; 若所述盘管温差小于所述第一盘管温差阈值、 且空调器室内机的设定 风速不变, 计算所述设定风速与补偿风速之差, 将差值作为空调器室 内机的运行风速, 并将所述第一目标频率作为室内机频率, 根据所述 室内机频率对空调器的压缩机进行频率控制; 所述补偿风速大于 Orp m。
[权利要求 5] 根据权利要求 4所述的方法, 其特征在于, 所述方法还包括, 在所述 盘温控制过程中:
若所述盘管温差大于第二盘管温差阈值、 且空调器室内机的设定风速 变大, 控制空调器室内机以变大后的设定风速运行, 并将所述第一目 标频率作为室内机频率, 根据所述室内机频率对空调器的压缩机进行 频率控制; 所述第二盘管温差阈值大于 0°C;
若所述盘管温差大于所述第二盘管温差阈值、 且空调器室内机的设定 风速变小, 控制空调器室内机以变小后的设定风速运行, 计算所述第 一目标频率与所述补偿频率之差, 将差值作为室内机频率, 根据所述 室内机频率对空调器的压缩机进行频率控制;
若所述盘管温差大于所述第二盘管温差阈值、 且空调器室内机的设定 风速不变, 计算所述设定风速与补偿风速之和, 将和值作为空调器室 内机的运行风速, 并将所述第一目标频率作为室内机频率, 根据所述 室内机频率对空调器的压缩机进行频率控制。
[权利要求 6] 根据权利要求 5所述的方法, 其特征在于, 所述方法还包括, 在所述 盘温控制过程中, 若所述盘管温差不小于所述第一盘管温差阈值、 且 不大于所述第二盘管温差阈值, 将所述第一目标频率作为室内机频率 , 根据所述室内机频率对空调器的压缩机进行频率控制; 同吋, 保持 空调器室内机的风速不变。
[权利要求 7] 根据权利要求 1至 6中任一项所述的方法, 其特征在于, 所述室内温差 预设范围为 [-tl°C, t2°C],所述 tl和 t2满足: 0< tl < t2。
[权利要求 8] 根据权利要求 7所述的方法, 其特征在于, 所述方法还包括:
若所述室内温差小于 -tl°C, 执行下述的室温控制过程:
根据所述室内温差进行室温 PID运算, 获得第二目标频率, 根据所述 第二目标频率对空调器的压缩机进行频率控制。
[权利要求 9] 根据权利要求 8所述的方法, 其特征在于, 所述方法还包括:
在执行所述室温控制过程中, 控制空调器室内机以设定风速运行。
[权利要求 10] 根据权利要求 7所述的方法, 其特征在于, 所述方法还包括:
若所述室内温差大于 t2°C, 控制空调器的压缩机以最小频率运行, 控 制空调器室内机以最小风速运行。
PCT/CN2017/086058 2017-03-30 2017-05-26 空调器制热运行的控制方法 WO2018176621A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/475,074 US11181287B2 (en) 2017-03-30 2017-05-26 Control method for heating operation of air-conditioner based on coil temperature and indoor fan speed
EP17903129.9A EP3564596B1 (en) 2017-03-30 2017-05-26 Control method for a heating operation of an air-conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710199530.7 2017-03-30
CN201710199530.7A CN107023940B (zh) 2017-03-30 2017-03-30 空调器制热运行的控制方法

Publications (1)

Publication Number Publication Date
WO2018176621A1 true WO2018176621A1 (zh) 2018-10-04

Family

ID=59525829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086058 WO2018176621A1 (zh) 2017-03-30 2017-05-26 空调器制热运行的控制方法

Country Status (4)

Country Link
US (1) US11181287B2 (zh)
EP (1) EP3564596B1 (zh)
CN (1) CN107023940B (zh)
WO (1) WO2018176621A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112984747A (zh) * 2021-03-16 2021-06-18 青岛海尔空调器有限总公司 一种下出风空调的风速控制方法和下出风空调
CN113819528A (zh) * 2021-08-31 2021-12-21 青岛海尔空调器有限总公司 柜机空调的控制方法、控制***、电子设备和存储介质
CN114543314A (zh) * 2022-04-08 2022-05-27 安徽奥克斯智能电气有限公司 空调器提效控制方法及其空调器
CN114562797A (zh) * 2022-03-01 2022-05-31 武汉汉立制冷科技股份有限公司 一种用于制冷设备的三维控风方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2898204T3 (es) * 2016-12-16 2022-03-04 Gen Electric Topología de parque eólico y procedimiento para operar el mismo
CN108302712B (zh) * 2018-01-03 2020-04-10 广东美的暖通设备有限公司 热泵空调机组及其节能控制方法和控制装置
CN108375175B (zh) * 2018-02-08 2019-09-24 珠海格力电器股份有限公司 空调***控制方法及装置
WO2020012641A1 (ja) * 2018-07-13 2020-01-16 三菱電機株式会社 コントローラおよび空気調和システム
CN109945434B (zh) * 2019-03-20 2020-05-05 珠海格力电器股份有限公司 空调的控制方法、装置和空调
US11543142B1 (en) * 2019-12-23 2023-01-03 Trane International Inc. Systems and methods for operation of a climate control system
CN111594977B (zh) * 2020-04-08 2022-02-01 宁波奥克斯电气股份有限公司 一种制热控制方法及空调器
CN113639416A (zh) * 2020-04-27 2021-11-12 青岛海尔空调电子有限公司 变频空调的控制方法
CN111649439B (zh) * 2020-05-08 2021-12-31 宁波奥克斯电气股份有限公司 一种空调控制方法
CN112066526A (zh) * 2020-08-17 2020-12-11 Tcl空调器(中山)有限公司 一种空调的控制方法和计算机设备
CN112303840A (zh) * 2020-09-17 2021-02-02 珠海格力电器股份有限公司 一种空调器及其出风温度控制方法
CN112503742A (zh) * 2020-12-02 2021-03-16 珠海格力电器股份有限公司 一种确定空调出风转速的方法和装置
CN112696808A (zh) * 2020-12-28 2021-04-23 宁波奥克斯电气股份有限公司 频率控制方法、频率控制装置和变频空调
CN112594894A (zh) * 2021-01-21 2021-04-02 广东积微科技有限公司 用于新风机的控制方法、***及新风机
CN112984736B (zh) * 2021-02-23 2022-08-19 青岛海尔空调器有限总公司 一种下出风空调的控制方法和下出风空调
CN112984735B (zh) * 2021-02-23 2022-06-14 青岛海尔空调器有限总公司 一种下出风空调的控制方法和下出风空调
CN113465097B (zh) * 2021-05-18 2022-11-25 宁波奥克斯电气股份有限公司 空调器舒适性控制方法、装置及空调器
CN114087746B (zh) * 2021-11-29 2023-02-24 珠海格力电器股份有限公司 变频空调的控制方法、装置和变频空调
US11815280B2 (en) * 2022-01-31 2023-11-14 Mitsubishi Electric Us, Inc. System and method for controlling the operation of a fan in an air conditioning system
CN114963448B (zh) * 2022-05-20 2023-05-12 珠海格力电器股份有限公司 一种空调器控制方法、装置、空调器及存储介质
CN115523744B (zh) * 2022-08-09 2024-02-20 青岛海尔空调器有限总公司 热泵烘干机控制方法、装置、热泵烘干机及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020017090A (ko) * 2000-08-28 2002-03-07 홍성창 쾌적한 공조를 위한 실내 온열환경과 co₂가스농도제어방법
CN104501360A (zh) * 2014-12-17 2015-04-08 广东美的制冷设备有限公司 空调器及其除湿控制方法
US20150211757A1 (en) * 2014-01-24 2015-07-30 Trane International Inc. Latent Capacity Adjustment
CN105222277A (zh) * 2015-10-09 2016-01-06 Tcl空调器(中山)有限公司 一种变频空调室外机快速启动压缩机的控制方法及***
CN105485856A (zh) * 2015-12-31 2016-04-13 广东美的制冷设备有限公司 空调***及空调***制热状态下的异常检测方法
CN106016600A (zh) * 2016-05-25 2016-10-12 青岛海尔空调器有限总公司 变频空调频率控制方法、控制装置及变频空调
CN106288239A (zh) * 2016-10-11 2017-01-04 青岛海尔空调器有限总公司 一种空调运行的控制方法
CN106500242A (zh) * 2016-10-11 2017-03-15 青岛海尔空调器有限总公司 一种空调运行控制方法
CN106524433A (zh) * 2016-12-08 2017-03-22 青岛海尔空调器有限总公司 定频空调控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334459A (ja) * 1986-07-29 1988-02-15 株式会社東芝 空気調和機
US6102114A (en) * 1997-09-30 2000-08-15 Matsushita Electric Industrial Co., Ltd. Multi-room air conditioning system
US6397610B1 (en) * 2001-05-01 2002-06-04 Cohand Technology Co., Ltd. Method for controlling air conditioner/heater by coil temperature
KR20100128955A (ko) * 2009-05-29 2010-12-08 엘지전자 주식회사 공기조화기 및 그 운전 방법
US9157646B2 (en) * 2010-09-13 2015-10-13 Honeywell International Inc. Automatic changeover control for an HVAC system
JP4993014B2 (ja) * 2010-09-30 2012-08-08 ダイキン工業株式会社 コントローラおよび空調処理システム
CN102734898B (zh) * 2012-07-13 2015-04-29 海尔集团公司 提高空调器制热速度的控制方法及控制装置
WO2014013528A1 (ja) * 2012-07-20 2014-01-23 三菱電機株式会社 空気調和装置
KR20150038977A (ko) * 2013-10-01 2015-04-09 엘지전자 주식회사 Hvac 컨트롤러
CN104613593B (zh) * 2014-12-26 2017-06-27 广东美的制冷设备有限公司 空调器及其电加热控制方法
CN105042797B (zh) * 2015-08-31 2018-01-23 青岛海尔空调器有限总公司 一种壁挂式变频空调器控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020017090A (ko) * 2000-08-28 2002-03-07 홍성창 쾌적한 공조를 위한 실내 온열환경과 co₂가스농도제어방법
US20150211757A1 (en) * 2014-01-24 2015-07-30 Trane International Inc. Latent Capacity Adjustment
CN104501360A (zh) * 2014-12-17 2015-04-08 广东美的制冷设备有限公司 空调器及其除湿控制方法
CN105222277A (zh) * 2015-10-09 2016-01-06 Tcl空调器(中山)有限公司 一种变频空调室外机快速启动压缩机的控制方法及***
CN105485856A (zh) * 2015-12-31 2016-04-13 广东美的制冷设备有限公司 空调***及空调***制热状态下的异常检测方法
CN106016600A (zh) * 2016-05-25 2016-10-12 青岛海尔空调器有限总公司 变频空调频率控制方法、控制装置及变频空调
CN106288239A (zh) * 2016-10-11 2017-01-04 青岛海尔空调器有限总公司 一种空调运行的控制方法
CN106500242A (zh) * 2016-10-11 2017-03-15 青岛海尔空调器有限总公司 一种空调运行控制方法
CN106524433A (zh) * 2016-12-08 2017-03-22 青岛海尔空调器有限总公司 定频空调控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3564596A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112984747A (zh) * 2021-03-16 2021-06-18 青岛海尔空调器有限总公司 一种下出风空调的风速控制方法和下出风空调
CN112984747B (zh) * 2021-03-16 2022-04-19 青岛海尔空调器有限总公司 一种下出风空调的风速控制方法和下出风空调
CN113819528A (zh) * 2021-08-31 2021-12-21 青岛海尔空调器有限总公司 柜机空调的控制方法、控制***、电子设备和存储介质
CN114562797A (zh) * 2022-03-01 2022-05-31 武汉汉立制冷科技股份有限公司 一种用于制冷设备的三维控风方法
CN114562797B (zh) * 2022-03-01 2023-11-10 武汉汉立制冷科技股份有限公司 一种用于制冷设备的三维控风方法
CN114543314A (zh) * 2022-04-08 2022-05-27 安徽奥克斯智能电气有限公司 空调器提效控制方法及其空调器
CN114543314B (zh) * 2022-04-08 2023-09-15 安徽奥克斯智能电气有限公司 空调器提效控制方法及其空调器

Also Published As

Publication number Publication date
CN107023940A (zh) 2017-08-08
US11181287B2 (en) 2021-11-23
EP3564596A1 (en) 2019-11-06
CN107023940B (zh) 2019-12-03
EP3564596A4 (en) 2020-07-29
US20190323717A1 (en) 2019-10-24
EP3564596B1 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
WO2018176621A1 (zh) 空调器制热运行的控制方法
CN107062549B (zh) 空调器制热运行控制方法
CN106288239B (zh) 一种空调运行的控制方法
CN107101329B (zh) 空调器制热运行控制方法和控制装置
WO2019153887A1 (zh) 空调***控制方法及装置、空调***
WO2018126755A1 (zh) 空调器控制方法及装置
CN110332664A (zh) 一种空调器控制方法和空调器
CN106500242B (zh) 一种空调运行控制方法
EP3561406B1 (en) Heating control method and device for air conditioner
WO2019223301A1 (zh) 空调控制方法、控制装置及采用该方法的空调
CN107014036B (zh) 制热控制方法、制热控制装置及空调器
CN106482294B (zh) 空调运行控制方法
CN111023512A (zh) 一种空调温湿度控制方法、装置及空调器
WO2020034659A1 (zh) 用于空调器的控制方法及空调器
CN108168018B (zh) 空调器制热控制方法
WO2022127108A1 (zh) 空调器及其温湿度调控方法、计算机可读存储介质
WO2018196577A1 (zh) 一种空调器制热控制方法
WO2018177079A1 (zh) 空调器制热控制方法、控制装置及空调器
WO2018196579A1 (zh) 制热控制方法、控制装置和空调器
CN111780359B (zh) 一种空调器
CN107152752B (zh) 空调器制热控制方法、控制装置
CN107084487B (zh) 空调器的制热控制方法和控制装置
CN107084489B (zh) 空调器制热控制方法
CN109210718B (zh) 基于距离控制空调器压缩机的方法和装置
CN107023941B (zh) 空调器及其制热控制方法和控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017903129

Country of ref document: EP

Effective date: 20190731

NENP Non-entry into the national phase

Ref country code: DE