WO2018173996A1 - Curable resin composition, laminate and optical semiconductor package - Google Patents

Curable resin composition, laminate and optical semiconductor package Download PDF

Info

Publication number
WO2018173996A1
WO2018173996A1 PCT/JP2018/010739 JP2018010739W WO2018173996A1 WO 2018173996 A1 WO2018173996 A1 WO 2018173996A1 JP 2018010739 W JP2018010739 W JP 2018010739W WO 2018173996 A1 WO2018173996 A1 WO 2018173996A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
group
optical semiconductor
curable resin
organopolysiloxane
Prior art date
Application number
PCT/JP2018/010739
Other languages
French (fr)
Japanese (ja)
Inventor
吉仁 武井
大輔 津島
丈章 齋木
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to JP2019507655A priority Critical patent/JPWO2018173996A1/en
Publication of WO2018173996A1 publication Critical patent/WO2018173996A1/en

Links

Images

Definitions

  • the present invention relates to a curable resin composition, a laminate, and an optical semiconductor package.
  • An optical semiconductor package (hereinafter also referred to as an LED) has features such as long life, low power consumption, shock resistance, high-speed response, lightness, thinness, and the like. Development in various fields such as lights, in-vehicle lighting, indoor / outdoor advertising, indoor / outdoor lighting, etc. is making dramatic progress.
  • the LED is usually manufactured by encapsulating an optical semiconductor element by applying a curable resin composition on the optical semiconductor element and curing the composition.
  • a curable resin composition for example, Patent Document 1 discloses a composition containing a plurality of types of organopolysiloxane and a hydrosilylation catalyst.
  • reflectors and electrodes in LEDs are formed with a member (corrosive substrate) containing silver plating or the like, but a sulfur-based gas present in the atmosphere or in the material is used as a sealing material (a curable resin composition).
  • the corrosive substrate may be corroded (sulfurized) through the cured product.
  • sulfurization is a problem because the luminous intensity of the LED decreases.
  • the present inventors prepared a curable resin composition with reference to Patent Document 1 and sealed the optical semiconductor element using this to produce an optical semiconductor package.
  • the present invention provides a curable resin composition, a corrosive substrate, and a curable resin composition that exhibit excellent sulfidation resistance when the optical semiconductor package is used as a sealing material for an optical semiconductor element. It aims at providing the optical semiconductor package obtained by sealing a laminated body provided with the hardened
  • the present inventors have found that the above problems can be solved by blending specific metal particles in the curable silicone resin composition, and have reached the present invention. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • the above (B) (1) to (3), wherein the metal particles to which the organic acid is bound contain at least one metal selected from the group consisting of Ag, Cu, Ni, Co, Au and Pd.
  • the curable resin composition according to any one of the above (1) to (4), wherein the metal particles to which the organic acid (B) is bonded are Ag particles to which the organic acid is bonded.
  • the content of the metal particles to which the (B) organic acid is bonded is 1 to 500 ppm by mass as a metal with respect to 100 parts by mass of the (A) curable silicone resin composition.
  • the (A) curable silicone resin composition is (Aa) an organopolysiloxane having an alkenyl group bonded to a silicon atom; (Ab) an organopolysiloxane having a hydrogen group bonded to a silicon atom;
  • the (A) curable silicone resin composition is (Ad) an organopolysiloxane having a silanol group; (Ae) an organopolysiloxane having an alkoxysilyl group; (Af) The curable resin composition according to any one of the above (1) to (6), comprising a condensation catalyst.
  • the optical semiconductor package when used as an encapsulant for an optical semiconductor element, the optical semiconductor package exhibits excellent sulfidation resistance, a corrosive substrate, and the above curable resin composition.
  • cured material of the thing, and the said curable resin composition can be provided.
  • the optical semiconductor package exhibits excellent sulfidation resistance when used as a sealing material for an optical semiconductor element is also simply referred to as excellent sulfidation resistance.
  • FIG. 1 is a cross-sectional view schematically showing an example of the laminate of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing another example of the laminate of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing an example of the optical semiconductor package of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing another example of the optical semiconductor package of the present invention.
  • FIG. 5 is a sectional view schematically showing another example of the optical semiconductor package of the present invention.
  • FIG. 6 is a diagram schematically showing an example of an LED display using the composition of the present invention and / or the optical semiconductor package of the present invention.
  • FIG. 7 is a diagram showing the scattering intensity distribution of the dispersion B-1 of specific metal particles.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the curable resin composition of the present invention contains the following (A) and (B).
  • (B) Metal particles to which organic acid is bound hereinafter also referred to as “specific metal particles”. Since the composition of this invention takes such a structure, it is thought that the effect mentioned above is acquired. The reason for this is not clear, but the metal particles combined with the organic acid contained in the composition of the present invention adsorb sulfur-based gas very efficiently. By using it as a material, the obtained optical semiconductor package is presumed to exhibit excellent sulfidation resistance.
  • the curable silicone resin composition contained in the composition of the present invention is not particularly limited as long as it contains a curable silicone resin.
  • the curable silicone resin composition is preferably in the following first preferred embodiment or the following second preferred embodiment because the effects of the present invention are more excellent.
  • the first preferred embodiment of the curable silicone resin composition is: (Aa) an organopolysiloxane having an alkenyl group bonded to a silicon atom (hereinafter also referred to as “organopolysiloxane (Aa)”); (Ab) an organopolysiloxane having a hydrogen group bonded to a silicon atom (hereinafter also referred to as “organopolysiloxane (Ab)”); (Ac) A curable silicone resin composition containing a hydrosilylation catalyst.
  • organopolysiloxane (AA) is not particularly limited as long as it is an organopolysiloxane having an alkenyl group bonded to a silicon atom.
  • a silicon atom intends a silicon atom of siloxane.
  • alkenyl group examples include alkenyl groups having 2 to 18 carbon atoms such as vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, octenyl group, and the like. preferable.
  • the alkenyl group in one molecule is preferably 2 to 12% by mass, and more preferably 3 to 10% by mass.
  • AA organopolysiloxane
  • a substituted or unsubstituted monovalent hydrocarbon group monovalent hydrocarbon group
  • a methyl group hereinafter sometimes referred to as “Me”
  • ethyl group ethyl group
  • n-propyl group isopropyl group
  • n-butyl group isobutyl group
  • sec-butyl group sec-butyl group
  • tert-butyl group Alkyl groups having 1 to 18 carbon atoms such as various pentyl groups, various hexyl groups, various octyl groups, various decyl groups, cyclopentyl groups, and cyclohexyl groups
  • aralkyl groups having 7 to 18 carbon atoms such as benzyl groups and phenethyl groups
  • a halogenated alkyl group having 1 to 18 carbon atoms such as a chloropropyl group or a 3
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
  • At least 30 mol% of the silicon-bonded total organic groups are preferably aryl groups, and more preferably at least 40 mol% are aryl groups. This reduces attenuation due to light refraction, reflection, scattering, etc. of the resulting cured product, and is excellent in compatibility with the organopolysiloxane (Ab) described later, thereby suppressing turbidity and the like. Excellent in properties.
  • a preferred embodiment of the organopolysiloxane (Aa) includes, for example, an organopolysiloxane represented by the following average unit formula (A).
  • the average unit formula (A) represents the number of moles of each siloxane unit when the total number of siloxane units constituting the organopolysiloxane is 1 mole.
  • R 1 , R 2 and R 3 are each independently a hydrogen group or a substituted or unsubstituted monovalent hydrocarbon group.
  • the monovalent hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, various pentyl groups, and various hexyl groups.
  • Alkyl groups having 1 to 18 carbon atoms such as various octyl groups, various decyl groups, cyclopentyl groups, and cyclohexyl groups; vinyl groups (hereinafter sometimes referred to as “Vi”), allyl groups, butenyl groups, pentenyl groups, hexenyls.
  • An alkenyl group having 2 to 18 carbon atoms such as a group or an octenyl group; an aryl group having 6 to 18 carbon atoms such as a phenyl group, a tolyl group or a xylyl group; an aralkyl group having 7 to 18 carbon atoms such as a benzyl group or a phenethyl group; And a halogenated alkyl group having 1 to 18 carbon atoms such as 3-chloropropyl group and 3,3,3-trifluoropropyl group.
  • Two R 2 may be the same or different.
  • Three R 3 may be the same or different.
  • At least one of R 1, R 2 and R 3 (preferably two or more) is an alkenyl group, R 1, R 2 and R 3 and 2 to 12% by weight of an alkenyl group Is preferable, and 3 to 10% by mass is more preferable.
  • at least one of R 1 , R 2 and R 3 is preferably an aryl group, and at least 30 mol% of the total of R 1 , R 2 and R 3 is more preferably an aryl group.
  • at least 40 mol% is an aryl group.
  • X 1 is a hydrogen group or an alkyl group.
  • alkyl group examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, various pentyl groups, various hexyl groups, and various octyl groups.
  • Groups, various decyl groups, cyclopentyl groups, cyclohexyl groups and the like, and alkyl groups having 1 to 18 carbon atoms, and a methyl group is preferable.
  • a is 0 or a positive number
  • b is 0 or a positive number
  • c is 0 or a positive number
  • d is 0 or a positive number
  • e is 0 or a positive number.
  • a + b + c + d + e is 1 or less.
  • b / a is preferably a number in the range of 0 to 10
  • c / a is preferably a number in the range of 0 to 5
  • d / (a + b + c + d) is in the range of 0 to 0.3.
  • e / (a + b + c + d) is preferably a number within the range of 0 to 0.4.
  • the weight average molecular weight (Mw) of the organopolysiloxane (Aa) is preferably 500 to 1,000,000, and more preferably 1,000 to 50,000.
  • a weight average molecular weight shall be the weight average molecular weight of polystyrene conversion by the gel permeation chromatography (GPC) which uses chloroform as a solvent.
  • the content of the organopolysiloxane (Aa) in the composition of the present invention is not particularly limited, but for the reason that the effect of the present invention is more excellent,
  • the content is preferably 10 to 95% by mass, more preferably 50 to 90% by mass, based on the entire composition.
  • organopolysiloxane (Ab) is not particularly limited as long as it is an organopolysiloxane having a hydrogen group bonded to a silicon atom.
  • a silicon atom intends a silicon atom of siloxane.
  • Hydrogen group The hydrogen group is a group represented by —H.
  • a preferred embodiment of the organopolysiloxane (Ab) is, for example, an organopolysiloxane represented by the following average unit formula (B).
  • the average unit formula (B) represents the number of moles of each siloxane unit when the total number of siloxane units constituting the organopolysiloxane is 1 mole.
  • R 1 , R 2 and R 3 are each independently a hydrogen group or a substituted or unsubstituted monovalent hydrocarbon group. Specific examples of the monovalent hydrocarbon group are the same as R 1 , R 2 and R 3 in the above-described formula (A). However, at least one (preferably two or more) of R 1 , R 2 and R 3 in one molecule is a hydrogen group. Further, in one molecule, at least one of R 1 , R 2 and R 3 is preferably an aryl group, and at least 30 mol% of the total of R 1 , R 2 and R 3 is more preferably an aryl group. Preferably, at least 40 mol% is an aryl group.
  • a is 0 or a positive number
  • b is 0 or a positive number
  • c is 0 or a positive number
  • d is 0 or a positive number
  • e is 0 or a positive number.
  • a + b + c + d + e is 1 or less.
  • the preferred embodiments of a, b, c, d and e are the same as a, b, c, d and e in the above formula (A).
  • a preferred embodiment of the molecular weight of the organopolysiloxane (Ab) is the same as that of the above-described organopolysiloxane (Aa).
  • Si—H / Si—Vi molar ratio between the hydrogen group bonded to the silicon atom of the organopolysiloxane (Ab) and the alkenyl group bonded to the silicon atom of the organopolysiloxane (Aa).
  • the molar ratio (hereinafter also referred to as “Si—H / Si—Vi molar ratio” for convenience) is not particularly limited, but is preferably 0.05 to 5.00 because the effect of the present invention is more excellent. 0.10 to 2.00, more preferably 0.50 to 1.50, and particularly preferably 0.70 to 1.10.
  • the hydrosilylation catalyst functions as a catalyst for promoting the addition reaction (hydrosilylation reaction) between the organopolysiloxane (Aa) and the organopolysiloxane (Ab).
  • a conventionally well-known thing can be used as a hydrosilylation catalyst, For example, a platinum-type catalyst, a rhodium-type catalyst, a palladium-type catalyst etc. are mentioned, A platinum-type catalyst is preferable.
  • platinum catalyst examples include chloroplatinic acid, chloroplatinic acid-olefin complex, chloroplatinic acid-divinyltetramethyldisiloxane complex, chloroplatinic acid-alcohol coordination compound, platinum diketone complex, platinum divinyltetramethyldi A siloxane complex etc. are mentioned, These may be used individually by 1 type and may use 2 or more types together.
  • the content of the hydrosilylation catalyst is not particularly limited, but is 0.001 to 100 ppm by mass as a metal (for example, Pt) with respect to the entire composition of the present invention because the curability of the composition of the present invention is excellent. ( ⁇ 10 ⁇ 6 mass%) is preferable.
  • the second preferred embodiment of the curable silicone resin composition is: (Ad) an organopolysiloxane having a silanol group (hereinafter also referred to as “organopolysiloxane (Ad)”); (Ae) an organopolysiloxane having an alkoxysilyl group (hereinafter also referred to as “organopolysiloxane (Ae)”); (Af) A curable silicone resin composition containing a condensation catalyst.
  • organopolysiloxane (Ad) is an organopolysiloxane having one or more, preferably two or more silanol groups in one molecule.
  • silanol group is a hydroxy group bonded to a silicon atom.
  • the content of the organopolysiloxane (Ad) in the composition of the present invention is not particularly limited, but for the reason that the effect of the present invention is more excellent,
  • the content is preferably 10 to 90% by mass, more preferably 50 to 80% by mass, based on the entire composition.
  • organopolysiloxane (Ae) is not particularly limited as long as it is an organopolysiloxane having an alkoxysilyl group.
  • a silicon atom intends a silicon atom of siloxane.
  • Alkoxysilyl group is an alkoxy group (—OR) bonded to a silicon atom.
  • R represents a monovalent hydrocarbon group. Specific examples of the monovalent hydrocarbon group are the same as R 1 , R 2 and R 3 in the above-described formula (A).
  • a preferred embodiment of the molecular weight of the organopolysiloxane (Ae) is the same as that of the above-described organopolysiloxane (Aa).
  • the content of the organopolysiloxane (Ae) in the composition of the present invention is not particularly limited, but for the reason that the effect of the present invention is more excellent,
  • the content is preferably 1 to 90% by mass, more preferably 10 to 50% by mass, based on the entire composition.
  • the condensation catalyst is not particularly limited as long as it is a catalyst used for the condensation of a silanol group and an alkoxysilyl group.
  • the condensation catalyst can be a metal salt; complex; alcoholate; oxide; multi-metal oxide, salts and / or complexes thereof;
  • the condensation catalyst is preferably a metal salt compound from the viewpoint of excellent room temperature stability and curability.
  • the condensation catalyst can be a compound having a metal (for example, at least one selected from the group consisting of Al, Zn, Sn, Zr, Hf, Ti, and a lanthanoid) and an organic group.
  • the metal can be bonded to the organic group, for example, through a heteroatom such as an oxygen atom, nitrogen atom, sulfur atom, and / or via a linking group such as an ester bond.
  • the organic group includes an aliphatic hydrocarbon group (including chain, branched, cyclic, and combinations thereof.
  • the aliphatic hydrocarbon group can have an unsaturated bond), aromatic hydrocarbon groups, and combinations thereof Is mentioned.
  • the organic group can have a hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom.
  • organic group examples include an organic carboxylate (—O—CO—R, where R is a hydrocarbon group); a hydrocarbon group such as an alkoxy group or a phenoxy group bonded to an oxy group (—O— -R: where R is a hydrocarbon group); ligand; combinations thereof.
  • the condensation catalyst is preferably a metal compound containing at least one selected from the group consisting of Al, Zn, Sn, Zr, Hf, Ti and a lanthanoid from the viewpoint of excellent curability and room temperature stability. More preferably, it is a compound.
  • the content of the condensation catalyst in the composition of the present invention is not particularly limited, but for the reason that the effect of the present invention is more excellent, 0.01 to
  • the content is preferably 10% by mass, more preferably 0.1 to 1% by mass.
  • the metal particles (specific metal particles) to which (B) an organic acid is bound contained in the composition of the present invention are not particularly limited as long as they are metal particles to which an organic acid is bound.
  • the specific metal particles can be considered to adsorb sulfur-based gas very efficiently. That is, the specific metal particles are considered to function as a sulfur component adsorbent.
  • the metal component of the specific metal particles include Ag (silver), Cu (copper), Ni (nickel), Co (cobalt), Au (gold), and Pd (palladium). From the reason that the effect of the present invention is more excellent, Ag and Cu are preferable, and Ag is more preferable. That is, the specific metal particles are preferably Ag particles to which an organic acid is bonded.
  • the metal component may be in any form such as a simple substance, a mixture or an alloy. In the present invention, the metal particles are bonded to the organic acid, and the surface of the metal particles is modified. When infrared absorption is measured for such metal particles to which an organic acid is bonded, a peak derived from the bond between the organic acid and the metal is observed in the vicinity of 1518 cm ⁇ 1 .
  • carboxylic acid Although it does not restrict
  • the carboxylic acid include aliphatic carboxylic acids such as myristic acid, stearic acid, oleic acid, palmitic acid, n-decanoic acid, paratoylic acid, succinic acid, malonic acid, tartaric acid, malic acid, glutaric acid, adipic acid and acetic acid.
  • Examples thereof include aromatic carboxylic acids such as acid, phthalic acid, maleic acid, isophthalic acid, terephthalic acid, benzoic acid and naphthenic acid, and alicyclic carboxylic acids such as cyclohexanedicarboxylic acid.
  • aromatic carboxylic acids such as acid, phthalic acid, maleic acid, isophthalic acid, terephthalic acid, benzoic acid and naphthenic acid
  • alicyclic carboxylic acids such as cyclohexanedicarboxylic acid.
  • aromatic carboxylic acids such as acid, phthalic acid, maleic acid, isophthalic acid, terephthalic acid, benzoic acid and naphthenic acid
  • alicyclic carboxylic acids such as cyclohexanedicarboxylic acid.
  • aliphatic carboxylic acids are preferred (especially aliphatic carboxylic acids having 3 to 30 carbon atoms), and higher aliphatic carboxylic acids (especially alipha
  • Examples of higher aliphatic carboxylic acids include myristic acid, stearic acid, and palmitic acid.
  • the carboxylic acid is preferably an aliphatic carboxylic acid having 15 to 20 carbon atoms, more preferably a saturated aliphatic carboxylic acid having 15 to 20 carbon atoms, for the reason that the effects of the present invention are more excellent. More preferably, it is an acid.
  • the average particle diameter of the specific metal particles is not particularly limited, but is preferably 800 nm or less, more preferably 1 to 800 nm, and even more preferably 1 to 200 nm, because the effects of the present invention are more excellent.
  • an average particle diameter means an average value when the thing without a gap
  • TEM transmission electron microscope
  • the specific metal particles are preferably used as a dispersion because the effect of the present invention is more excellent. Especially, it is preferable to use as a dispersion liquid of a low boiling-point solvent from the reason which the effect of this invention is further excellent.
  • the specific metal particles are used as a low-boiling solvent dispersion, the dispersion serves as a diluent, and the specific metal particles are uniformly dispersed in the composition of the present invention without agglomeration, so the effect of the present invention is more excellent. . Further, the transparency of the cured product is improved.
  • a method for producing a dispersion in which specific metal particles are dispersed in a low-boiling solvent is not particularly limited, but an organic acid metal salt is added to a high-boiling solvent and then heated and mixed for the reason that the effect of the present invention is more excellent. In this way, metal particles (specific metal particles) bonded with an organic acid are formed, and the obtained liquid (dispersion liquid in which specific metal particles are dispersed in a high-boiling solvent) can be separated into a high-boiling solvent and two-phase separation.
  • a method of collecting the low boiling point solvent phase by transferring the specific metal particles into the low boiling point solvent by adding the boiling point solvent is preferable.
  • Organic acid metal salt Specific examples and preferred embodiments of the organic acid and metal component of the organic acid metal salt are as described above. Specific examples of the organic acid metal salt include silver myristate and silver stearate.
  • High boiling point solvent As the high boiling point solvent, glycerin is preferable because the effect of the present invention is more excellent. Furthermore, examples of the high boiling point solvent that can be used with glycerin include glycol solvents such as ethylene glycol, diethylene glycol and polyethylene glycol, and ether solvents such as diethyl ether, and the reason why the effect of the present invention is more excellent. Therefore, ethylene glycol, diethylene glycol, polyethylene glycol and diethyl ether can be preferably used.
  • the low boiling point solvent is a solvent having a boiling point smaller than that of the high boiling point solvent and capable of two-phase separation from the high boiling point solvent.
  • Specific examples of the low boiling point solvent include toluene, methyl isobutyl ketone, and methyl ethyl ketone.
  • the difference between the SP value (solubility parameter) of the low boiling point solvent and the SP value of the organic acid in the specific metal particles is preferably small. Thereby, the extractability of the specific metal particles from the high-boiling solvent is improved, and it becomes easier to remove the high-boiling solvent together with by-products and residues.
  • the boiling point of the low-boiling solvent is preferably 40 to 120 ° C. from the viewpoint of moldability and handleability of a cured product (eg, a sealing material and a protective layer).
  • a method for dispersing the specific metal particles in the dispersion is not particularly limited, but a stirring disperser having blades such as a propeller blade, a turbine blade and a paddle blade, a mill type disperser such as a ball mill, a bead mill and a colloid mill, a homogenizer, A sonic homogenizer, a high-pressure homogenizer, and the like can be suitably used.
  • the content of the specific metal particles in the dispersion in which the specific metal particles are dispersed in the low-boiling solvent described above is not particularly limited, but from the viewpoint of moldability and dispersibility, 0.05 to The amount is preferably 5 parts by mass, more preferably 0.1 to 3 parts by mass.
  • the content of the specific metal particles is not particularly limited, but for the reason that the effect of the present invention is more excellent, as a metal with respect to 100 parts by mass of the above-mentioned (A) curable silicone resin composition (
  • it is preferably 1 to 500 ppm by mass (as Ag) ( ⁇ 10 ⁇ 6 parts by mass), more preferably 5 to 200 ppm by mass, and even more preferably 10 to 100 ppm by mass.
  • the composition of the present invention is within a range that does not impair the object of the present invention, for example, a curing retarder, an ultraviolet absorber, a filler (particularly silica), an anti-aging agent, an antistatic agent, a flame retardant, an adhesion promoter, It may further contain additives such as a dispersant, an antioxidant, an antifoaming agent, a matting agent, a light stabilizer, a dye and a pigment. Of these additives, silica is preferably used as a filler.
  • the type of silica is not particularly limited, and examples thereof include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, and aluminum silicate.
  • the composition of the present invention may further contain a curing retarder.
  • the curing retarder is a component for adjusting the curing rate and working life of the composition of the present invention.
  • the curing retarder is a component for adjusting the curing rate and working life of the composition of the present invention.
  • 3-methyl-1-butyn-3-ol, 3,5-dimethyl-1-hexyne Alcohol derivatives having a carbon-carbon triple bond such as -3-ol, phenylbutynol, 1-ethynyl-1-cyclohexanol; 3-methyl-3-penten-1-yne, 3,5-dimethyl-3-hexene
  • Enyne compounds such as -1-yne; low molecular weight siloxanes containing alkenyl groups such as tetramethyltetravinylcyclotetrasiloxane and tetramethyltetrahexenylcyclotetrasiloxane; methyl-tris (3-
  • the content of the curing retarder is not particularly limited, but is preferably 0.00001 to 0.1 parts by mass with respect to 100 parts by mass of the entire composition of the present invention, and 0.0001 More preferably, it is -0.01 parts by mass.
  • the manufacturing method of the composition of this invention is not specifically limited, For example, the method of manufacturing by mixing the essential component mentioned above and an arbitrary component is mentioned.
  • a method for obtaining a cured product by curing the composition of the present invention is not particularly limited, and examples thereof include a method of heating the composition of the present invention at 80 to 200 ° C. for 10 to 720 minutes.
  • the composition of the present invention is, for example, in the field of display materials, optical recording medium materials, optical equipment materials, optical component materials, optical fiber materials, optical / electronic functional organic materials, semiconductor integrated circuit peripheral materials, etc. It can be used as a primer, a sealing material and the like. Especially, the composition of this invention can be used conveniently for the sealing material and protective layer of LED.
  • the optical semiconductor to which the composition of the present invention can be applied is not particularly limited, and examples thereof include a light emitting diode (LED), an organic electroluminescent element (organic EL), a laser diode, and an LED array.
  • the laminate of the present invention is a laminate used for a semiconductor package, and includes a corrosive base material (for example, a member including silver plating) and a silicone resin layer that covers the corrosive base material.
  • the silicone resin layer is a cured product of the composition of the present invention described above.
  • the silicone resin layer may be coated directly or indirectly with silver plating, but is preferably coated directly.
  • the total light transmittance of the silicone resin layer is preferably 60% or more, and more preferably 80% or more.
  • the upper limit of the total light transmittance of the silicone resin layer is not particularly limited and is 100%.
  • FIG. 1 is a cross-sectional view schematically showing an example of the laminate of the present invention.
  • the laminate 100 includes a corrosive base material (member including silver plating) 120 and a silicone resin layer 102 that covers the corrosive base material 120.
  • the silicone resin layer 102 is a cured product of the above-described composition of the present invention. Since the composition of this invention is excellent in sulfidation resistance, the corrosive base material in the laminated body of this invention cannot sulfidize easily.
  • FIG. 2 is a cross-sectional view schematically showing another example of the laminate of the present invention.
  • the laminate 200 includes a corrosive base material (member including silver plating) 220, an optical semiconductor 203, and a silicone resin layer 202 that indirectly covers the silver plating of the corrosive base material 220.
  • the silicone resin layer 202 is a cured product of the above-described composition of the present invention.
  • the laminate 200 can further include a transparent layer (not shown) between the optical semiconductor 203 and the silicone resin layer 202. Examples of the transparent layer include a resin layer, a glass layer, and an air layer.
  • the optical semiconductor package of the present invention (hereinafter also referred to as “the optical semiconductor sealed body of the present invention”) is obtained by sealing an optical semiconductor element using the composition of the present invention.
  • the optical semiconductor element contains silver.
  • the optical semiconductor element includes, for example, an optical semiconductor and a frame having a recess, the optical semiconductor is disposed at the bottom of the recess, and the frame includes a reflector containing silver on a side surface of the recess. Is mentioned.
  • a semiconductor sealing body of this invention it is provided with the said semiconductor element and a sealing material, and the said sealing material is the hardened
  • FIG. 3 is a cross-sectional view schematically showing an example of the optical semiconductor package (encapsulated optical semiconductor) of the present invention.
  • the optical semiconductor sealing body 300 includes an optical semiconductor 303, a frame 304 having a recess 302, and a sealing material 308, and the optical semiconductor 303 is disposed at the bottom (not shown) of the recess 302.
  • the frame 304 includes a reflector 320 containing silver on the side surface (not shown) of the recess 302, and the sealing material 308 seals the optical semiconductor 303 and the reflector 320.
  • the sealing material 308 is a cured product of the composition of the present invention.
  • the concave portion 302 may be filled with the cured product up to the shaded portion 306.
  • the portion denoted by reference numeral 308 may be another transparent layer, and the hatched portion 306 may be a cured product of the composition of the present invention.
  • the sealing material can contain a fluorescent substance or the like.
  • One optical semiconductor encapsulant can have one or a plurality of optical semiconductors.
  • the optical semiconductor may be disposed in the frame with the light emitting layer (the surface opposite to the surface in contact with the mount member) facing up.
  • the optical semiconductor 303 is disposed on the bottom (not shown) of the recess 302 formed from the frame 304 and the substrate 310, and is fixed by the mount member 301.
  • the end portions 312 and 314 included in the frame body 304 are integrally coupled, and the reflector forms a side surface and a bottom portion.
  • an optical semiconductor can be disposed on the bottom of the reflector.
  • the reflector 320 may have a tapered opening end (not shown) whose cross-sectional dimension increases as the distance from the bottom (not shown) of the recess 302 increases.
  • Examples of the mounting member include silver paste and resin.
  • Each electrode (not shown) of the optical semiconductor 303 and the external electrode 309 are wire bonded by a conductive wire 307.
  • the optical semiconductor sealing body 300 can seal the concave portion 302 with a sealing material 308, 306, or 302 (a portion in which the portion 308 and the portion 306 are combined).
  • a sealing material 308, 306, or 302 a portion in which the portion 308 and the portion 306 are combined.
  • FIG. 4 is a cross-sectional view schematically showing another example of the optical semiconductor package (optical semiconductor sealed body) of the present invention.
  • the optical semiconductor sealing body 400 has a lens 401 on the optical semiconductor sealing body 300 shown in FIG.
  • the lens 401 may be a cured product of the composition of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing another example of the optical semiconductor package (encapsulated optical semiconductor) of the present invention.
  • an optical semiconductor sealing body 500 includes an optical semiconductor 503, a substrate 510 including a frame having a recess, and a sealing material 502, and the optical semiconductor 503 is disposed at the bottom of the recess.
  • the sealing material 502 seals the optical semiconductor 503 and the reflector 520.
  • a frame (not shown) and the substrate 510 can be integrally formed.
  • the reflector 520 may be formed integrally with the side surface and the bottom (not shown) of the recess.
  • the optical semiconductor 503 is fixed on the substrate 510 with a mount member 501. Examples of the mount member include silver paste and resin.
  • Each electrode (not shown) of the optical semiconductor 503 is wire-bonded by a conductive wire 507.
  • the resin 506 may be a cured product of the composition of the present invention.
  • FIG. 6 is a diagram schematically showing an example of an LED display using the composition of the present invention and / or the optical semiconductor package (optical semiconductor sealing body) of the present invention.
  • an LED display 600 includes an optical semiconductor sealing body 601 arranged in a matrix in a housing 604, and the optical semiconductor sealing body 601 is sealed with a sealing material 606.
  • the light shielding member 605 is arranged in the part.
  • the composition of the present invention can be used for the sealing material 606.
  • the optical semiconductor sealing body of the present invention can be used as the optical semiconductor sealing body 601.
  • Examples of the use of the laminated body of the present invention or the optical semiconductor package (semiconductor encapsulated body) of the present invention include, for example, automotive lamps (head lamps, tail lamps, directional lamps, etc.), household lighting fixtures, industrial lighting fixtures, Stage lighting fixtures, displays, signals, projectors.
  • ⁇ Total light transmittance> The obtained curable resin composition was poured into silicone rubber (thickness: 1 mm) hollowed in a U-shape, sandwiched between glass plates and cured (100 ° C. for 1 hour, then 150 ° C. for 2 hours). The total light transmittance was measured using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory). The results are shown in Table 1. As a sealing material use, it is preferable that it is 80% or more.
  • Organopolysiloxane A-a1 PMV-9225 (both end vinyl group methylphenyl polysiloxane, manufactured by Amax)
  • Organopolysiloxane Aa2 polysiloxane represented by average unit formula (PhSiO 3/2 ) 0.75 (ViMe 2 SiO 1/2 ) 0.25 (manufactured by Yokohama Rubber Co., Ltd.)
  • Organopolysiloxane Ab2 polysiloxane represented by average unit formula (PhSiO 3/2 ) 0.60 (HMe 2 SiO 1/2 ) 0.40 (manufactured by Yokohama Rubber Co., Ltd.) Hydrosilylation catalyst Ac:
  • the specific metal particle dispersion B-1 was prepared as follows. Silver stearate 5.56g and saccharin 0.56g were added to glycerol 1000g, and it heat-stirred at 150 degreeC for 15 minutes, and cooled to 80 degreeC. The obtained liquid was added to 1 kg of methyl isobutyl ketone (extraction solvent) and stirred at room temperature. After standing for 24 hours, the methyl isobutyl ketone layer was collected to obtain a methyl isobutyl ketone dispersion of silver particles.
  • the average particle diameter was measured about the silver particle in the obtained dispersion liquid. Specifically, 1 g of the dispersion obtained in 10 g of toluene was dropped, and the average particle size was measured by a dynamic light scattering method (Zeta potential / particle size measurement system manufactured by Otsuka Electronics Co., Ltd.). As a result, the scattering intensity distribution shown in FIG. 7 was obtained, and it was found that the average particle diameter of the silver particles in the dispersion was 301.7 nm.
  • Dispersion B-2 of specific metal particles SV-001 (dispersion of silver particles bonded with stearic acid, manufactured by Toago Materials Technology Co., Ltd.)
  • the specific metal particle dispersion B-2 was prepared by the same method except that the methyl isobutyl ketone (extraction solvent) used in the specific metal particle dispersion B-1 was changed to toluene.
  • the average particle diameter of the silver particles in the obtained dispersion was measured, the same result as that of the dispersion B-1 of the specific metal particles was obtained.
  • specific metal particle content represents ppm parts by mass ( ⁇ 10 ⁇ 6 parts by mass) as Ag of specific metal particles with respect to 100 parts by mass of the curable silicone resin composition.
  • 16 parts of the specific metal particles (B-1) are added to 100 parts by mass of the curable silicone resin composition (Aa1, Aa2, Ab1, Ab2, and Ac). Contains 1 ⁇ 10 ⁇ 6 parts by mass.
  • Si—H / Si—Vi molar ratio represents the “Si—H / Si—Vi molar ratio” described above.
  • Examples 1 to 8 containing specific metal particles all exhibited excellent resistance to sulfidation.
  • Examples 1 to 5 and 8 in which the content of the specific metal particles was 100 ppm by mass or less as a metal with respect to 100 parts by mass of the curable silicone resin composition showed excellent permeability.
  • Comparative Examples 1 and 2 not containing specific metal particles had insufficient sulfidation resistance.
  • Optical semiconductor 300 100, 200 Laminated body 102, 202 Silicone resin layer 120, 220 Corrosive base material 203 Optical semiconductor 300, 400, 500 Sealed optical semiconductor body 301, 501 Mount member 302 Recess 303, 503 Optical semiconductor 304 Frame body 306 Shaded portion 307 , 507 Conductive wire 308, 502 Encapsulant 7 309 External electrode 312, 314 End 310, 510 Substrate 320, 520 Reflector 401 Lens 505 Inner lead 506 Resin 600 LED display 601 Optical semiconductor sealing body 604 Housing 605 Light shielding member 606 Sealing material

Abstract

The purpose of the present invention is to provide: a curable resin composition which enables an optical semiconductor package to have excellent sulfurization resistance in cases where this curable resin composition is used as a sealing material for an optical semiconductor element; a laminate which is provided with a silver plating and a cured product of this curable resin composition; and an optical semiconductor package which is obtained by sealing an optical semiconductor element with use of this curable resin composition. A curable resin composition according to the present invention contains (A) a curable silicone resin composition and (B) metal particles to which an organic acid is bonded.

Description

硬化性樹脂組成物、積層体、及び、光半導体パッケージCurable resin composition, laminate, and optical semiconductor package
 本発明は、硬化性樹脂組成物、積層体、及び、光半導体パッケージに関する。 The present invention relates to a curable resin composition, a laminate, and an optical semiconductor package.
 光半導体パッケージ(以下、LEDとも言う)は、長寿命、低消費電力、耐衝撃性、高速応答性、軽薄短小化の実現などの特徴を有し、液晶ディスプレイ、携帯電話、情報端末などのバックライト、車載照明、屋内外広告、屋内外照明など多方面への展開が飛躍的に進んでいる。
 LEDは、通常、光半導体素子上に硬化性樹脂組成物を塗布し、これを硬化させることにより、光半導体素子を封止して製造される。
 このような硬化性樹脂組成物としては、例えば、特許文献1に、複数種類のオルガノポリシロキサンとヒドロシリル化触媒とを含有する組成物が開示されている。
An optical semiconductor package (hereinafter also referred to as an LED) has features such as long life, low power consumption, shock resistance, high-speed response, lightness, thinness, and the like. Development in various fields such as lights, in-vehicle lighting, indoor / outdoor advertising, indoor / outdoor lighting, etc. is making dramatic progress.
The LED is usually manufactured by encapsulating an optical semiconductor element by applying a curable resin composition on the optical semiconductor element and curing the composition.
As such a curable resin composition, for example, Patent Document 1 discloses a composition containing a plurality of types of organopolysiloxane and a hydrosilylation catalyst.
特開2007-3270129号公報JP 2007-3270129 A
 一般に、LED中のリフレクタ及び電極には銀メッキ等を含む部材(腐食性基板)が形成されているが、大気や材料中に存在する硫黄系のガスが封止材(硬化性樹脂組成物の硬化物)を透過して上記腐食性基板を腐食(硫化)する場合がある。このような硫化が生じると、LEDの光度が低下してしまうため、問題である。
 このようななか、本発明者らが特許文献1を参考に硬化性樹脂組成物を調製し、これを用いて光半導体素子を封止して光半導体パッケージを作製したところ、その耐硫化性(硫化し難さ)は昨今要求されているレベルを必ずしも満たすものではないことが明らかになった。
In general, reflectors and electrodes in LEDs are formed with a member (corrosive substrate) containing silver plating or the like, but a sulfur-based gas present in the atmosphere or in the material is used as a sealing material (a curable resin composition). The corrosive substrate may be corroded (sulfurized) through the cured product. Such sulfurization is a problem because the luminous intensity of the LED decreases.
Under these circumstances, the present inventors prepared a curable resin composition with reference to Patent Document 1 and sealed the optical semiconductor element using this to produce an optical semiconductor package. However, it has become clear that it does not necessarily meet the level required recently.
 そこで、本発明は、上記実情を鑑みて、光半導体素子の封止材として用いた場合に光半導体パッケージが優れた耐硫化性を示す硬化性樹脂組成物、腐食性基板と上記硬化性樹脂組成物の硬化物とを備える積層体、及び、上記硬化性樹脂組成物を用いて光半導体素子を封止することで得られる光半導体パッケージを提供することを目的とする。 Therefore, in view of the above circumstances, the present invention provides a curable resin composition, a corrosive substrate, and a curable resin composition that exhibit excellent sulfidation resistance when the optical semiconductor package is used as a sealing material for an optical semiconductor element. It aims at providing the optical semiconductor package obtained by sealing a laminated body provided with the hardened | cured material of an object, and an optical semiconductor element using the said curable resin composition.
 本発明者らは、上記課題について鋭意検討した結果、硬化性シリコーン樹脂組成物に特定の金属粒子を配合することで、上記課題が解決できることを見出し、本発明に至った。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
As a result of intensive studies on the above problems, the present inventors have found that the above problems can be solved by blending specific metal particles in the curable silicone resin composition, and have reached the present invention.
That is, the present inventors have found that the above problem can be solved by the following configuration.
(1) (A)硬化性シリコーン樹脂組成物と、
 (B)有機酸が結合した金属粒子とを含有する、硬化性樹脂組成物。
(2) 上記(B)有機酸が結合した金属粒子の平均粒子径が、800nm以下である、上記(1)に記載の硬化性樹脂組成物。
(3) 上記(B)有機酸が結合した金属粒子の平均粒子径が、1~800nmである、上記(2)に記載の硬化性樹脂組成物。
(4) 上記(B)有機酸が結合した金属粒子が、Ag、Cu、Ni、Co、Au及びPdからなる群より選択される1種の金属を少なくとも含む、上記(1)~(3)のいずれかに記載の硬化性樹脂組成物。
(5) 上記(B)有機酸が結合した金属粒子が、有機酸が結合したAg粒子である、上記(1)~(4)のいずれかに記載の硬化性樹脂組成物。
(6) 上記(B)有機酸が結合した金属粒子の含有量が、上記(A)硬化性シリコーン樹脂組成物100質量部に対して、金属として1~500ppm質量部である、上記(1)~(5)のいずれかに記載の硬化性樹脂組成物。
(7) 上記(A)硬化性シリコーン樹脂組成物が、
 (A-a)ケイ素原子に結合したアルケニル基を有するオルガノポリシロキサンと、
 (A-b)ケイ素原子に結合した水素基を有するオルガノポリシロキサンと、
 (A-c)ヒドロシリル化触媒と
 を含有する、上記(1)~(6)のいずれかに記載の硬化性樹脂組成物。
(8) 上記(A)硬化性シリコーン樹脂組成物が、
 (A-d)シラノール基を有するオルガノポリシロキサンと、
 (A-e)アルコキシシリル基を有するオルガノポリシロキサンと、
 (A―f)縮合触媒と
 を含有する、上記(1)~(6)のいずれかに記載の硬化性樹脂組成物。
(9) 半導体パッケージに使用される積層体であって、
 腐食性基材と、上記腐食性基材を被覆するシリコーン樹脂層とを備え、
 上記シリコーン樹脂層が、上記(1)~(8)のいずれかに記載の硬化性樹脂組成物の硬化物である、積層体。
(10) 上記シリコーン樹脂層の全光線透過率が、60%以上である、上記(9)に記載の積層体。
(11) 上記(1)~(8)のいずれかに記載の硬化性樹脂組成物を用いて光半導体素子を封止することで得られる、光半導体パッケージ。
(1) (A) a curable silicone resin composition;
(B) A curable resin composition containing metal particles combined with an organic acid.
(2) The curable resin composition according to the above (1), wherein the average particle diameter of the metal particles to which the (B) organic acid is bonded is 800 nm or less.
(3) The curable resin composition according to the above (2), wherein the average particle diameter of the metal particles to which the (B) organic acid is bonded is 1 to 800 nm.
(4) The above (B) (1) to (3), wherein the metal particles to which the organic acid is bound contain at least one metal selected from the group consisting of Ag, Cu, Ni, Co, Au and Pd. The curable resin composition according to any one of the above.
(5) The curable resin composition according to any one of the above (1) to (4), wherein the metal particles to which the organic acid (B) is bonded are Ag particles to which the organic acid is bonded.
(6) The content of the metal particles to which the (B) organic acid is bonded is 1 to 500 ppm by mass as a metal with respect to 100 parts by mass of the (A) curable silicone resin composition. The curable resin composition according to any one of to (5).
(7) The (A) curable silicone resin composition is
(Aa) an organopolysiloxane having an alkenyl group bonded to a silicon atom;
(Ab) an organopolysiloxane having a hydrogen group bonded to a silicon atom;
The curable resin composition according to any one of the above (1) to (6), which comprises (Ac) a hydrosilylation catalyst.
(8) The (A) curable silicone resin composition is
(Ad) an organopolysiloxane having a silanol group;
(Ae) an organopolysiloxane having an alkoxysilyl group;
(Af) The curable resin composition according to any one of the above (1) to (6), comprising a condensation catalyst.
(9) A laminate used for a semiconductor package,
A corrosive substrate and a silicone resin layer covering the corrosive substrate;
A laminate in which the silicone resin layer is a cured product of the curable resin composition according to any one of (1) to (8).
(10) The laminate according to (9), wherein the silicone resin layer has a total light transmittance of 60% or more.
(11) An optical semiconductor package obtained by sealing an optical semiconductor element using the curable resin composition according to any one of (1) to (8).
 以下に示すように、本発明によれば、光半導体素子の封止材として用いた場合に光半導体パッケージが優れた耐硫化性を示す硬化性樹脂組成物、腐食性基板と上記硬化性樹脂組成物の硬化物とを備える積層体、及び、上記硬化性樹脂組成物を用いて光半導体素子を封止することで得られる光半導体パッケージを提供することができる。なお、以下、「光半導体素子の封止材として用いた場合に光半導体パッケージが優れた耐硫化性を示す」ことを、単に、耐硫化性に優れる、とも言う。 As shown below, according to the present invention, when used as an encapsulant for an optical semiconductor element, the optical semiconductor package exhibits excellent sulfidation resistance, a corrosive substrate, and the above curable resin composition. The optical semiconductor package obtained by sealing an optical semiconductor element using the laminated body provided with the hardened | cured material of the thing, and the said curable resin composition can be provided. Hereinafter, “the optical semiconductor package exhibits excellent sulfidation resistance when used as a sealing material for an optical semiconductor element” is also simply referred to as excellent sulfidation resistance.
図1は、本発明の積層体の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the laminate of the present invention. 図2は、本発明の積層体の別の一例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing another example of the laminate of the present invention. 図3は、本発明の光半導体パッケージの一例を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing an example of the optical semiconductor package of the present invention. 図4は、本発明の光半導体パッケージの別の一例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing another example of the optical semiconductor package of the present invention. 図5は、本発明の光半導体パッケージの別の一例を模式的に示す断面図である。FIG. 5 is a sectional view schematically showing another example of the optical semiconductor package of the present invention. 図6は、本発明の組成物および/または本発明の光半導体パッケージを用いたLED表示器の一例を模式的に示す図である。FIG. 6 is a diagram schematically showing an example of an LED display using the composition of the present invention and / or the optical semiconductor package of the present invention. 図7は、特定金属粒子の分散液B-1の散乱強度分布を示す図である。FIG. 7 is a diagram showing the scattering intensity distribution of the dispersion B-1 of specific metal particles.
 以下に、本発明の硬化性樹脂組成物、積層体、及び、光半導体パッケージについて説明する。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Below, the curable resin composition, laminated body, and optical semiconductor package of this invention are demonstrated.
In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
[硬化性樹脂組成物]
 本発明の硬化性樹脂組成物(以下、「本発明の組成物」とも言う)は、下記(A)及び(B)を含有する。
 (A)硬化性シリコーン樹脂組成物
 (B)有機酸が結合した金属粒子(以下、「特定金属粒子」とも言う)
 本発明の組成物はこのような構成をとるため、上述した効果が得られるものと考えらえる。その理由は明らかではないが、本発明の組成物に含有される有機酸が結合した金属粒子は極めて効率的に硫黄系のガスを吸着するため、本発明の組成物を光半導体素子の封止材として用いることで、得られる光半導体パッケージは優れた耐硫化性を示すものと推測される。
[Curable resin composition]
The curable resin composition of the present invention (hereinafter also referred to as “the composition of the present invention”) contains the following (A) and (B).
(A) Curable silicone resin composition (B) Metal particles to which organic acid is bound (hereinafter also referred to as “specific metal particles”)
Since the composition of this invention takes such a structure, it is thought that the effect mentioned above is acquired. The reason for this is not clear, but the metal particles combined with the organic acid contained in the composition of the present invention adsorb sulfur-based gas very efficiently. By using it as a material, the obtained optical semiconductor package is presumed to exhibit excellent sulfidation resistance.
 以下、本発明の組成物に含有される各成分について説明する。 Hereinafter, each component contained in the composition of the present invention will be described.
〔(A)硬化性シリコーン樹脂組成物〕
 本発明の組成物に含有される硬化性シリコーン樹脂組成物は、硬化性シリコーン樹脂を含有するものであれば特に制限されない。硬化性シリコーン樹脂組成物は、本発明の効果がより優れる理由から、下記第1の好適な態様又は下記第2の好適な態様であることが好ましい。
[(A) Curable Silicone Resin Composition]
The curable silicone resin composition contained in the composition of the present invention is not particularly limited as long as it contains a curable silicone resin. The curable silicone resin composition is preferably in the following first preferred embodiment or the following second preferred embodiment because the effects of the present invention are more excellent.
<第1の好適な態様>
 硬化性シリコーン樹脂組成物の第1の好適な態様は、
 (A-a)ケイ素原子に結合したアルケニル基を有するオルガノポリシロキサン(以下、「オルガノポリシロキサン(A-a)」とも言う)と、
 (A-b)ケイ素原子に結合した水素基を有するオルガノポリシロキサン(以下、「オルガノポリシロキサン(A-b)」とも言う)と、
 (A-c)ヒドロシリル化触媒とを含有する硬化性シリコーン樹脂組成物である。
<First preferred embodiment>
The first preferred embodiment of the curable silicone resin composition is:
(Aa) an organopolysiloxane having an alkenyl group bonded to a silicon atom (hereinafter also referred to as “organopolysiloxane (Aa)”);
(Ab) an organopolysiloxane having a hydrogen group bonded to a silicon atom (hereinafter also referred to as “organopolysiloxane (Ab)”);
(Ac) A curable silicone resin composition containing a hydrosilylation catalyst.
(オルガノポリシロキサン(A-a))
 オルガノポリシロキサン(A-a)は、ケイ素原子に結合したアルケニル基を有するオルガノポリシロキサンであれば特に制限されない。ここでケイ素原子はシロキサンのケイ素原子を意図する。
(Organopolysiloxane (AA))
The organopolysiloxane (Aa) is not particularly limited as long as it is an organopolysiloxane having an alkenyl group bonded to a silicon atom. Here, a silicon atom intends a silicon atom of siloxane.
(1)アルケニル基
 上記アルケニル基としては、例えば、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、オクテニル基などの炭素数2~18のアルケニル基が挙げられ、ビニル基であるのが好ましい。
 1分子中のアルケニル基は、2~12質量%が好ましく、3~10質量%がより好ましい。
(1) Alkenyl Group Examples of the alkenyl group include alkenyl groups having 2 to 18 carbon atoms such as vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, octenyl group, and the like. preferable.
The alkenyl group in one molecule is preferably 2 to 12% by mass, and more preferably 3 to 10% by mass.
(2)その他の基
 オルガノポリシロキサン(A-a)のケイ素原子に結合するその他の基としては、例えば、置換または非置換の一価炭化水素基(一価の炭化水素基)が挙げられ、具体的には、例えば、メチル基(以下、「Me」で示すことがある)、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種オクチル基、各種デシル基、シクロペンチル基、シクロヘキシル基などの炭素数1~18のアルキル基;ベンジル基、フェネチル基などの炭素数7~18のアラルキル基;3-クロロプロピル基、3,3,3-トリフロロプロピル基などの炭素数1~18のハロゲン化アルキル基;フェニル基(以下、「Ph」で示すことがある)、トリル基、キシリル基などの炭素数6~18のアリール基;等が挙げられ、その他少量の基として、ケイ素原子結合水酸基やケイ素原子結合アルコキシ基を有してもよい。このアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などが挙げられる。
 ケイ素原子結合全有機基の少なくとも30モル%はアリール基であるのが好ましく、少なくとも40モル%はアリール基であるのがより好ましい。
 これにより、得られる硬化物の光の屈折、反射、散乱等による減衰が小さくなるうえ、後述するオルガノポリシロキサン(A-b)との相溶性に優れ、濁り等が抑えられ、硬化物の透明性に優れる。
(2) Other group Examples of the other group bonded to the silicon atom of the organopolysiloxane (AA) include a substituted or unsubstituted monovalent hydrocarbon group (monovalent hydrocarbon group). Specifically, for example, a methyl group (hereinafter sometimes referred to as “Me”), ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group Alkyl groups having 1 to 18 carbon atoms such as various pentyl groups, various hexyl groups, various octyl groups, various decyl groups, cyclopentyl groups, and cyclohexyl groups; aralkyl groups having 7 to 18 carbon atoms such as benzyl groups and phenethyl groups; A halogenated alkyl group having 1 to 18 carbon atoms such as a chloropropyl group or a 3,3,3-trifluoropropyl group; a phenyl group (hereinafter sometimes referred to as “Ph”) And aryl groups having 6 to 18 carbon atoms such as a tolyl group and a xylyl group; and a small amount of other groups may have a silicon atom-bonded hydroxyl group or a silicon atom-bonded alkoxy group. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
At least 30 mol% of the silicon-bonded total organic groups are preferably aryl groups, and more preferably at least 40 mol% are aryl groups.
This reduces attenuation due to light refraction, reflection, scattering, etc. of the resulting cured product, and is excellent in compatibility with the organopolysiloxane (Ab) described later, thereby suppressing turbidity and the like. Excellent in properties.
(3)好適な態様
 オルガノポリシロキサン(A-a)の好適な態様としては、例えば、下記平均単位式(A)で表されるオルガノポリシロキサンが挙げられる。ここで、平均単位式(A)は、オルガノポリシロキサンを構成する全シロキサン単位を1モルとした場合の各シロキサン単位のモル数を表したものである。
(3) Preferred embodiment A preferred embodiment of the organopolysiloxane (Aa) includes, for example, an organopolysiloxane represented by the following average unit formula (A). Here, the average unit formula (A) represents the number of moles of each siloxane unit when the total number of siloxane units constituting the organopolysiloxane is 1 mole.
(RSiO3/2(R SiO2/2(R SiO1/2(SiO4/2(X1/2  ・・・(A) (R 1 SiO 3/2 ) a (R 2 2 SiO 2/2 ) b (R 3 3 SiO 1/2 ) c (SiO 4/2 ) d (X 1 O 1/2 ) e ... (A )
 上記式(A)中、R、R及びRはそれぞれ独立に、水素基又は置換若しくは非置換の一価炭化水素基である。この一価炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種オクチル基、各種デシル基、シクロペンチル基、シクロヘキシル基などの炭素数1~18のアルキル基;ビニル基(以下、「Vi」で示すことがある)、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、オクテニル基などの炭素数2~18のアルケニル基;フェニル基、トリル基、キシリル基などの炭素数6~18のアリール基;ベンジル基、フェネチル基などの炭素数7~18のアラルキル基;3-クロロプロピル基、3,3,3-トリフロロプロピル基などの炭素数1~18のハロゲン化アルキル基;等が挙げられる。2つのRは同一であっても異なっていてもよい。3つのRは同一であっても異なっていてもよい。
 ただし、1分子中、R、R及びRの少なくとも1個(好ましくは2個以上)はアルケニル基であり、アルケニル基であるR、R及びRが2~12質量%となる量が好ましく、3~10質量%がより好ましい。
 また、1分子中、R、R及びRの少なくとも1個はアリール基であることが好ましく、R、R及びRの合計の少なくとも30モル%はアリール基であるのがより好ましく、少なくとも40モル%はアリール基であるのがさらに好ましい。
In the above formula (A), R 1 , R 2 and R 3 are each independently a hydrogen group or a substituted or unsubstituted monovalent hydrocarbon group. Examples of the monovalent hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, various pentyl groups, and various hexyl groups. Alkyl groups having 1 to 18 carbon atoms such as various octyl groups, various decyl groups, cyclopentyl groups, and cyclohexyl groups; vinyl groups (hereinafter sometimes referred to as “Vi”), allyl groups, butenyl groups, pentenyl groups, hexenyls. An alkenyl group having 2 to 18 carbon atoms such as a group or an octenyl group; an aryl group having 6 to 18 carbon atoms such as a phenyl group, a tolyl group or a xylyl group; an aralkyl group having 7 to 18 carbon atoms such as a benzyl group or a phenethyl group; And a halogenated alkyl group having 1 to 18 carbon atoms such as 3-chloropropyl group and 3,3,3-trifluoropropyl group. Two R 2 may be the same or different. Three R 3 may be the same or different.
However, in one molecule, at least one of R 1, R 2 and R 3 (preferably two or more) is an alkenyl group, R 1, R 2 and R 3 and 2 to 12% by weight of an alkenyl group Is preferable, and 3 to 10% by mass is more preferable.
Further, in one molecule, at least one of R 1 , R 2 and R 3 is preferably an aryl group, and at least 30 mol% of the total of R 1 , R 2 and R 3 is more preferably an aryl group. Preferably, at least 40 mol% is an aryl group.
 上記式(A)中、Xは水素基またはアルキル基である。このアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種オクチル基、各種デシル基、シクロペンチル基、シクロヘキシル基などの炭素数1~18のアルキル基が挙げられ、メチル基であるのが好ましい。 In the above formula (A), X 1 is a hydrogen group or an alkyl group. Examples of the alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, various pentyl groups, various hexyl groups, and various octyl groups. Groups, various decyl groups, cyclopentyl groups, cyclohexyl groups and the like, and alkyl groups having 1 to 18 carbon atoms, and a methyl group is preferable.
 式(A)中、aは0または正数であり、bは0または正数であり、cは0または正数であり、dは0または正数であり、eは0または正数である。a+b+c+d+eは1以下である。b/aは0~10の範囲内の数であることが好ましく、c/aは0~5の範囲内の数であることが好ましく、d/(a+b+c+d)は0~0.3の範囲内の数であることが好ましく、e/(a+b+c+d)は0~0.4の範囲内の数であることが好ましい。 In the formula (A), a is 0 or a positive number, b is 0 or a positive number, c is 0 or a positive number, d is 0 or a positive number, and e is 0 or a positive number. . a + b + c + d + e is 1 or less. b / a is preferably a number in the range of 0 to 10, c / a is preferably a number in the range of 0 to 5, and d / (a + b + c + d) is in the range of 0 to 0.3. And e / (a + b + c + d) is preferably a number within the range of 0 to 0.4.
(4)分子量
 オルガノポリシロキサン(A-a)の重量平均分子量(Mw)は、500~1,000,000であるのが好ましく、1,000~50,000であるのがより好ましい。なお、本発明において、重量平均分子量とは、クロロホルムを溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)によるポリスチレン換算の重量平均分子量であるものとする。
(4) Molecular Weight The weight average molecular weight (Mw) of the organopolysiloxane (Aa) is preferably 500 to 1,000,000, and more preferably 1,000 to 50,000. In addition, in this invention, a weight average molecular weight shall be the weight average molecular weight of polystyrene conversion by the gel permeation chromatography (GPC) which uses chloroform as a solvent.
(5)含有量
 第1の好適な態様において、本発明の組成物中のオルガノポリシロキサン(A-a)の含有量は特に制限されないが、本発明の効果がより優れる理由から、本発明の組成物全体に対して、10~95質量%であることが好ましく、50~90質量%であることがより好ましい。
(5) Content In the first preferred embodiment, the content of the organopolysiloxane (Aa) in the composition of the present invention is not particularly limited, but for the reason that the effect of the present invention is more excellent, The content is preferably 10 to 95% by mass, more preferably 50 to 90% by mass, based on the entire composition.
(オルガノポリシロキサン(A-b))
 オルガノポリシロキサン(A-b)は、ケイ素原子に結合した水素基を有するオルガノポリシロキサンであれば特に制限されない。ここでケイ素原子はシロキサンのケイ素原子を意図する。
(Organopolysiloxane (Ab))
The organopolysiloxane (Ab) is not particularly limited as long as it is an organopolysiloxane having a hydrogen group bonded to a silicon atom. Here, a silicon atom intends a silicon atom of siloxane.
(1)水素基
 上記水素基は、-Hで表される基である。
(1) Hydrogen group The hydrogen group is a group represented by —H.
(2)その他の基
 オルガノポリシロキサン(A-b)のケイ素原子に結合するその他の基の具体例及び好適な態様は上述したオルガノポリシロキサン(A-a)と同じである。
(2) Other groups Specific examples and preferred embodiments of other groups bonded to the silicon atom of the organopolysiloxane (Ab) are the same as those of the above-described organopolysiloxane (Aa).
(3)好適な態様
 オルガノポリシロキサン(A-b)の好適な態様としては、例えば、下記平均単位式(B)で表されるオルガノポリシロキサンが挙げられる。ここで、平均単位式(B)は、オルガノポリシロキサンを構成する全シロキサン単位を1モルとした場合の各シロキサン単位のモル数を表したものである。
(3) Preferred Embodiment A preferred embodiment of the organopolysiloxane (Ab) is, for example, an organopolysiloxane represented by the following average unit formula (B). Here, the average unit formula (B) represents the number of moles of each siloxane unit when the total number of siloxane units constituting the organopolysiloxane is 1 mole.
(RSiO3/2(R SiO2/2(R SiO1/2(SiO4/2(X1/2  ・・・(B) (R 1 SiO 3/2 ) a (R 2 2 SiO 2/2 ) b (R 3 3 SiO 1/2 ) c (SiO 4/2 ) d (X 1 O 1/2 ) e ... (B )
 上記式(B)中、R、R及びRはそれぞれ独立に、水素基又は置換若しくは非置換の一価炭化水素基である。一価炭化水素基の具体例は上述した式(A)中のR、R及びRと同じである。
 ただし、1分子中、R、R及びRの少なくとも1個(好ましくは2個以上)は水素基である。
 また、1分子中、R、R及びRの少なくとも1個はアリール基であることが好ましく、R、R及びRの合計の少なくとも30モル%はアリール基であるのがより好ましく、少なくとも40モル%はアリール基であるのがさらに好ましい。
In the above formula (B), R 1 , R 2 and R 3 are each independently a hydrogen group or a substituted or unsubstituted monovalent hydrocarbon group. Specific examples of the monovalent hydrocarbon group are the same as R 1 , R 2 and R 3 in the above-described formula (A).
However, at least one (preferably two or more) of R 1 , R 2 and R 3 in one molecule is a hydrogen group.
Further, in one molecule, at least one of R 1 , R 2 and R 3 is preferably an aryl group, and at least 30 mol% of the total of R 1 , R 2 and R 3 is more preferably an aryl group. Preferably, at least 40 mol% is an aryl group.
 式(B)中、aは0または正数であり、bは0または正数であり、cは0または正数であり、dは0または正数であり、eは0または正数である。a+b+c+d+eは1以下である。a、b、c、d及びeの好適な態様は上述した式(A)中のa、b、c、d及びeと同じである。 In the formula (B), a is 0 or a positive number, b is 0 or a positive number, c is 0 or a positive number, d is 0 or a positive number, and e is 0 or a positive number. . a + b + c + d + e is 1 or less. The preferred embodiments of a, b, c, d and e are the same as a, b, c, d and e in the above formula (A).
(4)分子量
 オルガノポリシロキサン(A-b)の分子量の好適な態様は上述したオルガノポリシロキサン(A-a)と同じである。
(4) Molecular weight A preferred embodiment of the molecular weight of the organopolysiloxane (Ab) is the same as that of the above-described organopolysiloxane (Aa).
(5)Si-H/Si-Viモル比
 オルガノポリシロキサン(A-b)のケイ素原子に結合した水素基と、上述したオルガノポリシロキサン(A-a)のケイ素原子に結合したアルケニル基とのモル比(以下、便宜的に「Si-H/Si-Viモル比」ともいう)は特に制限されないが、本発明の効果がより優れる理由から、0.05~5.00であるのが好ましく、0.10~2.00であるのがより好ましく、0.50~1.50であるのがさらに好ましく、0.70~1.10であるのが特に好ましい。
(5) Si—H / Si—Vi molar ratio between the hydrogen group bonded to the silicon atom of the organopolysiloxane (Ab) and the alkenyl group bonded to the silicon atom of the organopolysiloxane (Aa). The molar ratio (hereinafter also referred to as “Si—H / Si—Vi molar ratio” for convenience) is not particularly limited, but is preferably 0.05 to 5.00 because the effect of the present invention is more excellent. 0.10 to 2.00, more preferably 0.50 to 1.50, and particularly preferably 0.70 to 1.10.
(ヒドロシリル化触媒)
 ヒドロシリル化触媒は、オルガノポリシロキサン(A-a)とオルガノポリシロキサン(A-b)との付加反応(ヒドロシリル化反応)を促進する触媒として機能する。
 ヒドロシリル化触媒としては、従来公知のものを用いることができ、例えば、白金系触媒、ロジウム系触媒、パラジウム系触媒等が挙げられ、白金系触媒であることが好ましい。白金系触媒の具体例としては、塩化白金酸、塩化白金酸-オレフィン錯体、塩化白金酸-ジビニルテトラメチルジシロキサン錯体、塩化白金酸-アルコール配位化合物、白金のジケトン錯体、白金ジビニルテトラメチルジシロキサン錯体などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
(Hydrosilylation catalyst)
The hydrosilylation catalyst functions as a catalyst for promoting the addition reaction (hydrosilylation reaction) between the organopolysiloxane (Aa) and the organopolysiloxane (Ab).
A conventionally well-known thing can be used as a hydrosilylation catalyst, For example, a platinum-type catalyst, a rhodium-type catalyst, a palladium-type catalyst etc. are mentioned, A platinum-type catalyst is preferable. Specific examples of the platinum catalyst include chloroplatinic acid, chloroplatinic acid-olefin complex, chloroplatinic acid-divinyltetramethyldisiloxane complex, chloroplatinic acid-alcohol coordination compound, platinum diketone complex, platinum divinyltetramethyldi A siloxane complex etc. are mentioned, These may be used individually by 1 type and may use 2 or more types together.
 ヒドロシリル化触媒の含有量は特に制限されないが、本発明の組成物の硬化性が優れるという理由から、本発明の組成物全体に対して、金属(例えばPt)として、0.001~100ppm質量%(×10-6質量%)であるのが好ましい。 The content of the hydrosilylation catalyst is not particularly limited, but is 0.001 to 100 ppm by mass as a metal (for example, Pt) with respect to the entire composition of the present invention because the curability of the composition of the present invention is excellent. (× 10 −6 mass%) is preferable.
<第2の好適な態様>
 硬化性シリコーン樹脂組成物の第2の好適な態様は、
 (A-d)シラノール基を有するオルガノポリシロキサン(以下、「オルガノポリシロキサン(A-d)」とも言う)と、
 (A-e)アルコキシシリル基を有するオルガノポリシロキサン(以下、「オルガノポリシロキサン(A-e)」とも言う)と、
 (A―f)縮合触媒とを含有する硬化性シリコーン樹脂組成物である。
<Second preferred embodiment>
The second preferred embodiment of the curable silicone resin composition is:
(Ad) an organopolysiloxane having a silanol group (hereinafter also referred to as “organopolysiloxane (Ad)”);
(Ae) an organopolysiloxane having an alkoxysilyl group (hereinafter also referred to as “organopolysiloxane (Ae)”);
(Af) A curable silicone resin composition containing a condensation catalyst.
(オルガノポリシロキサン(A-d))
 オルガノポリシロキサン(A-d)は、シラノール基を1分子中に1個以上、好ましくは2個以上有するオルガノポリシロキサンである。
(Organopolysiloxane (Ad))
The organopolysiloxane (Ad) is an organopolysiloxane having one or more, preferably two or more silanol groups in one molecule.
(1)シラノール基
 シラノール基はケイ素原子に結合したヒドロキシ基である。
(1) Silanol group The silanol group is a hydroxy group bonded to a silicon atom.
(2)その他の基
 オルガノポリシロキサン(A-d)のケイ素原子に結合するその他の基の具体例及び好適な態様は上述したオルガノポリシロキサン(A-a)と同じである。
(2) Other groups Specific examples and preferred embodiments of other groups bonded to the silicon atom of the organopolysiloxane (Ad) are the same as those of the above-described organopolysiloxane (Aa).
(3)分子量
 オルガノポリシロキサン(A-d)の分子量の好適な態様は上述したオルガノポリシロキサン(A-a)と同じである。
(3) Molecular weight A preferred embodiment of the molecular weight of the organopolysiloxane (Ad) is the same as that of the organopolysiloxane (Aa) described above.
(4)含有量
 第2の好適な態様において、本発明の組成物中のオルガノポリシロキサン(A-d)の含有量は特に制限されないが、本発明の効果がより優れる理由から、本発明の組成物全体に対して、10~90質量%であることが好ましく、50~80質量%であることがより好ましい。
(4) Content In the second preferred embodiment, the content of the organopolysiloxane (Ad) in the composition of the present invention is not particularly limited, but for the reason that the effect of the present invention is more excellent, The content is preferably 10 to 90% by mass, more preferably 50 to 80% by mass, based on the entire composition.
(オルガノポリシロキサン(A-e))
 オルガノポリシロキサン(A-e)は、アルコキシシリル基を有するオルガノポリシロキサンであれば特に制限されない。ここでケイ素原子はシロキサンのケイ素原子を意図する。
(Organopolysiloxane (Ae))
The organopolysiloxane (Ae) is not particularly limited as long as it is an organopolysiloxane having an alkoxysilyl group. Here, a silicon atom intends a silicon atom of siloxane.
(1)アルコキシシリル基
 アルコキシシリル基は、ケイ素原子に結合するアルコキシ基(-OR)である。ここで、Rは、一価炭化水素基を表す。一価炭化水素基の具体例は上述した式(A)中のR、R及びRと同じである。
(1) Alkoxysilyl group An alkoxysilyl group is an alkoxy group (—OR) bonded to a silicon atom. Here, R represents a monovalent hydrocarbon group. Specific examples of the monovalent hydrocarbon group are the same as R 1 , R 2 and R 3 in the above-described formula (A).
(2)その他の基
 オルガノポリシロキサン(A-e)のケイ素原子に結合するその他の基の具体例及び好適な態様は上述したオルガノポリシロキサン(A-a)と同じである。
(2) Other groups Specific examples and preferred embodiments of other groups bonded to the silicon atom of the organopolysiloxane (Ae) are the same as those of the above-described organopolysiloxane (Aa).
(3)分子量
 オルガノポリシロキサン(A-e)の分子量の好適な態様は上述したオルガノポリシロキサン(A-a)と同じである。
(3) Molecular Weight A preferred embodiment of the molecular weight of the organopolysiloxane (Ae) is the same as that of the above-described organopolysiloxane (Aa).
(4)含有量
 第2の好適な態様において、本発明の組成物中のオルガノポリシロキサン(A-e)の含有量は特に制限されないが、本発明の効果がより優れる理由から、本発明の組成物全体に対して、1~90質量%であることが好ましく、10~50質量%であることがより好ましい。
(4) Content In the second preferred embodiment, the content of the organopolysiloxane (Ae) in the composition of the present invention is not particularly limited, but for the reason that the effect of the present invention is more excellent, The content is preferably 1 to 90% by mass, more preferably 10 to 50% by mass, based on the entire composition.
(縮合触媒)
 縮合触媒は、シラノール基及びアルコキシシリル基の縮合に使用される触媒であれば特に制限されない。
 縮合触媒は、金属の、塩;錯体;アルコラート;酸化物;多元金属酸化物、これらの塩および/または錯体;これらの組み合わせとすることができる。縮合触媒は金属塩化合物であるのが室温安定性、硬化性に優れるという観点から好ましい。
 縮合触媒は、金属(例えば、Al、Zn、Sn、Zr、Hf、Tiおよびランタノイドからなる群から選ばれる少なくとも1種)と有機基とを有する化合物とすることができる。金属は、例えば、酸素原子、窒素原子、硫黄原子のようなヘテロ原子を介して、および/または、エステル結合のような結合基を介して、有機基と結合することができる。有機基は、脂肪族炭化水素基(鎖状、分岐状、環状、これらの組み合わせを含む。脂肪族炭化水素基は不飽和結合を有することができる。)、芳香族炭化水素基、これらの組み合わせが挙げられる。有機基は例えば酸素原子、窒素原子、硫黄原子のようなヘテロ原子を有することができる。有機基としては、例えば、有機カルボキシレート(-O-CO-R:ここでRは炭化水素基);アルコキシ基、フェノキシ基のような、炭化水素基がオキシ基と結合したのもの(-O-R:ここでRは炭化水素基);配位子;これらの組み合わせが挙げられる。
 縮合触媒は、硬化性、室温安定性に優れるという観点から、Al、Zn、Sn、Zr、Hf、Tiおよびランタノイドからなる群から選ばれる少なくとも1種を含む金属化合物であるのが好ましく、金属塩化合物であるのがより好ましい。
(Condensation catalyst)
The condensation catalyst is not particularly limited as long as it is a catalyst used for the condensation of a silanol group and an alkoxysilyl group.
The condensation catalyst can be a metal salt; complex; alcoholate; oxide; multi-metal oxide, salts and / or complexes thereof; The condensation catalyst is preferably a metal salt compound from the viewpoint of excellent room temperature stability and curability.
The condensation catalyst can be a compound having a metal (for example, at least one selected from the group consisting of Al, Zn, Sn, Zr, Hf, Ti, and a lanthanoid) and an organic group. The metal can be bonded to the organic group, for example, through a heteroatom such as an oxygen atom, nitrogen atom, sulfur atom, and / or via a linking group such as an ester bond. The organic group includes an aliphatic hydrocarbon group (including chain, branched, cyclic, and combinations thereof. The aliphatic hydrocarbon group can have an unsaturated bond), aromatic hydrocarbon groups, and combinations thereof Is mentioned. The organic group can have a hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom. Examples of the organic group include an organic carboxylate (—O—CO—R, where R is a hydrocarbon group); a hydrocarbon group such as an alkoxy group or a phenoxy group bonded to an oxy group (—O— -R: where R is a hydrocarbon group); ligand; combinations thereof.
The condensation catalyst is preferably a metal compound containing at least one selected from the group consisting of Al, Zn, Sn, Zr, Hf, Ti and a lanthanoid from the viewpoint of excellent curability and room temperature stability. More preferably, it is a compound.
 第2の好適な態様において、本発明の組成物中の縮合触媒の含有量は特に制限されないが、本発明の効果がより優れる理由から、本発明の組成物全体に対して、0.01~10質量%であることが好ましく、0.1~1質量%であることがより好ましい。 In the second preferred embodiment, the content of the condensation catalyst in the composition of the present invention is not particularly limited, but for the reason that the effect of the present invention is more excellent, 0.01 to The content is preferably 10% by mass, more preferably 0.1 to 1% by mass.
〔(B)有機酸が結合した金属粒子〕
 本発明の組成物に含有される(B)有機酸が結合した金属粒子(特定金属粒子)は、有機酸が結合した金属粒子であれば特に制限されない。上述のとおり、特定金属粒子は硫黄系のガスを極めて効率的に吸着するものと考えらえる。すなわち、特定金属粒子は硫黄成分吸着材として機能するものと考えられる。
[(B) Metal particle to which organic acid is bonded]
The metal particles (specific metal particles) to which (B) an organic acid is bound contained in the composition of the present invention are not particularly limited as long as they are metal particles to which an organic acid is bound. As described above, the specific metal particles can be considered to adsorb sulfur-based gas very efficiently. That is, the specific metal particles are considered to function as a sulfur component adsorbent.
<金属成分>
 特定金属粒子の金属成分の具体例としては、Ag(銀)、Cu(銅)、Ni(ニッケル)、Co(コバルト)、Au(金)及びPd(パラジウム)等を挙げることができ、なかでも、本発明の効果がより優れる理由から、Ag及びCuが好ましく、Agがより好ましい。すなわち、特定金属粒子は、有機酸が結合したAg粒子であることが好ましい。上記金属成分は、単体、混合物又は合金等いずれの態様であってもよい。
 本発明においては、金属粒子が有機酸と結合し、金属粒子の表面が修飾されている。このような有機酸が結合した金属粒子について赤外吸収を測定すると、1518cm-1付近に有機酸と金属との結合に由来するピークが観測される。
<Metal component>
Specific examples of the metal component of the specific metal particles include Ag (silver), Cu (copper), Ni (nickel), Co (cobalt), Au (gold), and Pd (palladium). From the reason that the effect of the present invention is more excellent, Ag and Cu are preferable, and Ag is more preferable. That is, the specific metal particles are preferably Ag particles to which an organic acid is bonded. The metal component may be in any form such as a simple substance, a mixture or an alloy.
In the present invention, the metal particles are bonded to the organic acid, and the surface of the metal particles is modified. When infrared absorption is measured for such metal particles to which an organic acid is bonded, a peak derived from the bond between the organic acid and the metal is observed in the vicinity of 1518 cm −1 .
<有機酸>
 有機酸としては特に制限されないが、具体例としては、カルボン酸、スルホン酸及びフェノール等が挙げられる。なかでも、本発明の効果がより優れる理由から、カルボン酸が好ましい。
 カルボン酸としては、例えば、ミリスチン酸、ステアリン酸、オレイン酸、パルミチン酸、n-デカン酸、パラトイル酸、コハク酸、マロン酸、酒石酸、リンゴ酸、グルタル酸、アジピン酸及び酢酸等の脂肪族カルボン酸、フタル酸、マレイン酸、イソフタル酸、テレフタル酸、安息香酸及びナフテン酸等の芳香族カルボン酸、並びに、シクロヘキサンジカルボン酸等の脂環式カルボン酸等を挙げることができる。なかでも、本発明の効果がより優れる理由から、脂肪族カルボン酸が好ましく(特に炭素数3~30の脂肪族カルボン酸)、高級脂肪族カルボン酸(特に炭素数10~30の脂肪族カルボン酸)がより好ましく、炭素数の多いものであることが特に好ましい。高級脂肪族カルボン酸としては、例えば、ミリスチン酸、ステアリン酸及びパルミチン酸等が挙げられる。
 上記カルボン酸は、本発明の効果がより優れる理由から、炭素数15~20の脂肪族カルボン酸であることが好ましく、炭素数15~20の飽和脂肪族カルボン酸であることがより好ましく、ステアリン酸であることがさらに好ましい。
<Organic acid>
Although it does not restrict | limit especially as an organic acid, As a specific example, carboxylic acid, a sulfonic acid, a phenol, etc. are mentioned. Among these, carboxylic acid is preferable because the effect of the present invention is more excellent.
Examples of the carboxylic acid include aliphatic carboxylic acids such as myristic acid, stearic acid, oleic acid, palmitic acid, n-decanoic acid, paratoylic acid, succinic acid, malonic acid, tartaric acid, malic acid, glutaric acid, adipic acid and acetic acid. Examples thereof include aromatic carboxylic acids such as acid, phthalic acid, maleic acid, isophthalic acid, terephthalic acid, benzoic acid and naphthenic acid, and alicyclic carboxylic acids such as cyclohexanedicarboxylic acid. Of these, aliphatic carboxylic acids are preferred (especially aliphatic carboxylic acids having 3 to 30 carbon atoms), and higher aliphatic carboxylic acids (especially aliphatic carboxylic acids having 10 to 30 carbon atoms), because the effects of the present invention are more excellent. ) Are more preferable, and those having a large number of carbon atoms are particularly preferable. Examples of higher aliphatic carboxylic acids include myristic acid, stearic acid, and palmitic acid.
The carboxylic acid is preferably an aliphatic carboxylic acid having 15 to 20 carbon atoms, more preferably a saturated aliphatic carboxylic acid having 15 to 20 carbon atoms, for the reason that the effects of the present invention are more excellent. More preferably, it is an acid.
<平均粒子径>
 特定金属粒子の平均粒子径は特に制限されないが、本発明の効果がより優れる理由から、800nm以下であることが好ましく、1~800nmであることがより好ましく、1~200nmであることがさらに好ましい。
 なお、本明細書において平均粒子径とは、金属と金属の間に隙間がないものを1つの金属粒子としたときの平均値をいい、より具体的には、透過型電子顕微鏡(TEM)を用いて撮影した写真に写し出された金属粒子から測定された数平均粒子径を意味する。
<Average particle size>
The average particle diameter of the specific metal particles is not particularly limited, but is preferably 800 nm or less, more preferably 1 to 800 nm, and even more preferably 1 to 200 nm, because the effects of the present invention are more excellent. .
In addition, in this specification, an average particle diameter means an average value when the thing without a gap | interval between metals is made into one metal particle, More specifically, a transmission electron microscope (TEM) is used. It means the number average particle diameter measured from the metal particles shown in the photograph taken.
<特定金属粒子の分散液の製造方法>
 特定金属粒子は、本発明の効果がより優れる理由から、分散液として用いるのが好ましい。なかでも、本発明の効果がさらに優れる理由から、低沸点溶媒の分散液として用いるのが好ましい。特定金属粒子を低沸点溶媒の分散液として用いた場合、分散液が希釈剤となり、本発明の組成物中で特定金属粒子が凝集することなく均一に分散するため、本発明の効果がより優れる。また、硬化物の透明性が向上する。
<Method for producing dispersion of specific metal particles>
The specific metal particles are preferably used as a dispersion because the effect of the present invention is more excellent. Especially, it is preferable to use as a dispersion liquid of a low boiling-point solvent from the reason which the effect of this invention is further excellent. When the specific metal particles are used as a low-boiling solvent dispersion, the dispersion serves as a diluent, and the specific metal particles are uniformly dispersed in the composition of the present invention without agglomeration, so the effect of the present invention is more excellent. . Further, the transparency of the cured product is improved.
 低沸点溶媒中に特定金属粒子が分散した分散液を製造する方法は特に制限されないが、本発明の効果がより優れる理由から、高沸点溶媒に有機酸金属塩を添加し、その後、加熱混合することによって有機酸が結合した金属粒子(特定金属粒子)を形成し、さらに、得られた液(高沸点溶媒中に特定金属粒子が分散した分散液)に高沸点溶媒と二相分離可能な低沸点溶媒を添加することによって低沸点溶媒中に特定金属粒子を移行させて、低沸点溶媒相を採取する方法が好ましい。 A method for producing a dispersion in which specific metal particles are dispersed in a low-boiling solvent is not particularly limited, but an organic acid metal salt is added to a high-boiling solvent and then heated and mixed for the reason that the effect of the present invention is more excellent. In this way, metal particles (specific metal particles) bonded with an organic acid are formed, and the obtained liquid (dispersion liquid in which specific metal particles are dispersed in a high-boiling solvent) can be separated into a high-boiling solvent and two-phase separation. A method of collecting the low boiling point solvent phase by transferring the specific metal particles into the low boiling point solvent by adding the boiling point solvent is preferable.
(有機酸金属塩)
 上記有機酸金属塩の有機酸及び金属成分の具体例及び好適な態様は上述のとおりである。有機酸金属塩の具体例としては、ミリスチン酸銀及びステアリン酸銀等が挙げられる。
(Organic acid metal salt)
Specific examples and preferred embodiments of the organic acid and metal component of the organic acid metal salt are as described above. Specific examples of the organic acid metal salt include silver myristate and silver stearate.
(高沸点溶媒)
 上記高沸点溶媒としては、本発明の効果がより優れる理由から、グリセリンが好ましい。さらにグリセリンと共に使用し得る高沸点溶媒としては、例えば、エチレングリコール、ジエチレングリコール及びポリエチレングリコール等のグリコール系溶媒、並びに、ジエチルエーテル等のエーテル系溶媒を挙げることができ、本発明の効果がより優れる理由から、エチレングリコール、ジエチレングリコール、ポリエチレングリコール及びジエチルエーテルを好適に用いることができる。
(High boiling point solvent)
As the high boiling point solvent, glycerin is preferable because the effect of the present invention is more excellent. Furthermore, examples of the high boiling point solvent that can be used with glycerin include glycol solvents such as ethylene glycol, diethylene glycol and polyethylene glycol, and ether solvents such as diethyl ether, and the reason why the effect of the present invention is more excellent. Therefore, ethylene glycol, diethylene glycol, polyethylene glycol and diethyl ether can be preferably used.
(低沸点溶媒)
 上記低沸点溶媒は、沸点が上記高沸点溶媒の沸点よりも小さく且つ上記高沸点溶媒と二相分離可能な溶媒である。上記低沸点溶媒の具体例としては、トルエン、メチルイソブチルケトン及びメチルエチルケトン等が挙げられる。
 本発明の効果がより優れる理由から、上記低沸点溶媒のSP値(溶解度パラメータ)と、特定金属粒子における有機酸のSP値との差は小さいことが好ましい。これにより、高沸点溶媒からの特定金属粒子の抽出性が向上し、高沸点溶媒を副生物や残渣物と共に除去することがより容易になる。なお、上述した(A)硬化性シリコーン樹脂組成物との相溶性や上述した有機酸金属塩の種類も考慮することが好ましい。
 低沸点溶媒の沸点は、硬化物(例えば、封止材、保護層)の成形性や取扱性等の観点から、40~120℃であることが好ましい。
(Low boiling point solvent)
The low boiling point solvent is a solvent having a boiling point smaller than that of the high boiling point solvent and capable of two-phase separation from the high boiling point solvent. Specific examples of the low boiling point solvent include toluene, methyl isobutyl ketone, and methyl ethyl ketone.
For the reason that the effect of the present invention is more excellent, the difference between the SP value (solubility parameter) of the low boiling point solvent and the SP value of the organic acid in the specific metal particles is preferably small. Thereby, the extractability of the specific metal particles from the high-boiling solvent is improved, and it becomes easier to remove the high-boiling solvent together with by-products and residues. In addition, it is preferable to consider compatibility with (A) curable silicone resin composition mentioned above and the kind of organic acid metal salt mentioned above.
The boiling point of the low-boiling solvent is preferably 40 to 120 ° C. from the viewpoint of moldability and handleability of a cured product (eg, a sealing material and a protective layer).
(分散方法)
 分散液中に特定金属粒子を分散させる方法は特に制限されないが、プロペラ翼、タービン翼及びバドル翼等の翼を有する攪拌分散機、ボールミル、ビーズミル及びコロイドミル等のミル型分散機、ホモジナイザー、超音波ホモジナイザー、並びに、高圧ホモジナイザー等を好適に用いることができる。
(Distribution method)
A method for dispersing the specific metal particles in the dispersion is not particularly limited, but a stirring disperser having blades such as a propeller blade, a turbine blade and a paddle blade, a mill type disperser such as a ball mill, a bead mill and a colloid mill, a homogenizer, A sonic homogenizer, a high-pressure homogenizer, and the like can be suitably used.
 上述した低沸点溶媒中に特定金属粒子が分散した分散液における特定金属粒子の含有量は特に制限されないが、成形性及び分散性の観点から、低沸点溶媒100質量部に対して0.05~5質量部であることが好ましく、0.1~3質量部であることがより好ましい。 The content of the specific metal particles in the dispersion in which the specific metal particles are dispersed in the low-boiling solvent described above is not particularly limited, but from the viewpoint of moldability and dispersibility, 0.05 to The amount is preferably 5 parts by mass, more preferably 0.1 to 3 parts by mass.
<含有量>
 本発明の組成物において、特定金属粒子の含有量は特に制限されないが、本発明の効果がより優れる理由から、上述した(A)硬化性シリコーン樹脂組成物100質量部に対して、金属として(例えば、Agとして)1~500ppm質量部(×10-6質量部)であることが好ましく、5~200ppm質量部であることがより好ましく、10~100ppm質量部であることがさらに好ましい。
<Content>
In the composition of the present invention, the content of the specific metal particles is not particularly limited, but for the reason that the effect of the present invention is more excellent, as a metal with respect to 100 parts by mass of the above-mentioned (A) curable silicone resin composition ( For example, it is preferably 1 to 500 ppm by mass (as Ag) (× 10 −6 parts by mass), more preferably 5 to 200 ppm by mass, and even more preferably 10 to 100 ppm by mass.
〔任意成分〕
 本発明の組成物は、本発明の目的を損なわない範囲で、例えば、硬化遅延剤、紫外線吸収剤、充填剤(特にシリカ)、老化防止剤、帯電防止剤、難燃剤、接着性付与剤、分散剤、酸化防止剤、消泡剤、艶消し剤、光安定剤、染料、顔料のような添加剤を更に含有することができる。
 これらの添加剤のうち、充填剤としてシリカを用いるのが好ましい。
 なお、上記シリカの種類としては、特に限定されず、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等を挙げられる。
[Optional ingredients]
The composition of the present invention is within a range that does not impair the object of the present invention, for example, a curing retarder, an ultraviolet absorber, a filler (particularly silica), an anti-aging agent, an antistatic agent, a flame retardant, an adhesion promoter, It may further contain additives such as a dispersant, an antioxidant, an antifoaming agent, a matting agent, a light stabilizer, a dye and a pigment.
Of these additives, silica is preferably used as a filler.
The type of silica is not particularly limited, and examples thereof include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, and aluminum silicate.
<硬化遅延剤>
 本発明の組成物は、さらに、硬化遅延剤を含有していてもよい。硬化遅延剤は、本発明の組成物の硬化速度や作業可使時間を調整するための成分であり、例えば、3-メチル-1-ブチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、フェニルブチノール、1-エチニル-1-シクロヘキサノールなどの炭素-炭素三重結合を有するアルコール誘導体;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-インなどのエンイン化合物;テトラメチルテトラビニルシクロテトラシロキサン、テトラメチルテトラヘキセニルシクロテトラシロキサンなどのアルケニル基含有低分子量シロキサン;メチル-トリス(3-メチル-1-ブチン-3-オキシ)シラン、ビニル-トリス(3-メチル-1-ブチン-3-オキシ)シランなどのアルキン含有シラン;等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 本発明の組成物において、硬化遅延剤の含有量は特に制限されないが、本発明の組成物全体100質量部に対して、0.00001~0.1質量部であることが好ましく、0.0001~0.01質量部であることがより好ましい。
<Curing retarder>
The composition of the present invention may further contain a curing retarder. The curing retarder is a component for adjusting the curing rate and working life of the composition of the present invention. For example, 3-methyl-1-butyn-3-ol, 3,5-dimethyl-1-hexyne Alcohol derivatives having a carbon-carbon triple bond such as -3-ol, phenylbutynol, 1-ethynyl-1-cyclohexanol; 3-methyl-3-penten-1-yne, 3,5-dimethyl-3-hexene Enyne compounds such as -1-yne; low molecular weight siloxanes containing alkenyl groups such as tetramethyltetravinylcyclotetrasiloxane and tetramethyltetrahexenylcyclotetrasiloxane; methyl-tris (3-methyl-1-butyne-3-oxy) silane Alkyne-containing silanes such as vinyl-tris (3-methyl-1-butyne-3-oxy) silane; , May be used those either alone, or in combination of two or more.
In the composition of the present invention, the content of the curing retarder is not particularly limited, but is preferably 0.00001 to 0.1 parts by mass with respect to 100 parts by mass of the entire composition of the present invention, and 0.0001 More preferably, it is -0.01 parts by mass.
〔硬化性樹脂組成物の製造方法〕
 本発明の組成物の製造方法は、特に限定されず、例えば、上述した必須成分および任意成分を混合することによって製造する方法が挙げられる。
[Method for producing curable resin composition]
The manufacturing method of the composition of this invention is not specifically limited, For example, the method of manufacturing by mixing the essential component mentioned above and an arbitrary component is mentioned.
〔硬化方法〕
 本発明の組成物を硬化して硬化物を得る方法は特に限定されず、例えば、本発明の組成物を、80~200℃で10~720分間加熱する方法が挙げられる。
[Curing method]
A method for obtaining a cured product by curing the composition of the present invention is not particularly limited, and examples thereof include a method of heating the composition of the present invention at 80 to 200 ° C. for 10 to 720 minutes.
〔用途〕
 本発明の組成物は、例えば、ディスプレイ材料、光記録媒体材料、光学機器材料、光部品材料、光ファイバー材料、光・電子機能有機材料、半導体集積回路周辺材料等の分野において、例えば、接着剤、プライマー、封止材等として使用できる。
 とりわけ、本発明の組成物は、LEDの封止材や保護層に好適に使用することができる。
 本発明の組成物を適用できる光半導体は特に制限されず、例えば、発光ダイオード(LED)、有機電界発光素子(有機EL)、レーザーダイオード、LEDアレイ等が挙げられる。
[Use]
The composition of the present invention is, for example, in the field of display materials, optical recording medium materials, optical equipment materials, optical component materials, optical fiber materials, optical / electronic functional organic materials, semiconductor integrated circuit peripheral materials, etc. It can be used as a primer, a sealing material and the like.
Especially, the composition of this invention can be used conveniently for the sealing material and protective layer of LED.
The optical semiconductor to which the composition of the present invention can be applied is not particularly limited, and examples thereof include a light emitting diode (LED), an organic electroluminescent element (organic EL), a laser diode, and an LED array.
[積層体]
 本発明の積層体は、半導体パッケージに使用される積層体であって、腐食性基材(例えば、銀メッキを含む部材)と、上記腐食性基材を被覆するシリコーン樹脂層とを備える。ここで、上記シリコーン樹脂層は、上述した本発明の組成物の硬化物である。シリコーン樹脂層は銀メッキを直接被覆するのでも、間接的に被覆するのでも構わないが、直接被覆するのが好ましい。
 上記シリコーン樹脂層の全光線透過率は60%以上であることが好ましく、80%以上であることがより好ましい。上記シリコーン樹脂層の全光線透過率の上限は特に制限されず100%である。
[Laminate]
The laminate of the present invention is a laminate used for a semiconductor package, and includes a corrosive base material (for example, a member including silver plating) and a silicone resin layer that covers the corrosive base material. Here, the silicone resin layer is a cured product of the composition of the present invention described above. The silicone resin layer may be coated directly or indirectly with silver plating, but is preferably coated directly.
The total light transmittance of the silicone resin layer is preferably 60% or more, and more preferably 80% or more. The upper limit of the total light transmittance of the silicone resin layer is not particularly limited and is 100%.
 本発明の積層体について添付の図面を用いて以下に説明する。なお本発明の積層体は添付の図面に制限されない。
 図1は、本発明の積層体の一例を模式的に示す断面図である。図1において、積層体100は、腐食性基材(銀メッキを含む部材)120と、腐食性基材120を被覆するシリコーン樹脂層102とを有する。シリコーン樹脂層102は上述した本発明の組成物の硬化物である。
 本発明の組成物は耐硫化性に優れるため、本発明の積層体における腐食性基材は硫化し難い。
The laminated body of this invention is demonstrated below using attached drawing. The laminated body of the present invention is not limited to the attached drawings.
FIG. 1 is a cross-sectional view schematically showing an example of the laminate of the present invention. In FIG. 1, the laminate 100 includes a corrosive base material (member including silver plating) 120 and a silicone resin layer 102 that covers the corrosive base material 120. The silicone resin layer 102 is a cured product of the above-described composition of the present invention.
Since the composition of this invention is excellent in sulfidation resistance, the corrosive base material in the laminated body of this invention cannot sulfidize easily.
 図2は、本発明の積層体の別の一例を模式的に示す断面図である。
 図2において、積層体200は、腐食性基材(銀メッキを含む部材)220と、光半導体203と、腐食性基材220の銀メッキを間接的に被覆するシリコーン樹脂層202とを有する。シリコーン樹脂層202は上述した本発明の組成物の硬化物である。積層体200は光半導体203とシリコーン樹脂層202との間にさらに透明な層(図示せず)を備えることができる。透明な層としては、例えば、樹脂層、ガラス層、空気層が挙げられる。
FIG. 2 is a cross-sectional view schematically showing another example of the laminate of the present invention.
In FIG. 2, the laminate 200 includes a corrosive base material (member including silver plating) 220, an optical semiconductor 203, and a silicone resin layer 202 that indirectly covers the silver plating of the corrosive base material 220. The silicone resin layer 202 is a cured product of the above-described composition of the present invention. The laminate 200 can further include a transparent layer (not shown) between the optical semiconductor 203 and the silicone resin layer 202. Examples of the transparent layer include a resin layer, a glass layer, and an air layer.
[光半導体パッケージ]
 本発明の光半導体パッケージについて以下に説明する。
 本発明の光半導体パッケージ(以下、「本発明の光半導体封止体」とも言う)は、本発明の組成物を用いて光半導体素子を封止することで得られる。ここで、光半導体素子は銀を含む。
 上記光半導体素子としては、例えば、光半導体と、凹部を有する枠体とを備え、上記光半導体は上記凹部の底部に配置され、上記枠体は上記凹部の側面に銀を含むリフレクタを備えるものが挙げられる。
 また、本発明の半導体封止体としては、上記半導体素子と、封止材とを備え、上記封止材は上述した本発明の組成物の硬化物であって上記半導体素子中の光半導体及びリフレクタを封止するものが挙げられる。
[Optical semiconductor package]
The optical semiconductor package of the present invention will be described below.
The optical semiconductor package of the present invention (hereinafter also referred to as “the optical semiconductor sealed body of the present invention”) is obtained by sealing an optical semiconductor element using the composition of the present invention. Here, the optical semiconductor element contains silver.
The optical semiconductor element includes, for example, an optical semiconductor and a frame having a recess, the optical semiconductor is disposed at the bottom of the recess, and the frame includes a reflector containing silver on a side surface of the recess. Is mentioned.
Moreover, as a semiconductor sealing body of this invention, it is provided with the said semiconductor element and a sealing material, and the said sealing material is the hardened | cured material of the composition of this invention mentioned above, Comprising: The optical semiconductor in the said semiconductor element, and What seals a reflector is mentioned.
 本発明の光半導体パッケージ(光半導体封止体)について添付の図面を用いて以下に説明する。
 図3は、本発明の光半導体パッケージ(光半導体封止体)の一例を模式的に示す断面図である。
 図3において、光半導体封止体300は、光半導体303と、凹部302を有する枠体304と、封止材308とを有し、光半導体303は凹部302の底部(図示せず)に配置され、枠体304は凹部302の側面(図示せず)に銀を含むリフレクタ320を備え、封止材308は光半導体303およびリフレクタ320を封止する。
 封止材308は、本発明の組成物の硬化物である。凹部302において斜線部306まで上記硬化物で充填してもよい。または符号308の部分を他の透明な層とし斜線部306を本発明の組成物の硬化物としてもよい。封止材は蛍光物質等を含有することができる。
 光半導体封止体は1個当たり、1個のまたは複数の光半導体を有することができる。光半導体は発光層(マウント部材と接する面の反対面)を上にして枠体内に配置すればよい。
 光半導体303は、枠体304と基板310とから形成される、凹部302の底部(図示せず)に配置され、マウント部材301で固定されている。
 リフレクタの別の態様として、枠体304が有する端部312、314が一体的に結合し、リフレクタが側面および底部を形成するものが挙げられる。この場合リフレクタの底部の上に光半導体を配置することができる。
 リフレクタ320は凹部302の底部(図示せず)から遠ざかるほど断面寸法が大きくなる、テーパ状の開口端(図示せず)を有するものとすることができる。
 マウント部材としては例えば銀ペースト、樹脂が挙げられる。光半導体303の各電極(図示せず)と外部電極309とは導電性ワイヤー307によってワイヤーボンディングされている。
 光半導体封止体300は、凹部302を封止材308、306または302(部分308と部分306とを合わせた部分)で封止することができる。
 光半導体素子を上述した本発明の組成物で封止することによって、耐硫化性を高めリフレクタの腐食(例えば、変色。具体的には銀の変色)を抑制することができ、光半導体封止体の輝度や透明性を低下させることがない。
The optical semiconductor package (encapsulated optical semiconductor) of the present invention will be described below with reference to the accompanying drawings.
FIG. 3 is a cross-sectional view schematically showing an example of the optical semiconductor package (encapsulated optical semiconductor) of the present invention.
In FIG. 3, the optical semiconductor sealing body 300 includes an optical semiconductor 303, a frame 304 having a recess 302, and a sealing material 308, and the optical semiconductor 303 is disposed at the bottom (not shown) of the recess 302. The frame 304 includes a reflector 320 containing silver on the side surface (not shown) of the recess 302, and the sealing material 308 seals the optical semiconductor 303 and the reflector 320.
The sealing material 308 is a cured product of the composition of the present invention. The concave portion 302 may be filled with the cured product up to the shaded portion 306. Alternatively, the portion denoted by reference numeral 308 may be another transparent layer, and the hatched portion 306 may be a cured product of the composition of the present invention. The sealing material can contain a fluorescent substance or the like.
One optical semiconductor encapsulant can have one or a plurality of optical semiconductors. The optical semiconductor may be disposed in the frame with the light emitting layer (the surface opposite to the surface in contact with the mount member) facing up.
The optical semiconductor 303 is disposed on the bottom (not shown) of the recess 302 formed from the frame 304 and the substrate 310, and is fixed by the mount member 301.
As another aspect of the reflector, there is an example in which the end portions 312 and 314 included in the frame body 304 are integrally coupled, and the reflector forms a side surface and a bottom portion. In this case, an optical semiconductor can be disposed on the bottom of the reflector.
The reflector 320 may have a tapered opening end (not shown) whose cross-sectional dimension increases as the distance from the bottom (not shown) of the recess 302 increases.
Examples of the mounting member include silver paste and resin. Each electrode (not shown) of the optical semiconductor 303 and the external electrode 309 are wire bonded by a conductive wire 307.
The optical semiconductor sealing body 300 can seal the concave portion 302 with a sealing material 308, 306, or 302 (a portion in which the portion 308 and the portion 306 are combined).
By encapsulating the optical semiconductor element with the above-described composition of the present invention, it is possible to increase the resistance to sulfidation and suppress the corrosion of the reflector (for example, discoloration, specifically, discoloration of silver). Does not reduce body brightness or transparency.
 図4は、本発明の光半導体パッケージ(光半導体封止体)の別の一例を模式的に示す断面図である。
 図4において、光半導体封止体400は図3に示す光半導体封止体300の上にレンズ401を有する。レンズ401は本発明の組成物の硬化物であってもよい。
FIG. 4 is a cross-sectional view schematically showing another example of the optical semiconductor package (optical semiconductor sealed body) of the present invention.
In FIG. 4, the optical semiconductor sealing body 400 has a lens 401 on the optical semiconductor sealing body 300 shown in FIG. The lens 401 may be a cured product of the composition of the present invention.
 図5は、本発明の光半導体パッケージ(光半導体封止体)の別の一例を模式的に示す断面図である。
 図5において、光半導体封止体500は、光半導体503と、凹部を有する枠体を含む基板510と、封止材502とを有し、光半導体503は凹部の底部に配置され、枠体は凹部の側面に銀を含むリフレクタ520を備え、ランプ機能を有する樹脂506の内部に基板510、インナーリード505を有し、封止材502は上述した本発明の組成物の硬化物であり、封止材502は光半導体503およびリフレクタ520を封止する。
 図5において、枠体(図示せず)と基板510とを一体に形成することができる。
 リフレクタ520は凹部の側面および底部(図示せず)とを一体的に形成されていてもよい。
 光半導体503は、基板510上にマウント部材501で固定されている。マウント部材としては、例えば、銀ペースト、樹脂が挙げられる。
 光半導体503の各電極(図示せず)は導電性ワイヤー507によってワイヤーボンディングさせている。
 樹脂506は本発明の組成物の硬化物であってもよい。
FIG. 5 is a cross-sectional view schematically showing another example of the optical semiconductor package (encapsulated optical semiconductor) of the present invention.
In FIG. 5, an optical semiconductor sealing body 500 includes an optical semiconductor 503, a substrate 510 including a frame having a recess, and a sealing material 502, and the optical semiconductor 503 is disposed at the bottom of the recess. Has a reflector 520 containing silver on the side surface of the recess, has a substrate 510 and inner leads 505 inside a resin 506 having a lamp function, and the sealing material 502 is a cured product of the above-described composition of the present invention. The sealing material 502 seals the optical semiconductor 503 and the reflector 520.
In FIG. 5, a frame (not shown) and the substrate 510 can be integrally formed.
The reflector 520 may be formed integrally with the side surface and the bottom (not shown) of the recess.
The optical semiconductor 503 is fixed on the substrate 510 with a mount member 501. Examples of the mount member include silver paste and resin.
Each electrode (not shown) of the optical semiconductor 503 is wire-bonded by a conductive wire 507.
The resin 506 may be a cured product of the composition of the present invention.
 本発明の組成物および/または本発明の光半導体パッケージ(光半導体封止体)をLED表示器に利用する場合について添付の図面を用いて説明する。
 図6は、本発明の組成物および/または本発明の光半導体パッケージ(光半導体封止体)を用いたLED表示器の一例を模式的に示す図である。
 図6において、LED表示器600は、光半導体封止体601を筐体604の内部にマトリックス状に配置し、光半導体封止体601を封止材606で封止し、筐体604の一部に遮光部材605を配置して構成されている。本発明の組成物を封止材606に使用することができる。また、光半導体封止体601として本発明の光半導体封止体を使用することができる。
The case where the composition of the present invention and / or the optical semiconductor package (encapsulated optical semiconductor) of the present invention is used for an LED display will be described with reference to the accompanying drawings.
FIG. 6 is a diagram schematically showing an example of an LED display using the composition of the present invention and / or the optical semiconductor package (optical semiconductor sealing body) of the present invention.
In FIG. 6, an LED display 600 includes an optical semiconductor sealing body 601 arranged in a matrix in a housing 604, and the optical semiconductor sealing body 601 is sealed with a sealing material 606. The light shielding member 605 is arranged in the part. The composition of the present invention can be used for the sealing material 606. Moreover, the optical semiconductor sealing body of the present invention can be used as the optical semiconductor sealing body 601.
 本発明の積層体、または本発明の光半導体パッケージ(半導体封止体)の用途としては、例えば、自動車用ランプ(ヘッドランプ、テールランプ、方向ランプ等)、家庭用照明器具、工業用照明器具、舞台用照明器具、ディスプレイ、信号、プロジェクターが挙げられる。 Examples of the use of the laminated body of the present invention or the optical semiconductor package (semiconductor encapsulated body) of the present invention include, for example, automotive lamps (head lamps, tail lamps, directional lamps, etc.), household lighting fixtures, industrial lighting fixtures, Stage lighting fixtures, displays, signals, projectors.
 以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.
〔硬化性樹脂組成物の調製〕
 下記表1に示される成分を同表に示される割合(数値は質量部。ただし、A-c、B-1及びB-2はppm質量部(×10-6質量部)。)で混合することで各硬化性樹脂組成物を調製した。なお、表1中、A-cに記載の割合は、ヒドロシリル化触媒A-c中のPtのppm質量部を表す。また、B-1及びB-2に記載の割合は、特定金属粒子の分散液中のAgのppm質量部を表す。例えば、実施例1では、A-a1を50質量部と、A-a2を50質量部と、A-b1を20質量部と、A-b2を4質量部と、A-cをPtとして10×10-6質量部と、B-1をAgとして20×10-6質量部とを混合した。
(Preparation of curable resin composition)
Ingredients shown in Table 1 below are mixed in the proportions shown in the table (numerical values are parts by mass, where Ac, B-1, and B-2 are ppm parts by mass (× 10 −6 parts by mass)). Thus, each curable resin composition was prepared. In Table 1, the ratio described in Ac represents ppm parts by mass of Pt in the hydrosilylation catalyst Ac. Further, the ratios described in B-1 and B-2 represent ppm parts by mass of Ag in the dispersion of the specific metal particles. For example, in Example 1, Aa1 is 50 parts by mass, Aa2 is 50 parts by mass, Ab1 is 20 parts by mass, Ab2 is 4 parts by mass, and Ac is 10 Pt. × 10 −6 parts by mass and 20 × 10 −6 parts by mass of B-1 as Ag were mixed.
〔評価〕
 得られた各硬化性樹脂組成物について、以下のとおり評価を行った。
[Evaluation]
Each obtained curable resin composition was evaluated as follows.
<全光線透過率>
 コの字にくりぬいたシリコーンゴム(厚み:1mm)に、得られた硬化性樹脂組成物を流し込み、ガラス板で挟み、硬化させた(100℃で1時間、その後、150℃で2時間)。そしてヘイズメーター(HM-150、村上色彩技術研究所社製)を用いて全光線透過率を測定した。結果を表1に示す。封止材用途としては、80%以上であることが好ましい。
<Total light transmittance>
The obtained curable resin composition was poured into silicone rubber (thickness: 1 mm) hollowed in a U-shape, sandwiched between glass plates and cured (100 ° C. for 1 hour, then 150 ° C. for 2 hours). The total light transmittance was measured using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory). The results are shown in Table 1. As a sealing material use, it is preferable that it is 80% or more.
<輝度維持率>
 表面実装タイプのLEDチップに、得られた硬化性樹脂組成物を充填し、硬化させ(100℃で1時間、その後、150℃で2時間)、輝度(初期輝度)をN=5で測定した。
 次いで、400mLの容器に硫黄粉0.1gを投入し、容器の蓋の裏に上述したLEDパッケージ(硬化性樹脂組成物が充填・硬化させられたもの)を両面テープで貼り合せ、70℃で4時間加熱した後の輝度(試験後輝度)をN=5で測定した。
 そして、下記のとおり、輝度維持率を算出した。結果を表1に示す。耐硫化性の観点から、輝度維持率は95%以上であることが好ましい。
 輝度維持率(%)=試験後輝度(平均値)/初期輝度(平均値)×100
<Luminance maintenance rate>
A surface-mount type LED chip was filled with the obtained curable resin composition and cured (100 ° C. for 1 hour, then 150 ° C. for 2 hours), and the luminance (initial luminance) was measured at N = 5. .
Next, 0.1 g of sulfur powder is put into a 400 mL container, and the LED package (filled and cured with the curable resin composition) is pasted on the back of the container lid with a double-sided tape at 70 ° C. The brightness after heating for 4 hours (the brightness after the test) was measured at N = 5.
And the brightness maintenance factor was computed as follows. The results are shown in Table 1. From the viewpoint of resistance to sulfidation, the luminance maintenance rate is preferably 95% or more.
Luminance maintenance rate (%) = post-test luminance (average value) / initial luminance (average value) × 100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中、各成分の詳細は以下のとおりである。
・オルガノポリシロキサンA-a1:PMV-9225(両末端ビニル基メチルフェニルポリシロキサン、アヅマックス社製)
・オルガノポリシロキサンA-a2:平均単位式(PhSiO3/20.75(ViMeSiO1/20.25で表されるポリシロキサン(横浜ゴム社製)
・オルガノポリシロキサンA-b1:平均単位式(PhSiO2/20.33(HMeSiO1/20.67で表されるポリシロキサン(横浜ゴム社製)
・オルガノポリシロキサンA-b2:平均単位式(PhSiO3/20.60(HMeSiO1/20.40で表されるポリシロキサン(横浜ゴム社製)
・ヒドロシリル化触媒A-c:Pt1,3-ジビニルテトラメチルジシロキサン錯体の1,3-ジビニルテトラメチルジシロキサン溶液(Ptの濃度:0.05質量%)
・オルガノポリシロキサンA-d1:FLD516(両末端シラノール基メチルフェニルポリシロキサン、Mw=900、BLUESTAR SILICONES社製)
・オルガノポリシロキサンA-d2:217Flake(シラノール基及びフェニル基を含有するシリコーンレジン)
・オルガノポリシロキサンA-e1:トリメトキシシリル基末端FLD516(トリメトキシシリル基末端メチルフェニルポリシロキサン、BLUESTAR SILICONES社製)
・縮合触媒A-f:ネオスタンU-28(2エチルヘキサン酸すず、日東化成社製)
The details of each component in Table 1 are as follows.
Organopolysiloxane A-a1: PMV-9225 (both end vinyl group methylphenyl polysiloxane, manufactured by Amax)
Organopolysiloxane Aa2: polysiloxane represented by average unit formula (PhSiO 3/2 ) 0.75 (ViMe 2 SiO 1/2 ) 0.25 (manufactured by Yokohama Rubber Co., Ltd.)
Organopolysiloxane Ab1: Average unit formula (Ph 2 SiO 2/2 ) 0.33 (HMe 2 SiO 1/2 ) 0.67 polysiloxane (manufactured by Yokohama Rubber Co., Ltd.)
Organopolysiloxane Ab2: polysiloxane represented by average unit formula (PhSiO 3/2 ) 0.60 (HMe 2 SiO 1/2 ) 0.40 (manufactured by Yokohama Rubber Co., Ltd.)
Hydrosilylation catalyst Ac: 1,3-divinyltetramethyldisiloxane solution of Pt1,3-divinyltetramethyldisiloxane complex (Pt concentration: 0.05 mass%)
Organopolysiloxane A-d1: FLD516 (both terminal silanol group methylphenylpolysiloxane, Mw = 900, manufactured by BLUESTAR SILICONES)
Organopolysiloxane Ad-2: 217 Flake (silicone resin containing silanol groups and phenyl groups)
Organopolysiloxane A-e1: Trimethoxysilyl group-terminated FLD516 (trimethoxysilyl group-terminated methylphenylpolysiloxane, manufactured by BLUESTAR SILICONES)
Condensation catalyst Af: Neostan U-28 (2-ethylhexanoic acid tin, manufactured by Nitto Kasei Co., Ltd.)
・特定金属粒子の分散液B-1:PLT-015(ステアリン酸が結合した銀粒子の分散液、東罐マテリアル・テクノロジー社製)
 上記特定金属粒子の分散液B-1は以下のとおり調製したものである。
 グリセリン1000gにステアリン酸銀5.56gとサッカリン0.56gを加え、150℃、15分間加熱撹拌し、80℃まで冷却した。得られた液をメチルイソブチルケトン(抽出溶剤)1kgに加え、常温にて撹拌した。これを24時間静置した後、そのメチルイソブチルケトン層を採取することで、銀粒子のメチルイソブチルケトン分散液を得た。得られた分散液について赤外吸収を測定したところ、1518cm-1付近にステアリン酸と銀との結合に由来するピークが観測され、分散液中の銀粒子にステアリン酸が結合していることが確認された。
 また、得られた分散液中の銀粒子について平均粒子径の測定を行った。具体的には、10gのトルエンに得られた分散液1gを滴下し、動的光散乱法(大塚電子社製 ゼータ電位・粒径測定システム)にて平均粒子径を測定した。その結果、図7に示される散乱強度分布が得られ、分散液中の銀粒子の平均粒子径が301.7nmであることが分かった。
-Specific metal particle dispersion B-1: PLT-015 (a dispersion of silver particles to which stearic acid is bonded, manufactured by Toago Material Technology Co., Ltd.)
The specific metal particle dispersion B-1 was prepared as follows.
Silver stearate 5.56g and saccharin 0.56g were added to glycerol 1000g, and it heat-stirred at 150 degreeC for 15 minutes, and cooled to 80 degreeC. The obtained liquid was added to 1 kg of methyl isobutyl ketone (extraction solvent) and stirred at room temperature. After standing for 24 hours, the methyl isobutyl ketone layer was collected to obtain a methyl isobutyl ketone dispersion of silver particles. When the obtained dispersion was measured for infrared absorption, a peak derived from the combination of stearic acid and silver was observed in the vicinity of 1518 cm −1 , indicating that stearic acid was bound to the silver particles in the dispersion. confirmed.
Moreover, the average particle diameter was measured about the silver particle in the obtained dispersion liquid. Specifically, 1 g of the dispersion obtained in 10 g of toluene was dropped, and the average particle size was measured by a dynamic light scattering method (Zeta potential / particle size measurement system manufactured by Otsuka Electronics Co., Ltd.). As a result, the scattering intensity distribution shown in FIG. 7 was obtained, and it was found that the average particle diameter of the silver particles in the dispersion was 301.7 nm.
・特定金属粒子の分散液B-2:SV-001(ステアリン酸が結合した銀粒子の分散液、東罐マテリアル・テクノロジー社製)
 上記特定金属粒子の分散液B-2は、上記特定金属粒子の分散液B-1に用いられたメチルイソブチルケトン(抽出溶剤)をトルエンに変更した以外は同様の方法で調製したものである。得られた分散液中の銀粒子について平均粒子径の測定を行ったところ、上記特定金属粒子の分散液B-1と同様の結果が得られた。
・ Dispersion B-2 of specific metal particles: SV-001 (dispersion of silver particles bonded with stearic acid, manufactured by Toago Materials Technology Co., Ltd.)
The specific metal particle dispersion B-2 was prepared by the same method except that the methyl isobutyl ketone (extraction solvent) used in the specific metal particle dispersion B-1 was changed to toluene. When the average particle diameter of the silver particles in the obtained dispersion was measured, the same result as that of the dispersion B-1 of the specific metal particles was obtained.
 なお、表1中、「特定金属粒子含有量」は、硬化性シリコーン樹脂組成物100質量部に対する特定金属粒子のAgとしてのppm質量部(×10-6質量部)を表す。例えば、実施例1は、硬化性シリコーン樹脂組成物(A-a1、A-a2、A-b1、A-b2、A-c)100質量部に対して特定金属粒子(B-1)を16.1×10-6質量部含有する。 In Table 1, “specific metal particle content” represents ppm parts by mass (× 10 −6 parts by mass) as Ag of specific metal particles with respect to 100 parts by mass of the curable silicone resin composition. For example, in Example 1, 16 parts of the specific metal particles (B-1) are added to 100 parts by mass of the curable silicone resin composition (Aa1, Aa2, Ab1, Ab2, and Ac). Contains 1 × 10 −6 parts by mass.
 また、表1中、「Si-H/Si-Viモル比」は上述した「Si-H/Si-Viモル比」を表す。 In Table 1, “Si—H / Si—Vi molar ratio” represents the “Si—H / Si—Vi molar ratio” described above.
 表1から分かるように、特定金属粒子を含有する実施例1~8はいずれも優れた耐硫化性を示した。なかでも、特定金属粒子の含有量が、硬化性シリコーン樹脂組成物100質量部に対して金属として100ppm質量部以下である実施例1~5及び8は、優れた透過性を示した。
 一方、特定金属粒子を含有しない比較例1及び2は耐硫化性が不十分であった。
As can be seen from Table 1, Examples 1 to 8 containing specific metal particles all exhibited excellent resistance to sulfidation. Among them, Examples 1 to 5 and 8 in which the content of the specific metal particles was 100 ppm by mass or less as a metal with respect to 100 parts by mass of the curable silicone resin composition showed excellent permeability.
On the other hand, Comparative Examples 1 and 2 not containing specific metal particles had insufficient sulfidation resistance.
 100、200   積層体
 102、202   シリコーン樹脂層
 120、220   腐食性基材
 203       光半導体
 300、400、500  光半導体封止体
 301、501   マウント部材
 302       凹部
 303、503   光半導体
 304   枠体
 306   斜線部
 307、507   導電性ワイヤー
 308、502   封止材7
 309   外部電極
 312、314   端部
 310、510   基板
 320、520   リフレクタ
 401   レンズ
 505   インナーリード
 506   樹脂
 600  LED表示器
 601  光半導体封止体
 604  筐体
 605  遮光部材
 606  封止材
100, 200 Laminated body 102, 202 Silicone resin layer 120, 220 Corrosive base material 203 Optical semiconductor 300, 400, 500 Sealed optical semiconductor body 301, 501 Mount member 302 Recess 303, 503 Optical semiconductor 304 Frame body 306 Shaded portion 307 , 507 Conductive wire 308, 502 Encapsulant 7
309 External electrode 312, 314 End 310, 510 Substrate 320, 520 Reflector 401 Lens 505 Inner lead 506 Resin 600 LED display 601 Optical semiconductor sealing body 604 Housing 605 Light shielding member 606 Sealing material

Claims (11)

  1.  (A)硬化性シリコーン樹脂組成物と、
     (B)有機酸が結合した金属粒子とを含有する、硬化性樹脂組成物。
    (A) a curable silicone resin composition;
    (B) A curable resin composition containing metal particles combined with an organic acid.
  2.  前記(B)有機酸が結合した金属粒子の平均粒子径が、800nm以下である、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein an average particle diameter of the metal particles to which the (B) organic acid is bonded is 800 nm or less.
  3.  前記(B)有機酸が結合した金属粒子の平均粒子径が、1~800nmである、請求項2に記載の硬化性樹脂組成物。 The curable resin composition according to claim 2, wherein the average particle diameter of the metal particles to which the (B) organic acid is bonded is 1 to 800 nm.
  4.  前記(B)有機酸が結合した金属粒子が、Ag、Cu、Ni、Co、Au及びPdからなる群より選択される1種の金属を少なくとも含む、請求項1~3のいずれか1項に記載の硬化性樹脂組成物。 The metal particle to which (B) the organic acid is bonded contains at least one metal selected from the group consisting of Ag, Cu, Ni, Co, Au, and Pd. The curable resin composition described.
  5.  前記(B)有機酸が結合した金属粒子が、有機酸が結合したAg粒子である、請求項1~4のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 4, wherein the metal particles to which (B) an organic acid is bonded are Ag particles to which an organic acid is bonded.
  6.  前記(B)有機酸が結合した金属粒子の含有量が、前記(A)硬化性シリコーン樹脂組成物100質量部に対して、金属として1~500ppm質量部である、請求項1~5のいずれか1項に記載の硬化性樹脂組成物。 The content of the metal particles to which the (B) organic acid is bonded is 1 to 500 ppm by mass as a metal with respect to 100 parts by mass of the (A) curable silicone resin composition. 2. The curable resin composition according to item 1.
  7.  前記(A)硬化性シリコーン樹脂組成物が、
     (A-a)ケイ素原子に結合したアルケニル基を有するオルガノポリシロキサンと、
     (A-b)ケイ素原子に結合した水素基を有するオルガノポリシロキサンと、
     (A-c)ヒドロシリル化触媒と
     を含有する、請求項1~6のいずれか1項に記載の硬化性樹脂組成物。
    The (A) curable silicone resin composition is
    (Aa) an organopolysiloxane having an alkenyl group bonded to a silicon atom;
    (Ab) an organopolysiloxane having a hydrogen group bonded to a silicon atom;
    The curable resin composition according to any one of claims 1 to 6, comprising (Ac) a hydrosilylation catalyst.
  8.  前記(A)硬化性シリコーン樹脂組成物が、
     (A-d)シラノール基を有するオルガノポリシロキサンと、
     (A-e)アルコキシシリル基を有するオルガノポリシロキサンと、
     (A―f)縮合触媒と
     を含有する、請求項1~6のいずれか1項に記載の硬化性樹脂組成物。
    The (A) curable silicone resin composition is
    (Ad) an organopolysiloxane having a silanol group;
    (Ae) an organopolysiloxane having an alkoxysilyl group;
    The curable resin composition according to any one of claims 1 to 6, comprising (Af) a condensation catalyst.
  9.  半導体パッケージに使用される積層体であって、
     腐食性基材と、前記腐食性基材を被覆するシリコーン樹脂層とを備え、
     前記シリコーン樹脂層が、請求項1~8のいずれか1項に記載の硬化性樹脂組成物の硬化物である、積層体。
    A laminated body used for a semiconductor package,
    A corrosive substrate and a silicone resin layer covering the corrosive substrate;
    A laminate in which the silicone resin layer is a cured product of the curable resin composition according to any one of claims 1 to 8.
  10.  前記シリコーン樹脂層の全光線透過率が、60%以上である、請求項9に記載の積層体。 The laminate according to claim 9, wherein the total light transmittance of the silicone resin layer is 60% or more.
  11.  請求項1~8のいずれか1項に記載の硬化性樹脂組成物を用いて光半導体素子を封止することで得られる、光半導体パッケージ。 An optical semiconductor package obtained by sealing an optical semiconductor element with the curable resin composition according to any one of claims 1 to 8.
PCT/JP2018/010739 2017-03-23 2018-03-19 Curable resin composition, laminate and optical semiconductor package WO2018173996A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019507655A JPWO2018173996A1 (en) 2017-03-23 2018-03-19 Curable resin composition, laminate, and optical semiconductor package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-057302 2017-03-23
JP2017057302 2017-03-23

Publications (1)

Publication Number Publication Date
WO2018173996A1 true WO2018173996A1 (en) 2018-09-27

Family

ID=63585431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010739 WO2018173996A1 (en) 2017-03-23 2018-03-19 Curable resin composition, laminate and optical semiconductor package

Country Status (3)

Country Link
JP (1) JPWO2018173996A1 (en)
TW (1) TW201842069A (en)
WO (1) WO2018173996A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI702275B (en) * 2019-03-04 2020-08-21 中原大學 Light-emitting diode package structure and method for manufacturing the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328302A (en) * 2005-05-30 2006-12-07 Ge Toshiba Silicones Co Ltd Electroconductive silicone rubber composition and electroconductive material
JP2008303233A (en) * 2007-06-05 2008-12-18 Momentive Performance Materials Japan Kk Highly conductive filler, and highly conductive silicone composition using the same
JP2012046699A (en) * 2010-08-30 2012-03-08 Toyo Seikan Kaisha Ltd Adsorptive silicone resin composition
JP2012077247A (en) * 2010-10-05 2012-04-19 Toyo Seikan Kaisha Ltd Silver-containing resin composition and method for producing the same
JP2012077248A (en) * 2010-10-05 2012-04-19 Toyo Seikan Kaisha Ltd Silver-containing resin composition and method for producing the same
WO2012067153A1 (en) * 2010-11-17 2012-05-24 横浜ゴム株式会社 Silicone resin composition; and usage method for silicone resin-containing structure using same, optical semiconductor element sealed body using same, and said silicone resin composition using same
JP2012111850A (en) * 2010-11-25 2012-06-14 Yokohama Rubber Co Ltd:The Silicone resin composition, and structure containing silicone resin obtained using the same and sealed optical semiconductor element
JP2013241643A (en) * 2012-05-18 2013-12-05 Toyo Seikan Group Holdings Ltd Dispersion liquid containing silver ultrafine particle, and method of manufacturing the same
JP2014214209A (en) * 2013-04-25 2014-11-17 信越化学工業株式会社 Conductive silicone rubber composition
WO2015064700A1 (en) * 2013-10-30 2015-05-07 東洋製罐グループホールディングス株式会社 Dispersion liquid containing antibacterial metal ultrafine particles and method for producing same
WO2015076385A1 (en) * 2013-11-22 2015-05-28 東洋製罐グループホールディングス株式会社 Curable resin composition having antibacterial properties

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328302A (en) * 2005-05-30 2006-12-07 Ge Toshiba Silicones Co Ltd Electroconductive silicone rubber composition and electroconductive material
JP2008303233A (en) * 2007-06-05 2008-12-18 Momentive Performance Materials Japan Kk Highly conductive filler, and highly conductive silicone composition using the same
JP2012046699A (en) * 2010-08-30 2012-03-08 Toyo Seikan Kaisha Ltd Adsorptive silicone resin composition
JP2012077247A (en) * 2010-10-05 2012-04-19 Toyo Seikan Kaisha Ltd Silver-containing resin composition and method for producing the same
JP2012077248A (en) * 2010-10-05 2012-04-19 Toyo Seikan Kaisha Ltd Silver-containing resin composition and method for producing the same
WO2012067153A1 (en) * 2010-11-17 2012-05-24 横浜ゴム株式会社 Silicone resin composition; and usage method for silicone resin-containing structure using same, optical semiconductor element sealed body using same, and said silicone resin composition using same
JP2012111850A (en) * 2010-11-25 2012-06-14 Yokohama Rubber Co Ltd:The Silicone resin composition, and structure containing silicone resin obtained using the same and sealed optical semiconductor element
JP2013241643A (en) * 2012-05-18 2013-12-05 Toyo Seikan Group Holdings Ltd Dispersion liquid containing silver ultrafine particle, and method of manufacturing the same
JP2014214209A (en) * 2013-04-25 2014-11-17 信越化学工業株式会社 Conductive silicone rubber composition
WO2015064700A1 (en) * 2013-10-30 2015-05-07 東洋製罐グループホールディングス株式会社 Dispersion liquid containing antibacterial metal ultrafine particles and method for producing same
WO2015076385A1 (en) * 2013-11-22 2015-05-28 東洋製罐グループホールディングス株式会社 Curable resin composition having antibacterial properties

Also Published As

Publication number Publication date
TW201842069A (en) 2018-12-01
JPWO2018173996A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
JP5549568B2 (en) Resin composition for sealing optical semiconductor element and optical semiconductor device sealed with the composition
JP5971835B2 (en) Curable silicone resin composition and light emitting diode device using the same
US20150076552A1 (en) Silicone resin composition, semi-cured material sheet, producing method of silicone cured material, light emitting diode device, and producing method thereof
EP2017295A1 (en) Thermosetting composition for optical semiconductor, die bond material for optical semiconductor device, underfill material for optical semiconductor device, sealing agent for optical semiconductor device, and optical semiconductor device
EP2588539A1 (en) Curable organopolysiloxane composition and optical semiconductor device
JP2016211003A (en) Two-pack type curable polyorganosiloxane composition for semiconductor light emitting device, polyorganosiloxane-cured article obtained by curing the composition and production method therefor
US20100213415A1 (en) Metal oxide fine particles, silicone resin composition and use thereof
US20130345370A1 (en) Silicone resin composition
JP2013124324A (en) Curable polyorganosiloxane composition and polyorganosiloxane cured material obtained by curing the composition
KR101332171B1 (en) Thermosetting silicone resin composition, and silicone resin-containing structure and optical semiconductor element encapsulant obtained using same
JP6417878B2 (en) Curable organopolysiloxane composition for semiconductor light emitting device sealing material, cured organopolysiloxane obtained by curing the composition, and semiconductor light emitting device sealed using the same
WO2018173996A1 (en) Curable resin composition, laminate and optical semiconductor package
WO2010098285A1 (en) Sealing agent for optical semiconductor devices and optical semiconductor device using same
JP7042125B2 (en) Curable resin composition, cured product using the resin composition, encapsulant and optical semiconductor device
WO2013035736A1 (en) Curable composition for optical semiconductor device
JP2013191748A (en) Semiconductor light emitting device
JP7181035B2 (en) Optical semiconductor encapsulating composition, optical semiconductor device, organopolysiloxane
JP2007059505A (en) Surface-mounted led package
JP7042126B2 (en) A curable composition and an optical semiconductor device using the composition as a sealing agent.
JP7360911B2 (en) A curable composition and a semiconductor device using the composition as a sealant.
JP7360910B2 (en) A curable composition and a semiconductor device using the composition as a sealant.
JP6335036B2 (en) Curable composition, semiconductor light emitting device, and method for manufacturing semiconductor light emitting device
JP2014189789A (en) Curable composition for optical semiconductor device, and optical semiconductor device using the same
JP5941336B2 (en) Polysiloxane composition and optical semiconductor device using the composition as a sealing material
KR101733960B1 (en) Curable composition, cured product and photo-semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507655

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772592

Country of ref document: EP

Kind code of ref document: A1