WO2018084317A1 - Solar cell module and method for manufacturing solar cell module - Google Patents

Solar cell module and method for manufacturing solar cell module Download PDF

Info

Publication number
WO2018084317A1
WO2018084317A1 PCT/JP2017/040149 JP2017040149W WO2018084317A1 WO 2018084317 A1 WO2018084317 A1 WO 2018084317A1 JP 2017040149 W JP2017040149 W JP 2017040149W WO 2018084317 A1 WO2018084317 A1 WO 2018084317A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
solar cell
insulating
cell module
wiring
Prior art date
Application number
PCT/JP2017/040149
Other languages
French (fr)
Japanese (ja)
Inventor
博之 井川
篤 生駒
壮一郎 鈴木
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017059716A external-priority patent/JP6912231B2/en
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020197009431A priority Critical patent/KR20190077323A/en
Priority to CN201780060999.0A priority patent/CN109791849A/en
Publication of WO2018084317A1 publication Critical patent/WO2018084317A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell module and a method for manufacturing a solar cell module.
  • This application claims priority based on Japanese Patent Application No. 2016-217426 filed in Japan on November 7, 2016, and Japanese Patent Application No. 2017-059716 filed in Japan on March 24, 2017, and its contents Is hereby incorporated by reference.
  • a dye-sensitized solar cell is generally configured to include a photoelectrode, a counter electrode, and an electrolytic solution or an electrolytic solution layer.
  • the photoelectrode is known to have at least a transparent conductive layer, a semiconductor layer, and a dye.
  • the dye adsorbed on the semiconductor layer absorbs light, and the electrons in the dye molecule are excited, and the electrons are transferred to the semiconductor. Passed. Then, electrons generated at the photoelectrode move to the counter electrode through an external circuit, and the electrons return to the photoelectrode through the electrolytic solution. By repeating such a process, electric energy is generated.
  • the conventional solar cell module composed of a dye-sensitized solar cell has the following problems. That is, in the solar cell module disclosed in Patent Document 1, the cells are cut so as to separate the longitudinal direction of the electrodes that are continuously manufactured by a roll-to-roll method in order to connect the cells in series and parallel, and then Wiring work is performed to connect the divided solar cell modules in series. For this reason, there is a problem in that an additional process associated with the wiring is required and the manufacturing cost increases. That is, when arranging a plurality of solar cell modules in, for example, a blind or the like, the plurality of solar cell modules are pasted on the blind substrate in a state of being spaced apart from each other, and then the respective solar cell modules are connected in series. Therefore, there is a possibility that labor and cost for wiring increase.
  • the present invention has been made in view of the above-described problems. By adopting a structure that allows serial wiring only on a film substrate, production by a roll-to-roll method is possible, and a solar cell is provided. It is an object of the present invention to provide a solar cell module and a method for manufacturing the solar cell module, in which wiring generated when the module is packaged becomes unnecessary and the cost can be reduced.
  • a solar cell module includes a first electrode, a second electrode, an electrolytic solution sealed between the first electrode and the second electrode, and the electrolytic solution.
  • a stacked structure including a plurality of sealing materials to be sealed and a plurality of insulating lines, each of which is composed of a plurality of cells each defined by the plurality of sealing materials and the plurality of insulating lines.
  • the first electrode is formed on the surface of the transparent conductive film of the first base material, the first base material having a transparent conductive film formed on the surface thereof,
  • the second electrode has a plurality of strip-like semiconductor layers adsorbed with a dye extending in the first direction, and the second electrode has a second conductive film formed on the surface so as to face the first electrode.
  • the electrolyte solution is between the semiconductor layer of the first electrode and the second electrode.
  • the plurality of sealing materials seal the electrolyte solution by extending along the first direction between the first electrode and the second electrode, respectively.
  • the laminated structure is divided into a plurality of cells, and the plurality of insulating lines are respectively between the first electrode and the second electrode, and are secondly orthogonal to the first direction in plan view.
  • the stacked structure is divided into a plurality of submodules each composed of a plurality of cells by extending along the direction, and the cells adjacent to each other in the second direction are connected to the first electrode of one cell.
  • the second electrode of the other cell is electrically connected by a conductive material provided in a state of being covered with the sealing material, whereby the plurality of cells are connected in series. Short circuit between one electrode and second electrode is prevented.
  • the first base material is provided with a first insulating portion extending in the first direction in the vicinity of a position adjacent to the one conductive material, and the second conductive material is provided with the other conductive material.
  • a second insulating portion extending in the first direction is provided in the vicinity of the position adjacent to the first sub-module, and the plurality of sub-modules are the same in the second direction for sub-modules adjacent to the first direction. Ends on the side are electrically connected to each other by serial wiring by a wiring material, and the direction of current flowing through the plurality of submodules is alternately reversed for each of the submodules arranged in the first direction. It is characterized by being connected.
  • a conductive material is disposed between the insulating portion of the first base material and the insulating portion of the second base material that are disposed between cells adjacent in the second direction of the first base material, Cells adjacent to each other in the two directions are electrically connected in series, and the ends on the same side in the second direction in the submodule divided in the first direction by the insulating lines are connected in series by the wiring material. They are electrically connected in series. That is, electricity flows from the other end in the second direction to one end in one sub-module, and electricity on one end side flows to the one end side of the other sub-module via the wiring member.
  • a circuit configuration in which electricity flows from one end to the other end in the direction can be realized.
  • the sub-modules on the same side in the second direction among the plurality of sub-modules are electrically connected to each other by the wiring material, and electricity can be taken out on the other end side.
  • the whole structure is a structure in which the direction of electricity is alternately switched for each sub-module in plan view, or the whole structure is a structure in which electricity flows in a U shape in plan view, and the take-out electrode (positive electrode, negative electrode) is the same in the second direction. Therefore, the wiring structure can be simplified and the wiring work can be easily performed.
  • the wiring material is provided on the same side of the adjacent submodules, and a simple manufacturing method for applying the wiring material to the line can be applied. It can be easily adapted to the system. Since such a roll-to-roll method can be realized by a manufacturing process in which wiring members are continuously arranged in the first direction, it is not necessary to add a new work process.
  • the conductive material disposed at both ends in the second direction includes the base material surface of the first base material or the second base material. It is good also as the terminal taking-out part being provided on the base-material surface of the material.
  • the solar cell module is installed when performing the wiring work to the extraction electrode.
  • the process of flipping up and down is not necessary, and the labor of wiring work can be reduced.
  • a method for manufacturing a solar cell module according to another aspect of the present invention is a method for manufacturing a solar cell module for continuously manufacturing a solar cell module by a roll-to-roll method, wherein the first group A transparent conductive film is formed on the surface of the material, and a plurality of semiconductor layers formed on the surface of the transparent conductive film of the first substrate and adsorbed with a dye extending in the first direction are formed.
  • a step of forming one electrode, a step of forming a second electrode in which a counter conductive film is formed on the surface of the second substrate so as to face the first electrode, the transparent conductive film, and the counter conductive film A step of performing insulation processing in parallel to the first direction, and a plurality of cells extending in the first direction and extending in the second direction perpendicular to the first direction in plan view.
  • a conductive material is disposed between the insulating portion of the first base material and the insulating portion of the second base material that are disposed between cells adjacent in the second direction of the first base material, Solar cell having a configuration in which cells adjacent to each other in two directions are electrically connected in series, and cells of submodules divided in the first direction by an insulating line are electrically connected in series by a wiring member
  • the module can be manufactured in a roll-to-roll manner in a continuous state in the first direction. That is, a module including an independent electric circuit can be produced by the roll-to-roll method by the solar cell module itself cut and divided at the position of the insulation line.
  • the manufactured solar cell module when the manufactured solar cell module is packaged in a separate body (substrate), it is performed after attaching a plurality of solar cell modules to the substrate as in the prior art, and the solar cell modules are electrically connected to each other. Since the wiring work to connect becomes unnecessary, manufacturing efficiency can be improved. Thus, since it becomes possible to reduce an operation man-hour, reduction of manufacturing cost can be aimed at.
  • the insulating processing position is shifted in the second direction at a constant period with respect to the first direction.
  • An insulating pattern that changes in position may be formed.
  • the insulating pattern is alternately formed in the second direction, so that the positions of the positive electrode and the negative electrode can be regularly changed for each submodule.
  • the disconnection portion may be formed by notching a part of the wiring material in the first direction.
  • the wiring material in which a disconnection portion is formed in a part of the first direction in the step of arranging the wiring material, the wiring material in which a disconnection portion is formed in a part of the first direction. It is good also as arrange
  • the disconnection portion is formed simultaneously with the step of arranging the wiring material, an operation of providing the disconnection portion after the arrangement of the wiring material becomes unnecessary, and the manufacturing efficiency can be improved.
  • the insulating line is a fusion part that is fused along the second direction. It is preferable.
  • the fusion part is provided with respect to the first electrode and the second electrode that are moved by a roll-to-roll method by a manufacturing apparatus having appropriate fusion means extending along the second direction. It can be formed easily.
  • the step of arranging the wiring material is performed simultaneously with the arrangement of the conductive material. It may be a feature.
  • the step of forming the insulating line is performed simultaneously with the insulating processing. It is good.
  • the production efficiency can be improved by simultaneously performing the insulation line and the insulation process parallel to the first direction.
  • a transparent conductive film is formed on the surface of the first substrate, and is formed on the surface of the transparent conductive film of the first substrate.
  • a step of forming a first electrode formed with a plurality of semiconductor layers adsorbed with a dye extending in the first direction, and a counter conductive film on the surface of the second substrate so as to face the first electrode A step of forming a deposited second electrode, a step of performing an insulating process in parallel to the first direction on the transparent conductive film and the counter conductive film, and extending along the first direction
  • the solar cell module cut by the second insulation line is For the sub-modules adjacent one of said sub-modules divided by emissions, is characterized by being electrically connected by series wiring ends on the same side of the second direction by the wiring member.
  • a conductive material is disposed between the insulating portion of the first base material and the insulating portion of the second base material that are disposed between cells adjacent in the second direction of the first base material, Two adjacent cells in two directions are electrically connected in series, and the ends on the same side in the second direction in a pair of adjacent submodules divided in the first direction by the first insulating line are A solar cell module having a configuration in which the wiring material is electrically connected by serial wiring can be manufactured. Therefore, the solar cell module itself cut and divided at the position of the second insulation line becomes an independent electric circuit, and such a solar cell module can be produced by a roll-to-roll method.
  • the manufactured solar cell module when the manufactured solar cell module is packaged in a separate body (substrate), it is performed after attaching a plurality of solar cell modules to the substrate as in the prior art, and the solar cell modules are electrically connected to each other. Since the wiring work to connect becomes unnecessary, manufacturing efficiency can be improved. Thus, since it becomes possible to reduce an operation man-hour, reduction of manufacturing cost can be aimed at.
  • the first insulation line and the second insulation line are fusion parts fused along the second direction. Is preferred.
  • the first insulating line with respect to the first electrode and the second electrode moved by a roll-to-roll method by a manufacturing apparatus having appropriate fusion means extending along the second direction.
  • fusion part which makes a 2nd insulation line can be formed easily.
  • the step of forming the first insulating line and the second insulating line is performed simultaneously with the insulating process. This may be a feature.
  • the manufacturing efficiency can be improved by simultaneously performing the first insulating line and the second insulating line and the insulating process parallel to the first direction.
  • the production by the roll-to-roll method is achieved by adopting a structure that allows serial wiring only on the film substrate.
  • the wiring generated when the solar cell module is packaged becomes unnecessary, and the cost can be reduced.
  • FIG. 1 is a plan view showing a schematic configuration of the dye-sensitized solar cell according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA shown in FIG. 1, and is a partial cross-sectional view of the dye-sensitized solar cell as viewed from the longitudinal direction.
  • FIG. 3 is a cross-sectional view taken along line BB shown in FIG. 1, and is a partial cross-sectional view of the dye-sensitized solar cell viewed from the width direction.
  • FIG. 4 is a perspective view showing the overall configuration of the dye-sensitized solar cell manufacturing apparatus.
  • FIG. 5 is a perspective view showing a state in which insulation processing is performed by a cutting apparatus.
  • FIG. 6 is a view showing a state in which insulation processing is performed by the cutting apparatus, and is a front view of the cutting apparatus as viewed from the longitudinal direction.
  • FIG. 7 is a plan view of a dye-sensitized solar cell in the manufacturing process using the manufacturing apparatus, and shows a state in which a photoelectrode is formed on the first substrate.
  • FIG. 8 is a plan view of the dye-sensitized solar cell in the manufacturing process using the manufacturing apparatus, and shows a state in which the second base material is subjected to insulation processing.
  • FIG. 9 is a plan view of the dye-sensitized solar cell in the manufacturing process using the manufacturing apparatus, and shows a state in which the first base material is subjected to insulation processing.
  • FIG. 10 is a plan view of a dye-sensitized solar cell in a manufacturing process using a manufacturing apparatus, and shows a state in which base materials are bonded together.
  • FIG. 11 is a plan view of a dye-sensitized solar cell in the manufacturing process using the manufacturing apparatus, and shows a state in which a fused portion is formed.
  • FIG. 12 is a plan view of the dye-sensitized solar cell in the manufacturing process using the manufacturing apparatus, and shows a state in which the wiring material is attached to both end portions in the width direction of the base material.
  • 13 is a cross-sectional view taken along line CC shown in FIG. 14 is a sectional view taken along line DD shown in FIG. FIG.
  • FIG. 15 is a perspective view showing the configuration of the dye-sensitized solar cell according to the first embodiment.
  • FIG. 16 is a plan view showing a manufacturing process of the dye-sensitized solar cell according to the second embodiment.
  • FIG. 17 is a plan view showing a manufacturing process of the dye-sensitized solar cell according to the second embodiment.
  • FIG. 18 is a plan view showing a manufacturing process of the dye-sensitized solar cell according to the second embodiment.
  • FIG. 19 is a cross-sectional view taken along line C'-C 'shown in FIG. 20 is a cross-sectional view taken along the line D'-D 'shown in FIG. 21 is a cross-sectional view taken along the line EE shown in FIG.
  • FIG. 22 is a cross-sectional view taken along the line FF shown in FIG.
  • FIG. 23 is a cross-sectional view showing the configuration of another wiring material.
  • FIG. 24 is a plan view showing a manufacturing process of the dye-sensitized solar cell according to the third embodiment.
  • FIG. 25 is a plan view showing a manufacturing process of the dye-sensitized solar cell according to the third embodiment.
  • FIG. 26 is a plan view showing a manufacturing process of the dye-sensitized solar cell according to the fourth embodiment.
  • FIG. 27 is a plan view showing a manufacturing process of the dye-sensitized solar cell according to the fourth embodiment.
  • FIG. 24 is a plan view showing a manufacturing process of the dye-sensitized solar cell according to the third embodiment.
  • FIG. 25 is a plan view showing a manufacturing process of the dye-sensitized solar cell according to the third embodiment.
  • FIG. 26 is a plan view showing a manufacturing process of the dye-s
  • FIG. 28A is a diagram showing a state in which insulation processing is performed by a laser irradiation device which is an insulation processing portion according to a modification, and is a front view of the laser irradiation device viewed from the longitudinal direction.
  • FIG. 28B is a diagram illustrating a state in which insulation processing is performed by a laser irradiation apparatus that is an insulation processing portion according to a modification, and is a front view of the laser irradiation apparatus viewed from the longitudinal direction.
  • the solar cell module according to the present embodiment and the method for manufacturing the solar cell module are based on a roll-to-roll method (hereinafter referred to as RtoR method), which will be described later, as shown in FIG. It is manufactured by cutting a film type dye-sensitized solar cell 1 (solar cell module), which is produced by the manufacturing apparatus 4 (see FIG. 4) and extends long in one direction, to an appropriate length.
  • RtoR method roll-to-roll method
  • the length direction (long direction) is the longitudinal direction X1 (first direction), and is orthogonal to the longitudinal direction X1 in plan view.
  • the direction to be used is defined below as the width direction X2 (second direction) of the base material (first base material 3A and second base material 3B described later).
  • the dye-sensitized solar cell 1 of the present embodiment includes a dye-sensitized solar cell (hereinafter referred to as “photosensitive electrode”) having a photoelectrode 11 and a counter electrode 12 provided to face the photoelectrode 11.
  • Cell C has a structure interposed between the pair of base materials 3A and 3B.
  • conductive films 11A and 12A having conductivity are formed on the inner surfaces of the pair of base materials 3A and 3B.
  • the photoelectrode 11 is formed on the conductive films 11A and 12A.
  • the semiconductor layer 11 ⁇ / b> B and the catalyst layer 12 ⁇ / b> B of the counter electrode 12 are electrically connected to each other and are roughly configured.
  • the dye-sensitized solar cell 1 is a solar cell module in which the photoelectrode 11 and the counter electrode 12 are opposed to each other via the conductive material 14 with a sealing function as described above, For various electric modules that require sealing of a plurality of cells C formed between one base material 3A and a second base material 3B and electrical series connection between the cells C, C,. Yes.
  • the direction connected in series is the width direction X2.
  • the dye-sensitized solar cell 1 includes a first base material 3A, a second base material 3B, a photoelectrode 11 (first electrode), a counter electrode 12 (second electrode), an electrolytic solution 13,
  • the conductive material 14, the sealing material 15, the first insulating part 16, the second insulating part 17, and the fusion part 18 (insulating line) are provided.
  • the photoelectrode 11 includes a transparent conductive film 11A laminated on the first base material 3A and a porous semiconductor layer 11B laminated on the transparent conductive film 11A.
  • the counter electrode 12 includes a counter conductive film 12A stacked on the second substrate 3B and a catalyst layer 12B stacked on the counter conductive film 12A.
  • the photoelectrode 11 is a band-shaped semiconductor layer in which a transparent conductive film 11A is formed on the surface of the first substrate 3A, and a dye extending in the longitudinal direction X1 is adsorbed on the surface of the transparent conductive film 11A of the first substrate 3A.
  • a plurality of 11B are formed.
  • a counter conductive film 12 ⁇ / b> A is formed on the counter electrode 12 so as to face the photoelectrode 11.
  • the electrolytic solution 13 is sealed between the semiconductor layer 11 ⁇ / b> B of the photoelectrode 11 and the counter electrode 12.
  • the sealing material 15 is configured to seal the electrolytic solution 13 and to arrange a plurality of cells C divided in the width direction X2.
  • the conductive material 14 is provided in a state of being covered with the sealing material 15 and is in direct contact with the transparent conductive film 11A of the photoelectrode 11 and the counter conductive film 12A of the counter electrode 12, so that the photoelectrode 11 and the counter electrode 12 are connected. Connect electrically.
  • Sealing materials 15 and 15 are disposed on both sides of the conductive material 14 in the width direction X2.
  • the conductive material 14 and the sealing material 15 bond between the photoelectrode 11 and the counter electrode 12.
  • the dye-sensitized solar cell 1 is arranged with a certain interval in the longitudinal direction X ⁇ b> 1, and a fusion part 18 is formed over the entire width direction X ⁇ b> 2.
  • the fused part 18 is formed by insulation and adhesion by means such as ultrasonic fusion (see the ultrasonic fused part 46 shown in FIG. 4).
  • the electrolytic solution 13 is liquid-tightly sealed in the gap in the thickness direction formed between the photoelectrode 11 and the counter electrode 12 by the conductive material 14. It is formed in the state.
  • a plurality of patterning portions Insulated at predetermined positions of the transparent conductive film 11A and the counter conductive film 12A by a blade described later (a semicircular blade 52 of the cutting device 50 shown in FIGS. 5 and 6). 17) is provided. That is, as shown in FIG. 2, the transparent conductive film 11 ⁇ / b> A and the counter conductive film 12 ⁇ / b> A are formed with the first insulating portion 16 parallel to the longitudinal direction X ⁇ b> 1 by the insulating process by the cutting process at the position in contact with the sealing material 15.
  • the first insulating portions 16 arranged in each of the adjacent submodules R and R among the submodules R (regions surrounded by a two-dot chain line in FIG. 1) defined by the fused portion 18 are arranged in the width direction. Patterned at a position shifted to X2. The same applies to the second insulating portion 17.
  • the transparent conductive film 11A and the counter conductive film 12A of the cells C, C adjacent to each other in the width direction X2 are divided into a plurality by the patterning unit, and the plurality of transparent conductive films 11A and the counter conductive film 12A A pattern is formed.
  • the opposite conductive film 12A of one cell C for example, the first cell of C1
  • the transparent conductivity of the other cell C for example, the second cell of C2
  • the film 11A is electrically connected by the conductive material 14, and the first cell C1 and the second cell C2 are connected in series in the width direction X2. That is, when a plurality of cells C1, C2,...
  • the material of the first base material 3A and the second base material 3B is not particularly limited, and examples thereof include insulators such as a film-like resin, semiconductors, metals, and glass.
  • the resin include poly (meth) acrylic acid ester, polycarbonate, polyester, polyimide, polystyrene, polyvinyl chloride, and polyamide.
  • the substrate is preferably made of a transparent resin, more preferably a polyethylene terephthalate (PET) film or a polyethylene naphthalate (PEN) film. .
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the material of the first base material 3A and the material of the second base material 3B may be different.
  • the types and materials of the transparent conductive film 11A and the counter conductive film 12A are not particularly limited, and a conductive film used for a known dye-sensitized solar cell can be applied.
  • a thin film made of a metal oxide is used.
  • the metal oxide include tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (ATO), indium oxide / zinc oxide (IZO), and gallium-doped zinc oxide (GZO). it can.
  • the semiconductor layer 11B is made of a material that can receive electrons from the adsorbed photosensitizing dye, and is usually preferably porous.
  • the material which comprises the semiconductor layer 11B is not specifically limited, The material of the well-known semiconductor layer 11B is applicable, For example, metal oxide semiconductors, such as a titanium oxide, a zinc oxide, a tin oxide, are mentioned.
  • the photosensitizing dye supported on the semiconductor layer 11B is not particularly limited, and examples thereof include known dyes such as organic dyes and metal complex dyes. Examples of the organic dye include coumarin, polyene, cyanine, hemicyanine, and thiophene. As said metal complex pigment
  • the material constituting the catalyst layer 12B is not particularly limited, and known materials can be applied.
  • carbons such as platinum and carbon nanotubes, poly (3,4-ethylenedioxythiophene) -poly (styrenesulfone)
  • conductive polymers such as (acid) (PEDOT / PSS).
  • the electrolytic solution 13 is not particularly limited, and an electrolytic solution used in a known dye-sensitized solar cell can be applied.
  • Examples of the electrolytic solution 13 include an electrolytic solution in which iodine and sodium iodide are dissolved in an organic solvent.
  • a known photosensitizing dye (not shown) is adsorbed on the surface of the semiconductor layer 11B in contact with the electrolytic solution 13 including the porous interior.
  • the conductive material 14 is disposed between the plurality of semiconductor layers 11B extending in parallel and in one direction, in contact with the photoelectrode 11 on the first base 3A and the counter electrode 12 on the second base 3B, and It is provided between the photoelectrode 11 and the counter electrode 12.
  • the conductive material 14 for example, one or more selected from conductive wires, conductive tubes, conductive foils, conductive plates and conductive meshes, conductive pastes, and conductive particles are used.
  • the conductive paste is a conductive material having a relatively low rigidity and a soft form.
  • the conductive paste may have a form in which a solid conductive material is dispersed in a viscous dispersion medium such as an organic solvent or a binder resin.
  • the conducting material 14 may have both functions of conduction and adhesion like a double-sided adhesive type copper tape.
  • Examples of the conductive material used for the conductive material 14 include metals such as gold, silver, copper, chromium, titanium, platinum, nickel, tungsten, iron, and aluminum, or alloys of two or more of these metals. However, it is not particularly limited. Examples of the material also include resin compositions such as polyurethane and polytetrafluoroethylene (PTFE) in which conductive fine particles (for example, fine particles of the metal or alloy, fine particles of carbon black, etc.) are dispersed.
  • metals such as gold, silver, copper, chromium, titanium, platinum, nickel, tungsten, iron, and aluminum, or alloys of two or more of these metals.
  • the material also include resin compositions such as polyurethane and polytetrafluoroethylene (PTFE) in which conductive fine particles (for example, fine particles of the metal or alloy, fine particles of carbon black, etc.) are dispersed.
  • PTFE polytetrafluoroethylene
  • the sealing material 15 is a non-conductive member that can bond the opposing first substrate 3A and second substrate 3B and seal the cell C formed between the substrates 3A and 3B. If it is, it will not be restrict
  • a hot melt adhesive thermoplastic resin
  • thermosetting resin thermosetting resin
  • ultraviolet curable resin a resin including an ultraviolet curable resin and a thermosetting resin
  • the hot melt adhesive include polyolefin resin, polyester resin, polyamide resin, and the like.
  • the thermosetting resin include an epoxy resin and a benzoxazone resin.
  • the ultraviolet curable resin include those containing a photopolymerizable monomer such as acrylic acid ester and methacrylic acid ester.
  • the manufacturing apparatus 4 includes a photoelectrode forming portion (not shown), a first insulating processing portion 41, a sealing material coating portion 42, a conductive material placement portion 43, an electrolyte coating portion 44, a base
  • the material bonding portion 45 and the ultrasonic fusion portion 46 are arranged in that order from the upstream side to the downstream side in the first movement direction P1 of the first base material 3A.
  • the first base material 3A and the second base material 3B are bonded together, and along the second movement direction P2 of the second base material 3B that is moved separately from the first base material 3A.
  • a counter electrode forming portion (not shown) and the second insulating portion 47 are arranged in this order.
  • the second base material 3 ⁇ / b> B that has passed through the second insulating processing portion 47 is bonded to the first base material 3 ⁇ / b> A at the base material bonding portion 45.
  • the photoelectrode forming portion (not shown) is arranged at the most upstream portion in the first moving direction P1 in the manufacturing apparatus 4 and is configured to form the photoelectrode 11 in a predetermined region on the surface of the first base material 3A.
  • the first insulation processing portion 41 employs a cutting device 50 having a plurality of semicircular blades 52 in the present embodiment.
  • the cutting device 50 includes a rotary shaft 51 that is rotatably provided around the axis O1, and a semicircular blade 52 that is disposed around the rotary shaft 51 at a predetermined interval in the direction of the axis O1.
  • the axis O1 direction of the rotation shaft 51 is arranged in the width direction X2.
  • the semicircular blade 52 is provided continuously in a range of 180 ° along the circumferential direction of the outer peripheral surface of the rotary shaft 51, and is disposed in a region of a predetermined half-circular portion of the entire circumference as viewed from the axis O1 direction.
  • the first semicircular blade 52A and the second semicircular blade 52B disposed in a region of another semicircular portion where the first semicircular blade 52A is not disposed.
  • the plurality of first semicircular blades 52A simultaneously connect the plurality of insulating portions 16 of one adjacent submodule R among the submodules R of the first base material 3A defined in the longitudinal direction X1 by the fused portion 18.
  • the plurality of second semicircular blades 52B simultaneously form the plurality of insulating portions 16 in the other region of the adjacent submodules R.
  • the circumferential length (outer circumferential length) of the semicircular blade 52 is set so as to coincide with the length in the longitudinal direction X1 of the insulating portion 16 to be insulated in the submodule R.
  • the interval between the first semicircular blades 52A adjacent in the axis O1 direction and the interval between the second semicircular blades 52B adjacent in the axis O1 direction are set to be equal.
  • the first semicircular blade 52A and the second semicircular blade 52B are not arranged on the same circumference, but are provided at positions shifted in the direction of the axis O1.
  • the semicircular blades 52 (52A, 52B) are grooved only in the conductive films 11A, 12A when rotated together with the rotary shaft 51 with respect to the surfaces of the base materials 3A, 3B on which the conductive films 11A, 12A are formed. Form a notch.
  • the conductive films 11A and 12A are set so that cuts are formed in the thickness direction, and even if a part of the base materials 3A and 3B is cut in the thickness direction, the whole is not cut.
  • the interval in the direction of the axis O1 of the semicircular blade 52, the circumferential length, and the shift amount of the first semicircular blade 52A and the second semicircular blade 52B in the direction of the axis O1 can be changed as appropriate according to the setting of the insulating portion 16. .
  • the sealing material application part 42 is arrange
  • the conductive material arrangement part 43 is arranged on the downstream side of the sealing material application part 42 and is configured to arrange wiring (conductive material 14) between the sealing materials 15.
  • the electrolytic solution coating unit 44 is arranged on the downstream side of the conductive material arranging unit 43 and is configured to apply the electrolytic solution 13 to an uncoated region of the sealing material 15 in the first base material 3A.
  • the counter electrode forming part (not shown) is arranged at the most upstream part in the second moving direction P2 in the manufacturing apparatus 4, and is configured to form the counter electrode 12 in a predetermined region on the surface of the second base material 3B. Since the second insulation processing portion 47 employs a cutting device 50 (see FIG. 5) similar to that provided in the first insulation processing portion 41 described above, detailed description thereof is omitted here.
  • the base material bonding portion 45 is configured to bond the second base material 3B on which the counter electrode 12 is formed to the surface of the first base material 3A on which the photoelectrode 11 is formed.
  • the base material laminating part 45 is provided with a curing processing part (not shown) for curing the sealing material 15, and a pair of the first base material 3 ⁇ / b> A and the second base material 3 ⁇ / b> B are overlapped. By passing the laminating rollers 45A and 45B, the base materials 3A and 3B are bonded and bonded together.
  • the ultrasonic fusion portion 46 forms the fusion portion 18 extending along the width direction X2 by fusing the first base material 3A and the second base material 3B by ultrasonic vibration with a certain interval in the longitudinal direction X1. However, it is configured to be divided into a plurality of submodules R.
  • the manufacturing method of the dye-sensitized solar cell 1 produced using the manufacturing apparatus 4 shown in FIG. 4 is demonstrated.
  • a film (1st base material 3A, 2nd base material 3B) is conveyed continuously, and the 2nd base material 3B is bonded together with respect to 1st base material 3A in which the photoelectrode 11 was formed.
  • the dye-sensitized solar cell 1 is manufactured.
  • the film type dye increase which comprised the electrical series circuit on the film so that an electric current might flow alternately in the width direction X2 toward the advancing direction (longitudinal direction X1).
  • a solar cell 1 is produced (see FIG. 1).
  • the transparent conductive film 11A is formed on the surface of the first substrate 3A, and the surface of the transparent conductive film 11A of the first substrate 3A.
  • Forming a photoelectrode 11 in which a plurality of strip-like semiconductor layers 11B having adsorbed pigment extending in the longitudinal direction X1 are formed, and a counter conductive film so as to face the photoelectrode 11 on the surface of the second substrate 3B A step of forming the counter electrode 12 on which 12A is formed, a step of insulating the transparent conductive film 11A and the counter conductive film 12A in parallel to the longitudinal direction X1, and a width direction orthogonal to the longitudinal direction X1 in plan view
  • a step of providing a sealing material 15 for arranging a plurality of cells C in X2 a step of arranging a conductive material 14 on the sealing material 15 to electrically connect the photoelectrode 11 and the counter electrode 12, and a light
  • the method for manufacturing the dye-sensitized solar cell 1 uses, for example, an aerosol deposition (AD) method in a semiconductor electrode forming portion (not shown) to form a transparent conductive film 11A.
  • AD aerosol deposition
  • the semiconductor layer 11B is formed at intervals in the width direction X2, and then the dye is adsorbed on the semiconductor layer 11B by a general method. Then, the photoelectrode 11 is formed.
  • FIG. 7 shows a part of the dye-sensitized solar cell 1 continuously manufactured by the RtoR method.
  • platinum (Pt) is laminated on the second substrate 3B on which the counter conductive film 12A is formed by sputtering to form the catalyst layer 12B.
  • the counter electrode 12 is formed.
  • the first insulating portion 16 is regularly insulated at positions that are alternately shifted in the width direction X2 at regular intervals (the length in the longitudinal direction X1 of the submodule R). A pattern is formed.
  • the sealing material is applied to the photoelectrode 11 formed in a predetermined region of the first base material 3 ⁇ / b> A by the sealing material coating portion 42. 15 is applied. At this time, the semiconductor layer 11B is applied so that the sealing material 15 is not covered. And after arrange
  • a catalyst Insulation processing is performed to form the second insulating portion 17 extending parallel to the longitudinal direction X1 by the rotation of the semicircular blade 52 (52A, 52B) at a position between the layer 12B and the catalyst layer 12B.
  • the second insulating portion 17 is regularly insulated at positions that are alternately displaced in the width direction X2 at regular intervals (the length in the longitudinal direction X1 of the submodule R). Pattern is formed.
  • the sealing material 15 is cured by a curing processing unit (not shown), and the first base material 3 ⁇ / b> A and the second base material 3 ⁇ / b> B that are insulated are overlapped.
  • a pair of laminating rollers 45A and 45B in the combined state both base materials 3A and 3B are bonded and bonded.
  • the first insulating portion 16 of the first base material 3 ⁇ / b> A and the second insulating portion 17 of the second base material 3 ⁇ / b> B are shifted in the width direction X ⁇ b> 2 in the bonded state, As a result, a plurality of cells C that are divided and arranged in the width direction X2 through the conductive material 14 (see FIG. 2) are electrically connected in series.
  • the first base material 3A and the second base material 3B are melted by ultrasonic vibration at a constant interval in the longitudinal direction X1.
  • the fused portion 18 is formed to extend along the width direction X2 and is divided into a plurality of submodules R.
  • the wiring material 19 is pasted to the both ends 3a and 3b in the width direction X2 of both the base materials 3A and 3B which are pasted, along the longitudinal direction X1, for example, by copper tape or soldering. .
  • the wiring members 19 are arranged in a state in which the ends of the fused portions 18 arranged in the longitudinal direction X1 are alternately covered in the width direction X2.
  • the dye-sensitized solar cell 1 in which the cells C of the submodules R connected in series are connected in series can be manufactured, and electricity is alternately generated in the width direction X2 for each submodule R (arrow E in FIG. 12).
  • the dye-sensitized solar cell 1 can be cut along the fused portion 18 and cut at a position of any necessary length (two-dot chain line indicated by T in FIG. 12), and the dye-sensitized solar cell 1 having a desired length is obtained.
  • the solar cell 1 can be produced. For example, as the dye-sensitized solar cell 1 after cutting, one having three submodules R, one having two submodules R, or one having four or more submodules R continuous as shown in FIG. Can be manufactured.
  • FIG. 13 shows a wiring material 19A for the extraction electrode in the positive electrode.
  • FIG. 14 shows a wiring material 19B for the extraction electrode in the negative electrode.
  • electrical_connection material 14 in the both ends of the width direction X2 (2nd direction) of a film it is + on the same base material surface (here on the base material surface of 2nd base material 3B).
  • An extraction electrode (terminal extraction portion) for a terminal (positive electrode terminal) and a negative terminal (negative electrode terminal) can be provided. Therefore, when performing the wiring work to the extraction electrode, the step of inverting the dye-sensitized solar cell 1 up and down becomes unnecessary, and the labor of the wiring work can be reduced.
  • the longitudinal direction X1 is an arrangement direction of the submodules R and corresponds to the “first direction” of the present invention
  • the width direction X2 is a direction orthogonal to the longitudinal direction X1 in a plan view. Corresponds to "direction".
  • FIG. 15 shows a dye-sensitized solar cell 1 ⁇ / b> A (solar cell module) manufactured by cutting at the fusion portion 18 so as to have two submodules R and R in the first embodiment.
  • the dye-sensitized solar cell 1A shown in FIG. 15 has a battery structure in which two sections (submodules R and R) each composed of a plurality of cells C arranged in the width direction X2 are adjacent to each other in the longitudinal direction X1.
  • One end 1a (one end portion) in the width direction X2 in the adjacent submodules R and R is electrically connected by a wiring member 19 through a series wiring.
  • the first fusion part 181 extending from the other end 1b toward the one end 1a side with the wiring member 19 on the one end 1a side left in the width direction X2 in each sub-module R ( A first insulating line) is formed. That is, the photoelectrodes 11 and the counter electrodes 12 in the submodules R and R constitute an electric circuit electrically connected by the wiring material 19.
  • the symbol E indicates the direction of current.
  • the second base material 3B on which 12 is formed is bonded in a state shifted in the width direction X2.
  • the wiring material 19 is arrange
  • a first insulating line 181 that extends along the width direction X2 with respect to the first base material 3A and the second base material 3B and does not partially insulate the wiring material 19 on the one end 1a side in the width direction X2, Second insulating lines (not shown) for insulating over the entire width direction X2 are alternately formed in the longitudinal direction X1. Then, it manufactures by cut
  • a cut portion 1c is formed between the sub-modules R and R from the other end 1b toward the one end 1a. The cut portion 1c is set to a length that does not cut the cell C closest to the other end 1b.
  • the dye-sensitized solar cell 1 ⁇ / b> A manufactured in this way is formed by the wiring material 19 on the second base material 3 ⁇ / b> B at one end 1 a in the width direction X ⁇ b> 2 in the pair of adjacent submodules R and R divided by the first insulating line 181. It is electrically connected, and the other electrode 1b is configured such that the takeout electrode can be provided with the same base material (here, the second base material 3B).
  • action of the manufacturing method of the dye-sensitized solar cell 1 and 1A mentioned above is demonstrated in detail using drawing.
  • a sub-module R in which the conductive material 14 is disposed between the insulating portion 17 and the cells C and C adjacent to each other in the width direction X2 are electrically connected in series and divided in the longitudinal direction X1 by the fusion portion 18.
  • the dye-sensitized solar cell 1 having a configuration in which the cells C and C are electrically connected in series by the wiring material 19 can be manufactured in a state of being continuous in the longitudinal direction X1 by the RtoR method. That is, a module having an independent electric circuit can be produced by the RtoR method by the dye-sensitized solar cell 1 itself cut and divided at the position of the fusion part 18. In this manner, the position and length of the conductive material 14, the fused portion 18, and the wiring material 19 are appropriately set on the film substrate by the RtoR method, and the wiring is performed so that the set electrical characteristics (voltage, etc.) are obtained. Therefore, it is possible to freely design the series-parallel connection (circuit design) of the cells C.
  • the produced dye-sensitized solar cell 1 when the produced dye-sensitized solar cell 1 is packaged in a separate body (substrate), it is performed after attaching a plurality of dye-sensitized solar cells to the substrate as in the past, Since the wiring work for electrically connecting the sensitized solar cells is not necessary, the production efficiency can be improved. Thus, since it becomes possible to reduce an operation man-hour, reduction of manufacturing cost can be aimed at.
  • the submodules R and R on the one end 1a side in the width direction X2 are electrically connected to each other by the wiring material 19. It becomes a structure which can take out electricity by the end 1b side. That is, the whole structure is such that electricity flows in a U shape in plan view, and the lead-out electrode (positive electrode, negative electrode) can be arranged on the same side near the other end 1b in the width direction X2, thereby simplifying the wiring structure. Wiring work can be performed easily.
  • the wiring member 19 is provided at one end 1a of the adjacent submodules R and R, and a simple manufacturing method for applying the wiring member 19 to a line can be applied. Therefore, it can be easily adapted to the RtoR method. Since it can be realized by a manufacturing process in which the wiring member 19 is continuously arranged in the longitudinal direction X1 by such an RtoR method, it is not necessary to add a new work process.
  • the second embodiment is a manufacturing method for continuously manufacturing the dye-sensitized solar cell 1 by the RtoR method, and is wired along the longitudinal direction X1 at both ends in the width direction X2.
  • This is a method in which the step of arranging the material 19 is performed in the previous step of the step of bonding the photoelectrode 11 and the counter electrode 12 together.
  • the wiring material 19 is disposed on the first base material 3A simultaneously with the conductive material 14.
  • the wiring member 19 is arranged continuously in the longitudinal direction X1, and after the fusion part 18 is provided, as shown in FIG. The disconnection part 19a by which the part was notched is formed.
  • a double-sided adhesive type copper tape or a material to which a curable silver paste is applied can be employed. It is also possible to combine the photoelectrode 11 with copper tape and the counter electrode 12 with curable silver paste. Further, the copper tape may be taken out and used for electrodes, and the curable silver paste may be used for series connection with cells adjacent in the longitudinal direction X1. In the second embodiment, it is possible to cut the connection between the cells C and C of the submodule R adjacent to each other in the longitudinal direction X1 by forming the disconnection portions 19a at appropriate positions in the wiring material 19. . Therefore, a desired electric circuit can be designed according to the position of the disconnection part 19a. In the second embodiment, since the arrangement pattern of the conductive material 14 and the wiring material 19 can be formed simultaneously, the manufacturing efficiency can be improved.
  • FIG. 18 shows the dye-sensitized solar cell 1 after bonding the first base material 3A and the second base material 3B and before providing the fused portion 18.
  • FIG. 19 shows a wiring material 19A for the extraction electrode in the positive electrode.
  • FIG. 20 shows a wiring material 19B for the extraction electrode in the negative electrode.
  • 21 and 22 show a wiring material 19C for connection that connects cells adjacent in the longitudinal direction X1.
  • the + terminal (positive terminal) on the same base material surface (here, the base material surface of the second base material 3B) and -An extraction electrode (terminal extraction portion) for a terminal (negative electrode terminal) can be provided. Therefore, when performing the wiring work to the extraction electrode, the step of inverting the dye-sensitized solar cell 1 up and down becomes unnecessary, and the labor of the wiring work can be reduced.
  • the connecting wiring member 19C may be configured such that the bridging electrode is adjusted at a level that cannot be cut by ultrasonic vibration.
  • the dye-sensitized solar cell manufactured by cutting at the fusion part 18 so as to have two submodules R and R, as in the first embodiment described above. (Solar cell module) (see FIG. 15).
  • the wiring material 19 is applied so as to alternate between the photoelectrode 11 and the counter electrode 12 along the longitudinal direction X ⁇ b> 1.
  • the method That is, the cells C and C on both sides sandwiching the disconnection portion 19a where the wiring material 19 is not arranged in the longitudinal direction X1 are not connected when the wiring material 19 is arranged. Therefore, as compared with the case where the wiring material 19 is continuously arranged at the time of arranging the wiring material 19 as in the second embodiment, there is an advantage that the step of providing the disconnection portion 19a in the wiring material 19 is not necessary. .
  • the photoelectrode 11 and the counter electrode 12 are fused along the width direction X2.
  • a non-fused portion 18A portion surrounded by a two-dot dotted line in FIG. 25
  • the reason for forming the non-fused portion 18A where the fused portion 18 is not provided is that the non-fused portion 18A is on the side where the wiring material 19 is applied, and this prevents the applied wiring material 19 from being disconnected. it can. Thereby, the insulation of the wiring material 19 by fusion
  • the non-fused portion 18A is located at a position facing the disconnection portion 19a of the wiring member 19 in the width direction X2. That is, the non-fused portion 18A is a portion where the ultrasonic fusion machine is not applied in the ultrasonic fusion portion 46 shown in FIG.
  • the fourth embodiment shown in FIG. 26 is an insulating process for forming a third insulating portion 17A corresponding to the fused portion 18 in which the photoelectrode 11 and the counter electrode 12 are fused along the width direction X2. Is a manufacturing method that is performed simultaneously with the insulating processing of the photoelectrode 11 and the counter electrode 12 (only the second insulating portion 17 is shown in FIG. 26).
  • bond part 18 electrically connect with the cells C and C which adjoin the longitudinal direction X1 in the both ends of the width direction X2, between the both ends of the width direction X2, a clearance gap ( Insulation is performed with the non-insulating portion 17B and the portion surrounded by the dotted line in FIG. As shown in FIG. 27, only the portion T to be cut is sealed by ultrasonic fusion.
  • the manufacturing efficiency can be improved by simultaneously performing the third insulating portion 17A and the insulating process parallel to the longitudinal direction X1.
  • the incision processing device 50 is employed as a means for performing insulation processing by the insulation processing portions 41 and 47, but is not limited thereto.
  • a plurality of laser irradiation devices 53, 53,... are arranged at predetermined intervals in the width direction X2, and the fused portion 18 (see FIG. 1).
  • a laser irradiation device 53 for irradiating the laser L corresponding to each defined submodule R is set, and the laser is alternately switched for each submodule R as shown in FIG. 28 (a) and FIG. 28 (b).
  • the first insulating portion 16 is formed on the transparent conductive film 11A of the first base material 3A and the opposing conductive film of the second base material 3B, similarly to the incision processing device 50 of the above-described embodiment.
  • the second insulating portion 17 can be formed for 12A.
  • the number of submodules R is not limited to this embodiment, and can be arbitrarily set as long as it is an even number.
  • the solar cell module of the present invention and the method for manufacturing a solar cell module, it is possible to produce by a roll-to-roll method by adopting a structure in which serial wiring can be performed only on the film substrate. Wiring generated when the solar cell module is packaged becomes unnecessary, and the cost can be reduced.
  • Cutting processing device 51 Rotating shaft 52, 52A, 52B Semicircular blade 53 Laser irradiation device C Cell P1 First moving direction P2 Second moving direction R Submodule X1 Longitudinal direction (first direction) X2 width direction (second direction, width direction of first substrate and second substrate)

Abstract

This invention comprises: a step for performing an insulation process on transparent electroconductive films (11A) and counter electroconductive films (12A) in parallel to a longitudinal direction (X1); a step for providing sealing materials (15) for arranging a plurality of cells (C) in a width direction (X2); a step for placing electroconductive members (14) on the sealing materials (15) and electrically connecting optical electrodes (11) and counter electrodes (12) to each other; a step for providing an electrolytic solution (13) between the semiconductor layers (11B) of the optical electrodes (11) and the counter electrodes (12); a step for affixing the optical electrodes (11) and the counter electrodes (12) to each other; a step for forming fusion parts extending along the width direction (X2) with respect to the optical electrodes (11) and the counter electrodes (12); a step for placing a wiring member along the longitudinal direction (X1) at both width-direction (X2) end parts; and a step for cutting the optical electrodes (11) and the counter electrodes (12) at the position of a desired fusion part.

Description

太陽電池モジュール、及び太陽電池モジュールの製造方法SOLAR CELL MODULE AND SOLAR CELL MODULE MANUFACTURING METHOD
 本発明は、太陽電池モジュール、及び太陽電池モジュールの製造方法に関する。
本願は、2016年11月7日に日本に出願された特願2016-217426号、2017年3月24日に日本に出願された特願2017-059716号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a solar cell module and a method for manufacturing a solar cell module.
This application claims priority based on Japanese Patent Application No. 2016-217426 filed in Japan on November 7, 2016, and Japanese Patent Application No. 2017-059716 filed in Japan on March 24, 2017, and its contents Is hereby incorporated by reference.
 従来、色素増感太陽電池は、一般に、光電極と、対向電極と、電解液又は電解液層とを備えて構成されている。光電極としては、少なくとも、透明導電層、半導体層、色素を有して構成されることが知られている。このような色素増感太陽電池においては、例えば、光電極に光が照射されると、半導体層に吸着された色素が光を吸収し、色素分子内の電子が励起され、その電子が半導体へ渡される。そして、光電極で発生した電子が外部回路を通じて対向電極に移動し、この電子が電解液を通じて光電極に戻る。このような過程が繰り返されることで、電気エネルギーが生じる構成となっている。 Conventionally, a dye-sensitized solar cell is generally configured to include a photoelectrode, a counter electrode, and an electrolytic solution or an electrolytic solution layer. The photoelectrode is known to have at least a transparent conductive layer, a semiconductor layer, and a dye. In such a dye-sensitized solar cell, for example, when the photoelectrode is irradiated with light, the dye adsorbed on the semiconductor layer absorbs light, and the electrons in the dye molecule are excited, and the electrons are transferred to the semiconductor. Passed. Then, electrons generated at the photoelectrode move to the counter electrode through an external circuit, and the electrons return to the photoelectrode through the electrolytic solution. By repeating such a process, electric energy is generated.
 このような色素増感太陽電池からなる太陽電池モジュールの製造方法として、例えば特許文献1に示すように、ロール・ツー・ロール方式で貼り合せた第一電極と第二電極を、超音波振動を用いて絶縁及び溶着させることにより複数のセルに分割する方法が知られている。 As a method for manufacturing a solar cell module including such a dye-sensitized solar cell, for example, as shown in Patent Document 1, ultrasonic vibration is applied to a first electrode and a second electrode bonded together in a roll-to-roll method. A method of dividing into a plurality of cells by using and insulating and welding is known.
日本国特許第5702897号公報Japanese Patent No. 5702897
 しかしながら、従来の色素増感太陽電池からなる太陽電池モジュールでは、以下のような問題があった。
 すなわち、特許文献1に開示される太陽電池モジュールでは、セルを直並列で接続するためにロール・ツー・ロール方式によって連続的に製造される電極の長手方向を分離するように切断した後、それら分割された太陽電池モジュール同士を直列接続するために配線作業を行っている。そのため、配線に伴う追加工程が必要となり、製造コストが増大するという問題があった。つまり、複数の太陽電池モジュールを例えばブラインド等に配置する場合には、複数の太陽電池モジュールをブラインドの基板上に互いに間隔をあけた状態で貼り付けた後で、それぞれの太陽電池モジュール同士を直列に接続することとなり、配線にかかる手間やコストが増える虞がある。
However, the conventional solar cell module composed of a dye-sensitized solar cell has the following problems.
That is, in the solar cell module disclosed in Patent Document 1, the cells are cut so as to separate the longitudinal direction of the electrodes that are continuously manufactured by a roll-to-roll method in order to connect the cells in series and parallel, and then Wiring work is performed to connect the divided solar cell modules in series. For this reason, there is a problem in that an additional process associated with the wiring is required and the manufacturing cost increases. That is, when arranging a plurality of solar cell modules in, for example, a blind or the like, the plurality of solar cell modules are pasted on the blind substrate in a state of being spaced apart from each other, and then the respective solar cell modules are connected in series. Therefore, there is a possibility that labor and cost for wiring increase.
 本発明は、上述する問題点に鑑みてなされたもので、フィルム基板上のみで直列配線を行うことができる構造とすることで、ロール・ツー・ロール方式による生産が可能となるうえ、太陽電池モジュールを外装する際に生じる配線が不要となり、コストの低減を図ることができる太陽電池モジュール、及び太陽電池モジュールの製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems. By adopting a structure that allows serial wiring only on a film substrate, production by a roll-to-roll method is possible, and a solar cell is provided. It is an object of the present invention to provide a solar cell module and a method for manufacturing the solar cell module, in which wiring generated when the module is packaged becomes unnecessary and the cost can be reduced.
 本発明は、上記課題を解決して係る目的を達成するために、以下の態様を採用した。
(1)本発明の一態様に係る太陽電池モジュールは、第一電極と、第二電極と、前記第一電極と前記第二電極との間に封止された電解液と、前記電解液を封止する複数の封止材と、複数の絶縁ラインと、を含む積層構造体であり、前記複数の封止材及び前記複数の絶縁ラインにより規定される、それぞれ複数のセルから構成される複数のサブモジュールを有する太陽電池モジュールであって、前記第一電極は、表面に透明導電膜が成膜された第一基材、及び前記第一基材の前記透明導電膜の表面に形成された、第一の方向に延在する色素が吸着した複数の帯状半導体層を有し、前記第二電極は、表面に前記第一電極に対向するように対向導電膜が成膜された第二基材を有し、前記電解液は、前記第一電極の前記半導体層と前記第二電極との間に封止されており、前記複数の封止材は、それぞれ前記第一電極と前記第二電極との間において、前記第一の方向に沿って延在することにより、前記電解液を封止するとともに、前記積層構造体を複数のセルに分割し、前記複数の絶縁ラインは、それぞれ前記第一電極と前記第二電極との間において、平面視で前記第一の方向に直交する第二の方向に沿って延在するにより、前記積層構造体を、それぞれ複数のセルから構成される複数のサブモジュールに分割し、前記第二の方向に隣り合うセルについて、一方のセルの第一電極と、他方のセルの第二電極とが、前記封止材に覆われた状態で設けられた導通材により電気的に接続され、それにより前記複数のセルは直列に接続され、各セルにおいて、第一電極と第二電極との短絡が防止されるように、前記第一基材には、一方の導通材に隣接する位置の近傍に前記第一の方向に延びる第一絶縁部が設けられており、前記第二基材には、他方の導通材に隣接する位置の近傍に前記第一の方向に延びる第二絶縁部が設けられており、前記複数のサブモジュールは、前記第一の方向に隣り合うサブモジュールについて、前記第二の方向の同じ側の端部同士が配線材によって直列配線により電気的に接続され、かつ、前記複数のサブモジュールを流れる電流の向きが、前記第一の方向に配列される前記サブモジュール毎に交互に反転するように接続されていること特徴としている。
The present invention employs the following aspects in order to solve the above-described problems and achieve the object.
(1) A solar cell module according to an aspect of the present invention includes a first electrode, a second electrode, an electrolytic solution sealed between the first electrode and the second electrode, and the electrolytic solution. A stacked structure including a plurality of sealing materials to be sealed and a plurality of insulating lines, each of which is composed of a plurality of cells each defined by the plurality of sealing materials and the plurality of insulating lines. The first electrode is formed on the surface of the transparent conductive film of the first base material, the first base material having a transparent conductive film formed on the surface thereof, The second electrode has a plurality of strip-like semiconductor layers adsorbed with a dye extending in the first direction, and the second electrode has a second conductive film formed on the surface so as to face the first electrode. The electrolyte solution is between the semiconductor layer of the first electrode and the second electrode. The plurality of sealing materials seal the electrolyte solution by extending along the first direction between the first electrode and the second electrode, respectively. In addition, the laminated structure is divided into a plurality of cells, and the plurality of insulating lines are respectively between the first electrode and the second electrode, and are secondly orthogonal to the first direction in plan view. The stacked structure is divided into a plurality of submodules each composed of a plurality of cells by extending along the direction, and the cells adjacent to each other in the second direction are connected to the first electrode of one cell. The second electrode of the other cell is electrically connected by a conductive material provided in a state of being covered with the sealing material, whereby the plurality of cells are connected in series. Short circuit between one electrode and second electrode is prevented As described above, the first base material is provided with a first insulating portion extending in the first direction in the vicinity of a position adjacent to the one conductive material, and the second conductive material is provided with the other conductive material. A second insulating portion extending in the first direction is provided in the vicinity of the position adjacent to the first sub-module, and the plurality of sub-modules are the same in the second direction for sub-modules adjacent to the first direction. Ends on the side are electrically connected to each other by serial wiring by a wiring material, and the direction of current flowing through the plurality of submodules is alternately reversed for each of the submodules arranged in the first direction. It is characterized by being connected.
 本発明では、第一基材の第二の方向に隣り合うセル同士の間に配置された第一基材の絶縁部と第二基材の絶縁部との間に導通材が配置され、第二の方向に隣り合うセル同士が電気的に直列に接続され、かつ絶縁ラインによって第一の方向に分割されたサブモジュールにおける第二の方向の同じ側の端部同士が配線材によって直列配線により電気的に直列に接続されている。つまり、一方のサブモジュールにおいて第二の方向の他端から一端へ電気が流れるとともに、一端側の電気が他方のサブモジュールの一端側に配線材を介して流れ、さらに他方のサブモジュールにおいて第二の方向の一端から他端側へ電気が流れる回路構成を実現することができる。
 このように本発明に係る太陽電池モジュールでは、複数のサブモジュールのうち第二の方向の同じ側のサブモジュール同士が配線材によって導通され、他端側で電気を取り出すことが可能な構成となる。すなわち、全体が平面視でサブモジュール毎に電気の向きが交互に入れ替わる構造、あるいは全体が平面視でU字状に電気が流れる構造となり、取り出し電極(正極、負極)を第二の方向の同じ側に配置することができるため、配線構造が簡略化でき、配線作業を容易に行うことができる。
In the present invention, a conductive material is disposed between the insulating portion of the first base material and the insulating portion of the second base material that are disposed between cells adjacent in the second direction of the first base material, Cells adjacent to each other in the two directions are electrically connected in series, and the ends on the same side in the second direction in the submodule divided in the first direction by the insulating lines are connected in series by the wiring material. They are electrically connected in series. That is, electricity flows from the other end in the second direction to one end in one sub-module, and electricity on one end side flows to the one end side of the other sub-module via the wiring member. A circuit configuration in which electricity flows from one end to the other end in the direction can be realized.
Thus, in the solar cell module according to the present invention, the sub-modules on the same side in the second direction among the plurality of sub-modules are electrically connected to each other by the wiring material, and electricity can be taken out on the other end side. . In other words, the whole structure is a structure in which the direction of electricity is alternately switched for each sub-module in plan view, or the whole structure is a structure in which electricity flows in a U shape in plan view, and the take-out electrode (positive electrode, negative electrode) is the same in the second direction. Therefore, the wiring structure can be simplified and the wiring work can be easily performed.
 そして、本発明では、隣り合うサブモジュールの同じ側に配線材を設けるという簡単な構造であり、配線材をライン塗布する簡単な製造方法を適用することも可能となるため、ロール・ツー・ロール方式にも簡単に適応できる。このようなロール・ツー・ロール方式で第一の方向に連続的に配線材を配置する製造工程により実現できるので、新たな作業工程を追加する必要がない。 In the present invention, the wiring material is provided on the same side of the adjacent submodules, and a simple manufacturing method for applying the wiring material to the line can be applied. It can be easily adapted to the system. Since such a roll-to-roll method can be realized by a manufacturing process in which wiring members are continuously arranged in the first direction, it is not necessary to add a new work process.
(2)上記(1)に記載の、太陽電池モジュールにおいて、前記第二の方向の両端部に配置される前記導通材には、前記第一基材の基材面上、又は前記第二基材の基材面上に端子取出し部が設けられていることを特徴としてもよい。 (2) In the solar cell module according to the above (1), the conductive material disposed at both ends in the second direction includes the base material surface of the first base material or the second base material. It is good also as the terminal taking-out part being provided on the base-material surface of the material.
この場合には、同一の基材面上に+端子(正極端子)と-端子(負極端子)の端子取出し部を設けることができるため、取り出し電極への配線作業を行う際に太陽電池モジュールを上下に反転する工程が不要となり、配線作業の手間を低減することができる。 In this case, since the terminal extraction part of + terminal (positive electrode terminal) and-terminal (negative electrode terminal) can be provided on the same base material surface, the solar cell module is installed when performing the wiring work to the extraction electrode. The process of flipping up and down is not necessary, and the labor of wiring work can be reduced.
(3)本発明の他の態様に係る太陽電池モジュールの製造方法は、ロール・ツー・ロール方式により連続的に太陽電池モジュールを製造するための太陽電池モジュールの製造方法であって、第一基材の表面に透明導電膜が成膜され、前記第一基材の前記透明導電膜の表面に形成された、第一の方向に延在する色素が吸着した複数の半導体層が形成された第一電極を形成する工程と、第二基材の表面に前記第一電極に対向するように対向導電膜が成膜された第二電極を形成する工程と、前記透明導電膜及び前記対向導電膜に対して前記第一の方向と平行に絶縁加工を行う工程と、前記第一の方向に沿って延在し、平面視で前記第一の方向に直交する第二の方向に複数のセルを配列する封止材を設ける工程と、前記封止材に覆われた状態で導通材を配置し、前記第二の方向に隣り合うセルについて、一方のセルの第一電極と他方のセルの第二電極とを前記導通材により電気的に接続する工程と、前記第一電極の前記半導体層と前記第二電極との間に電解液を設ける工程と、前記第一電極と前記第二電極とを貼り合せる工程と、前記第一電極及び前記第二電極に対して前記第二の方向に沿って延在する絶縁ラインを形成し、複数のセルから構成される複数のサブモジュールに分割する工程と、前記第一の方向に隣り合う前記サブモジュールについて、前記第二の方向の同じ側の端部同士を配線材によって直列配線により電気的に接続する工程と、前記第一電極と前記第二電極とを任意の前記絶縁ラインの位置で切断する工程と、を有することを特徴としている。 (3) A method for manufacturing a solar cell module according to another aspect of the present invention is a method for manufacturing a solar cell module for continuously manufacturing a solar cell module by a roll-to-roll method, wherein the first group A transparent conductive film is formed on the surface of the material, and a plurality of semiconductor layers formed on the surface of the transparent conductive film of the first substrate and adsorbed with a dye extending in the first direction are formed. A step of forming one electrode, a step of forming a second electrode in which a counter conductive film is formed on the surface of the second substrate so as to face the first electrode, the transparent conductive film, and the counter conductive film A step of performing insulation processing in parallel to the first direction, and a plurality of cells extending in the first direction and extending in the second direction perpendicular to the first direction in plan view. A step of providing a sealing material to be arranged, and a conductive material in a state covered with the sealing material Arranging and electrically connecting the first electrode of one cell and the second electrode of the other cell with the conductive material for the cells adjacent to each other in the second direction; and the semiconductor of the first electrode A step of providing an electrolytic solution between the layer and the second electrode, a step of bonding the first electrode and the second electrode, and the second direction with respect to the first electrode and the second electrode. Forming an insulating line extending along a plurality of sub-modules composed of a plurality of cells, and the sub-module adjacent to the first direction on the same side in the second direction And a step of electrically connecting the end portions of the first electrode and the second electrode at a position of the insulating line by electrically connecting the end portions of the first electrode and the second electrode with a wiring material. .
 本発明では、第一基材の第二の方向に隣り合うセル同士の間に配置された第一基材の絶縁部と第二基材の絶縁部との間に導通材が配置され、第二の方向に隣り合うセル同士が電気的に直列に接続され、かつ絶縁ラインによって第一の方向に分割されたサブモジュールのセル同士が配線材によって電気的に直列に接続された構成の太陽電池モジュールをロール・ツー・ロール方式で第一の方向に連続した状態で製造することができる。つまり、絶縁ラインの位置で切断され分割された太陽電池モジュール自体で独立した電気回路を備えたモジュールをロール・ツー・ロール方式によって生産することができる。このようにロール・ツー・ロール方式によりフィルム基板上で導通材、絶縁ライン、配線材の位置や長さを適宜設定し、設定された電気特性(電圧など)になるような配線を施して製造できるので、セルの直並列接続(回路設計)を自由に設計することが可能となる。 In the present invention, a conductive material is disposed between the insulating portion of the first base material and the insulating portion of the second base material that are disposed between cells adjacent in the second direction of the first base material, Solar cell having a configuration in which cells adjacent to each other in two directions are electrically connected in series, and cells of submodules divided in the first direction by an insulating line are electrically connected in series by a wiring member The module can be manufactured in a roll-to-roll manner in a continuous state in the first direction. That is, a module including an independent electric circuit can be produced by the roll-to-roll method by the solar cell module itself cut and divided at the position of the insulation line. In this way, the position and length of the conductive material, insulation line, and wiring material are set appropriately on the film substrate using the roll-to-roll method, and wiring is performed to achieve the set electrical characteristics (voltage, etc.). Therefore, it is possible to freely design series-parallel connection (circuit design) of cells.
 また、本発明では、製造した太陽電池モジュールを別体(基板)に外装する場合に、従来のように基板に複数の太陽電池モジュールを取り付けた後に行われ、それら太陽電池モジュール同士を電気的に接続する配線作業が不要になるため、製造効率を向上させることができる。このように、作業工数を減らすことが可能となることから、製造コストの低減を図ることができる。 Further, in the present invention, when the manufactured solar cell module is packaged in a separate body (substrate), it is performed after attaching a plurality of solar cell modules to the substrate as in the prior art, and the solar cell modules are electrically connected to each other. Since the wiring work to connect becomes unnecessary, manufacturing efficiency can be improved. Thus, since it becomes possible to reduce an operation man-hour, reduction of manufacturing cost can be aimed at.
(4)上記(3)に記載の、太陽電池モジュールの製造方法において、前記絶縁加工を行う工程において、絶縁加工位置が前記第一の方向に対して一定周期で前記第二の方向にずれた位置に変化する絶縁加工パターンが形成されることを特徴としてもよい。 (4) In the method for manufacturing a solar cell module according to (3), in the step of performing the insulating process, the insulating processing position is shifted in the second direction at a constant period with respect to the first direction. An insulating pattern that changes in position may be formed.
 この場合には、第二の方向に交互に絶縁加工パターンが形成されることで、サブモジュール毎に正極と負極の位置を規則的に入れ替えることができる。 In this case, the insulating pattern is alternately formed in the second direction, so that the positions of the positive electrode and the negative electrode can be regularly changed for each submodule.
(5)上記(3)又は(4)に記載の、太陽電池モジュールの製造方法において、 前記第一の方向に沿って連続した状態で前記配線材が配置され、前記絶縁ラインが形成された後に、前記配線材の前記第一の方向の一部を切り欠き加工することにより断線部を形成するようにしてもよい。 (5) In the method for manufacturing a solar cell module according to (3) or (4) above, after the wiring material is arranged in a continuous state along the first direction and the insulating line is formed The disconnection portion may be formed by notching a part of the wiring material in the first direction.
 この場合には、配線材において適宜な箇所に断線部を形成することで、絶縁ラインを挟んで第一の方向に隣り合うサブモジュールのセル同士の接続を切断することが可能となる。
 そのため、断線部の位置によって所望の電気回路を設計することができる。
In this case, it is possible to cut the connection between the cells of the submodules adjacent in the first direction across the insulating line by forming a disconnection portion at an appropriate location in the wiring material.
Therefore, a desired electric circuit can be designed according to the position of the disconnection portion.
(6)上記(3)又は(4)に記載の、太陽電池モジュールの製造方法において、前記配線材を配置する工程において、前記第一の方向の一部に断線部を形成した前記配線材が配置されることを特徴としてもよい。 (6) In the method for manufacturing a solar cell module according to (3) or (4), in the step of arranging the wiring material, the wiring material in which a disconnection portion is formed in a part of the first direction. It is good also as arrange | positioning.
 この場合には、配線材を配置する工程と同時に断線部も形成されることから、配線材の配置後に断線部を設ける作業が不要となり、製造効率を向上させることができる。 In this case, since the disconnection portion is formed simultaneously with the step of arranging the wiring material, an operation of providing the disconnection portion after the arrangement of the wiring material becomes unnecessary, and the manufacturing efficiency can be improved.
(7)上記(3)~(6)のいずれか1項に記載の、太陽電池モジュールの製造方法において、前記絶縁ラインは、前記第二の方向に沿って融着された融着部であることが好ましい。 (7) In the method for manufacturing a solar cell module according to any one of (3) to (6), the insulating line is a fusion part that is fused along the second direction. It is preferable.
 この場合には、第二の方向に沿って延在する適宜な融着手段を備えた製造装置によってロール・ツー・ロール方式によって移動される第一電極及び第二電極に対して融着部を容易に形成することができる。 In this case, the fusion part is provided with respect to the first electrode and the second electrode that are moved by a roll-to-roll method by a manufacturing apparatus having appropriate fusion means extending along the second direction. It can be formed easily.
(8)上記(3)~(7)のいずれか1項に記載の、太陽電池モジュールの製造方法において、前記配線材を配置する工程は、前記導通材を配置するときに同時に行われることを特徴としてもよい。 (8) In the method for manufacturing a solar cell module according to any one of (3) to (7), the step of arranging the wiring material is performed simultaneously with the arrangement of the conductive material. It may be a feature.
 この場合には、導通材及び配線材の配置パターンを同時に形成することができるので、製造効率を向上させることができる。 In this case, since the arrangement pattern of the conductive material and the wiring material can be formed at the same time, the manufacturing efficiency can be improved.
(9)上記(3)~(7)のいずれか1項に記載の、太陽電池モジュールの製造方法において、前記絶縁ラインを形成する工程は、前記絶縁加工を行うときに同時に行われることを特徴としてもよい。 (9) In the method for manufacturing a solar cell module according to any one of (3) to (7), the step of forming the insulating line is performed simultaneously with the insulating processing. It is good.
 この場合には、絶縁ラインと第一の方向に平行な絶縁加工とを同時に行うことで、製造効率を向上させることができる。 In this case, the production efficiency can be improved by simultaneously performing the insulation line and the insulation process parallel to the first direction.
(10)本発明の他の態様に係る太陽電池モジュールの製造方法は、第一基材の表面に透明導電膜が成膜され、前記第一基材の前記透明導電膜の表面に形成された、第一の方向に延在する色素が吸着した複数の半導体層が形成された第一電極を形成する工程と、第二基材の表面に前記第一電極に対向するように対向導電膜が成膜された第二電極を形成する工程と、前記透明導電膜及び前記対向導電膜に対して前記第一の方向と平行に絶縁加工を行う工程と、前記第一の方向に沿って延在し、平面視で前記第一の方向に直交する第二の方向に複数のセルを配列する封止材を設ける工程と、前記封止材に覆われた状態で導通材を配置し、前記第二の方向に隣り合うセルについて、一方のセルの第一電極と他方のセルの第二電極とを前記導通材により電気的に接続する工程と、前記第一電極の前記半導体層と前記第二電極との間に電解液を設ける工程と、前記第一電極と前記第二電極とを貼り合せる工程と、前記第一基材の前記第二の方向の両端に前記第一の方向に沿って配線材を配置する工程と、前記第一電極及び前記第二電極に対して前記第二の方向に沿って延在し、前記第二の方向の一端寄りの前記配線材を部分的に絶縁しない第一絶縁ラインと、前記第二の方向の全体にわたって絶縁する第二絶縁ラインと、を前記第一の方向の所定位置に形成し、前記第二絶縁ライン同士の間に前記第一絶縁ラインを設ける工程と、前記第一電極と前記第二電極とを前記第二絶縁ラインの位置で切断する工程と、を有し、前記第二絶縁ラインで切断された太陽電池モジュールは、前記第一絶縁ラインで分割された前記サブモジュールのうち隣り合う前記サブモジュールについて、前記第二の方向の同じ側の端部同士を前記配線材によって直列配線により電気的に接続されることを特徴としている。 (10) In the method for manufacturing a solar cell module according to another aspect of the present invention, a transparent conductive film is formed on the surface of the first substrate, and is formed on the surface of the transparent conductive film of the first substrate. A step of forming a first electrode formed with a plurality of semiconductor layers adsorbed with a dye extending in the first direction, and a counter conductive film on the surface of the second substrate so as to face the first electrode A step of forming a deposited second electrode, a step of performing an insulating process in parallel to the first direction on the transparent conductive film and the counter conductive film, and extending along the first direction A step of providing a sealing material for arranging a plurality of cells in a second direction orthogonal to the first direction in plan view, a conductive material disposed in a state covered with the sealing material, For cells adjacent in two directions, the first electrode of one cell and the second electrode of the other cell are A step of electrically connecting; a step of providing an electrolyte between the semiconductor layer of the first electrode and the second electrode; a step of bonding the first electrode and the second electrode; A step of disposing a wiring material along the first direction at both ends of the second direction of one base material, and extending along the second direction with respect to the first electrode and the second electrode; And a first insulating line that does not partially insulate the wiring material near one end in the second direction and a second insulating line that insulates the entire second direction in the first direction. Forming the first insulating line between the second insulating lines, and cutting the first electrode and the second electrode at the position of the second insulating line. The solar cell module cut by the second insulation line is For the sub-modules adjacent one of said sub-modules divided by emissions, is characterized by being electrically connected by series wiring ends on the same side of the second direction by the wiring member.
 本発明では、第一基材の第二の方向に隣り合うセル同士の間に配置された第一基材の絶縁部と第二基材の絶縁部との間に導通材が配置され、第二の方向に隣り合うセル同士が電気的に直列に接続され、かつ第一絶縁ラインによって第一の方向に分割された隣り合う一対のサブモジュールにおける第二の方向の同じ側の端部同士が配線材によって直列配線により電気的に接続された構成の太陽電池モジュールを製造することができる。そのため、第二絶縁ラインの位置で切断され分割された太陽電池モジュール自体で独立した電気回路となり、このような太陽電池モジュールをロール・ツー・ロール方式によって生産することも可能となる。
 また、本発明では、製造した太陽電池モジュールを別体(基板)に外装する場合に、従来のように基板に複数の太陽電池モジュールを取り付けた後に行われ、それら太陽電池モジュール同士を電気的に接続する配線作業が不要になるため、製造効率を向上させることができる。このように、作業工数を減らすことが可能となることから、製造コストの低減を図ることができる。
In the present invention, a conductive material is disposed between the insulating portion of the first base material and the insulating portion of the second base material that are disposed between cells adjacent in the second direction of the first base material, Two adjacent cells in two directions are electrically connected in series, and the ends on the same side in the second direction in a pair of adjacent submodules divided in the first direction by the first insulating line are A solar cell module having a configuration in which the wiring material is electrically connected by serial wiring can be manufactured. Therefore, the solar cell module itself cut and divided at the position of the second insulation line becomes an independent electric circuit, and such a solar cell module can be produced by a roll-to-roll method.
Further, in the present invention, when the manufactured solar cell module is packaged in a separate body (substrate), it is performed after attaching a plurality of solar cell modules to the substrate as in the prior art, and the solar cell modules are electrically connected to each other. Since the wiring work to connect becomes unnecessary, manufacturing efficiency can be improved. Thus, since it becomes possible to reduce an operation man-hour, reduction of manufacturing cost can be aimed at.
(11)上記(10)に記載の、太陽電池モジュールの製造方法において、前記第一絶縁ライン及び前記第二絶縁ラインは、前記第二の方向に沿って融着された融着部であることが好ましい。 (11) In the method for manufacturing a solar cell module according to (10), the first insulation line and the second insulation line are fusion parts fused along the second direction. Is preferred.
 この場合には、第二の方向に沿って延在する適宜な融着手段を備えた製造装置によってロール・ツー・ロール方式によって移動される第一電極及び第二電極に対して第一絶縁ライン及び第二絶縁ラインをなす融着部を容易に形成することができる。 In this case, the first insulating line with respect to the first electrode and the second electrode moved by a roll-to-roll method by a manufacturing apparatus having appropriate fusion means extending along the second direction. And the melt | fusion part which makes a 2nd insulation line can be formed easily.
(12)上記(10)又は(11)に記載の、太陽電池モジュールの製造方法において、前記第一絶縁ライン及び前記第二絶縁ラインを形成する工程は、前記絶縁加工を行うときに同時に行われることを特徴としてもよい。 (12) In the method for manufacturing a solar cell module according to (10) or (11), the step of forming the first insulating line and the second insulating line is performed simultaneously with the insulating process. This may be a feature.
 この場合には、第一絶縁ライン及び第二絶縁ラインと、第一の方向に平行な絶縁加工と、を同時に行うことで、製造効率を向上させることができる。 In this case, the manufacturing efficiency can be improved by simultaneously performing the first insulating line and the second insulating line and the insulating process parallel to the first direction.
 本発明の各態様に係る、太陽電池モジュール、及び太陽電池モジュールの製造方法によれば、フィルム基板上のみで直列配線を行うことができる構造とすることで、ロール・ツー・ロール方式による生産が可能となるうえ、太陽電池モジュールを外装する際に生じる配線が不要となり、コストの低減を図ることができる。 According to the solar cell module and the method for manufacturing a solar cell module according to each aspect of the present invention, the production by the roll-to-roll method is achieved by adopting a structure that allows serial wiring only on the film substrate. In addition, the wiring generated when the solar cell module is packaged becomes unnecessary, and the cost can be reduced.
図1は本発明の第1の実施の形態による色素増感太陽電池の概略構成を示す平面図である。FIG. 1 is a plan view showing a schematic configuration of the dye-sensitized solar cell according to the first embodiment of the present invention. 図2は図1に示すA-A線断面図であって、色素増感太陽電池を長手方向から見た部分断面図である。FIG. 2 is a cross-sectional view taken along line AA shown in FIG. 1, and is a partial cross-sectional view of the dye-sensitized solar cell as viewed from the longitudinal direction. 図3は図1に示すB-B線断面図であって、色素増感太陽電池を幅方向から見た部分断面図である。FIG. 3 is a cross-sectional view taken along line BB shown in FIG. 1, and is a partial cross-sectional view of the dye-sensitized solar cell viewed from the width direction. 図4は色素増感太陽電池の製造装置の全体構成を示す斜視図である。FIG. 4 is a perspective view showing the overall configuration of the dye-sensitized solar cell manufacturing apparatus. 図5は切込み加工装置で絶縁加工を施している状態を示す斜視図である。FIG. 5 is a perspective view showing a state in which insulation processing is performed by a cutting apparatus. 図6は切込み加工装置で絶縁加工を施している状態を示す図であって、切込み加工装置を長手方向から見た正面図である。FIG. 6 is a view showing a state in which insulation processing is performed by the cutting apparatus, and is a front view of the cutting apparatus as viewed from the longitudinal direction. 図7は製造装置を用いた製造過程の色素増感太陽電池の平面図であって、第一基材に光電極を形成した状態を示す図である。FIG. 7 is a plan view of a dye-sensitized solar cell in the manufacturing process using the manufacturing apparatus, and shows a state in which a photoelectrode is formed on the first substrate. 図8は製造装置を用いた製造過程の色素増感太陽電池の平面図であって、第二基材に絶縁加工を施した状態を示す図である。FIG. 8 is a plan view of the dye-sensitized solar cell in the manufacturing process using the manufacturing apparatus, and shows a state in which the second base material is subjected to insulation processing. 図9は製造装置を用いた製造過程の色素増感太陽電池の平面図であって、第一基材に絶縁加工を施した状態を示す図である。FIG. 9 is a plan view of the dye-sensitized solar cell in the manufacturing process using the manufacturing apparatus, and shows a state in which the first base material is subjected to insulation processing. 図10は製造装置を用いた製造過程の色素増感太陽電池の平面図であって、基材同士を貼り合せた状態を示す図である。FIG. 10 is a plan view of a dye-sensitized solar cell in a manufacturing process using a manufacturing apparatus, and shows a state in which base materials are bonded together. 図11は製造装置を用いた製造過程の色素増感太陽電池の平面図であって、融着部を形成した状態を示す図である。FIG. 11 is a plan view of a dye-sensitized solar cell in the manufacturing process using the manufacturing apparatus, and shows a state in which a fused portion is formed. 図12は製造装置を用いた製造過程の色素増感太陽電池の平面図であって、基材の幅方向の両端部に配線材を貼り付けた状態を示す図である。FIG. 12 is a plan view of the dye-sensitized solar cell in the manufacturing process using the manufacturing apparatus, and shows a state in which the wiring material is attached to both end portions in the width direction of the base material. 図13は図12に示すC-C線断面図である。13 is a cross-sectional view taken along line CC shown in FIG. 図14は図12に示すD-D線断面図である。14 is a sectional view taken along line DD shown in FIG. 図15は第1の実施の形態による色素増感太陽電池の構成を示す斜視図である。FIG. 15 is a perspective view showing the configuration of the dye-sensitized solar cell according to the first embodiment. 図16は第2の実施の形態による色素増感太陽電池の製造過程を示す平面図である。FIG. 16 is a plan view showing a manufacturing process of the dye-sensitized solar cell according to the second embodiment. 図17は第2の実施の形態による色素増感太陽電池の製造過程を示す平面図である。FIG. 17 is a plan view showing a manufacturing process of the dye-sensitized solar cell according to the second embodiment. 図18は第2の実施の形態による色素増感太陽電池の製造過程を示す平面図である。FIG. 18 is a plan view showing a manufacturing process of the dye-sensitized solar cell according to the second embodiment. 図19は図18に示すC’-C’線断面図である。FIG. 19 is a cross-sectional view taken along line C'-C 'shown in FIG. 図20は図18に示すD’-D’線断面図である。20 is a cross-sectional view taken along the line D'-D 'shown in FIG. 図21は図18に示すE-E線断面図である。21 is a cross-sectional view taken along the line EE shown in FIG. 図22は図18に示すF-F線断面図である。22 is a cross-sectional view taken along the line FF shown in FIG. 図23は他の配線材の構成を示す断面図である。FIG. 23 is a cross-sectional view showing the configuration of another wiring material. 図24は第3の実施の形態による色素増感太陽電池の製造過程を示す平面図である。FIG. 24 is a plan view showing a manufacturing process of the dye-sensitized solar cell according to the third embodiment. 図25は第3の実施の形態による色素増感太陽電池の製造過程を示す平面図である。FIG. 25 is a plan view showing a manufacturing process of the dye-sensitized solar cell according to the third embodiment. 図26は第4の実施の形態による色素増感太陽電池の製造過程を示す平面図である。FIG. 26 is a plan view showing a manufacturing process of the dye-sensitized solar cell according to the fourth embodiment. 図27は第4の実施の形態による色素増感太陽電池の製造過程を示す平面図である。FIG. 27 is a plan view showing a manufacturing process of the dye-sensitized solar cell according to the fourth embodiment. 図28Aは、変形例による絶縁加工部であるレーザー照射装置で絶縁加工を施している状態を示す図であって、レーザー照射装置を長手方向から見た正面図である。FIG. 28A is a diagram showing a state in which insulation processing is performed by a laser irradiation device which is an insulation processing portion according to a modification, and is a front view of the laser irradiation device viewed from the longitudinal direction. 図28Bは、変形例による絶縁加工部であるレーザー照射装置で絶縁加工を施している状態を示す図であって、レーザー照射装置を長手方向から見た正面図である。FIG. 28B is a diagram illustrating a state in which insulation processing is performed by a laser irradiation apparatus that is an insulation processing portion according to a modification, and is a front view of the laser irradiation apparatus viewed from the longitudinal direction.
 以下、本発明の実施の形態による太陽電池モジュール、及び太陽電池モジュールの製造方法について、図面に基づいて説明する。なお、以下の説明で用いる図面は模式的なものであり、長さ、幅、及び厚みの比率、構造等は実際のものと同一とは限らず、適宜変更できる。 Hereinafter, a solar cell module according to an embodiment of the present invention and a method for manufacturing the solar cell module will be described with reference to the drawings. The drawings used in the following description are schematic, and the length, width, thickness ratio, structure, and the like are not necessarily the same as the actual ones, and can be changed as appropriate.
(第1の実施の形態)
 図1に示すように、本実施の形態の太陽電池モジュール、及び太陽電池モジュールの製造方法は、図1に示すように、後述するロール・ツー・ロール方式(以下、RtoR方式と記載する)による製造装置4(図4参照)によって作製された一方向に長く延在するフィルム型の色素増感太陽電池1(太陽電池モジュール)を適宜な長さに切断することにより製造される。なお、図1において、矢印は電気の流れを示し、記号+(プラス)、-(マイナス)はそれぞれ正極、負極を示している(他の図も同様)。
 ここで、図1、図2、及び図3に示す色素増感太陽電池1において、長さ方向(長尺方向)を長手方向X1(第一の方向)とし、平面視で長手方向X1に直交する方向を基材(後述する第一基材3A及び第二基材3B)の幅方向X2(第二の方向)として、以下統一して用いる。
(First embodiment)
As shown in FIG. 1, the solar cell module according to the present embodiment and the method for manufacturing the solar cell module are based on a roll-to-roll method (hereinafter referred to as RtoR method), which will be described later, as shown in FIG. It is manufactured by cutting a film type dye-sensitized solar cell 1 (solar cell module), which is produced by the manufacturing apparatus 4 (see FIG. 4) and extends long in one direction, to an appropriate length. In FIG. 1, arrows indicate the flow of electricity, and symbols + (plus) and − (minus) indicate a positive electrode and a negative electrode, respectively (the same applies to other drawings).
Here, in the dye-sensitized solar cell 1 shown in FIG. 1, FIG. 2, and FIG. 3, the length direction (long direction) is the longitudinal direction X1 (first direction), and is orthogonal to the longitudinal direction X1 in plan view. The direction to be used is defined below as the width direction X2 (second direction) of the base material (first base material 3A and second base material 3B described later).
 本実施の形態の色素増感太陽電池1は、図2に示すように、光電極11と、該光電極11と対向して設けられる対向電極12とを有する色素増感太陽電池セル(以下、単にセルCという)が、一対の基材3A、3Bの間に介挿された構造を有してなる。そして、色素増感太陽電池1は、一対の基材3A、3Bのそれぞれの内面に導電性を有する導電膜11A、12Aが成膜されており、この導電膜11A、12Aに対して光電極11の半導体層11B及び対向電極12の触媒層12Bが電気的に接続され、概略構成されている。 As shown in FIG. 2, the dye-sensitized solar cell 1 of the present embodiment includes a dye-sensitized solar cell (hereinafter referred to as “photosensitive electrode”) having a photoelectrode 11 and a counter electrode 12 provided to face the photoelectrode 11. Cell C) has a structure interposed between the pair of base materials 3A and 3B. In the dye-sensitized solar cell 1, conductive films 11A and 12A having conductivity are formed on the inner surfaces of the pair of base materials 3A and 3B. The photoelectrode 11 is formed on the conductive films 11A and 12A. The semiconductor layer 11 </ b> B and the catalyst layer 12 </ b> B of the counter electrode 12 are electrically connected to each other and are roughly configured.
 本実施の形態の色素増感太陽電池1は、上述したように光電極11と対向電極12とが封止機能付きの導通材14を介して対向配置されてなる太陽電池モジュールであって、第一基材3A及び第二基材3Bの間に形成された複数のセルCの封止と、各セルC,C,…,C同士の電気的な直列接続を要する種々の電気モジュールを対象としている。ここで、後述するサブモジュールRのセルCにおいて、直列接続される方向は幅方向X2である。 The dye-sensitized solar cell 1 according to the present embodiment is a solar cell module in which the photoelectrode 11 and the counter electrode 12 are opposed to each other via the conductive material 14 with a sealing function as described above, For various electric modules that require sealing of a plurality of cells C formed between one base material 3A and a second base material 3B and electrical series connection between the cells C, C,. Yes. Here, in the cell C of the submodule R to be described later, the direction connected in series is the width direction X2.
 具体的に色素増感太陽電池1は、第一基材3Aと、第二基材3Bと、光電極11(第一電極)と、対向電極12(第二電極)と、電解液13と、導通材14と、封止材15と、第一絶縁部16と、第二絶縁部17と、融着部18(絶縁ライン)と、を備えている。
 光電極11は、第一基材3A上に積層された透明導電膜11Aと、透明導電膜11A上に積層された多孔質の半導体層11Bと、を備えている。
 また、対向電極12は、第二基材3B上に積層された対向導電膜12Aと、対向導電膜12A上に積層された触媒層12Bと、を備えている。
Specifically, the dye-sensitized solar cell 1 includes a first base material 3A, a second base material 3B, a photoelectrode 11 (first electrode), a counter electrode 12 (second electrode), an electrolytic solution 13, The conductive material 14, the sealing material 15, the first insulating part 16, the second insulating part 17, and the fusion part 18 (insulating line) are provided.
The photoelectrode 11 includes a transparent conductive film 11A laminated on the first base material 3A and a porous semiconductor layer 11B laminated on the transparent conductive film 11A.
The counter electrode 12 includes a counter conductive film 12A stacked on the second substrate 3B and a catalyst layer 12B stacked on the counter conductive film 12A.
 光電極11は、第一基材3Aの表面に透明導電膜11Aが成膜され、第一基材3Aの透明導電膜11Aの表面に長手方向X1に延在する色素が吸着した帯状の半導体層11Bが複数形成されている。対向電極12は、光電極11に対向するように対向導電膜12Aが成膜されている。電解液13は、光電極11の半導体層11Bと対向電極12との間に封止されている。封止材15は、電解液13を封止するとともに、幅方向X2に分割された複数のセルCを配列する構成となっている。
 導通材14は、封止材15に覆われた状態で設けられ、光電極11の透明導電膜11Aと対向電極12の対向導電膜12Aとに直接接触し、光電極11と対向電極12とを電気的に接続する。
The photoelectrode 11 is a band-shaped semiconductor layer in which a transparent conductive film 11A is formed on the surface of the first substrate 3A, and a dye extending in the longitudinal direction X1 is adsorbed on the surface of the transparent conductive film 11A of the first substrate 3A. A plurality of 11B are formed. A counter conductive film 12 </ b> A is formed on the counter electrode 12 so as to face the photoelectrode 11. The electrolytic solution 13 is sealed between the semiconductor layer 11 </ b> B of the photoelectrode 11 and the counter electrode 12. The sealing material 15 is configured to seal the electrolytic solution 13 and to arrange a plurality of cells C divided in the width direction X2.
The conductive material 14 is provided in a state of being covered with the sealing material 15 and is in direct contact with the transparent conductive film 11A of the photoelectrode 11 and the counter conductive film 12A of the counter electrode 12, so that the photoelectrode 11 and the counter electrode 12 are connected. Connect electrically.
 導通材14の幅方向X2の両側には、封止材15,15が配されている。導通材14と封止材15とにより、光電極11と対向電極12との間を接着している。一方、色素増感太陽電池1には、図1及び図3に示すように、長手方向X1に一定の間隔をあけて配置されるとともに、幅方向X2の全体にわたって融着部18が形成されている。融着部18は、超音波融着等の手段(図4に示す超音波融着部46参照)により絶縁及び接着されることにより形成される。
 このようにして、それぞれに半導体層11Bを有するセルCは、導通材14によって、光電極11と対向電極12の間に形成される厚み方向の間隙内に電解液13が液密に封止された状態で形成されている。
Sealing materials 15 and 15 are disposed on both sides of the conductive material 14 in the width direction X2. The conductive material 14 and the sealing material 15 bond between the photoelectrode 11 and the counter electrode 12. On the other hand, as shown in FIGS. 1 and 3, the dye-sensitized solar cell 1 is arranged with a certain interval in the longitudinal direction X <b> 1, and a fusion part 18 is formed over the entire width direction X <b> 2. Yes. The fused part 18 is formed by insulation and adhesion by means such as ultrasonic fusion (see the ultrasonic fused part 46 shown in FIG. 4).
In this manner, in the cells C each having the semiconductor layer 11B, the electrolytic solution 13 is liquid-tightly sealed in the gap in the thickness direction formed between the photoelectrode 11 and the counter electrode 12 by the conductive material 14. It is formed in the state.
 透明導電膜11A及び対向導電膜12Aの所定の箇所には、後述する刃物(図5及び図6に示す切込み加工装置50の半円刃52)によって絶縁された複数のパターニング部(絶縁部16、17)が設けられている。つまり、図2に示すように、透明導電膜11A、及び対向導電膜12Aは、封止材15に接触する位置において、切込み加工による絶縁処理により長手方向X1と平行な第一絶縁部16が形成され、幅方向X2に隣り合うセルC、Cのうち一方のセルCにおける第一基材3Aに形成される隣り合う第一絶縁部16、16同士の間の透明導電膜11Aと、他方のセルCにおける第二基材3Bに形成される隣り合う第二絶縁部17、17同士の間の対向導電膜12Aと、が一方のセルCと他方のセルCとの間に配置される導通材14に接続されている。
 融着部18によって画成されるサブモジュールR(図1中の二点鎖線で囲う領域)のうち隣接されるサブモジュールR、Rのそれぞれに配列される第一絶縁部16同士は、幅方向X2にずれた位置にパターニングされている。これは、第二絶縁部17についても同じである。
A plurality of patterning portions (insulating portions 16,...) Insulated at predetermined positions of the transparent conductive film 11A and the counter conductive film 12A by a blade described later (a semicircular blade 52 of the cutting device 50 shown in FIGS. 5 and 6). 17) is provided. That is, as shown in FIG. 2, the transparent conductive film 11 </ b> A and the counter conductive film 12 </ b> A are formed with the first insulating portion 16 parallel to the longitudinal direction X <b> 1 by the insulating process by the cutting process at the position in contact with the sealing material 15. The transparent conductive film 11A between the adjacent first insulating portions 16, 16 formed on the first base 3A in one cell C of the cells C, C adjacent in the width direction X2, and the other cell A conductive material 14 is disposed between one cell C and the other cell C, with the opposing conductive film 12A between the adjacent second insulating portions 17 and 17 formed on the second base material 3B in C. It is connected to the.
The first insulating portions 16 arranged in each of the adjacent submodules R and R among the submodules R (regions surrounded by a two-dot chain line in FIG. 1) defined by the fused portion 18 are arranged in the width direction. Patterned at a position shifted to X2. The same applies to the second insulating portion 17.
 図2に示すように、幅方向X2に隣り合うセルC,C同士の透明導電膜11A及び対向導電膜12Aは、パターニング部により複数に区画され、複数の透明導電膜11A及び対向導電膜12Aのパターンが形成される。区画されたセルCにおいて、一方のセルC(例えば符号C1の第一セル)の対向導電膜12Aと、第一セルC1に隣接する他方のセルC(例えば符号C2の第二セル)の透明導電膜11Aとが導通材14によって電気的に接続され、第一セルC1と第二セルC2が幅方向X2に直列に接続された状態となる。すなわち、第一基材3Aと第二基材3Bとの間の間隙において複数のセルC1、C2、…を直列に並べて作製する場合には、例えば、(封止材15/導通材14/封止材15)/(第一セルC1)/(封止材15/導通材14/封止材15)/(第二セルC2)/(封止材15/導通材14/封止材15)/(第3セル)・・・の順に配置することができる。 As shown in FIG. 2, the transparent conductive film 11A and the counter conductive film 12A of the cells C, C adjacent to each other in the width direction X2 are divided into a plurality by the patterning unit, and the plurality of transparent conductive films 11A and the counter conductive film 12A A pattern is formed. In the partitioned cell C, the opposite conductive film 12A of one cell C (for example, the first cell of C1) and the transparent conductivity of the other cell C (for example, the second cell of C2) adjacent to the first cell C1. The film 11A is electrically connected by the conductive material 14, and the first cell C1 and the second cell C2 are connected in series in the width direction X2. That is, when a plurality of cells C1, C2,... Are arranged in series in the gap between the first base material 3A and the second base material 3B, for example, (sealing material 15 / conducting material 14 / sealing) Stop material 15) / (first cell C1) / (sealing material 15 / conducting material 14 / sealing material 15) / (second cell C2) / (sealing material 15 / conducting material 14 / sealing material 15) / (Third cell)...
 第一基材3A及び第二基材3Bの材質は、特に限定されず、例えば、フィルム状の樹脂等の絶縁体、半導体、金属、ガラス等が挙げられる。前記樹脂としては、例えば、ポリ(メタ)アクリル酸エステル、ポリカーボネート、ポリエステル、ポリイミド、ポリスチレン、ポリ塩化ビニル、ポリアミド等が挙げられる。薄くて軽いフレキシブルな色素増感太陽電池1を製造する観点からは、基材は透明樹脂製であることが好ましく、ポリエチレンテレフタレート(PET)フィルム又はポリエチレンナフタレート(PEN)フィルムであることがより好ましい。なお、第一基材3Aの材質と第二基材3Bの材質とは、異なっていても構わない。 The material of the first base material 3A and the second base material 3B is not particularly limited, and examples thereof include insulators such as a film-like resin, semiconductors, metals, and glass. Examples of the resin include poly (meth) acrylic acid ester, polycarbonate, polyester, polyimide, polystyrene, polyvinyl chloride, and polyamide. From the viewpoint of producing a thin and light flexible dye-sensitized solar cell 1, the substrate is preferably made of a transparent resin, more preferably a polyethylene terephthalate (PET) film or a polyethylene naphthalate (PEN) film. . The material of the first base material 3A and the material of the second base material 3B may be different.
 透明導電膜11A、対向導電膜12Aの種類や材質は、特に限定されず、公知の色素増感太陽電池に使用される導電膜が適用可能であり、例えば、金属酸化物で構成される薄膜が挙げられる。前述の金属酸化物としては、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、アルミドープ酸化亜鉛(ATO)、酸化インジウム/酸化亜鉛(IZO)、ガリウムドープ酸化亜鉛(GZO)等が例示できる。 The types and materials of the transparent conductive film 11A and the counter conductive film 12A are not particularly limited, and a conductive film used for a known dye-sensitized solar cell can be applied. For example, a thin film made of a metal oxide is used. Can be mentioned. Examples of the metal oxide include tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (ATO), indium oxide / zinc oxide (IZO), and gallium-doped zinc oxide (GZO). it can.
 半導体層11Bは、吸着した光増感色素から電子を受け取ることが可能な材料によって構成され、通常は多孔質であることが好ましい。半導体層11Bを構成する材料は特に限定されず、公知の半導体層11Bの材料が適用可能であり、例えば、酸化チタン、酸化亜鉛、酸化スズ等の金属酸化物半導体が挙げられる。
 半導体層11Bに担持される光増感色素は特に限定されず、例えば有機色素、金属錯体色素等の公知の色素が挙げられる。前述の有機色素としては、例えば、クマリン系、ポリエン系、シアニン系、ヘミシアニン系、チオフェン系等が挙げられる。前記金属錯体色素としては、例えば、ルテニウム錯体等が好適に用いられる。
The semiconductor layer 11B is made of a material that can receive electrons from the adsorbed photosensitizing dye, and is usually preferably porous. The material which comprises the semiconductor layer 11B is not specifically limited, The material of the well-known semiconductor layer 11B is applicable, For example, metal oxide semiconductors, such as a titanium oxide, a zinc oxide, a tin oxide, are mentioned.
The photosensitizing dye supported on the semiconductor layer 11B is not particularly limited, and examples thereof include known dyes such as organic dyes and metal complex dyes. Examples of the organic dye include coumarin, polyene, cyanine, hemicyanine, and thiophene. As said metal complex pigment | dye, a ruthenium complex etc. are used suitably, for example.
 触媒層12Bを構成する材料は、特に限定されず、公知の材料を適用可能であり、例えば、白金、カーボンナノチューブ等のカーボン類、ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸)(PEDOT/PSS)等の導電性ポリマー等が挙げられる。 The material constituting the catalyst layer 12B is not particularly limited, and known materials can be applied. For example, carbons such as platinum and carbon nanotubes, poly (3,4-ethylenedioxythiophene) -poly (styrenesulfone) Examples thereof include conductive polymers such as (acid) (PEDOT / PSS).
 電解液13は、特に限定されず、公知の色素増感太陽電池で使用されている電解液を適用できる。電解液13としては、例えばヨウ素とヨウ化ナトリウムが有機溶媒に溶解された電解液等が挙げられる。 The electrolytic solution 13 is not particularly limited, and an electrolytic solution used in a known dye-sensitized solar cell can be applied. Examples of the electrolytic solution 13 include an electrolytic solution in which iodine and sodium iodide are dissolved in an organic solvent.
 電解液13が接触する半導体層11Bにおいて多孔質内部を含む表面には、図示しない公知の光増感色素が吸着している。 A known photosensitizing dye (not shown) is adsorbed on the surface of the semiconductor layer 11B in contact with the electrolytic solution 13 including the porous interior.
 導通材14は、互いに平行に且つ一方向に延びる複数の半導体層11Bの間に配され、第一基材3A上の光電極11と第二基材3B上の対向電極12とに接し、且つ光電極11と対向電極12との間に設けられている。導通材14としては、例えば、導線、導電チューブ、導電箔、導電板および導電メッシュ、導電ペースト、導電粒子から選ばれる1種以上が用いられる。ここで導電ペーストとは、比較的剛性が低く、柔らかい形態の導電性材料であり、例えば固形の導通材が有機溶媒、バインダー樹脂等の粘性を有する分散媒に分散された形態を有し得る。導通材14は、両面接着タイプの銅テープのように、導通と接着の両方の機能を有していても良い。 The conductive material 14 is disposed between the plurality of semiconductor layers 11B extending in parallel and in one direction, in contact with the photoelectrode 11 on the first base 3A and the counter electrode 12 on the second base 3B, and It is provided between the photoelectrode 11 and the counter electrode 12. As the conductive material 14, for example, one or more selected from conductive wires, conductive tubes, conductive foils, conductive plates and conductive meshes, conductive pastes, and conductive particles are used. Here, the conductive paste is a conductive material having a relatively low rigidity and a soft form. For example, the conductive paste may have a form in which a solid conductive material is dispersed in a viscous dispersion medium such as an organic solvent or a binder resin. The conducting material 14 may have both functions of conduction and adhesion like a double-sided adhesive type copper tape.
 導通材14に用いる導電材料としては、例えば、金、銀、銅、クロム、チタン、白金、ニッケル、タングステン、鉄、アルミニウム等の金属、或いはこれらの金属のうち2種以上の合金等が挙げられるが、特に限定されない。また、導電性の微粒子(例えば、前記金属又は合金の微粒子、カーボンブラックの微粒子等)が分散された、ポリウレタン、ポリテトラフルオロエチレン(PTFE)等の樹脂組成物等も前記材料として挙げられる。 Examples of the conductive material used for the conductive material 14 include metals such as gold, silver, copper, chromium, titanium, platinum, nickel, tungsten, iron, and aluminum, or alloys of two or more of these metals. However, it is not particularly limited. Examples of the material also include resin compositions such as polyurethane and polytetrafluoroethylene (PTFE) in which conductive fine particles (for example, fine particles of the metal or alloy, fine particles of carbon black, etc.) are dispersed.
 封止材15は、対向する第一基材3A及び第二基材3Bを接着し、且つこれら基材3A、3B間に形成されたセルCを封止することが可能な非導電性の部材であれば特に制限されない。
 封止材15の材料としては、例えば、ホットメルト接着剤(熱可塑性樹脂)、熱硬化性樹脂、紫外線硬化性樹脂、並びに、紫外線硬化性樹脂及び熱硬化性樹脂を含んだ樹脂等、一時的に流動性を有し、適当な処理により固化される樹脂材料等が挙げられる。前記ホットメルト接着剤としては、例えば、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂等が挙げられる。前記熱硬化性樹脂としては、例えば、エポキシ樹脂、ベンゾオキサゾン樹脂等が挙げられる。前記紫外線硬化性樹脂としては、例えば、アクリル酸エステル、メタクリル酸エステル等の光重合性のモノマーを含むものが挙げられる。
The sealing material 15 is a non-conductive member that can bond the opposing first substrate 3A and second substrate 3B and seal the cell C formed between the substrates 3A and 3B. If it is, it will not be restrict | limited in particular.
As a material of the sealing material 15, for example, a hot melt adhesive (thermoplastic resin), a thermosetting resin, an ultraviolet curable resin, and a resin including an ultraviolet curable resin and a thermosetting resin are temporarily used. And a resin material that has fluidity and is solidified by an appropriate treatment. Examples of the hot melt adhesive include polyolefin resin, polyester resin, polyamide resin, and the like. Examples of the thermosetting resin include an epoxy resin and a benzoxazone resin. Examples of the ultraviolet curable resin include those containing a photopolymerizable monomer such as acrylic acid ester and methacrylic acid ester.
 次に、上述した構成の色素増感太陽電池1を製造するためのRtoR方式の製造装置4について、図面を用いて具体的に説明する。
 図4に示すように、製造装置4は、光電極形成部(図示略)、第一絶縁加工部41、封止材塗工部42、導通材配置部43、電解液塗工部44、基材貼合せ部45、超音波融着部46がその順で第一基材3Aの第一移動方向P1の上流から下流に向けて配置されている。
 基材貼合せ部45では、第一基材3Aと第二基材3Bとが貼り合せられ、第一基材3Aとは別で移動される第二基材3Bの第二移動方向P2に沿って対向電極形成部(図示省略)と第二絶縁加工部47とがその順で配置されている。第二絶縁加工部47を通過した第二基材3Bが基材貼合せ部45で第一基材3Aと貼り合せられるようになっている。
Next, the RtoR method manufacturing apparatus 4 for manufacturing the dye-sensitized solar cell 1 having the above-described configuration will be specifically described with reference to the drawings.
As shown in FIG. 4, the manufacturing apparatus 4 includes a photoelectrode forming portion (not shown), a first insulating processing portion 41, a sealing material coating portion 42, a conductive material placement portion 43, an electrolyte coating portion 44, a base The material bonding portion 45 and the ultrasonic fusion portion 46 are arranged in that order from the upstream side to the downstream side in the first movement direction P1 of the first base material 3A.
In the base material bonding part 45, the first base material 3A and the second base material 3B are bonded together, and along the second movement direction P2 of the second base material 3B that is moved separately from the first base material 3A. A counter electrode forming portion (not shown) and the second insulating portion 47 are arranged in this order. The second base material 3 </ b> B that has passed through the second insulating processing portion 47 is bonded to the first base material 3 </ b> A at the base material bonding portion 45.
 図示しない前記光電極形成部は、製造装置4において第一移動方向P1の最上流部に配置され、第一基材3Aの表面の所定領域に光電極11を形成する構成となっている。 The photoelectrode forming portion (not shown) is arranged at the most upstream portion in the first moving direction P1 in the manufacturing apparatus 4 and is configured to form the photoelectrode 11 in a predetermined region on the surface of the first base material 3A.
 第一絶縁加工部41は、図5及び図6に示すように、本実施の形態では複数の半円刃52を備えた切込み加工装置50を採用している。切込み加工装置50は、軸O1を中心にして回転自在に設けられた回転軸51と、回転軸51の周囲に軸O1方向に所定間隔をあけて配置された半円刃52と、を備え、回転軸51の軸O1方向を幅方向X2に向けて配置されている。
 半円刃52は、回転軸51の外周面の円周方向に沿って180°の範囲に連続して設けられ、軸O1方向から見て全周のうち所定の半周部分の領域に配置された第一半円刃52Aと、第一半円刃52Aが配置されていない別の半周部分の領域に配置された第二半円刃52Bと、からなる。これら複数の第一半円刃52Aは、融着部18によって長手方向X1に画成される第一基材3AのサブモジュールRのうち隣接する一方のサブモジュールRの複数の絶縁部16を同時に形成する。複数の第二半円刃52Bは、前記隣接するサブモジュールRのうち他方の領域の複数の絶縁部16を同時に形成する。半円刃52の周長(外周長)は、サブモジュールRにおいて絶縁加工される絶縁部16の長手方向X1の長さに一致するように設定されている。
As shown in FIGS. 5 and 6, the first insulation processing portion 41 employs a cutting device 50 having a plurality of semicircular blades 52 in the present embodiment. The cutting device 50 includes a rotary shaft 51 that is rotatably provided around the axis O1, and a semicircular blade 52 that is disposed around the rotary shaft 51 at a predetermined interval in the direction of the axis O1. The axis O1 direction of the rotation shaft 51 is arranged in the width direction X2.
The semicircular blade 52 is provided continuously in a range of 180 ° along the circumferential direction of the outer peripheral surface of the rotary shaft 51, and is disposed in a region of a predetermined half-circular portion of the entire circumference as viewed from the axis O1 direction. The first semicircular blade 52A and the second semicircular blade 52B disposed in a region of another semicircular portion where the first semicircular blade 52A is not disposed. The plurality of first semicircular blades 52A simultaneously connect the plurality of insulating portions 16 of one adjacent submodule R among the submodules R of the first base material 3A defined in the longitudinal direction X1 by the fused portion 18. Form. The plurality of second semicircular blades 52B simultaneously form the plurality of insulating portions 16 in the other region of the adjacent submodules R. The circumferential length (outer circumferential length) of the semicircular blade 52 is set so as to coincide with the length in the longitudinal direction X1 of the insulating portion 16 to be insulated in the submodule R.
 軸O1方向に隣り合う第一半円刃52A同士の間隔と、軸O1方向に隣り合う第二半円刃52B同士の間隔は、等距離に設定されている。第一半円刃52Aと第二半円刃52Bとは、同一円周上には配置されず、軸O1方向にずれた位置に設けられている。
 半円刃52(52A、52B)は、導電膜11A、12Aが成膜された基材3A、3Bの表面に対して回転軸51とともに回転されたときに、導電膜11A、12Aのみに溝状の切込みを形成する。つまり、導電膜11A、12Aは厚さ方向に切込みが形成され、基材3A、3Bの厚さ方向の一部が切り込まれても全体が切り込まれないように設定されている。
 半円刃52の軸O1方向の間隔、周長、第一半円刃52Aと第二半円刃52Bの軸O1方向のずれ量は、絶縁部16の設定に応じて適宜変更することができる。
The interval between the first semicircular blades 52A adjacent in the axis O1 direction and the interval between the second semicircular blades 52B adjacent in the axis O1 direction are set to be equal. The first semicircular blade 52A and the second semicircular blade 52B are not arranged on the same circumference, but are provided at positions shifted in the direction of the axis O1.
The semicircular blades 52 (52A, 52B) are grooved only in the conductive films 11A, 12A when rotated together with the rotary shaft 51 with respect to the surfaces of the base materials 3A, 3B on which the conductive films 11A, 12A are formed. Form a notch. That is, the conductive films 11A and 12A are set so that cuts are formed in the thickness direction, and even if a part of the base materials 3A and 3B is cut in the thickness direction, the whole is not cut.
The interval in the direction of the axis O1 of the semicircular blade 52, the circumferential length, and the shift amount of the first semicircular blade 52A and the second semicircular blade 52B in the direction of the axis O1 can be changed as appropriate according to the setting of the insulating portion 16. .
 図4に示すように、封止材塗工部42は、第一絶縁加工部41の下流寄りに配置され、第一基材3Aの所定領域に形成された光電極11に封止材15(図2参照)を塗工する構成となっている。
 導通材配置部43は、封止材塗工部42の下流寄りに配置され、封止材15同士の間に配線(導通材14)を配置する構成となっている。
 電解液塗工部44は、導通材配置部43の下流寄りに配置され、第一基材3Aにおける封止材15の未塗工領域に電解液13を塗工する構成となっている。
As shown in FIG. 4, the sealing material application part 42 is arrange | positioned near the downstream of the 1st insulation process part 41, and the sealing material 15 (on the photoelectrode 11 formed in the predetermined area | region of the 1st base material 3A. (See FIG. 2).
The conductive material arrangement part 43 is arranged on the downstream side of the sealing material application part 42 and is configured to arrange wiring (conductive material 14) between the sealing materials 15.
The electrolytic solution coating unit 44 is arranged on the downstream side of the conductive material arranging unit 43 and is configured to apply the electrolytic solution 13 to an uncoated region of the sealing material 15 in the first base material 3A.
 図示しない前記対向電極形成部は、製造装置4において第二移動方向P2の最上流部に配置され、第二基材3Bの表面の所定領域に対向電極12を形成する構成となっている。
 第二絶縁加工部47は、上述した第一絶縁加工部41に設けられるものと同様の切込み加工装置50(図5参照)が採用されるため、ここでは詳しい説明を省略する。
The counter electrode forming part (not shown) is arranged at the most upstream part in the second moving direction P2 in the manufacturing apparatus 4, and is configured to form the counter electrode 12 in a predetermined region on the surface of the second base material 3B.
Since the second insulation processing portion 47 employs a cutting device 50 (see FIG. 5) similar to that provided in the first insulation processing portion 41 described above, detailed description thereof is omitted here.
 基材貼合せ部45は、対向電極12が形成された第二基材3Bを、光電極11が形成された第一基材3Aの表面に貼り合わせる構成となっている。具体的に基材貼合せ部45には、封止材15を硬化させる硬化処理部(図示省略)が設けられ、第一基材3Aと第二基材3Bとを重ね合わせた状態で一対の貼合せローラー45A、45Bを通過させることで、両基材3A、3Bを接着して貼り合せる構成となっている。 The base material bonding portion 45 is configured to bond the second base material 3B on which the counter electrode 12 is formed to the surface of the first base material 3A on which the photoelectrode 11 is formed. Specifically, the base material laminating part 45 is provided with a curing processing part (not shown) for curing the sealing material 15, and a pair of the first base material 3 </ b> A and the second base material 3 </ b> B are overlapped. By passing the laminating rollers 45A and 45B, the base materials 3A and 3B are bonded and bonded together.
 超音波融着部46は、長手方向X1に一定間隔をあけて第一基材3Aと第二基材3Bを超音波振動により融着させて幅方向X2に沿って延びる融着部18を形成し、複数のサブモジュールRに分割する構成となっている。 The ultrasonic fusion portion 46 forms the fusion portion 18 extending along the width direction X2 by fusing the first base material 3A and the second base material 3B by ultrasonic vibration with a certain interval in the longitudinal direction X1. However, it is configured to be divided into a plurality of submodules R.
 次に、上述した本実施の形態のRtoR方式の製造装置4を使用して電気的な直列回路を構成した色素増感太陽電池1の製造方法について、図面を用いて具体的に説明する。 Next, a method of manufacturing the dye-sensitized solar cell 1 in which an electrical series circuit is configured using the RtoR manufacturing apparatus 4 of the present embodiment described above will be specifically described with reference to the drawings.
 先ず、図4に示す製造装置4を用いて作製される色素増感太陽電池1の製造方法について説明する。製造装置4では、フィルム(第一基材3A、第二基材3B)が連続的に搬送され、光電極11が形成された第一基材3Aに対して第二基材3Bを貼り合わせることにより色素増感太陽電池1が製造される。そして、本実施の形態の製造装置4では、進行方向(長手方向X1)に向かって幅方向X2に交互に電流が流れるように、フィルム上に電気的な直列回路を構成したフィルム型の色素増感太陽電池1が作製される(図1参照)。 First, the manufacturing method of the dye-sensitized solar cell 1 produced using the manufacturing apparatus 4 shown in FIG. 4 is demonstrated. In the manufacturing apparatus 4, a film (1st base material 3A, 2nd base material 3B) is conveyed continuously, and the 2nd base material 3B is bonded together with respect to 1st base material 3A in which the photoelectrode 11 was formed. Thus, the dye-sensitized solar cell 1 is manufactured. And in the manufacturing apparatus 4 of this Embodiment, the film type dye increase which comprised the electrical series circuit on the film so that an electric current might flow alternately in the width direction X2 toward the advancing direction (longitudinal direction X1). A solar cell 1 is produced (see FIG. 1).
 RtoR方式により連続的に色素増感太陽電池1を製造するための製造方法は、第一基材3Aの表面に透明導電膜11Aが成膜され、第一基材3Aの透明導電膜11Aの表面に長手方向X1に延在する色素が吸着した帯状の半導体層11Bが複数形成された光電極11を形成する工程と、第二基材3Bの表面に光電極11に対向するように対向導電膜12Aが成膜された対向電極12を形成する工程と、透明導電膜11A及び対向導電膜12Aには長手方向X1と平行に絶縁加工を行う工程と、平面視で長手方向X1に直交する幅方向X2に複数のセルCを配列する封止材15を設ける工程と、封止材15の上に導通材14を配置して光電極11と対向電極12とを電気的に接続する工程と、光電極11の半導体層11Bと対向電極12との間に電解液13を設ける工程と、光電極11と対向電極12とを貼り合せる工程と、光電極11及び対向電極12に対して幅方向X2に沿って延在する融着部18を形成する工程と、幅方向X2の両端部に長手方向X1に沿って配線材19を配置する工程と、光電極11と対向電極12とを任意の融着部18の位置で切断する工程と、を有している。 In the production method for continuously producing the dye-sensitized solar cell 1 by the RtoR method, the transparent conductive film 11A is formed on the surface of the first substrate 3A, and the surface of the transparent conductive film 11A of the first substrate 3A. Forming a photoelectrode 11 in which a plurality of strip-like semiconductor layers 11B having adsorbed pigment extending in the longitudinal direction X1 are formed, and a counter conductive film so as to face the photoelectrode 11 on the surface of the second substrate 3B A step of forming the counter electrode 12 on which 12A is formed, a step of insulating the transparent conductive film 11A and the counter conductive film 12A in parallel to the longitudinal direction X1, and a width direction orthogonal to the longitudinal direction X1 in plan view A step of providing a sealing material 15 for arranging a plurality of cells C in X2, a step of arranging a conductive material 14 on the sealing material 15 to electrically connect the photoelectrode 11 and the counter electrode 12, and a light The semiconductor layer 11B of the electrode 11 and the counter electrode 12 The step of providing the electrolytic solution 13 therebetween, the step of bonding the photoelectrode 11 and the counter electrode 12, and the fusion part 18 extending along the width direction X <b> 2 with respect to the photoelectrode 11 and the counter electrode 12 are formed. A process, a process of disposing the wiring material 19 along the longitudinal direction X1 at both ends of the width direction X2, and a process of cutting the photoelectrode 11 and the counter electrode 12 at the position of the arbitrary fused part 18. is doing.
 具体的には、色素増感太陽電池1の製造方法は、図7に示すように、半導体電極形成部(図示省略)において、例えばエアロゾルデポジション(AD)法を用いることにより、透明導電膜11Aが成膜された第一基材3A上にTiO2を積層することで半導体層11Bを幅方向X2に間隔をあけて形成した後、半導体層11B上に色素を一般的な手法によって吸着させることで、光電極11を形成する。図7(後述する図8~図12も同様)は、RtoR方式で連続的に製造される色素増感太陽電池1の一部を示している。
 図8に示すように、対向電極形成部(図示省略)において、スパッタリング法により対向導電膜12Aが成膜された第二基板3B上に白金(Pt)を積層して触媒層12Bを形成することで、対向電極12を形成する。
Specifically, as shown in FIG. 7, the method for manufacturing the dye-sensitized solar cell 1 uses, for example, an aerosol deposition (AD) method in a semiconductor electrode forming portion (not shown) to form a transparent conductive film 11A. By laminating TiO2 on the first base material 3A on which is formed, the semiconductor layer 11B is formed at intervals in the width direction X2, and then the dye is adsorbed on the semiconductor layer 11B by a general method. Then, the photoelectrode 11 is formed. FIG. 7 (the same applies to FIGS. 8 to 12 described later) shows a part of the dye-sensitized solar cell 1 continuously manufactured by the RtoR method.
As shown in FIG. 8, in the counter electrode forming portion (not shown), platinum (Pt) is laminated on the second substrate 3B on which the counter conductive film 12A is formed by sputtering to form the catalyst layer 12B. Thus, the counter electrode 12 is formed.
 半導体電極形成部で作製された光電極11を形成し第一移動方向P1に移動する第一基材3Aでは、図5及び図6に示す第一絶縁加工部41の切込み加工装置50において、半導体層11Bと半導体層11Bとの間の位置で半円刃52(52A、52B)の回転により長手方向X1と平行に延びる第一絶縁部16を形成する絶縁加工が行われる。
 このとき、第一絶縁部16は、図9に示すように、一定の間隔(サブモジュールRの長手方向X1の長さ)毎に幅方向X2に交互にずれた位置となる規則的な絶縁加工パターンが形成される。このように交互に絶縁加工パターンを配置することで、サブモジュールR毎に+極(正極)と-極(負極)の位置を規則的に入れ替えることができる。
In the first base material 3A that forms the photoelectrode 11 produced in the semiconductor electrode formation portion and moves in the first movement direction P1, in the cutting device 50 of the first insulation processing portion 41 shown in FIGS. Insulation processing is performed to form the first insulating portion 16 extending parallel to the longitudinal direction X1 by the rotation of the semicircular blade 52 (52A, 52B) at a position between the layer 11B and the semiconductor layer 11B.
At this time, as shown in FIG. 9, the first insulating portion 16 is regularly insulated at positions that are alternately shifted in the width direction X2 at regular intervals (the length in the longitudinal direction X1 of the submodule R). A pattern is formed. By alternately arranging the insulation processing patterns in this way, the positions of the positive electrode (positive electrode) and the negative electrode (negative electrode) can be regularly switched for each submodule R.
 次に、図4に示すように、光電極11の第一絶縁部16の加工後、封止材塗工部42によって第一基材3Aの所定領域に形成された光電極11に封止材15を塗工する。このとき、半導体層11Bに封止材15が被覆されないように塗布される。
 そして、導通材配置部43において封止材15同士の間に導通材14を配置した後、電解液塗工部44において第一基材3Aにおける封止材15の未塗工領域に電解液13を塗工する。
Next, as shown in FIG. 4, after processing the first insulating portion 16 of the photoelectrode 11, the sealing material is applied to the photoelectrode 11 formed in a predetermined region of the first base material 3 </ b> A by the sealing material coating portion 42. 15 is applied. At this time, the semiconductor layer 11B is applied so that the sealing material 15 is not covered.
And after arrange | positioning the conduction | electrical_connection material 14 between the sealing materials 15 in the conduction | electrical_connection material arrangement | positioning part 43, in the electrolyte solution application part 44, the electrolyte solution 13 in the uncoated area | region of the sealing material 15 in the 1st base material 3A. Apply.
 対向電極形成部で作製された対向電極12を形成し第二移動方向P2に移動する第二基材3Bでは、図5及び図6に示す第二絶縁加工部47の切込み加工装置50において、触媒層12Bと触媒層12Bとの間の位置で半円刃52(52A、52B)の回転により長手方向X1と平行に延びる第二絶縁部17を形成する絶縁加工が行われる。
 このとき、第二絶縁部17は、図8に示すように、一定の間隔(サブモジュールRの長手方向X1の長さ)毎に幅方向X2に交互にずれた位置となる規則的な絶縁加工のパターンが形成される。このように交互に配置することで、サブモジュールR毎に+極と-極の位置を規則的に入れ替えることができる。
In the 2nd base material 3B which forms the counter electrode 12 produced in the counter electrode formation part, and moves to the 2nd moving direction P2, in the notch processing apparatus 50 of the 2nd insulation process part 47 shown in FIG.5 and FIG.6, a catalyst Insulation processing is performed to form the second insulating portion 17 extending parallel to the longitudinal direction X1 by the rotation of the semicircular blade 52 (52A, 52B) at a position between the layer 12B and the catalyst layer 12B.
At this time, as shown in FIG. 8, the second insulating portion 17 is regularly insulated at positions that are alternately displaced in the width direction X2 at regular intervals (the length in the longitudinal direction X1 of the submodule R). Pattern is formed. By alternately arranging in this way, the positions of the + and − poles can be regularly switched for each submodule R.
 次いで、図4に示す基材貼合せ部45において、硬化処理部(図示省略)によって封止材15が硬化されるとともに、絶縁加工された第一基材3Aと第二基材3Bとを重ね合わせた状態で一対の貼合せローラー45A、45Bを通過させることで、両基材3A、3Bを接着して貼り合せる。このとき、貼り合わされた状態で、図10に示すように、第一基材3Aの第一絶縁部16と第二基材3Bの第二絶縁部17とが幅方向X2にずれた位置となり、これにより導通材14(図2参照)を介して幅方向X2に分割して配列される複数のセルCが電気的に直列に接続された状態になる。 Next, in the base material laminating portion 45 shown in FIG. 4, the sealing material 15 is cured by a curing processing unit (not shown), and the first base material 3 </ b> A and the second base material 3 </ b> B that are insulated are overlapped. By passing a pair of laminating rollers 45A and 45B in the combined state, both base materials 3A and 3B are bonded and bonded. At this time, as shown in FIG. 10, the first insulating portion 16 of the first base material 3 </ b> A and the second insulating portion 17 of the second base material 3 </ b> B are shifted in the width direction X <b> 2 in the bonded state, As a result, a plurality of cells C that are divided and arranged in the width direction X2 through the conductive material 14 (see FIG. 2) are electrically connected in series.
 次に、貼り合せをした後、超音波融着部46において、図11に示すように、長手方向X1に一定間隔をあけて第一基材3Aと第二基材3Bを超音波振動により融着させて幅方向X2に沿って延びる融着部18を形成し、複数のサブモジュールRに分割する。
 さらに、図12に示すように、貼り合せた両基材3A、3Bの幅方向X2の両端部3a、3bに、長手方向X1に沿うように配線材19を例えば銅テープや半田付けにより貼り付ける。このとき、配線材19は、長手方向X1に配列される融着部18の端部を幅方向X2に交互に被覆した状態で配置される。これにより、直列配線されたサブモジュールR同士のセルCを直列に接続した色素増感太陽電池1を製造することができ、電気がサブモジュールR毎に幅方向X2に交互(図12の矢印E方向)に流れることになる。色素増感太陽電池1は、融着部18に沿って切断可能であり、必要な任意の長さの位置(図12で符号Tの二点鎖線)で切断され、所望の長さの色素増感太陽電池1を生産することができる。例えば、切断後の色素増感太陽電池1として、図12に示すように3つのサブモジュールRを有するもの、2つのサブモジュールRを有するもの、或いは4つ以上のサブモジュールRが連続したものを製造することができる。
Next, after bonding, in the ultrasonic fusion part 46, as shown in FIG. 11, the first base material 3A and the second base material 3B are melted by ultrasonic vibration at a constant interval in the longitudinal direction X1. The fused portion 18 is formed to extend along the width direction X2 and is divided into a plurality of submodules R.
Further, as shown in FIG. 12, the wiring material 19 is pasted to the both ends 3a and 3b in the width direction X2 of both the base materials 3A and 3B which are pasted, along the longitudinal direction X1, for example, by copper tape or soldering. . At this time, the wiring members 19 are arranged in a state in which the ends of the fused portions 18 arranged in the longitudinal direction X1 are alternately covered in the width direction X2. Thereby, the dye-sensitized solar cell 1 in which the cells C of the submodules R connected in series are connected in series can be manufactured, and electricity is alternately generated in the width direction X2 for each submodule R (arrow E in FIG. 12). Direction). The dye-sensitized solar cell 1 can be cut along the fused portion 18 and cut at a position of any necessary length (two-dot chain line indicated by T in FIG. 12), and the dye-sensitized solar cell 1 having a desired length is obtained. The solar cell 1 can be produced. For example, as the dye-sensitized solar cell 1 after cutting, one having three submodules R, one having two submodules R, or one having four or more submodules R continuous as shown in FIG. Can be manufactured.
 ここで、配線材19の構造についてさらに具体的に説明する。
 図13は、正極における取出し電極用の配線材19Aを示している。図14は、負極における取出し電極用の配線材19Bを示している。このようにフィルムの幅方向X2(第二の方向)の両端部に導通材14を配置することにより、同一の基材面上(ここでは、第二基材3Bの基材面上)に+端子(正極端子)と-端子(負極端子)の取り出し電極(端子取出し部)を設けることができる。そのため、取り出し電極への配線作業を行う際に色素増感太陽電池1を上下に反転する工程が不要となり、配線作業の手間を低減することができる。ここで、図13では、配線材19A寄りの導通材14にも対向電極12から光電極11に電気は流れるが、光電極11から先に電気が流れないことから、電気の流れを省略している(後述する図19も同様である)。
 なお、長手方向X1はサブモジュールRの配列方向であり本発明の「第一の方向」に相当し、幅方向X2は平面視で長手方向X1に直交する方向であり本発明の「第二の方向」に相当する。
Here, the structure of the wiring member 19 will be described more specifically.
FIG. 13 shows a wiring material 19A for the extraction electrode in the positive electrode. FIG. 14 shows a wiring material 19B for the extraction electrode in the negative electrode. Thus, by arrange | positioning the conduction | electrical_connection material 14 in the both ends of the width direction X2 (2nd direction) of a film, it is + on the same base material surface (here on the base material surface of 2nd base material 3B). An extraction electrode (terminal extraction portion) for a terminal (positive electrode terminal) and a negative terminal (negative electrode terminal) can be provided. Therefore, when performing the wiring work to the extraction electrode, the step of inverting the dye-sensitized solar cell 1 up and down becomes unnecessary, and the labor of the wiring work can be reduced. Here, in FIG. 13, electricity flows from the counter electrode 12 to the photoelectrode 11 also to the conductive material 14 near the wiring material 19 </ b> A, but electricity does not flow first from the photoelectrode 11, so the flow of electricity is omitted. (The same applies to FIG. 19 described later).
The longitudinal direction X1 is an arrangement direction of the submodules R and corresponds to the “first direction” of the present invention, and the width direction X2 is a direction orthogonal to the longitudinal direction X1 in a plan view. Corresponds to "direction".
 図15は、第1実施形態において、二つのサブモジュールR、Rを有するように融着部18で切断することにより製造された色素増感太陽電池1A(太陽電池モジュール)を示している。
 図15に示す色素増感太陽電池1Aは、幅方向X2に配列される複数のセルCから構成される区画(サブモジュールR、R)を2つ長手方向X1に隣接させた電池構造であり、隣接するサブモジュールR、Rにおける幅方向X2の一端1a(一方の端部)同士が配線材19によって直列配線により電気的に接続された構造となっている。そして、本色素増感太陽電池1Aでは、各サブモジュールRにおける幅方向X2で一端1a側の配線材19を残した状態で他端1bから一端1a側に向けて延びる第一融着部181(第一絶縁ライン)が形成されている。つまり、サブモジュールR、Rにおけるそれぞれの光電極11と対向電極12は、配線材19によって電気的に接続された電気回路を構成している。なお、図15において、符号Eは電流の向きを示している。
FIG. 15 shows a dye-sensitized solar cell 1 </ b> A (solar cell module) manufactured by cutting at the fusion portion 18 so as to have two submodules R and R in the first embodiment.
The dye-sensitized solar cell 1A shown in FIG. 15 has a battery structure in which two sections (submodules R and R) each composed of a plurality of cells C arranged in the width direction X2 are adjacent to each other in the longitudinal direction X1. One end 1a (one end portion) in the width direction X2 in the adjacent submodules R and R is electrically connected by a wiring member 19 through a series wiring. In the dye-sensitized solar cell 1A, the first fusion part 181 extending from the other end 1b toward the one end 1a side with the wiring member 19 on the one end 1a side left in the width direction X2 in each sub-module R ( A first insulating line) is formed. That is, the photoelectrodes 11 and the counter electrodes 12 in the submodules R and R constitute an electric circuit electrically connected by the wiring material 19. In FIG. 15, the symbol E indicates the direction of current.
 そして、上述した色素増感太陽電池1Aを施工する場合には、第一基材3Aと第二基材3Bとを貼り合せる工程において、光電極11が形成される第一基材3Aと対向電極12が形成される第二基材3Bとは、幅方向X2にずれた状態で貼り合わされている。その後、第一基材3Aの幅方向X2の両端1a、1bに長手方向X1に沿って配線材19を配置する。次いで、第一基材3A及び第二基材3Bに対して幅方向X2に沿って延在し、幅方向X2の一端1a側の配線材19を部分的に絶縁しない第一絶縁ライン181と、幅方向X2の全体にわたって絶縁する第二絶縁ライン(図示省略)と、を長手方向X1に交互に形成する。その後、第一基材3Aと第二基材3Bとを第二絶縁ラインの位置で切断することにより製造される。なお、本実施形態では、サブモジュールR、R間において、他端1bから一端1aに向けて切込み部1cが形成されている。この切込み部1cは、最も他端1b寄りのセルCを切断しない長さに設定されている。
 このように製造された色素増感太陽電池1Aは、第一絶縁ライン181で分割された隣り合う一対のサブモジュールR、Rにおける幅方向X2の一端1aの第二基材3Bで配線材19によって電気的に接続され、他端1bにおいて同一の基材(ここでは第二基材3B)で取り出し電極を設けることが可能な構成となる。
And when constructing the dye-sensitized solar cell 1A described above, the first substrate 3A and the counter electrode on which the photoelectrode 11 is formed in the step of bonding the first substrate 3A and the second substrate 3B together. The second base material 3B on which 12 is formed is bonded in a state shifted in the width direction X2. Then, the wiring material 19 is arrange | positioned along the longitudinal direction X1 at the both ends 1a and 1b of the width direction X2 of 3 A of 1st base materials. Next, a first insulating line 181 that extends along the width direction X2 with respect to the first base material 3A and the second base material 3B and does not partially insulate the wiring material 19 on the one end 1a side in the width direction X2, Second insulating lines (not shown) for insulating over the entire width direction X2 are alternately formed in the longitudinal direction X1. Then, it manufactures by cut | disconnecting 1st base material 3A and 2nd base material 3B in the position of a 2nd insulation line. In the present embodiment, a cut portion 1c is formed between the sub-modules R and R from the other end 1b toward the one end 1a. The cut portion 1c is set to a length that does not cut the cell C closest to the other end 1b.
The dye-sensitized solar cell 1 </ b> A manufactured in this way is formed by the wiring material 19 on the second base material 3 </ b> B at one end 1 a in the width direction X <b> 2 in the pair of adjacent submodules R and R divided by the first insulating line 181. It is electrically connected, and the other electrode 1b is configured such that the takeout electrode can be provided with the same base material (here, the second base material 3B).
 次に、上述した色素増感太陽電池1、1Aの製造方法の作用について図面を用いて詳細に説明する。
 本実施の形態では、図2に示すように、幅方向X2に隣り合うセルC,C同士の間に配置された第一基材3Aの第一絶縁部16と第二基材3Bの第二絶縁部17との間に導通材14が配置され、幅方向X2に隣り合うセルC、C同士が電気的に直列に接続され、かつ融着部18によって長手方向X1に分割されたサブモジュールRのセルC、C同士が配線材19によって電気的に直列に接続された構成の色素増感太陽電池1をRtoR方式で長手方向X1に連続した状態で製造することができる。つまり、融着部18の位置で切断され分割された色素増感太陽電池1自体で独立した電気回路を備えたモジュールをRtoR方式によって生産することができる。このようにRtoR方式によりフィルム基板上で導通材14、融着部18、配線材19の位置や長さを適宜設定し、設定された電気特性(電圧など)になるような配線を施して製造できるので、セルCの直並列接続(回路設計)を自由に設計することが可能となる。
Next, the effect | action of the manufacturing method of the dye-sensitized solar cell 1 and 1A mentioned above is demonstrated in detail using drawing.
In the present embodiment, as shown in FIG. 2, the first insulating portion 16 of the first base material 3A and the second base material 3B arranged between the cells C, C adjacent to each other in the width direction X2. A sub-module R in which the conductive material 14 is disposed between the insulating portion 17 and the cells C and C adjacent to each other in the width direction X2 are electrically connected in series and divided in the longitudinal direction X1 by the fusion portion 18. The dye-sensitized solar cell 1 having a configuration in which the cells C and C are electrically connected in series by the wiring material 19 can be manufactured in a state of being continuous in the longitudinal direction X1 by the RtoR method. That is, a module having an independent electric circuit can be produced by the RtoR method by the dye-sensitized solar cell 1 itself cut and divided at the position of the fusion part 18. In this manner, the position and length of the conductive material 14, the fused portion 18, and the wiring material 19 are appropriately set on the film substrate by the RtoR method, and the wiring is performed so that the set electrical characteristics (voltage, etc.) are obtained. Therefore, it is possible to freely design the series-parallel connection (circuit design) of the cells C.
 また、本実施の形態では、製造した色素増感太陽電池1を別体(基板)に外装する場合に、従来のように基板に複数の色素増感太陽電池を取り付けた後に行われ、それら色素増感太陽電池同士を電気的に接続する配線作業が不要になるため、製造効率を向上させることができる。このように、作業工数を減らすことが可能となることから、製造コストの低減を図ることができる。 Further, in the present embodiment, when the produced dye-sensitized solar cell 1 is packaged in a separate body (substrate), it is performed after attaching a plurality of dye-sensitized solar cells to the substrate as in the past, Since the wiring work for electrically connecting the sensitized solar cells is not necessary, the production efficiency can be improved. Thus, since it becomes possible to reduce an operation man-hour, reduction of manufacturing cost can be aimed at.
 また、上述した図15に示すような一対のサブモジュールR、Rを有する色素増感太陽電池1Aでは、幅方向X2の一端1a側のサブモジュールR、R同士が配線材19によって導通され、他端1b側で電気を取り出すことが可能な構成となる。すなわち、全体が平面視でU字状に電気が流れる構造となり、取り出し電極(正極、負極)を幅方向X2の他端1b寄りの同じ側に配置することができるため、配線構造が簡略化でき、配線作業を容易に行うことができる。
 そして、本実施の形態では、隣り合うサブモジュールR、Rの一端1aに配線材19を設けるという簡単な構造であり、配線材19をライン塗布する簡単な製造方法を適用することも可能となるため、RtoR方式にも簡単に適応できる。このようなRtoR方式で長手方向X1に連続的に配線材19を配置する製造工程により実現できるので、新たな作業工程を追加する必要がない。
Further, in the dye-sensitized solar cell 1A having the pair of submodules R and R as shown in FIG. 15 described above, the submodules R and R on the one end 1a side in the width direction X2 are electrically connected to each other by the wiring material 19. It becomes a structure which can take out electricity by the end 1b side. That is, the whole structure is such that electricity flows in a U shape in plan view, and the lead-out electrode (positive electrode, negative electrode) can be arranged on the same side near the other end 1b in the width direction X2, thereby simplifying the wiring structure. Wiring work can be performed easily.
In this embodiment, the wiring member 19 is provided at one end 1a of the adjacent submodules R and R, and a simple manufacturing method for applying the wiring member 19 to a line can be applied. Therefore, it can be easily adapted to the RtoR method. Since it can be realized by a manufacturing process in which the wiring member 19 is continuously arranged in the longitudinal direction X1 by such an RtoR method, it is not necessary to add a new work process.
 次に、本発明の太陽電池モジュール、及び太陽電池モジュールの製造方法による他の実施の形態について、添付図面に基づいて説明するが、上述の第1の実施の形態と同一又は同様な部材、部分には同一の符号を用いて説明を省略し、第1の実施の形態と異なる構成について説明する。 Next, other embodiments according to the solar cell module and the solar cell module manufacturing method of the present invention will be described with reference to the accompanying drawings, but the same or similar members and parts as those in the first embodiment described above. The same reference numerals are used to omit the description, and a configuration different from that of the first embodiment will be described.
(第2の実施の形態)
 図16に示すように、第2の実施の形態では、RtoR方式により連続的に色素増感太陽電池1を製造する製造方法であって、幅方向X2の両端部に長手方向X1に沿って配線材19を配置する工程を、光電極11と対向電極12とを貼り合せる工程の前工程で行う方法である。すなわち、封止材15を設けた後に導通材14と同時に配線材19が第一基材3A上に配置される方法となっている。本第2の実施の形態において、配線材19は、長手方向X1に連続して配置され、融着部18が設けられた後に、図17に示すように、配線材19の長手方向X1の一部が切り欠き加工された断線部19aが形成されることになる。
(Second Embodiment)
As shown in FIG. 16, the second embodiment is a manufacturing method for continuously manufacturing the dye-sensitized solar cell 1 by the RtoR method, and is wired along the longitudinal direction X1 at both ends in the width direction X2. This is a method in which the step of arranging the material 19 is performed in the previous step of the step of bonding the photoelectrode 11 and the counter electrode 12 together. In other words, after the sealing material 15 is provided, the wiring material 19 is disposed on the first base material 3A simultaneously with the conductive material 14. In the second embodiment, the wiring member 19 is arranged continuously in the longitudinal direction X1, and after the fusion part 18 is provided, as shown in FIG. The disconnection part 19a by which the part was notched is formed.
 このときの配線材19としては、両面接着タイプの銅テープや、硬化型銀ペーストを塗布するものを採用することができる。また、光電極11を銅テープとし、対向電極12を硬化型銀ペーストとする組み合わせとすることも可能である。さらに、銅テープを取出し電極用とし、硬化型銀ペーストを長手方向X1に隣接するセルとの直列接続用としてもよい。
 第2の実施の形態では、配線材19において適宜な箇所に断線部19aを形成することで、長手方向X1に隣り合うサブモジュールRのセルC、C同士の接続を切断することが可能となる。そのため、断線部19aの位置によって所望の電気回路を設計することができる。また、第2の実施の形態では、導通材14及び配線材19の配置パターンを同時に形成することができるので、製造効率を向上させることができる。
As the wiring material 19 at this time, a double-sided adhesive type copper tape or a material to which a curable silver paste is applied can be employed. It is also possible to combine the photoelectrode 11 with copper tape and the counter electrode 12 with curable silver paste. Further, the copper tape may be taken out and used for electrodes, and the curable silver paste may be used for series connection with cells adjacent in the longitudinal direction X1.
In the second embodiment, it is possible to cut the connection between the cells C and C of the submodule R adjacent to each other in the longitudinal direction X1 by forming the disconnection portions 19a at appropriate positions in the wiring material 19. . Therefore, a desired electric circuit can be designed according to the position of the disconnection part 19a. In the second embodiment, since the arrangement pattern of the conductive material 14 and the wiring material 19 can be formed simultaneously, the manufacturing efficiency can be improved.
 配線材19の構造についてさらに具体的に説明する。図18は第一基材3Aと第二基材3Bを貼り合せた後で、かつ融着部18を設ける前の色素増感太陽電池1を示している。
 図19は、正極における取出し電極用の配線材19Aを示している。図20は、負極における取出し電極用の配線材19Bを示している。図21及び図22は、長手方向X1に隣り合うセル同士を接続する接続用の配線材19Cを示している。このようにフィルムの幅方向X2の両端部に導通材14を配置することにより、同一の基材面上(ここでは、第二基材3Bの基材面上)に+端子(正極端子)と-端子(負極端子)の取り出し電極(端子取出し部)を設けることができる。そのため、取り出し電極への配線作業を行う際に色素増感太陽電池1を上下に反転する工程が不要となり、配線作業の手間を低減することができる。
The structure of the wiring material 19 will be described more specifically. FIG. 18 shows the dye-sensitized solar cell 1 after bonding the first base material 3A and the second base material 3B and before providing the fused portion 18.
FIG. 19 shows a wiring material 19A for the extraction electrode in the positive electrode. FIG. 20 shows a wiring material 19B for the extraction electrode in the negative electrode. 21 and 22 show a wiring material 19C for connection that connects cells adjacent in the longitudinal direction X1. In this way, by arranging the conductive material 14 at both ends in the width direction X2 of the film, the + terminal (positive terminal) on the same base material surface (here, the base material surface of the second base material 3B) and -An extraction electrode (terminal extraction portion) for a terminal (negative electrode terminal) can be provided. Therefore, when performing the wiring work to the extraction electrode, the step of inverting the dye-sensitized solar cell 1 up and down becomes unnecessary, and the labor of the wiring work can be reduced.
 また、図23に示すように、接続用の配線材19Cとして、橋渡し電極を超音波振動によって切断できないレベルで調整した構成とすることも可能である。 Further, as shown in FIG. 23, the connecting wiring member 19C may be configured such that the bridging electrode is adjusted at a level that cannot be cut by ultrasonic vibration.
 第2に実施の形態の場合も、上述した第1の実施の形態と同様に、二つのサブモジュールR、Rを有するように融着部18で切断することにより製造された色素増感太陽電池(太陽電池モジュール)とすることができる(図15参照)。 In the case of the second embodiment as well, the dye-sensitized solar cell manufactured by cutting at the fusion part 18 so as to have two submodules R and R, as in the first embodiment described above. (Solar cell module) (see FIG. 15).
(第3の実施の形態)
 次に、図24に示す第3の実施の形態は、配線材19を配置する工程において、配線材19が光電極11と対向電極12で長手方向X1に沿って互い違いとなるように塗布する製造方法である。つまり、長手方向X1で配線材19が配置されない断線部19aを挟んだ両側のセルC、C同士は、配線材19を配置する時点で接続されない構成となる。
 そのため、第2の実施の形態のように配線材19を配置する時点において連続的に配線材19を配置する場合に比べて、配線材19に断線部19aを設ける工程が不要となる利点がある。
(Third embodiment)
Next, in the third embodiment shown in FIG. 24, in the step of arranging the wiring material 19, the wiring material 19 is applied so as to alternate between the photoelectrode 11 and the counter electrode 12 along the longitudinal direction X <b> 1. Is the method. That is, the cells C and C on both sides sandwiching the disconnection portion 19a where the wiring material 19 is not arranged in the longitudinal direction X1 are not connected when the wiring material 19 is arranged.
Therefore, as compared with the case where the wiring material 19 is continuously arranged at the time of arranging the wiring material 19 as in the second embodiment, there is an advantage that the step of providing the disconnection portion 19a in the wiring material 19 is not necessary. .
 本第3の実施の形態では、図25に示すように、光電極11と対向電極12とを貼り合せた後で、光電極11と対向電極12とを幅方向X2に沿って融着した融着部18を形成する工程において、融着しない非融着部18A(図25の二点点線で囲った部分)を確保する方法となっている。融着部18を設けない非融着部18Aを形成する理由としては、非融着部18Aは配線材19を塗布した側であり、これにより塗布した配線材19が断線することを避けることができる。このことにより、融着による配線材19の絶縁を防ぐことができる。
 非融着部18Aは、幅方向X2で配線材19の断線部19aに対向する位置となる。つまり、この非融着部18Aでは図4に示す超音波融着部46において超音波融着機を当てない部分となる。
In the third embodiment, as shown in FIG. 25, after the photoelectrode 11 and the counter electrode 12 are bonded together, the photoelectrode 11 and the counter electrode 12 are fused along the width direction X2. In the step of forming the bonding portion 18, a non-fused portion 18A (portion surrounded by a two-dot dotted line in FIG. 25) is secured. The reason for forming the non-fused portion 18A where the fused portion 18 is not provided is that the non-fused portion 18A is on the side where the wiring material 19 is applied, and this prevents the applied wiring material 19 from being disconnected. it can. Thereby, the insulation of the wiring material 19 by fusion | fusion can be prevented.
The non-fused portion 18A is located at a position facing the disconnection portion 19a of the wiring member 19 in the width direction X2. That is, the non-fused portion 18A is a portion where the ultrasonic fusion machine is not applied in the ultrasonic fusion portion 46 shown in FIG.
(第4の実施の形態)
 次に、図26に示す第4の実施の形態は、光電極11と対向電極12とを幅方向X2に沿って融着した融着部18に相当する第三絶縁部17Aを形成する絶縁加工を、光電極11及び対極電極12の絶縁加工(図26では第二絶縁部17のみ記載)と同時に行うようにした製造方法である。この場合、融着部18は、幅方向X2の両端部において長手方向X1に隣接するセルC、Cと電気的に接続された状態にするため、幅方向X2の両端部との間に隙間(非絶縁部17B、図26の点線で囲った部分)を開けた状態で絶縁する。
 なお、図27に示すように、切断する部分Tのみは、超音波融着で封止する。
 本第4の実施の形態では、第三絶縁部17Aと長手方向X1に平行な絶縁加工とを同時に行うことで、製造効率を向上させることができる。
(Fourth embodiment)
Next, the fourth embodiment shown in FIG. 26 is an insulating process for forming a third insulating portion 17A corresponding to the fused portion 18 in which the photoelectrode 11 and the counter electrode 12 are fused along the width direction X2. Is a manufacturing method that is performed simultaneously with the insulating processing of the photoelectrode 11 and the counter electrode 12 (only the second insulating portion 17 is shown in FIG. 26). In this case, in order to make the fusion | bond part 18 electrically connect with the cells C and C which adjoin the longitudinal direction X1 in the both ends of the width direction X2, between the both ends of the width direction X2, a clearance gap ( Insulation is performed with the non-insulating portion 17B and the portion surrounded by the dotted line in FIG.
As shown in FIG. 27, only the portion T to be cut is sealed by ultrasonic fusion.
In the fourth embodiment, the manufacturing efficiency can be improved by simultaneously performing the third insulating portion 17A and the insulating process parallel to the longitudinal direction X1.
 以上、本発明による太陽電池モジュール、及び太陽電池モジュールの製造方法の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 As mentioned above, although the solar cell module by this invention and embodiment of the manufacturing method of a solar cell module were described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it changes suitably. Is possible.
 例えば、上述の実施の形態では、絶縁加工部41、47により絶縁加工する手段として切込み加工装置50を採用しているが、これに限定されることはない。例えば、図28(a)、(b)に示すように、複数のレーザー照射装置53、53、…を幅方向X2に所定の間隔をあけて配列し、融着部18(図1参照)によって画成されるサブモジュールR毎に対応してレーザーLが照射されるレーザー照射装置53を設定しておき、サブモジュールR毎に図28(a)及び図28(b)のように交互にレーザー加工することで、上述した実施の形態の切込み加工装置50と同様に、第一基材3Aの透明導電膜11Aに対して第一絶縁部16を形成し、第二基材3Bの対向導電膜12Aに対して第二絶縁部17を形成することができる。 For example, in the above-described embodiment, the incision processing device 50 is employed as a means for performing insulation processing by the insulation processing portions 41 and 47, but is not limited thereto. For example, as shown in FIGS. 28A and 28B, a plurality of laser irradiation devices 53, 53,... Are arranged at predetermined intervals in the width direction X2, and the fused portion 18 (see FIG. 1). A laser irradiation device 53 for irradiating the laser L corresponding to each defined submodule R is set, and the laser is alternately switched for each submodule R as shown in FIG. 28 (a) and FIG. 28 (b). By processing, the first insulating portion 16 is formed on the transparent conductive film 11A of the first base material 3A and the opposing conductive film of the second base material 3B, similarly to the incision processing device 50 of the above-described embodiment. The second insulating portion 17 can be formed for 12A.
 また、1つの色素増感太陽電池(太陽電池モジュール)において、サブモジュールRの数量は、本実施の形態に限定されることはなく、偶数個であれば任意に設定することができる。 Further, in one dye-sensitized solar cell (solar cell module), the number of submodules R is not limited to this embodiment, and can be arbitrarily set as long as it is an even number.
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。 In addition, it is possible to appropriately replace the constituent elements in the above-described embodiments with known constituent elements without departing from the spirit of the present invention.
 本発明の太陽電池モジュール、及び太陽電池モジュールの製造方法によれば、フィルム基板上のみで直列配線を行うことができる構造とすることで、ロール・ツー・ロール方式による生産が可能となるうえ、太陽電池モジュールを外装する際に生じる配線が不要となり、コストの低減を図ることができる。 According to the solar cell module of the present invention and the method for manufacturing a solar cell module, it is possible to produce by a roll-to-roll method by adopting a structure in which serial wiring can be performed only on the film substrate. Wiring generated when the solar cell module is packaged becomes unnecessary, and the cost can be reduced.
 1、1A 色素増感太陽電池(太陽電池モジュール)
 1a 一端
 1b 他端
 4 製造装置
 11 光電極(第一電極)
 11A 透明導電膜
 11B 半導体層
 12 対向電極(第二電極)
 12A 対向導電膜
 12B 触媒層
 3A 第一基材
 3B 第二基材
 13 電解液
 14 導通材
 15 封止材
 16 第一絶縁部
 17 第二絶縁部
 17A 第三絶縁部
 17B 非絶縁部
 18 融着部(絶縁ライン)
 18A 非融着部
 181 第一融着部(第一絶縁ライン)
 19、19A、19B、19C 配線材
 19a 断線部
 41 第一絶縁加工部
 42 封止材塗工部
 43 導通材配置部
 44 電解液塗工部
 45 基材貼合せ部
 46 超音波融着部
 47 第二絶縁加工部
 50 切込み加工装置
 51 回転軸
 52、52A、52B 半円刃
 53 レーザー照射装置
 C セル
 P1 第一移動方向
 P2 第二移動方向
 R  サブモジュール
 X1 長手方向(第一の方向)
 X2 幅方向(第二の方向、第一基材及び第二基材の幅方向)
1, 1A Dye-sensitized solar cell (solar cell module)
1a one end 1b other end 4 manufacturing apparatus 11 photoelectrode (first electrode)
11A Transparent conductive film 11B Semiconductor layer 12 Counter electrode (second electrode)
12A Opposing conductive film 12B Catalyst layer 3A First base material 3B Second base material 13 Electrolyte solution 14 Conductive material 15 Sealing material 16 First insulating portion 17 Second insulating portion 17A Third insulating portion 17B Non-insulating portion 18 Fusion portion (Insulation line)
18A Non-fused part 181 First fused part (first insulation line)
19, 19A, 19B, 19C Wiring material 19a Disconnected portion 41 First insulation processing portion 42 Sealing material coating portion 43 Conducting material placement portion 44 Electrolyte coating portion 45 Base material bonding portion 46 Ultrasonic fusion portion 47 No. Two insulation processing parts 50 Cutting processing device 51 Rotating shaft 52, 52A, 52B Semicircular blade 53 Laser irradiation device C Cell P1 First moving direction P2 Second moving direction R Submodule X1 Longitudinal direction (first direction)
X2 width direction (second direction, width direction of first substrate and second substrate)

Claims (12)

  1.  第一電極と、第二電極と、前記第一電極と前記第二電極との間に封止された電解液と、前記電解液を封止する複数の封止材と、複数の絶縁ラインと、を含む積層構造体であり、前記複数の封止材及び前記複数の絶縁ラインにより規定される、それぞれ複数のセルから構成される複数のサブモジュールを有する太陽電池モジュールであって、
     前記第一電極は、表面に透明導電膜が成膜された第一基材、及び前記第一基材の前記透明導電膜の表面に形成された、第一の方向に延在する色素が吸着した複数の帯状半導体層を有し、
     前記第二電極は、表面に前記第一電極に対向するように対向導電膜が成膜された第二基材を有し、
     前記電解液は、前記第一電極の前記半導体層と前記第二電極との間に封止されており、
     前記複数の封止材は、それぞれ前記第一電極と前記第二電極との間において、前記第一の方向に沿って延在することにより、前記電解液を封止するとともに、前記積層構造体を複数のセルに分割し、
     前記複数の絶縁ラインは、それぞれ前記第一電極と前記第二電極との間において、平面視で前記第一の方向に直交する第二の方向に沿って延在するにより、前記積層構造体を、それぞれ複数のセルから構成される複数のサブモジュールに分割し、
     前記第二の方向に隣り合うセルについて、一方のセルの第一電極と、他方のセルの第二電極とが、前記封止材に覆われた状態で設けられた導通材により電気的に接続され、それにより前記複数のセルは直列に接続され、
     各セルにおいて、第一電極と第二電極との短絡が防止されるように、前記第一基材には、一方の導通材に隣接する位置の近傍に前記第一の方向に延びる第一絶縁部が設けられており、前記第二基材には、他方の導通材に隣接する位置の近傍に前記第一の方向に延びる第二絶縁部が設けられており、
     前記複数のサブモジュールは、前記第一の方向に隣り合うサブモジュールについて、前記第二の方向の同じ側の端部同士が配線材によって直列配線により電気的に接続され、かつ、前記複数のサブモジュールを流れる電流の向きが、前記第一の方向に配列される前記サブモジュール毎に交互に反転するように接続されていること特徴とする太陽電池モジュール。
    A first electrode, a second electrode, an electrolyte solution sealed between the first electrode and the second electrode, a plurality of sealing materials for sealing the electrolyte solution, and a plurality of insulating lines; A solar cell module having a plurality of submodules each composed of a plurality of cells, defined by the plurality of sealing materials and the plurality of insulating lines,
    The first electrode adsorbs a first base material having a transparent conductive film formed on the surface thereof, and a dye extending in the first direction formed on the surface of the transparent conductive film of the first base material. A plurality of strip-shaped semiconductor layers,
    The second electrode has a second substrate on which a counter conductive film is formed so as to face the first electrode,
    The electrolytic solution is sealed between the semiconductor layer of the first electrode and the second electrode,
    The plurality of encapsulants seal the electrolyte solution by extending along the first direction between the first electrode and the second electrode, respectively, and the laminated structure Into multiple cells,
    The plurality of insulating lines extend between the first electrode and the second electrode along a second direction orthogonal to the first direction in a plan view, thereby , Divided into a plurality of submodules each composed of a plurality of cells,
    For cells adjacent in the second direction, the first electrode of one cell and the second electrode of the other cell are electrically connected by a conductive material provided in a state covered with the sealing material. Whereby the plurality of cells are connected in series;
    In each cell, the first base material extends in the first direction in the vicinity of a position adjacent to one conductive material so that a short circuit between the first electrode and the second electrode is prevented. A second insulating part extending in the first direction is provided in the vicinity of the position adjacent to the other conductive material,
    In the plurality of submodules, the end portions on the same side in the second direction of the submodules adjacent to each other in the first direction are electrically connected to each other by serial wiring by a wiring material, and the plurality of submodules A solar cell module, wherein a direction of a current flowing through the module is connected so as to be alternately reversed for each of the submodules arranged in the first direction.
  2.  前記第二の方向の両端部に配置される前記導通材には、前記第一基材の基材面上、又は前記第二基材の基材面上に端子取出し部が設けられていることを特徴とする請求項1に記載の太陽電池モジュール。 The conducting material disposed at both end portions in the second direction has a terminal extraction portion on the base material surface of the first base material or on the base material surface of the second base material. The solar cell module according to claim 1.
  3.  ロール・ツー・ロール方式により連続的に太陽電池モジュールを製造するための太陽電池モジュールの製造方法であって、
     第一基材の表面に透明導電膜が成膜され、前記第一基材の前記透明導電膜の表面に形成された、第一の方向に延在する色素が吸着した複数の半導体層が形成された第一電極を形成する工程と、
     第二基材の表面に前記第一電極に対向するように対向導電膜が成膜された第二電極を形成する工程と、
     前記透明導電膜及び前記対向導電膜に対して前記第一の方向と平行に絶縁加工を行う工程と、
     前記第一の方向に沿って延在し、平面視で前記第一の方向に直交する第二の方向に複数のセルを配列する封止材を設ける工程と、
     前記封止材に覆われた状態で導通材を配置し、前記第二の方向に隣り合うセルについて、一方のセルの第一電極と他方のセルの第二電極とを前記導通材により電気的に接続する工程と、
     前記第一電極の前記半導体層と前記第二電極との間に電解液を設ける工程と、
     前記第一電極と前記第二電極とを貼り合せる工程と、
     前記第一電極及び前記第二電極に対して前記第二の方向に沿って延在する絶縁ラインを形成し、複数のセルから構成される複数のサブモジュールに分割する工程と、
     前記第一の方向に隣り合う前記サブモジュールについて、前記第二の方向の同じ側の端部同士を配線材によって直列配線により電気的に接続する工程と、
     前記第一電極と前記第二電極とを任意の前記絶縁ラインの位置で切断する工程と、
     を有することを特徴とする太陽電池モジュールの製造方法。
    A solar cell module manufacturing method for continuously manufacturing solar cell modules by a roll-to-roll method,
    A transparent conductive film is formed on the surface of the first substrate, and a plurality of semiconductor layers formed on the surface of the transparent conductive film of the first substrate are adsorbed with a dye extending in the first direction. Forming a formed first electrode;
    Forming a second electrode in which a counter conductive film is formed on the surface of the second substrate so as to face the first electrode;
    Performing an insulating process in parallel with the first direction on the transparent conductive film and the counter conductive film;
    Providing a sealing material that extends along the first direction and arranges a plurality of cells in a second direction orthogonal to the first direction in plan view;
    A conductive material is disposed in a state of being covered with the sealing material, and the first electrode of one cell and the second electrode of the other cell are electrically connected to each other in the second direction by the conductive material. Connecting to
    Providing an electrolyte solution between the semiconductor layer of the first electrode and the second electrode;
    Bonding the first electrode and the second electrode;
    Forming an insulation line extending along the second direction with respect to the first electrode and the second electrode, and dividing into a plurality of submodules composed of a plurality of cells;
    For the submodules adjacent to each other in the first direction, electrically connecting the end portions on the same side in the second direction by a series wiring by a wiring material;
    Cutting the first electrode and the second electrode at an arbitrary position of the insulation line;
    The manufacturing method of the solar cell module characterized by having.
  4.  前記絶縁加工を行う工程において、
     絶縁加工位置が前記第一の方向に対して一定周期で前記第二の方向にずれた位置に変化する絶縁加工パターンが形成されることを特徴とする請求項3に記載の太陽電池モジュールの製造方法。
    In the step of performing the insulating process,
    4. The solar cell module manufacturing method according to claim 3, wherein an insulation processing pattern is formed in which an insulation processing position changes to a position shifted in the second direction at a constant period with respect to the first direction. Method.
  5.  前記第一の方向に沿って連続した状態で前記配線材が配置され、
     前記絶縁ラインが形成された後に、前記配線材の前記第一の方向の一部を切り欠き加工することにより断線部を形成することを特徴とする請求項3又は4に記載の太陽電池モジュールの製造方法。
    The wiring material is arranged in a continuous state along the first direction,
    5. The solar cell module according to claim 3, wherein, after the insulation line is formed, a disconnection portion is formed by cutting out a part of the wiring material in the first direction. Production method.
  6.  前記配線材を配置する工程において、前記第一の方向の一部に断線部を形成した前記配線材が配置されることを特徴とする請求項3又は4に記載の太陽電池モジュールの製造方法。 The method for manufacturing a solar cell module according to claim 3 or 4, wherein in the step of arranging the wiring material, the wiring material in which a disconnection portion is formed in a part of the first direction is arranged.
  7.  前記絶縁ラインは、前記第二の方向に沿って融着された融着部であることを特徴とする請求項3乃至6のいずれか1項に記載の太陽電池モジュールの製造方法。 The method for manufacturing a solar cell module according to any one of claims 3 to 6, wherein the insulating line is a fused portion fused along the second direction.
  8.  前記配線材を配置する工程は、前記導通材を配置するときに同時に行われることを特徴とする請求項3乃至7のいずれか1項に記載の太陽電池モジュールの製造方法。 The method for manufacturing a solar cell module according to any one of claims 3 to 7, wherein the step of arranging the wiring material is performed simultaneously with the arrangement of the conductive material.
  9.  前記絶縁ラインを形成する工程は、前記絶縁加工を行うときに同時に行われることを特徴とする請求項3乃至7のいずれか1項に記載の太陽電池モジュールの製造方法。 The method for manufacturing a solar cell module according to any one of claims 3 to 7, wherein the step of forming the insulating line is performed simultaneously with the insulating process.
  10.  第一基材の表面に透明導電膜が成膜され、前記第一基材の前記透明導電膜の表面に形成された、第一の方向に延在する色素が吸着した複数の半導体層が形成された第一電極を形成する工程と、
     第二基材の表面に前記第一電極に対向するように対向導電膜が成膜された第二電極を形成する工程と、
     前記透明導電膜及び前記対向導電膜に対して前記第一の方向と平行に絶縁加工を行う工程と、
     前記第一の方向に沿って延在し、平面視で前記第一の方向に直交する第二の方向に複数のセルを配列する封止材を設ける工程と、
     前記封止材に覆われた状態で導通材を配置し、前記第二の方向に隣り合うセルについて、一方のセルの第一電極と他方のセルの第二電極とを前記導通材により電気的に接続する工程と、
     前記第一電極の前記半導体層と前記第二電極との間に電解液を設ける工程と、
     前記第一電極と前記第二電極とを貼り合せる工程と、
     前記第一基材の前記第二の方向の両端に前記第一の方向に沿って配線材を配置する工程と、
     前記第一電極及び前記第二電極に対して前記第二の方向に沿って延在し、前記第二の方向の一端寄りの前記配線材を部分的に絶縁しない第一絶縁ラインと、前記第二の方向の全体にわたって絶縁する第二絶縁ラインと、を前記第一の方向の所定位置に形成し、前記第二絶縁ライン同士の間に前記第一絶縁ラインを設ける工程と、
     前記第一電極と前記第二電極とを前記第二絶縁ラインの位置で切断する工程と、
     を有し、
     前記第二絶縁ラインで切断された太陽電池モジュールは、前記第一絶縁ラインで分割された前記サブモジュールのうち隣り合う前記サブモジュールについて、前記第二の方向の同じ側の端部同士を前記配線材によって直列配線により電気的に接続されることを特徴とする太陽電池モジュールの製造方法。
    A transparent conductive film is formed on the surface of the first substrate, and a plurality of semiconductor layers formed on the surface of the transparent conductive film of the first substrate are adsorbed with a dye extending in the first direction. Forming a formed first electrode;
    Forming a second electrode in which a counter conductive film is formed on the surface of the second substrate so as to face the first electrode;
    Performing an insulating process in parallel with the first direction on the transparent conductive film and the counter conductive film;
    Providing a sealing material that extends along the first direction and arranges a plurality of cells in a second direction orthogonal to the first direction in plan view;
    A conductive material is disposed in a state of being covered with the sealing material, and the first electrode of one cell and the second electrode of the other cell are electrically connected to each other in the second direction by the conductive material. Connecting to
    Providing an electrolyte solution between the semiconductor layer of the first electrode and the second electrode;
    Bonding the first electrode and the second electrode;
    Arranging the wiring member along the first direction at both ends of the second direction of the first base material;
    A first insulating line that extends along the second direction with respect to the first electrode and the second electrode and does not partially insulate the wiring material near one end in the second direction; Forming a second insulating line that insulates the whole in two directions at a predetermined position in the first direction, and providing the first insulating line between the second insulating lines;
    Cutting the first electrode and the second electrode at a position of the second insulating line;
    Have
    The solar cell module cut by the second insulating line is connected to the same end in the second direction between the sub modules adjacent to each other among the sub modules divided by the first insulating line. A method of manufacturing a solar cell module, wherein the solar cell module is electrically connected by serial wiring with a material.
  11.  前記第一絶縁ライン及び前記第二絶縁ラインは、前記第二の方向に沿って融着された融着部であることを特徴とする請求項10に記載の太陽電池モジュールの製造方法。 The method for manufacturing a solar cell module according to claim 10, wherein the first insulation line and the second insulation line are fusion parts fused along the second direction.
  12.  前記第一絶縁ライン及び前記第二絶縁ラインを形成する工程は、前記絶縁加工を行うときに同時に行われることを特徴とする請求項10又は11に記載の太陽電池モジュールの製造方法。 The method for manufacturing a solar cell module according to claim 10 or 11, wherein the step of forming the first insulating line and the second insulating line is performed simultaneously with the insulating process.
PCT/JP2017/040149 2016-11-07 2017-11-07 Solar cell module and method for manufacturing solar cell module WO2018084317A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197009431A KR20190077323A (en) 2016-11-07 2017-11-07 Solar cell module, and manufacturing method of solar cell module
CN201780060999.0A CN109791849A (en) 2016-11-07 2017-11-07 The manufacturing method of solar cell module and solar cell module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-217426 2016-11-07
JP2016217426 2016-11-07
JP2017-059716 2017-03-24
JP2017059716A JP6912231B2 (en) 2016-11-07 2017-03-24 Solar cell module and manufacturing method of solar cell module

Publications (1)

Publication Number Publication Date
WO2018084317A1 true WO2018084317A1 (en) 2018-05-11

Family

ID=62076693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040149 WO2018084317A1 (en) 2016-11-07 2017-11-07 Solar cell module and method for manufacturing solar cell module

Country Status (1)

Country Link
WO (1) WO2018084317A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020038877A (en) * 2018-09-03 2020-03-12 積水化学工業株式会社 Electric module and method for manufacturing electric module
JP2020038876A (en) * 2018-09-03 2020-03-12 積水化学工業株式会社 Electric module
JP2020047805A (en) * 2018-09-20 2020-03-26 積水化学工業株式会社 Electric module and manufacturing method of electric module
JP2020047804A (en) * 2018-09-20 2020-03-26 積水化学工業株式会社 Electric module and manufacturing method of electric module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015518652A (en) * 2012-04-04 2015-07-02 エクセジャー スウェーデン エービーExeger Sweden Ab Dye-sensitized solar cell module having series structure and method for manufacturing the solar cell
WO2015122532A1 (en) * 2014-02-17 2015-08-20 積水化学工業株式会社 Electric module and manufacturing method for electric module
JP2016171175A (en) * 2015-03-12 2016-09-23 日本写真印刷株式会社 Dye-sensitization solar cell and connection method of dye-sensitization solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015518652A (en) * 2012-04-04 2015-07-02 エクセジャー スウェーデン エービーExeger Sweden Ab Dye-sensitized solar cell module having series structure and method for manufacturing the solar cell
WO2015122532A1 (en) * 2014-02-17 2015-08-20 積水化学工業株式会社 Electric module and manufacturing method for electric module
JP2016171175A (en) * 2015-03-12 2016-09-23 日本写真印刷株式会社 Dye-sensitization solar cell and connection method of dye-sensitization solar cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020038877A (en) * 2018-09-03 2020-03-12 積水化学工業株式会社 Electric module and method for manufacturing electric module
JP2020038876A (en) * 2018-09-03 2020-03-12 積水化学工業株式会社 Electric module
JP7107788B2 (en) 2018-09-03 2022-07-27 積水化学工業株式会社 Electric module and method of manufacturing an electric module
JP7164362B2 (en) 2018-09-03 2022-11-01 積水化学工業株式会社 electrical module
JP2020047805A (en) * 2018-09-20 2020-03-26 積水化学工業株式会社 Electric module and manufacturing method of electric module
JP2020047804A (en) * 2018-09-20 2020-03-26 積水化学工業株式会社 Electric module and manufacturing method of electric module

Similar Documents

Publication Publication Date Title
WO2018084317A1 (en) Solar cell module and method for manufacturing solar cell module
JP6912231B2 (en) Solar cell module and manufacturing method of solar cell module
CN109478470B (en) Solar cell module
CN109478469B (en) Solar cell module
CN109478468B (en) Solar cell module and method for manufacturing solar cell module
CN109564823B (en) Solar cell module
JP5702897B2 (en) Electric module manufacturing method and electric module
WO2018174247A1 (en) Solar cell module and method for producing solar cell module
JP6809954B2 (en) Solar cell module and manufacturing method of solar cell module
JP6568479B2 (en) Electric module and method of manufacturing electric module
JP6918521B2 (en) Electric module and manufacturing method of electric module
JP6912243B2 (en) Dye-sensitized solar cell
JP6687457B2 (en) Electric module, dye-sensitized solar cell, and method for manufacturing electric module
JP2018076666A (en) Slat with solar-cell module, solar-cell slat, manufacturing method of slat with solar-cell module, and manufacturing method of solar-cell slat
JP2018163958A (en) Slat with solar cell module, power generation blind, and method for manufacturing slat with solar cell module
JP5668040B2 (en) Dye-sensitized solar cell
JP7084259B2 (en) Electric module and its manufacturing method
JP5530372B2 (en) Manufacturing method of electric module
WO2015083738A1 (en) Conductive member with sealing function, electric module, and manufacturing method for electric module
JP6703574B2 (en) Electric module and manufacturing method thereof
JP7415383B2 (en) Solar cell module, electrode substrate for solar cell, and method for manufacturing solar cell module
TWI639261B (en) Dye-sensitized photovoltaic cell, module, and manufacturing method thereof
WO2020209068A1 (en) Solar cell module
JP2020038877A (en) Electric module and method for manufacturing electric module
JP2020126875A (en) Electric module and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197009431

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866526

Country of ref document: EP

Kind code of ref document: A1