TWI702275B - Light-emitting diode package structure and method for manufacturing the same - Google Patents

Light-emitting diode package structure and method for manufacturing the same Download PDF

Info

Publication number
TWI702275B
TWI702275B TW108107014A TW108107014A TWI702275B TW I702275 B TWI702275 B TW I702275B TW 108107014 A TW108107014 A TW 108107014A TW 108107014 A TW108107014 A TW 108107014A TW I702275 B TWI702275 B TW I702275B
Authority
TW
Taiwan
Prior art keywords
phosphine
light
wavelength
gallium nitride
package structure
Prior art date
Application number
TW108107014A
Other languages
Chinese (zh)
Other versions
TW202033732A (en
Inventor
林政鞍
李有璋
黃承奕
陳祈安
孫翊堂
Original Assignee
中原大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中原大學 filed Critical 中原大學
Priority to TW108107014A priority Critical patent/TWI702275B/en
Application granted granted Critical
Publication of TWI702275B publication Critical patent/TWI702275B/en
Publication of TW202033732A publication Critical patent/TW202033732A/en

Links

Images

Landscapes

  • Led Device Packages (AREA)

Abstract

Disclosed herein are a light-emitting diode (LED) package structure and a method producing the same. The LED package structure includes a substrate; and a light-emitting unit disposed on the substrate. The light-emitting unit comprises a gallium nitride-based semiconductor, and a polymeric layer encapsulating the gallium nitride-based semiconductor. Also disclosed herein is a method of producing the LED package structure. The method comprises: providing a substrate; electrically connecting a gallium nitride-based semiconductor onto the substrate; overlaying the gallium nitride-based semiconductor with a slurry comprising a resin and a plurality of composite fluorescent gold nanocluster; and curing the slurry overlaid on the gallium nitride-based semiconductor to form a solidified polymeric layer.

Description

發光二極體封裝結構及其製造方法Light emitting diode packaging structure and manufacturing method thereof

本發明是關於發光二極體(light-emitting diode,LED)裝置之技術領域。具體是關於一發光二極體封裝結構,其中包含作為波長轉換材料的複數個螢光金量子團簇。The present invention relates to the technical field of light-emitting diode (LED) devices. Specifically, it relates to a light emitting diode package structure, which contains a plurality of fluorescent gold quantum clusters as wavelength conversion materials.

白光發光二極體(白光LED)是相對較近期的創新,其奠基於對各種顯示裝置所適用之改良LED的長期研究。一般是使用波長轉換材料來構建白光LED,波長轉換材料可吸收從LED發射的光並重新發射另一不同波長(即,顏色)的光。U.S. 美國專利號5,998,925教示的白光LED包含一或多個能夠將其光源的波長轉換成其他期望色光的燐光體材料。典型的作法是包含發藍光的一LED晶片或晶粒,其中的燐光體吸收部分的藍光並發出黃光、或是發出綠光、紅光及黃光的任意組合。同時,沒有被燐光體吸收的藍光可與從燐光體發射的光結合,藉此組成人眼可見的白光。White light emitting diodes (white light LEDs) are relatively recent innovations based on long-term research on improved LEDs suitable for various display devices. Generally, a wavelength conversion material is used to construct a white light LED, and the wavelength conversion material can absorb the light emitted from the LED and re-emit light of a different wavelength (ie, color). The white light LED taught by U.S. Patent No. 5,998,925 contains one or more phosphor materials capable of converting the wavelength of its light source into other desired colors. A typical practice is to include an LED chip or die that emits blue light, in which the phosphor absorbs part of the blue light and emits yellow light, or emits any combination of green, red, and yellow light. At the same time, the blue light not absorbed by the phosphor can be combined with the light emitted from the phosphor, thereby forming white light visible to the human eye.

然而,白光LED的波長轉換材料(通常是過渡金屬或稀有金屬的燐光體)不僅昂貴,也對環境有潛在的危害。此外,由於燐光體材料會不均勻地累積及/或分布在LED晶片上,分布在白光發光二極體裝置表面的相關色溫(correlated color temperature,CCT)會產生變化,因而降低光提取效率並對發光裝置產生非預期的演色特性。However, the wavelength conversion materials of white light LEDs (usually transition metals or rare metal phosphors) are not only expensive, but also potentially harmful to the environment. In addition, because the phosphor material will be unevenly accumulated and/or distributed on the LED chip, the correlated color temperature (CCT) distributed on the surface of the white light emitting diode device will change, thus reducing the light extraction efficiency and The light emitting device produces unexpected color rendering characteristics.

鑑於上述,現有技術有必要提供一種改良的白光LED以及透過利用新穎材料以轉換波長的製造方法。In view of the above, it is necessary in the prior art to provide an improved white light LED and a manufacturing method for converting the wavelength through the use of novel materials.

為了給讀者提供基本的理解,以下提供本揭示內容的簡要發明內容。此發明內容不是本揭示內容的廣泛概述,同時非用來識別本發明的關鍵/必需元件或勾勒本發明的範圍。其唯一目的是以簡化的概念形式呈現本揭示內容的一些概念,以作為呈現於後文中更詳細描述的序言。In order to provide readers with a basic understanding, the following provides a brief summary of the disclosure. This summary of the invention is not an extensive overview of the disclosure, and is not intended to identify the key/essential elements of the invention or outline the scope of the invention. Its sole purpose is to present some concepts of this disclosure in a simplified conceptual form as a prelude to the more detailed description presented later.

如本文例示及廣泛描述的,本揭示內容旨在提供一種改良的白光發光二極體(LED)封裝結構,以及一種透過利用金量子團簇作為波長轉換材料以製造該封裝結構的方法,藉此,所產生的LED可發出具有期望CCT的預定波長。As exemplified and broadly described herein, the present disclosure aims to provide an improved white light emitting diode (LED) packaging structure and a method for manufacturing the packaging structure by using gold quantum clusters as wavelength conversion materials, thereby , The produced LED can emit a predetermined wavelength with the desired CCT.

在一態樣中,本揭示內容提供一種LED封裝結構。根據本揭示內容的某些實施方式,LED封裝結構包含基板以及設置在基板上的發光單元。發光單元的結構包含:一氮化鎵系的半導體,以及一封裝該氮化鎵系的聚合物層。聚合物層包含樹脂以及分散於其中的至少一複合螢光金量子團簇(composite fluorescent gold nanocluster)。各複合螢光金量子團簇包含一金量子團簇以及一包覆至少一部分之該金量子團簇外表面的包覆層。所述包覆層是由一含苯化合物組成的基質以及複數個分布在該基質中的含膦(phosphine)化合物所組成。.In one aspect, the present disclosure provides an LED packaging structure. According to some embodiments of the present disclosure, the LED package structure includes a substrate and a light emitting unit provided on the substrate. The structure of the light-emitting unit includes a gallium nitride semiconductor and a polymer layer encapsulating the gallium nitride. The polymer layer includes a resin and at least one composite fluorescent gold nanocluster (composite fluorescent gold nanocluster) dispersed therein. Each composite fluorescent gold quantum cluster includes a gold quantum cluster and a coating layer covering at least a part of the outer surface of the gold quantum cluster. The coating layer is composed of a matrix composed of a benzene-containing compound and a plurality of phosphine-containing compounds distributed in the matrix. .

在某些非必要實施方式中,所述氮化鎵系半導體是設以發出波長介於395 nm至495 nm的光。In some optional embodiments, the gallium nitride-based semiconductor is configured to emit light with a wavelength between 395 nm and 495 nm.

在某些非必要實施方式,氮化鎵系半導體是設以發出波長短於395 nm的光。接著,所述聚合物層更包含分布在該樹脂中的複數個發光碳奈米粒子,且可分別發射波長介於400 nm至500 nm的光。In some optional embodiments, the GaN-based semiconductor is designed to emit light with a wavelength shorter than 395 nm. Then, the polymer layer further includes a plurality of luminescent carbon nano particles distributed in the resin, and can respectively emit light with a wavelength between 400 nm and 500 nm.

根據本揭示內容的實施方式,含苯化合物系選自由苯、烷基苯(alkylbenzene)、鹵代苯(halobenzene)、酚(phenol)、苯甲酸(benzoic acid)、苯乙酮(acetophenone)、苯甲酸甲酯(methyl benzoate)、苯甲醚(anisole)、苯胺(aniline)、硝基苯(nitrobenzene)、苄腈(benzonitrile)、苯甲醯胺(benzamide)、苯磺酸(benzenesulfonic acid)、萘(naphthalene)以及蒽(anthracene)所組成之群組。舉例來說,所述烷基苯可以是甲苯(toluene)、異丙苯(cumene)、乙苯(ethylbenzene)、苯乙烯(styrene)或二甲苯(xylene);以及所述鹵代苯可以是氟苯(fluorobenzene)、氯苯(chlorobenzene)、溴苯(bromobenzene)或碘苯(iodobenzene)。根據本揭示內容內容的某些實施例,含苯化合物為甲苯。According to an embodiment of the present disclosure, the benzene-containing compound is selected from benzene, alkylbenzene, halobenzene, phenol, benzoic acid, acetophenone, benzene Methyl benzoate, anisole, aniline, nitrobenzene, benzonitrile, benzamide, benzenesulfonic acid, naphthalene (naphthalene) and anthracene (anthracene). For example, the alkylbenzene may be toluene, cumene, ethylbenzene, styrene or xylene; and the halogenated benzene may be fluorine. Benzene (fluorobenzene), chlorobenzene (chlorobenzene), bromobenzene (bromobenzene) or iodobenzene (iodobenzene). According to certain embodiments of the present disclosure, the benzene-containing compound is toluene.

根據本揭示內容的實施方式,複數個含膦化合物係選自由膦、氧化膦(phosphine oxide)、鏻化合物(phosphonium)、雙膦(diphosphine)、三膦(triphosphine)、烷基膦(alkyl phosphine)、環烷基膦(cycloalkyl phosphine)、芳基膦(aryl phosphine)、氧化芳基膦(aryl phosphine oxide)、苯基膦(phenyl phosphine)、雙牙膦(bidentate phosphine)、膦的聚矽氧衍生物(silicone derivative of phosphine)、膦的矽氧烷或聚矽烷衍生物(siloxane or polysilane derivative of phosphin)以及烯膦(olefinic phosphine)所組成之群組。在某些實施例中,含膦化合物可以是烷基膦,例如三辛基膦(trioctylphosphine,TOP)。在某些實施例中,含膦化合物氧化是芳基膦,例如氧化三辛基膦(trioctylphosphine oxide,TOPO)。或者是,在替代性實施例中,含膦化合物是苯基膦,例如三苯基膦 (triphenylphosphine,TPP)。According to an embodiment of the present disclosure, the plurality of phosphine-containing compounds are selected from phosphine, phosphine oxide, phosphonium, diphosphine, triphosphine, and alkyl phosphine. , Cycloalkyl phosphine, aryl phosphine, aryl phosphine oxide, phenyl phosphine, bidentate phosphine, polysiloxane derivatives of phosphine The group consisting of silicone derivative of phosphine, siloxane or polysilane derivative of phosphin and olefinic phosphine. In certain embodiments, the phosphine-containing compound may be an alkyl phosphine, such as trioctylphosphine (TOP). In certain embodiments, the phosphine-containing compound oxide is an aryl phosphine, such as trioctylphosphine oxide (TOPO). Alternatively, in an alternative embodiment, the phosphine-containing compound is phenylphosphine, such as triphenylphosphine (TPP).

本揭示內容的另一態樣是關於製造LED封裝結構的方法。本發明方法包含:(a)提供一基板;(b) 將一氮化鎵系半導體電力連接至該基板上;(c) 以一漿體覆蓋該氮化鎵系半導體,該漿體包含一樹脂以及複數個複合螢光金量子團簇;以及(d) 對覆蓋在該氮化鎵系半導體上的漿體固化一足夠時間,以形成一固化的聚合物層,藉此產生LED封裝結構。此外,各複合螢光金量子團簇包含一金量子團簇以及一包覆至少一部分之該金量子團簇外表面的包覆層。所述包覆層是由一含苯化合物組成的基質以及複數個分布在該基質中的膦(phosphine)系化合物所組成。Another aspect of the present disclosure relates to a method of manufacturing an LED package structure. The method of the present invention includes: (a) providing a substrate; (b) electrically connecting a gallium nitride semiconductor to the substrate; (c) covering the gallium nitride semiconductor with a slurry, the slurry containing a resin And a plurality of composite fluorescent gold quantum clusters; and (d) curing the slurry covering the gallium nitride semiconductor for a sufficient time to form a cured polymer layer, thereby producing an LED package structure. In addition, each composite fluorescent gold quantum cluster includes a gold quantum cluster and a coating layer covering at least a part of the outer surface of the gold quantum cluster. The coating layer is composed of a matrix composed of a benzene compound and a plurality of phosphine compounds distributed in the matrix.

在某些非必要實施方式中,所述氮化鎵系半導體是設以發出波長介於395 nm至495 nm的光。In some optional embodiments, the gallium nitride-based semiconductor is configured to emit light with a wavelength between 395 nm and 495 nm.

在某些非必要實施方式,氮化鎵系半導體是設以發出波長短於395 nm的光。在前述實施方式中,步驟(c)的漿體更包複數個發光碳奈米粒子,其分散在該樹脂中且發出一波長介於400 nm至500 nm之的光。In some optional embodiments, the GaN-based semiconductor is designed to emit light with a wavelength shorter than 395 nm. In the foregoing embodiment, the slurry in step (c) further includes a plurality of luminescent carbon nano-particles, which are dispersed in the resin and emit light with a wavelength between 400 nm and 500 nm.

根據本揭示內容的實施方式,該含苯化合物是選自由苯、烷基苯、鹵代苯、酚、苯甲酸、苯乙酮、苯甲酸甲酯、苯甲醚、苯胺、硝基苯、苄腈、苯甲醯胺、苯磺酸、萘以及蒽所組成之群組。According to an embodiment of the present disclosure, the benzene-containing compound is selected from benzene, alkylbenzene, halogenated benzene, phenol, benzoic acid, acetophenone, methyl benzoate, anisole, aniline, nitrobenzene, benzyl The group consisting of nitriles, benzamide, benzenesulfonic acid, naphthalene and anthracene.

較佳地,所述烷基苯是甲苯、異丙苯、乙苯、苯乙烯或二甲苯;且所述鹵代苯是氟苯、氯苯、溴苯或碘苯。根據本揭示內容的某些實施方式,所述含苯化合物是甲苯。Preferably, the alkylbenzene is toluene, cumene, ethylbenzene, styrene or xylene; and the halogenated benzene is fluorobenzene, chlorobenzene, bromobenzene or iodobenzene. According to certain embodiments of the present disclosure, the benzene-containing compound is toluene.

根據本揭示內容的實施方式,複數個含膦化合物是選自由膦、氧化膦、鏻化合物、雙膦、三膦、烷基膦、環烷基膦、芳基膦、氧化芳基膦、苯基膦、雙牙膦、膦的聚矽氧衍生物、膦的矽氧烷或聚矽烷衍生物以及烯膦所組成的群組。在某些實施例中,含膦化合物氧化是芳基膦,例如氧化三辛基膦。在某些實施例中,含膦化合物可以是烷基膦,例如三辛基膦。含膦化合物也可以是苯基膦,例如三苯基膦。According to an embodiment of the present disclosure, the plurality of phosphine-containing compounds are selected from phosphine, phosphine oxide, phosphonium compound, bisphosphine, triphosphine, alkyl phosphine, cycloalkyl phosphine, aryl phosphine, aryl phosphine oxide, phenyl Phosphine, bidentate phosphine, polysiloxane derivatives of phosphine, siloxane or polysilane derivatives of phosphine, and ene phosphine. In certain embodiments, the phosphine-containing compound oxidation is an arylphosphine, such as trioctylphosphine oxide. In certain embodiments, the phosphine-containing compound may be an alkyl phosphine, such as trioctyl phosphine. The phosphine-containing compound may also be phenylphosphine, such as triphenylphosphine.

藉由上述設計,所產生的LED封裝結構包含一發光單元,其內部則均勻分布著可用於波長轉換的複合螢光金量子團簇。可理解的是,本揭示內容LED的螢光強度及色溫可隨著本發明複合螢光金量子團簇之濃度與體積變化而調整。With the above design, the resulting LED package structure includes a light-emitting unit, in which composite fluorescent gold quantum clusters that can be used for wavelength conversion are uniformly distributed. It is understandable that the fluorescent intensity and color temperature of the LED of the present disclosure can be adjusted according to the concentration and volume of the composite fluorescent gold quantum cluster of the present invention.

此外,本揭示內容方法的特徵在於製作本發明複合螢光金量子團簇的製程中不使用任何還原劑,因此本發明LED封裝結構不含有還原劑所可能導致或相關的毒性,藉以賦予本發明LED封裝結構的安全性。In addition, the method of the present disclosure is characterized in that no reducing agent is used in the process of making the composite fluorescent gold quantum clusters of the present invention. Therefore, the LED package structure of the present invention does not contain the toxicity that may be caused by or related to the reducing agent, thereby giving the present invention The safety of LED packaging structure.

在參閱下文實施方式後,本發明所屬技術領域中具有通常知識者當可輕易瞭解本發明之基本精神及其他發明目的,以及本發明所採用之技術手段與實施態樣。After referring to the following embodiments, those skilled in the art to which the present invention belongs can easily understand the basic spirit and other purposes of the present invention, as well as the technical means and implementation aspects of the present invention.

為了使本揭示內容的敘述更加詳盡與完備,下文針對了本發明的實施態樣與具體實施例提出了說明性的描述;但這並非實施或運用本發明具體實施例的唯一形式。實施方式中涵蓋了多個具體實施例的特徵以及用以建構與操作這些具體實施例的方法步驟與其順序。然而,亦可利用其他具體實施例來達成相同或均等的功能與步驟順序。In order to make the description of the present disclosure more detailed and complete, the following provides an illustrative description for the implementation aspects and specific embodiments of the present invention; but this is not the only way to implement or use the specific embodiments of the present invention. The implementation manners cover the characteristics of a number of specific embodiments and the method steps and sequences used to construct and operate these specific embodiments. However, other specific embodiments can also be used to achieve the same or equal functions and sequence of steps.

I.  定義I. Definition

為了便於說明,此處統整性地說明本說明書、實施例以及後附的申請專利範圍中所記載的特定術語。除非本說明書另有定義,此處所用的科學與技術詞彙之含義與本發明所屬技術領域中具有通常知識者所理解與慣用的意義相同。此外,在不和上下文衝突的情形下,本說明書所用的單數名詞涵蓋該名詞的複數型;而所用的複數名詞時亦涵蓋該名詞的單數型。具體而言,除非上下文另有明確說明,本文和後附的申請專利範圍所使用的單數形式「一」(a及an)包含複數形式。此外,在本說明書與申請專利範圍中,「至少一」(at least one)與「一或更多」(one or more)等表述方式的意義相同,兩者都代表包含了一、二、三或更多。For ease of description, here is a comprehensive description of specific terms described in this specification, embodiments, and the appended patent scope. Unless otherwise defined in this specification, the scientific and technical terms used herein have the same meanings as understood and used by those with ordinary knowledge in the technical field of the present invention. In addition, without conflict with context, the singular nouns used in this specification cover the plural nouns; and the plural nouns also cover the singular nouns. Specifically, unless the context clearly indicates otherwise, the singular form "one" (a and an) used in the scope of the patent application herein and appended includes plural forms. In addition, in this specification and the scope of the patent application, expressions such as "at least one" and "one or more" have the same meaning, and both of them mean that they include one, two, and three. Or more.

雖然用以界定本發明較廣範圍的數值範圍與參數皆是約略的數值,此處已盡可能精確地呈現具體實施例中的相關數值。然而,任何數值本質上不可避免地含有因個別測試方法所致的標準偏差。在此處,「約」(about)通常係指實際數值在一特定數值或範圍的正負10%、5%、1%或0.5%之內。或者是,「約」一詞代表實際數值落在平均值的可接受標準誤差之內,視本發明所屬技術領域中具有通常知識者的考量而定。除了實驗例之外,或除非另有明確的說明,當可理解此處所用的所有範圍、數量、數值與百分比(例如用以描述材料用量、時間長短、溫度、操作條件、數量比例及其他相似者)均經過「約」的修飾。因此,除非有相反的說明,本說明書與附隨申請專利範圍所揭示的數值參數皆為約略的數值,且可視需求而更動。至少應將這些數值參數理解為所指出的有效位數與套用一般進位法所得到的數值。Although the numerical ranges and parameters used to define the wider range of the present invention are approximate numerical values, the relevant numerical values in the specific embodiments are presented here as accurately as possible. However, any value inherently inevitably contains the standard deviation due to individual test methods. Here, "about" usually means that the actual value is within plus or minus 10%, 5%, 1% or 0.5% of a specific value or range. Or, the word "about" means that the actual value falls within the acceptable standard error of the average value, depending on the consideration of a person with ordinary knowledge in the technical field of the present invention. Except for the experimental examples, or unless otherwise clearly stated, all ranges, quantities, values and percentages used herein (for example, used to describe the amount of material, length of time, temperature, operating conditions, quantity ratio and other similar Those) have been modified by "about". Therefore, unless otherwise stated, the numerical parameters disclosed in this specification and the accompanying patent scope are approximate values and can be changed as required. At least these numerical parameters should be understood as the indicated effective number of digits and the value obtained by applying the general carry method.

本文使用的「波長轉換」或「可波長轉換」(wavelength-convertible)一詞是某些材料得以吸收一發光顏色之波長並將其轉換成另一發光顏色的波長的能力,藉此產生期望的發光顏色。The term "wavelength-convertible" or "wavelength-convertible" as used herein refers to the ability of certain materials to absorb the wavelength of one light-emitting color and convert it into the wavelength of another light-emitting color, thereby producing the desired Luminous color.

本文使用的「量子團簇」(nanoclusters)一詞是指小數目(例如2至數百個原子)的貴金屬原子(例如金或銀原子)的集合,該些貴金屬原子的的物理尺寸接近一電子的費米(Fermi)波長。量子團簇(像是本揭示內容的金量子團簇)的直徑一般介於約0.1至約 3 nm之間。本揭示內容的量子團簇是螢光金量子團簇,當被暴露於一波長(激發 波長)的光時,得以發出另一波長(發射波長)的光。The term "nanoclusters" as used herein refers to a small number (e.g. 2 to hundreds of atoms) of noble metal atoms (e.g. gold or silver atoms). The physical size of these noble metal atoms is close to an electron. Fermi (Fermi) wavelength. The diameter of quantum clusters (such as the gold quantum clusters of the present disclosure) is generally between about 0.1 to about 3 nm. The quantum clusters of the present disclosure are fluorescent gold quantum clusters, which can emit light of another wavelength (emission wavelength) when exposed to light of one wavelength (excitation wavelength).

本文使用的「螢光」(fluorescence)或(fluorescent)一詞是指一種物理現象,即某些化合物可吸收與發射不同波長的光線之能力。當吸收了第一波長的光(光子)後,會發射出具有不同能量之第二波長的光子。本文使用的「位移」或「偏移」(shift)等詞語是指螢光發射圖譜中一或多個具有最大振幅點的波峰移動到較長波長範圍。位移可發生在電磁頻譜上的任何位置。As used herein, the term "fluorescence" or (fluorescent) refers to a physical phenomenon, that is, the ability of certain compounds to absorb and emit light of different wavelengths. After absorbing the light (photon) of the first wavelength, it will emit the photon of the second wavelength with different energy. Words such as "shift" or "shift" as used herein refer to the shift of one or more peaks with the largest amplitude point in the fluorescence emission spectrum to a longer wavelength range. Displacement can occur anywhere on the electromagnetic spectrum.

本文使用的「含膦化合物」(phosphine-based compound)一詞使指具有至少一個膦基(例如膦、氧化膦、鏻化合物或苯膦等形式)的化合物。含苯化合物包含本領愈具有通常知識者所知的初級膦、二級膦以及三級膦。這些含膦化合物具有同的化學特性,像是強烈的穿透氣味及高氧化能力。The term "phosphine-based compound" as used herein refers to a compound having at least one phosphine group (for example, in the form of phosphine, phosphine oxide, phosphonium compound, or phenylphosphine). The benzene-containing compound includes primary phosphines, secondary phosphines and tertiary phosphines known to those skilled in the art. These phosphine-containing compounds have the same chemical properties, such as strong penetrating odor and high oxidizing ability.

II.  本發明具體描述II. Detailed description of the invention

本發明旨在提供有著優異演色性及理想色溫的一改良LED。再者,由於釔鋁石榴石(yttrium-aluminum-garnet,YAG)螢光材料(一種用於製造LED波長轉換燐光體的主要材料)具有毒性,且可能造成環境汙染,本發明的目的也包含提供一種改良的LED,其利用由金量子團簇作為新穎波長轉換材料,來解決上述YAG螢光材料的問題。The present invention aims to provide an improved LED with excellent color rendering and ideal color temperature. Furthermore, since the yttrium-aluminum-garnet (YAG) fluorescent material (a main material used to make LED wavelength conversion phosphors) is toxic and may cause environmental pollution, the purpose of the present invention also includes providing An improved LED, which uses gold quantum clusters as a novel wavelength conversion material to solve the above-mentioned YAG fluorescent material problem.

據此,本揭示內容的一態樣是一LED封裝結構,特別是白光LED封裝結構。配合參考第1A及1B圖。Accordingly, one aspect of the present disclosure is an LED packaging structure, especially a white light LED packaging structure. Refer to Figures 1A and 1B for cooperation.

第1A圖是根據本揭示內容一實施方式的例示性LED封裝結構繪示的剖面圖。LED封裝結構100包含基板102以及構建在該基板102上的發光單元104。為達成前述目的,可使用具有預沉積的LED產業常用之材料(例如氮或氧)層的基板(例如氧化鋁基板等等)來構建本發明LED封裝結構。據此,透過任何本領域習知的方法在基板102上分別製作(例如光阻蝕刻)一凹部1022、一正金屬端子1024(作為正電極)以及一負金屬端子1026(作為負電極)。接著將具有p型電極及n型電極的氮化鎵系半導體1042設置在凹部1022中,並設於該正金屬端子1024之上。氮化鎵系半導體1042的p型和n型電極(未示於第1A圖)藉由兩條導線1044分別與正金屬端子1024以及負金屬端子1026電力連接。在某些實施方式中,氮化鎵系半導體1042可包含一選自由氮化銦鎵(indium gallium nitride,InGaN)、氮化鎵(gallium nitride,GaN)、氮化鋁鎵(aluminum gallium nitride,AlGaN)以及其組合所組成之群組的材料。應當理解的是,作為舉例說明,第1A圖中繪示的氮化鎵系半導體1042僅是一晶片類型,然不受此限。1A is a cross-sectional view of an exemplary LED package structure according to an embodiment of the present disclosure. The LED packaging structure 100 includes a substrate 102 and a light emitting unit 104 built on the substrate 102. To achieve the foregoing objectives, a substrate (such as an aluminum oxide substrate, etc.) with a pre-deposited material (such as nitrogen or oxygen) layer commonly used in the LED industry can be used to construct the LED package structure of the present invention. Accordingly, a recess 1022, a positive metal terminal 1024 (as a positive electrode), and a negative metal terminal 1026 (as a negative electrode) are respectively formed on the substrate 102 by any method known in the art (for example, photoresist etching). Next, a gallium nitride-based semiconductor 1042 having a p-type electrode and an n-type electrode is placed in the recess 1022 and placed on the positive metal terminal 1024. The p-type and n-type electrodes (not shown in FIG. 1A) of the gallium nitride-based semiconductor 1042 are electrically connected to the positive metal terminal 1024 and the negative metal terminal 1026 through two wires 1044, respectively. In some embodiments, the gallium nitride-based semiconductor 1042 may include a material selected from the group consisting of indium gallium nitride (InGaN), gallium nitride (GaN), and aluminum gallium nitride (AlGaN). ) And the materials of the group formed by its combination. It should be understood that, as an example, the GaN-based semiconductor 1042 shown in FIG. 1A is only a wafer type, but it is not limited thereto.

接著,將包含樹脂及至少一複合螢光金量子團簇110的漿體倒入基板102的凹部1022中,直到該氮化鎵系半導體1042完全浸入其中。進行固化之後,漿體被固化並組成包覆氮化鎵系半導體1024的一聚合物層1046,藉此產生發光單元104。在某些實施方式中,漿體是樹脂,較佳為光固化樹脂,以及複數個複合螢光金量子團簇110的混合物。根據本揭示內容的某些實施方式,該複合螢光金量子團簇110是先懸浮於一巨分子溶液中,再以1:1至1:32的體積比例與樹脂混合,較佳以1:1的體積比例與樹脂混合。固化該漿體之後,複數個複合螢光金量子團簇110分散散佈在樹脂中,藉此形成一固化的聚合物層1046(如第1A圖所示)。Next, the slurry containing resin and at least one composite fluorescent gold quantum cluster 110 is poured into the recess 1022 of the substrate 102 until the GaN-based semiconductor 1042 is completely immersed therein. After curing, the slurry is cured to form a polymer layer 1046 covering the gallium nitride-based semiconductor 1024, thereby producing the light-emitting unit 104. In some embodiments, the slurry is a resin, preferably a photocurable resin, and a mixture of a plurality of composite fluorescent gold quantum clusters 110. According to some embodiments of the present disclosure, the composite fluorescent gold quantum cluster 110 is first suspended in a macromolecular solution, and then mixed with the resin in a volume ratio of 1:1 to 1:32, preferably 1: The volume ratio of 1 is mixed with the resin. After curing the slurry, a plurality of composite fluorescent gold quantum clusters 110 are dispersed and dispersed in the resin, thereby forming a cured polymer layer 1046 (as shown in FIG. 1A).

光固化樹脂的實例包含但不限於,1-羥基環己基苯基酮(1-hydroxycyclohexyl phenyl ketone);2-苄基-2-(二甲胺基)-4'-嗎啉代苯丁酮(2-benzyl-2-(dimethylamino)-4’-morpholinobutyrophenone);2-羥基-2-甲基苯丙酮(2-hydroxy-2-methylpropiophenone,HMPP);2,4,6-三甲基苯醯基二苯基氧化膦(2,4,6-trimethylbenzoyl diphenylphosphine oxide,Lucirin® TPO);HMPP及TPO各50-50的摻合物;2,2-二甲氧基-2-苯基苯乙酮(2,2-dimethoxy-2-phenylacetophenone,BDK);或 1-羥基-2-丁酮(1-hydroxy-2-butanone)。在本揭示內容某些實施方式中,光固化樹脂是HMPP。Examples of photocurable resins include, but are not limited to, 1-hydroxycyclohexyl phenyl ketone; 2-benzyl-2-(dimethylamino)-4'-morpholino phenyl ketone ( 2-benzyl-2-(dimethylamino)-4'-morpholinobutyrophenone); 2-hydroxy-2-methylpropiophenone (HMPP); 2,4,6-trimethylphenanyl Diphenyl phosphine oxide (2,4,6-trimethylbenzoyl diphenylphosphine oxide, Lucirin® TPO); a blend of 50-50 each of HMPP and TPO; 2,2-dimethoxy-2-phenylacetophenone ( 2,2-dimethoxy-2-phenylacetophenone, BDK); or 1-hydroxy-2-butanone (1-hydroxy-2-butanone). In certain embodiments of the present disclosure, the photocurable resin is HMPP.

以一合適溶劑(例如水、酒精等等)溶解聚合物,藉此組成膠體或漿體之巨分子溶液。聚合物的實例包含但不限於:聚(乙二醇)二丙烯酸酯(poly(ethylene glycol) diacrylate,PEGDA);聚(乙二醇)二甲基丙烯酸酯(poly(ethylene glycol) dimethacrylate);聚乙烯氫吡咯酮 (polyvinylpyrrolidone,PVP),其通常是指含有乙烯基吡咯酮(英文通常也稱為vinyl pyrrolidone、N-vinylpyrrolidone、N-vinyl-2-pyrrolidione及N-vinyl-2-pyrrolidinone)作為單體單元的聚合物;聚(N-異丙基丙烯醯胺);聚乙烯醇(polyvinylalcohol,PVA);以及聚環氧琥珀酸(polyepoxysuccinic acid,PESA)及其鹽類衍生物。在某些實施方式中,巨分子溶液是一PEGDA溶液(即,PEGDA的水溶液)。A suitable solvent (such as water, alcohol, etc.) is used to dissolve the polymer to form a colloidal or slurry macromolecular solution. Examples of polymers include, but are not limited to: poly(ethylene glycol) diacrylate (PEGDA); poly(ethylene glycol) dimethacrylate; poly(ethylene glycol) dimethacrylate; Polyvinylpyrrolidone (PVP), which usually refers to containing vinylpyrrolidone (also called vinyl pyrrolidone, N-vinylpyrrolidone, N-vinyl-2-pyrrolidione and N-vinyl-2-pyrrolidinone) as a single The polymer of the body unit; poly(N-isopropylacrylamide); polyvinyl alcohol (PVA); and polyepoxysuccinic acid (PESA) and its salt derivatives. In some embodiments, the macromolecule solution is a PEGDA solution (ie, an aqueous solution of PEGDA).

參考第1B圖,其係根據本揭示內容一實施方式之複合螢光金量子團簇110的示意圖。如圖所繪,複合螢光金量子團簇110包含一金量子團簇1110以及一包覆層1120。Refer to FIG. 1B, which is a schematic diagram of a composite fluorescent gold quantum cluster 110 according to an embodiment of the present disclosure. As shown in the figure, the composite fluorescent gold quantum cluster 110 includes a gold quantum cluster 1110 and a coating layer 1120.

具體地,金量子團簇1110是由多個金原子1110'所構成。應當理解的是,雖然第1B圖是繪成以金量子團簇1110以特定數量的金原子1110'所構成,然本揭示內容之實施方式不限於此;事實上,可以集結數個到數十個不等的適當數量之金原子1110',以形成金量子團簇1110。較佳的例子中,本發明金量子團簇1110包含2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49或50個原子。在其他較佳的實施方式中,金量子團簇1110包含2至30個原子、5至25個原子、5至20個原子或5至15個原子。一般來說,金量子團簇1110的直徑大約是0.1至3 nm;在較佳的例子中,其直徑小於2 nm。Specifically, the gold quantum cluster 1110 is composed of multiple gold atoms 1110'. It should be understood that although Figure 1B is drawn as a gold quantum cluster 1110 composed of a specific number of gold atoms 1110', the implementation of the present disclosure is not limited to this; in fact, several to dozens can be assembled. A unequal and appropriate number of gold atoms 1110' to form a gold quantum cluster 1110. In a preferred example, the gold quantum cluster 1110 of the present invention includes 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 atoms. In other preferred embodiments, the gold quantum cluster 1110 contains 2 to 30 atoms, 5 to 25 atoms, 5 to 20 atoms, or 5 to 15 atoms. Generally speaking, the diameter of the gold quantum cluster 1110 is about 0.1 to 3 nm; in a preferred example, the diameter is less than 2 nm.

如第1B圖所示,包覆層1120包含一含苯化合物所組成的基質1122以及分布於該基質1122中的複數個含膦化合物1124。包覆層1120覆蓋整個金量子團簇1110(第1B圖)。在其他非必要的實施方式,包覆層1120僅包覆或覆蓋一部分的金量子團簇1110之外表面,或是金量子團簇1110外表面的多個部分。As shown in FIG. 1B, the coating layer 1120 includes a matrix 1122 composed of a benzene-containing compound and a plurality of phosphine-containing compounds 1124 distributed in the matrix 1122. The coating layer 1120 covers the entire gold quantum cluster 1110 (Figure 1B). In other optional embodiments, the coating layer 1120 only covers or covers a part of the outer surface of the gold quantum cluster 1110 or multiple parts of the outer surface of the gold quantum cluster 1110.

根據本揭示內容的實施方式,可以多種方法製備本發明的複合螢光金量子團簇110。較佳的是各方法皆包含以下步驟:(a) 以莫耳比約1:0.5至1:5的比例混合三氯化金(gold(III) chloride,AuCl 3)以及一含苯化合物,以產生第一螢光金量子團簇;(b) 以一能源(其選自由紫外光能、音能、熱能、微波極其組合所組成的群組)處理該第一螢光金量子團簇,以產生第二螢光金量子團簇;以及(c)以一含膦化合物修飾步驟(b)的第二螢光金量子團簇,以產生本發明複合螢光金量子團簇。應注意的是,所述方法不需要使用還原劑。 According to the embodiments of the present disclosure, the composite fluorescent gold quantum cluster 110 of the present invention can be prepared in various ways. Preferably, each method includes the following steps: (a) Mixing gold(III) chloride (AuCl 3 ) and a benzene-containing compound in a molar ratio of about 1:0.5 to 1:5 Generate the first fluorescent gold quantum cluster; (b) Treat the first fluorescent gold quantum cluster with an energy source (which is selected from the group consisting of ultraviolet light energy, sound energy, heat energy, microwave, and combinations thereof) to Generating a second fluorescent gold quantum cluster; and (c) modifying the second fluorescent gold quantum cluster of step (b) with a phosphine-containing compound to produce a composite fluorescent gold quantum cluster of the present invention. It should be noted that the method does not require the use of a reducing agent.

含苯化合物的實例包含但不限於, 苯、烷基苯(alkylbenzene)(例如甲苯(toluene)、異丙苯(cumene)、乙苯(ethylbenzene)、苯乙烯(styrene)與二甲苯(xylene))、鹵代苯(halobenzene)(例如氟苯(fluorobenzene)、氯苯(chlorobenzene)、溴苯(bromobenzene)以及碘苯(iodobenzene))、含氧苯(例如:酚(phenol)、苯甲酸(benzoic acid)、苯乙酮(acetophenone)、苯甲酸甲酯(methyl benzoate)以及苯甲醚(anisole))、含氮苯(例如:苯胺(aniline)、硝基苯(nitrobenzene)、苄腈(benzonitrile)以及苯甲醯胺(benzamide))、含硫苯(例如:苯磺酸(benzenesulfonic acid))、或是聚芳香族(例如:萘(naphthalene)以及蒽(anthracene))。根據某些實施例,含苯化合物是甲苯。Examples of benzene-containing compounds include, but are not limited to, benzene, alkylbenzene (such as toluene, cumene, ethylbenzene, styrene, and xylene) , Halobenzene (such as fluorobenzene, chlorobenzene, bromobenzene, and iodobenzene), oxygen-containing benzene (such as phenol, benzoic acid) ), acetophenone, methyl benzoate and anisole), nitrogen-containing benzene (e.g. aniline, nitrobenzene, benzonitrile) and Benzamide), sulfur-containing benzene (e.g., benzenesulfonic acid), or polyaromatic (e.g., naphthalene and anthracene). According to certain embodiments, the benzene-containing compound is toluene.

再者,含膦化合物也是本領域技術人員所習知的 ,合適的含膦化合物實例包含但不限於膦、氧化膦(phosphine oxide)、鏻化合物(phosphonium)、雙膦(diphosphine)、三膦(triphosphine)、烷基膦(alkyl phosphine)、環烷基膦(cycloalkyl phosphine)、芳基膦(aryl phosphine)、氧化芳基膦(aryl phosphine oxide)、苯基膦(phenyl phosphine)、雙牙膦(bidentate phosphine)、膦的聚矽氧衍生物(silicone derivative of phosphine)、膦的矽氧烷或聚矽烷衍生物(siloxane or polysilane derivative of phosphin)以及烯膦(olefinic phosphine)。在某些實施例中,含膦化合物是含膦化合物是烷基膦,例如三辛基膦(trioctylphosphine,TOP)。其他實施例的含膦化合物則是芳基膦,例如氧化三辛基膦(trioctylphosphine oxide,TOPO)。在其他實施例中,含膦化合物是苯基膦,例如三苯基膦 (triphenylphosphine,TPP)。Furthermore, phosphine-containing compounds are also well known to those skilled in the art. Examples of suitable phosphine-containing compounds include but are not limited to phosphine, phosphine oxide, phosphonium, diphosphine, and triphosphine ( triphosphine, alkyl phosphine, cycloalkyl phosphine, aryl phosphine, aryl phosphine oxide, phenyl phosphine, bidentate ( bidentate phosphine, silicone derivative of phosphine, siloxane or polysilane derivative of phosphin and olefinic phosphine. In certain embodiments, the phosphine-containing compound is an alkyl phosphine, such as trioctylphosphine (TOP). The phosphine-containing compounds in other embodiments are aryl phosphines, such as trioctylphosphine oxide (TOPO). In other embodiments, the phosphine-containing compound is phenylphosphine, such as triphenylphosphine (TPP).

根據本揭示內容,LED封裝結構100的發光單元104是設以根據內含的摻雜材料發出具有預定波長的光。複合螢光金量子團簇110是設以發出具有第一波長的第一光,同時吸收至少一部份氮化鎵系半導體1042所發射的光,並發出具有第二波長的第二光,其中第一波長與第二波長相異。最後,氮化鎵系半導體1042發射的未吸收光以及複合螢光金量子團簇110發射的第二光可彼此結合以產生期望的光顏色(例如白光)。According to the present disclosure, the light emitting unit 104 of the LED package structure 100 is configured to emit light having a predetermined wavelength according to the contained dopant material. The composite fluorescent gold quantum cluster 110 is configured to emit a first light having a first wavelength, while absorbing at least a part of the light emitted by the gallium nitride-based semiconductor 1042, and emitting a second light having a second wavelength, wherein The first wavelength is different from the second wavelength. Finally, the unabsorbed light emitted by the gallium nitride-based semiconductor 1042 and the second light emitted by the composite fluorescent gold quantum cluster 110 can be combined with each other to generate a desired light color (for example, white light).

具體來說,根據本揭示內容的某些實施方式,複合螢光金量子團簇110的原始波長是介於約500 nm至約590 nm之間,例如500、505、510、515、520、525、530、535、540、545、550、555、560、565、570、575、580、585以及590 nm。當受到發光單元104激發並轉換第二光之波長之後,經轉換之波長的發射波峰是介於約 550 nm至約680 nm之間,像是550、555、560、565、570、575、580、585、590、595、600、605、610、615、620、625、630、635、640、645、650、655、660、665、670、675以及680 nm。在某些具體實施例中,第二峰值是約550 nm 至600 nm。在其他具體實施例中,第二峰值是約 600 nm 至675 nm (即,橘色及/或紅色光)。Specifically, according to certain embodiments of the present disclosure, the original wavelength of the composite fluorescent gold quantum cluster 110 is between about 500 nm and about 590 nm, such as 500, 505, 510, 515, 520, 525 , 530, 535, 540, 545, 550, 555, 560, 565, 570, 575, 580, 585 and 590 nm. After being excited by the light-emitting unit 104 and converting the wavelength of the second light, the emission peak of the converted wavelength is between about 550 nm and about 680 nm, such as 550, 555, 560, 565, 570, 575, 580 , 585, 590, 595, 600, 605, 610, 615, 620, 625, 630, 635, 640, 645, 650, 655, 660, 665, 670, 675 and 680 nm. In some embodiments, the second peak is about 550 nm to 600 nm. In other specific embodiments, the second peak is about 600 nm to 675 nm (ie, orange and/or red light).

根據本揭示內容一實施方式,在LED封裝結構100內,發光單元104的氮化鎵系半導體1042是InGaN/GaN半導體,發射具有介於395 nm至495 nm之波長的光(也就是藍光)。在此情況下,所述複合螢光金量子團簇110透過吸收該氮化鎵系半導體1042發射的藍光,藉此將發射光的波長從介於570 nm至590 nm之間轉換成介於600 nm至675 nm之間。因此,作為光疊加的結果(氮化鎵系半導體1042發射的原始藍光,加上複合螢光金量子團簇在波長轉換之前及之後分別產生的第一光及再發射的第二光),LED封裝結構100最後發射白光。According to an embodiment of the present disclosure, in the LED packaging structure 100, the gallium nitride-based semiconductor 1042 of the light-emitting unit 104 is an InGaN/GaN semiconductor, and emits light (ie, blue light) with a wavelength between 395 nm and 495 nm. In this case, the composite fluorescent gold quantum cluster 110 absorbs the blue light emitted by the GaN-based semiconductor 1042, thereby converting the wavelength of the emitted light from 570 nm to 590 nm to 600 nm. Between nm and 675 nm. Therefore, as a result of light superposition (the original blue light emitted by the gallium nitride-based semiconductor 1042, plus the first light and the second light re-emitted by the composite fluorescent gold quantum cluster before and after the wavelength conversion), the LED The package structure 100 finally emits white light.

參考第2圖,其根據本揭示內容另一實施方式繪示例示性LED封裝結構200之剖面圖。LED封裝結構200發射一白光,且其特徵在於具有複合螢光金量子團簇210作為波長轉換材料。LED封裝結構200的型態與前述LED封裝結構100的型態相似,且除了使用GaN/AlGaN半導體發射的波長短於395 nm之外,其餘是以相似的方式構建。另,封裝GaN/AlGaN半導體的聚合物層還包含分散在樹脂中的複數個發光碳奈米粒子220。如圖繪示,LED封裝結構200包含一基板202;以及一發光單元204,其包含GaN/AlGaN半導體2042以及封裝該GaN/AlGaN半導體2042的聚合物層2046。與前述用於構建第1A圖之LED封裝結構100的過程相似,將正金屬端子2024以及負金屬端子2026分別作為正電極及負電極,構築於基板202之上;接著,GaN/AlGaN半導體2042則設置在基板202的凹部2022中,正金屬端子2024的上面;GaN/AlGaN半導體2042則透過兩條導線2044電力連接至正金屬端子2024及負金屬端子2026。封裝GaN/AlGaN半導體2042的聚合物層2046則接著組成於凹部2022之中,藉此產生發光單元204。GaN/AlGaN半導體發射短於395 nm之波長,較佳地是介於約200 nm至395 nm之間。換句話說,GaN/AlGaN半導體發射一紫外光。除了樹脂及複數個複合螢光金量子團簇210之外,本實施方式的聚合物層2046更包含分散在樹脂的複數個發光碳奈米粒子220。具體實施時,以光固化樹脂、至少一複合螢光金量子團簇210以及複數個發光碳奈米粒子220的混合漿體充填基板202的凹部2022,藉以組成聚合物層2046。在某些實施方式中,複合螢光金量子團簇以及發光碳奈米粒子是以1:10至10:1的體積比例混合,較佳為以1:1的體積比例混合。固化(例如以熱固化或是暴露在光照下進行固化)之後,混合漿體固化成聚合物層2046,其中複合螢光金量子團簇210以及發光碳奈米粒子220是分散在樹脂中(如第2圖的示意)。Referring to FIG. 2, it shows a cross-sectional view of an exemplary LED package structure 200 according to another embodiment of the present disclosure. The LED packaging structure 200 emits a white light, and is characterized by having a composite fluorescent gold quantum cluster 210 as a wavelength conversion material. The type of the LED packaging structure 200 is similar to the type of the aforementioned LED packaging structure 100, and is constructed in a similar manner except that the wavelength emitted by the GaN/AlGaN semiconductor is shorter than 395 nm. In addition, the polymer layer encapsulating the GaN/AlGaN semiconductor also includes a plurality of luminescent carbon nanoparticles 220 dispersed in resin. As shown in the figure, the LED packaging structure 200 includes a substrate 202; and a light emitting unit 204, which includes a GaN/AlGaN semiconductor 2042 and a polymer layer 2046 for packaging the GaN/AlGaN semiconductor 2042. Similar to the aforementioned process for constructing the LED package structure 100 in Figure 1A, the positive metal terminal 2024 and the negative metal terminal 2026 are used as the positive electrode and the negative electrode, respectively, and are constructed on the substrate 202; then, the GaN/AlGaN semiconductor 2042 is The GaN/AlGaN semiconductor 2042 is disposed in the recess 2022 of the substrate 202 and above the positive metal terminal 2024; the GaN/AlGaN semiconductor 2042 is electrically connected to the positive metal terminal 2024 and the negative metal terminal 2026 through two wires 2044. The polymer layer 2046 encapsulating the GaN/AlGaN semiconductor 2042 is then formed in the recess 2022, thereby generating the light-emitting unit 204. The GaN/AlGaN semiconductor emits a wavelength shorter than 395 nm, preferably between about 200 nm and 395 nm. In other words, the GaN/AlGaN semiconductor emits an ultraviolet light. In addition to the resin and a plurality of composite fluorescent gold quantum clusters 210, the polymer layer 2046 of the present embodiment further includes a plurality of luminescent carbon nanoparticles 220 dispersed in the resin. In specific implementation, the concave portion 2022 of the substrate 202 is filled with a mixed slurry of a photocurable resin, at least one composite fluorescent gold quantum cluster 210 and a plurality of luminescent carbon nanoparticles 220 to form the polymer layer 2046. In some embodiments, the composite fluorescent gold quantum clusters and the luminescent carbon nanoparticles are mixed in a volume ratio of 1:10 to 10:1, preferably in a volume ratio of 1:1. After curing (for example, curing by heat or exposure to light), the mixed slurry is cured into a polymer layer 2046, in which composite fluorescent gold quantum clusters 210 and luminescent carbon nanoparticles 220 are dispersed in a resin (such as Diagram in Figure 2).

可購得市售發光碳奈米粒子220,也可透過任何本技術領域熟知的方法在實驗室合成發光碳奈米粒子220。根據本揭示內容的實施方式,例示性發光碳奈米粒子220是從碳源(例如羧酸類及長鏈烯烴類的混合,但不限於此)製得。在一些實施方式中,羧酸類是檸檬酸,而長鏈烯烴類是十八烯。通常,發光碳奈米粒子220的直徑約0.1至3 nm;較佳為約2.5至2.8 nm。Commercially available luminescent carbon nanoparticle 220 can be purchased, and luminescent carbon nanoparticle 220 can also be synthesized in the laboratory by any method well known in the art. According to an embodiment of the present disclosure, the exemplary luminescent carbon nanoparticle 220 is prepared from a carbon source (for example, a mixture of carboxylic acids and long-chain olefins, but not limited thereto). In some embodiments, the carboxylic acid is citric acid and the long chain olefin is octadecene. Generally, the diameter of the luminescent carbon nanoparticle 220 is about 0.1 to 3 nm; preferably, about 2.5 to 2.8 nm.

更具體而言,GaN/AlGaN半導體發出短於395 nm之波長;而發光碳奈米粒子220則個別發出具有介於400 nm 至500 nm之間之波長的藍光。如此一來,透過吸收紫外光,複合螢光金量子團簇210的原始發射波長會從約500 nm 至590 nm轉換成約550 nm至600 nm。透過這樣的配置,LED封裝結構200最終發出一白色光,該白色光即為散佈在聚合物層2046的複數個發光碳奈米粒子220及複合螢光金量子團簇210所分別發射的藍光及黃光的總合。More specifically, the GaN/AlGaN semiconductor emits a wavelength shorter than 395 nm; and the luminescent carbon nanoparticle 220 individually emits blue light with a wavelength between 400 nm and 500 nm. In this way, by absorbing ultraviolet light, the original emission wavelength of the composite fluorescent gold quantum cluster 210 will be converted from about 500 nm to 590 nm to about 550 nm to 600 nm. Through this configuration, the LED package structure 200 finally emits a white light, which is the blue light and the blue light emitted by the plurality of luminescent carbon nanoparticles 220 and the composite fluorescent gold quantum clusters 210 dispersed on the polymer layer 2046, respectively The sum of yellow light.

應當注意的是,本揭示內容的LED封裝結構因著複合螢光金量子團簇而提供了改良的發光特性。複合螢光金量子團簇具有至少以下優點:(1)以含膦化合物進行表面改質,替複合螢光金量子團簇增加其在巨分子溶液中的溶解度,這也使複合螢光金量子團簇在漿體中更均勻地分散;(2)由於波長轉換材料的螢光強度穩定,本發明LED封裝結構具有優異的演色特性;(3)因經過含苯化合物及含膦化合物改質,複合螢光金量子團簇的螢光強度可隨著其濃度而增加;以及(4)由於本發明螢光金量子團簇的製作過程中不需使用還原劑,因此該些螢光金量子團簇是生物可相容且不具任何毒性,如此一來可增加本發明LED封裝結構使用上的安全性。It should be noted that the LED package structure of the present disclosure provides improved luminescence characteristics due to the composite fluorescent gold quantum clusters. The composite fluorescent gold quantum clusters have at least the following advantages: (1) Surface modification with phosphine-containing compounds can increase the solubility of the composite fluorescent gold quantum clusters in macromolecular solutions, which also makes the composite fluorescent gold quantum The clusters are more uniformly dispersed in the slurry; (2) due to the stable fluorescence intensity of the wavelength conversion material, the LED package structure of the present invention has excellent color rendering characteristics; (3) due to the modification of benzene-containing compounds and phosphine-containing compounds, The fluorescence intensity of the composite fluorescent gold quantum clusters can increase with its concentration; and (4) Since the fluorescent gold quantum clusters of the present invention do not need to use a reducing agent during the manufacturing process, the fluorescent gold quantum clusters The cluster is biocompatible and does not have any toxicity, so that the safety of the LED package structure of the present invention can be increased.

下文提出多個實施例來說明本發明的某些態樣,以利本發明所屬技術領域中具有通常知識者實作本發明。不應將這些實驗例視為對本發明範圍的限制。無須進一步說明,據信所屬技術領域中具有通常知識者可根據本文的描述,最大限度地利用本發明。本文引用的所有公開文獻均透過引用其整體併入本文。A number of embodiments are presented below to illustrate some aspects of the present invention, so as to facilitate those skilled in the art to which the present invention belongs to implement the present invention. These experimental examples should not be regarded as limiting the scope of the present invention. Without further explanation, it is believed that those with ordinary knowledge in the technical field can use the present invention to the fullest extent based on the description herein. All publications cited in this article are incorporated by reference in their entirety.

實施例Example

1. 製造白光LED封裝結構1. Manufacturing white LED packaging structure

1.1製備複合螢光金量子團簇1.1 Preparation of composite fluorescent gold quantum clusters

於一無氧及無水的手套箱內,以大約7.5 毫克/毫升的量將三氯化金(gold (III) chloride,AuCl 3)與甲苯混合。將混合物震盪約5分鐘以促使混合,接著在80°C或120°C下加熱1小時。接著,以3,000 rpm離心混合物5分鐘,收集該上清液並以紫外線輻射照射24小時。接著,經紫外線照射的上清液(含有濃度 1 毫克/毫升的AuCl 3)與含有含膦化合物(例如TOP,200 mM)的甲苯溶液混合,藉此在甲苯中產生複合螢光金量子團簇,並作為存料(stock)儲存以待後續使用。為了簡潔說明,以下將包含TOP的複合螢光金量子團簇簡稱為CFGN-TOPs。在本實施例中,將原始存料CFGN-TOPs的初始濃度則定義為存料濃度,並以1-倍(1-fold)或1 ×表示。 In an oxygen- and water-free glove box, gold (III) chloride (AuCl 3 ) was mixed with toluene at an amount of approximately 7.5 mg/ml. The mixture was shaken for about 5 minutes to promote mixing, and then heated at 80°C or 120°C for 1 hour. Next, the mixture was centrifuged at 3,000 rpm for 5 minutes, and the supernatant was collected and irradiated with ultraviolet radiation for 24 hours. Next, the supernatant (containing AuCl 3 at a concentration of 1 mg/ml) irradiated with ultraviolet rays is mixed with a toluene solution containing a phosphine compound (eg, TOP, 200 mM), thereby generating composite fluorescent gold quantum clusters in toluene , And stored as stock for subsequent use. For the sake of brevity, the composite fluorescent gold quantum clusters containing TOP are referred to as CFGN-TOPs in the following. In this embodiment, the initial concentration of the original stock CFGN-TOPs is defined as the stock concentration, and expressed as 1-fold or 1×.

1.2製備發光碳奈米粒子1.2 Preparation of luminescent carbon nanoparticles

將檸檬酸(0.8 g)及甘胺酸 (0.2 g)分別加入硝酸溶液中(硝酸溶液是混合1 毫升的硝酸(0.5M)及1毫升的水製成),接著超聲震盪混合物直至所有物質完全溶解。將所得的溶液加至油溶液(油胺(oleylamine,3毫升)以及十八烯(7毫升))中,並將混合物超聲震盪15秒以組成乳狀微胞,並持續攪拌(以700 rpm)10分鐘。在氬之存在下於200°C加熱產物30分鐘,接著離心(3,000 rpm,5分鐘)以移除直徑小於1 nm的碳奈米粒子。剩餘的碳奈米粒子以1:3的體積比例回溶至丙酮中,接著於13,300 rpm離心10分鐘。收集碳奈米粒子並重新懸浮於甲苯中,接著作為存料儲存。前述方式產生的螢光碳奈米粒子濃度則被定義為存料濃度,並以1×表示之。Add citric acid (0.8 g) and glycine acid (0.2 g) to the nitric acid solution (the nitric acid solution is made by mixing 1 ml of nitric acid (0.5M) and 1 ml of water), and then sonicate the mixture until everything is complete Dissolve. The resulting solution was added to the oil solution (oleylamine (3 mL) and octadecene (7 mL)), and the mixture was sonicated for 15 seconds to form milky micelles, and stirring was continued (at 700 rpm) 10 minutes. The product was heated at 200°C for 30 minutes in the presence of argon, followed by centrifugation (3,000 rpm, 5 minutes) to remove carbon nanoparticles with a diameter of less than 1 nm. The remaining carbon nanoparticles were re-dissolved in acetone at a volume ratio of 1:3, and then centrifuged at 13,300 rpm for 10 minutes. Collect carbon nanoparticles and resuspend them in toluene, then store them as stock. The concentration of fluorescent carbon nanoparticles produced in the foregoing manner is defined as the stock concentration and expressed as 1×.

1.3以含有實施例1.1之複合螢光金量子團簇的聚合物封裝藍色發光晶片1.3 Encapsulate the blue light-emitting chip with a polymer containing the composite fluorescent gold quantum cluster of Example 1.1

透過蒸發器乾燥自實施例1.1取得複合螢光金量子團簇(CFGN-TOPs)甲苯溶液。以一預定濃度(即:0.59 ×至1 ×) 或是預定體積(即10至30 μL)將複合螢光金量子團簇重新懸浮至光固化樹脂(HMPP)以及PEGDA聚合物的漿體中。將漿體塗覆在設有藍色發光晶片的基板上並固化漿體60至90秒,以組成包覆藍色發光晶片的固體聚合物層,藉此製得所需的白光LED封裝結構。Dry through an evaporator to obtain a toluene solution of composite fluorescent gold quantum clusters (CFGN-TOPs) from Example 1.1. The composite fluorescent gold quantum clusters are resuspended into the slurry of light-curable resin (HMPP) and PEGDA polymer at a predetermined concentration (ie: 0.59 × to 1 ×) or a predetermined volume (ie, 10 to 30 μL). The slurry is coated on a substrate provided with a blue light-emitting chip and the slurry is cured for 60 to 90 seconds to form a solid polymer layer covering the blue light-emitting chip, thereby obtaining a desired white light LED packaging structure.

1.4以含有實施例1.1之複合螢光金量子團簇以及實施例1.2之發光碳奈米粒子的聚合物封裝紫外光發光晶片1.4 Polymer-encapsulated ultraviolet light-emitting chips containing the composite fluorescent gold quantum clusters of Example 1.1 and the luminescent carbon nanoparticles of Example 1.2

以1:10至10:1之體積比例混合實施例1.1的複合螢光金量子團簇以及實施例1.2的發光碳奈米粒子,並以蒸發器乾燥,接著再以預定濃度或體積(例如體積比例1:1)重新懸浮至光固化樹脂(HMPP)及PEGDA聚合物的漿體中。基漿體塗覆在設有紫外光發光晶片的基板上並固化該漿體60至90秒,以組成包覆該紫外光發光晶片的固體聚合物層,藉此製得所需的白光LED封裝結構。The composite fluorescent gold quantum cluster of Example 1.1 and the luminescent carbon nanoparticle of Example 1.2 were mixed in a volume ratio of 1:10 to 10:1, dried in an evaporator, and then a predetermined concentration or volume (for example, volume Ratio 1: 1) Resuspend in the slurry of light-curable resin (HMPP) and PEGDA polymer. The base slurry is coated on the substrate provided with the ultraviolet light emitting chip and the slurry is cured for 60 to 90 seconds to form a solid polymer layer covering the ultraviolet light emitting chip, thereby manufacturing the required white light LED package structure.

2. 實施例1之白光LED封裝結構的特性測試2. The characteristic test of the white LED package structure of Example 1

藉由複合螢光金量子團簇在巨分子溶液的分散度及複合螢光金量子團簇之含膦化合物的量來評估白光LED封裝結構的功能(即,發光特性)。The function (i.e., luminescence characteristics) of the white light LED package structure is evaluated by the dispersion of the composite fluorescent gold quantum cluster in the macromolecular solution and the amount of the phosphine-containing compound of the composite fluorescent gold quantum cluster.

2.1巨分子溶液中金量子團簇的分散特性2.1 Dispersion characteristics of gold quantum clusters in macromolecular solution

為了測試分散度,將本發明複合螢光金量子團簇的巨分子溶液以不同濃縮濃度(1.6 × 及3.33 ×)與PEGDA溶液混合,並測量從其發出的螢光強度。結果是,不論其濃度為何,複合螢光金量子團簇均勻地分布在整個PEGDA膜上;此外,當以波長350 nm的光激發時,CFGN-TOPs的峰值是集中在約波長550–575 nm之位置(第3圖)。此結果表示本發明複合螢光金量子團簇的分散性既高且合乎預期。To test the degree of dispersion, the macromolecule solution of the composite fluorescent gold quantum clusters of the present invention was mixed with the PEGDA solution at different concentrated concentrations (1.6× and 3.33×), and the fluorescence intensity emitted therefrom was measured. The result is that, regardless of its concentration, the composite fluorescent gold quantum clusters are uniformly distributed throughout the PEGDA film; in addition, when excited by light with a wavelength of 350 nm, the peak of CFGN-TOPs is concentrated at a wavelength of about 550-575 nm The location (Figure 3). This result indicates that the dispersion of the composite fluorescent gold quantum cluster of the present invention is both high and in line with expectations.

2.2實施例1.3的白光LED封裝結構(CFGN-TOPs)的光性能表現2.2 Optical performance of the white light LED package structure (CFGN-TOPs) of Example 1.3

2.2.1發光特性vs.複合螢光金量子團簇濃度2.2.1 Luminescence characteristics vs. concentration of composite fluorescent gold quantum clusters

根據實施例1.3的步驟將經稀釋後不同濃度(0.59×、0.656×、0.72×、0.81×以及1×)的存料CFGN-TOPs封裝在藍色發光晶片上。封裝之後,以25 mA 電流通電該LED封裝結構,並使用螢光光致發光分光光度計來量測螢光強度。結果則呈現於第4A-4B圖。According to the steps of Example 1.3, the diluted stock CFGN-TOPs with different concentrations (0.59×, 0.656×, 0.72×, 0.81× and 1×) were packaged on a blue light-emitting chip. After packaging, the LED package structure was energized with a current of 25 mA, and a fluorescent photoluminescence spectrophotometer was used to measure the fluorescence intensity. The results are presented in Figures 4A-4B.

顯然螢光強度是隨著CFGN-TOP的濃度增加而增強(第4A圖)。根據色度圖(CIE 1931 XYZ(色空間))的呈現結果,LED封裝結構發光的顏色從藍色位移到白色,最後轉成黃色。再者,LED封裝結構的發光CCT是隨著CFGN-TOP的濃度增加而減少。當LED封裝結構發白光時,其CCT是5751K。另一方面,LED封裝結構的演色性(Ra)最高可達到92.71 Ra (第4B圖)。Obviously, the fluorescence intensity increases as the concentration of CFGN-TOP increases (Figure 4A). According to the results of the chromaticity diagram (CIE 1931 XYZ (color space)), the color of the LED package structure shifts from blue to white, and finally to yellow. Furthermore, the luminous CCT of the LED package structure decreases as the concentration of CFGN-TOP increases. When the LED package structure emits white light, its CCT is 5751K. On the other hand, the color rendering (Ra) of the LED package structure can reach up to 92.71 Ra (Figure 4B).

2.2.2發光特性 vs. 複合螢光金量子團簇體積2.2.2 Luminescence properties vs. volume of composite fluorescent gold quantum clusters

根據實施例1.3的步驟,將不同體積(10–30 μL)的CFGN-TOPs封裝在藍色發光晶片上。封裝之後,以25 mA 電流通電該LED封裝結構,並使用螢光光致發光分光光度計來量測螢光強度。結果則呈現於第5A-5B圖。第5A圖的發射頻譜呈現出螢光強度隨著CFGN-TOPs體積的增加而增加。至於LED封裝結構的發光CCT,則隨著CFGN-TOPs體積的增加而減少。當LED封裝結構發白光時,其CCT是約3993K。另一方面,LED封裝結構的演色性(Ra)隨其不同體積而變化的幅度不甚明顯,而最高的演色性可為90.17 Ra (第5B圖)。According to the steps of Example 1.3, CFGN-TOPs of different volumes (10-30 μL) were packaged on the blue light-emitting chip. After packaging, the LED package structure was energized with a current of 25 mA, and a fluorescent photoluminescence spectrophotometer was used to measure the fluorescence intensity. The results are presented in Figures 5A-5B. The emission spectrum of Figure 5A shows that the fluorescence intensity increases with the volume of CFGN-TOPs. As for the light-emitting CCT of the LED package structure, it decreases as the volume of CFGN-TOPs increases. When the LED package structure emits white light, its CCT is about 3993K. On the other hand, the color rendering (Ra) of the LED package structure does not vary significantly with different volumes, and the highest color rendering can be 90.17 Ra (Figure 5B).

2.2.3發光特性 vs. 電流2.2.3 Luminous characteristics vs. current

根據實施例1.3的步驟將1倍存料濃度的CFGN-TOPs (20 μL)封裝在藍色發光晶片上。封裝之後,以介於5–30 mA的電流對LED封裝結構通電,並使用螢光光致發光分光光度計來測量該螢光強度。結果則呈現於第6A至6B圖。第6A圖的發射頻譜則呈現出螢光強度隨著電流強度增強而增加的結果,相較之下,LED封裝結構的發光CCT及其演色性(Ra)則維持不變 (第6B圖)。LED封裝結構的CCT大約5200K,而演色性維持大約90Ra。According to the steps of Example 1.3, CFGN-TOPs (20 μL) of 1 times the stock concentration were packaged on the blue light-emitting chip. After encapsulation, the LED package structure is energized with a current of 5-30 mA, and the fluorescence intensity is measured using a fluorescent photoluminescence spectrophotometer. The results are presented in Figures 6A to 6B. The emission spectrum of Fig. 6A shows that the fluorescence intensity increases as the current intensity increases. In contrast, the luminescence CCT of the LED package structure and its color rendering (Ra) remain unchanged (Fig. 6B). The CCT of the LED package structure is about 5200K, and the color rendering is maintained at about 90Ra.

2.4各自包含燐光體以及本發明實施例1.3之複合螢光金量子團簇的不同LED封裝結構之間的光性能比較2.4 Comparison of optical performance between different LED package structures each containing phosphor and the composite fluorescent gold quantum cluster of Example 1.3 of the present invention

將本發明白光LED封裝結構(其波長轉換材料為CFGN-TOPs或CFGN-TPP)與常規LED封裝結構(其波長轉換材料為燐光體Ce 3+摻雜Y 3Al 5O 12(YAG:Ce 3+)),兩者的發光特性進行比較。比較結果則呈現於第7圖及總結於表1。結果呈現出,比起包含燐光體之LED封裝結構的螢光強度,本發明波長轉換材料所發射的螢光強度相對較強。此外,相較於使用燐光體材料的常規LED封裝結構,本揭示內容的白光LED封裝結構具有較強的演色性(Ra)。 The white light LED packaging structure of the present invention (the wavelength conversion material is CFGN-TOPs or CFGN-TPP) and the conventional LED packaging structure (the wavelength conversion material is the phosphor Ce 3+ doped Y 3 Al 5 O 12 (YAG: Ce 3) + )), compare the luminous characteristics of the two. The comparison results are presented in Figure 7 and summarized in Table 1. The results show that the intensity of the fluorescence emitted by the wavelength conversion material of the present invention is relatively stronger than that of the LED package structure containing the phosphor. In addition, compared to the conventional LED packaging structure using phosphor material, the white LED packaging structure of the present disclosure has stronger color rendering properties (Ra).

表1分別包含CFGN-TOPs以及常規YAG:Ce 3+的裝置之比較 LED封裝結構 波長轉換材料 色度圖(CIE 1931 座標) CCT (K) Ra x-軸 y-軸 常規LED YAG:Ce 3+ 0.31207 0.30866 6728 77.1026 本發明LED CFGN-TOP 0.3397 0.32548 5143 91.7027 Table 1 Comparison of devices including CFGN-TOPs and conventional YAG:Ce 3+ LED package structure Wavelength conversion material Chromaticity diagram (CIE 1931 coordinates) CCT (K) Ra x-axis y-axis Conventional LED YAG:Ce 3+ 0.31207 0.30866 6728 77.1026 LED of the invention CFGN-TOP 0.3397 0.32548 5143 91.7027

2.5巨分子溶液中發光碳奈米粒子的分散特性2.5 Dispersion characteristics of luminescent carbon nanoparticles in macromolecular solution

與實施例2.1相似,為了測試分散度,將本發明發光碳奈米粒子的巨分子溶液以不同濃度(0.5×、1×及2×)與PEGDA溶液混合,並測量從其發出的螢光強度。可觀察到的是,不論其濃度為何,發光碳奈米粒子可均勻地分布在PEGDA薄膜上;此外,當發射波長為350 nm的基發光時,發光碳奈米粒子的峰值是集中在約波長450 nm之處(第8圖)。此結果表示,分布其中的發光碳奈米粒子的均勻度即高且合乎預期。Similar to Example 2.1, in order to test the degree of dispersion, the macromolecular solution of the luminescent carbon nanoparticle of the present invention was mixed with the PEGDA solution at different concentrations (0.5×, 1× and 2×), and the fluorescence intensity emitted therefrom was measured . It can be observed that, regardless of its concentration, the luminescent carbon nanoparticles can be uniformly distributed on the PEGDA film; in addition, when the emission wavelength is 350 nm, the peak of the luminescent carbon nanoparticles is concentrated at about the wavelength 450 nm (Figure 8). This result indicates that the uniformity of the luminescent carbon nanoparticles distributed therein is high and in line with expectations.

2.5實例1.4的白光LED封裝結構(CFGN-TOP)的光性能表現2.5 Optical performance of the white LED package structure (CFGN-TOP) of Example 1.4

以1:1之比例混合實施例1.1之CFGN-TOPs以及實施例1.2獲得之發光碳奈米粒子,接著以實施例1.4之方法將前述混合物封裝至紫外光發光晶片上。封裝之後,以25 mA 電流通電該LED封裝結構,並使用螢光光致發光分光光度計來量測螢光強度。結果呈現於第9圖。第9圖的發射頻譜則呈現出,螢光發射位移並轉換至可見光頻譜,而最終發出白光。The CFGN-TOPs of Example 1.1 and the luminescent carbon nanoparticles obtained in Example 1.2 were mixed in a ratio of 1:1, and then the aforementioned mixture was encapsulated on an ultraviolet light emitting chip using the method of Example 1.4. After packaging, the LED package structure was energized with a current of 25 mA, and a fluorescent photoluminescence spectrophotometer was used to measure the fluorescence intensity. The results are presented in Figure 9. The emission spectrum in Figure 9 shows that the emission of fluorescent light is shifted and converted to the visible light spectrum, and finally white light is emitted.

應當理解的是,前述對實施方式的描述僅是以實施例的方式給出,且本領域所屬技術領域中具有通常知識者可進行各種修改。以上說明書、實施例及實驗結果提供本發明之例示性實施方式之結構與用途的完整描述。雖然上文實施方式中揭露了本發明的各種具體實施例,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不悖離本發明之原理與精神的情形下,當可對其進行各種更動與修飾,因此本發明之保護範圍當以附隨申請專利範圍所界定者為準。It should be understood that the foregoing description of the implementation manners is only given in the form of examples, and various modifications can be made by those with ordinary knowledge in the technical field of the art. The above specification, examples and experimental results provide a complete description of the structure and use of the exemplary embodiments of the present invention. Although various specific embodiments of the present invention are disclosed in the above embodiments, they are not intended to limit the present invention. Those with ordinary knowledge in the technical field of the present invention, without departing from the principle and spirit of the present invention, Various changes and modifications can be made to it, so the protection scope of the present invention should be defined by the accompanying patent application.

100、200:LED封裝結構 102、202:基板 1022、2022:凹部 1024、2024:正金屬端子 1026、2026:負金屬端子 104、204:發光單元 1042、2042:氮化鎵系半導體 1044、2044:導線 1046、2046:聚合物層 110、210:複合螢光金量子團簇 1110:金量子團簇 1110’:金原子 1120:包覆層 1122:基質 1124:含膦化合物 220:發光碳奈米粒子 100, 200: LED package structure 102, 202: substrate 1022, 2022: recess 1024, 2024: Positive metal terminals 1026, 2026: negative metal terminal 104, 204: light-emitting unit 1042, 2042: Gallium nitride semiconductor 1044, 2044: Wire 1046, 2046: polymer layer 110, 210: composite fluorescent gold quantum clusters 1110: Gold quantum clusters 1110’: gold atom 1120: Cladding 1122: Matrix 1124: Phosphine-containing compounds 220: Luminous Carbon Nanoparticles

為讓本發明的上述與其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:In order to make the above and other objectives, features, advantages and embodiments of the present invention more comprehensible, the description of the accompanying drawings is as follows:

第1A圖是根據本揭示內容實施方式之例示性LED封裝結構100的剖面圖;第1B圖則繪示第1A圖之複合螢光金量子團簇110的示意圖;FIG. 1A is a cross-sectional view of an exemplary LED package structure 100 according to an embodiment of the present disclosure; FIG. 1B is a schematic diagram of the composite fluorescent gold quantum cluster 110 in FIG. 1A;

第2圖是根據本揭示內容另一實施方式之例示性LED封裝結構200的剖面圖;FIG. 2 is a cross-sectional view of an exemplary LED packaging structure 200 according to another embodiment of the present disclosure;

第3圖是根據一實施例之封裝於巨分子溶液中的複合螢光金量子團簇的與螢光光譜;Figure 3 is the fluorescence spectra of composite fluorescent gold quantum clusters encapsulated in a macromolecular solution according to an embodiment;

第4A至4B圖分別是根據一實施例之LED封裝結構的螢光光譜以及發光特性(CCT及演色性)結果;Figures 4A to 4B are the results of the fluorescence spectrum and luminescence characteristics (CCT and color rendering) of the LED package structure according to an embodiment;

第5A至5B圖分別是根據一實施例之LED封裝結構的螢光光譜以及發光特性(CCT及演色性)結果;Figures 5A to 5B are the results of the fluorescence spectrum and luminescence characteristics (CCT and color rendering) of the LED package structure according to an embodiment;

第6A至6B圖分別是根據一實施例之LED封裝結構的螢光光譜以及發光特性(CCT以及演色性)結果;Figures 6A to 6B are the results of the fluorescence spectrum and luminescence characteristics (CCT and color rendering) of the LED package structure according to an embodiment;

第7圖是比較本發明LED封裝結構與先前技術之封裝結構的螢光光譜;Figure 7 compares the fluorescence spectra of the LED package structure of the present invention and the package structure of the prior art;

第8圖是關於一實施例之封裝於巨分子溶液中的發光碳奈米粒子的螢光光譜;以及Figure 8 is about the fluorescence spectrum of the luminescent carbon nanoparticle encapsulated in the macromolecular solution according to an embodiment; and

第9圖是根據一實施例之LED封裝結構的螢光光譜。FIG. 9 is the fluorescence spectrum of the LED package structure according to an embodiment.

根據慣常的作業方式,圖中各種元件與特徵並未依比例繪製,其繪製方式是為了以最佳的方式呈現本發明相關的具體特徵與元件。此外,在不同的圖式間,以相同或相似的元件符號來指稱相似的元件/部件。According to the usual working method, the various elements and features in the figure are not drawn to scale, and the drawing method is to best present the specific features and elements related to the present invention. In addition, between different drawings, the same or similar element symbols are used to refer to similar elements/components.

100:LED封裝結構 100: LED package structure

102:基板 102: substrate

1022:凹部 1022: recess

1024:正金屬端子 1024: Positive metal terminal

1026:負金屬端子 1026: Negative metal terminal

104:發光單元 104: light-emitting unit

1042:氮化鎵系半導體 1042: Gallium nitride semiconductor

1044:導線 1044: Wire

1046:聚合物層 1046: polymer layer

110:複合螢光金量子團簇 110: Composite fluorescent gold quantum cluster

Claims (16)

一種白光發光二極體(light-emitting diode,LED)封裝結構,包含:一基板;以及一發光單元,其設置在該基板之上,其中該發光單元包含:一氮化鎵系半導體;以及一聚合物層,其包覆該氮化鎵系半導體,其中該聚合物層包含一樹脂以及至少一分散於該樹脂中的複合螢光金量子團簇;其中每一複合螢光金量子團簇包含:一金量子團簇;以及一包覆層,其係由一含苯化合物組成的基質以及複數個分布在該基質中的含膦化合物所構成,其中該包覆層包覆至少一部分該金量子團簇的外表面,其中該至少一複合螢光金量子團簇係設置為發出具有一第一波長的第一光,同時吸收至少一部份該氮化鎵系半導體所發射的光,並發出具有一第二波長的第二光,其中該第一波長與該第二波長相異,且該第二光與該氮化鎵系半導體發射之光結合形成一白光。 A white light-emitting diode (LED) packaging structure includes: a substrate; and a light-emitting unit disposed on the substrate, wherein the light-emitting unit includes: a gallium nitride semiconductor; and A polymer layer covering the GaN-based semiconductor, wherein the polymer layer includes a resin and at least one composite fluorescent gold quantum cluster dispersed in the resin; wherein each composite fluorescent gold quantum cluster includes : A gold quantum cluster; and a coating layer, which is composed of a matrix composed of a benzene compound and a plurality of phosphine-containing compounds distributed in the matrix, wherein the coating layer covers at least a part of the gold quantum The outer surface of the cluster, wherein the at least one composite fluorescent gold quantum cluster is configured to emit a first light having a first wavelength, while absorbing at least part of the light emitted by the gallium nitride-based semiconductor, and emitting A second light having a second wavelength, wherein the first wavelength is different from the second wavelength, and the second light is combined with the light emitted by the gallium nitride semiconductor to form a white light. 如請求項1所述之白光LED封裝結構,其中該氮化鎵系半導體係設置為發出一波長介於395nm至495nm的光。 The white light LED package structure according to claim 1, wherein the GaN-based semiconductor system is configured to emit light with a wavelength between 395 nm and 495 nm. 如請求項1所述之白光LED封裝結構,其中該氮化鎵系半導體係設置為發出一波長短於395nm的光。 The white light LED package structure according to claim 1, wherein the GaN-based semiconductor system is configured to emit light with a wavelength shorter than 395 nm. 如請求項3所述之白光LED封裝結構,其中該聚合物層更包含複數個發光碳奈米粒子,其係分布在該樹脂中,並分別發出波長介於400nm至500nm的光。 The white light LED package structure according to claim 3, wherein the polymer layer further comprises a plurality of luminescent carbon nano particles, which are distributed in the resin, and respectively emit light with a wavelength between 400 nm and 500 nm. 如請求項1所述之白光LED封裝結構,其中該含苯化合物係選自由烷基苯(alkylbenzene)、鹵代苯(halobenzene)、酚(phenol)、苯甲酸(benzoic acid)、苯乙酮(acetophenone)、苯甲酸甲酯(methyl benzoate)、苯甲醚(anisole)、苯胺(aniline)、硝基苯(nitrobenzene)、苄腈(benzonitrile)、苯甲醯胺(benzamide)、苯磺酸(benzenesulfonic acid)、萘(naphthalene)以及蒽(anthracene)所組成之群組。 The white LED package structure according to claim 1, wherein the benzene-containing compound is selected from the group consisting of alkylbenzene, halobenzene, phenol, benzoic acid, and acetophenone ( acetophenone, methyl benzoate, anisole, aniline, nitrobenzene, benzonitrile, benzamide, benzenesulfonic acid), naphthalene (naphthalene) and anthracene (anthracene). 如請求項5所述之白光LED封裝結構,其中該烷基苯是甲苯(toluene)、異丙苯(cumene)、乙苯(ethylbenzene)、苯乙烯(styrene)或二甲苯(xylene);以及該鹵代苯是氟苯(fluorobenzene)、氯苯(chlorobenzene)、溴苯(bromobenzene)或碘苯(iodobenzene)。 The white light LED packaging structure according to claim 5, wherein the alkylbenzene is toluene, cumene, ethylbenzene, styrene or xylene; and Halogenated benzene is fluorobenzene, chlorobenzene, bromobenzene, or iodobenzene. 如請求項1所述之白光LED封裝結構,其中該複數個含膦化合物係選自由膦、氧化膦(phosphine oxide)、鏻化合物(phosphonium)、雙膦(diphosphine)、三膦(triphosphine)、烷基膦(alkyl phosphine)、環烷基膦(cycloalkyl phosphine)、芳基膦(aryl phosphine)、氧化芳基膦(aryl phosphine oxide)、苯基膦(phenyl phosphine)、雙牙膦(bidentate phosphine)、膦的聚矽氧衍生物(silicone derivative of phosphine)、膦的矽氧烷或聚矽烷衍生物(siloxane or polysilane derivative of phosphin)以及烯膦(olefinic phosphine)所組成之群組。 The white LED package structure according to claim 1, wherein the plurality of phosphine-containing compounds are selected from the group consisting of phosphine, phosphine oxide, phosphonium, diphosphine, triphosphine, and alkane. Alkyl phosphine (alkyl phosphine), cycloalkyl phosphine (cycloalkyl phosphine), aryl phosphine (aryl phosphine), aryl phosphine oxide (aryl phosphine oxide), phenyl phosphine (phenyl phosphine), bidentate phosphine (bidentate phosphine), Silicone derivative of phosphine (silicone derivative of phosphine), siloxane or polysilane derivative of phosphin (siloxane or polysilane derivative of phosphin) and olefinic phosphine (olefinic phosphine). 如請求項7所述之白光LED封裝結構,其中該烷基膦是三辛基膦(trioctylphosphine,TOP);該芳基膦是氧化三辛基膦(trioctylphosphine oxide,TOPO);且該苯基膦是三苯基膦(triphenylphosphine,TPP)。 The white LED package structure according to claim 7, wherein the alkyl phosphine is trioctyl phosphine (trioctyl phosphine, TOP); the aryl phosphine is trioctyl phosphine oxide (TOPO); and the phenyl phosphine It is triphenylphosphine (TPP). 一種製造白光LED封裝結構的方法,包含:(a)提供一基板;(b)將一氮化鎵系半導體電力連接至該基板上;(c)以一包含一樹脂以及複數個複合螢光金量子團簇的漿體覆蓋該氮化鎵系半導體;以及(d)使該覆蓋在該氮化鎵系半導體上的漿體固化一足夠時間,以形成一固化的聚合物層,其中該複數個複合螢光金量子團簇分布在該樹脂中,其中每一複合螢光金量子團簇包含:一金量子團簇;以及一包覆層,其係由一含苯化合物組成的基質以及複數個分布在該基質中的含膦化合物所構成,其中該包覆層包覆至少一部分該金量子團簇的外表面,其中該至少一複合螢光金量子團簇係設置為發出具有一第一波長的第一光,同時吸收至少一部份該氮化鎵系半導體所發射的光,並發出具有一第二波長的第二光,其中該第一波長與該第二波長相異,且該第二光與該氮化鎵系半導體發射之光結合形成一白光。 A method of manufacturing a white light LED packaging structure includes: (a) providing a substrate; (b) electrically connecting a gallium nitride semiconductor to the substrate; (c) using a resin and a plurality of composite fluorescent gold The slurry of quantum clusters covers the gallium nitride semiconductor; and (d) curing the slurry covering the gallium nitride semiconductor for a sufficient time to form a cured polymer layer, wherein the plurality of The composite fluorescent gold quantum clusters are distributed in the resin, and each composite fluorescent gold quantum cluster includes: a gold quantum cluster; and a coating layer, which is a matrix composed of a benzene compound and a plurality of The phosphine-containing compound distributed in the matrix is formed, wherein the coating layer covers at least a part of the outer surface of the gold quantum cluster, wherein the at least one composite fluorescent gold quantum cluster is arranged to emit a first wavelength The first light at the same time absorbs at least part of the light emitted by the GaN-based semiconductor and emits a second light with a second wavelength, wherein the first wavelength is different from the second wavelength, and the first The two lights combine with the light emitted by the gallium nitride semiconductor to form a white light. 如請求項9所述之方法,其中該氮化鎵系半導體係設置為發出一波長介於395nm至495nm的光。 The method according to claim 9, wherein the gallium nitride-based semiconductor system is configured to emit light with a wavelength between 395 nm and 495 nm. 如請求項10所述之方法,其中該氮化鎵系半導體係設置為發出一波長短於395nm的光。 The method according to claim 10, wherein the gallium nitride-based semiconductor system is configured to emit light with a wavelength shorter than 395 nm. 如請求項11所述之方法,其中該漿體更包含複數個發光碳奈米粒子,其係分布在該樹脂中,並分別發出波長介於400nm至500nm的光。 The method according to claim 11, wherein the slurry further comprises a plurality of luminescent carbon nano particles, which are distributed in the resin, and respectively emit light with a wavelength between 400 nm and 500 nm. 如請求項9所述之方法,其中該含苯化合物係選自由苯、烷基苯、鹵代苯、酚、苯甲酸、苯乙酮、苯甲酸甲酯、苯甲醚、苯胺、硝基苯、苄腈、苯甲醯胺、苯磺酸、萘以及蒽所組成之群組。 The method according to claim 9, wherein the benzene-containing compound is selected from benzene, alkylbenzene, halogenated benzene, phenol, benzoic acid, acetophenone, methyl benzoate, anisole, aniline, nitrobenzene , Benzonitrile, benzamide, benzenesulfonic acid, naphthalene and anthracene. 如請求項9所述之方法,其中該烷基苯是甲苯、異丙苯、乙苯、苯乙烯或二甲苯;且該鹵代苯是氟苯、氯苯、溴苯或碘苯。 The method according to claim 9, wherein the alkylbenzene is toluene, cumene, ethylbenzene, styrene or xylene; and the halogenated benzene is fluorobenzene, chlorobenzene, bromobenzene or iodobenzene. 如請求項9所述之方法,其中該複數個含膦化合物係選自由膦、氧化膦、鏻化合物、雙膦、三膦、烷基膦、環烷基膦、芳基膦、氧化芳基膦、苯基膦、雙牙膦、膦的聚矽氧衍生物、膦的矽氧烷或聚矽烷衍生物以及膦烯所組成之群組。 The method according to claim 9, wherein the plurality of phosphine-containing compounds are selected from the group consisting of phosphine, phosphine oxide, phosphonium compound, bisphosphine, triphosphine, alkyl phosphine, cycloalkyl phosphine, aryl phosphine, and aryl phosphine oxide , Phenyl phosphine, bidentate phosphine, polysiloxane derivatives of phosphine, siloxane or polysiloxane derivatives of phosphine, and phosphene. 如請求項15所述之方法,其中該烷基膦是三辛基膦;該氧化芳基膦是氧化三辛基膦;以及該苯基膦是三苯基膦。 The method according to claim 15, wherein the alkyl phosphine is trioctyl phosphine; the aryl phosphine oxide is trioctyl phosphine oxide; and the phenyl phosphine is triphenyl phosphine.
TW108107014A 2019-03-04 2019-03-04 Light-emitting diode package structure and method for manufacturing the same TWI702275B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108107014A TWI702275B (en) 2019-03-04 2019-03-04 Light-emitting diode package structure and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108107014A TWI702275B (en) 2019-03-04 2019-03-04 Light-emitting diode package structure and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TWI702275B true TWI702275B (en) 2020-08-21
TW202033732A TW202033732A (en) 2020-09-16

Family

ID=73002895

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108107014A TWI702275B (en) 2019-03-04 2019-03-04 Light-emitting diode package structure and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI702275B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200818539A (en) * 2006-10-11 2008-04-16 Chuan-Yu Hung Light emitting diode and optical element incorporating high refractive index material
TW201842069A (en) * 2017-03-23 2018-12-01 日商橫浜橡膠股份有限公司 Curable resin composition, laminate and optical semiconductor package

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200818539A (en) * 2006-10-11 2008-04-16 Chuan-Yu Hung Light emitting diode and optical element incorporating high refractive index material
TW201842069A (en) * 2017-03-23 2018-12-01 日商橫浜橡膠股份有限公司 Curable resin composition, laminate and optical semiconductor package

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hsiu-Ying Huang, Chia-Hui Lin, and Cheng-An J. Lin "Photo-induced brightening and broadening effects of gold quantum clusters", Proc. SPIE 9884, Nanophotonics VI, 98841W (19 April 2016) *
Hsiu-Ying Huang, Chia-Hui Lin, and Cheng-An J. Lin "Photo-induced brightening and broadening effects of gold quantum clusters", Proc. SPIE 9884, Nanophotonics VI, 98841W (19 April 2016)。

Also Published As

Publication number Publication date
TW202033732A (en) 2020-09-16

Similar Documents

Publication Publication Date Title
CN107017325B (en) Quantum dot composite material and manufacturing method and application thereof
CN107256861B (en) System and method for selective pump LEDs with multiple phosphors
US10388836B2 (en) Light-emitting device and method for producing a light-emitting device
JP5224575B2 (en) Efficient light source using phosphor-converted LED
JP2008508707A (en) Illumination device having a radiation source and a luminescent material
JP6805243B2 (en) Stable red ceramic phosphors and technologies containing them
JP2011082568A (en) Emitter package comprising saturated conversion material
JP2006524425A (en) White semiconductor light emitting device
US20140103384A1 (en) Light-emitting device
US7884384B2 (en) Light emitting diode device and fabrication method thereof
EP2869353A1 (en) White light emitting device with adapted melatonin secretion
KR101707858B1 (en) Quantum dot embedded silica and luminescent film comprising the silica
RU2233013C2 (en) Semiconductor electroluminescent light source and its manufacturing process (alternatives)
EP2787055A1 (en) Light emitting device
TW201531554A (en) LED package with red-emitting phosphors
TWI553916B (en) Light emitting diode (led) dice having wavelength conversion layers and methods of fabrication
JP2005285800A (en) Light-emitting device
KR101568707B1 (en) White lighting emitting diode comprising luminescent film comprising quantum dot embedded silica and method for producing the WLED
TWI702275B (en) Light-emitting diode package structure and method for manufacturing the same
US10756243B1 (en) Light-emitting diode package structure and method for manufacturing the same
JP3399342B2 (en) Method of forming light emitting diode
JP2020145240A (en) Light-emitting diode package structure and method for manufacturing the same
JP7066676B2 (en) Fluorescent material arrangement and its manufacturing method
KR100684043B1 (en) White light emitting diode and method thereof
KR101581231B1 (en) Method for producing quantum dot embedded silica and luminescent film comprising the silica