WO2018171757A1 - 一种随机接入配置方法及装置 - Google Patents

一种随机接入配置方法及装置 Download PDF

Info

Publication number
WO2018171757A1
WO2018171757A1 PCT/CN2018/080337 CN2018080337W WO2018171757A1 WO 2018171757 A1 WO2018171757 A1 WO 2018171757A1 CN 2018080337 W CN2018080337 W CN 2018080337W WO 2018171757 A1 WO2018171757 A1 WO 2018171757A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
downlink signal
configuration information
downlink
time
Prior art date
Application number
PCT/CN2018/080337
Other languages
English (en)
French (fr)
Inventor
颜矛
陈磊
黄煌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018171757A1 publication Critical patent/WO2018171757A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a random access configuration method and apparatus.
  • 1A is a schematic diagram of a random access (RA) process in a Long Term Evolution (LTE) system.
  • RA random access
  • LTE Long Term Evolution
  • the UE when performing random access, the UE first performs downlink synchronization, acquires main system information such as a system frame number from a physical broadcast channel (PBCH), and then receives other downlink system information.
  • PBCH physical broadcast channel
  • the UE obtains random access resource information from the received second type of system information block (SIB2).
  • SIB2 system information block
  • FIG. 1B is a schematic diagram of a broadcast period of SIB2, and a broadcast period of SIB2 is T, and T can be configured by a base station.
  • the relationship between the system information sent by the base station and the random access resource information is as shown in FIG. 1C.
  • the UE indicates that the time density, the frequency, the sequence, and the like of the random access may be transmitted, as shown by the resource 1, the resource 2, and the resource 3 in FIG. 1D.
  • the time density includes the number and location of random access in each system frame number (SFN).
  • SFN system frame number
  • the UE then generates a random access preamble according to the random access resource information, and sends the random access preamble at the time and frequency position indicated by the random access resource information.
  • the base station uses the same beam to perform information transmission with the UE within the coverage of the base station.
  • the base station may use multiple beams to transmit information with UEs within the coverage of the base station. Therefore, this single beam approach of the LTE system is not suitable for such a multi-beam network similar to a 5G system.
  • the embodiment of the invention provides a random access configuration method and device for reducing resource waste.
  • a random access configuration method which can be performed by a network device, such as a base station.
  • the method includes: the network device generates a plurality of downlink signals, where the random access configuration information associated with the multiple downlink signals is different, and the random access configuration information is used to indicate a random access resource configured for the terminal device.
  • the network device sends the multiple downlink signals and the random access configuration information associated with the multiple downlink signals to the terminal device.
  • the network device generates multiple downlink signals, and each downlink signal is associated with random access configuration information, and different downlink signals may be transmitted in different downlink transmit beams, which implements multi-beam processing.
  • the technical solution provided by the embodiment of the present invention can be applied to such a multi-beam network similar to the 5G system.
  • the random access configuration information associated with different downlink signals may be different, and the associated random access configuration information may be used to indicate more information for the downlink signals covering more terminal devices. Random access resources, and for downlink signals covering fewer terminal devices, the associated random access configuration information can be used to indicate less random access resources, so that random access resources can be more reasonable. Configuration to avoid waste of resources and improve resource utilization.
  • the random access configuration information includes time configuration information for indicating that the terminal device performs random access.
  • the time configuration information includes at least one of an end time and a duration of the random access by the terminal device, and a start time of the random access by the terminal device.
  • the random access configuration information may indicate time configuration information of the random access by the terminal device, so that the terminal device can perform random access at an accurate location according to the time configuration information.
  • the time configuration information used to indicate that the terminal device performs random access includes at least one of an OFDM symbol, a mini-slot, a subframe, and a frame.
  • time configuration information is not limited to the above enumerated ones.
  • the downlink signal is at least one of SS block, SS burst, SS burst set, and system information.
  • the downlink signal may have different forms, and the above several are only examples, and the embodiment of the present invention does not limit the form of the downlink signal.
  • a random access configuration method is provided, which can be performed by a network device, such as a base station.
  • the method includes: the network device determines a plurality of downlink signal groups, and different downlink signal groups associate different random access configuration information.
  • the network device sends the multiple access signal groups and the random access configuration information associated with the multiple downlink signal groups to the terminal device.
  • the base station in addition to different random access configuration information for different downlink signals, the base station may further group downlink signals, so that in addition to reducing resource waste, the base station may further reduce downlink signals.
  • the base station may further group downlink signals, so that in addition to reducing resource waste, the base station may further reduce downlink signals.
  • a downlink signal group includes multiple downlink signals, and the random access configuration information associated with each downlink signal in the same downlink signal group is the same.
  • the network device associates the same random access configuration information with each downlink signal included in the same downlink signal group, and different downlink signal groups are associated with different random access configuration information, thereby implementing partition management for the downlink signal.
  • the random access configuration information associated with the downlink signal group includes a start time of the random access of the downlink signal packet indicated by the random access configuration information, a duration of the random access, and an end of the random access. At least one of time, frequency domain resources used for random access, number of downlink signals, and sequence resources used for random access.
  • the random access configuration information may be used to indicate resources such as a time domain, a frequency domain, and a sequence of the corresponding random access resources, so that the terminal device can perform random access at the correct location according to the received random access configuration information.
  • the random access configuration information associated with the downlink signal group includes a time configuration index of the downlink signal indicated by the random access configuration information.
  • the time configuration index is used by the terminal device to determine at least one of a start time of the random access resource, a frequency domain resource occupied, a number of downlink signals, and a sequence resource used by the random access according to the time configuration index.
  • the terminal device After receiving the random access configuration information in the downlink signal, the terminal device performs a table lookup according to the time configuration index in the time configuration information, and determines the start time of the random access resource by using the result of the table lookup or by performing calculation according to the result of the lookup table. At least one of a frequency domain resource occupied, a number of downlink signals, and a sequence resource used for random access. Alternatively, in addition to using the time configuration index, the terminal device may further combine the downlink signal index and/or the index of the downlink signal group, and obtain the random access resource associated with the downlink signal by looking up the table or calculating the result according to the table lookup result.
  • the specific location that is, at least one of determining the start time of the random access resource, the occupied frequency domain resource, the number of downlink signals, and the sequence resources used by the random access. Then, the time configuration information only needs to include the time configuration index, so that the terminal device determines the random access resource, which effectively reduces the signaling overhead.
  • the downlink signal is at least one of SS block, SS burst, SS burst set, and system information.
  • the downlink signal may have different forms, and the above several are only examples, and the embodiment of the present invention does not limit the form of the downlink signal.
  • the downlink signal group is at least one of an SS burst and an SS burst set.
  • the base station refers to multiple downlink signal packets to group multiple SS-blocks, one downlink signal group includes at least one SS-block, and the base station treats multiple downlink signal groups as one. set.
  • a downlink signal group can also be regarded as a downlink SS burst group, and a downlink signal group set can be regarded as a downlink SS burst set.
  • the downlink signal is SS-burst
  • the base station refers to multiple downlink signal packets to group multiple SS-bursts, and one downlink signal group includes at least one SS-burst.
  • an SS-burst may also constitute a downlink signal group, and at least two downlink signal groups are associated with different random access configuration information.
  • the downlink signal is an SS burst set
  • the base station refers to multiple downlink signal packets to group multiple SS burst sets, and one downlink signal group includes at least one SS burst set.
  • the downlink signal is system information
  • the base station refers to the plurality of downlink signal packets to group multiple system information, and one downlink signal group includes at least one system information.
  • a random access configuration method which can be performed by a terminal device.
  • the method includes: receiving, by the terminal device, multiple downlink signals sent by the network device and random access configuration information associated with multiple downlink signals, where random access configuration information associated with multiple downlink signals is different, and random access configuration information is used to indicate that Random access resources configured by the terminal device.
  • the terminal device performs random access according to the random access resource indicated by the received random access configuration information.
  • the random access configuration information includes time configuration information for indicating that the terminal device performs random access.
  • the time configuration information includes at least one of an end time and a duration of the random access by the terminal device, and a start time of the random access by the terminal device.
  • the time configuration information used to indicate that the terminal device performs random access includes at least one of an OFDM symbol, a mini-slot, a slot, a subframe, and a frame.
  • the downlink signal is at least one of SS block, SS burst, SS burst set, and system information.
  • a random access configuration method which can be performed by a terminal device.
  • the method includes: receiving, by the terminal device, multiple downlink signal groups sent by the network device and random access configuration information associated with multiple downlink signal groups, where different downlink signal groups are associated with different random access configuration information.
  • the terminal device performs random access according to the random access resource indicated by the received random access configuration information.
  • a downlink signal group includes multiple downlink signals, and the random access configuration information associated with each downlink signal in the same downlink signal group is the same.
  • the random access configuration information associated with the downlink signal group includes a start time of the random access of the downlink signal packet indicated by the random access configuration information, a duration of the random access, and an end of the random access. At least one of time, frequency domain resources used for random access, number of downlink signals, and sequence resources used for random access.
  • the random access configuration information associated with the downlink signal group includes a time configuration index of the downlink signal indicated by the random access configuration information.
  • the time configuration index is used by the terminal device to determine at least one of a start time of the random access resource, a frequency domain resource occupied, a number of downlink signals, and a sequence resource used by the random access according to the time configuration index.
  • the downlink signal is at least one of SS block, SS burst, SS burst set, and system information.
  • the downlink signal group is at least one of an SS burst and an SS burst set.
  • a communication device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the communication device may include a processing unit and a transmitting unit.
  • the processing unit and the transmitting unit may perform the respective functions of the methods provided by any of the possible aspects of the first aspect or the first aspect described above.
  • a communication device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the communication device may include a processing unit and a transmitting unit.
  • the processing unit and the transmitting unit may perform the respective functions of the methods provided by any of the possible aspects of the second aspect or the second aspect described above.
  • a communication device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the communication device may include a receiving unit and a processing unit.
  • the receiving unit and the processing unit may perform the respective functions of the methods provided by any of the possible aspects of the third aspect or the third aspect described above.
  • a communication device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the communication device may include a receiving unit and a processing unit.
  • the receiving unit and the processing unit may perform the respective functions of the methods provided by any of the possible aspects of the fourth aspect or the fourth aspect described above.
  • a communication device may be a network device or a functional module such as a chip disposed in the network device.
  • the communication device includes a memory for storing computer executable program code, a transceiver, and a processor coupled to the memory and the transceiver.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the network device in any of the possible aspects of the first aspect or the first aspect described above.
  • a communication device may be a network device or a functional module such as a chip disposed in the network device.
  • the communication device includes a memory for storing computer executable program code, a transceiver, and a processor coupled to the memory and the transceiver.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the network device in any of the possible aspects of the second aspect or the second aspect above.
  • a communication device may be a terminal device or a functional module such as a chip disposed in the terminal device.
  • the communication device includes a memory for storing computer executable program code, a transceiver, and a processor coupled to the memory and the transceiver.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the terminal device in any of the possible aspects of the third aspect or the third aspect above.
  • a communication device may be a terminal device or a functional module such as a chip disposed in the terminal device.
  • the communication device includes a memory for storing computer executable program code, a transceiver, and a processor coupled to the memory and the transceiver.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the terminal device in any of the possible designs of the fourth aspect or the fourth aspect above.
  • a thirteenth aspect a computer storage medium for storing computer software instructions for use in the communication device described in the fifth aspect or the communication device described in the ninth aspect, and for performing the above first aspect or A program designed for a network device in any of the possible designs of the first aspect.
  • a fourteenth aspect a computer storage medium for storing computer software instructions for use in the communication device described in the sixth aspect or the communication device described in the tenth aspect, and for performing the second aspect or A program designed for a network device in any of the possible designs of the second aspect.
  • a fifteenth aspect a computer storage medium for storing computer software instructions for use in the communication device described in the seventh aspect or the communication device described in the eleventh aspect, and for performing the third aspect described above Or a program designed for a user equipment in any of the possible designs of the fourth aspect.
  • a sixteenth aspect a computer storage medium for storing computer software instructions for use in the communication device described in the above eighth aspect or the communication device described in the twelfth aspect, and for performing the fourth aspect described above Or a program designed for a user equipment in any of the possible designs of the fourth aspect.
  • the network device generates multiple downlink signals, and each downlink signal is associated with random access configuration information, and different downlink signals may be transmitted in different downlink transmit beams, which implements multi-beam processing.
  • the technical solution provided by the embodiment of the present invention can be applied to such a multi-beam network similar to the 5G system.
  • the names of the network device, the terminal device, and the random access configuration information are not limited to the technical features themselves. In actual implementation, these technical features may appear under other names. As long as the functions of the various technical features are similar to those described in the embodiments of the present invention, they are within the scope of the claims and equivalents thereof.
  • 1A is a schematic diagram of a random access procedure in an LTE system
  • 1B is a schematic diagram of a broadcast period of SIB2
  • 1C is a relationship between system information sent by a base station and random access resource information in an LTE system
  • 1D is a schematic diagram of random access resources in an LTE system
  • FIG. 2 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a random access configuration method according to an embodiment of the present invention.
  • 4 is a schematic diagram of different numbers of terminal devices in different downlink transmit beams
  • 5A is a schematic structural diagram of system information and random access resources in a downlink signal of a base station according to an embodiment of the present invention
  • FIG. 5B is a schematic diagram of a random access resource associated with a downlink transmit beam k and a random access resource associated with a downlink beam j according to an embodiment of the present invention
  • FIG. 5C is a schematic diagram of a frame format of a random access according to an embodiment of the present disclosure.
  • 5D is a schematic diagram of several formats of random access time-frequency resources according to an embodiment of the present invention.
  • 5E is a schematic diagram of the base station transmitting downlink synchronization information and system information by using the downlink signal k and the downlink signal j at two times;
  • 6A is a schematic diagram of a downlink signal of a base station corresponding to multiple uplink signals
  • 6B is a schematic diagram of the random access resources associated with the downlink signal k and the random access resources associated with the downlink signal j overlapping in time according to an embodiment of the present invention
  • 6C is a schematic diagram of the random access resources associated with the downlink signal k and the random access resources associated with the downlink signal j being discontinuous in time according to an embodiment of the present invention
  • FIG. 7 is a flowchart of a random access configuration method according to an embodiment of the present invention.
  • FIG. 8A is a schematic diagram of grouping downlink signals according to an embodiment of the present invention.
  • FIG. 8B is a schematic diagram showing different time quantities of random access resources associated with different downlink signal groups according to an embodiment of the present invention.
  • FIG. 8C is a schematic diagram showing different numbers of frequency/sequence resources of random access resources associated with different downlink signal groups according to an embodiment of the present invention.
  • 9 to 13 are schematic diagrams showing several structures of a communication device according to an embodiment of the present invention.
  • a network device for example comprising a base station (e.g., an access point), may refer to a device in the access network that communicates over the air interface with the wireless terminal device over one or more sectors.
  • the base station can be used to convert the received air frame to the IP packet as a router between the terminal device and the rest of the access network, wherein the rest of the access network can include an IP network.
  • the base station can also coordinate attribute management of the air interface.
  • the base station may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a Long Term Evolution (LTE) system or an evolved LTE system (LTE-A), or
  • NodeB or eNB or e-NodeB, evolutional Node B in a Long Term Evolution (LTE) system or an evolved LTE system (LTE-A), or
  • LTE Long Term Evolution
  • LTE-A evolved LTE system
  • the next generation node B (gNB) in the 5G system may be included in the embodiment of the present invention.
  • a terminal device including a device that provides voice and/or data connectivity to a user, for example, may include a handheld device having a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a Radio Access Network (RAN) to exchange voice and/or data with the RAN.
  • the terminal device may include a user equipment (User Equipment, UE), a wireless terminal device, a mobile terminal device, a Subscriber Unit, a Subscriber Station, a mobile station, a mobile station, and a remote station.
  • Station Remote Station
  • AP Access Point
  • Remote Terminal Access Terminal
  • User Terminal User Agent
  • User Equipment User Equipment
  • a mobile phone or "cellular” phone
  • a computer with a mobile terminal device a portable, pocket, handheld, computer built-in or in-vehicle mobile device, smart wearable device, and the like.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Smart Watches smart helmets, smart glasses, smart bracelets, and other equipment.
  • restricted devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing capabilities. Examples include information sensing devices such as bar codes, radio frequency identification (RFID), sensors, global positioning systems (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning systems
  • Beam is a communication resource.
  • the beam can be a wide beam, or a narrow beam, or other type of beam.
  • the beamforming technique can be beamforming techniques or other technical means.
  • the beamforming technology can be specifically digital beamforming technology, analog beamforming technology, and hybrid digital/analog beamforming technology. Different beams can be considered as different resources.
  • the same information or different information can be transmitted through different beams. Alternatively, multiple beams having the same or similar communication characteristics can be considered as one beam.
  • One beam may include one or more antenna ports for transmitting a data channel, a control channel, a sounding signal, etc., for example, the transmitting beam may be a signal intensity distribution formed in different directions of the space after the signal is transmitted through the antenna.
  • the receive beam may refer to a signal strength distribution of wireless signals received from the antenna in different directions in space. It can be understood that one or more antenna ports forming one beam can also be regarded as one antenna port set.
  • the “beam” may also be referred to as “transmission resource” or the like. That is to say, the name of the "beam” is not limited herein, as long as the above concept is expressed.
  • a beam pair typically includes a transmit beam at the transmitter and a receive beam at the receiver.
  • a beam pair may include a transmit beam of a base station and a receive beam of a UE.
  • system and “network” in the embodiments of the present invention may be used interchangeably.
  • Multiple means two or more, and in view of this, "a plurality” may also be understood as “at least two” in the embodiment of the present invention.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • the network device generates multiple downlink signals, and each downlink signal is associated with random access configuration information, and different downlink signals may be transmitted in different downlink transmit beams, which implements multi-beam processing.
  • the technical solution provided by the embodiment of the present invention can be applied to such a multi-beam network similar to the 5G system.
  • the random access configuration information associated with different downlink signals may be different, and the associated random access configuration information may be used to indicate more information for the downlink signals covering more terminal devices. Random access resources, and for downlink signals covering fewer terminal devices, the associated random access configuration information can be used to indicate less random access resources, so that random access resources can be more reasonable. Configuration to avoid waste of resources and improve resource utilization.
  • FIG. 2 is an application scenario of an embodiment of the present invention.
  • a base station and a plurality of terminal devices located within the coverage of the base station are included.
  • the base station transmits downlink synchronization information and system information to terminal devices located in different directions through multiple downlink transmission beams.
  • the technical solution provided by the embodiment of the present invention is described in the following with reference to the accompanying drawings.
  • the technical solution provided by the present invention is applied to the application scenario shown in FIG. 2, and the network device is a base station as an example. .
  • an embodiment of the present invention provides a random access configuration method, and the process of the method is described as follows.
  • the base station generates multiple downlink signals.
  • the signal bearers are transmitted in specific resources, and the specific resources may be the “beams” mentioned in the foregoing.
  • the beam carrying the downlink signal transmitted by the base station is hereinafter referred to as the downlink transmission beam of the base station or the transmission beam of the base station.
  • the beam carrying the uplink signal received by the base station may be referred to as an uplink receiving beam of the base station or a receiving beam of the base station.
  • the downlink signal is at least one of a Synchronization Signal Block (SS block), a Synchronization Burst (SS burst), a SS burst set, and System Information (SI).
  • SS block Synchronization Signal Block
  • SS burst Synchronization Burst
  • SI System Information
  • Each of the plurality of downlink signals is associated with the corresponding random access configuration information, and each of the random access configuration information is used to indicate a random access resource configured for the terminal device, that is, random access.
  • the configuration information is used to configure a random access resource for the terminal device.
  • the random access configuration information includes time configuration information for indicating that the terminal device performs random access, and the time configuration information includes at least one of an end time and a duration of the random access of the terminal device, and the terminal. The start time of the device for random access.
  • the number of terminal devices in different downlink transmit beams may be different.
  • the number of terminal devices in some downlink transmit beams is large, and the number of terminal devices in some downlink transmit beams is small.
  • the number of terminal devices that initiate random access is also large.
  • the number of downlink transmission beams with a small number of terminal devices and the number of terminal devices that initiate random access are also less.
  • the downlink transmission beam associated with the number of downlink transmission beams is insufficient, or the downlink transmission beam with a small number of terminal devices is insufficient.
  • the associated random access resources will remain, causing waste of resources.
  • the random access configuration information associated with the multiple downlink signals is different.
  • the difference may be understood as a part of the random access configuration information associated with the multiple downlink signals.
  • the information is the same and the remaining random access configuration information is different, or it can be understood that the random access configuration information associated with multiple downlink signals are different. If the two random access configuration information are different, the random access resources indicated by the two random access configuration information are different.
  • the information about the random access in the downlink synchronization information and the system information mainly includes a frame number, a beam scanning period, a current beam index, and random access configuration information.
  • the random access configuration information includes time configuration information, a preamble format, a frequency location, and sequence and power information of the random access resource.
  • the time configuration information is used to indicate that the terminal device performs uplink access, where the uplink access includes random access, scheduling request, beam refinement, or system information request.
  • the time configuration information includes a density of random access in time, for example, K subframes per N frames for random access, and at least one of a received signal scanning period corresponding to the random access, and The start time and end time of the random access resource, or the start time and duration of the random access resource.
  • the start time or end time includes at least one of a frame, a subframe, a time slot, a mini-slot, and a number of Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • a frame, a subframe, a minislot, or a slot is composed of a plurality of OFDM symbols.
  • the number of frames, time slots, mini-slots, and OFDM symbols is required, and the time configuration information may include frames, time slots, mini-slots, and numbers of OFDM symbols, that is, the content included in the time configuration information may be based on The actual situation is determined.
  • the duration may be represented by at least one of the number of subframes, the number of slots, the number of minislots, and the number of OFDM symbols. Referring to FIG.
  • the transmission beam k is a downlink transmission beam carrying a downlink signal k
  • the transmission beam j is a downlink transmission beam carrying a downlink signal j.
  • a time-frequency resource region for random access is composed of N subframes, time slots, mini-slots, or OFDM symbols.
  • the frequency domain width and/or time width occupied by each random access time-frequency resource region may be the same or different.
  • the random access time-frequency resource is composed of N time slots.
  • the embodiment of the present invention provides three formats, as shown in FIG. 5D.
  • each time slot consists of K random access preambles and a guard time.
  • the tail in the time slot is the guard time
  • the end time of the guard time is aligned with the end time of the time slot.
  • the head of the next slot is aligned with the head of a particular random access preamble.
  • the random access preambles of the respective time slots in the same area are temporally adjacent, and only the last position of the last time slot in the area is set with the guard time.
  • the guard time is used to protect other uplink data or downlink transmission data that is next to the random access resource area.
  • the tail of the time slot is the guard time, and the end time of the guard time is aligned with the end time of the time slot.
  • the end time of the time slot may not be aligned with the end time of the random access preamble. Accordingly, the heads of these time slots may not be associated with a specific random access preamble header. Align.
  • the start position of each time slot has other uplink data or downlink data, such as downlink control channel data or uplink control channel data.
  • format 3 optionally, there is other uplink data or downlink data at the end of each slot, such as uplink control channel data or downlink control channel data, and other data before the end of each slot is protected.
  • time. Format 3 can be combined with either Format 1 or Format 2 in any way.
  • the above random access time-frequency resource region is composed of N subframes, mini-slots, or OFDM symbols. The above K and N can select any positive integer, and the terminal device can look up the table according to the random access configuration information or calculate according to the formula.
  • the network device can associate different random access configuration information for different downlink signals, because the random access configuration information associated with multiple downlink signals is different.
  • the network device may associate different random access configuration information for different downlink signals according to the number of the terminal devices, and the number of downlink indications of the covered terminal device may be more Random access configuration information of the random access resource, and for the downlink signal with less coverage of the covered terminal device, it may be associated with the random access configuration information of the number of random access resources indicated.
  • the network device may associate different random access configuration information for different downlink signals according to the application scenario, for example, for a downlink signal with a small coverage, it may be associated with a random access resource with a short duration. For a downlink signal with a large coverage, it may be associated with a random access resource indicating a long time length.
  • the number of terminal devices in the downlink transmit beam k carrying the downlink signal k is different from the number of terminal devices in the downlink transmit beam j carrying the downlink signal, and the base station passes the downlink signal k and the downlink signal j at two times respectively.
  • the downlink synchronization information and the system information are transmitted, wherein the downlink synchronization information and the system information transmitted in the downlink signal k are different from the downlink synchronization information and the system information transmitted in the downlink signal k.
  • the transmit beam k is the downlink transmit beam carrying the downlink signal k
  • the downlink signal j is the downlink transmit beam carrying the downlink signal j.
  • the downlink synchronization information and the system information are different, and it can be understood that at least the downlink synchronization information and the random access configuration information associated with the system information are different.
  • the number of terminal devices in the downlink transmission beam k carrying the downlink signal k is large, and the downlink synchronization information transmitted in the downlink signal k and the random access configuration information associated with the system information are more random access resources, so that Performing random access on multiple terminal devices, and the number of terminal devices carrying the downlink transmission beam j of the downlink signal j is large, and the downlink synchronization information sent in the downlink signal j is indicated by the random access configuration information associated with the system information.
  • the technical solution provided by the embodiment of the present invention can effectively improve resource utilization.
  • the downlink synchronization information and system information described in the embodiment of the present invention may be sent by a physical layer broadcast channel and/or a physical layer data channel, or may be transmitted through other downlink channels.
  • each of the plurality of downlink channels transmits a part.
  • the corresponding rules between the downlink transmit beam k and the downlink transmit beam j and the uplink receive beam of the base station for transmitting the downlink synchronization information and the system information satisfy the downlink signal k and the downlink transmit beam j bearer carried by the downlink transmit beam k.
  • the random access resources associated with the downlink signals j are not intersected in time, and the durations of the random access resources associated with different downlink signals may be the same or different in time.
  • the base station sends the multiple access downlink information and the random access configuration information associated with the multiple downlink signals to the terminal device, where the terminal device receives the random access configuration information associated with the multiple downlink signals and the multiple downlink signals.
  • the terminal device performs random access according to the random access resource indicated by the received random access configuration information.
  • the random access configuration information associated with the downlink signal may be sent in the associated downlink signal, or the random access configuration information associated with the downlink signal may be separately sent.
  • the terminal device may generate and send a random access preamble on the corresponding random access resource according to the indication of the received random access configuration information, and the base station may The random access preamble sent by the terminal device is received by the uplink receiving beam. Therefore, in FIG. 3, the terminal device sends a random access preamble to the base station to indicate that the terminal device performs random access according to the random access resource indicated by the received random access configuration information.
  • the base station may receive the random access signal from the terminal device with the corresponding uplink receive beam at the corresponding time position after transmitting the downlink signal.
  • the base station acquires a downlink transmission beam of each terminal device according to the random access resource where the detected random access signal is located, and the association relationship between the random access resource and the downlink signal, and uses the downlink transmission beam to send the other terminal device to the corresponding terminal device. Downstream signal.
  • the downlink transmit beam of the base station and the uplink receive beam of the base station do not have a one-to-one correspondence, for example, one downlink transmit beam of the base station corresponds to multiple uplink receive beams of the base station, and the base station receives signals through multiple uplink receive beams respectively, See Figure 6A.
  • the downlink signal of the base station corresponds to multiple random access resources in time.
  • the base station receives the random access signal sent by the terminal device in different uplink receiving beams.
  • the base station acquires the downlink transmission beam of each terminal device according to the random access resource where the detected random access signal is located, and the association relationship between the random access resource and the downlink signal, and different random connections detected in the same uplink receiving beam.
  • the incoming signal may correspond to different downlink signals.
  • multiple downlink transmit beams of the base station may be associated with the same random access resources at the time position.
  • the random access resources associated with the downlink signal k and the random access resources associated with the downlink signal j overlap in time and are isolated from each other in frequency or/and sequence.
  • the random access resource associated with the same downlink signal is received by one or more uplink receiving beams.
  • the random access resource associated with the downlink signal k is received by an uplink receiving beam
  • the downlink signal j is associated with The random access resource is received by multiple uplink receive beams.
  • the random access resource associated with the downlink signal k and the random access resource associated with the downlink signal j are discontinuous in time. In FIG. 6B and FIG.
  • the transmission beam k is a downlink transmission beam carrying a downlink signal k
  • the transmission beam j is a downlink transmission beam carrying a downlink signal j.
  • the random access resources associated with the different downlink signals may overlap in time, and the random access resources associated with the same downlink signal are discontinuous in time, that is, FIG. 6B and FIG. 6C may be combined. .
  • whether the random access resources associated with the same downlink signal are continuous in time, and whether the random access resources associated with the multiple downlink signals overlap in time, etc. may be sent according to downlink transmission of the base station. It is determined whether the beam and the uplink receive beam are completely corresponding.
  • the base station may notify the terminal device of the corresponding situation between the downlink transmit beam and the uplink receive beam in an explicit manner or an implicit manner, or the terminal device may infer the downlink of the base station according to the association relationship between the random access resource and the downlink signal. Correspondence between the transmit beam and the uplink receive beam.
  • the base station may associate different random access configuration information for different downlink signals, and may configure different random access resources for the terminal devices in different downlink transmission beams according to the number of the terminal devices. Reduce resource waste and improve resource utilization.
  • each downlink signal is relatively independent. Another embodiment is described below.
  • the base station groups the downlink signals, which is more convenient to manage.
  • an embodiment of the present invention provides a random access configuration method, and the process of the method is described as follows.
  • the base station determines a plurality of downlink signal groups.
  • the different downlink signal groups are associated with different random access configuration information.
  • the base station generates a plurality of downlink signals, and the base station groups the plurality of downlink signals to obtain a plurality of downlink signal groups, wherein each of the downlink signal groups includes at least one downlink signal.
  • the downlink signal may be an SS-block, where the base station refers to multiple downlink signal packets to group multiple SS-blocks, one downlink signal group includes at least one SS-block, and the base station includes multiple
  • the downstream signal group is treated as a set.
  • a downlink signal group can also be regarded as a downlink burst (SS burst) group, and a downlink signal group set can be regarded as a downlink burst set (SS burst set).
  • the downlink signal may be SS-burst
  • the base station refers to multiple downlink signal packets to group multiple SS-bursts, and one downlink signal group includes at least one SS-burst.
  • an SS-burst may also constitute a downlink signal group, and at least two downlink signal groups are associated with different random access configuration information.
  • the downlink signal may be an SS burst set
  • the base station refers to multiple downlink signal packets to group multiple SS burst sets, and one downlink signal group includes at least one SS burst set.
  • the downlink signal may be system information, and then the base station refers to the plurality of downlink signal packets to group multiple system information, and one downlink signal group includes at least one system information.
  • the random access configuration information associated with the downlink signal group includes a time configuration index of the downlink signal indicated by the random access configuration information, and the time configuration index is used by the terminal device to determine the start time and the occupied time of the random access resource according to the time configuration index. At least one of a frequency domain resource, a number of downlink signals, and a sequence resource used for random access. Specifically, the time configuration index may be included in the time configuration information. After receiving the system information in the downlink signal, the terminal device performs a table lookup according to the time configuration index in the time configuration information, and determines the start time and the occupied frequency of the random access resource by searching the table result or calculating according to the result of the table lookup.
  • the table may include a time configuration index between the start time of the random access resource, the occupied frequency domain resource, the number of downlink signals, and at least one of the sequence resources used by the random access. Correspondence relationship.
  • the terminal device may further combine the downlink signal index and/or the index of the downlink signal group, and obtain the random access resource associated with the downlink signal by looking up the table or calculating the result according to the table lookup result.
  • the specific location that is, at least one of determining the start time of the random access resource, the occupied frequency domain resource, the number of downlink signals, and the sequence resources used by the random access.
  • the table may include a downlink signal index and/or an index of the downlink signal group, a time configuration index and a start time of the random access resource, an occupied frequency domain resource, a downlink signal quantity, and a random access station. The correspondence between at least one of the factors used in the sequence resources.
  • the random access configuration information associated with the downlink signal group includes a start time of the random access of the downlink signal packet indicated by the random access configuration information, a duration of the random access, an end time of the random access, and random access. At least one of a frequency domain resource used, a number of downlink signals, and a sequence resource used for random access.
  • downlink synchronization information and system information sent by different downlink signals in the same downlink signal group are not completely the same, wherein downlink synchronization information and system information sent by one downlink signal can be associated with the downlink signal.
  • the following mainly describes the case where the random access configuration information associated with different downlink signals in the same downlink signal group is the same.
  • the random access configuration information associated with each downlink signal in the same downlink signal group is exactly the same.
  • the base station may specify a start time of the random access resource associated with the downlink signal group, and a duration of the random access resource associated with each downlink signal, or the base station may specify a random access resource associated with the downlink signal group.
  • the end time and the number of downlink signals included in the downlink signal group, or the base station may specify the total duration of the random access resources associated with the downlink signal group and the number of downlink signals included in the downlink signal group. Therefore, the terminal device can obtain time configuration information of the random access resource associated with the downlink signal according to the group index of the downlink signal group in which the received downlink signal is located and the signal index of the downlink signal group in the downlink signal group.
  • the base station may group the downlink signals according to the number of the terminal devices in the downlink transmission beam.
  • the downlink signals including the same or approximately the same number of terminal devices may be grouped into one group.
  • the number of terminal devices is approximately the same, and it can be understood that the number of terminal devices is in the same quantity range.
  • the number of terminal devices can be divided into a plurality of quantity ranges in advance, and the downlink signals in which the number of terminal devices are in the same number range can be divided into a group.
  • the base station generates a total of K1+K2 downlink signals.
  • the number of terminal devices in the K1 downlink transmission beams carrying the downlink signal 1 to the downlink signal K1 is 4, and the number of terminal devices in the K2 downlink transmission beams carrying the remaining K2 downlink signals is 2, then
  • the base station divides the downlink signal 1 to the downlink signal K1 into one group, and divides the remaining K2 downlink signals into one group, see FIG. 8A.
  • the downlink signal group in which the downlink signal 1 to the downlink signal K1 are located is represented as the first group
  • the downlink signal group in which the remaining K2 downlink signals are located is represented as the second group, and downlink synchronization information and system information are respectively transmitted.
  • the first group includes K1 downlink signals
  • the second group includes K2 downlink signals. Because the number of terminal devices in the K1 downlink transmission beams carrying the downlink signal 1 to the downlink signal K1 is large, the base station may associate a relatively large number of random access resources for each downlink signal in the first group, for example, the first group. Each downlink signal is associated with 2 random access resources in time. The number of terminal devices in the K2 downlink transmit beams carrying the remaining K2 downlink signals is small, and the base station may associate a relatively small number of random access resources for each downlink signal in the second group, for example, in the second group. For each downlink signal associated with 1 random access resource in time, please refer to FIG. 8B.
  • the "parts” indicates the number of random access resources.
  • the difference in the number of random access resources can be expressed by time, and the number is large, which can be expressed as a random access resource area corresponding to Long time.
  • "2" and “1" may be any length of time, and the time granularity may be any one of OFDM symbols, time slots, mini-slots, subframes, frames, and time widths of the preamble format. .
  • the “frame” herein may be understood as a system frame, and if the duration is referred to, the “frame” herein may be understood as a wireless frame.
  • the difference in the number of random access resources may be represented by a frequency/sequence resource, and the number is large, and may be expressed as a wider frequency domain resource/sequence resource.
  • "2" and "1" may be any number of frequency/sequence resources, see Figure 8C.
  • the base station sends the random access configuration information associated with the multiple downlink signal groups and the multiple downlink signal groups to the terminal device, where the terminal device receives the random access configuration information associated with the multiple downlink signal groups and the multiple downlink signal groups.
  • the terminal device performs random access according to the random access resource indicated by the received random access configuration information.
  • the random access configuration information associated with the downlink signal may be sent in the associated downlink signal, or the random access configuration information associated with the downlink signal may be separately sent.
  • the terminal device may generate and send a random access preamble on the corresponding random access resource according to the indication of the random access configuration information, and the base station passes the uplink.
  • the receiving beam receives a random access preamble sent by the terminal device. Therefore, in FIG. 7, the terminal device sends a random access preamble to the base station to indicate that the terminal device performs random access according to the random access resource indicated by the received random access configuration information.
  • the base station may further group the downlink signals, so that, in addition to reducing resource waste, if the time configuration information is carried It is a time configuration index, which can also reduce signaling overhead.
  • FIG. 9 shows a schematic structural diagram of a communication device 900.
  • the communication device 900 can implement the functions of the network devices referred to above.
  • the communication device 900 can include a processing unit 901 and a transmitting unit 902.
  • the processing unit 901 can be used to execute S31 in the embodiment shown in FIG. 3, and/or other processes for supporting the techniques described herein.
  • Transmitting unit 902 can be used to perform S32 in the embodiment shown in FIG. 3, and/or other processes for supporting the techniques described herein. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 10 shows a schematic structural diagram of a communication device 1000.
  • the communication device 1000 can implement the functions of the network devices referred to above.
  • the communication device 1000 can include a processing unit 1001 and a transmitting unit 1002.
  • the processing unit 1001 can be used to perform S71 in the embodiment shown in FIG. 7, and/or other processes for supporting the techniques described herein.
  • Transmitting unit 1002 can be used to perform S72 in the embodiment shown in FIG. 7, and/or other processes for supporting the techniques described herein. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 11 shows a schematic structural diagram of a communication device 1100.
  • the communication device 1100 can implement the functions of the terminal device referred to above.
  • the communication device 1100 can include a processing unit 1101 and a receiving unit 1102.
  • the processing unit 1101 and the receiving unit 1102 can be used to perform S33 in the embodiment shown in FIG. 3, and/or other processes for supporting the techniques described herein. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 12 shows a schematic structural diagram of a communication device 1200.
  • the communication device 1200 can implement the functions of the terminal device referred to above.
  • the communication device 1200 can include a processing unit 1201 and a receiving unit 1202. Wherein, the processing unit 1201 and the receiving unit 1202 can be used to perform S73 in the embodiment shown in FIG. 7, and/or other processes for supporting the techniques described herein. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • the communication device 900 to the communication device 1200 are presented in the form of dividing each function into individual functional modules, or may be presented in an integrated manner to divide the functional modules.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the above functionality. .
  • ASIC application-specific integrated circuit
  • any one of the communication device 900 to the communication device 1200 can also be implemented by the structure shown in FIG.
  • the communication device 1300 can include a memory 1301, a processor 1302, a system bus 1303, and a communication interface 1304.
  • the processor 1302, the memory 1301, and the communication interface 1304 are connected by a system bus 1303.
  • the memory 1301 is configured to store computer execution instructions.
  • the processor 1302 executes computer execution instructions stored in the memory 1301 to cause the communication device 1300 to perform the embodiment shown in FIG. 3 or the embodiment shown in FIG. Random access configuration method.
  • the communication interface 1304 can be a transceiver or an independent receiver and transmitter.
  • transmitting unit 902 can correspond to communication interface 1304 in FIG.
  • the processing unit 901 can be embedded in or independent of the memory 1301 of the communication device 1300 in hardware/software.
  • the transmitting unit 1002 can correspond to the communication interface 1304 in FIG.
  • Processing unit 1001 may be embedded in or separate from memory 1301 of communication device 1300 in hardware/software.
  • receiving unit 1102 can correspond to communication interface 1304 in FIG.
  • Processing unit 1101 may be embedded in or separate from memory 1301 of communication device 1300 in hardware/software.
  • receiving unit 1202 can correspond to communication interface 1304 in FIG.
  • the processing unit 1201 may be embedded in or independent of the memory 1301 of the communication device 1300 in hardware/software.
  • the communication device 1300 can be a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), and a central processing unit ( Central processor unit (CPU), network processor (NP), digital signal processor (DSP), microcontroller (micro controller unit (MCU), programmable logic controller (programmable logic) Device, PLD) or other integrated chip.
  • the communication device 900 can also be a separate network element, such as a network device or a terminal device.
  • the embodiment of the present invention further provides a computer storage medium, which may include a memory, where the memory may store a program, where the program is executed, including the network device described in the method embodiment shown in FIG. All steps.
  • the embodiment of the present invention further provides a computer storage medium, which may include a memory, where the memory may store a program, where the program is executed, including the network device described in the method embodiment shown in FIG. All steps.
  • the communication device 900 to the communication device 1100 provided by the embodiments of the present invention can be used to perform the foregoing communication method. Therefore, the technical effects that can be obtained can be referred to the foregoing method embodiments, and details are not described herein again.
  • the network device generates multiple downlink signals, and each downlink signal is associated with random access configuration information, and different downlink signals may be transmitted in different downlink transmit beams, which implements multi-beam processing.
  • the technical solution provided by the embodiment of the present invention can be applied to such a multi-beam network similar to the 5G system.
  • the random access configuration information associated with different downlink signals may be different, and the associated random access configuration information may be used to indicate more information for the downlink signals covering more terminal devices. Random access resources, and for downlink signals covering fewer terminal devices, the associated random access configuration information can be used to indicate less random access resources, so that random access resources can be more reasonable. Configuration to avoid waste of resources and improve resource utilization.
  • embodiments of the invention may be provided as a method, system, or computer program product.
  • embodiments of the invention may be in the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • embodiments of the invention may take the form of a computer program product embodied on one or more computer usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • Embodiments of the invention are described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种随机接入配置方法及装置,用于减少资源浪费。其中的一种随机接入配置方法包括:网络设备生成多个下行信号;其中,所述多个下行信号关联的随机接入配置信息不同;所述随机接入配置信息用于指示为终端设备配置的随机接入资源;网络设备将所述多个下行信号以及所述多个下行信号关联的随机接入配置信息发送给终端设备。

Description

一种随机接入配置方法及装置
本申请要求在2017年3月24日提交中国专利局、申请号为201710184927.9、申请名称为“一种随机接入配置方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种随机接入配置方法及装置。
背景技术
移动业务的发展对无线通信的数据速率和效率要求越来越高。在未来的无线通信***中,波束成型技术用来将传输信号的能量限制在某个波束方向内,从而增加信号和接收的效率。
在基站与终端设备(User Equipment,UE)进行通信之前,UE首先需要接入基站,目前UE一般是通过随机接入来实现接入。请参见图1A,为长期演进(Long Term Evolution,LTE)***中的随机接入(Random access,RA)过程的示意图。在LTE***中,进行随机接入时,UE首先进行下行同步,从物理层广播信道(Physical broadcast channel,PBCH)中获取***帧号等主要***信息,然后再接收其它下行***信息。其中,UE从接收的第二类***信息块(System information block-2,SIB2)中获取随机接入资源信息。
图1B为SIB2的广播周期示意,SIB2的广播周期为T,T可以由基站配置。其中,基站发送的***信息与随机接入资源信息之间的关系如图1C所示。在随机接入资源信息中,指示了UE可以发送随机接入的时间密度、频率、以及序列等资源,如图1D中的资源1、资源2、以及资源3所示。其中,时间密度包括随机接入在每个***帧(System frame number,SFN)中的数量以及位置。然后UE根据随机接入资源信息,生成随机接入前导(preamble),在随机接入资源信息所指示的时间及频率位置发送该随机接入前导。
在LTE***中,基站使用相同的波束与本基站覆盖范围的内的UE进行信息传输。而在未来的第五代移动通信技术(5G)***中,基站可能会使用多个波束与本基站覆盖范围的内的UE进行信息传输。因此,LTE***的这种单波束的方法不适用于类似于5G***的这种多波束网络。
发明内容
本发明实施例提供一种随机接入配置方法及装置,用于减少资源浪费。
第一方面,提供一种随机接入配置方法,该方法可由网络设备执行,网络设备例如为基站。该方法包括:网络设备生成多个下行信号,其中,该多个下行信号关联的随机接入配置信息不同,随机接入配置信息用于指示为终端设备配置的随机接入资源。网络设备将多个下行信号以及多个下行信号关联的随机接入配置信息发送给终端设备。
本发明实施例中,网络设备会生成多个下行信号,每个下行信号都关联随机接入配置信息,不同的下行信号可以承载在不同的下行发送波束中发送,这就实现了多波束的处理,使得本发明实施例提供的技术方案能够适用于类似于5G***的这种多波束网络。
而且本发明实施例中,不同的下行信号关联的随机接入配置信息可能是不同的,那么 对于覆盖较多终端设备的下行信号,为其关联的随机接入配置信息就可以用于指示比较多的随机接入资源,而对于覆盖较少终端设备的下行信号,为其关联的随机接入配置信息就可以用于指示比较少的随机接入资源,从而使得随机接入资源能够得到较为合理的配置,避免资源浪费,提高了资源的利用率。
在一个可能的设计中,随机接入配置信息包括用于指示终端设备进行随机接入的时间配置信息。其中,时间配置信息包括终端设备进行随机接入的结束时间和持续时间中的至少一种,以及终端设备进行随机接入的起始时间。
随机接入配置信息可以指示终端设备进行随机接入的时间配置信息,从而终端设备根据该时间配置信息就能在准确的位置进行随机接入。
在一个可能的设计中,用于指示终端设备进行随机接入的时间配置信息包括:OFDM符号、mini-slot、子帧、以及帧中的至少一种。
给出了时间配置信息的几种形式,在本发明实施例中时间配置信息的形式不限于以上列举的几种。
在一个可能的设计中,下行信号为SS block、SS burst、SS burst set、***信息中的至少一种。
本发明实施例中,下行信号可能有不同的形式,且以上几种只是举例,本发明实施例不限制下行信号的形式。
第二方面,提供一种随机接入配置方法,该方法可以由网络设备执行,网络设备例如为基站。该方法包括:网络设备确定多个下行信号组,不同的下行信号组关联不同的随机接入配置信息。网络设备将多个下行信号组以及多个下行信号组关联的随机接入配置信息发送给终端设备。
在本发明实施例中,基站除了可以为不同的下行信号关联不同的随机接入配置信息之外,还可以将下行信号进行分组,这样,除了可以减少资源浪费之外,还可以使得下行信号更为规范。
在一个可能的设计中,一个下行信号组中包括多个下行信号,同一个下行信号组中的各个下行信号所关联的随机接入配置信息相同。
网络设备为同一个下行信号组包括的各个下行信号关联相同的随机接入配置信息,不同的下行信号组关联不同的随机接入配置信息,实现了对于下行信号的分区管理。
在一个可能的设计中,下行信号组关联的随机接入配置信息包括随机接入配置信息所指示的下行信号分组的随机接入的起始时间、随机接入的持续时间、随机接入的结束时间、随机接入所使用的频域资源、下行信号数量、以及随机接入所使用的序列资源中的至少一种。
随机接入配置信息可用于指示相应的随机接入资源的时域、频域、以及序列等资源,从而终端设备根据接收的随机接入配置信息就能在正确的位置进行随机接入。
在一个可能的设计中,下行信号组关联的随机接入配置信息包括随机接入配置信息所指示的下行信号的时间配置索引。时间配置索引用于终端设备根据时间配置索引确定随机接入资源的开始时间、占用的频域资源、下行信号数量、以及随机接入所使用的序列资源中的至少一种。
终端设备接收下行信号中的随机接入配置信息后,根据时间配置信息中的时间配置索引进行查表,通过查表结果或通过根据查表结果进行计算的方式确定随机接入资源的开始 时间、占用的频域资源、下行信号数量、以及随机接入所使用的序列资源中的至少一种。或者,终端设备除了使用时间配置索引之外,还可以进一步结合下行信号索引和/或下行信号组的索引,通过查表或者根据查表结果计算的方式,得到该下行信号关联的随机接入资源的具***置,也就是确定随机接入资源的开始时间、占用的频域资源、下行信号数量、以及随机接入所使用的序列资源中的至少一种。那么,时间配置信息只需包括时间配置索引就可以使得终端设备确定随机接入资源,有效降低了信令的开销。
在一个可能的设计中,下行信号为SS block、SS burst、SS burst set、***信息中的至少一种。
本发明实施例中,下行信号可能有不同的形式,且以上几种只是举例,本发明实施例不限制下行信号的形式。
在一个可能的设计中,下行信号组是SS burst、SS burst set中的至少一种。
例如,下行信号是SS-block,那么基站将多个下行信号分组指的是将多个SS-block进行分组,一个下行信号组包括至少一个SS-block,基站将多个下行信号组看成一个集合。在这种情况下,一个下行信号组也可以视为一个下行SS burst组,一个下行信号组集合可以视为下行SS burst set。
或者,下行信号是SS-burst,那么基站将多个下行信号分组指的是将多个SS-burst进行分组,一个下行信号组包括至少一个SS-burst。特别地,一个SS-burst也可构成一个下行信号组,且至少有两个下行信号组关联的随机接入配置信息不同。
或者,下行信号是SS burst set,那么基站将多个下行信号分组指的是将多个SS burst set进行分组,一个下行信号组包括至少一个SS burst set。
或者,下行信号是***信息,那么基站将多个下行信号分组指的是将多个***信息进行分组,一个下行信号组包括至少一个***信息。
以上几种只是举例,因本发明实施例不限制下行信号的形式,因此在下行信号不同时,下行信号组自然也会有所不同。
第三方面,提供一种随机接入配置方法,该方法可由终端设备执行。该方法包括:终端设备接收网络设备发送的多个下行信号及多个下行信号关联的随机接入配置信息,多个下行信号关联的随机接入配置信息不同,随机接入配置信息用于指示为终端设备配置的随机接入资源。终端设备根据接收的随机接入配置信息所指示的随机接入资源进行随机接入。
在一个可能的设计中,随机接入配置信息包括用于指示终端设备进行随机接入的时间配置信息。其中,时间配置信息包括终端设备进行随机接入的结束时间和持续时间中的至少一种,以及终端设备进行随机接入的起始时间。
在一个可能的设计中,用于指示终端设备进行随机接入的时间配置信息包括:OFDM符号、mini-slot、slot、子帧、以及帧中的至少一种。
在一个可能的设计中,下行信号为SS block、SS burst、SS burst set、***信息中的至少一种。
第四方面,提供一种随机接入配置方法,该方法可由终端设备执行。该方法包括:终端设备接收网络设备发送的多个下行信号组以及多个下行信号组关联的随机接入配置信息,其中,不同的下行信号组关联不同的随机接入配置信息。终端设备根据接收的随机接入配置信息所指示的随机接入资源进行随机接入。
在一个可能的设计中,一个下行信号组中包括多个下行信号,同一个下行信号组中的各个下行信号所关联的随机接入配置信息相同。
在一个可能的设计中,下行信号组关联的随机接入配置信息包括随机接入配置信息所指示的下行信号分组的随机接入的起始时间、随机接入的持续时间、随机接入的结束时间、随机接入所使用的频域资源、下行信号数量、以及随机接入所使用的序列资源中的至少一种。
在一个可能的设计中,下行信号组关联的随机接入配置信息包括随机接入配置信息所指示的下行信号的时间配置索引。时间配置索引用于终端设备根据时间配置索引确定随机接入资源的开始时间、占用的频域资源、下行信号数量、以及随机接入所使用的序列资源中的至少一种。
在一个可能的设计中,下行信号为SS block、SS burst、SS burst set、***信息中的至少一种。
在一个可能的设计中,下行信号组是SS burst、SS burst set中的至少一种。
第五方面,提供一种通信装置。该通信装置具有实现上述方法设计中网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,通信装置的具体结构可包括处理单元和发送单元。处理单元和发送单元可执行上述第一方面或第一方面的任意一种可能的设计所提供的方法中的相应功能。
第六方面,提供一种通信装置。该通信装置具有实现上述方法设计中网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,通信装置的具体结构可包括处理单元和发送单元。处理单元和发送单元可执行上述第二方面或第二方面的任意一种可能的设计所提供的方法中的相应功能。
第七方面,提供一种通信装置。该通信装置具有实现上述方法设计中终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,通信装置的具体结构可包括接收单元和处理单元。接收单元和处理单元可执行上述第三方面或第三方面的任意一种可能的设计所提供的方法中的相应功能。
第八方面,提供一种通信装置。该通信装置具有实现上述方法设计中终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,通信装置的具体结构可包括接收单元和处理单元。接收单元和处理单元可执行上述第四方面或第四方面的任意一种可能的设计所提供的方法中的相应功能。
第九方面,提供一种通信装置。该通信装置可以为网络设备,或者为设置在网络设备中的芯片等功能模块。该通信装置包括:存储器,用于存储计算机可执行程序代码;收发器,以及处理器,处理器与存储器、收发器耦合。其中存储器所存储的程序代码包括指令, 当处理器执行所述指令时,所述指令使通信装置执行上述第一方面或第一方面的任意一种可能的设计中网络设备所执行的方法。
第十方面,提供一种通信装置。该通信装置可以为网络设备,或者为设置在网络设备中的芯片等功能模块。该通信装置包括:存储器,用于存储计算机可执行程序代码;收发器,以及处理器,处理器与存储器、收发器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,所述指令使通信装置执行上述第二方面或第二方面的任意一种可能的设计中网络设备所执行的方法。
第十一方面,提供一种通信装置。该通信装置可以为终端设备,或者为设置在终端设备中的芯片等功能模块。该通信装置包括:存储器,用于存储计算机可执行程序代码;收发器,以及处理器,处理器与存储器、收发器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,所述指令使通信装置执行上述第三方面或第三方面的任意一种可能的设计中终端设备所执行的方法。
第十二方面,提供一种通信装置。该通信装置可以为终端设备,或者为设置在终端设备中的芯片等功能模块。该通信装置包括:存储器,用于存储计算机可执行程序代码;收发器,以及处理器,处理器与存储器、收发器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,所述指令使通信装置执行上述第四方面或第四方面的任意一种可能的设计中终端设备所执行的方法。
第十三方面,提供一种计算机存储介质,用于存储为上述第五方面所描述的通信装置或第九方面所描述的通信装置所用的计算机软件指令,并包含用于执行上述第一方面或第一方面的任意一种可能的设计中为网络设备所设计的程序。
第十四方面,提供一种计算机存储介质,用于存储为上述第六方面所描述的通信装置或第十方面所描述的通信装置所用的计算机软件指令,并包含用于执行上述第二方面或第二方面的任意一种可能的设计中为网络设备所设计的程序。
第十五方面,提供一种计算机存储介质,用于存储为上述第七方面所描述的通信装置或第十一方面所描述的通信装置所用的计算机软件指令,并包含用于执行上述第三方面或第四方面的任意一种可能的设计中为用户设备所设计的程序。
第十六方面,提供一种计算机存储介质,用于存储为上述第八方面所描述的通信装置或第十二方面所描述的通信装置所用的计算机软件指令,并包含用于执行上述第四方面或第四方面的任意一种可能的设计中为用户设备所设计的程序。
本发明实施例中,网络设备会生成多个下行信号,每个下行信号都关联随机接入配置信息,不同的下行信号可以承载在不同的下行发送波束中发送,这就实现了多波束的处理,使得本发明实施例提供的技术方案能够适用于类似于5G***的这种多波束网络。
本发明实施例中,网络设备、终端设备、及随机接入配置信息等名称对技术特征本身不构成限定,在实际实现中,这些技术特征可以以其他名称出现。只要各个技术特征的功能和本发明实施例中介绍的类似,属于本申请的权利要求及其等同技术的范围之内。
附图说明
图1A为LTE***中的随机接入过程示意图;
图1B为SIB2的广播周期示意图;
图1C为LTE***中基站发送的***信息与随机接入资源信息之间的关系;
图1D为LTE***中的随机接入资源示意图;
图2为本发明实施例的一种应用场景示意图;
图3为本发明实施例提供的一种随机接入配置方法的流程图;
图4为不同的下行发送波束内终端设备数量不同的情况示意图;
图5A为本发明实施例中基站的下行信号中的***信息与随机接入资源结构示意图;
图5B为本发明实施例中与下行发送波束k关联的随机接入资源和与下行波束j关联的随机接入资源的示意图;
图5C为本发明实施例提供的随机接入的帧格式示意图;
图5D为本发明实施例提供的随机接入时频资源的几种格式示意图;
图5E为基站分别在两个时间通过下行信号k和下行信号j发送下行同步信息和***信息的示意图;
图6A为基站的一个下行信号对应多个上行信号的示意图;
图6B为本发明实施例中下行信号k所关联的随机接入资源和下行信号j所关联的随机接入资源在时间上有交叠的示意图;
图6C为本发明实施例中下行信号k所关联的随机接入资源和下行信号j所关联的随机接入资源在时间上不连续的示意图;
图7为本发明实施例提供的一种随机接入配置方法的流程图;
图8A为本发明实施例中将下行信号分组的示意图;
图8B为本发明实施例中不同的下行信号组关联的随机接入资源的时间数量不同的示意图;
图8C为本发明实施例中不同的下行信号组关联的随机接入资源的频率/序列资源数量不同的示意图;
图9~图13为本发明实施例提供的通信装置的几种结构示意图。
具体实施方式
为了使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施例作进一步地详细描述。
本文中描述的技术方案可用于第五代移动通信技术(5G)***,还可用于下一代移动通信***。
以下,对本发明实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)网络设备,例如包括基站(例如,接入点),可以是指接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以包括长期演进(Long Term Evolution,LTE)***或演进的LTE***(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括5G***中的下一代节点B(next generation node B,gNB),本发明实施例并不限定。
(2)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(Radio Access Network,RAN)与核心网进行通信,与RAN交换语音和/或数据。 该终端设备可以包括用户设备(User Equipment,UE)、无线终端设备、移动终端设备、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point,AP)、远程终端设备(Remote Terminal)、接入终端设备(Access Terminal)、用户终端设备(User Terminal)、用户代理(User Agent)、或用户装备(User Device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、智能手表、智能头盔、智能眼镜、智能手环、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(RFID)、传感器、全球定位***(GPS)、激光扫描器等信息传感设备。
(3)波束(beam),是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等,例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
本发明实施例中,也可以将“波束”称为“传输资源”等。也就是说,本文对于“波束”的名称不作限制,只要表达的是如上的概念即可。
(4)波束对(beam pair link),波束对的概念建立在波束的概念上。一个波束对通常包括一个发送端的发送波束和一个接收端的接收波束。例如一个波束对可以包括基站的发送波束和UE的接收波束。
(5)本发明实施例中的术语“***”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
本发明实施例中,网络设备会生成多个下行信号,每个下行信号都关联随机接入配置信息,不同的下行信号可以承载在不同的下行发送波束中发送,这就实现了多波束的处理,使得本发明实施例提供的技术方案能够适用于类似于5G***的这种多波束网络。
而且本发明实施例中,不同的下行信号关联的随机接入配置信息可能是不同的,那么对于覆盖较多终端设备的下行信号,为其关联的随机接入配置信息就可以用于指示比较多的随机接入资源,而对于覆盖较少终端设备的下行信号,为其关联的随机接入配置信息就可以用于指示比较少的随机接入资源,从而使得随机接入资源能够得到较为合理的配置,避免资源浪费,提高了资源的利用率。
请参见图2,为本发明实施例的一种应用场景。在图2中包括基站和位于该基站的覆 盖范围内的多个终端设备,基站通过多个下行发送波束向位于不同方向的终端设备发送下行同步信息和***信息。
下面结合附图介绍本发明实施例提供的技术方案,在下面的介绍过程中,以将本发明提供的技术方案应用在图2所示的应用场景中为例,且以网络设备是基站为例。
请参见图3,本发明一实施例提供一种随机接入配置方法,该方法的流程描述如下。
S31、基站生成多个下行信号。
在本发明实施例中,信号承载在特定的资源中发送,这些特定的资源可以是前文中提到的“波束”。为了区分不同的波束,在下文中将承载基站发送的下行信号的波束称为基站的下行发送波束或基站的发送波束。相应的,承载基站接收的上行信号的波束就可称为基站的上行接收波束或基站的接收波束。
在一种实施方式中,下行信号是同步块(Synchronization Signal block,SS block)、同步突发(SS burst)、同步突发集(SS burst set)和***信息(System Information,SI)中的至少一种。
其中,多个下行信号中的每个下行信号都关联相应的随机接入配置信息,每个随机接入配置信息都用于指示为终端设备配置的随机接入资源,也就是说,随机接入配置信息用于为终端设备配置随机接入资源。本发明实施例中,随机接入配置信息包括用于指示终端设备进行随机接入的时间配置信息,时间配置信息包括终端设备进行随机接入的结束时间和持续时间中的至少一种,以及终端设备进行随机接入的起始时间。
因为不同的下行发送波束内的终端设备的数量可能会有所不同,例如有些下行发送波束内终端设备的数量大,而有些下行发送波束内终端设备的数量小。可参见图4,下行发送波束1内有2倍数量的终端设备,而下行发送波束2内只有1倍数量的终端设备。对于终端设备的数量多的下行发送波束,同时发起随机接入的终端设备的数量也会较多,反之,终端设备的数量较少的下行发送波束,同时发起随机接入的终端设备的数量也较少。针对这种情况,如果为所有的下行发送波束都关联相同的随机接入配置信息,那么,要么终端设备数量多的下行发送波束关联的随机接入资源不足,要么终端设备数量少的下行发送波束关联的随机接入资源又会剩余,造成资源浪费。
因此在本发明实施例中,多个下行信号所关联的随机接入配置信息是不同的,这里的不同,可以理解为多个下行信号所关联的随机接入配置信息中有部分随机接入配置信息相同而剩余的随机接入配置信息不同,或者也可以理解为多个下行信号所关联的随机接入配置信息均不相同。如果两个随机接入配置信息不同,那么这两个随机接入配置信息所指示的随机接入资源就是不同的。
请参见图5A,下行同步信息和***信息中与随机接入相关的信息主要包括帧编号、波束扫描周期、当前波束索引、以及随机接入配置信息。随机接入配置信息包括随机接入资源所在的时间配置信息、前导格式、频率位置,以及序列、功率信息等。
其中时间配置信息用于指示终端设备进行上行接入,这里的上行接入,包括随机接入、调度请求、波束优化(beam refinement)、或者***信息请求,本文在介绍时主要以随机接入为例。在时间配置信息中,包含随机接入在时间上的密度,例如,每N个帧中有K个子帧用于随机接入,以及随机接入对应的接收信号扫描周期中的至少一种,以及包括随机接入资源的起始时间和结束时间,或随机接入资源的起始时间和持续时间。起始时间或结束时间包括帧、子帧、时隙、小时隙(mini-slot)、以及正交频分复用(Orthogonal Frequency  Division Multiplexing,OFDM)符号的编号中的至少一种。一个帧、子帧、小时隙、或时隙,是由多个OFDM符号构成。例如需要帧、时隙、小时隙、和OFDM符号的编号,那么时间配置信息就可以包括帧、时隙、小时隙、和OFDM符号的编号,也就是说,时间配置信息所包括的内容可根据实际情况确定。持续时间可以用子帧数量、时隙数量、小时隙数量、OFDM符号数量中的至少一种表示。请参见图5B,为与下行信号k关联的随机接入资源和与下行信号j关联的随机接入资源的示意图,这两个随机接入资源的时间配置信息显然是不同的。在图5B中,发送波束k是承载下行信号k的下行发送波束,发送波束j是承载下行信号j的下行发送波束。
接下来介绍随机接入的帧格式,请参见图5C。一个用于随机接入的时频资源区域由N个子帧、时隙、小时隙、或者OFDM符号构成。在相同的时间位置上,可以有多块频域资源区域,各个随机接入时频资源区域在频域上可以相邻,也不相邻,即不同的随机接入时频资源区域中间有空余频域或者其它上行数据传输的频域。各个随机接入时频资源区域所占的频域宽度和/或时间宽度可以相同,也可以不相同。
例如,随机接入时频资源由N个时隙构成,本发明实施例提供三种格式,请参见图5D。其中格式1,每一个时隙由K个随机接入前导和一段保护时间构成。特别地,对于特定的时隙,该时隙内尾部为保护时间,且保护时间的结束时间和时隙的结束时间对齐。相应地,下一个时隙的头部和特定的随机接入前导的头部对齐。格式2中,同一区域内各个时隙的随机接入前导在时间上相邻,只有区域内的最后一个时隙的最后位置设置有保护时间。保护时间用于保护时间上紧挨着随机接入资源区域的其它上行数据或者下行传输数据。特别的,对于格式2,对于该随机接入资源所包含的最后一个时隙,该时隙的尾部为保护时间,且保护时间的结束时间和时隙的结束时间对齐。而对于其他时隙,不存在保护时间,且时隙的结束时间可以不和随机接入前导的结束时间对齐,相应地,这些时隙的头部可以不和特定的随机接入前导的头部对齐。在格式3中,可选地,每个时隙的开始位置有其它上行数据或者下行数据,例如下行控制信道数据或者上行控制信道数据。在格式3中,可选地,每个时隙结尾的位置有其它上行数据或者下行数据,例如上行控制信道数据或者下行控制信道数据,每个时隙结尾的位置的其它数据之前,设置有保护时间。格式3可以与格式1或格式2以任意方式结合。在另外的实施方式中,以上的随机接入时频资源区域由N个子帧、小时隙、或OFDM符号构成。以上K和N可以选任意正整数,终端设备可根据随机接入配置信息查表或者根据公式计算得到。
那么,因为本发明实施例支持多个下行信号所关联的随机接入配置信息不同,网络设备也就可以为不同的下行信号关联不同的随机接入配置信息。在一种实施方式中,网络设备可根据终端设备的数量的情况为不同的下行信号关联不同的随机接入配置信息,对于覆盖的终端设备多的下行信号,可以为其关联指示的数量较多的随机接入资源的随机接入配置信息,而对于覆盖的终端设备少的下行信号,可以为其关联指示的数量较少的随机接入资源的随机接入配置信息。在另外的实施方式中,网络设备可以根据应用场景为不同的下行信号关联不同的随机接入配置信息,例如对于覆盖范围小的下行信号,可以为其关联指示时间长度较短的随机接入资源,而对于覆盖范围大的下行信号,可以为其关联指示时间长度较长的随机接入资源。
例如请参见图5E,承载下行信号k的下行发送波束k内的终端设备数量和承载下行信号的下行发送波束j内的终端设备数量不同,基站分别在两个时间通过下行信号k和下行 信号j发送下行同步信息和***信息,其中,在下行信号k中发送的下行同步信息和***信息,与在下行信号k中发送的下行同步信息和***信息不相同。在图5E中,发送波束k就是承载下行信号k的下行发送波束,下行信号j就是承载下行信号j的下行发送波束。这里的下行同步信息和***信息不相同,可以理解为,至少是下行同步信息和***信息关联的随机接入配置信息不同。例如承载下行信号k的下行发送波束k内的终端设备数量较多,那么在下行信号k中发送的下行同步信息和***信息关联的随机接入配置信息所指示的随机接入资源较多,以便于多个终端设备进行随机接入,而承载下行信号j的下行发送波束j的终端设备数量较多,那么在下行信号j中发送的下行同步信息和***信息关联的随机接入配置信息所指示的随机接入资源较少,以避免资源浪费。通过本发明实施例所提供的技术方案,能够有效提高资源利用率。
在本发明实施例中所述的下行同步信息和***信息,可以由物理层广播信道和/或物理层数据信道发送,或者通过其它下行信道发送。在由多个下行信道发送时,多个下行信道各发送一部分。任意两个用于发送下行同步信息和***信息的下行发送波束k和下行发送波束j与基站的上行接收波束之间的对应规则满足,下行发送波束k承载的下行信号k和下行发送波束j承载的下行信号j各自关联的随机接入资源,在时间上不相交,并且不同的下行信号关联的随机接入资源在时间上的持续长度可以相同,也可以不相同。
S32、基站将多个下行信号以及多个下行信号关联的随机接入配置信息发送给终端设备,则终端设备接收该多个下行信号和多个下行信号关联的随机接入配置信息。
S33、终端设备根据接收的随机接入配置信息所指示的随机接入资源进行随机接入。
其中,与下行信号关联的随机接入配置信息可以承载在所关联的下行信号中发送,或者,与下行信号关联的随机接入配置信息可以单独发送。终端设备接收该多个下行信号和关联的随机接入配置信息后,就可以根据接收的随机接入配置信息的指示,在相应的随机接入资源上生成并发送随机接入前导,则基站就通过上行接收波束接收终端设备发送的随机接入前导。因此在图3中,以终端设备向基站发送随机接入前导来表示终端设备根据接收的随机接入配置信息所指示的随机接入资源进行随机接入。
如果基站的下行发送波束与基站的上行接收波束一一对应,那么,基站在发送下行信号后,在相对应的时间位置用对应的上行接收波束接收来自终端设备的随机接入信号即可。基站根据检测到的随机接入信号所在的随机接入资源,以及随机接入资源与下行信号的关联关系,获取各个终端设备的下行发送波束,并用该下行发送波束来给对应的终端设备发送其它下行信号。
然而,如果基站的下行发送波束和基站的上行接收波束不具备一一对应的关系,例如基站的一个下行发送波束对应基站的多个上行接收波束,基站通过多个上行接收波束分别接收信号,请参见图6A。那么在这种情况下,基站的下行信号对应时间上的多个随机接入资源。基站在不同的上行接收波束中接收终端设备发送的随机接入信号。基站根据检测到的随机接入信号所在的随机接入资源,以及随机接入资源与下行信号的关联关系,获取各个终端设备的下行发送波束,同一个上行接收波束中检测到的不同的随机接入信号,可能对应关联不同的下行信号。无论基站的下行发送波束与基站的上行接收波束之间的对应关系如何,基站的多个下行发送波束可以关联在时间位置上相同的随机接入资源。
请参见图6B,下行信号k所关联的随机接入资源和下行信号j所关联的随机接入资源在时间上有交叠,在频率或者/和序列上相互隔离。此时,同一个下行信号所关联的随机接 入资源会被一个或者多个上行接收波束接收,例如下行信号k所关联的随机接入资源被一个上行接收波束接收,而下行信号j所关联的随机接入资源被多个上行接收波束接收。请参见图6C,下行信号k所关联的随机接入资源和下行信号j所关联的随机接入资源,在时间上不连续。在图6B和图6C中,发送波束k为承载下行信号k的下行发送波束,发送波束j为承载下行信号j的下行发送波束。在其他实施方式中,不同的下行信号所关联的随机接入资源在时间上可以有交叠,并且同一个下行信号关联的随机接入资源在时间上不连续,即图6B和图6C可以结合。
本发明实施例中,同一个下行信号所关联的随机接入资源在时间上是否连续、以及多个下行信号所关联的随机接入资源在时间上是否有交叠等,可以根据基站的下行发送波束和上行接收波束是否完全对应来决定。基站可以将下行发送波束和上行接收波束之间的对应情况通过显式方式或隐式方式通知终端设备,或者终端设备可以根据随机接入资源与下行信号之间的关联关系,推断出基站的下行发送波束和上行接收波束之间的对应关系。在本发明实施例中,基站可以为不同的下行信号关联不同的随机接入配置信息,也就可以根据终端设备的数量的情况为不同的下行发送波束内的终端设备配置不同的随机接入资源,减少资源浪费,提高资源的利用率。
在图3所示的实施例中,各个下行信号是相对独立的,下面介绍另一实施例,在下面的实施例中,基站会将下行信号进行分组,更加方便管理。
请参见图7,本发明一实施例提供一种随机接入配置方法,该方法的流程描述如下。
S71、基站确定多个下行信号组。其中,不同的下行信号组关联不同的随机接入配置信息。
基站生成多个下行信号,且基站将多个下行信号分组,得到多个下行信号组,其中的每个下行信号组中包括至少一个下行信号。
在一种实施方式中,下行信号可以是SS-block,那么基站将多个下行信号分组指的是将多个SS-block进行分组,一个下行信号组包括至少一个SS-block,基站将多个下行信号组看成一个集合。在这种情况下,一个下行信号组也可以视为一个下行同步突发(SS burst)组,一个下行信号组集合可以视为下行同步突发集(SS burst set)。
在另一种实施方式中,下行信号可以是SS-burst,那么基站将多个下行信号分组指的是将多个SS-burst进行分组,一个下行信号组包括至少一个SS-burst。特别地,一个SS-burst也可构成一个下行信号组,且至少有两个下行信号组关联的随机接入配置信息不同。
在另一种实施方式中,下行信号可以是SS burst set,那么基站将多个下行信号分组指的是将多个SS burst set进行分组,一个下行信号组包括至少一个SS burst set。
在另一种实施方式中,下行信号可以是***信息,那么基站将多个下行信号分组指的是将多个***信息进行分组,一个下行信号组包括至少一个***信息。
其中,下行信号组关联的随机接入配置信息包括随机接入配置信息所指示的下行信号的时间配置索引,时间配置索引用于终端设备根据时间配置索引确定随机接入资源的开始时间、占用的频域资源、下行信号数量、以及随机接入所使用的序列资源中的至少一种。具体的,时间配置索引可以包括在时间配置信息中。终端设备接收下行信号中的***信息后,根据时间配置信息中的时间配置索引进行查表,通过查表结果或通过根据查表结果进行计算的方式确定随机接入资源的开始时间、占用的频域资源、下行信号数量、以及随机接入所使用的序列资源中的至少一种。在这种情况下,表里可以包括时间配置索引与随机 接入资源的开始时间、占用的频域资源、下行信号数量、以及随机接入所使用的序列资源中的至少一种因素之间的对应关系。或者,终端设备除了使用时间配置索引之外,还可以进一步结合下行信号索引和/或下行信号组的索引,通过查表或者根据查表结果计算的方式,得到该下行信号关联的随机接入资源的具***置,也就是确定随机接入资源的开始时间、占用的频域资源、下行信号数量、以及随机接入所使用的序列资源中的至少一种。在这种情况下,表里可以包括下行信号索引和/或下行信号组的索引、以及时间配置索引与随机接入资源的开始时间、占用的频域资源、下行信号数量、以及随机接入所使用的序列资源中的至少一种因素之间的对应关系。
或者,下行信号组关联的随机接入配置信息包括随机接入配置信息所指示的下行信号分组的随机接入的起始时间、随机接入的持续时间、随机接入的结束时间、随机接入所使用的频域资源、下行信号数量、以及随机接入所使用的序列资源中的至少一种。
在一种实施方式中,同一个下行信号组中的不同的下行信号发送的下行同步信息和***信息不完全相同,其中,一个下行信号发送的下行同步信息和***信息能够指示该下行信号关联的随机接入资源的起始时间和持续时间,或起始时间和结束时间。那么在这种实施方式中,同一个下行信号组中各个下行信号关联的随机接入配置信息也不完全相同,即,可能同一个下行信号组中不同的下行信号关联的随机接入配置信息不同。下文主要介绍同一个下行信号组中不同的下行信号关联的随机接入配置信息相同的情况。
在另一种实施方式中,同一个下行信号组中各个下行信号关联的随机接入配置信息完全相同,本文主要介绍这种情况。基站可以指定该下行信号组关联的随机接入资源的起始时间、以及其中的每个下行信号关联的随机接入资源的持续时间,或者基站可以指定该下行信号组关联的随机接入资源的结束时间和该下行信号组包括的下行信号的数量,或者基站可以指定该下行信号组关联的随机接入资源的总持续时间和该下行信号组包括的下行信号的数量。从而终端设备可以根据接收的下行信号所在的下行信号组的组索引、以及该下行信号在所在的下行信号组中的信号索引,获取与该下行信号关联的随机接入资源的时间配置信息。
本发明实施例中,基站可以根据下行发送波束内的终端设备的数量对下行信号进行分组,例如包括相同或者近似相同的终端设备数量的下行信号可以分为一组。其中,终端设备数量近似相同,可以理解为终端设备数量位于同一数量范围内。例如可事先将终端设备数量分为多个数量范围,对于终端设备数量位于同一数量范围内的下行信号,就可将其分为一组。
例如基站共生成了K1+K2个下行信号。其中承载下行信号1~下行信号K1的K1个下行发送波束内的终端设备数量都是4个,而承载剩余的K2个下行信号的K2个下行发送波束内的终端设备数量都是2个,那么基站就将下行信号1~下行信号K1分为一组,以及将剩余的K2个下行信号分为一组,请参见图8A。在图8A中将下行信号1~下行信号K1所在的下行信号组表示为第1组,将剩余的K2个下行信号所在的下行信号组表示为第2组,分别发送下行同步信息和***信息。其中的第1组包括K1个下行信号,第2组包括K2个下行信号。因为承载下行信号1~下行信号K1的K1个下行发送波束内的终端设备数量较多,则基站可以为第1组中的每个下行信号关联数量比较多的随机接入资源,例如第1组中每个下行信号关联时间上的2份随机接入资源。而承载剩余的K2个下行信号的K2个下行发送波束内的终端设备数量较少,则基站可以为第2组中的每个下行信号关联数量 比较少的随机接入资源,例如第2组中每个下行信号关联时间上的1份随机接入资源,请参见图8B。
这里的“份”,就表示随机接入资源的数量,在图8B所示的实施方式中,随机接入资源的数量差异可以通过时间来体现,数量多,可以表示为随机接入资源区域对应的时间长。在这种实施方式中,“2”和“1”可以是任意的时间长度,时间粒度可以是OFDM符号、时隙、小时隙、子帧、帧、以及前导格式的时间宽度中的任意一种。其中在本发明实施例中,如果指起始时间或者结束时间,那么这里的“帧”可理解为***帧,如果指持续时间,那么这里的“帧”可理解为无线帧。
在另一种实施方式中,随机接入资源的数量差异可以通过频率/序列资源来体现,数量多,可以表示为频域资源较宽/序列资源较多。在这种实施方式中,“2”和“1”可以是任意的频率/序列资源数量,请参见图8C。继续以如上的将K1个下行信号分为第1组,将K2个下行信号分为第2组为例,第1组中每个下行信号关联频率/序列上的2份随机接入资源,第2组中每个下行信号关联频率/序列上的1份随机接入资源。其中在图8A~图8C中的发送波束均用于承载下行信号。
S72、基站将多个下行信号组以及多个下行信号组关联的随机接入配置信息发送给终端设备,则终端设备接收该多个下行信号组和多个下行信号组关联的随机接入配置信息。
S73、终端设备根据接收的随机接入配置信息所指示的随机接入资源进行随机接入。
其中,与下行信号关联的随机接入配置信息可以承载在所关联的下行信号中发送,或者,与下行信号关联的随机接入配置信息可以单独发送。终端设备接收该多个下行信号和关联的随机接入配置信息后,就可以根据随机接入配置信息的指示,在相应的随机接入资源上生成并发送随机接入前导,则基站就通过上行接收波束接收终端设备发送的随机接入前导。因此在图7中,以终端设备向基站发送随机接入前导来表示终端设备根据接收的随机接入配置信息所指示的随机接入资源进行随机接入。
在本发明实施例中,基站除了可以为不同的下行信号关联不同的随机接入配置信息之外,还可以将下行信号进行分组,这样,除了可以减少资源浪费之外,如果时间配置信息携带的是时间配置索引,则还能降低信令开销。
下面结合附图介绍本发明实施例提供的设备。
图9示出了一种通信装置900的结构示意图。该通信装置900可以实现上文中涉及的网络设备的功能。该通信装置900可以包括处理单元901和发送单元902。其中,处理单元901可以用于执行图3所示的实施例中的S31,和/或用于支持本文所描述的技术的其它过程。发送单元902可以用于执行图3所示的实施例中的S32,和/或用于支持本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图10示出了一种通信装置1000的结构示意图。该通信装置1000可以实现上文中涉及的网络设备的功能。该通信装置1000可以包括处理单元1001和发送单元1002。其中,处理单元1001可以用于执行图7所示的实施例中的S71,和/或用于支持本文所描述的技术的其它过程。发送单元1002可以用于执行图7所示的实施例中的S72,和/或用于支持本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图11示出了一种通信装置1100的结构示意图。该通信装置1100可以实现上文中涉及 的终端设备的功能。该通信装置1100可以包括处理单元1101和接收单元1102。其中,处理单元1101和接收单元1102可以用于执行图3所示的实施例中的S33,和/或用于支持本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图12示出了一种通信装置1200的结构示意图。该通信装置1200可以实现上文中涉及的终端设备的功能。该通信装置1200可以包括处理单元1201和接收单元1202。其中,处理单元1201和接收单元1202可以用于执行图7所示的实施例中的S73,和/或用于支持本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本发明实施例中,通信装置900~通信装置1200对应各个功能划分各个功能模块的形式来呈现,或者,可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一个简单的实施例中,本领域的技术人员可以想到,还可以将通信装置900~通信装置1200中的任意一个通信装置通过如图13所示的结构实现。
如图13所示,通信装置1300可以包括:存储器1301、处理器1302、***总线1303以及通信接口1304。其中,处理器1302、存储器1301以及通信接口1304通过***总线1303连接。存储器1301用于存储计算机执行指令,当通信装置1300运行时,处理器1302执行存储器1301存储的计算机执行指令,以使通信装置1300执行图3所示的实施例或图7所示的实施例提供的随机接入配置方法。具体的随机接入配置方法可参考上文及附图中的相关描述,此处不再赘述。其中,通信接口1304可以是收发器,或者是独立的接收器和发送器。
在一个示例中,发送单元902可以对应图13中的通信接口1304。处理单元901可以以硬件形式/软件形式内嵌于或独立于通信装置1300的存储器1301中。
在一个示例中,发送单元1002可以对应图13中的通信接口1304。处理单元1001可以以硬件形式/软件形式内嵌于或独立于通信装置1300的存储器1301中。
在一个示例中,接收单元1102可以对应图13中的通信接口1304。处理单元1101可以以硬件形式/软件形式内嵌于或独立于通信装置1300的存储器1301中。
在一个示例中,接收单元1202可以对应图13中的通信接口1304。处理单元1201可以以硬件形式/软件形式内嵌于或独立于通信装置1300的存储器1301中。
可选的,通信装置1300可以是现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),***芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),还可以采用可编程控制器(programmable logic device,PLD)或其他集成芯片。或者,通信装置900也可以是单独的网元,例如为网络设备或者终端设备。
本发明实施例还提供一种计算机存储介质,该存储介质可以包括存储器,该存储器可存储有程序,该程序执行时包括如前的图3所示的方法实施例中记载的网络设备所执行的全部步骤。
本发明实施例还提供一种计算机存储介质,该存储介质可以包括存储器,该存储器可 存储有程序,该程序执行时包括如前的图7所示的方法实施例中记载的网络设备所执行的全部步骤。
由于本发明实施例提供的通信装置900~通信装置1100可用于执行上述的通信的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本发明实施例中,网络设备会生成多个下行信号,每个下行信号都关联随机接入配置信息,不同的下行信号可以承载在不同的下行发送波束中发送,这就实现了多波束的处理,使得本发明实施例提供的技术方案能够适用于类似于5G***的这种多波束网络。
而且本发明实施例中,不同的下行信号关联的随机接入配置信息可能是不同的,那么对于覆盖较多终端设备的下行信号,为其关联的随机接入配置信息就可以用于指示比较多的随机接入资源,而对于覆盖较少终端设备的下行信号,为其关联的随机接入配置信息就可以用于指示比较少的随机接入资源,从而使得随机接入资源能够得到较为合理的配置,避免资源浪费,提高了资源的利用率。
本领域内的技术人员应明白,本发明实施例可提供为方法、***、或计算机程序产品。因此,本发明实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明实施例是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (20)

  1. 一种随机接入配置方法,其特征在于,包括:
    网络设备生成多个下行信号;其中,所述多个下行信号关联的随机接入配置信息不同;所述随机接入配置信息用于指示为终端设备配置的随机接入资源;
    网络设备将所述多个下行信号以及所述多个下行信号关联的随机接入配置信息发送给终端设备。
  2. 根据权利要求1所述的方法,其特征在于,所述随机接入配置信息包括用于指示所述终端设备进行随机接入的时间配置信息;
    其中,所述时间配置信息包括所述终端设备进行随机接入的结束时间和持续时间中的至少一种,以及所述终端设备进行随机接入的起始时间。
  3. 根据权利要求2所述的方法,其特征在于,所述用于指示所述终端设备进行随机接入的时间配置信息包括:正交频分复用OFDM符号、小时隙mini-slot、时隙slot、子帧、以及帧中的至少一种。
  4. 根据权利要求1~3任意一项所述的方法,其特征在于,所述下行信号为同步块SS block、同步突发SS burst、同步突发集SS burst set、***信息SI中的至少一种。
  5. 一种随机接入配置方法,其特征在于,包括:
    网络设备确定多个下行信号组,不同的下行信号组关联不同的随机接入配置信息;
    网络设备将所述多个下行信号组以及所述多个下行信号组关联的随机接入配置信息发送给终端设备。
  6. 根据权利要求5所述的方法,其特征在于,一个下行信号组中包括多个下行信号,同一个下行信号组中的各个下行信号所关联的随机接入配置信息相同。
  7. 根据权利要求6所述的方法,其特征在于,所述下行信号组关联的随机接入配置信息包括随机接入配置信息所指示的下行信号分组的所述随机接入的起始时间、所述随机接入的持续时间、所述随机接入的结束时间、所述随机接入所使用的频域资源、下行信号数量、以及所述随机接入所使用的序列资源中的至少一种。
  8. 根据权利要求6所述的方法,其特征在于,所述下行信号组关联的随机接入配置信息包括随机接入配置信息所指示的下行信号的时间配置索引;所述时间配置索引用于所述终端设备根据所述时间配置索引确定所述随机接入资源的开始时间、占用的频域资源、下行信号数量、以及所述随机接入所使用的序列资源中的至少一种。
  9. 根据权利要求5~8任意一项所述的方法,其特征在于,所述下行信号为同步块SS block、同步突发SS burst、同步突发集SS burst set、***信息SI中的至少一种。
  10. 根据权利要求9所述的方法,其特征在于,所述下行信号组是SS burst、SS burst set中的至少一种。
  11. 一种通信装置,其特征在于,包括:
    处理单元,用于生成多个下行信号;其中,所述多个下行信号关联的随机接入配置信息不同;所述随机接入配置信息用于指示为终端设备配置的随机接入资源;
    发送单元,用于将所述多个下行信号以及所述多个下行信号关联的随机接入配置信息发送给终端设备。
  12. 根据权利要求11所述的通信装置,其特征在于,所述随机接入配置信息包括用于 指示所述终端设备进行随机接入的时间配置信息;
    其中,所述时间配置信息包括所述终端设备进行随机接入的结束时间和持续时间中的至少一种,以及所述终端设备进行随机接入的起始时间。
  13. 根据权利要求12所述的通信装置,其特征在于,所述用于指示所述终端设备进行随机接入的时间配置信息包括:正交频分复用OFDM符号、小时隙mini-slot、时隙slot、子帧、以及帧中的至少一种。
  14. 根据权利要求11~13任意一项所述的通信装置,其特征在于,所述下行信号为同步块SS block、同步突发SS burst、同步突发集SS burst set、***信息SI中的至少一种。
  15. 一种通信装置,其特征在于,包括:
    处理单元,用于确定多个下行信号组,不同的下行信号组关联不同的随机接入配置信息;
    发送单元,用于将所述多个下行信号组以及所述多个下行信号组关联的随机接入配置信息发送给终端设备。
  16. 根据权利要求15所述的通信装置,其特征在于,一个下行信号组中包括多个下行信号,同一个下行信号组中的各个下行信号所关联的随机接入配置信息相同。
  17. 根据权利要求16所述的通信装置,其特征在于,所述下行信号组关联的随机接入配置信息包括随机接入配置信息所指示的下行信号分组的随机接入的起始时间、所述随机接入的持续时间、所述随机接入的结束时间、所述随机接入所使用的频域资源、下行信号数量、以及所述随机接入所使用的序列资源中的至少一种。
  18. 根据权利要求16所述的通信装置,其特征在于,所述下行信号组关联的随机接入配置信息包括随机接入配置信息所指示的下行信号的时间配置索引;所述时间配置索引用于所述终端设备根据所述时间配置索引确定所述随机接入资源的开始时间、占用的频域资源、下行信号数量、以及所述随机接入所使用的序列资源中的至少一种。
  19. 根据权利要求15~18任意一项所述的通信装置,其特征在于,所述下行信号为同步块SS block、同步突发SS burst、同步突发集SS burst set、***信息SI中的至少一种。
  20. 根据权利要求19所述的通信装置,其特征在于,所述下行信号组是SS burst、SS burst set中的至少一种。
PCT/CN2018/080337 2017-03-24 2018-03-23 一种随机接入配置方法及装置 WO2018171757A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710184927.9 2017-03-24
CN201710184927.9A CN108633056B (zh) 2017-03-24 2017-03-24 一种随机接入配置方法及装置

Publications (1)

Publication Number Publication Date
WO2018171757A1 true WO2018171757A1 (zh) 2018-09-27

Family

ID=63584142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080337 WO2018171757A1 (zh) 2017-03-24 2018-03-23 一种随机接入配置方法及装置

Country Status (2)

Country Link
CN (1) CN108633056B (zh)
WO (1) WO2018171757A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3876650A4 (en) * 2018-11-02 2021-12-08 Fujitsu Limited RANDOM ACCESS CONFIGURATION PROCEDURES, SIGNAL TRANSFER PROCESS AND DEVICE, AND COMMUNICATION SYSTEM

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016085235A1 (ko) * 2014-11-26 2016-06-02 삼성전자 주식회사 빔포밍을 이용하는 이동 통신 시스템에서의 랜덤 액세스 기법
WO2016186403A1 (ko) * 2015-05-15 2016-11-24 주식회사 윌러스표준기술연구소 무작위 접속을 기초로 복수의 무선 통신 단말로부터 데이터를 수신하는 무선 통신 방법 및 무선 통신 단말

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104619025A (zh) * 2013-11-01 2015-05-13 中兴通讯股份有限公司 随机接入信道资源分配方法和***
CN105530685B (zh) * 2014-10-24 2020-01-07 中兴通讯股份有限公司 消息发送接收方法、发送接收装置、基站及终端

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016085235A1 (ko) * 2014-11-26 2016-06-02 삼성전자 주식회사 빔포밍을 이용하는 이동 통신 시스템에서의 랜덤 액세스 기법
WO2016186403A1 (ko) * 2015-05-15 2016-11-24 주식회사 윌러스표준기술연구소 무작위 접속을 기초로 복수의 무선 통신 단말로부터 데이터를 수신하는 무선 통신 방법 및 무선 통신 단말

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "NR four-step random access procedure", 3GPP TSG-RAN WG1 NR ADHOC, R1-1700299, 10 January 2017 (2017-01-10), XP051202778 *
ZTE CORPORATION ET AL.: "Random access in NR", 3GPP TSG RAN WG2 MEETING #96, R2-167831, 5 November 2016 (2016-11-05), XP051192846 *

Also Published As

Publication number Publication date
CN108633056A (zh) 2018-10-09
CN108633056B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
CN104160766B (zh) 用于传输参考信号的方法、基站和用户设备
CA3047490C (en) Data transmission method and apparatus
WO2020052380A1 (zh) 一种信息发送、接收方法、设备及装置
BR112019007779A2 (pt) Dispositivo eletrônico e método para um lado de estação base em um sistema de comunicação sem fio, dispositivo eletrônico e método para um lado de dispositivo de terminal em um sistema de comunicação sem fio, método de comunicação por rádio, mídia de armazenamento legível por computador, e, aparelho para um sistema de comunicação sem fio.
WO2020221318A1 (zh) 一种上行波束管理方法及装置
WO2019104685A1 (zh) 通信方法和通信设备
JP6833988B2 (ja) ダウンリンク制御信号を伝送する方法及び装置
CN108886811A (zh) 发送物理随机接入信道prach的方法、设备及***
CN109600794B (zh) 一种通信方法及设备
CN108696890B (zh) 处理测量间距的装置及***
WO2016082706A1 (zh) 数据传输方法和设备
WO2020147728A1 (zh) 一种通信方法及设备
WO2021062716A1 (zh) 一种通信方法及装置
CN114071429A (zh) 一种物理下行控制信道增强方法、通信装置及***
WO2018137675A1 (zh) 通信方法和网络设备
CN111867095A (zh) 一种通信方法与终端装置
CN109309545A (zh) 一种指示时隙格式的方法、设备及***
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
CN108811074A (zh) 信息传输方法及装置
WO2021051364A1 (zh) 一种通信方法、装置及设备
WO2020020376A1 (zh) 一种参考信号发送、接收方法、装置及设备
WO2018202020A1 (zh) 一种随机接入资源分配方法及装置
WO2021078214A1 (zh) 通信方法及装置
US20230403687A1 (en) Communication Method and Apparatus
WO2019028903A1 (zh) 一种上行信号的传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772117

Country of ref document: EP

Kind code of ref document: A1