WO2018174247A1 - Solar cell module and method for producing solar cell module - Google Patents

Solar cell module and method for producing solar cell module Download PDF

Info

Publication number
WO2018174247A1
WO2018174247A1 PCT/JP2018/011693 JP2018011693W WO2018174247A1 WO 2018174247 A1 WO2018174247 A1 WO 2018174247A1 JP 2018011693 W JP2018011693 W JP 2018011693W WO 2018174247 A1 WO2018174247 A1 WO 2018174247A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
insulating
solar cell
cell module
conductive film
Prior art date
Application number
PCT/JP2018/011693
Other languages
French (fr)
Japanese (ja)
Inventor
壮一郎 鈴木
篤 生駒
博之 井川
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017059239A external-priority patent/JP6809954B2/en
Priority claimed from JP2017068340A external-priority patent/JP6912243B2/en
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020197021559A priority Critical patent/KR20190126054A/en
Priority to CN201880010633.7A priority patent/CN110268491B/en
Publication of WO2018174247A1 publication Critical patent/WO2018174247A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell module and a method for manufacturing a solar cell module.
  • This application claims priority based on Japanese Patent Application No. 2017-059239 filed in Japan on March 24, 2017 and Japanese Patent Application No. 2017-068340 filed in Japan on March 30, 2017, The contents are incorporated herein.
  • a solar cell module including a dye-sensitized solar cell is generally configured by including a photoelectrode, a counter electrode, and an electrolyte solution or an electrolyte solution layer.
  • the photoelectrode includes at least a transparent conductive layer and a semiconductor layer.
  • it is known to be configured with a pigment (see, for example, Patent Document 1).
  • the dye adsorbed on the semiconductor layer absorbs light, the electrons in the dye molecule are excited, and the electrons are passed to the semiconductor. It is. Then, electrons generated on the photoelectrode side move to the counter electrode side through the external circuit, and the electrons return to the photoelectrode side through the electrolytic solution. By repeating such a process, electric energy is generated.
  • a transparent conductive film is formed on the surface of the first base material 3A, and a plurality of band-like semiconductor layers adsorbed with a dye extending in the longitudinal direction X1 are formed on the surface of the transparent conductive film of the first base material 3A.
  • the counter electrode 12 having a counter conductive film formed on the surface of the second substrate 3B so as to oppose the photo electrode 11, and the semiconductor layer of the photo electrode 11 and the counter electrode 12.
  • a plurality of cells C arranged in the direction X2 are electrically connected by serial wiring. .
  • both end portions in the width direction X2 are extraction electrodes (+ electrode, ⁇ electrode).
  • the + electrode and the ⁇ electrode are in positions opposite to each other, and are located away from each other, making it difficult to perform wiring work. Therefore, one end side of the submodules R and R partitioned by the insulating line 18 is electrically connected to each other by a wiring material such as copper tape, and electricity can be taken out at the other end side.
  • a wiring material such as copper tape
  • the present invention has been made in view of the above-described problems.
  • a solar cell module that can be efficiently wired, and a solar cell module
  • An object is to provide a manufacturing method.
  • a solar cell module includes a first electrode, a second electrode, an electrolytic solution sealed between the first electrode and the second electrode, and the electrolytic solution.
  • a laminated structure including a plurality of sealing materials to be sealed and a plurality of insulating lines, each of which is defined by the plurality of sealing materials and the plurality of insulating lines, each of which is composed of a plurality of cells.
  • a solar cell module having a module, wherein the first electrode is formed on a surface of a first base material having a transparent conductive film formed on the surface, and on the surface of the transparent conductive film of the first base material, A plurality of semiconductor layers adsorbed with a dye extending in one direction, and the second electrode has a second substrate on which a counter conductive film is formed so as to face the first electrode.
  • the electrolytic solution is sealed between the semiconductor layer of the first electrode and the second electrode.
  • Each of the plurality of sealing materials extends between the first electrode and the second electrode along the first direction so as to seal the electrolyte solution, and
  • the structure is divided into a plurality of cells, and the insulating line extends between the first electrode and the second electrode along a second direction orthogonal to the first direction in plan view.
  • the stacked structure is divided into a plurality of submodules each composed of a plurality of cells, and for the cells adjacent in the second direction, the first electrode of one cell and the first of the other cell
  • Two electrodes are electrically connected by a conductive material provided in a state covered with the sealing material, whereby the plurality of cells are connected, and in each cell, the first electrode and the second electrode
  • the first group Is provided with a first insulating portion extending in the first direction in the vicinity of a position adjacent to one conductive material, and in the second base material in the vicinity of a position adjacent to the other conductive material.
  • a second insulating portion extending in the first direction is provided, and the conductive materials at the end on the same side in the second direction are electrically connected to each other in the adjacent submodule. It is a feature.
  • a conductive material is disposed between the insulating portion of the first base material and the insulating portion of the second base material that are disposed between cells adjacent in the second direction of the first base material, Cells adjacent to each other in the two directions are electrically connected in series, and the conductive members on one end side in the second direction in the submodule divided in the first direction by the insulating lines are electrically connected in series. ing. Therefore, in one submodule, electricity flows from the other end side in the second direction to one end side, and electricity on one end side flows to the one end side of the other submodule via a conductive material, and in the other submodule, A circuit configuration in which electricity flows from one end side to the other end side in the second direction can be realized.
  • the sub-modules on one end side in the second direction are electrically connected to each other by the conductive material, and the whole has a structure in which electricity flows in a U shape in plan view. Therefore, it is possible to arrange the extraction electrode (positive electrode, negative electrode) on the same side only at the other end side in the second direction, the wiring structure can be simplified, and wiring work can be easily performed.
  • a conductive material is provided on one end side of adjacent submodules, and a simple manufacturing method for applying a conductive material to a line can be applied. It can be easily adapted to a roll system (hereinafter referred to as RtoR system).
  • RtoR system a roll system
  • Such a RtoR method can be realized by a manufacturing process in which a conductive material is continuously arranged in the first direction. Therefore, on one end side in the second direction, for example, a copper tape is attached or soldered so as to be along the first direction in the work after the battery is created as in the prior art, and a wiring material is not required. Therefore, the manufacturing process for providing the wiring material can be omitted, and the working efficiency for manufacturing can be improved with a simple configuration.
  • the submodule In the solar cell module according to the above (1), from the portion where the conductive material on one end side in the second direction electrically connected in the adjacent submodule is disposed, the submodule
  • the conductive substrate width to the one end may be 2 mm or more, and the width dimension of the conductive material on the one end side may be 0.5 mm or more.
  • the electric resistance flowing through both the transparent conductive film on the first base material side and the opposing conductive film on the second base material side can be reduced more reliably, and the current value flowing through these conductive films can be reduced. It can be reduced to 1 ⁇ 2 or less, and a decrease in power generation performance can be suppressed without deteriorating battery performance.
  • the first insulating portion and the second insulating portion are alternately shifted in the second direction.
  • the first insulating portion and the second insulating portion may be extended in the first direction so that at least a part of the first insulating portion and the second insulating portion are overlapped with the insulating line. .
  • the end portions of the first insulating portion and the second insulating portion are arranged in a state where they are extended into the region of the ultrasonic fusion portion, and these end portions are arranged so as to overlap the ultrasonic fusion portion. Therefore, even if the position of the ultrasonic fusion part is formed at a position shifted in the first direction in the manufacturing process, it is possible to prevent separation between the insulating part and the ultrasonic fusion part. be able to. As a result, the cells adjacent in the second direction are reliably insulated from each other, so that leakage between these cells can be suppressed, and a decrease in power generation efficiency can be prevented, and the cells are electrically connected in series. Connected.
  • the first insulating portion and the second insulating portion that overlap the ultrasonic fusion portion are arranged in the first direction so as to overlap the region of the ultrasonic fusion portion as described above at a predetermined position of the transparent conductive film and the opposing conductive film.
  • it can be easily manufactured by performing a cutting process or a laser process. Therefore, it can be easily adapted to a roll-to-roll system (hereinafter referred to as RtoR system).
  • the first insulating part and the second insulating part have an overlap length with the insulating line of 0.1 mm or more and 5 mm or less. Also good.
  • a standard deviation amount in the first direction of the ultrasonic fusion part in the manufacturing method by the RtoR method for example, 0. Even when 1 mm, the possibility that the first insulating portion and the second insulating portion are separated from the ultrasonic fusion portion is reduced, and leakage between cells adjacent in the second direction can be prevented.
  • the length dimension K from the overlapping start position to the tip of the insulating line at each end of the first insulating portion and the second insulating portion K Is divided by the width L of the insulating line, and a range of 0 ⁇ K / L ⁇ 1.5 may be set.
  • the length dimension K from the overlap start position to the tip of the insulation line at each end of the first insulating portion and the second insulating portion is K. Is divided by the width L of the insulating line, and a range of 0 ⁇ K / L ⁇ 1.5 may be set.
  • the first insulating part and the second insulating part are The possibility of separating from the ultrasonic fusion part is reduced, and leakage between cells adjacent in the second direction can be prevented. Since the value of K / L is smaller than 1.5, the length at which the tip of the insulating portion of one sub-module protrudes toward the other sub-module can be suppressed to a small value. This can be suppressed.
  • K / L exceeds 0.5, it is possible to more reliably cope with the ultrasonic wave deviation as described above, so that the ultrasonic part does not reach the first insulating part or the second insulating part. Even in the case of deviation, since the electric path flows so as to bypass the insulating portion, the resistance becomes high, and the deterioration of the battery performance can be reduced. Further, when the value exceeds 1.0, it is possible to obtain a more reliable improvement effect against the deviation of the ultrasonic fusion part as described above and the deviation not to be applied to the first insulating part or the second insulating part. The stability of performance can be increased.
  • the range of K / L is more preferably set in the range of 0.5 ⁇ K / L ⁇ 1.5. Further, the K / L range is more preferably set in the range of 1.0 ⁇ K / L ⁇ 1.5.
  • a method for manufacturing a solar cell module according to another aspect of the present invention is a method for manufacturing a solar cell module for continuously manufacturing a solar cell module by a roll-to-roll method.
  • a transparent conductive film is formed on the surface of the material, and a plurality of semiconductor layers formed on the surface of the transparent conductive film of the first substrate and adsorbed with a dye extending in the first direction are formed.
  • a step of forming one electrode, a step of forming a second electrode in which a counter conductive film is formed on the surface of the second substrate so as to face the first electrode, the transparent conductive film, and the counter conductive film A step of performing insulation processing in parallel to the first direction, and a plurality of cells extending in the first direction and extending in the second direction perpendicular to the first direction in plan view.
  • first insulating line between the second insulating lines and cutting the first electrode and the second electrode at the position of the second insulating line.
  • a solar cell module cut by the second insulation line.
  • the ends on the same side in the second direction are electrically connected to each other by the series wiring by the conductive material. It is characterized by that.
  • a conductive material is disposed between the insulating part of the first base material and the insulating part of the second base material arranged between cells adjacent in the width direction of the first base material, and in the width direction.
  • the solar cell module can be manufactured in a continuous state in the longitudinal direction by a roll-to-roll method. Therefore, a module including an independent electric circuit can be produced by the roll-to-roll method by the solar cell module itself cut and divided at the position of the second insulation line.
  • the position and length of the conductive material, the first insulating line, and the second insulating line are appropriately set on the film substrate by the roll-to-roll method, and the wiring is set to have the set electrical characteristics (voltage, etc.) Therefore, series connection (circuit design) of cells can be freely designed.
  • the manufactured solar cell module when the manufactured solar cell module is packaged in a separate body (substrate), it is performed after attaching a plurality of solar cell modules to the substrate as in the past, and these solar cell modules are electrically connected to each other. Since wiring work becomes unnecessary, manufacturing efficiency can be improved. Thus, since it becomes possible to reduce an operation man-hour, reduction of manufacturing cost can be aimed at.
  • the first insulating line and the second insulating line are formed by a fusion part fused along the second direction.
  • the insulating portion may be formed by closing an insulating portion insulated by the insulating processing means with a sealing material.
  • the first electrode and the second electrode moved in a roll-to-roll manner by a manufacturing apparatus having appropriate fusion means and insulation processing means extending along the width direction. It is possible to easily form a fusion portion that forms the insulation line and the second insulation line, or a portion where the insulation processing portion is blocked by the sealing material.
  • efficient wiring can be achieved by adopting a structure in which the extraction electrode can be arranged from the end on the same side.
  • FIG. 1 is a perspective view showing the configuration of the solar cell module according to the first embodiment of the present invention.
  • FIG. 2 is a plan view of the solar cell module shown in FIG. 3A is a cross-sectional view taken along line A1-A1 shown in FIG. 3B is a cross-sectional view taken along line B1-B1 shown in FIG.
  • FIG. 4 is a perspective view showing the overall configuration of the solar cell module manufacturing apparatus.
  • FIG. 5 is a plan view showing the manufacturing process of the solar cell module according to the present embodiment.
  • FIG. 6 is a plan view showing a schematic configuration of the dye-sensitized solar cell according to the second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view taken along line A2-A2 shown in FIG.
  • FIG. 1 is a partial cross-sectional view of the dye-sensitized solar cell viewed from the longitudinal direction.
  • FIG. 8 is a cross-sectional view taken along line B2-B2 shown in FIG. 1, and is a partial cross-sectional view of the dye-sensitized solar cell viewed from the width direction.
  • FIG. 9 is a perspective view showing the overall configuration of the dye-sensitized solar cell manufacturing apparatus.
  • FIG. 10 is a plan view of a dye-sensitized solar cell in the manufacturing process using the manufacturing apparatus, and shows a state in which the first base material is subjected to insulation processing.
  • FIG. 10 is a plan view of a dye-sensitized solar cell in the manufacturing process using the manufacturing apparatus, and shows a state in which the first base material is subjected to insulation processing.
  • FIG. 11 is a plan view of a dye-sensitized solar cell in a manufacturing process using a manufacturing apparatus, and shows a state in which an insulating process is performed on a second base material.
  • FIG. 12 is a plan view of a dye-sensitized solar cell in a manufacturing process using a manufacturing apparatus, and shows a state where base materials are bonded together.
  • FIG. 13 is a plan view of a dye-sensitized solar cell in the manufacturing process using the manufacturing apparatus, and shows a state in which a fused portion is formed.
  • FIG. 14A is a plan view showing the main parts of the insulating part and the ultrasonic fusion part.
  • FIG. 14B is a view showing the main part of the insulating part and the ultrasonic fusion part, and is a cross-sectional view taken along line C1-C1 shown in FIG. 14A.
  • FIG. 15 is a perspective view showing a state in which insulation processing is performed by a cutting apparatus.
  • FIG. 16 is a view showing a state in which insulation processing is performed by the cutting apparatus, and is a front view of the cutting apparatus as viewed from the longitudinal direction.
  • FIG. 17A is a plan view showing the main part in a state where the ultrasonic fusion part in FIG. 14A is displaced in the longitudinal direction.
  • FIG. 17B is a view showing the main part in a state where the ultrasonic fusion part in FIG.
  • FIG. 14B is displaced in the longitudinal direction, and is a cross-sectional view taken along line D1-D1 shown in FIG. 17A.
  • FIG. 18A is a plan view showing the main part in a state where the ultrasonic fusion part in FIG. 14A is displaced in the longitudinal direction.
  • FIG. 18B is a view showing a main part in a state where the ultrasonic fusion part in FIG. 14B is displaced in the longitudinal direction, and is a cross-sectional view taken along line E1-E1 shown in FIG. 18A.
  • FIG. 19A is a plan view showing the main parts of the insulating part and the ultrasonic fusion part according to the first modification.
  • FIG. 19A is a plan view showing the main parts of the insulating part and the ultrasonic fusion part according to the first modification.
  • FIG. 19B is a view showing the main parts of the insulating portion and the ultrasonic fusion portion according to the first modification, and is a cross-sectional view taken along line F1-F1 shown in FIG. 19A.
  • FIG. 20 is a perspective view showing a schematic configuration of the dye-sensitized solar cell according to the second embodiment.
  • FIG. 21A is a plan view showing the main parts of an insulating part and an ultrasonic fusion part according to a second modification.
  • FIG. 21B is a view showing the main parts of the insulating portion and the ultrasonic fusion portion according to the second modification, and is a cross-sectional view taken along line G1-G1 shown in FIG. 21A.
  • It is a top view which shows the structure of the conventional solar cell module.
  • It is a figure which shows the structure of the conventional solar cell module, Comprising: It is the C2-C2 sectional view taken on the line shown in FIG.
  • the solar cell module 1 As shown in FIGS. 1 and 2, the solar cell module 1 according to the first embodiment has a first direction (hereinafter, referred to as an RtoR method) manufactured by a roll-to-roll method (to be described later) It is manufactured by cutting a film-type dye-sensitized solar cell extending in the longitudinal direction X1) into a predetermined length.
  • the solar cell module 1 has two sections (sub-modules R and R) composed of a plurality of cells C arranged in the width direction X2 (second direction) orthogonal to the longitudinal direction X1 in a plan view.
  • the adjacent submodules R and R are electrically connected to each other at the one end 1a side in the width direction X2.
  • the arrows indicate the flow of electricity
  • the symbols + (plus) and-(minus) indicate the positive electrode and the negative electrode, respectively (the same applies to the other drawings).
  • the longitudinal direction X1 is defined as the arrangement direction of the pair of submodules R and R
  • the width direction X2 is defined as a direction orthogonal to the longitudinal direction X1 in plan view. Use.
  • the solar cell module 1 of the present embodiment includes a dye-sensitized solar cell (hereinafter referred to as a photosensitized solar cell) having a photoelectrode 11 and a counter electrode 12 provided to face the photoelectrode 11.
  • a photosensitized solar cell having a photoelectrode 11 and a counter electrode 12 provided to face the photoelectrode 11.
  • cell C Simply referred to as cell C
  • conductive films 11A and 12A having conductive surfaces on the inner surfaces of the pair of base materials 3A and 3B are formed, and the semiconductor of the photoelectrode 11 is formed on the conductive films 11A and 12A.
  • the layer 11B and the catalyst layer 12B of the counter electrode 12 are electrically connected to each other and are roughly configured.
  • the photoelectrode 11 and the counter electrode 12 are disposed to face each other via the conductive material 14 having a sealing function, and are formed between the first base material 3A and the second base material 3B.
  • a plurality (two in this case) of cells C and C are electrically connected in series along the width direction X2.
  • the solar cell module 1 includes a first base material 3A, a second base material 3B, a photoelectrode 11 (first electrode), a counter electrode 12 (second electrode), an electrolytic solution 13, and a conductive material. 14, a sealing material 15, a first insulating portion 16, a second insulating portion 17, and a fused portion 18 (insulating line).
  • the photoelectrode 11 includes a transparent conductive film 11A laminated on the first base material 3A and a porous semiconductor layer 11B laminated on the transparent conductive film 11A.
  • the counter electrode 12 includes a counter conductive film 12A stacked on the second base material 3B, and a catalyst layer 12B stacked on the counter conductive film 12A.
  • the material of the first base material 3A and the second base material 3B is not particularly limited, and examples thereof include insulators such as a film-like resin, semiconductors, metals, and glass.
  • the resin include poly (meth) acrylic acid ester, polycarbonate, polyester, polyimide, polystyrene, polyvinyl chloride, and polyamide.
  • the substrate is preferably made of a transparent resin, more preferably a polyethylene terephthalate (PET) film or a polyethylene naphthalate (PEN) film.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the material of the first base material 3A and the material of the second base material 3B may be different.
  • the photoelectrode 11 is a band-shaped semiconductor layer in which a transparent conductive film 11A is formed on the surface of the first substrate 3A, and a dye extending in the longitudinal direction X1 is adsorbed on the surface of the transparent conductive film 11A of the first substrate 3A.
  • a plurality of 11B are formed.
  • a counter conductive film 12 ⁇ / b> A is formed on the counter electrode 12 so as to face the photoelectrode 11.
  • the types and materials of the transparent conductive film 11A and the counter conductive film 12A are not particularly limited, and a conductive film used for a known dye-sensitized solar cell can be applied.
  • a thin film made of a metal oxide is used.
  • the metal oxide include tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (ATO), indium oxide / zinc oxide (IZO), and gallium-doped zinc oxide (GZO). it can.
  • the semiconductor layer 11B is made of a material that can receive electrons from the adsorbed photosensitizing dye, and is usually preferably porous.
  • the material which comprises the semiconductor layer 11B is not specifically limited, The material of the well-known semiconductor layer 11B is applicable, For example, metal oxide semiconductors, such as a titanium oxide, a zinc oxide, a tin oxide, are mentioned.
  • the photosensitizing dye supported on the semiconductor layer 11B is not particularly limited, and examples thereof include known dyes such as organic dyes and metal complex dyes. Examples of the organic dye include coumarin, polyene, cyanine, hemicyanine, and thiophene. As said metal complex pigment
  • the material constituting the catalyst layer 12B is not particularly limited, and known materials can be applied.
  • carbons such as platinum and carbon nanotubes, poly (3,4-ethylenedioxythiophene) -poly (styrenesulfone)
  • conductive polymers such as (acid) (PEDOT / PSS).
  • the electrolytic solution 13 is sealed between the semiconductor layer 11 ⁇ / b> B of the photoelectrode 11 and the counter electrode 12.
  • the electrolytic solution 13 is not particularly limited, and an electrolytic solution used in a known dye-sensitized solar cell can be applied.
  • Examples of the electrolytic solution 13 include an electrolytic solution in which iodine and sodium iodide are dissolved in an organic solvent.
  • a known photosensitizing dye (not shown) is adsorbed on the surface including the porous interior in the semiconductor layer 11B with which the electrolytic solution 13 is in contact.
  • the sealing material 15 is configured to seal the electrolytic solution 13 and to arrange a plurality of cells C divided in the width direction X2.
  • the sealing material 15 is a non-conductive member that can bond the opposing first substrate 3A and second substrate 3B and seal the cell C formed between the substrates 3A and 3B. If it is, it will not be restrict
  • a hot melt adhesive thermoplastic resin
  • a thermosetting resin thermosetting resin
  • an ultraviolet curable resin a resin including an ultraviolet curable resin and a thermosetting resin
  • a resin material that has fluidity and is solidified by an appropriate treatment examples include polyolefin resin, polyester resin, polyamide resin, and the like.
  • the thermosetting resin include an epoxy resin and a benzoxazone resin.
  • the ultraviolet curable resin include those containing a photopolymerizable monomer such as acrylic acid ester and methacrylic acid ester.
  • the conductive material 14 is provided in a state where both sides in the width direction X2 are covered with the sealing material 15, and is in direct contact with the transparent conductive film 11 ⁇ / b> A of the photoelectrode 11 and the counter conductive film 12 ⁇ / b> A of the counter electrode 12. Are electrically connected to the counter electrode 12.
  • the conducting material 14 is arranged in parallel with each other between the photoelectrode 11 and the counter electrode 12, and is in contact with the photoelectrode 11 on the first base material 3A and the counter electrode 12 on the second base material 3B.
  • the conductive material 14 for example, at least one selected from a conductive wire, a conductive tube, a conductive foil, a conductive plate and a conductive mesh, and a conductive paste is used.
  • the conductive paste is a conductive material having a relatively low rigidity and a soft form.
  • the conductive paste may have a form in which a solid conductive material is dispersed in a viscous dispersion medium such as an organic solvent or a binder resin.
  • Examples of the conductive material used for the conductive material 14 include metals such as gold, silver, copper, chromium, titanium, platinum, nickel, tungsten, iron, and aluminum, or alloys of two or more of these metals. However, it is not particularly limited. Examples of the material include resin compositions such as polyurethane and polytetrafluoroethylene (PTFE) in which conductive fine particles (for example, fine particles of metal or alloy, fine particles of carbon black, etc.) are dispersed.
  • PTFE polytetrafluoroethylene
  • the solar cell module 1 has a fusion part 18 (insulation line) extending along the width direction X2 so as to define a pair of submodules R and R in the longitudinal direction X1. Is formed.
  • the fused part 18 is formed by insulation and adhesion by means such as ultrasonic fusion (see the ultrasonic fused part 46 shown in FIG. 4).
  • the electrolytic solution 13 is liquid-tightly sealed in the gap in the thickness direction formed between the photoelectrode 11 and the counter electrode 12 by the conductive material 14. Is formed.
  • a plurality of patterning portions (insulation treatment using a chemical insulation treatment using, for example, a cutting device provided with a blade, a laser irradiation device, an etching material, or the like) are provided at predetermined portions of the transparent conductive film 11A and the counter conductive film 12A. Insulating parts 16, 17) are provided.
  • the first insulating portion 16 is formed to extend in the longitudinal direction X1 by the above-described insulating treatment at a position in contact with the predetermined sealing material 15 in the transparent conductive film 11A. Yes.
  • the second insulating portion 17 is formed to extend in the longitudinal direction X1 by the above-described insulating treatment at a position in contact with the predetermined sealing material 15 in the counter conductive film 12A. And in this solar cell module 1, the transparent electroconductivity between adjacent 1st insulation parts 16 and 16 formed in the 1st base material 3A in one cell C among the cells C and C adjacent in the width direction X2 is demonstrated.
  • the film 11A and the opposing conductive film 12A between the adjacent second insulating portions 17 and 17 formed on the second base material 3B in the other cell C are between one cell C and the other cell C. It is connected to the conductive material 14 disposed in the.
  • the first insulating portion 16 of one submodule R and the first insulating portion 16 of the other submodule R are patterned at positions shifted in the width direction X2. The same applies to the second insulating portion 17.
  • the transparent conductive film 11A and the counter conductive film 12A are divided into a plurality of parts by the patterning portion.
  • the counter conductive film 12A of one cell C for example, the first cell of reference C1
  • the other cell C adjacent to the first cell C1 for example, reference C2
  • the transparent conductive film 11A of the second cell is electrically connected by the conductive material 14 (reference numeral 14B), and the first cell C1 and the second cell C2 are connected in series in the width direction X2.
  • the fused portion 18 extends from the other end 1b toward the one end 1a side in the width direction X2 of each of the submodules R and R with the communication conducting material 14A on the one end 1a side remaining.
  • each photoelectrode 11 and the counter electrode 12 in the submodules R and R constitute an electric circuit electrically connected by the communication conductor 14A.
  • the adjacent submodules R and R the one that takes the other end 1b of the photoelectrode 11 as an extraction electrode (positive electrode) is called a first submodule R1 (FIG. 3A), and the other end 1b of the counter electrode 12 is called the other end 1b.
  • What is taken as an extraction electrode (negative electrode) is referred to as a second submodule R2 (FIG. 3B).
  • the photoelectrode 11 in the second submodule R2 is cut out at the other end 1b in the width direction X2 of the first base material 3A. That is, the first base material 3A in the first submodule R1 projects outward from the sealing material 15 on the other end 1b side in the width direction X2, and this projecting portion becomes the extraction electrode (positive electrode 31). And as shown to FIG. 3A, 3 A of 1st base materials in 2nd submodule R2 are cut
  • the position overlapping the predetermined sealing material 15 in the transparent conductive film 11A of the photoelectrode 11 is along the longitudinal direction X1.
  • the first insulating portion 16 that extends and divides the transparent conductive film 11A in the width direction X2 is formed.
  • the first insulating portion 16 is formed on the transparent conductive film 11A that overlaps the sealing material 15 that is close to the other end 1b side of the conductive material 14.
  • the first insulating portion 16 is formed on the transparent conductive film 11A that overlaps the sealing material 15 that is close to the other end 1b side of the electrolytic solution 13.
  • the counter electrode 12 in the first submodule R1 is cut out at the other end 1b in the width direction X2 of the second base material 3B. That is, the second base material 3B in the second submodule R2 projects outward from the sealing material 15 on the other end 1b side in the width direction X2, and this projecting portion becomes the extraction electrode (negative electrode 32). Then, as shown in FIG. 3B, the second base material 3A in the first submodule R1 is cut at the position of the sealing material 15 on the other end 1b side.
  • the position overlapping the predetermined sealing material 15 in the counter conductive film 12A of the counter electrode 12 is along the longitudinal direction X1.
  • a second insulating portion 17 that extends and divides the opposing conductive film 12A in the width direction X2 is formed.
  • the second insulating portion 17 is formed on the opposing conductive film 12A that overlaps the sealing material 15 that is close to the other end 1b side of the electrolytic solution 13.
  • the second insulating portion 17 is formed on the opposing conductive film 12A that overlaps the sealing material 15 that is close to the other end 1b side of the conductive material 14.
  • the solar cell module 1 has the first insulating portion of the first base material 3A disposed between the cells C adjacent to each other in the width direction X2 of the first base material 3A. 16 and the second insulating part 17 of the second base material 3B, the conductive material 14 is disposed, and the cells C and C adjacent in the width direction X2 are electrically connected in series, and the first insulating line 18A
  • the communication members 14A on the one end 1a side in the width direction X2 between the submodules R1 and R2 divided in the longitudinal direction X1 are electrically connected in series.
  • the circuit configuration has a series structure in which electricity E flows from the one end 1a side to the other end 1b side in the width direction X2 of the first submodule R1.
  • the directions of the electricity E flowing in the first direction are opposite to each other in the width direction X2, and both of the electricity extraction electrodes (positive electrode 31 and negative electrode 32) are wide. It arrange
  • the communication member 14A on the one end 1a side in the width direction X2 of the first base material 3A and the second base material 3B is disposed.
  • the conductive substrate width D1 from the portion to the one end 1a is set to 2 mm or more, and the width dimension D2 of the communication conductive material 14A on the one end 1a side is set to 0.5 mm or more.
  • a method for manufacturing the solar cell module 1 of the present embodiment and a method for manufacturing using the RtoR manufacturing apparatus 4 will be specifically described with reference to the drawings.
  • a transparent conductive film 11A is formed on the surface of the first base 3A, and a dye extending in the longitudinal direction X1 is formed on the surface of the transparent conductive film 11A.
  • a forming step an insulating process for forming the first insulating portion 16 and the second insulating portion 17 extending parallel to the longitudinal direction X1 with respect to the transparent conductive film 11A and the counter conductive film 12A, and a width direction in a plan view.
  • the semiconductor layer 11B of the electrode 11 and the counter electrode 12 A step of providing an electrolyte 13, a step of bonding the photoelectrode 11 and the counter electrode 12, a done.
  • the semiconductor electrode forming portion for example, by using an aerosol deposition (AD) method, TiO 2 is laminated on the first base material 3A on which the transparent conductive film 11A is formed.
  • the photoelectrode 11 is formed by adsorbing a dye on the semiconductor layer 11B by a general method.
  • the counter electrode forming section (not shown), the counter electrode 12 is formed by stacking platinum (Pt) on the second substrate 3B on which the counter conductive film 12A is formed by sputtering to form the catalyst layer 12B. To do.
  • the semi-circle is formed at the position between the semiconductor layer 11B and the semiconductor layer 11B in the cutting device 41. Insulation processing is performed to form the first insulating portion 16 extending parallel to the longitudinal direction X1 by the rotation of the blade 52. At this time, the first insulating portion 16 is formed with a regular insulating pattern that is alternately displaced in the width direction X2 at regular intervals (the length in the longitudinal direction X1 of the submodule R). By alternately arranging the insulation processing patterns in this way, the positions of the positive electrode (positive electrode) and the negative electrode (negative electrode) can be regularly switched for each submodule R.
  • the sealing material 15 is applied to the photoelectrode 11 formed in a predetermined region of the first base 3 ⁇ / b> A by the sealing material coating portion 42.
  • the semiconductor layer 11B is applied so that the sealing material 15 is not covered.
  • the sealing material 15 is cured by a curing processing unit (not shown), and the first base material 3A and the second base material 3B that have been subjected to insulation processing are overlapped.
  • both base materials 3A and 3B are bonded and bonded.
  • the first insulating portion 16 of the first base material 3 ⁇ / b> A and the second insulating portion 17 of the second base material 3 ⁇ / b> B are displaced in the width direction X ⁇ b> 2 in the bonded state.
  • a plurality of cells C divided and arranged in the width direction X2 through the conductive material 14 are electrically connected in series.
  • the first base material 3A and the second base material 3B are melted by ultrasonic vibration at a constant interval in the longitudinal direction X1.
  • a fused portion 18 (18A, 18B) 18A extending along the width direction X2 is formed and divided into a plurality of submodules R, R,.
  • the first fused portion 18A (first insulation) that does not partially insulate the conductive material 14 on the one end 1a side in the width direction X2.
  • Line) and second fused portions 18B (second insulation lines) that are insulated over the entire width direction X2 are alternately formed in the longitudinal direction X1.
  • the photoelectrode 11 and the counter electrode 12 are cut at the position of the second fused portion 18B.
  • a two-dot chain line denoted by reference numeral 18L in FIG. 5 indicates a cutting line in the second fused portion 18B.
  • fusion part 18B is the conduction
  • the insulating process of the fused portion 18 in which the photoelectrode 11 and the counter electrode 12 are fused along the width direction X2 is performed by the first insulating portion 16 of the first base material 3A and the second insulating portion 17 of the second base material 3B. It may be performed at the same time, thereby improving the production efficiency.
  • action of the solar cell module 1 mentioned above and the manufacturing method of the solar cell module 1 solar cell module 1 is demonstrated in detail using drawing.
  • the electricity E created for each cell C flows from the other end 1b of the first submodule R toward the one end 1a
  • the second submodule R flows from one end 1a to the other end 1b.
  • the electricity E of the one end 1a of the first submodule R is connected to the communication conducting material 14A. Flows toward the second submodule R.
  • the solar cell module 1 has a configuration in which the sub-modules R and R are electrically connected to each other at the one end 1a side and the electricity E can be taken out from the other end 1b side. That is, the entire structure is such that electricity E flows in a U shape in plan view, and the extraction electrodes (positive electrode 31 and negative electrode 32) can be on the same side (the other end 1b) in the width direction X2, thus simplifying the wiring structure. And wiring work can be easily performed.
  • the present embodiment has a simple structure in which the conductive material 14 is provided on the one end 1a side of the adjacent second submodules R and R and the communication conductive material 14A is provided. For this reason, since the conductive material 14 is simply applied by line coating, it can be easily applied to the RtoR method. In this case, since it can be realized by a manufacturing process in which the communication conducting material 14A is continuously arranged in the longitudinal direction X1 by the RtoR method, it is not necessary to add a new work process. Therefore, on one end 1a side in the width direction X2, for example, a copper tape is attached or soldered so as to follow the longitudinal direction X1 in the work after creating the battery as in the above-described embodiment. It becomes unnecessary. Therefore, the manufacturing process for providing the wiring material can be omitted, and the working efficiency for manufacturing can be improved with a simple configuration.
  • the conductive material 14 (communication conductive material 14A) in the second region M2 described above, electricity is supplied to both the transparent conductive film 11A on the first base material 3A side and the opposing conductive film 12A on the second base material 3B side. Since the flow of electricity E is doubled, the electric resistance is reduced, the current value flowing through these conductive films 11A and 12A can be reduced to 1 ⁇ 2 or less, and the battery performance is not deteriorated. , It is possible to suppress a decrease in power generation performance.
  • the conductive base material width D1 from the portion where the communication conductive material 14A is disposed to the one end 1a as in the present embodiment is 2 mm or more, and the one on the one end 1a side. It is preferable that the width D2 of the communication conductive material 14A is 0.5 mm or more.
  • the extraction electrode of the positive electrode 31 and the negative electrode 32 can be arrange
  • the wiring structure is simple, and the wiring work can be easily performed. Therefore, as in the case where the extraction electrodes are provided on both the left and right sides in the width direction X2, it is possible to eliminate the problem that the electrodes are separated from each other and difficult to wire.
  • the dye-sensitized solar cell 101 (solar cell module) of the second embodiment is manufactured by a roll-to-roll method (hereinafter referred to as an RtoR method) described later. It is manufactured by cutting a film-type dye-sensitized solar cell that extends long in one direction (longitudinal direction X1) into a predetermined length.
  • the longitudinal direction X1 is defined as the arrangement direction of the submodules R
  • the width direction X2 is defined as a direction orthogonal to the longitudinal direction X1 in plan view.
  • the dye-sensitized solar cell 101 is a dye-sensitized solar cell having a photoelectrode 111 and a counter electrode 112 provided to face the photoelectrode 111 (
  • cell C) has a structure inserted between a pair of base materials 103A and 103B.
  • conductive films 111A and 112A having inner surfaces of the pair of base materials 103A and 103B are formed, and the photoelectrode 111 is formed on the conductive films 111A and 112A.
  • the semiconductor layer 111 ⁇ / b> B and the catalyst layer 112 ⁇ / b> B of the counter electrode 112 are electrically connected to each other and are schematically configured.
  • the photoelectrode 111 and the counter electrode 112 are arranged to face each other via the conductive material 114 having a sealing function, and between the first base material 103A and the second base material 103B.
  • a plurality of formed cells C, C,... Are electrically connected in series along the width direction X2.
  • the dye-sensitized solar cell 101 includes a first base material 103A, a second base material 103B, a photoelectrode 111 (first electrode), a counter electrode 112 (second electrode), an electrolytic solution 113, A conductive material 114, a sealing material 115, a first insulating part 116, a second insulating part 117, and an ultrasonic fusion part 118 are provided.
  • the photoelectrode 111 includes a transparent conductive film 111A stacked on the first base material 103A and a porous semiconductor layer 111B stacked on the transparent conductive film 111A.
  • the counter electrode 112 includes a counter conductive film 112A stacked on the second base material 103B, and a catalyst layer 112B stacked on the counter conductive film 112A.
  • first base material 103A and the second base material 103B are the same as those in the first embodiment, detailed description thereof is omitted here.
  • the photoelectrode 111 is a band-shaped semiconductor layer in which a transparent conductive film 111A is formed on the surface of the first base material 103A, and a dye extending in the longitudinal direction X1 is adsorbed on the surface of the transparent conductive film 111A of the first base material 103A.
  • a plurality of 111B are formed.
  • a counter conductive film 112 ⁇ / b> A is formed on the counter electrode 112 so as to face the photoelectrode 111.
  • the electrolytic solution 113 is sealed between the semiconductor layer 111 ⁇ / b> B of the photoelectrode 111 and the counter electrode 112. Since the electrolytic solution 113 is the same as that of the first embodiment, detailed description thereof is omitted here.
  • the sealing material 115 is configured to seal the electrolytic solution 113 and to arrange a plurality of cells C divided in the width direction X2.
  • the sealing material 115 is a non-conductive member that can bond the opposing first base material 103A and second base material 103B and seal the cell C formed between the base materials 103A and 103B. If it is, it will not be restrict
  • the material of the sealing material 115 is the same as that of the first embodiment, detailed description thereof is omitted here.
  • the conductive material 114 is provided in a state where both sides in the width direction X2 are covered with the sealing material 115, and is in direct contact with the transparent conductive film 111A of the photoelectrode 111 and the counter conductive film 112A of the counter electrode 112. And the counter electrode 112 are electrically connected.
  • the conducting material 114 is disposed in parallel between the photoelectrode 11 and the counter electrode 112, and is in contact with the photoelectrode 111 on the first base material 103A and the counter electrode 112 on the second base material 103B. Since the conductive material 114 is the same as that of the first embodiment, a detailed description thereof is omitted here.
  • the dye-sensitized solar cell 101 has ultrasonic fusion extending along the width direction X2 so as to define a plurality of submodules R, R,... In the longitudinal direction X1.
  • a portion 118 (insulation line) is formed.
  • the ultrasonic fusion part 118 is formed by insulation and adhesion by means such as ultrasonic fusion (see ultrasonic fusion means 146 shown in FIG. 9).
  • the electrolytic solution 113 is liquid-tightly sealed in the gap in the thickness direction formed between the photoelectrode 111 and the counter electrode 112 by the conductive material 114. It is formed in the state.
  • a plurality of patterning portions that are insulated by using, for example, a cutting device equipped with a cutting tool, a laser irradiation device, or the like are provided at predetermined positions of the transparent conductive film 111A and the counter conductive film 112A.
  • Part 117 the first insulating portion 116 is formed to extend in the longitudinal direction X1 by the above-described insulation treatment at a position in contact with the predetermined sealing material 115 in the transparent conductive film 111A (FIG. 7). 10).
  • the second insulating portion 117 is formed to extend in the longitudinal direction X1 by the above-described insulating treatment at a position in contact with the predetermined sealing material 115 in the counter conductive film 112A (see FIG. 11). And in this dye-sensitized solar cell 101, the adjacent 1st insulation part 116 formed in the 1st base material 103A in one cell C (C1 of FIG. 7) among the cells C and C adjacent in the width direction X2. , 116 between the transparent conductive film 111A and the opposing conductive film 112A between the adjacent second insulating parts 117 and 117 formed on the second base material 103B in the other cell C (C2 in FIG. 7). Is connected to a conductive material 114 disposed between one cell C1 and the other cell C2.
  • the first insulating portion 116 of one submodule R of the submodules R and R and the first insulating portion 116 of the other submodule R are patterned at positions shifted in the width direction X2.
  • the second insulating portion 117 shown in FIG. 10 has been. The same applies to the second insulating portion 117 shown in FIG.
  • the first insulating portion 116 and the second insulating portion 117 are insulated by the ultrasonic fusion portion 118 between the cells C and C arranged in the width direction X1.
  • Each module R is disposed at a position that is alternately shifted across the conductive material 114 in the width direction X2.
  • FIG. 14A and FIG. 14B between the cells C and C, the edge part 116a of the 1st insulation part 116 and the 2nd insulation part 117 which are formed in each of the adjacent submodules R and R between.
  • the end portion 117 a is arranged so as to extend into the region of the ultrasonic fusion portion 118 in the longitudinal direction X 1 so as to overlap the ultrasonic fusion portion 118. Further, between the cells C and C, the end portions 116a and 117a of the adjacent submodules R and R adjacent to each other between the one insulating portion 116 and 117 and the other insulating portion 116 and 117 are in the longitudinal direction. It overlaps with X1.
  • the first insulating portion 116 and the second insulating portion 117 have an overlapping length K (FIG. 14A) with the ultrasonic fusion portion set to be 0.1 mm or more and 5 mm or less.
  • a manufacturing method using the RtoR method in the dye-sensitized solar cell 101 according to the second embodiment will be specifically described with reference to the drawings.
  • a transparent conductive film 111A is formed by using, for example, an aerosol deposition (AD) method in a semiconductor electrode forming portion (not shown).
  • a dye is adsorbed on the semiconductor layer 111B by a general method, thereby producing a photoelectrode 111 is formed.
  • platinum (Pt) is stacked on the second substrate 103B on which the counter conductive film 112A is formed by a sputtering method to form the catalyst layer 112B, thereby forming the counter electrode 112. To do.
  • the semi-circle is formed at a position between the semiconductor layer 111B and the semiconductor layer 111B in the cutting apparatus 150. Insulation processing is performed to form the first insulating portion 116 extending parallel to the longitudinal direction X1 by the rotation of the blade 152. At this time, as shown in FIG. 10, the first insulating portion 16 is regularly insulated at positions that are alternately shifted in the width direction X2 at regular intervals (the length in the longitudinal direction X1 of the submodule R). A pattern is formed. By alternately arranging the insulation processing patterns in this way, the positions of the positive electrode (positive electrode) and the negative electrode (negative electrode) can be regularly switched for each submodule R.
  • the 1st insulation process part 141 employ
  • the cutting device 150 includes a rotary shaft 151 provided so as to be rotatable about an axis O1, and a semicircular blade 152 arranged around the rotary shaft 151 at a predetermined interval in the direction of the axis O1.
  • the axis O1 direction of the rotating shaft 151 is arranged in the width direction X2.
  • the semicircular blade 152 is continuously provided in a range of 180 ° along the circumferential direction of the outer peripheral surface of the rotating shaft 151, and is disposed in a predetermined half-circumferential region of the entire circumference as viewed from the axis O1 direction.
  • the first semicircular blade 152A and the second semicircular blade 152B disposed in a region of another semicircular portion where the first semicircular blade 152A is not disposed.
  • the plurality of first semicircular blades 152A includes a plurality of insulating portions 116 of one adjacent submodule R among the submodules R of the first base material 103A defined in the longitudinal direction X1 by the ultrasonic fusion portion 118. Are formed at the same time.
  • the plurality of second semicircular blades 152B simultaneously form a plurality of insulating portions 116 in the other region of the adjacent submodules R.
  • the circumferential length (outer circumferential length) of the semicircular blade 152 is set so as to coincide with the length in the longitudinal direction X1 of the insulating portion 116 to be insulated in the submodule R.
  • the interval between the first semicircular blades 152A adjacent in the axis O1 direction and the interval between the second semicircular blades 152B adjacent in the axis O1 direction are set to be equal.
  • the first semicircular blade 152A and the second semicircular blade 152B are not arranged on the same circumference, but are provided at positions shifted in the direction of the axis O1.
  • the semicircular blades 152 (152A, 152B) are grooved only in the conductive films 111A, 112A when rotated together with the rotating shaft 151 with respect to the surfaces of the base materials 103A, 103B on which the conductive films 111A, 112A are formed. Form a notch.
  • the conductive films 111A and 112A are set so that cuts are formed in the thickness direction, and even if a part of the base materials 103A and 103B is cut in the thickness direction, the whole is not cut.
  • the interval in the axis O1 direction of the semicircular blade 152, the circumferential length, and the shift amount in the axis O1 direction of the first semicircular blade 152A and the second semicircular blade 152B can be changed as appropriate according to the setting of the insulating portion 116. .
  • the sealing material 115 is applied to the photoelectrode 111 formed in a predetermined region of the first base material 103 ⁇ / b> A by the sealing material application portion 142.
  • the semiconductor layer 111B is applied so that the sealing material 115 is not covered.
  • the second insulating portion 117 extending in parallel with the longitudinal direction X1 is performed by the rotation of the semicircular blade 152 (see FIGS. 15 and 16).
  • the second insulating portion 117 is regularly insulated at positions that are alternately displaced in the width direction X2 at regular intervals (the length in the longitudinal direction X1 of the submodule R). Pattern is formed.
  • the sealing material 115 is cured by a curing processing portion (not shown), and the first base material 103 ⁇ / b> A and the second base material 103 ⁇ / b> B that have been subjected to insulation processing are overlapped.
  • both base materials 13A and 13B are bonded and bonded together. At this time, as shown in FIG.
  • the first insulating portion 116 of the first base material 103 ⁇ / b> A and the second insulating portion 117 of the second base material 103 ⁇ / b> B are shifted in the width direction X ⁇ b> 2 in the bonded state, As a result, the plurality of cells C divided and arranged in the width direction X2 through the conductive material 114 (see FIG. 7) are electrically connected in series.
  • the ultrasonic fusion means 146 ultrasonicates the first base material 103 ⁇ / b> A and the second base material 103 ⁇ / b> B with a certain interval in the longitudinal direction X ⁇ b> 1.
  • An ultrasonic fusion bonding portion 118 that is fused by vibration and extends along the width direction X2 is formed and divided into a plurality of submodules R, R,.
  • the wiring material 119 is attached to both ends of the bonded base materials 103A and 103B in the width direction X2 along the longitudinal direction X1 by, for example, copper tape or soldering. At this time, the wiring member 119 is disposed in a state where the ends of the ultrasonic fusion portions 118 arranged in the longitudinal direction X1 are alternately covered in the width direction X2.
  • the dye-sensitized solar cell 101 can be cut along the ultrasonic fusion part 118, and is cut at a position of any desired length to produce the dye-sensitized solar cell 101 having a desired length. be able to.
  • action of the dye-sensitized solar cell 101 mentioned above is demonstrated in detail using drawing.
  • the end portions 116 a and 117 a of the first insulating portion 116 and the second insulating portion 117 are within the region of the ultrasonic fusion portion 118.
  • the end portions 116a and 117a are disposed so as to overlap the ultrasonic fusion portion 118, and therefore the position of the ultrasonic fusion portion 118 in the manufacturing process is shown in FIGS. 17A and 17B.
  • FIGS. 18A and 18B even when formed at a position shifted in the longitudinal direction X1, it is possible to prevent the insulation portions 116 and 117 and the ultrasonic fusion portion 118 from being separated. Can do.
  • FIG. 17A and FIG. 17B show a case where, in the manufacturing process, the ultrasonic weld 118 is insulated at a position shifted to the left side of the paper with respect to the normal center axis O.
  • FIG. 18A and FIG. 18B show a case where, in the manufacturing process, the ultrasonic fusion part 118 is insulated at a position shifted to the right side of the paper with respect to the normal center axis O.
  • the end parts 116 a and 117 a of the first insulation part 116 and the second insulation part 117 overlap with the ultrasonic fusion part 118. Can be maintained.
  • the cells C and C adjacent in the width direction X2 are reliably insulated from each other, it is possible to suppress the occurrence of leakage between the cells C and C and to prevent a decrease in power generation efficiency.
  • C and C are electrically connected in series.
  • the end portions 1116a and 117a of the first insulating portion 116 and the second insulating portion 117 overlap with each other in the longitudinal direction X1 within the region of the ultrasonic fusion portion 118, so that they are adjacent to the width direction X2.
  • the matching cells C and C can be reliably insulated from each other.
  • adjacent submodules R and R are electrically connected in series via the wiring member 119 (see FIG. 6) on one end side in the width direction X2.
  • the circuit configuration in which electricity flows from one end side to the other end side in the width direction X2 can be realized.
  • the range of the overlapping length K between the insulating portions 116 and 117 and the ultrasonic fusion portion 118 may be set to 0.1 mm or more and 5 mm or less.
  • the numerical value in such a range even when a standard deviation amount (for example, 0.1 mm) in the longitudinal direction X1 of the ultrasonic fused portion 118 occurs in the manufacturing method by the RtoR method, the first insulating portion 116 is used.
  • the second insulating portion 117 is not separated from the ultrasonic fused portion 118, and leakage between the cells C and C adjacent in the width direction X2 can be prevented.
  • the length dimension K from the overlapping start positions 116b and 117b to the tips 116c and 117c at the respective ends of the insulating portions 116 and 117 with the ultrasonic fusion portion is set.
  • the value divided by the width dimension L of the ultrasonic fused portion 118 may be set to be in the range of 0 ⁇ K / L ⁇ 1.5.
  • the range of K / L is preferably set in the range of 0.5 ⁇ K / L ⁇ 1.5, and more preferably in the range of 1.0 ⁇ K / L ⁇ 1.5. More preferred.
  • K / L may be in a range smaller than 2.0, but if this value is 1.5 or more and less than 2.0, the protruding length toward the opposite sub-module R side as described above becomes large. As a result, the electrical resistance increases and the performance decreases. And in the 1st modification shown in Drawing 19A and Drawing 19B, since K / L exceeds 1.0, the shift of ultrasonic fusion part 118 as mentioned above, the 1st insulation part 116, or the 2nd insulation A more reliable improvement effect can be expected even with respect to a deviation that does not affect the portion 117, and the stability of the manufactured battery performance can be enhanced.
  • the overlap (overlap length l) in the longitudinal direction X1 of the first insulating portion 116 of one submodule R and the second insulating portion 117 of the other submodule is measured by ultrasonic waves.
  • the value divided by the width dimension L of the fused part 118 may be set to be in the range of 0 ⁇ K / L ⁇ 1.5.
  • two sections each composed of a plurality of cells C arranged in the width direction X2 are adjacent to each other in the longitudinal direction X1.
  • the battery structure is such that adjacent submodules R and R are electrically connected to each other on the one end 101a side in the width direction X2.
  • the ultrasonic fusion part 118 extends from the other end 1b toward the one end 101a in the width direction X2 in each of the submodules R and R with the wiring member 119 on the one end 101a side left.
  • each photoelectrode 111 and the counter electrode 112 in the submodules R and R constitute an electric circuit electrically connected by the wiring member 119.
  • the submodules R and R on the one end 1a side in the longitudinal direction X1 are electrically connected to each other by the wiring member 119, and the ultrasonic fusion portion 118 that divides the pair of submodules R and R is used.
  • the end portions 116a and 117a of the insulating portions 116 and 117 of each submodule R are overlapped with the region. Therefore, in each submodule R, the cells C and C adjacent to each other in the width direction X2 can be reliably insulated, and a structure in which electricity E flows in a U shape as a whole can be realized. Therefore, in this embodiment, it is possible to arrange the extraction electrodes (positive electrode 131, negative electrode 132) on the same side only on the other end 101b side in the width direction X2, simplify the wiring structure, and facilitate the wiring work. It can be carried out.
  • the number of cells provided in each of the submodules R1 and R2 is two.
  • the number of cells is not limited to this and can be set to an appropriate number.
  • the conductive base material width D1 from the portion where the communication conductive material 14A is arranged to the one end 1a is 2 mm or more, and the width dimension D2 of the communication conductive material 14A on the one end 1a side is 0.5 mm or more. Although it is set, it is not limited to such dimensions.
  • one insulating portion 116 and 117 and the other insulating portion 116 and 117 on the side close to each other are configured to overlap with each other in the longitudinal direction X1, it is not limited to such a structure.
  • the end portions 116a and 117a may be separated from each other in the longitudinal direction X1 and do not overlap.
  • the end portions 116a and 117a of the first insulating portion 116 and the second insulating portion 117 are extended to the ultrasonic fusion portion 118 in the longitudinal direction X1 so as to overlap the ultrasonic fusion portion 118. It is only necessary to be arranged in. Then, the length dimension in the region (the overlapping length K between the insulating portions 116 and 117 and the ultrasonic fusion portion 118) is also set to the setting range (0.1 mm or more and 5 mm or less) of the above-described embodiment. There is no limitation.

Abstract

The purpose of this invention is to provide a solar cell module and a method for producing solar cell, with which wiring can be performed efficiently by adopting a structure in which electrodes can be positioned leading out from the edge on the same side. This invention pertains to a solar cell module having a structure wherein a plurality of cells arranged in the width direction (X2) are electrically connected to one another by wires, a conductor (14) is positioned between a first insulating member of a first substrate (3A) and a second insulating part of a second substrate (3B) positioned between cells which adjoin one another in the width direction (X2), adjoining cells are connected to one another, and conductors (14) on one end (1a) side in the width direction (X2) in the pair of adjoining sub-modules (R, R) divided in the longitudinal direction (X1) by an insulating part (18) are electrically connected to one another, forming a circuit structure.

Description

太陽電池モジュール、太陽電池モジュールの製造方法Solar cell module and method for manufacturing solar cell module
 本発明は、太陽電池モジュール、及び太陽電池モジュールの製造方法に関する。
本願は、2017年3月24日に日本に出願された特願2017-059239号、及び2017年3月30日に日本に出願された特願2017-068340号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a solar cell module and a method for manufacturing a solar cell module.
This application claims priority based on Japanese Patent Application No. 2017-059239 filed in Japan on March 24, 2017 and Japanese Patent Application No. 2017-068340 filed in Japan on March 30, 2017, The contents are incorporated herein.
 従来、色素増感太陽電池からなる太陽電池モジュールでは、一般に、光電極と、対向電極と、電解液又は電解液層とを備えて構成され、光電極としては、少なくとも、透明導電層、半導体層、色素を有して構成されることが知られている(例えば、特許文献1参照)。このような太陽電池モジュールにおいては、例えば、光電極側に光が照射されると、半導体層に吸着された色素が光を吸収し、色素分子内の電子が励起され、その電子が半導体へ渡される。そして、光電極側で発生した電子が外部回路を通じて対向電極側に移動し、この電子が電解液を通じて光電極側に戻る。このような過程が繰り返されることで、電気エネルギーが生じる構成となっている。 Conventionally, a solar cell module including a dye-sensitized solar cell is generally configured by including a photoelectrode, a counter electrode, and an electrolyte solution or an electrolyte solution layer. The photoelectrode includes at least a transparent conductive layer and a semiconductor layer. In addition, it is known to be configured with a pigment (see, for example, Patent Document 1). In such a solar cell module, for example, when light is irradiated to the photoelectrode side, the dye adsorbed on the semiconductor layer absorbs light, the electrons in the dye molecule are excited, and the electrons are passed to the semiconductor. It is. Then, electrons generated on the photoelectrode side move to the counter electrode side through the external circuit, and the electrons return to the photoelectrode side through the electrolytic solution. By repeating such a process, electric energy is generated.
 上述したような太陽電池モジュールとして、図22及び図23に示すように、2つのセルC、Cが幅方向X2に直列に配置されたものがある。この場合、第一基材3Aの表面に透明導電膜が成膜され、第一基材3Aの透明導電膜の表面に長手方向X1に延在する色素が吸着した帯状の半導体層が複数形成された光電極11と、第二基材3Bの表面に光電極11に対向するように対向導電膜が成膜された対向電極12と、光電極11の半導体層と対向電極12との間に封止された電解液13と、電解液13を封止するとともに、平面視で幅方向X2に分割された複数のセルCを配列する封止材15と、封止材15に覆われた状態で設けられ、光電極11と対向電極12とを電気的に接続する導通材14と、光電極11及び対向電極12に対して幅方向X2に沿って延在する絶縁ライン18と、を備え、幅方向X2に配列される複数のセルCが直列配線により電気的に接続された構成がある。
 この場合には、幅方向X2の両端部が取り出し電極(+電極、-電極)となっている。
 そして、電池を使用する際に、+電極と-電極とが対極となる位置となり、互いに離れた位置となることから、配線作業が行い難くなっていた。そこで、絶縁ライン18によって区画されるサブモジュールR,Rの一端側同士を例えば銅テープ等の配線材によって導通し、他端側で電気を取り出すことが可能な構成となり、全体が平面視でU字状に電気が流れる構造とするものがある。
As a solar cell module as described above, there is one in which two cells C and C are arranged in series in the width direction X2 as shown in FIGS. In this case, a transparent conductive film is formed on the surface of the first base material 3A, and a plurality of band-like semiconductor layers adsorbed with a dye extending in the longitudinal direction X1 are formed on the surface of the transparent conductive film of the first base material 3A. Between the photoelectrode 11, the counter electrode 12 having a counter conductive film formed on the surface of the second substrate 3B so as to oppose the photo electrode 11, and the semiconductor layer of the photo electrode 11 and the counter electrode 12. In a state where the stopped electrolyte solution 13, the electrolyte solution 13 are sealed, and the sealing material 15 that arranges the plurality of cells C divided in the width direction X <b> 2 in a plan view is covered with the sealing material 15. A conductive material 14 that electrically connects the photoelectrode 11 and the counter electrode 12, and an insulating line 18 that extends along the width direction X2 with respect to the photoelectrode 11 and the counter electrode 12, and has a width. There is a configuration in which a plurality of cells C arranged in the direction X2 are electrically connected by serial wiring. .
In this case, both end portions in the width direction X2 are extraction electrodes (+ electrode, −electrode).
When the battery is used, the + electrode and the − electrode are in positions opposite to each other, and are located away from each other, making it difficult to perform wiring work. Therefore, one end side of the submodules R and R partitioned by the insulating line 18 is electrically connected to each other by a wiring material such as copper tape, and electricity can be taken out at the other end side. There is a structure in which electricity flows in a letter shape.
日本国特許第5702897号公報Japanese Patent No. 5702897
 しかしながら、従来の全体が平面視でU字状に電気が流れる構造とする太陽電池モジュールにおいて、配線材を使用してサブモジュール同士の導通を取る方法では、配線材を設けるための別工程が必要となることから、効率よく配線できる好適な方法が求められており、その点で改善の余地があった。 However, in a conventional solar cell module in which electricity flows in a U shape in plan view, a method for providing electrical connection between submodules using a wiring material requires a separate process for providing the wiring material. Therefore, there is a need for a suitable method that enables efficient wiring, and there is room for improvement in that respect.
 本発明は、上述する問題点に鑑みてなされたもので、同じ側の端部から取り出し電極を配置できる構造とすることで、効率よく配線することが可能な太陽電池モジュール、及び太陽電池モジュールの製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems. By adopting a structure in which an extraction electrode can be arranged from the end on the same side, a solar cell module that can be efficiently wired, and a solar cell module An object is to provide a manufacturing method.
 本発明は、上記課題を解決して係る目的を達成するために、以下の態様を採用した。
(1)本発明の一態様に係る太陽電池モジュールは、第一電極と、第二電極と、前記第一電極と前記第二電極との間に封止された電解液と、前記電解液を封止する複数の封止材と、複数の絶縁ラインと、を含む積層構造体であり、前記複数の封止材及び前記複数の絶縁ラインにより規定される、それぞれ複数のセルから構成されるサブモジュールを有する太陽電池モジュールであって、前記第一電極は、表面に透明導電膜が成膜された第一基材、及び前記第一基材の前記透明導電膜の表面に形成された、第一の方向に延在する色素が吸着した複数の半導体層を有し、前記第二電極は、表面に前記第一電極に対向するように対向導電膜が成膜された第二基材を有し、前記電解液は、前記第一電極の前記半導体層と前記第二電極との間に封止されており、前記複数の封止材は、それぞれ前記第一電極と前記第二電極との間において、前記第一の方向に沿って延在することにより、前記電解液を封止するとともに、前記積層構造体を複数のセルに分割し、前記絶縁ラインは、前記第一電極と前記第二電極との間において、平面視で前記第一の方向に直交する第二の方向に沿って延在することにより、前記積層構造体を、それぞれ複数のセルから構成される複数のサブモジュールに分割し、前記第二の方向に隣り合うセルについて、一方のセルの第一電極と、他方のセルの第二電極とが、前記封止材に覆われた状態で設けられた導通材により電気的に接続され、それにより前記複数のセルは接続され、各セルにおいて、前記第一電極と前記第二電極との短絡が防止されるように、前記第一基材には、一方の導通材に隣接する位置の近傍に前記第一の方向に延びる第一絶縁部が設けられており、前記第二基材には、他方の導通材に隣接する位置の近傍に前記第一の方向に延びる第二絶縁部が設けられており、前記隣り合うサブモジュールについて、前記第二の方向の同じ側の端部の前記導通材同士が電気的に接続されていることを特徴としている。
The present invention employs the following aspects in order to solve the above-described problems and achieve the object.
(1) A solar cell module according to an aspect of the present invention includes a first electrode, a second electrode, an electrolytic solution sealed between the first electrode and the second electrode, and the electrolytic solution. A laminated structure including a plurality of sealing materials to be sealed and a plurality of insulating lines, each of which is defined by the plurality of sealing materials and the plurality of insulating lines, each of which is composed of a plurality of cells. A solar cell module having a module, wherein the first electrode is formed on a surface of a first base material having a transparent conductive film formed on the surface, and on the surface of the transparent conductive film of the first base material, A plurality of semiconductor layers adsorbed with a dye extending in one direction, and the second electrode has a second substrate on which a counter conductive film is formed so as to face the first electrode. The electrolytic solution is sealed between the semiconductor layer of the first electrode and the second electrode. Each of the plurality of sealing materials extends between the first electrode and the second electrode along the first direction so as to seal the electrolyte solution, and The structure is divided into a plurality of cells, and the insulating line extends between the first electrode and the second electrode along a second direction orthogonal to the first direction in plan view. Thus, the stacked structure is divided into a plurality of submodules each composed of a plurality of cells, and for the cells adjacent in the second direction, the first electrode of one cell and the first of the other cell Two electrodes are electrically connected by a conductive material provided in a state covered with the sealing material, whereby the plurality of cells are connected, and in each cell, the first electrode and the second electrode In order to prevent short circuit with the first group Is provided with a first insulating portion extending in the first direction in the vicinity of a position adjacent to one conductive material, and in the second base material in the vicinity of a position adjacent to the other conductive material. A second insulating portion extending in the first direction is provided, and the conductive materials at the end on the same side in the second direction are electrically connected to each other in the adjacent submodule. It is a feature.
 本発明では、第一基材の第二の方向に隣り合うセル同士の間に配置された第一基材の絶縁部と第二基材の絶縁部との間に導通材が配置され、第二の方向に隣り合うセル同士が電気的に直列に接続され、絶縁ラインによって第一の方向に分割されたサブモジュールにおける第二の方向の一端側の導通材同士が電気的に直列に接続されている。そのため、一方のサブモジュールにおいて第二の方向の他端側から一端側へ電気が流れるとともに、一端側の電気が他方のサブモジュールの一端側に導通材を介して流れ、さらに他方のサブモジュールにおいて第二の方向の一端側から他端側へ電気が流れる回路構成を実現することができる。
 このように本発明に係る太陽電池モジュールでは、第二の方向の一端側のサブモジュール同士が導通材によって導通され、全体が平面視でU字状に電気が流れる構造となる。そのため、取り出し電極(正極、負極)を第二の方向の他端側のみで同じ側に配置することが可能となり、配線構造が簡略化でき、配線作業を容易に行うことができる。
In the present invention, a conductive material is disposed between the insulating portion of the first base material and the insulating portion of the second base material that are disposed between cells adjacent in the second direction of the first base material, Cells adjacent to each other in the two directions are electrically connected in series, and the conductive members on one end side in the second direction in the submodule divided in the first direction by the insulating lines are electrically connected in series. ing. Therefore, in one submodule, electricity flows from the other end side in the second direction to one end side, and electricity on one end side flows to the one end side of the other submodule via a conductive material, and in the other submodule, A circuit configuration in which electricity flows from one end side to the other end side in the second direction can be realized.
As described above, in the solar cell module according to the present invention, the sub-modules on one end side in the second direction are electrically connected to each other by the conductive material, and the whole has a structure in which electricity flows in a U shape in plan view. Therefore, it is possible to arrange the extraction electrode (positive electrode, negative electrode) on the same side only at the other end side in the second direction, the wiring structure can be simplified, and wiring work can be easily performed.
 本実施の形態では、隣り合うサブモジュール同士の一端側に導通材を設けるという簡単な構造であり、導電材をライン塗布する簡単な製造方法を適用することが可能となるため、ロール・ツー・ロール方式(以下、RtoR方式とする)にも簡単に適応できる。このようなRtoR方式で第一の方向に連続的に導通材を配置する製造工程により実現できる。そのため、第二の方向の一端側において、従来のように電池を作成した後作業で第一の方向に沿うように例えば銅テープを貼り付けたり、半田付けを行うことによる配線材が不要となるため、配線材を設けるための製造工程を省略することが可能となり、簡単な構成で製造にかかる作業効率を向上させることができる。 In this embodiment, a conductive material is provided on one end side of adjacent submodules, and a simple manufacturing method for applying a conductive material to a line can be applied. It can be easily adapted to a roll system (hereinafter referred to as RtoR system). Such a RtoR method can be realized by a manufacturing process in which a conductive material is continuously arranged in the first direction. Therefore, on one end side in the second direction, for example, a copper tape is attached or soldered so as to be along the first direction in the work after the battery is created as in the prior art, and a wiring material is not required. Therefore, the manufacturing process for providing the wiring material can be omitted, and the working efficiency for manufacturing can be improved with a simple configuration.
 第二の方向の一端側に導通材を配置することにより、第一基材側の透明導電膜と第二基材側の対向導電膜の両方に電気を流すことができるので、電気の通り道が2倍になり、電気抵抗が小さくなり、これら導電膜を流れる電流値を1/2以下にすることができ、電池性能を劣化させずに、発電性能の低下を抑えることができる。 By disposing a conductive material on one end side in the second direction, electricity can flow through both the transparent conductive film on the first base material side and the opposing conductive film on the second base material side, so the path of electricity is The electric resistance is reduced by a factor of two, the value of current flowing through these conductive films can be reduced to ½ or less, and deterioration in power generation performance can be suppressed without deteriorating battery performance.
(2)上記(1)に記載の、太陽電池モジュールにおいて、前記隣り合うサブモジュールにおいて電気的に接続される前記第二の方向の一端側の前記導通材が配置される部分から前記サブモジュールの前記一端までの導通基材幅が2mm以上、前記一端側の前記導通材の幅寸法が0.5mm以上であることを特徴としてもよい。 (2) In the solar cell module according to the above (1), from the portion where the conductive material on one end side in the second direction electrically connected in the adjacent submodule is disposed, the submodule The conductive substrate width to the one end may be 2 mm or more, and the width dimension of the conductive material on the one end side may be 0.5 mm or more.
 この場合には、第一基材側の透明導電膜と第二基材側の対向導電膜の両方に流れる電気の電気抵抗をより確実に低下させることができ、これら導電膜を流れる電流値を1/2以下にすることができ、電池性能を劣化させずに、発電性能の低下を抑えることができる。 In this case, the electric resistance flowing through both the transparent conductive film on the first base material side and the opposing conductive film on the second base material side can be reduced more reliably, and the current value flowing through these conductive films can be reduced. It can be reduced to ½ or less, and a decrease in power generation performance can be suppressed without deteriorating battery performance.
(3)上記(1)又は(2)に記載の、太陽電池モジュールにおいて、前記隣り合うサブモジュール毎に、前記第一絶縁部及び前記第二絶縁部は、前記第二の方向に交互にずれた位置に配置され、前記第一絶縁部及び前記第二絶縁部の端部側の少なくとも一部が前記絶縁ラインに重なるように前記第一の方向に延ばされていることを特徴としてもよい。 (3) In the solar cell module according to (1) or (2), for each of the adjacent submodules, the first insulating portion and the second insulating portion are alternately shifted in the second direction. The first insulating portion and the second insulating portion may be extended in the first direction so that at least a part of the first insulating portion and the second insulating portion are overlapped with the insulating line. .
 本発明では、第一絶縁部及び第二絶縁部の端部が超音波融着部の領域内まで延ばされた状態で配置され、これら端部が超音波融着部に重なるように配置されているので、製造過程において超音波融着部の位置が第一の方向にずれた位置に形成された場合でも、これら絶縁部と超音波融着部との間に離間が生じることを防止することができる。そのため、第二の方向に隣り合うセル同士が確実に絶縁されることから、これらセル間におけるリークの発生を抑制することができ、発電効率の低下を防ぐことが可能でセル同士が直列に電気的に接続される。
 超音波融着部に重なる第一絶縁部及び第二絶縁部は、透明導電膜と対向導電膜の所定位置において、上述したように超音波融着部の領域に重なるように第一の方向に沿って例えば切込み加工やレーザー加工を施すことにより簡単に製造することが可能となる。
そのため、ロール・ツー・ロール方式(以下、RtoR方式とする)にも簡単に適応できる。
In the present invention, the end portions of the first insulating portion and the second insulating portion are arranged in a state where they are extended into the region of the ultrasonic fusion portion, and these end portions are arranged so as to overlap the ultrasonic fusion portion. Therefore, even if the position of the ultrasonic fusion part is formed at a position shifted in the first direction in the manufacturing process, it is possible to prevent separation between the insulating part and the ultrasonic fusion part. be able to. As a result, the cells adjacent in the second direction are reliably insulated from each other, so that leakage between these cells can be suppressed, and a decrease in power generation efficiency can be prevented, and the cells are electrically connected in series. Connected.
The first insulating portion and the second insulating portion that overlap the ultrasonic fusion portion are arranged in the first direction so as to overlap the region of the ultrasonic fusion portion as described above at a predetermined position of the transparent conductive film and the opposing conductive film. For example, it can be easily manufactured by performing a cutting process or a laser process.
Therefore, it can be easily adapted to a roll-to-roll system (hereinafter referred to as RtoR system).
(4)上記(3)に記載の、太陽電池モジュールにおいて、前記セル同士の間において、前記隣り合うサブモジュールのうち一方のサブモジュールの絶縁部と他方のサブモジュールの絶縁部との端部同士が前記第一の方向に重なっていることを特徴としてもよい。 (4) In the solar cell module according to (3) above, between the cells, between the adjacent submodules, the end portions of the insulating portion of one submodule and the insulating portion of the other submodule May overlap in the first direction.
この場合には、第一絶縁部及び第二絶縁部の端部同士が超音波融着部の領域内で第一の方向に重なっていることから、第二の方向に隣り合うセル同士を確実に絶縁することができる。 In this case, since the end portions of the first insulating portion and the second insulating portion overlap each other in the first direction within the region of the ultrasonic fusion portion, the cells adjacent to each other in the second direction are surely connected. Can be insulated.
(5)上記(3)に記載の、太陽電池モジュールにおいて、前記第一絶縁部及び前記第二絶縁部は、前記絶縁ラインとの重なり長さが0.1mm以上5mm以下であることを特徴としてもよい。 (5) The solar cell module according to (3), wherein the first insulating portion and the second insulating portion have an overlapping length with the insulating line of 0.1 mm or more and 5 mm or less. Also good.
(6)上記(4)に記載の、太陽電池モジュールにおいて、前記第一絶縁部及び前記第二絶縁部は、前記絶縁ラインとの重なり長さが0.1mm以上5mm以下であることを特徴としてもよい。 (6) In the solar cell module according to (4), the first insulating part and the second insulating part have an overlap length with the insulating line of 0.1 mm or more and 5 mm or less. Also good.
 この場合には、重なり長さの範囲を0.1mm以上5mm以下に設定することで、RtoR方式による製造方法において超音波融着部の第一の方向への標準的なずれ量(例えば0.1mm)が生じた場合でも、第一絶縁部及び第二絶縁部が超音波融着部から離間する可能性が小さくなり、第二の方向に隣り合うセル間のリークを防止することができる。 In this case, by setting the range of the overlap length to 0.1 mm or more and 5 mm or less, a standard deviation amount in the first direction of the ultrasonic fusion part in the manufacturing method by the RtoR method (for example, 0. Even when 1 mm) occurs, the possibility that the first insulating portion and the second insulating portion are separated from the ultrasonic fusion portion is reduced, and leakage between cells adjacent in the second direction can be prevented.
(7)上記(3)に記載の、太陽電池モジュールにおいて、前記第一絶縁部及び前記第二絶縁部のそれぞれの端部における前記絶縁ラインとの重なり開始位置からの先端までの長さ寸法Kを、前記絶縁ラインの幅寸法Lで割った値の範囲は、0<K/L<1.5の範囲で設定されていることを特徴としてもよい。 (7) In the solar cell module according to the above (3), the length dimension K from the overlapping start position to the tip of the insulating line at each end of the first insulating portion and the second insulating portion K Is divided by the width L of the insulating line, and a range of 0 <K / L <1.5 may be set.
(8)上記(4)に記載の、太陽電池モジュールにおいて、前記第一絶縁部及び前記第二絶縁部のそれぞれの端部における前記絶縁ラインとの重なり開始位置からの先端までの長さ寸法Kを前記絶縁ラインの幅寸法Lで割った値の範囲は、0<K/L<1.5の範囲で設定されていることを特徴としてもよい。 (8) In the solar cell module according to (4), the length dimension K from the overlap start position to the tip of the insulation line at each end of the first insulating portion and the second insulating portion is K. Is divided by the width L of the insulating line, and a range of 0 <K / L <1.5 may be set.
 この場合には、RtoR方式による製造方法において超音波融着部の第一の方向への標準的なずれ量(例えば0.1mm)が生じた場合でも、第一絶縁部及び第二絶縁部が超音波融着部から離間する可能性が小さくなり、第二の方向に隣り合うセル間のリークを防止することができる。K/Lの値が1.5より小さいことから、一方のサブモジュールの絶縁部の先端が他方のサブモジュール側に突出する長さも小さく抑えることができるので、他方のサブモジュールにおける電気抵抗となることを抑制することができる。
K/Lの値が0.5を超えるときには、上述したような超音波のずれに対してもより確実に対応することができ、超音波部が第一絶縁部または第二絶縁部にかからないほどずれた場合であっても、電気の通り道が絶縁部を迂回するように流れるために抵抗が高くなり、電池性能の低下を軽減できる。さらに1.0を超えるときには、上述したような超音波融着部のずれや第一絶縁部または第二絶縁部にかからないほどのずれに対してもさらに確実な改善効果が望め、製造される電池性能の安定性を高めることができる。
 前記K/Lの範囲は、0.5<K/L<1.5の範囲で設定されていることがより好ましい。
 さらに、前記K/Lの範囲は、1.0<K/L<1.5の範囲で設定されていることがより好ましい。
In this case, even if a standard deviation amount (for example, 0.1 mm) in the first direction of the ultrasonic fusion part occurs in the manufacturing method by the RtoR method, the first insulating part and the second insulating part are The possibility of separating from the ultrasonic fusion part is reduced, and leakage between cells adjacent in the second direction can be prevented. Since the value of K / L is smaller than 1.5, the length at which the tip of the insulating portion of one sub-module protrudes toward the other sub-module can be suppressed to a small value. This can be suppressed.
When the value of K / L exceeds 0.5, it is possible to more reliably cope with the ultrasonic wave deviation as described above, so that the ultrasonic part does not reach the first insulating part or the second insulating part. Even in the case of deviation, since the electric path flows so as to bypass the insulating portion, the resistance becomes high, and the deterioration of the battery performance can be reduced. Further, when the value exceeds 1.0, it is possible to obtain a more reliable improvement effect against the deviation of the ultrasonic fusion part as described above and the deviation not to be applied to the first insulating part or the second insulating part. The stability of performance can be increased.
The range of K / L is more preferably set in the range of 0.5 <K / L <1.5.
Further, the K / L range is more preferably set in the range of 1.0 <K / L <1.5.
(9)本発明の他の態様に係る太陽電池モジュールの製造方法は、ロール・ツー・ロール方式により連続的に太陽電池モジュールを製造するための太陽電池モジュールの製造方法であって、第一基材の表面に透明導電膜が成膜され、前記第一基材の前記透明導電膜の表面に形成された、第一の方向に延在する色素が吸着した複数の半導体層が形成された第一電極を形成する工程と、第二基材の表面に前記第一電極に対向するように対向導電膜が成膜された第二電極を形成する工程と、前記透明導電膜及び前記対向導電膜に対して前記第一の方向と平行に絶縁加工を行う工程と、前記第一の方向に沿って延在し、平面視で前記第一の方向に直交する第二の方向に複数のセルを配列する封止材を設ける工程と、前記封止材に覆われた状態で導通材を配置し、前記第二の方向に隣り合うセルについて、一方のセルの第一電極と他方のセルの第二電極とを前記導通材により電気的に接続する工程と、前記第一電極の前記半導体層と前記第二電極との間に電解液を設ける工程と、前記第一電極と前記第二電極とを貼り合せる工程と、前記第一電極及び前記第二電極に対して前記第二の方向に沿って延在し、前記第二の方向の一端寄りに前記導通材を部分的に設けない第一絶縁ラインと、前記第二の方向の全体にわたって絶縁する第二絶縁ラインと、を前記第一の方向の所定位置に形成し、前記第二絶縁ライン同士の間に前記第一絶縁ラインを設ける工程と、前記第一電極と前記第二電極とを前記第二絶縁ラインの位置で切断する工程と、を有し、前記第二絶縁ラインで切断された太陽電池モジュールは、前記第一絶縁ラインで分割された前記サブモジュールのうち隣り合う前記サブモジュールについて、前記第二の方向の同じ側の端部同士を前記導通材によって直列配線により電気的に接続されることを特徴としている。 (9) A method for manufacturing a solar cell module according to another aspect of the present invention is a method for manufacturing a solar cell module for continuously manufacturing a solar cell module by a roll-to-roll method. A transparent conductive film is formed on the surface of the material, and a plurality of semiconductor layers formed on the surface of the transparent conductive film of the first substrate and adsorbed with a dye extending in the first direction are formed. A step of forming one electrode, a step of forming a second electrode in which a counter conductive film is formed on the surface of the second substrate so as to face the first electrode, the transparent conductive film, and the counter conductive film A step of performing insulation processing in parallel to the first direction, and a plurality of cells extending in the first direction and extending in the second direction perpendicular to the first direction in plan view. A step of providing a sealing material to be arranged, and a conductive material in a state covered with the sealing material Arranging and electrically connecting the first electrode of one cell and the second electrode of the other cell with the conductive material for the cells adjacent to each other in the second direction; and the semiconductor of the first electrode A step of providing an electrolytic solution between the layer and the second electrode, a step of bonding the first electrode and the second electrode, and the second direction with respect to the first electrode and the second electrode. A first insulating line that extends along the first direction and does not partially provide the conductive material near one end in the second direction, and a second insulating line that insulates the entire second direction. Forming the first insulating line between the second insulating lines and cutting the first electrode and the second electrode at the position of the second insulating line. And a solar cell module cut by the second insulation line. For the sub-modules adjacent to each other among the sub-modules divided by the first insulation line, the ends on the same side in the second direction are electrically connected to each other by the series wiring by the conductive material. It is characterized by that.
 本発明では、第一基材の幅方向に隣り合うセル同士の間に配置された第一基材の絶縁部と第二基材の絶縁部との間に導通材が配置され、幅方向に隣り合うセル同士が電気的に直列に接続され、第一絶縁ラインによって長手方向に分割された隣り合う一対のサブモジュールにおける幅方向の一端側の導通材同士が電気的に直列に接続された構成の太陽電池モジュールをロール・ツー・ロール方式で長手方向に連続した状態で製造することができる。そのため、第二絶縁ラインの位置で切断され分割された太陽電池モジュール自体で独立した電気回路を備えたモジュールをロール・ツー・ロール方式によって生産することができる。このようにロール・ツー・ロール方式によりフィルム基板上で導通材、第一絶縁ライン、第二絶縁ラインの位置や長さを適宜設定し、設定された電気特性(電圧など)になるような配線を施して製造できるので、セルの直列接続(回路設計)を自由に設計することが可能となる。 In the present invention, a conductive material is disposed between the insulating part of the first base material and the insulating part of the second base material arranged between cells adjacent in the width direction of the first base material, and in the width direction. A configuration in which adjacent cells are electrically connected in series, and conductive materials on one end side in the width direction in a pair of adjacent submodules divided in the longitudinal direction by the first insulating line are electrically connected in series. The solar cell module can be manufactured in a continuous state in the longitudinal direction by a roll-to-roll method. Therefore, a module including an independent electric circuit can be produced by the roll-to-roll method by the solar cell module itself cut and divided at the position of the second insulation line. In this way, the position and length of the conductive material, the first insulating line, and the second insulating line are appropriately set on the film substrate by the roll-to-roll method, and the wiring is set to have the set electrical characteristics (voltage, etc.) Therefore, series connection (circuit design) of cells can be freely designed.
 本発明では、製造した太陽電池モジュールを別体(基板)に外装する場合に、従来のように基板に複数の太陽電池モジュールを取り付けた後に行われ、それら太陽電池モジュール同士を電気的に接続する配線作業が不要になるため、製造効率を向上させることができる。このように、作業工数を減らすことが可能となることから、製造コストの低減を図ることができる。 In the present invention, when the manufactured solar cell module is packaged in a separate body (substrate), it is performed after attaching a plurality of solar cell modules to the substrate as in the past, and these solar cell modules are electrically connected to each other. Since wiring work becomes unnecessary, manufacturing efficiency can be improved. Thus, since it becomes possible to reduce an operation man-hour, reduction of manufacturing cost can be aimed at.
(10)上記(9)に記載の、太陽電池モジュールの製造方法において、前記第一絶縁ライン及び前記第二絶縁ラインは、前記第二の方向に沿って融着された融着部により形成され、又は絶縁加工手段によって絶縁された絶縁加工部を封止材によって塞がれることにより形成されていることを特徴としてもよい。 (10) In the method for manufacturing a solar cell module according to (9), the first insulating line and the second insulating line are formed by a fusion part fused along the second direction. Alternatively, the insulating portion may be formed by closing an insulating portion insulated by the insulating processing means with a sealing material.
 この場合には、幅方向に沿って延在する適宜な融着手段や絶縁加工手段を備えた製造装置によってロール・ツー・ロール方式によって移動される第一電極及び第二電極に対して第一絶縁ライン及び第二絶縁ラインをなす融着部、又は絶縁加工部を封止材によって塞がれた部分を容易に形成することができる。 In this case, the first electrode and the second electrode moved in a roll-to-roll manner by a manufacturing apparatus having appropriate fusion means and insulation processing means extending along the width direction. It is possible to easily form a fusion portion that forms the insulation line and the second insulation line, or a portion where the insulation processing portion is blocked by the sealing material.
 本発明の太陽電池モジュール、及び太陽電池モジュールの製造方法によれば、同じ側の端部から取り出し電極を配置できる構造とすることで、効率よく配線することが可能となる。 According to the solar cell module and the manufacturing method of the solar cell module of the present invention, efficient wiring can be achieved by adopting a structure in which the extraction electrode can be arranged from the end on the same side.
図1は本発明の第1の実施の形態による太陽電池モジュールの構成を示す斜視図である。FIG. 1 is a perspective view showing the configuration of the solar cell module according to the first embodiment of the present invention. 図2は図1に示す太陽電池モジュールの平面図である。FIG. 2 is a plan view of the solar cell module shown in FIG. 図3Aは図2に示すA1-A1線断面図である。3A is a cross-sectional view taken along line A1-A1 shown in FIG. 図3Bは図2に示すB1-B1線断面図である。3B is a cross-sectional view taken along line B1-B1 shown in FIG. 図4は太陽電池モジュールの製造装置の全体構成を示す斜視図である。FIG. 4 is a perspective view showing the overall configuration of the solar cell module manufacturing apparatus. 図5は本実施の形態による太陽電池モジュールの製造過程を示す平面図である。FIG. 5 is a plan view showing the manufacturing process of the solar cell module according to the present embodiment. 図6は本発明の第2の実施の形態による色素増感太陽電池の概略構成を示す平面図である。FIG. 6 is a plan view showing a schematic configuration of the dye-sensitized solar cell according to the second embodiment of the present invention. 図7は図1に示すA2-A2線断面図であって、色素増感太陽電池を長手方向から見た部分断面図である。FIG. 7 is a cross-sectional view taken along line A2-A2 shown in FIG. 1, and is a partial cross-sectional view of the dye-sensitized solar cell viewed from the longitudinal direction. 図8は図1に示すB2-B2線断面図であって、色素増感太陽電池を幅方向から見た部分断面図である。FIG. 8 is a cross-sectional view taken along line B2-B2 shown in FIG. 1, and is a partial cross-sectional view of the dye-sensitized solar cell viewed from the width direction. 図9は色素増感太陽電池の製造装置の全体構成を示す斜視図である。FIG. 9 is a perspective view showing the overall configuration of the dye-sensitized solar cell manufacturing apparatus. 図10は製造装置を用いた製造過程の色素増感太陽電池の平面図であって、第一基材に絶縁加工を施した状態を示す図である。FIG. 10 is a plan view of a dye-sensitized solar cell in the manufacturing process using the manufacturing apparatus, and shows a state in which the first base material is subjected to insulation processing. 図11は製造装置を用いた製造過程の色素増感太陽電池の平面図であって、第二基材に絶縁加工を施した状態を示す図である。FIG. 11 is a plan view of a dye-sensitized solar cell in a manufacturing process using a manufacturing apparatus, and shows a state in which an insulating process is performed on a second base material. 図12は製造装置を用いた製造過程の色素増感太陽電池の平面図であって、基材同士を貼り合せた状態を示す図である。FIG. 12 is a plan view of a dye-sensitized solar cell in a manufacturing process using a manufacturing apparatus, and shows a state where base materials are bonded together. 図13は製造装置を用いた製造過程の色素増感太陽電池の平面図であって、融着部を形成した状態を示す図である。FIG. 13 is a plan view of a dye-sensitized solar cell in the manufacturing process using the manufacturing apparatus, and shows a state in which a fused portion is formed. 図14Aは絶縁部と超音波融着部の要部を示す平面図である。FIG. 14A is a plan view showing the main parts of the insulating part and the ultrasonic fusion part. 図14Bは絶縁部と超音波融着部の要部を示す図であって、図14Aに示すC1-C1線断面図である。FIG. 14B is a view showing the main part of the insulating part and the ultrasonic fusion part, and is a cross-sectional view taken along line C1-C1 shown in FIG. 14A. 図15は切込み加工装置で絶縁加工を施している状態を示す斜視図である。FIG. 15 is a perspective view showing a state in which insulation processing is performed by a cutting apparatus. 図16は切込み加工装置で絶縁加工を施している状態を示す図であって、切込み加工装置を長手方向から見た正面図である。FIG. 16 is a view showing a state in which insulation processing is performed by the cutting apparatus, and is a front view of the cutting apparatus as viewed from the longitudinal direction. 図17Aは図14Aにおいて超音波融着部が長手方向にずれた状態の要部を示す平面図である。FIG. 17A is a plan view showing the main part in a state where the ultrasonic fusion part in FIG. 14A is displaced in the longitudinal direction. 図17Bは図14Bにおいて超音波融着部が長手方向にずれた状態の要部を示す図であって、図17Aに示すD1-D1線断面図である。FIG. 17B is a view showing the main part in a state where the ultrasonic fusion part in FIG. 14B is displaced in the longitudinal direction, and is a cross-sectional view taken along line D1-D1 shown in FIG. 17A. 図18Aは図14Aにおいて超音波融着部が長手方向にずれた状態の要部を示す平面図である。FIG. 18A is a plan view showing the main part in a state where the ultrasonic fusion part in FIG. 14A is displaced in the longitudinal direction. 図18Bは図14Bにおいて超音波融着部が長手方向にずれた状態の要部を示す図であって、図18Aに示すE1-E1線断面図である。FIG. 18B is a view showing a main part in a state where the ultrasonic fusion part in FIG. 14B is displaced in the longitudinal direction, and is a cross-sectional view taken along line E1-E1 shown in FIG. 18A. 図19Aは第1変形例による絶縁部と超音波融着部の要部を示す平面図である。FIG. 19A is a plan view showing the main parts of the insulating part and the ultrasonic fusion part according to the first modification. 図19Bは第1変形例による絶縁部と超音波融着部の要部を示す図であって、図19Aに示すF1-F1線断面図である。FIG. 19B is a view showing the main parts of the insulating portion and the ultrasonic fusion portion according to the first modification, and is a cross-sectional view taken along line F1-F1 shown in FIG. 19A. 図20は第2の実施の形態による色素増感太陽電池の概略構成を示す斜視図である。FIG. 20 is a perspective view showing a schematic configuration of the dye-sensitized solar cell according to the second embodiment. 図21Aは第2変形例による絶縁部と超音波融着部の要部を示す平面図である。FIG. 21A is a plan view showing the main parts of an insulating part and an ultrasonic fusion part according to a second modification. 図21Bは第2変形例による絶縁部と超音波融着部の要部を示す図であって、図21Aに示すG1-G1線断面図である。FIG. 21B is a view showing the main parts of the insulating portion and the ultrasonic fusion portion according to the second modification, and is a cross-sectional view taken along line G1-G1 shown in FIG. 21A. 従来の太陽電池モジュールの構成を示す平面図である。It is a top view which shows the structure of the conventional solar cell module. 従来の太陽電池モジュールの構成を示す図であって、図22に示すC2-C2線断面図である。It is a figure which shows the structure of the conventional solar cell module, Comprising: It is the C2-C2 sectional view taken on the line shown in FIG.
 以下、本発明の実施の形態による太陽電池モジュール、及び太陽電池モジュールの製造方法について、図面に基づいて説明する。以下の説明で用いる図面は模式的なものであり、長さ、幅、及び厚みの比率、構造等は実際のものと同一とは限らず、適宜変更できる。 Hereinafter, a solar cell module according to an embodiment of the present invention and a method for manufacturing the solar cell module will be described with reference to the drawings. The drawings used in the following description are schematic, and length, width, thickness ratio, structure, and the like are not necessarily the same as actual ones, and can be changed as appropriate.
(第1の実施の形態)
 図1及び図2に示すように、本第1の実施の形態の太陽電池モジュール1は、後述するロール・ツー・ロール方式(以下、RtoR方式と記載する)によって作製された第一の方向(長手方向X1)に長く延在するフィルム型の色素増感太陽電池を所定の長さに切断することにより製造される。太陽電池モジュール1は、平面視で長手方向X1に直交する幅方向X2(第二の方向)に配列される複数のセルCから構成される2つの区画(サブモジュールR、R)を長手方向X1に隣接させた電池構造であり、隣接するサブモジュールR、R同士を幅方向X2の一端1a側で電気的に接続した構造となっている。
(First embodiment)
As shown in FIGS. 1 and 2, the solar cell module 1 according to the first embodiment has a first direction (hereinafter, referred to as an RtoR method) manufactured by a roll-to-roll method (to be described later) It is manufactured by cutting a film-type dye-sensitized solar cell extending in the longitudinal direction X1) into a predetermined length. The solar cell module 1 has two sections (sub-modules R and R) composed of a plurality of cells C arranged in the width direction X2 (second direction) orthogonal to the longitudinal direction X1 in a plan view. The adjacent submodules R and R are electrically connected to each other at the one end 1a side in the width direction X2.
 図1及び図2において、矢印は電気の流れを示し、記号+(プラス)、-(マイナス)はそれぞれ正極、負極を示している(他の図も同様)。
 ここで、太陽電池モジュール1において、上述したように、長手方向X1を一対のサブモジュールR、Rの配列方向とし、幅方向X2を平面視で長手方向X1に直交する方向として、以下統一して用いる。
1 and 2, the arrows indicate the flow of electricity, and the symbols + (plus) and-(minus) indicate the positive electrode and the negative electrode, respectively (the same applies to the other drawings).
Here, in the solar cell module 1, as described above, the longitudinal direction X1 is defined as the arrangement direction of the pair of submodules R and R, and the width direction X2 is defined as a direction orthogonal to the longitudinal direction X1 in plan view. Use.
 本実施の形態の太陽電池モジュール1は、図3A、図3Bに示すように、光電極11と、該光電極11と対向して設けられる対向電極12とを有する色素増感太陽電池セル(以下、単にセルCという)が、一対の基材3A、3Bの間に介挿された構造を有してなる。そして、太陽電池モジュール1は、一対の基材3A、3Bのそれぞれの内面が導電性を有する導電膜11A、12Aが成膜されており、この導電膜11A、12Aに対して光電極11の半導体層11B及び対向電極12の触媒層12Bが電気的に接続され、概略構成される。 As shown in FIG. 3A and FIG. 3B, the solar cell module 1 of the present embodiment includes a dye-sensitized solar cell (hereinafter referred to as a photosensitized solar cell) having a photoelectrode 11 and a counter electrode 12 provided to face the photoelectrode 11. , Simply referred to as cell C) has a structure inserted between the pair of base materials 3A and 3B. In the solar cell module 1, conductive films 11A and 12A having conductive surfaces on the inner surfaces of the pair of base materials 3A and 3B are formed, and the semiconductor of the photoelectrode 11 is formed on the conductive films 11A and 12A. The layer 11B and the catalyst layer 12B of the counter electrode 12 are electrically connected to each other and are roughly configured.
 太陽電池モジュール1は、上述したように光電極11と対向電極12とが封止機能付きの導通材14を介して対向配置され、第一基材3A及び第二基材3Bの間に形成された複数(ここでは2つ)のセルC,C同士が幅方向X2に沿って電気的に直列接続されている。 In the solar cell module 1, as described above, the photoelectrode 11 and the counter electrode 12 are disposed to face each other via the conductive material 14 having a sealing function, and are formed between the first base material 3A and the second base material 3B. A plurality (two in this case) of cells C and C are electrically connected in series along the width direction X2.
 具体的に太陽電池モジュール1は、第一基材3Aと、第二基材3Bと、光電極11(第一電極)と、対向電極12(第二電極)と、電解液13と、導通材14と、封止材15と、第一絶縁部16と、第二絶縁部17と、融着部18(絶縁ライン)と、を備えている。
 光電極11は、第一基材3A上に積層された透明導電膜11Aと、透明導電膜11A上に積層された多孔質の半導体層11Bと、を備えている。対向電極12は、第二基材3B上に積層された対向導電膜12Aと、対向導電膜12A上に積層された触媒層12Bと、を備えている。
Specifically, the solar cell module 1 includes a first base material 3A, a second base material 3B, a photoelectrode 11 (first electrode), a counter electrode 12 (second electrode), an electrolytic solution 13, and a conductive material. 14, a sealing material 15, a first insulating portion 16, a second insulating portion 17, and a fused portion 18 (insulating line).
The photoelectrode 11 includes a transparent conductive film 11A laminated on the first base material 3A and a porous semiconductor layer 11B laminated on the transparent conductive film 11A. The counter electrode 12 includes a counter conductive film 12A stacked on the second base material 3B, and a catalyst layer 12B stacked on the counter conductive film 12A.
 第一基材3A及び第二基材3Bの材質は、特に限定されず、例えば、フィルム状の樹脂等の絶縁体、半導体、金属、ガラス等が挙げられる。前記樹脂としては、例えば、ポリ(メタ)アクリル酸エステル、ポリカーボネート、ポリエステル、ポリイミド、ポリスチレン、ポリ塩化ビニル、ポリアミド等が挙げられる。薄くて軽いフレキシブルな太陽電池モジュール1を製造する観点からは、基材は透明樹脂製であることが好ましく、ポリエチレンテレフタレート(PET)フィルム又はポリエチレンナフタレート(PEN)フィルムであることがより好ましい。第一基材3Aの材質と第二基材3Bの材質とは、異なっていても構わない。 The material of the first base material 3A and the second base material 3B is not particularly limited, and examples thereof include insulators such as a film-like resin, semiconductors, metals, and glass. Examples of the resin include poly (meth) acrylic acid ester, polycarbonate, polyester, polyimide, polystyrene, polyvinyl chloride, and polyamide. From the viewpoint of manufacturing a thin and light flexible solar cell module 1, the substrate is preferably made of a transparent resin, more preferably a polyethylene terephthalate (PET) film or a polyethylene naphthalate (PEN) film. The material of the first base material 3A and the material of the second base material 3B may be different.
 光電極11は、第一基材3Aの表面に透明導電膜11Aが成膜され、第一基材3Aの透明導電膜11Aの表面に長手方向X1に延在する色素が吸着した帯状の半導体層11Bが複数形成されている。対向電極12は、光電極11に対向するように対向導電膜12Aが成膜されている。 The photoelectrode 11 is a band-shaped semiconductor layer in which a transparent conductive film 11A is formed on the surface of the first substrate 3A, and a dye extending in the longitudinal direction X1 is adsorbed on the surface of the transparent conductive film 11A of the first substrate 3A. A plurality of 11B are formed. A counter conductive film 12 </ b> A is formed on the counter electrode 12 so as to face the photoelectrode 11.
 透明導電膜11A、対向導電膜12Aの種類や材質は、特に限定されず、公知の色素増感太陽電池に使用される導電膜が適用可能であり、例えば、金属酸化物で構成される薄膜が挙げられる。前述の金属酸化物としては、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、アルミドープ酸化亜鉛(ATO)、酸化インジウム/酸化亜鉛(IZO)、ガリウムドープ酸化亜鉛(GZO)等が例示できる。 The types and materials of the transparent conductive film 11A and the counter conductive film 12A are not particularly limited, and a conductive film used for a known dye-sensitized solar cell can be applied. For example, a thin film made of a metal oxide is used. Can be mentioned. Examples of the metal oxide include tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (ATO), indium oxide / zinc oxide (IZO), and gallium-doped zinc oxide (GZO). it can.
 半導体層11Bは、吸着した光増感色素から電子を受け取ることが可能な材料によって構成され、通常は多孔質であることが好ましい。半導体層11Bを構成する材料は特に限定されず、公知の半導体層11Bの材料が適用可能であり、例えば、酸化チタン、酸化亜鉛、酸化スズ等の金属酸化物半導体が挙げられる。
 半導体層11Bに担持される光増感色素は特に限定されず、例えば有機色素、金属錯体色素等の公知の色素が挙げられる。前述の有機色素としては、例えば、クマリン系、ポリエン系、シアニン系、ヘミシアニン系、チオフェン系等が挙げられる。前記金属錯体色素としては、例えば、ルテニウム錯体等が好適に用いられる。
The semiconductor layer 11B is made of a material that can receive electrons from the adsorbed photosensitizing dye, and is usually preferably porous. The material which comprises the semiconductor layer 11B is not specifically limited, The material of the well-known semiconductor layer 11B is applicable, For example, metal oxide semiconductors, such as a titanium oxide, a zinc oxide, a tin oxide, are mentioned.
The photosensitizing dye supported on the semiconductor layer 11B is not particularly limited, and examples thereof include known dyes such as organic dyes and metal complex dyes. Examples of the organic dye include coumarin, polyene, cyanine, hemicyanine, and thiophene. As said metal complex pigment | dye, a ruthenium complex etc. are used suitably, for example.
 触媒層12Bを構成する材料は、特に限定されず、公知の材料を適用可能であり、例えば、白金、カーボンナノチューブ等のカーボン類、ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸)(PEDOT/PSS)等の導電性ポリマー等が挙げられる。 The material constituting the catalyst layer 12B is not particularly limited, and known materials can be applied. For example, carbons such as platinum and carbon nanotubes, poly (3,4-ethylenedioxythiophene) -poly (styrenesulfone) Examples thereof include conductive polymers such as (acid) (PEDOT / PSS).
 電解液13は、光電極11の半導体層11Bと対向電極12との間に封止されている。
 電解液13は、特に限定されず、公知の色素増感太陽電池で使用されている電解液を適用できる。電解液13としては、例えばヨウ素とヨウ化ナトリウムが有機溶媒に溶解された電解液等が挙げられる。電解液13が接触する半導体層11Bにおいて多孔質内部を含む表面には、図示しない公知の光増感色素が吸着している。
The electrolytic solution 13 is sealed between the semiconductor layer 11 </ b> B of the photoelectrode 11 and the counter electrode 12.
The electrolytic solution 13 is not particularly limited, and an electrolytic solution used in a known dye-sensitized solar cell can be applied. Examples of the electrolytic solution 13 include an electrolytic solution in which iodine and sodium iodide are dissolved in an organic solvent. A known photosensitizing dye (not shown) is adsorbed on the surface including the porous interior in the semiconductor layer 11B with which the electrolytic solution 13 is in contact.
 封止材15は、電解液13を封止するとともに、幅方向X2に分割された複数のセルCを配列する構成となっている。封止材15は、対向する第一基材3A及び第二基材3Bを接着し、且つこれら基材3A、3B間に形成されたセルCを封止することが可能な非導電性の部材であれば特に制限されない。 The sealing material 15 is configured to seal the electrolytic solution 13 and to arrange a plurality of cells C divided in the width direction X2. The sealing material 15 is a non-conductive member that can bond the opposing first substrate 3A and second substrate 3B and seal the cell C formed between the substrates 3A and 3B. If it is, it will not be restrict | limited in particular.
 封止材15の材料としては、例えば、ホットメルト接着剤(熱可塑性樹脂)、熱硬化性樹脂、紫外線硬化性樹脂、並びに、紫外線硬化性樹脂及び熱硬化性樹脂を含んだ樹脂等、一時的に流動性を有し、適当な処理により固化される樹脂材料等が挙げられる。前記ホットメルト接着剤としては、例えば、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂等が挙げられる。前記熱硬化性樹脂としては、例えば、エポキシ樹脂、ベンゾオキサゾン樹脂等が挙げられる。前記紫外線硬化性樹脂としては、例えば、アクリル酸エステル、メタクリル酸エステル等の光重合性のモノマーを含むものが挙げられる。 As a material of the sealing material 15, for example, a hot melt adhesive (thermoplastic resin), a thermosetting resin, an ultraviolet curable resin, and a resin including an ultraviolet curable resin and a thermosetting resin are temporarily used. And a resin material that has fluidity and is solidified by an appropriate treatment. Examples of the hot melt adhesive include polyolefin resin, polyester resin, polyamide resin, and the like. Examples of the thermosetting resin include an epoxy resin and a benzoxazone resin. Examples of the ultraviolet curable resin include those containing a photopolymerizable monomer such as acrylic acid ester and methacrylic acid ester.
 導通材14は、封止材15によって幅方向X2の両側が覆われた状態で設けられ、光電極11の透明導電膜11Aと対向電極12の対向導電膜12Aとに直接接触し、光電極11と対向電極12とを電気的に接続する。 The conductive material 14 is provided in a state where both sides in the width direction X2 are covered with the sealing material 15, and is in direct contact with the transparent conductive film 11 </ b> A of the photoelectrode 11 and the counter conductive film 12 </ b> A of the counter electrode 12. Are electrically connected to the counter electrode 12.
 導通材14は、光電極11と対向電極12との間で互いに平行に配され、第一基材3A上の光電極11と第二基材3B上の対向電極12とに接している。導通材14は、例えば、導線、導電チューブ、導電箔、導電板および導電メッシュ、導電ペーストから選ばれる1種以上が用いられる。ここで導電ペーストとは、比較的剛性が低く、柔らかい形態の導電性材料であり、例えば固形の導通材が有機溶媒、バインダー樹脂等の粘性を有する分散媒に分散された形態を有し得る。 The conducting material 14 is arranged in parallel with each other between the photoelectrode 11 and the counter electrode 12, and is in contact with the photoelectrode 11 on the first base material 3A and the counter electrode 12 on the second base material 3B. As the conductive material 14, for example, at least one selected from a conductive wire, a conductive tube, a conductive foil, a conductive plate and a conductive mesh, and a conductive paste is used. Here, the conductive paste is a conductive material having a relatively low rigidity and a soft form. For example, the conductive paste may have a form in which a solid conductive material is dispersed in a viscous dispersion medium such as an organic solvent or a binder resin.
 導通材14に用いる導電材料としては、例えば、金、銀、銅、クロム、チタン、白金、ニッケル、タングステン、鉄、アルミニウム等の金属、或いはこれらの金属のうち2種以上の合金等が挙げられるが、特に限定されない。導電性の微粒子(例えば、前記金属又は合金の微粒子、カーボンブラックの微粒子等)が分散された、ポリウレタン、ポリテトラフルオロエチレン(PTFE)等の樹脂組成物等も前記材料として挙げられる。 Examples of the conductive material used for the conductive material 14 include metals such as gold, silver, copper, chromium, titanium, platinum, nickel, tungsten, iron, and aluminum, or alloys of two or more of these metals. However, it is not particularly limited. Examples of the material include resin compositions such as polyurethane and polytetrafluoroethylene (PTFE) in which conductive fine particles (for example, fine particles of metal or alloy, fine particles of carbon black, etc.) are dispersed.
 導通材14の幅方向X2の両側には、封止材15,15が配されている。導通材14と封止材15とにより、光電極11と対向電極12との間を接着している。太陽電池モジュール1には、図1及び図2に示すように、長手方向X1に一対のサブモジュールR、Rを画成するように、幅方向X2に沿って延びる融着部18(絶縁ライン)が形成されている。融着部18は、超音波融着等の手段(図4に示す超音波融着部46参照)により絶縁及び接着されることにより形成される。
 このように、半導体層11Bを有するセルCは、導通材14によって、光電極11と対向電極12の間に形成される厚み方向の間隙内に電解液13が液密に封止された状態で形成されている。
Sealing materials 15 and 15 are disposed on both sides of the conductive material 14 in the width direction X2. The conductive material 14 and the sealing material 15 bond between the photoelectrode 11 and the counter electrode 12. As shown in FIGS. 1 and 2, the solar cell module 1 has a fusion part 18 (insulation line) extending along the width direction X2 so as to define a pair of submodules R and R in the longitudinal direction X1. Is formed. The fused part 18 is formed by insulation and adhesion by means such as ultrasonic fusion (see the ultrasonic fused part 46 shown in FIG. 4).
Thus, in the cell C having the semiconductor layer 11B, the electrolytic solution 13 is liquid-tightly sealed in the gap in the thickness direction formed between the photoelectrode 11 and the counter electrode 12 by the conductive material 14. Is formed.
 透明導電膜11A及び対向導電膜12Aの所定の箇所には、例えば刃物を備えた切込み装置やレーザー照射装置やエッチング材などを用いた化学絶縁処理等を用いて絶縁処理された複数のパターニング部(絶縁部16、17)が設けられている。例えば、図3A、図3Bに示すように、第一絶縁部16は、透明導電膜11Aにおける所定の封止材15に接触する位置において、上述した絶縁処理により長手方向X1に延びて形成されている。第二絶縁部17は、対向導電膜12Aにおける所定の封止材15に接触する位置において、上述した絶縁処理により長手方向X1に延びて形成されている。そして、本太陽電池モジュール1では、幅方向X2に隣り合うセルC、Cのうち一方のセルCにおける第一基材3Aに形成される隣り合う第一絶縁部16、16同士の間の透明導電膜11Aと、他方のセルCにおける第二基材3Bに形成される隣り合う第二絶縁部17、17同士の間の対向導電膜12Aとが、一方のセルCと他方のセルCとの間に配置される導通材14に接続されている。 A plurality of patterning portions (insulation treatment using a chemical insulation treatment using, for example, a cutting device provided with a blade, a laser irradiation device, an etching material, or the like) are provided at predetermined portions of the transparent conductive film 11A and the counter conductive film 12A. Insulating parts 16, 17) are provided. For example, as shown in FIGS. 3A and 3B, the first insulating portion 16 is formed to extend in the longitudinal direction X1 by the above-described insulating treatment at a position in contact with the predetermined sealing material 15 in the transparent conductive film 11A. Yes. The second insulating portion 17 is formed to extend in the longitudinal direction X1 by the above-described insulating treatment at a position in contact with the predetermined sealing material 15 in the counter conductive film 12A. And in this solar cell module 1, the transparent electroconductivity between adjacent 1st insulation parts 16 and 16 formed in the 1st base material 3A in one cell C among the cells C and C adjacent in the width direction X2 is demonstrated. The film 11A and the opposing conductive film 12A between the adjacent second insulating portions 17 and 17 formed on the second base material 3B in the other cell C are between one cell C and the other cell C. It is connected to the conductive material 14 disposed in the.
 サブモジュールR、Rのうち一方のサブモジュールRの第一絶縁部16と、他方のサブモジュールRの第一絶縁部16とは、幅方向X2にずれた位置にパターニングされている。これは、第二絶縁部17についても同様である。 Among the submodules R and R, the first insulating portion 16 of one submodule R and the first insulating portion 16 of the other submodule R are patterned at positions shifted in the width direction X2. The same applies to the second insulating portion 17.
 図3A、図3Bに示すように、透明導電膜11A及び対向導電膜12Aは、パターニング部により複数に区画されている。例えば図3Aに示すように、区画されたセルCにおいて、一方のセルC(例えば符号C1の第一セル)の対向導電膜12Aと、第一セルC1に隣接する他方のセルC(例えば符号C2の第二セル)の透明導電膜11Aとが導通材14(符号14B)によって電気的に接続され、第一セルC1と第二セルC2が幅方向X2に直列に接続された状態となる。すなわち、第一基材3Aと第二基材3Bとの間の間隙において、幅方向X2で一端1aから他端側1bに向けて、(封止材15/導通材14(連通導通材14A)/封止材15)/(第一セルC1)/(封止材15/導通材14/封止材15)/(第二セルC2)/(封止材15)の順に配置され、これらセルC1、C2が直列に配置されている。 As shown in FIGS. 3A and 3B, the transparent conductive film 11A and the counter conductive film 12A are divided into a plurality of parts by the patterning portion. For example, as shown in FIG. 3A, in the partitioned cell C, the counter conductive film 12A of one cell C (for example, the first cell of reference C1) and the other cell C adjacent to the first cell C1 (for example, reference C2) The transparent conductive film 11A of the second cell) is electrically connected by the conductive material 14 (reference numeral 14B), and the first cell C1 and the second cell C2 are connected in series in the width direction X2. That is, in the gap between the first base material 3A and the second base material 3B, from the one end 1a to the other end side 1b in the width direction X2, (sealing material 15 / conductive material 14 (communication conductive material 14A). / Sealing material 15) / (first cell C1) / (sealing material 15 / conducting material 14 / sealing material 15) / (second cell C2) / (sealing material 15) in order. C1 and C2 are arranged in series.
 融着部18は、各サブモジュールR、Rにおける幅方向X2で一端1a側の連通導通材14Aを残した状態で他端1bから一端1a側に向けて延びている。これにより、サブモジュールR、Rにおけるそれぞれの光電極11と対向電極12は、連通導通材14Aによって電気的に接続された電気回路を構成している。
 ここで、隣接するサブモジュールR、Rのうち、光電極11の他端1bを取り出し電極(正極)とするものを第一サブモジュールR1(図3A)といい、対向電極12の他端1bを取り出し電極(負極)とするものを第二サブモジュールR2(図3B)という。
The fused portion 18 extends from the other end 1b toward the one end 1a side in the width direction X2 of each of the submodules R and R with the communication conducting material 14A on the one end 1a side remaining. Thereby, each photoelectrode 11 and the counter electrode 12 in the submodules R and R constitute an electric circuit electrically connected by the communication conductor 14A.
Here, of the adjacent submodules R and R, the one that takes the other end 1b of the photoelectrode 11 as an extraction electrode (positive electrode) is called a first submodule R1 (FIG. 3A), and the other end 1b of the counter electrode 12 is called the other end 1b. What is taken as an extraction electrode (negative electrode) is referred to as a second submodule R2 (FIG. 3B).
 第二サブモジュールR2における光電極11は、第一基材3Aの幅方向X2の他端1bが切り欠かれている。すなわち、第一サブモジュールR1における第一基材3Aは、幅方向X2の他端1b側の封止材15よりも外側に張り出しており、この張出し部分が取出し電極(正極31)となる。そして、図3Aに示すように、第二サブモジュールR2における第一基材3Aは、他端1b側の封止材15の位置で切断されている。 The photoelectrode 11 in the second submodule R2 is cut out at the other end 1b in the width direction X2 of the first base material 3A. That is, the first base material 3A in the first submodule R1 projects outward from the sealing material 15 on the other end 1b side in the width direction X2, and this projecting portion becomes the extraction electrode (positive electrode 31). And as shown to FIG. 3A, 3 A of 1st base materials in 2nd submodule R2 are cut | disconnected in the position of the sealing material 15 by the side of the other end 1b.
 図3A、図3Bに示すように、第一サブモジュールR1及び第二サブモジュールR2において、光電極11の透明導電膜11Aにおける所定の封止材15と重なる位置には、長手方向X1に沿って延在し透明導電膜11Aを幅方向X2に分断する上述した第一絶縁部16が形成されている。第一絶縁部16は、第一サブモジュールR1では、導通材14の他端1b側に近接する封止材15に重なる透明導電膜11Aに第一絶縁部16が形成されている。第二サブモジュールR2では、電解液13の他端1b側に近接する封止材15に重なる透明導電膜11Aに第一絶縁部16が形成されている。 As shown in FIGS. 3A and 3B, in the first submodule R1 and the second submodule R2, the position overlapping the predetermined sealing material 15 in the transparent conductive film 11A of the photoelectrode 11 is along the longitudinal direction X1. The first insulating portion 16 that extends and divides the transparent conductive film 11A in the width direction X2 is formed. In the first submodule R1, the first insulating portion 16 is formed on the transparent conductive film 11A that overlaps the sealing material 15 that is close to the other end 1b side of the conductive material 14. In the second submodule R2, the first insulating portion 16 is formed on the transparent conductive film 11A that overlaps the sealing material 15 that is close to the other end 1b side of the electrolytic solution 13.
 第一サブモジュールR1における対向電極12は、第二基材3Bの幅方向X2の他端1bが切り欠かれている。すなわち、第二サブモジュールR2における第二基材3Bは、幅方向X2の他端1b側の封止材15よりも外側に張り出しており、この張出し部分が取出し電極(負極32)となる。そして、図3Bに示すように、第一サブモジュールR1における第二基材3Aは、他端1b側の封止材15の位置で切断されている。 The counter electrode 12 in the first submodule R1 is cut out at the other end 1b in the width direction X2 of the second base material 3B. That is, the second base material 3B in the second submodule R2 projects outward from the sealing material 15 on the other end 1b side in the width direction X2, and this projecting portion becomes the extraction electrode (negative electrode 32). Then, as shown in FIG. 3B, the second base material 3A in the first submodule R1 is cut at the position of the sealing material 15 on the other end 1b side.
 図3A、図3Bに示すように、第一サブモジュールR及び第二サブモジュールRにおいて、対向電極12の対向導電膜12Aにおける所定の封止材15と重なる位置には、長手方向X1に沿って延在し対向導電膜12Aを幅方向X2に分断する第二絶縁部17が形成されている。第一サブモジュールRでは、電解液13の他端1b側に近接する封止材15に重なる対向導電膜12Aに第二絶縁部17が形成されている。第二サブモジュールRでは、導通材14の他端1b側に近接する封止材15に重なる対向導電膜12Aに第二絶縁部17が形成されている。 As shown in FIGS. 3A and 3B, in the first submodule R and the second submodule R, the position overlapping the predetermined sealing material 15 in the counter conductive film 12A of the counter electrode 12 is along the longitudinal direction X1. A second insulating portion 17 that extends and divides the opposing conductive film 12A in the width direction X2 is formed. In the first submodule R, the second insulating portion 17 is formed on the opposing conductive film 12A that overlaps the sealing material 15 that is close to the other end 1b side of the electrolytic solution 13. In the second submodule R, the second insulating portion 17 is formed on the opposing conductive film 12A that overlaps the sealing material 15 that is close to the other end 1b side of the conductive material 14.
 このように構成される本実施の形態の太陽電池モジュール1は、第一基材3Aの幅方向X2に隣り合うセルC、C同士の間に配置された第一基材3Aの第一絶縁部16と第二基材3Bの第二絶縁部17との間に導通材14が配置され、幅方向X2に隣り合うセルC、C同士が電気的に直列に接続され、第一絶縁ライン18Aによって長手方向X1に分割されたサブモジュールR1、R2同士の幅方向X2の一端1a側の連通導通材14A同士が電気的に直列に接続されている。そして、第一サブモジュールR1の幅方向X2の他端1b側から一端1a側へ電気Eが流れるとともに、一端1a側の電気Eが他方の第二サブモジュールR2の一端1a側に導通材14を介して流れ、さらに第一サブモジュールR1の幅方向X2の一端1a側から他端1b側へ電気Eが流れる直列構造の回路構成となっている。
 図1に示すように、第一サブモジュールR1と第二サブモジュールR2では流通する電気Eの向きが幅方向X2で互いに逆向きとなり、電気の取り出し電極(正極31、負極32)の両方が幅方向X2の一端1a側に配置されている。
The solar cell module 1 according to the present embodiment configured as described above has the first insulating portion of the first base material 3A disposed between the cells C adjacent to each other in the width direction X2 of the first base material 3A. 16 and the second insulating part 17 of the second base material 3B, the conductive material 14 is disposed, and the cells C and C adjacent in the width direction X2 are electrically connected in series, and the first insulating line 18A The communication members 14A on the one end 1a side in the width direction X2 between the submodules R1 and R2 divided in the longitudinal direction X1 are electrically connected in series. Then, the electricity E flows from the other end 1b side in the width direction X2 of the first submodule R1 to the one end 1a side, and the electricity E on the one end 1a side places the conductive material 14 on the one end 1a side of the other second submodule R2. In addition, the circuit configuration has a series structure in which electricity E flows from the one end 1a side to the other end 1b side in the width direction X2 of the first submodule R1.
As shown in FIG. 1, in the first sub-module R1 and the second sub-module R2, the directions of the electricity E flowing in the first direction are opposite to each other in the width direction X2, and both of the electricity extraction electrodes (positive electrode 31 and negative electrode 32) are wide. It arrange | positions at the one end 1a side of the direction X2.
 本実施の形態の太陽電池モジュール1では、図1~図3に示すように、第一基材3A及び第二基材3Bのうち幅方向X2で一端1a側の連通導通材14Aが配置される部分から一端1aまでの導通基材幅D1が2mm以上、一端1a側の連通導通材14Aの幅寸法D2が0.5mm以上に設定されている。 In the solar cell module 1 according to the present embodiment, as shown in FIGS. 1 to 3, the communication member 14A on the one end 1a side in the width direction X2 of the first base material 3A and the second base material 3B is disposed. The conductive substrate width D1 from the portion to the one end 1a is set to 2 mm or more, and the width dimension D2 of the communication conductive material 14A on the one end 1a side is set to 0.5 mm or more.
 次に、本実施の形態の太陽電池モジュール1を製造方法について、RtoR方式の製造装置4を使用した製造方法について、図面を用いて具体的に説明する。
 図4に示すように、太陽電池モジュール1の製造方法は、第一基材3Aの表面に透明導電膜11Aが成膜され、その透明導電膜11Aの表面に長手方向X1に延在する色素が吸着した帯状の半導体層11Bが複数形成された光電極11を形成する工程と、第二基材3Bの表面に光電極11に対向するように対向導電膜12Aが成膜された対向電極12を形成する工程と、透明導電膜11A及び対向導電膜12Aに対して長手方向X1と平行に延びる第一絶縁部16及び第二絶縁部17を形成する絶縁加工を行う工程と、平面視で幅方向X2に複数のセルCを配列する封止材15を設ける工程と、封止材15の上に導通材14を配置して光電極11と対向電極12とを電気的に接続する工程と、光電極11の半導体層11Bと対向電極12との間に電解液13を設ける工程と、光電極11と対向電極12とを貼り合せる工程と、を行う。
Next, a method for manufacturing the solar cell module 1 of the present embodiment and a method for manufacturing using the RtoR manufacturing apparatus 4 will be specifically described with reference to the drawings.
As shown in FIG. 4, in the method for manufacturing the solar cell module 1, a transparent conductive film 11A is formed on the surface of the first base 3A, and a dye extending in the longitudinal direction X1 is formed on the surface of the transparent conductive film 11A. A step of forming a photoelectrode 11 in which a plurality of adsorbed strip-shaped semiconductor layers 11B are formed, and a counter electrode 12 in which a counter conductive film 12A is formed on the surface of the second substrate 3B so as to face the photoelectrode 11 A forming step, an insulating process for forming the first insulating portion 16 and the second insulating portion 17 extending parallel to the longitudinal direction X1 with respect to the transparent conductive film 11A and the counter conductive film 12A, and a width direction in a plan view. A step of providing a sealing material 15 for arranging a plurality of cells C in X2, a step of arranging a conductive material 14 on the sealing material 15 to electrically connect the photoelectrode 11 and the counter electrode 12, and a light The semiconductor layer 11B of the electrode 11 and the counter electrode 12 A step of providing an electrolyte 13, a step of bonding the photoelectrode 11 and the counter electrode 12, a done.
 具体的には、半導体電極形成部(図示省略)において、例えばエアロゾルデポジション(AD)法を用いることにより、透明導電膜11Aが成膜された第一基材3A上にTiO2を積層することで半導体層11Bを幅方向X2に間隔をあけて形成した後、半導体層11B上に色素を一般的な手法によって吸着させることで、光電極11を形成する。対向電極形成部(図示省略)において、スパッタリング法により対向導電膜12Aが成膜された第二基板3B上に白金(Pt)を積層して触媒層12Bを形成することで、対向電極12を形成する。 Specifically, in the semiconductor electrode forming portion (not shown), for example, by using an aerosol deposition (AD) method, TiO 2 is laminated on the first base material 3A on which the transparent conductive film 11A is formed. After the semiconductor layer 11B is formed at an interval in the width direction X2, the photoelectrode 11 is formed by adsorbing a dye on the semiconductor layer 11B by a general method. In the counter electrode forming section (not shown), the counter electrode 12 is formed by stacking platinum (Pt) on the second substrate 3B on which the counter conductive film 12A is formed by sputtering to form the catalyst layer 12B. To do.
 半導体電極形成部で作製された光電極11を形成し第一移動方向P1に移動する第一基材3Aでは、切込み加工装置41において、半導体層11Bと半導体層11Bとの間の位置で半円刃52の回転により長手方向X1と平行に延びる第一絶縁部16を形成する絶縁加工が行われる。このとき、第一絶縁部16は、一定の間隔(サブモジュールRの長手方向X1の長さ)毎に幅方向X2に交互にずれた位置となる規則的な絶縁加工パターンが形成される。このように交互に絶縁加工パターンを配置することで、サブモジュールR毎に+極(正極)と-極(負極)の位置を規則的に入れ替えることができる。 In the first base material 3A that forms the photoelectrode 11 manufactured in the semiconductor electrode formation portion and moves in the first movement direction P1, the semi-circle is formed at the position between the semiconductor layer 11B and the semiconductor layer 11B in the cutting device 41. Insulation processing is performed to form the first insulating portion 16 extending parallel to the longitudinal direction X1 by the rotation of the blade 52. At this time, the first insulating portion 16 is formed with a regular insulating pattern that is alternately displaced in the width direction X2 at regular intervals (the length in the longitudinal direction X1 of the submodule R). By alternately arranging the insulation processing patterns in this way, the positions of the positive electrode (positive electrode) and the negative electrode (negative electrode) can be regularly switched for each submodule R.
 次に、光電極11の第一絶縁部16の加工後、封止材塗工部42によって第一基材3Aの所定領域に形成された光電極11に封止材15を塗工する。このとき、半導体層11Bに封止材15が被覆されないように塗布される。
 そして、導通材配置部43において封止材15同士の間に導通材14を配置した後、電解液塗工部44において第一基材3Aにおける封止材15の未塗工領域に電解液13を塗工する。
Next, after processing the first insulating portion 16 of the photoelectrode 11, the sealing material 15 is applied to the photoelectrode 11 formed in a predetermined region of the first base 3 </ b> A by the sealing material coating portion 42. At this time, the semiconductor layer 11B is applied so that the sealing material 15 is not covered.
And after arrange | positioning the conduction | electrical_connection material 14 between the sealing materials 15 in the conduction | electrical_connection material arrangement | positioning part 43, in the electrolyte solution application part 44, the electrolyte solution 13 in the uncoated area | region of the sealing material 15 in the 1st base material 3A. Apply.
 一方で、対向電極形成部で作製された対向電極12を形成し第二移動方向P2に移動する第二基材3Bでは、切込み加工装置47において、触媒層12Bと触媒層12Bとの間の位置で半円刃52の回転により長手方向X1と平行に延びる第二絶縁部17を形成する絶縁加工が行われる。このとき、第二絶縁部17は、一定の間隔(サブモジュールRの長手方向X1の長さ)毎に幅方向X2に交互にずれた位置となる規則的な絶縁加工のパターンが形成される。このように交互に配置することで、サブモジュールR毎に+極と-極の位置を規則的に入れ替えることができる。 On the other hand, in the 2nd base material 3B which forms the counter electrode 12 produced in the counter electrode formation part and moves to the 2nd moving direction P2, in the cutting device 47, the position between the catalyst layer 12B and the catalyst layer 12B Thus, an insulation process is performed to form the second insulating portion 17 extending parallel to the longitudinal direction X1 by the rotation of the semicircular blade 52. At this time, a regular insulating pattern is formed in the second insulating portion 17 at positions that are alternately displaced in the width direction X2 at regular intervals (the length in the longitudinal direction X1 of the submodule R). By alternately arranging in this way, the positions of the + and − poles can be regularly switched for each submodule R.
 次いで、基材貼合せ部45において、硬化処理部(図示省略)によって封止材15が硬化されるとともに、絶縁加工された第一基材3Aと第二基材3Bとを重ね合わせた状態で一対の貼合せローラー45A、45Bを通過させることで、両基材3A、3Bを接着して貼り合せる。このとき、貼り合わされた状態で、図3A、図3Bに示すように、第一基材3Aの第一絶縁部16と第二基材3Bの第二絶縁部17とが幅方向X2にずれた位置となり、これにより導通材14(図2参照)を介して幅方向X2に分割して配列される複数のセルCが電気的に直列に接続された状態になる。 Next, in the base material laminating unit 45, the sealing material 15 is cured by a curing processing unit (not shown), and the first base material 3A and the second base material 3B that have been subjected to insulation processing are overlapped. By passing the pair of laminating rollers 45A and 45B, both base materials 3A and 3B are bonded and bonded. At this time, as shown in FIGS. 3A and 3B, the first insulating portion 16 of the first base material 3 </ b> A and the second insulating portion 17 of the second base material 3 </ b> B are displaced in the width direction X <b> 2 in the bonded state. As a result, a plurality of cells C divided and arranged in the width direction X2 through the conductive material 14 (see FIG. 2) are electrically connected in series.
 次に、貼り合せをした後、超音波融着部46において、図4に示すように、長手方向X1に一定間隔をあけて第一基材3Aと第二基材3Bを超音波振動により融着させて幅方向X2に沿って延びる融着部18(18A、18B)18Aを形成し、複数のサブモジュールR、R、…に分割する。 Next, after bonding, in the ultrasonic fusion part 46, as shown in FIG. 4, the first base material 3A and the second base material 3B are melted by ultrasonic vibration at a constant interval in the longitudinal direction X1. A fused portion 18 (18A, 18B) 18A extending along the width direction X2 is formed and divided into a plurality of submodules R, R,.
 このとき、光電極11及び対向電極12のうち正極31及び負極32を除いた部分において、幅方向X2の一端1a側の導通材14を部分的に絶縁しない第一融着部18A(第一絶縁ライン)と、幅方向X2の全体にわたって絶縁する第二融着部18B(第二絶縁ライン)と、を長手方向X1に交互に形成する。その後、光電極11と対向電極12とを第二融着部18Bの位置で切断する。図5における符号18Lの二点鎖線は、第二融着部18Bにおける切断線を示している。
 そして、第二融着部18Bで切断された太陽電池モジュールは、第一融着部18Aで分割された隣り合う一対のサブモジュールR1、R2同士の幅方向X2の一端1a側の導通材14同士が電気的に接続された状態で製造されることになる。
At this time, in the portion excluding the positive electrode 31 and the negative electrode 32 of the photoelectrode 11 and the counter electrode 12, the first fused portion 18A (first insulation) that does not partially insulate the conductive material 14 on the one end 1a side in the width direction X2. Line) and second fused portions 18B (second insulation lines) that are insulated over the entire width direction X2 are alternately formed in the longitudinal direction X1. Thereafter, the photoelectrode 11 and the counter electrode 12 are cut at the position of the second fused portion 18B. A two-dot chain line denoted by reference numeral 18L in FIG. 5 indicates a cutting line in the second fused portion 18B.
And the solar cell module cut | disconnected by the 2nd melt | fusion part 18B is the conduction | electrical_connection materials 14 by the side of the one end 1a of the width direction X2 of a pair of adjacent submodules R1 and R2 divided | segmented by the 1st melt | fusion part 18A. Are manufactured in an electrically connected state.
 第一融着部18Aと第二絶縁部18Bの絶縁加工を同時に行うことで、製造効率を向上させることも可能である。
 光電極11と対向電極12とを幅方向X2に沿って融着した融着部18の絶縁加工は、第一基材3Aの第一絶縁部16と第二基材3Bの第二絶縁部17と同時に行うようにしてもよく、これにより製造効率を向上させることができる。
It is also possible to improve manufacturing efficiency by simultaneously performing the insulation processing of the first fused portion 18A and the second insulating portion 18B.
The insulating process of the fused portion 18 in which the photoelectrode 11 and the counter electrode 12 are fused along the width direction X2 is performed by the first insulating portion 16 of the first base material 3A and the second insulating portion 17 of the second base material 3B. It may be performed at the same time, thereby improving the production efficiency.
 次に、上述した太陽電池モジュール1、及び太陽電池モジュール1の製造方法太陽電池モジュール1の作用について図面を用いて詳細に説明する。
 本実施の形態による太陽電池モジュール1では、図1及び図2に示すように、セルC毎に作成された電気Eは、第一サブモジュールRの他端1bから一端1aに向けて流れるとともに、第二サブモジュールRの一端1aから他端1bに向けて流れる。さらに、連通導通材14Aによって第一サブモジュールRの一端1aと第二サブモジュールRの一端1aとが接続されているので、第一サブモジュールRの一端1aの電気Eが、連通導通材14Aを介して第二サブモジュールR側に向けて流れる。このように太陽電池モジュール1は、一端1a側でサブモジュールR、R同士を導通させ、他端1b側で電気Eを取り出すことが可能な構成となる。すなわち、全体が平面視でU字状に電気Eが流れる構造となり、取り出し電極(正極31、負極32)を幅方向X2で同じ側(他端1b)にすることができるため、配線構造が簡略化でき、配線作業を容易に行うことができる。
Next, the effect | action of the solar cell module 1 mentioned above and the manufacturing method of the solar cell module 1 solar cell module 1 is demonstrated in detail using drawing.
In the solar cell module 1 according to the present embodiment, as shown in FIGS. 1 and 2, the electricity E created for each cell C flows from the other end 1b of the first submodule R toward the one end 1a, The second submodule R flows from one end 1a to the other end 1b. Further, since the one end 1a of the first submodule R and the one end 1a of the second submodule R are connected by the communication conducting material 14A, the electricity E of the one end 1a of the first submodule R is connected to the communication conducting material 14A. Flows toward the second submodule R. As described above, the solar cell module 1 has a configuration in which the sub-modules R and R are electrically connected to each other at the one end 1a side and the electricity E can be taken out from the other end 1b side. That is, the entire structure is such that electricity E flows in a U shape in plan view, and the extraction electrodes (positive electrode 31 and negative electrode 32) can be on the same side (the other end 1b) in the width direction X2, thus simplifying the wiring structure. And wiring work can be easily performed.
 本実施の形態では、隣り合う第二サブモジュールR、R同士の一端1a側に導通材14を配置して連通導通材14Aを設けるという簡単な構造となっている。そのため、導通材14をライン塗布するといった簡単な構成となるので、RtoR方式にも簡単に適応できる。
 この場合、RtoR方式で長手方向X1に連続的に連通導通材14Aを配置する製造工程により実現できるので、新たな作業工程を追加する必要がない。そのため、幅方向X2の一端1a側において、上述した実施の形態のように電池を作成した後作業で長手方向X1に沿うように例えば銅テープを貼り付けたり、半田付けを行うことによる配線材が不要となる。そのため、配線材を設けるための製造工程を省略することが可能となり、簡単な構成で製造にかかる作業効率を向上させることができる。
The present embodiment has a simple structure in which the conductive material 14 is provided on the one end 1a side of the adjacent second submodules R and R and the communication conductive material 14A is provided. For this reason, since the conductive material 14 is simply applied by line coating, it can be easily applied to the RtoR method.
In this case, since it can be realized by a manufacturing process in which the communication conducting material 14A is continuously arranged in the longitudinal direction X1 by the RtoR method, it is not necessary to add a new work process. Therefore, on one end 1a side in the width direction X2, for example, a copper tape is attached or soldered so as to follow the longitudinal direction X1 in the work after creating the battery as in the above-described embodiment. It becomes unnecessary. Therefore, the manufacturing process for providing the wiring material can be omitted, and the working efficiency for manufacturing can be improved with a simple configuration.
 上述した第二領域M2に導通材14(連通導通材14A)を配置することにより、第一基材3A側の透明導電膜11Aと第二基材3B側の対向導電膜12Aの両方に電気を流すことができるので、電気Eの通り道が2倍になり、電気抵抗が小さくなり、これら導電膜11A、12Aを流れる電流値を1/2以下にすることができ、電池性能を劣化させずに、発電性能の低下を抑えることができる。
このような電流値を1/2以下とするためには、本実施の形態のように連通導通材14Aが配置される部分から一端1aまでの導通基材幅D1が2mm以上、一端1a側の連通導通材14Aの幅寸法D2が0.5mm以上であることが好ましい。
By disposing the conductive material 14 (communication conductive material 14A) in the second region M2 described above, electricity is supplied to both the transparent conductive film 11A on the first base material 3A side and the opposing conductive film 12A on the second base material 3B side. Since the flow of electricity E is doubled, the electric resistance is reduced, the current value flowing through these conductive films 11A and 12A can be reduced to ½ or less, and the battery performance is not deteriorated. , It is possible to suppress a decrease in power generation performance.
In order to make such a current value ½ or less, the conductive base material width D1 from the portion where the communication conductive material 14A is disposed to the one end 1a as in the present embodiment is 2 mm or more, and the one on the one end 1a side. It is preferable that the width D2 of the communication conductive material 14A is 0.5 mm or more.
このように本実施の形態の太陽電池モジュール1では、幅方向X2の他端1b側に正極31と負極32の取り出し電極を配置することができ、電極31、32同士が近い距離で配置されることとなるので、簡単な配線構造となり、配線にかかる作業も容易に行うことができる。そのため、幅方向X2の左右両側のそれぞれに取り出し電極が設けられる場合のように、互いの電極同士が離れていて配線しにくくなるといった不具合をなくすことができる。 Thus, in the solar cell module 1 of this Embodiment, the extraction electrode of the positive electrode 31 and the negative electrode 32 can be arrange | positioned at the other end 1b side of the width direction X2, and the electrodes 31 and 32 are arrange | positioned at a short distance. As a result, the wiring structure is simple, and the wiring work can be easily performed. Therefore, as in the case where the extraction electrodes are provided on both the left and right sides in the width direction X2, it is possible to eliminate the problem that the electrodes are separated from each other and difficult to wire.
次に、本発明の太陽電池モジュールによる他の実施の形態について、添付図面に基づいて説明するが、上述の第1の実施の形態と同一又は同様な部材、部分には同一の符号を用いて説明を省略し、第1の実施の形態と異なる構成について説明する。 Next, another embodiment of the solar cell module of the present invention will be described with reference to the accompanying drawings. The same reference numerals are used for the same or similar members and parts as those of the first embodiment described above. A description is omitted, and a configuration different from the first embodiment will be described.
(第2の実施の形態)
 図6に示すように、本第2の実施の形態の色素増感太陽電池101(太陽電池モジュール)は、後述するロール・ツー・ロール方式(以下、RtoR方式と記載する)によって作製された第一の方向(長手方向X1)に長く延在するフィルム型の色素増感太陽電池を所定の長さに切断することにより製造される。
(Second Embodiment)
As shown in FIG. 6, the dye-sensitized solar cell 101 (solar cell module) of the second embodiment is manufactured by a roll-to-roll method (hereinafter referred to as an RtoR method) described later. It is manufactured by cutting a film-type dye-sensitized solar cell that extends long in one direction (longitudinal direction X1) into a predetermined length.
 図6において、矢印は電気の流れを示し(図7も同様)、記号+(プラス)、-(マイナス)はそれぞれ正極、負極を示している(他の図も同様)。
 ここで、色素増感太陽電池101において、上述したように、長手方向X1をサブモジュールRの配列方向とし、幅方向X2を平面視で長手方向X1に直交する方向として、以下統一して用いる。
In FIG. 6, arrows indicate the flow of electricity (same as in FIG. 7), and symbols + (plus) and − (minus) indicate a positive electrode and a negative electrode, respectively (the same applies to other figures).
Here, in the dye-sensitized solar cell 101, as described above, the longitudinal direction X1 is defined as the arrangement direction of the submodules R, and the width direction X2 is defined as a direction orthogonal to the longitudinal direction X1 in plan view.
 第2の実施の形態の色素増感太陽電池101は、図7に示すように、光電極111と、該光電極111と対向して設けられる対向電極112とを有する色素増感太陽電池セル(以下、単にセルCという)が、一対の基材103A、103Bの間に介挿された構造を有してなる。そして、色素増感太陽電池101は、一対の基材103A、103Bのそれぞれの内面が導電性を有する導電膜111A、112Aが成膜されており、導電膜111A、112Aに対して光電極111の半導体層111B及び対向電極112の触媒層112Bが電気的に接続され、概略構成される。 As shown in FIG. 7, the dye-sensitized solar cell 101 according to the second embodiment is a dye-sensitized solar cell having a photoelectrode 111 and a counter electrode 112 provided to face the photoelectrode 111 ( Hereinafter, cell C) has a structure inserted between a pair of base materials 103A and 103B. In the dye-sensitized solar cell 101, conductive films 111A and 112A having inner surfaces of the pair of base materials 103A and 103B are formed, and the photoelectrode 111 is formed on the conductive films 111A and 112A. The semiconductor layer 111 </ b> B and the catalyst layer 112 </ b> B of the counter electrode 112 are electrically connected to each other and are schematically configured.
 色素増感太陽電池101は、上述したように光電極111と対向電極112とが封止機能付きの導通材114を介して対向配置され、第一基材103A及び第二基材103Bの間に形成された複数のセルC,C,…が幅方向X2に沿って電気的に直列接続されている。 In the dye-sensitized solar cell 101, as described above, the photoelectrode 111 and the counter electrode 112 are arranged to face each other via the conductive material 114 having a sealing function, and between the first base material 103A and the second base material 103B. A plurality of formed cells C, C,... Are electrically connected in series along the width direction X2.
 具体的に色素増感太陽電池101は、第一基材103Aと、第二基材103Bと、光電極111(第一電極)と、対向電極112(第二電極)と、電解液113と、導通材114と、封止材115と、第一絶縁部116と、第二絶縁部117と、超音波融着部118と、を備えている。
 光電極111は、第一基材103A上に積層された透明導電膜111Aと、透明導電膜111A上に積層された多孔質の半導体層111Bと、を備えている。対向電極112は、第二基材103B上に積層された対向導電膜112Aと、対向導電膜112A上に積層された触媒層112Bと、を備えている。
Specifically, the dye-sensitized solar cell 101 includes a first base material 103A, a second base material 103B, a photoelectrode 111 (first electrode), a counter electrode 112 (second electrode), an electrolytic solution 113, A conductive material 114, a sealing material 115, a first insulating part 116, a second insulating part 117, and an ultrasonic fusion part 118 are provided.
The photoelectrode 111 includes a transparent conductive film 111A stacked on the first base material 103A and a porous semiconductor layer 111B stacked on the transparent conductive film 111A. The counter electrode 112 includes a counter conductive film 112A stacked on the second base material 103B, and a catalyst layer 112B stacked on the counter conductive film 112A.
 第一基材103A及び第二基材103Bの材質は、第1の実施の形態と同様であるので、ここでは詳しい説明を省略する。 Since the materials of the first base material 103A and the second base material 103B are the same as those in the first embodiment, detailed description thereof is omitted here.
 光電極111は、第一基材103Aの表面に透明導電膜111Aが成膜され、第一基材103Aの透明導電膜111Aの表面に長手方向X1に延在する色素が吸着した帯状の半導体層111Bが複数形成されている。対向電極112は、光電極111に対向するように対向導電膜112Aが成膜されている。 The photoelectrode 111 is a band-shaped semiconductor layer in which a transparent conductive film 111A is formed on the surface of the first base material 103A, and a dye extending in the longitudinal direction X1 is adsorbed on the surface of the transparent conductive film 111A of the first base material 103A. A plurality of 111B are formed. A counter conductive film 112 </ b> A is formed on the counter electrode 112 so as to face the photoelectrode 111.
 透明導電膜111A、対向導電膜112Aの種類や材質は、第1の実施の形態と同様であるので、ここでは詳しい説明を省略する。 Since the types and materials of the transparent conductive film 111A and the counter conductive film 112A are the same as those in the first embodiment, detailed description thereof is omitted here.
 電解液113は、光電極111の半導体層111Bと対向電極112との間に封止されている。
 電解液113としては、第1の実施の形態と同様であるので、ここでは詳しい説明を省略する。
The electrolytic solution 113 is sealed between the semiconductor layer 111 </ b> B of the photoelectrode 111 and the counter electrode 112.
Since the electrolytic solution 113 is the same as that of the first embodiment, detailed description thereof is omitted here.
 封止材115は、電解液113を封止するとともに、幅方向X2に分割された複数のセルCを配列する構成となっている。封止材115は、対向する第一基材103A及び第二基材103Bを接着し、且つこれら基材103A、103B間に形成されたセルCを封止することが可能な非導電性の部材であれば特に制限されない。 The sealing material 115 is configured to seal the electrolytic solution 113 and to arrange a plurality of cells C divided in the width direction X2. The sealing material 115 is a non-conductive member that can bond the opposing first base material 103A and second base material 103B and seal the cell C formed between the base materials 103A and 103B. If it is, it will not be restrict | limited in particular.
 封止材115の材料としては、第1の実施の形態と同様であるので、ここでは詳しい説明を省略する。 Since the material of the sealing material 115 is the same as that of the first embodiment, detailed description thereof is omitted here.
 導通材114は、封止材115によって幅方向X2の両側が覆われた状態で設けられ、光電極111の透明導電膜111Aと対向電極112の対向導電膜112Aとに直接接触し、光電極111と対向電極112とを電気的に接続する。 The conductive material 114 is provided in a state where both sides in the width direction X2 are covered with the sealing material 115, and is in direct contact with the transparent conductive film 111A of the photoelectrode 111 and the counter conductive film 112A of the counter electrode 112. And the counter electrode 112 are electrically connected.
 導通材114は、光電極11と対向電極112との間で互いに平行に配され、第一基材103A上の光電極111と第二基材103B上の対向電極112とに接している。導通材114は、第1の実施の形態と同様であるので、ここでは詳しい説明を省略する。 The conducting material 114 is disposed in parallel between the photoelectrode 11 and the counter electrode 112, and is in contact with the photoelectrode 111 on the first base material 103A and the counter electrode 112 on the second base material 103B. Since the conductive material 114 is the same as that of the first embodiment, a detailed description thereof is omitted here.
 導通材114に用いる導電材料としては、第1の実施の形態と同様であるので、ここでは詳しい説明を省略する。 Since the conductive material used for the conductive material 114 is the same as that of the first embodiment, detailed description thereof is omitted here.
 導通材114の幅方向X2の両側には封止材115,115が配され、導通材114と封止材115とにより、光電極111と対向電極112との間を接着している。色素増感太陽電池101には、図6及び図8に示すように、長手方向X1に複数のサブモジュールR、R、…を画成するように、幅方向X2に沿って延びる超音波融着部118(絶縁ライン)が形成されている。超音波融着部118は、超音波融着等の手段(図9に示す超音波融着手段146参照)により絶縁及び接着されることにより形成される。
 このようにして、それぞれに半導体層111Bを有するセルCは、導通材114によって、光電極111と対向電極112の間に形成される厚み方向の間隙内に電解液113が液密に封止された状態で形成されている。
Sealing materials 115 and 115 are disposed on both sides of the conducting material 114 in the width direction X <b> 2, and the photoelectrode 111 and the counter electrode 112 are bonded by the conducting material 114 and the sealing material 115. As shown in FIGS. 6 and 8, the dye-sensitized solar cell 101 has ultrasonic fusion extending along the width direction X2 so as to define a plurality of submodules R, R,... In the longitudinal direction X1. A portion 118 (insulation line) is formed. The ultrasonic fusion part 118 is formed by insulation and adhesion by means such as ultrasonic fusion (see ultrasonic fusion means 146 shown in FIG. 9).
In this way, in the cells C each having the semiconductor layer 111B, the electrolytic solution 113 is liquid-tightly sealed in the gap in the thickness direction formed between the photoelectrode 111 and the counter electrode 112 by the conductive material 114. It is formed in the state.
 透明導電膜111A及び対向導電膜112Aの所定の箇所には、それぞれ例えば刃物を備えた切込み装置やレーザー照射装置等を用いて絶縁処理された複数のパターニング部(第一絶縁部116、第二絶縁部117)が設けられている。例えば、図7に示すように、第一絶縁部116は、透明導電膜111Aにおける所定の封止材115に接触する位置において、上述した絶縁処理により長手方向X1に延びて形成されている(図10参照)。第二絶縁部117は、対向導電膜112Aにおける所定の封止材115に接触する位置において、上述した絶縁処理により長手方向X1に延びて形成されている(図11参照)。そして、本色素増感太陽電池101では、幅方向X2に隣り合うセルC、Cのうち一方のセルC(図7のC1)における第一基材103Aに形成される隣り合う第一絶縁部116、116同士の間の透明導電膜111Aと、他方のセルC(図7のC2)における第二基材103Bに形成される隣り合う第二絶縁部117、117同士の間の対向導電膜112Aとが、一方のセルC1と他方のセルC2との間に配置される導通材114に接続されている。 A plurality of patterning portions (first insulating portion 116, second insulating portion) that are insulated by using, for example, a cutting device equipped with a cutting tool, a laser irradiation device, or the like are provided at predetermined positions of the transparent conductive film 111A and the counter conductive film 112A. Part 117). For example, as shown in FIG. 7, the first insulating portion 116 is formed to extend in the longitudinal direction X1 by the above-described insulation treatment at a position in contact with the predetermined sealing material 115 in the transparent conductive film 111A (FIG. 7). 10). The second insulating portion 117 is formed to extend in the longitudinal direction X1 by the above-described insulating treatment at a position in contact with the predetermined sealing material 115 in the counter conductive film 112A (see FIG. 11). And in this dye-sensitized solar cell 101, the adjacent 1st insulation part 116 formed in the 1st base material 103A in one cell C (C1 of FIG. 7) among the cells C and C adjacent in the width direction X2. , 116 between the transparent conductive film 111A and the opposing conductive film 112A between the adjacent second insulating parts 117 and 117 formed on the second base material 103B in the other cell C (C2 in FIG. 7). Is connected to a conductive material 114 disposed between one cell C1 and the other cell C2.
 図10に示すように、サブモジュールR、Rのうち一方のサブモジュールRの第一絶縁部116と、他方のサブモジュールRの第一絶縁部116とは、幅方向X2にずれた位置にパターニングされている。これは、図11に示す第二絶縁部117についても同様である。 As shown in FIG. 10, the first insulating portion 116 of one submodule R of the submodules R and R and the first insulating portion 116 of the other submodule R are patterned at positions shifted in the width direction X2. Has been. The same applies to the second insulating portion 117 shown in FIG.
 図12及び図13に示すように、第一絶縁部116及び第二絶縁部117は、幅方向X1に配置されるセルC、C同士の間において、超音波融着部118によって絶縁されるサブモジュールR毎に幅方向X2で導通材114を挟んで交互にずれた位置に配置されている。そして、図14A、図14Bに示すように、セルC、C同士の間において、隣り合うサブモジュールR、Rのそれぞれに形成される第一絶縁部116の端部116a、及び第二絶縁部117の端部117aは、超音波融着部118に重なるように長手方向X1で超音波融着部118の領域内まで延ばされた状態で配置されている。さらに、セルC、C同士の間において、隣り合うサブモジュールR、Rのうち一方の絶縁部116、117と他方の絶縁部116、117の互いに近接する側の端部116a、117a同士が長手方向X1に重なっている。
 第一絶縁部116及び第二絶縁部117は、超音波融着部との重なり長さK(図14A)が0.1mm以上5mm以下に設定されている。
As shown in FIGS. 12 and 13, the first insulating portion 116 and the second insulating portion 117 are insulated by the ultrasonic fusion portion 118 between the cells C and C arranged in the width direction X1. Each module R is disposed at a position that is alternately shifted across the conductive material 114 in the width direction X2. And as shown to FIG. 14A and FIG. 14B, between the cells C and C, the edge part 116a of the 1st insulation part 116 and the 2nd insulation part 117 which are formed in each of the adjacent submodules R and R between. The end portion 117 a is arranged so as to extend into the region of the ultrasonic fusion portion 118 in the longitudinal direction X 1 so as to overlap the ultrasonic fusion portion 118. Further, between the cells C and C, the end portions 116a and 117a of the adjacent submodules R and R adjacent to each other between the one insulating portion 116 and 117 and the other insulating portion 116 and 117 are in the longitudinal direction. It overlaps with X1.
The first insulating portion 116 and the second insulating portion 117 have an overlapping length K (FIG. 14A) with the ultrasonic fusion portion set to be 0.1 mm or more and 5 mm or less.
 次に、本第2の実施の形態の色素増感太陽電池101におけるRtoR方式による製造方法について、図面を用いて具体的に説明する。
 図9に示すように、色素増感太陽電池101を製造方法は、先ず、半導体電極形成部(図示省略)において、例えばエアロゾルデポジション(AD)法を用いることにより、透明導電膜111Aが成膜された第一基材103A上にTiO2を積層することで半導体層111Bを幅方向X2に間隔をあけて形成した後、半導体層111B上に色素を一般的な手法によって吸着させることで、光電極111を形成する。対向電極形成部(図示省略)において、スパッタリング法により対向導電膜112Aが成膜された第二基板103B上に白金(Pt)を積層して触媒層112Bを形成することで、対向電極112を形成する。
Next, a manufacturing method using the RtoR method in the dye-sensitized solar cell 101 according to the second embodiment will be specifically described with reference to the drawings.
As shown in FIG. 9, in the method of manufacturing the dye-sensitized solar cell 101, first, a transparent conductive film 111A is formed by using, for example, an aerosol deposition (AD) method in a semiconductor electrode forming portion (not shown). After laminating TiO2 on the first base material 103A formed to form the semiconductor layer 111B at an interval in the width direction X2, a dye is adsorbed on the semiconductor layer 111B by a general method, thereby producing a photoelectrode 111 is formed. In the counter electrode forming portion (not shown), platinum (Pt) is stacked on the second substrate 103B on which the counter conductive film 112A is formed by a sputtering method to form the catalyst layer 112B, thereby forming the counter electrode 112. To do.
 半導体電極形成部で作製された光電極111を形成し第一移動方向P1に移動する第一基材103Aでは、切込み加工装置150において、半導体層111Bと半導体層111Bとの間の位置で半円刃152の回転により長手方向X1と平行に延びる第一絶縁部116を形成する絶縁加工が行われる。このとき、第一絶縁部16は、図10に示すように、一定の間隔(サブモジュールRの長手方向X1の長さ)毎に幅方向X2に交互にずれた位置となる規則的な絶縁加工パターンが形成される。このように交互に絶縁加工パターンを配置することで、サブモジュールR毎に+極(正極)と-極(負極)の位置を規則的に入れ替えることができる。 In the first base material 103A that forms the photoelectrode 111 produced in the semiconductor electrode formation portion and moves in the first movement direction P1, the semi-circle is formed at a position between the semiconductor layer 111B and the semiconductor layer 111B in the cutting apparatus 150. Insulation processing is performed to form the first insulating portion 116 extending parallel to the longitudinal direction X1 by the rotation of the blade 152. At this time, as shown in FIG. 10, the first insulating portion 16 is regularly insulated at positions that are alternately shifted in the width direction X2 at regular intervals (the length in the longitudinal direction X1 of the submodule R). A pattern is formed. By alternately arranging the insulation processing patterns in this way, the positions of the positive electrode (positive electrode) and the negative electrode (negative electrode) can be regularly switched for each submodule R.
 ここで、第一絶縁加工部141は、図15及び図16に示すように、本実施の形態では複数の半円刃152を備えた切込み加工装置150を採用している。切込み加工装置150は、軸O1を中心にして回転自在に設けられた回転軸151と、回転軸151の周囲に軸O1方向に所定間隔をあけて配置された半円刃152と、を備え、回転軸151の軸O1方向を幅方向X2に向けて配置されている。
 半円刃152は、回転軸151の外周面の円周方向に沿って180°の範囲に連続して設けられ、軸O1方向から見て全周のうち所定の半周部分の領域に配置された第一半円刃152Aと、第一半円刃152Aが配置されていない別の半周部分の領域に配置された第二半円刃152Bと、からなる。これら複数の第一半円刃152Aは、超音波融着部118によって長手方向X1に画成される第一基材103AのサブモジュールRのうち隣接する一方のサブモジュールRの複数の絶縁部116を同時に形成する。複数の第二半円刃152Bは、前記隣接するサブモジュールRのうち他方の領域の複数の絶縁部116を同時に形成する。半円刃152の周長(外周長)は、サブモジュールRにおいて絶縁加工される絶縁部116の長手方向X1の長さに一致するように設定されている。
Here, as shown in FIG.15 and FIG.16, the 1st insulation process part 141 employ | adopts the incision processing apparatus 150 provided with the several semicircle blade 152 in this Embodiment. The cutting device 150 includes a rotary shaft 151 provided so as to be rotatable about an axis O1, and a semicircular blade 152 arranged around the rotary shaft 151 at a predetermined interval in the direction of the axis O1. The axis O1 direction of the rotating shaft 151 is arranged in the width direction X2.
The semicircular blade 152 is continuously provided in a range of 180 ° along the circumferential direction of the outer peripheral surface of the rotating shaft 151, and is disposed in a predetermined half-circumferential region of the entire circumference as viewed from the axis O1 direction. The first semicircular blade 152A and the second semicircular blade 152B disposed in a region of another semicircular portion where the first semicircular blade 152A is not disposed. The plurality of first semicircular blades 152A includes a plurality of insulating portions 116 of one adjacent submodule R among the submodules R of the first base material 103A defined in the longitudinal direction X1 by the ultrasonic fusion portion 118. Are formed at the same time. The plurality of second semicircular blades 152B simultaneously form a plurality of insulating portions 116 in the other region of the adjacent submodules R. The circumferential length (outer circumferential length) of the semicircular blade 152 is set so as to coincide with the length in the longitudinal direction X1 of the insulating portion 116 to be insulated in the submodule R.
 軸O1方向に隣り合う第一半円刃152A同士の間隔と、軸O1方向に隣り合う第二半円刃152B同士の間隔は、等距離に設定されている。第一半円刃152Aと第二半円刃152Bとは、同一円周上には配置されず、軸O1方向にずれた位置に設けられている。
 半円刃152(152A、152B)は、導電膜111A、112Aが成膜された基材103A、103Bの表面に対して回転軸151とともに回転されたときに、導電膜111A、112Aのみに溝状の切込みを形成する。例えば、導電膜111A、112Aは厚さ方向に切込みが形成され、基材103A、103Bの厚さ方向の一部が切り込まれても全体が切り込まれないように設定されている。
 半円刃152の軸O1方向の間隔、周長、第一半円刃152Aと第二半円刃152Bの軸O1方向のずれ量は、絶縁部116の設定に応じて適宜変更することができる。
The interval between the first semicircular blades 152A adjacent in the axis O1 direction and the interval between the second semicircular blades 152B adjacent in the axis O1 direction are set to be equal. The first semicircular blade 152A and the second semicircular blade 152B are not arranged on the same circumference, but are provided at positions shifted in the direction of the axis O1.
The semicircular blades 152 (152A, 152B) are grooved only in the conductive films 111A, 112A when rotated together with the rotating shaft 151 with respect to the surfaces of the base materials 103A, 103B on which the conductive films 111A, 112A are formed. Form a notch. For example, the conductive films 111A and 112A are set so that cuts are formed in the thickness direction, and even if a part of the base materials 103A and 103B is cut in the thickness direction, the whole is not cut.
The interval in the axis O1 direction of the semicircular blade 152, the circumferential length, and the shift amount in the axis O1 direction of the first semicircular blade 152A and the second semicircular blade 152B can be changed as appropriate according to the setting of the insulating portion 116. .
 次に、光電極111の第一絶縁部116の加工後、封止材塗工部142によって第一基材103Aの所定領域に形成された光電極111に封止材115を塗工する。このとき、半導体層111Bに封止材115が被覆されないように塗布される。
 そして、導通材配置部143において封止材115同士の間に導通材114を配置した後、電解液塗工部144において第一基材103Aにおける封止材115の未塗工領域に電解液113を塗工する。
Next, after processing the first insulating portion 116 of the photoelectrode 111, the sealing material 115 is applied to the photoelectrode 111 formed in a predetermined region of the first base material 103 </ b> A by the sealing material application portion 142. At this time, the semiconductor layer 111B is applied so that the sealing material 115 is not covered.
And after arrange | positioning the electrically conductive material 114 between the sealing materials 115 in the electrically conductive material arrangement | positioning part 143, in the electrolyte solution application part 144, the electrolyte solution 113 in the uncoated area | region of the sealing material 115 in the 1st base material 103A. Apply.
 一方で、対向電極形成部で作製された対向電極112を形成し第二移動方向P2に移動する第二基材103Bでは、切込み加工装置150において、触媒層112Bと触媒層112Bとの間の位置で半円刃152の回転により長手方向X1と平行に延びる第二絶縁部117を形成する絶縁加工が行われる(図15及び図16参照)。このとき、第二絶縁部117は、図11に示すように、一定の間隔(サブモジュールRの長手方向X1の長さ)毎に幅方向X2に交互にずれた位置となる規則的な絶縁加工のパターンが形成される。このように交互に配置することで、サブモジュールR毎に+極と-極の位置を規則的に入れ替えることができる。 On the other hand, in the 2nd base material 103B which forms the counter electrode 112 produced in the counter electrode formation part and moves to the 2nd moving direction P2, in the cutting device 150, the position between the catalyst layer 112B and the catalyst layer 112B Thus, an insulating process for forming the second insulating portion 117 extending in parallel with the longitudinal direction X1 is performed by the rotation of the semicircular blade 152 (see FIGS. 15 and 16). At this time, as shown in FIG. 11, the second insulating portion 117 is regularly insulated at positions that are alternately displaced in the width direction X2 at regular intervals (the length in the longitudinal direction X1 of the submodule R). Pattern is formed. By alternately arranging in this way, the positions of the + and − poles can be regularly switched for each submodule R.
 次いで、基材貼合せ部145において、硬化処理部(図示省略)によって封止材115が硬化されるとともに、絶縁加工された第一基材103Aと第二基材103Bとを重ね合わせた状態で一対の貼合せローラー145A、145Bを通過させることで、両基材13A、13Bを接着して貼り合せる。このとき、貼り合わされた状態で、図12に示すように、第一基材103Aの第一絶縁部116と第二基材103Bの第二絶縁部117とが幅方向X2にずれた位置となり、これにより導通材114(図7参照)を介して幅方向X2に分割して配列される複数のセルCが電気的に直列に接続された状態になる。 Next, in the base material laminating portion 145, the sealing material 115 is cured by a curing processing portion (not shown), and the first base material 103 </ b> A and the second base material 103 </ b> B that have been subjected to insulation processing are overlapped. By passing the pair of laminating rollers 145A and 145B, both base materials 13A and 13B are bonded and bonded together. At this time, as shown in FIG. 12, the first insulating portion 116 of the first base material 103 </ b> A and the second insulating portion 117 of the second base material 103 </ b> B are shifted in the width direction X <b> 2 in the bonded state, As a result, the plurality of cells C divided and arranged in the width direction X2 through the conductive material 114 (see FIG. 7) are electrically connected in series.
 次に、図9及び図13に示すように、貼り合せをした後、超音波融着手段146において、長手方向X1に一定間隔をあけて第一基材103Aと第二基材103Bを超音波振動により融着させて幅方向X2に沿って延びる超音波融着部118を形成し、複数のサブモジュールR、R、…に分割する。 Next, as shown in FIGS. 9 and 13, after bonding, the ultrasonic fusion means 146 ultrasonicates the first base material 103 </ b> A and the second base material 103 </ b> B with a certain interval in the longitudinal direction X <b> 1. An ultrasonic fusion bonding portion 118 that is fused by vibration and extends along the width direction X2 is formed and divided into a plurality of submodules R, R,.
 さらに、図6に示すように、貼り合せた両基材103A、103Bの幅方向X2の両端部に、長手方向X1に沿うように配線材119を例えば銅テープや半田付けにより貼り付ける。このとき、配線材119は、長手方向X1に配列される超音波融着部118の端部を幅方向X2に交互に被覆した状態で配置される。これにより、直列配線されたサブモジュールR同士のセルCを直列に接続した色素増感太陽電池101を製造することができ、電気がサブモジュールR毎に幅方向X2に交互(図6の矢印E方向)に流れることになる。そして、色素増感太陽電池101は、超音波融着部118に沿って切断可能であり、必要な任意の長さの位置で切断され、所望の長さの色素増感太陽電池101を生産することができる。 Further, as shown in FIG. 6, the wiring material 119 is attached to both ends of the bonded base materials 103A and 103B in the width direction X2 along the longitudinal direction X1 by, for example, copper tape or soldering. At this time, the wiring member 119 is disposed in a state where the ends of the ultrasonic fusion portions 118 arranged in the longitudinal direction X1 are alternately covered in the width direction X2. This makes it possible to manufacture the dye-sensitized solar cell 101 in which the cells C of the submodules R connected in series are connected in series, and electricity is alternated in the width direction X2 for each submodule R (arrow E in FIG. 6). Direction). The dye-sensitized solar cell 101 can be cut along the ultrasonic fusion part 118, and is cut at a position of any desired length to produce the dye-sensitized solar cell 101 having a desired length. be able to.
 次に、上述した色素増感太陽電池101の作用について図面を用いて詳細に説明する。
 本実施の形態による色素増感太陽電池101では、図14A、図14Bに示すように、第一絶縁部116及び第二絶縁部117の端部116a、117aが超音波融着部118の領域内まで延ばされた状態で配置され、これら端部116a、117aが超音波融着部118に重なるように配置されているので、製造過程において超音波融着部118の位置が図17A、図17B及び図18A、図18Bに示すように、長手方向X1にずれた位置に形成された場合でも、これら絶縁部116、117と超音波融着部118との間に離間が生じることを防止することができる。
Next, the effect | action of the dye-sensitized solar cell 101 mentioned above is demonstrated in detail using drawing.
In the dye-sensitized solar cell 101 according to the present embodiment, as shown in FIGS. 14A and 14B, the end portions 116 a and 117 a of the first insulating portion 116 and the second insulating portion 117 are within the region of the ultrasonic fusion portion 118. 17A and 17B, the end portions 116a and 117a are disposed so as to overlap the ultrasonic fusion portion 118, and therefore the position of the ultrasonic fusion portion 118 in the manufacturing process is shown in FIGS. 17A and 17B. As shown in FIGS. 18A and 18B, even when formed at a position shifted in the longitudinal direction X1, it is possible to prevent the insulation portions 116 and 117 and the ultrasonic fusion portion 118 from being separated. Can do.
 図17A、図17Bは、製造過程において、超音波融着部118が正規の中心軸Oに対して紙面左側にずれた位置で絶縁処理された場合を示している。図18A、図18Bは、製造過程において、超音波融着部118が正規の中心軸Oに対して紙面右側にずれた位置で絶縁処理された場合を示している。このように本実施の形態では、超音波融着部118が施工誤差によりずれた場合でも、第一絶縁部116及び第二絶縁部117の端部116a、117aが超音波融着部118に重なった状態を維持することができる。 FIG. 17A and FIG. 17B show a case where, in the manufacturing process, the ultrasonic weld 118 is insulated at a position shifted to the left side of the paper with respect to the normal center axis O. FIG. 18A and FIG. 18B show a case where, in the manufacturing process, the ultrasonic fusion part 118 is insulated at a position shifted to the right side of the paper with respect to the normal center axis O. As described above, in the present embodiment, even when the ultrasonic fusion part 118 is displaced due to a construction error, the end parts 116 a and 117 a of the first insulation part 116 and the second insulation part 117 overlap with the ultrasonic fusion part 118. Can be maintained.
 そのため、幅方向X2に隣り合うセルC、C同士が確実に絶縁されることから、これらセルC、C間におけるリークの発生を抑制することができ、発電効率の低下を防ぐことが可能でセルC、C同士が直列に電気的に接続される。
 本実施の形態では、第一絶縁部116及び第二絶縁部117の端部1116a、117a同士が超音波融着部118の領域内で長手方向X1に重なっていることから、幅方向X2に隣り合うセルC、C同士を確実に絶縁することができる。
Therefore, since the cells C and C adjacent in the width direction X2 are reliably insulated from each other, it is possible to suppress the occurrence of leakage between the cells C and C and to prevent a decrease in power generation efficiency. C and C are electrically connected in series.
In the present embodiment, the end portions 1116a and 117a of the first insulating portion 116 and the second insulating portion 117 overlap with each other in the longitudinal direction X1 within the region of the ultrasonic fusion portion 118, so that they are adjacent to the width direction X2. The matching cells C and C can be reliably insulated from each other.
 このように本実施の形態では、隣り合うサブモジュールR、R同士が幅方向X2の一方の端部側で配線材119(図6参照)を介して電気的に直列に接続されているから、一方のサブモジュールRにおいて幅方向X2の他端側から一端側へ電気が流れるとともに、一端側の電気が他方のサブモジュールRの一端側に配線材119を介して流れ、さらに他方のサブモジュールRにおいて幅方向X2の一端側から他端側へ電気が流れる回路構成を実現することができる。 As described above, in the present embodiment, adjacent submodules R and R are electrically connected in series via the wiring member 119 (see FIG. 6) on one end side in the width direction X2. In one submodule R, electricity flows from the other end side in the width direction X2 to one end side, and electricity on one end side flows to one end side of the other submodule R via the wiring member 119, and the other submodule R The circuit configuration in which electricity flows from one end side to the other end side in the width direction X2 can be realized.
 超音波融着部118に重なる第一絶縁部116及び第二絶縁部117は、透明導電膜111Aと対向導電膜112Aの所定位置において、上述したように超音波融着部118の領域に重なるように長手方向X1に沿って例えば切込み加工やレーザー加工を施すことにより簡単に製造することが可能となる。そのため、RtoR方式にも簡単に適応できる。 As described above, the first insulating portion 116 and the second insulating portion 117 that overlap the ultrasonic fusion portion 118 overlap the region of the ultrasonic fusion portion 118 at a predetermined position of the transparent conductive film 111A and the opposing conductive film 112A. It can be easily manufactured by performing, for example, cutting or laser processing along the longitudinal direction X1. Therefore, it can be easily adapted to the RtoR method.
 本実施の形態では、図14Aに示すように、各絶縁部116、117と超音波融着部118との重なり長さKの範囲を0.1mm以上5mm以下に設定されていてもよい。このような数値範囲とすることで、RtoR方式による製造方法において超音波融着部118の長手方向X1への標準的なずれ量(例えば0.1mm)が生じた場合でも、第一絶縁部116及び第二絶縁部117が超音波融着部118から離間することがなくなり、幅方向X2に隣り合うセルC、C間のリークを防止することができる。 In the present embodiment, as shown in FIG. 14A, the range of the overlapping length K between the insulating portions 116 and 117 and the ultrasonic fusion portion 118 may be set to 0.1 mm or more and 5 mm or less. By setting the numerical value in such a range, even when a standard deviation amount (for example, 0.1 mm) in the longitudinal direction X1 of the ultrasonic fused portion 118 occurs in the manufacturing method by the RtoR method, the first insulating portion 116 is used. In addition, the second insulating portion 117 is not separated from the ultrasonic fused portion 118, and leakage between the cells C and C adjacent in the width direction X2 can be prevented.
 さらに、図19A、図19Bに示すように、各絶縁部116、117のそれぞれの端部における超音波融着部との重なり開始位置116b、117bからの先端116c、117cまでの長さ寸法Kを超音波融着部118の幅寸法Lで割った値が、0<K/L<1.5の範囲となるように設定されていてもよい。K/Lの範囲は、0.5<K/L<1.5の範囲で設定されていることが好ましく、さらに1.0<K/L<1.5の範囲で設定されていることがより好ましい。
 この場合には、RtoR方式による製造方法において超音波融着部118の長手方向X1への標準的なずれ量(例えば0.1mm)が生じた場合でも、第一絶縁部116及び第二絶縁部117が超音波融着部118から離間する可能性が小さくなり、幅方向X2に隣り合うセルC、C間のリークを防止することができる。K/Lの値が1.5より小さいことから、一方のサブモジュールRの絶縁部116、117の先端116c、117cが反対側の他方のサブモジュールR側に突出する長さも小さく抑えることができるので、他方のサブモジュールRにおける電気抵抗となることを抑制することができる。K/Lの値が0.5を超えるときには、上述したような超音波のずれに対してもより確実に対応することができ、超音波部が第一絶縁部116または第二絶縁部117にかからないほどずれた場合であっても、電気の通り道が絶縁部116、117を迂回するように流れるために抵抗が高くなり、電池性能の低下を軽減できる。
Furthermore, as shown in FIGS. 19A and 19B, the length dimension K from the overlapping start positions 116b and 117b to the tips 116c and 117c at the respective ends of the insulating portions 116 and 117 with the ultrasonic fusion portion is set. The value divided by the width dimension L of the ultrasonic fused portion 118 may be set to be in the range of 0 <K / L <1.5. The range of K / L is preferably set in the range of 0.5 <K / L <1.5, and more preferably in the range of 1.0 <K / L <1.5. More preferred.
In this case, even if a standard deviation amount (for example, 0.1 mm) in the longitudinal direction X1 of the ultrasonic fused portion 118 occurs in the manufacturing method by the RtoR method, the first insulating portion 116 and the second insulating portion. The possibility that the 117 is separated from the ultrasonic fusion part 118 is reduced, and leakage between the cells C and C adjacent to each other in the width direction X2 can be prevented. Since the value of K / L is smaller than 1.5, the length at which the tips 116c and 117c of the insulating portions 116 and 117 of one submodule R protrude to the other submodule R side on the opposite side can be kept small. Therefore, it can suppress becoming an electrical resistance in the other submodule R. When the value of K / L exceeds 0.5, it is possible to more reliably cope with the ultrasonic wave deviation as described above, and the ultrasonic wave part becomes the first insulating part 116 or the second insulating part 117. Even in a case where the deviation is not so great, the electric path flows so as to bypass the insulating portions 116 and 117, so that the resistance becomes high and the deterioration of the battery performance can be reduced.
 K/Lは2.0より小さい範囲としてもよいが、この値が1.5以上2.0未満の場合には、上述したような反対側のサブモジュールR側への突出長が大きくなるので、電気抵抗が増え、性能が低下することになる。
 そして、図19A、図19Bに示す第1変形例では、K/Lが1.0を超えているので、上述したような超音波融着部118のずれや第一絶縁部116または第二絶縁部117にかからないほどのずれに対してもさらに確実な改善効果が望め、製造される電池性能の安定性を高めることができる。
K / L may be in a range smaller than 2.0, but if this value is 1.5 or more and less than 2.0, the protruding length toward the opposite sub-module R side as described above becomes large. As a result, the electrical resistance increases and the performance decreases.
And in the 1st modification shown in Drawing 19A and Drawing 19B, since K / L exceeds 1.0, the shift of ultrasonic fusion part 118 as mentioned above, the 1st insulation part 116, or the 2nd insulation A more reliable improvement effect can be expected even with respect to a deviation that does not affect the portion 117, and the stability of the manufactured battery performance can be enhanced.
 本実施の形態では、図14Aに示すように、一方のサブモジュールRの第一絶縁部116と他方のサブモジュールの第二絶縁部117の長手方向X1の重なり(オーバーラップ長l)を超音波融着部118の幅寸法Lで割った値が、0<K/L<1.5の範囲となるように設定されていてもよい。 In the present embodiment, as shown in FIG. 14A, the overlap (overlap length l) in the longitudinal direction X1 of the first insulating portion 116 of one submodule R and the second insulating portion 117 of the other submodule is measured by ultrasonic waves. The value divided by the width dimension L of the fused part 118 may be set to be in the range of 0 <K / L <1.5.
(第3の実施の形態)
 図20に示す第2の実施の形態による色素増感太陽電池101Aは、幅方向X2に配列される複数のセルCから構成される2つの区画(サブモジュールR、R)を長手方向X1に隣接させた電池構造であり、隣接するサブモジュールR、R同士を幅方向X2の一端101a側で電気的に接続した構造となっている。
 超音波融着部118は、各サブモジュールR、Rにおける幅方向X2で一端101a側の配線材119を残した状態で他端1bから一端101a側に向けて延びている。これにより、サブモジュールR、Rにおけるそれぞれの光電極111と対向電極112は、配線材119によって電気的に接続された電気回路を構成している。
(Third embodiment)
In the dye-sensitized solar cell 101A according to the second embodiment shown in FIG. 20, two sections (submodules R and R) each composed of a plurality of cells C arranged in the width direction X2 are adjacent to each other in the longitudinal direction X1. The battery structure is such that adjacent submodules R and R are electrically connected to each other on the one end 101a side in the width direction X2.
The ultrasonic fusion part 118 extends from the other end 1b toward the one end 101a in the width direction X2 in each of the submodules R and R with the wiring member 119 on the one end 101a side left. Thereby, each photoelectrode 111 and the counter electrode 112 in the submodules R and R constitute an electric circuit electrically connected by the wiring member 119.
 第3の実施の形態では、長手方向X1の一端1a側のサブモジュールR、R同士が配線材119によって電気的に接続され、一対のサブモジュールR、Rを分割する超音波融着部118の領域に対して各サブモジュールRの絶縁部116、117の端部116a、117aが重なった状態となる。そのため、各サブモジュールRにおいて、幅方向X2に隣り合うセルC、C同士を確実に絶縁することができ、全体が平面視でU字状に電気Eが流れる構造を実現することができる。したがって、本実施の形態では、取り出し電極(正極131、負極132)を幅方向X2の他端101b側のみで同じ側に配置することが可能となり、配線構造が簡略化でき、配線作業を容易に行うことができる。 In the third embodiment, the submodules R and R on the one end 1a side in the longitudinal direction X1 are electrically connected to each other by the wiring member 119, and the ultrasonic fusion portion 118 that divides the pair of submodules R and R is used. The end portions 116a and 117a of the insulating portions 116 and 117 of each submodule R are overlapped with the region. Therefore, in each submodule R, the cells C and C adjacent to each other in the width direction X2 can be reliably insulated, and a structure in which electricity E flows in a U shape as a whole can be realized. Therefore, in this embodiment, it is possible to arrange the extraction electrodes (positive electrode 131, negative electrode 132) on the same side only on the other end 101b side in the width direction X2, simplify the wiring structure, and facilitate the wiring work. It can be carried out.
 以上、本発明による太陽電池モジュール、及び太陽電池モジュールの製造方法の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 As mentioned above, although the solar cell module by this invention and embodiment of the manufacturing method of a solar cell module were described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it changes suitably. Is possible.
 例えば、上述の第1の実施の形態では、各サブモジュールR1、R2に設けられるセル数が2つとしているが、これに限定されることはなく、適宜な数量に設定することが可能である。
 本第1の実施の形態では、連通導通材14Aが配置される部分から一端1aまでの導通基材幅D1が2mm以上、一端1a側の連通導通材14Aの幅寸法D2が0.5mm以上に設定されているが、このような寸法であることに限定されることはない。
For example, in the first embodiment described above, the number of cells provided in each of the submodules R1 and R2 is two. However, the number of cells is not limited to this and can be set to an appropriate number. .
In the first embodiment, the conductive base material width D1 from the portion where the communication conductive material 14A is arranged to the one end 1a is 2 mm or more, and the width dimension D2 of the communication conductive material 14A on the one end 1a side is 0.5 mm or more. Although it is set, it is not limited to such dimensions.
上述の第2の実施の形態では、セルC、C同士の間において、隣り合うサブモジュールR、Rのうち一方の絶縁部116、117と他方の絶縁部116、117の互いに近接する側の端部116a、117a同士が長手方向X1に重なった構成としているが、このような構成に限定されることはい。例えば、図21A、図21Bに示す第2変形例のように、端部116a、117a同士が長手方向X1に離間していて重ならない構成であってもかまわない。
要は、第一絶縁部116及び第二絶縁部117の端部116a、117aが超音波融着部118に重なるように長手方向X1で超音波融着部118の領域内まで延ばされた状態で配置されていればよいのである。そして、その領域内の長さ寸法(絶縁部116、117と超音波融着部118との重なり長さK)も上述した実施の形態の設定範囲(0.1mm以上5mm以下)とすることにも限定されることはない。
In the second embodiment described above, between the cells C and C, of the adjacent submodules R and R, one insulating portion 116 and 117 and the other insulating portion 116 and 117 on the side close to each other. Although the parts 116a and 117a are configured to overlap with each other in the longitudinal direction X1, it is not limited to such a structure. For example, as in the second modification shown in FIGS. 21A and 21B, the end portions 116a and 117a may be separated from each other in the longitudinal direction X1 and do not overlap.
The point is that the end portions 116a and 117a of the first insulating portion 116 and the second insulating portion 117 are extended to the ultrasonic fusion portion 118 in the longitudinal direction X1 so as to overlap the ultrasonic fusion portion 118. It is only necessary to be arranged in. Then, the length dimension in the region (the overlapping length K between the insulating portions 116 and 117 and the ultrasonic fusion portion 118) is also set to the setting range (0.1 mm or more and 5 mm or less) of the above-described embodiment. There is no limitation.
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。 In addition, it is possible to appropriately replace the constituent elements in the above-described embodiments with known constituent elements without departing from the spirit of the present invention.
 1 太陽電池モジュール
 1a、101a 一端
 1b、101b 他端
 4、104 製造装置
 11、111 光電極(第一電極)
 11A、111A 透明導電膜
 11B、111B 半導体層
 12、112 対向電極(第二電極)
 12A、112A 対向導電膜
 12B、112B 触媒層
 3A、103A 第一基材
 3B、103B 第二基材
 13、113 電解液
 14、114 導通材
 15、115 封止材
 16、116 第一絶縁部
 17、117 第二絶縁部
 117A 第三絶縁部
 117B 非絶縁部
 18 融着部(絶縁ライン)
 18A 第一融着部(第一絶縁ライン)
 18B 第二融着部(第二絶縁ライン)
 118 超音波融着部(絶縁ライン)
101、101A 色素増感太陽電池(太陽電池モジュール)
 C セル
 K 絶縁部同士の重なり部分
R  サブモジュール
X1 長手方向(第一の方向)
X2 幅方向(第二の方向、第一基材及び第二基材の幅方向)
DESCRIPTION OF SYMBOLS 1 Solar cell module 1a, 101a One end 1b, 101b The other end 4, 104 Manufacturing apparatus 11, 111 Photoelectrode (1st electrode)
11A, 111A Transparent conductive film 11B, 111B Semiconductor layer 12, 112 Counter electrode (second electrode)
12A, 112A Opposing conductive film 12B, 112B Catalyst layer 3A, 103A First base material 3B, 103B Second base material 13, 113 Electrolytic solution 14, 114 Conductive material 15, 115 Sealing material 16, 116 First insulating portion 17, 117 Second insulating portion 117A Third insulating portion 117B Non-insulating portion 18 Fused portion (insulating line)
18A First fusion part (first insulation line)
18B Second fusion part (second insulation line)
118 Ultrasonic weld (insulation line)
101, 101A Dye-sensitized solar cell (solar cell module)
C cell K overlapping portion R between insulating parts R sub-module X1 longitudinal direction (first direction)
X2 width direction (second direction, width direction of first substrate and second substrate)

Claims (10)

  1. 第一電極と、第二電極と、前記第一電極と前記第二電極との間に封止された電解液と、前記電解液を封止する複数の封止材と、複数の絶縁ラインと、を含む積層構造体であり、前記複数の封止材及び前記複数の絶縁ラインにより規定される、それぞれ複数のセルから構成されるサブモジュールを有する太陽電池モジュールであって、
    前記第一電極は、表面に透明導電膜が成膜された第一基材、及び前記第一基材の前記透明導電膜の表面に形成された、第一の方向に延在する色素が吸着した複数の半導体層を有し、
    前記第二電極は、表面に前記第一電極に対向するように対向導電膜が成膜された第二基材を有し、
    前記電解液は、前記第一電極の前記半導体層と前記第二電極との間に封止されており、
    前記複数の封止材は、それぞれ前記第一電極と前記第二電極との間において、前記第一の方向に沿って延在することにより、前記電解液を封止するとともに、前記積層構造体を複数のセルに分割し、
    前記絶縁ラインは、前記第一電極と前記第二電極との間において、平面視で前記第一の方向に直交する第二の方向に沿って延在することにより、前記積層構造体を、それぞれ複数のセルから構成される複数のサブモジュールに分割し、
    前記第二の方向に隣り合うセルについて、一方のセルの第一電極と、他方のセルの第二電極とが、前記封止材に覆われた状態で設けられた導通材により電気的に接続され、それにより前記複数のセルは接続され、
    各セルにおいて、前記第一電極と前記第二電極との短絡が防止されるように、前記第一基材には、一方の導通材に隣接する位置の近傍に前記第一の方向に延びる第一絶縁部が設けられており、前記第二基材には、他方の導通材に隣接する位置の近傍に前記第一の方向に延びる第二絶縁部が設けられており、
    前記隣り合うサブモジュールについて、前記第二の方向の同じ側の端部の前記導通材同士が電気的に接続されていることを特徴とする太陽電池モジュール。
    A first electrode, a second electrode, an electrolyte solution sealed between the first electrode and the second electrode, a plurality of sealing materials for sealing the electrolyte solution, and a plurality of insulating lines; A solar cell module having submodules each composed of a plurality of cells, defined by the plurality of sealing materials and the plurality of insulation lines,
    The first electrode adsorbs a first base material having a transparent conductive film formed on the surface thereof, and a dye extending in the first direction formed on the surface of the transparent conductive film of the first base material. A plurality of semiconductor layers,
    The second electrode has a second substrate on which a counter conductive film is formed so as to face the first electrode,
    The electrolytic solution is sealed between the semiconductor layer of the first electrode and the second electrode,
    The plurality of encapsulants seal the electrolyte solution by extending along the first direction between the first electrode and the second electrode, respectively, and the laminated structure Into multiple cells,
    The insulating line extends between the first electrode and the second electrode along a second direction perpendicular to the first direction in a plan view, thereby each of the stacked structures, Divided into multiple sub-modules consisting of multiple cells,
    For cells adjacent in the second direction, the first electrode of one cell and the second electrode of the other cell are electrically connected by a conductive material provided in a state covered with the sealing material. Thereby connecting the plurality of cells;
    In each cell, the first base material extends in the first direction in the vicinity of a position adjacent to one conductive material so that a short circuit between the first electrode and the second electrode is prevented. One insulating portion is provided, and the second base material is provided with a second insulating portion extending in the first direction in the vicinity of the position adjacent to the other conductive material,
    About the said adjacent submodule, the said electrically conductive materials of the edge part of the same side of said 2nd direction are electrically connected, The solar cell module characterized by the above-mentioned.
  2. 前記隣り合うサブモジュールにおいて電気的に接続される前記第二の方向の一端側の前記導通材が配置される部分から前記サブモジュールの前記一端までの導通基材幅が2mm以上、前記一端側の前記導通材の幅寸法が0.5mm以上であることを特徴とする、請求項1に記載の太陽電池モジュール。 The conductive substrate width from the portion where the conductive material on one end side in the second direction to be electrically connected in the adjacent submodule to the one end of the submodule is 2 mm or more, on the one end side The solar cell module according to claim 1, wherein a width of the conductive material is 0.5 mm or more.
  3. 前記隣り合うサブモジュール毎に、前記第一絶縁部及び前記第二絶縁部は、前記第二の方向に交互にずれた位置に配置され、
    前記第一絶縁部及び前記第二絶縁部の端部側の少なくとも一部が前記絶縁ラインに重なるように前記第一の方向に延ばされていることを特徴とする、請求項1又は2に記載の太陽電池モジュール。
    For each of the adjacent submodules, the first insulating portion and the second insulating portion are arranged at positions shifted alternately in the second direction,
    The at least one part of the edge part side of said 1st insulation part and said 2nd insulation part is extended in said 1st direction so that it may overlap with said insulation line, The Claim 1 or 2 characterized by the above-mentioned. The solar cell module described.
  4. 前記セル同士の間において、前記隣り合うサブモジュールのうち一方のサブモジュールの絶縁部と他方のサブモジュールの絶縁部との端部同士が前記第一の方向に重なっていることを特徴とする、請求項3に記載の太陽電池モジュール。 Between the cells, the end portions of the insulating portion of one submodule and the insulating portion of the other submodule of the adjacent submodules overlap with each other in the first direction, The solar cell module according to claim 3.
  5. 前記第一絶縁部及び前記第二絶縁部は、前記絶縁ラインとの重なり長さが0.1mm以上5mm以下であることを特徴とする、請求項3に記載の太陽電池モジュール。 4. The solar cell module according to claim 3, wherein the first insulating part and the second insulating part have an overlapping length with the insulating line of 0.1 mm or more and 5 mm or less.
  6. 前記第一絶縁部及び前記第二絶縁部は、前記絶縁ラインとの重なり長さが0.1mm以上5mm以下であることを特徴とする、請求項4に記載の太陽電池モジュール。 5. The solar cell module according to claim 4, wherein the first insulating part and the second insulating part have an overlapping length with the insulating line of 0.1 mm or more and 5 mm or less.
  7. 前記第一絶縁部及び前記第二絶縁部のそれぞれの端部における前記絶縁ラインとの重なり開始位置からの先端までの長さ寸法Kを、前記絶縁ラインの幅寸法Lで割った値の範囲は、0<K/L<1.5の範囲で設定されていることを特徴とする、請求項3に記載の太陽電池モジュール。 The range of the value obtained by dividing the length dimension K from the overlap start position of the first insulating part and the second insulating part to the front end with the insulating line by the width dimension L of the insulating line is The solar cell module according to claim 3, wherein 0 <K / L <1.5 is set.
  8. 前記第一絶縁部及び前記第二絶縁部のそれぞれの端部における前記絶縁ラインとの重なり開始位置からの先端までの長さ寸法Kを前記絶縁ラインの幅寸法Lで割った値の範囲は、0<K/L<1.5の範囲で設定されていることを特徴とする、請求項4に記載の太陽電池モジュール。 The range of the value obtained by dividing the length dimension K from the overlap start position to the tip of the insulation line at each end of the first insulation part and the second insulation part by the width dimension L of the insulation line is: The solar cell module according to claim 4, wherein the solar cell module is set in a range of 0 <K / L <1.5.
  9. ロール・ツー・ロール方式により連続的に太陽電池モジュールを製造するための太陽電池モジュールの製造方法であって、
    第一基材の表面に透明導電膜が成膜され、前記第一基材の前記透明導電膜の表面に形成された、第一の方向に延在する色素が吸着した複数の半導体層が形成された第一電極を形成する工程と、
     第二基材の表面に前記第一電極に対向するように対向導電膜が成膜された第二電極を形成する工程と、
     前記透明導電膜及び前記対向導電膜に対して前記第一の方向と平行に絶縁加工を行う工程と、
     前記第一の方向に沿って延在し、平面視で前記第一の方向に直交する第二の方向に複数のセルを配列する封止材を設ける工程と、
     前記封止材に覆われた状態で導通材を配置し、前記第二の方向に隣り合うセルについて、一方のセルの第一電極と他方のセルの第二電極とを前記導通材により電気的に接続する工程と、
     前記第一電極の前記半導体層と前記第二電極との間に電解液を設ける工程と、
     前記第一電極と前記第二電極とを貼り合せる工程と、
     前記第一電極及び前記第二電極に対して前記第二の方向に沿って延在し、前記第二の方向の一端寄りに前記導通材を部分的に設けない第一絶縁ラインと、前記第二の方向の全体にわたって絶縁する第二絶縁ラインと、を前記第一の方向の所定位置に形成し、前記第二絶縁ライン同士の間に前記第一絶縁ラインを設ける工程と、
     前記第一電極と前記第二電極とを前記第二絶縁ラインの位置で切断する工程と、
     を有し、
     前記第二絶縁ラインで切断された太陽電池モジュールは、前記第一絶縁ラインで分割された前記サブモジュールのうち隣り合う前記サブモジュールについて、前記第二の方向の同じ側の端部同士を前記導通材によって直列配線により電気的に接続されることを特徴とする太陽電池モジュールの製造方法。
    A solar cell module manufacturing method for continuously manufacturing solar cell modules by a roll-to-roll method,
    A transparent conductive film is formed on the surface of the first substrate, and a plurality of semiconductor layers formed on the surface of the transparent conductive film of the first substrate are adsorbed with a dye extending in the first direction. Forming a formed first electrode;
    Forming a second electrode in which a counter conductive film is formed on the surface of the second substrate so as to face the first electrode;
    Performing an insulating process in parallel with the first direction on the transparent conductive film and the counter conductive film;
    Providing a sealing material that extends along the first direction and arranges a plurality of cells in a second direction orthogonal to the first direction in plan view;
    A conductive material is disposed in a state of being covered with the sealing material, and the first electrode of one cell and the second electrode of the other cell are electrically connected to each other in the second direction by the conductive material. Connecting to
    Providing an electrolyte solution between the semiconductor layer of the first electrode and the second electrode;
    Bonding the first electrode and the second electrode;
    A first insulating line that extends along the second direction with respect to the first electrode and the second electrode, and does not partially provide the conductive material near one end in the second direction; Forming a second insulating line that insulates the whole in two directions at a predetermined position in the first direction, and providing the first insulating line between the second insulating lines;
    Cutting the first electrode and the second electrode at a position of the second insulating line;
    Have
    The solar cell module cut by the second insulation line is connected to the same end in the second direction with respect to the adjacent submodules among the submodules divided by the first insulation line. A method of manufacturing a solar cell module, wherein the solar cell module is electrically connected by serial wiring with a material.
  10. 前記第一絶縁ライン及び前記第二絶縁ラインは、前記第二の方向に沿って融着された融着部により形成され、又は絶縁加工手段によって絶縁された絶縁加工部を封止材によって塞がれることにより形成されていることを特徴とする、請求項9に記載の太陽電池モジュールの製造方法。 The first insulating line and the second insulating line are formed by a fusion part fused along the second direction, or the insulation processing part insulated by the insulation processing means is closed with a sealing material. The method of manufacturing a solar cell module according to claim 9, wherein
PCT/JP2018/011693 2017-03-24 2018-03-23 Solar cell module and method for producing solar cell module WO2018174247A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197021559A KR20190126054A (en) 2017-03-24 2018-03-23 Solar cell module, manufacturing method of solar cell module
CN201880010633.7A CN110268491B (en) 2017-03-24 2018-03-23 Solar cell module and method for manufacturing solar cell module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017059239A JP6809954B2 (en) 2017-03-24 2017-03-24 Solar cell module and manufacturing method of solar cell module
JP2017-059239 2017-03-24
JP2017068340A JP6912243B2 (en) 2017-03-30 2017-03-30 Dye-sensitized solar cell
JP2017-068340 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018174247A1 true WO2018174247A1 (en) 2018-09-27

Family

ID=63586556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011693 WO2018174247A1 (en) 2017-03-24 2018-03-23 Solar cell module and method for producing solar cell module

Country Status (4)

Country Link
KR (1) KR20190126054A (en)
CN (1) CN110268491B (en)
TW (1) TW201904083A (en)
WO (1) WO2018174247A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220328709A1 (en) * 2019-04-10 2022-10-13 Zeon Corporation Solar cell module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521449A (en) * 2008-05-13 2011-07-21 東進セミケム株式会社 Dye-sensitive solar cell module
WO2016140196A1 (en) * 2015-03-04 2016-09-09 積水化学工業株式会社 Conducting paste, electric module and electric module production method
WO2017142086A1 (en) * 2016-02-18 2017-08-24 積水化学工業株式会社 Electrical module and method for producing electrical module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947040B2 (en) 1980-06-07 1984-11-16 新日本製鐵株式会社 Steel plate for containers with excellent weldability and corrosion resistance after painting and its manufacturing method
AU2008258967B2 (en) * 2007-06-06 2010-11-04 Fujikura Ltd. Dye-sensitized solar cell module and production method thereof
CN101697325A (en) * 2009-10-14 2010-04-21 新奥科技发展有限公司 Dye-sensitized solar cell pack and preparation method thereof
SE537669C2 (en) * 2012-04-04 2015-09-29 Exeger Sweden Ab Dye-sensitized solar cell module with series-linked structural method for producing the solar cell
JP6541174B2 (en) * 2015-03-12 2019-07-10 島根県 Dye-sensitized solar cell and method of connecting dye-sensitized solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521449A (en) * 2008-05-13 2011-07-21 東進セミケム株式会社 Dye-sensitive solar cell module
WO2016140196A1 (en) * 2015-03-04 2016-09-09 積水化学工業株式会社 Conducting paste, electric module and electric module production method
WO2017142086A1 (en) * 2016-02-18 2017-08-24 積水化学工業株式会社 Electrical module and method for producing electrical module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220328709A1 (en) * 2019-04-10 2022-10-13 Zeon Corporation Solar cell module

Also Published As

Publication number Publication date
CN110268491A (en) 2019-09-20
CN110268491B (en) 2021-09-07
KR20190126054A (en) 2019-11-08
TW201904083A (en) 2019-01-16

Similar Documents

Publication Publication Date Title
WO2018084317A1 (en) Solar cell module and method for manufacturing solar cell module
TW201830439A (en) Photovoltaic module and method for manufacturing photovoltaic module
CN109478470B (en) Solar cell module
CN109478469B (en) Solar cell module
JP6958559B2 (en) Solar cell module
WO2018025821A1 (en) Solar cell module, and method for producing solar cell module
WO2018174247A1 (en) Solar cell module and method for producing solar cell module
JP2011108374A (en) Electrode for dye-sensitized solar cell, and dye-sensitized solar cell
JP6568479B2 (en) Electric module and method of manufacturing electric module
JP6809954B2 (en) Solar cell module and manufacturing method of solar cell module
JP6912243B2 (en) Dye-sensitized solar cell
JP6918521B2 (en) Electric module and manufacturing method of electric module
JP6687457B2 (en) Electric module, dye-sensitized solar cell, and method for manufacturing electric module
JP2018076666A (en) Slat with solar-cell module, solar-cell slat, manufacturing method of slat with solar-cell module, and manufacturing method of solar-cell slat
KR20120051335A (en) Seal member for photoelectric conversion device, photoelectric conversion device comprising the same and method of preparing the same
JP2018163958A (en) Slat with solar cell module, power generation blind, and method for manufacturing slat with solar cell module
JP7084259B2 (en) Electric module and its manufacturing method
JP7415383B2 (en) Solar cell module, electrode substrate for solar cell, and method for manufacturing solar cell module
WO2020209068A1 (en) Solar cell module
JP6703574B2 (en) Electric module and manufacturing method thereof
JP6760885B2 (en) Electric module and manufacturing method of electric module
JP5398449B2 (en) Dye-sensitized photoelectric conversion element
TWI639261B (en) Dye-sensitized photovoltaic cell, module, and manufacturing method thereof
WO2019146684A1 (en) Electric module and method for manufacturing electric module
JP2020038876A (en) Electric module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197021559

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772679

Country of ref document: EP

Kind code of ref document: A1