WO2018171626A1 - 随机接入响应的方法和设备以及随机接入的方法和设备 - Google Patents

随机接入响应的方法和设备以及随机接入的方法和设备 Download PDF

Info

Publication number
WO2018171626A1
WO2018171626A1 PCT/CN2018/079830 CN2018079830W WO2018171626A1 WO 2018171626 A1 WO2018171626 A1 WO 2018171626A1 CN 2018079830 W CN2018079830 W CN 2018079830W WO 2018171626 A1 WO2018171626 A1 WO 2018171626A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
sequence
base station
access preamble
terminal device
Prior art date
Application number
PCT/CN2018/079830
Other languages
English (en)
French (fr)
Inventor
陈磊
颜矛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP23205793.5A priority Critical patent/EP4340518A3/en
Priority to EP18770234.5A priority patent/EP3573410B1/en
Publication of WO2018171626A1 publication Critical patent/WO2018171626A1/zh
Priority to US16/579,860 priority patent/US11076422B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and device for random access response in a wireless communication system, and a method and device for random access.
  • Beamforming techniques are used to limit the energy of the transmitted signal to a certain beam direction. Beamforming technology can effectively expand the transmission range of wireless signals and reduce signal interference, thereby achieving higher communication efficiency and higher network capacity.
  • it is first necessary to perform transmission beam and reception beam matching so that the reception beam obtains a signal from the transmission beam relatively well, otherwise it is impossible to obtain relatively high communication efficiency or even communication.
  • the terminal device performs downlink and uplink synchronization with the base station, matching between the transmit beam and the receive beam is required, and this function is completed by means of beam scanning.
  • a terminal device acquires uplink synchronization between a device and a base station by using random access.
  • the method of random access determines the delay in uplink synchronization.
  • a random access preamble is generated and transmitted.
  • the random access preamble includes a sequence, and the sequence is used to distinguish a randomly accessed terminal device.
  • the base station detects the received signal, and if a sequence is detected, generates a random access response corresponding to the sequence.
  • the base station before receiving a response to a random access preamble, the base station receives multiple preambles or multiple sequences included in the same preamble, and there is no effective response mechanism.
  • the embodiments of the present invention provide a random access response method and device, and a random access method and device, to implement a response that includes multiple sequences for multiple random access preambles or the same random access preamble.
  • an embodiment of the present invention provides a random access response method, including:
  • each of the two or more random access preambles comprising more than one sequence, or in the pair of terminal devices Receiving a random access preamble before the random access response, the one random access preamble comprising more than two sequences;
  • the sequence is sequence information or a signal used by the terminal device to perform random access.
  • a sequence information or signal is selected from a certain number (for example, 64) of sequence information or signals to be sent to the base station as the sequence of the random access.
  • the method further includes: responding to only one of the random access preambles or a sequence when receiving multiple random access preambles or multiple sequences sent by the same terminal device.
  • the method further includes: responding to the successfully detected sequence or the random access preamble including the successfully detected sequence by using two or more downlink transmissions. In this way, it is possible to avoid the delay of the time when the terminal device receives the response by using the other downlink transmission beam when the downlink transmission beam receiving response fails, and the efficiency of the response terminal device can be improved, and the time for the terminal device to receive the response can be reduced.
  • the method further includes: receiving a message that is sent by the terminal device after receiving the random access response, where the message includes a random access preamble that the terminal device has sent and is not responded to. Or sequence information;
  • the randomly detected random access preamble or sequence that has been sent by the terminal device and is not responded to in the message is no longer responded.
  • Random access to the preamble or sequence response improves the efficiency of the response and saves resource losses due to repeated responses.
  • the information about the random access preamble or sequence that has been sent by the terminal device and is not responded to in the message includes at least one of the following information: has been sent and has not been The transmission time, frequency, index, and power headroom of the random access preamble or sequence of the response.
  • the method further includes: according to the successfully detected power access space of the random access preamble or sequence included in the message, and the successfully detected received signal of the random access preamble or sequence Quality, selecting to receive the beam of the random access by the terminal device.
  • the time that the terminal device sends the random access preamble or the time of receiving the random access preamble is included in the message sent to the terminal device, to indicate that the terminal device adopts the sending station.
  • the transmit beam of the random access preamble is used to transmit subsequent messages.
  • the two or more base stations when two or more base stations respectively receive multiple random access preambles or multiple sequences sent by the same terminal device, the two or more base stations exchange random responses through the message interaction. Enter the preamble or sequence and no longer respond.
  • the two or more base stations implement message interaction by using a backhaul link.
  • the two or more base stations when two or more base stations respectively receive multiple random access preambles or multiple sequences sent by the same terminal device, the two or more base stations respectively respectively successfully detect the random access preamble Or the sequence information is sent to a third-party device, where the third-party device determines a base station that responds to the successfully detected random access preamble or sequence; wherein the third-party device refers to bear between the respective base stations.
  • the two or more base stations may send the received message that is sent by the terminal device after receiving the random access response to the third-party device, and the third-party device determines whether to respond to other random access detected in each base station. Leading preamble or sequence. Further, after the third party device decides to respond to other preambles or sequences detected in each base station, the third party device may also determine a base station that responds to the random access preamble or sequence.
  • the foregoing method may further include: when receiving the random access preamble or sequence sent by the terminal device, sending the successfully detected random access preamble or sequence to other third party devices, where the third party device A base station responsive to the random access preamble or sequence is determined. For example, when two or more base stations respectively receive multiple random access preambles or multiple sequences sent by the same terminal device, the random access preamble successfully detected by the base station that receives the random access preamble or sequence from the receiving terminal device is received. Or the sequence is sent to other said third party devices, and the third party device determines a base station that responds to the random access preamble or sequence.
  • the response of the random access preamble sent by the base station includes at least one of the following information: an index number corresponding to the random access preamble, a received signal quality of the random access preamble, The time and/or frequency domain location of the random access preamble; or at least one of the following: the index number of the sequence, the received signal quality of the sequence, the time of the sequence, and/or the frequency domain location.
  • the time and/or frequency domain location of the random access preamble may be added by adding a field to the response message of the random access preamble, and the time and/or frequency domain location of the preamble is recorded by the field.
  • the time and/or frequency domain location information of the random access preamble may also be carried by a random access-radio network temporary identifier (RA-RNTI).
  • RA-RNTI random access-radio network temporary identifier
  • the time and/or frequency domain location of the sequence may be added by adding a field to the response message of the sequence, and the time and/or frequency domain location information of the preamble is recorded through the field;
  • the RNTI carries time and/or frequency domain location information of the sequence.
  • the order of sending the random access preamble response is determined according to one of the following information:
  • each base station receives the random Only one sequence in the access preamble is the same.
  • an embodiment of the present invention provides a random access method, including:
  • each of the two or more random access preambles includes more than one sequence, or random access at the base station Sending a random access preamble before the response, the one random access preamble includes more than two sequences;
  • the terminal device can send two or more random access preambles before the base station responds to the random access, and the receiving base station responds to the successfully detected sequence or the random access preamble including the successfully detected sequence. Message.
  • the sequence is sequence information or a signal used by the terminal device to perform random access.
  • a sequence information or signal is selected from a certain number (for example, 64) of sequence information or signals to be sent to the base station as the sequence of the random access.
  • the method further includes: receiving, by the base station, two or more downlink transmissions, responding to a successfully detected sequence or a random access preamble including a successfully detected sequence. Message.
  • the delay of the time that the terminal device receives the response by using the other downlink transmission beam when the downlink transmission beam receiving response fails can improve the efficiency of responding to the terminal device and reduce the time for the terminal device to receive the response.
  • the method further includes: after receiving a message that successfully responds to the successfully detected sequence or the random access preamble that includes the successfully detected sequence, sends a message to the base station, where The message contains information of a random access preamble or sequence that the terminal device has sent and that has not been responded to.
  • the base station can respond to multiple random access preambles or a random access preamble transmitted by the same terminal device, including multiple sequences, to avoid multiple responses to multiple random access preambles or sequences of the same terminal device. Improves the efficiency of response and saves resource loss due to repeated response.
  • the information about the random access preamble or sequence that has been sent by the terminal device and is not responded to in the message includes at least one of the following information: has been sent and has not been The transmission time, frequency, index, power headroom of the random access preamble or sequence of the response, the power headroom of the random access preamble or sequence that has been responded to.
  • the method further includes: when the received message carries the received signal quality RSRP, acquiring each transmission according to the sending power of the random access preamble or sequence and the RSRP.
  • the path loss corresponding to the beam, and the transmission beam with a small path loss is selected to transmit subsequent messages. In this way, when the message is subsequently sent, the path loss is small, which can improve the quality of subsequent messages.
  • the time and frequency resources indicated in the uplink scheduling grant in the random access response corresponding to the transmit beam may be selected to send a subsequent message.
  • an embodiment of the present invention provides a base station, including: a receiver, a transmitter, a memory, and a processor; wherein the memory stores a set of program codes, and the processor is configured to invoke the memory.
  • Stored program code do the following:
  • each of the two or more random access preambles comprising more than one sequence, or in the pair of terminal devices Receiving a random access preamble before the random access response, the one random access preamble comprising more than two sequences;
  • the sequence is sequence information or a signal used by the terminal device to perform random access.
  • a sequence information or signal is selected from a certain number (for example, 64) of sequence information or signals to be sent to the base station as the sequence of the random access.
  • the processor is further configured to respond to only one of the random access preambles or a sequence when receiving multiple random access preambles or multiple sequences sent by the same terminal device. .
  • the processor is further configured to: respond to the successfully detected sequence or the random access preamble including the successfully detected sequence by using two or more downlink transmissions. In this way, it is possible to avoid the delay of the time when the terminal device receives the response by using the other downlink transmission beam when the downlink transmission beam receiving response fails, and the efficiency of the response terminal device can be improved, and the time for the terminal device to receive the response can be reduced.
  • the processor is further configured to: receive a message that is sent by the terminal device after receiving the random access response, where the message includes the random connection that the terminal device has sent and is not responded to. Information into the preamble or sequence;
  • the randomly detected random access preamble or sequence that has been sent by the terminal device and is not responded to in the message is no longer responded.
  • Random access to the preamble or sequence response improves the efficiency of the response and saves resource losses due to repeated responses.
  • the information about the random access preamble or sequence that has been sent by the terminal device and is not responded to in the message includes at least one of the following information: has been sent and has not been The transmission time, frequency, index, and power headroom of the random access preamble or sequence of the response.
  • the processor is further configured to: according to the successfully detected random access preamble or sequence power headroom included in the message, and the successfully detected random access preamble or sequence Receiving signal quality, and selecting to receive the beam of the random access by the terminal device.
  • the base station may further include, in the message sent to the terminal device, a time for the terminal device to send a random access preamble, or a time for receiving the random access preamble to indicate the terminal device.
  • the subsequent message is transmitted by using a transmit beam that transmits the random access preamble.
  • the already-random random access preamble or sequence is sent to another base station. Or receiving a random access preamble or sequence that has been sent by another base station, and no longer responding to the random access preamble or sequence that has responded.
  • the two or more base stations implement message interaction by using a backhaul link.
  • the information of the successfully detected random access preamble or sequence is sent to the first a three-party device that determines, by the third-party device, a base station that responds to the successfully detected random access preamble or sequence;
  • the third-party device refers to a device that assumes resource scheduling, configuration, and/or processing functions between the respective base stations.
  • the two or more base stations may send the received message that is sent by the terminal device after receiving the random access response to the third-party device, and the third-party device determines whether to respond to other random access detected in each base station. Leading preamble or sequence. Further, after the third party device decides to respond to other preambles or sequences detected in each base station, the third party device may also determine a base station that responds to the random access preamble or sequence.
  • the base station may further send the successfully detected random access preamble or sequence to other third-party devices when the terminal device sends the random access preamble or sequence, and the third-party device determines A base station responsive to the random access preamble or sequence. For example, when two or more base stations respectively receive multiple random access preambles or multiple sequences sent by the same terminal device, the random access preamble successfully detected by the base station that receives the random access preamble or sequence from the receiving terminal device is received. Or the sequence is sent to other said third party devices, and the third party device determines a base station that responds to the random access preamble or sequence.
  • the response of the random access preamble sent by the base station includes at least one of the following information: an index number corresponding to the random access preamble, a received signal quality of the random access preamble, The time and/or frequency domain location of the random access preamble; or at least one of the following: the index number of the sequence, the received signal quality of the sequence, the time of the sequence, and/or the frequency domain location.
  • time and/or frequency domain location of the random access preamble may be added by adding a field to the response message of the random access preamble, and the time and/or frequency domain location of the preamble is recorded by the field.
  • Information; time and/or frequency domain location information of the random access preamble may also be carried by the RA-RNTI.
  • the processor determines, according to one of the following information, an order of sending a random access preamble response:
  • each base station receives the random Only one sequence in the access preamble is the same.
  • an embodiment of the present invention provides a terminal device, including: a receiver, a transmitter, a memory, and a processor; wherein the memory stores a set of program codes, and the processor is configured to invoke the memory In the program code stored in, do the following:
  • each of the two or more random access preambles includes more than one sequence, or random access at the base station Sending a random access preamble before the response, the one random access preamble includes more than two sequences;
  • the foregoing terminal device can send two or more random access preambles before the base station responds to the random access, and receive a message that the base station responds to the successfully detected sequence or the random access preamble including the successfully detected sequence.
  • the sequence is sequence information or a signal used by the terminal device to perform random access.
  • a sequence information or signal is selected from a certain number (for example, 64) of sequence information or signals to be sent to the base station as the sequence of the random access.
  • the processor is further configured to: receive, by the base station, by using two or more downlink transmissions, the successfully detected sequence or the random access preamble including the successfully detected sequence. A message to respond. In this way, it is possible to avoid the delay of the time when the terminal device receives the response by using the other downlink transmission beam when the downlink transmission beam receiving response fails, and the efficiency of the response terminal device can be improved, and the time for the terminal device to receive the response can be reduced.
  • the processor is further configured to send a message to the base station after receiving a message that successfully responds to the successfully detected sequence or the random access preamble that includes the successfully detected sequence.
  • the message includes information of a random access preamble or sequence that the terminal device has sent and that has not been responded to.
  • the base station can respond to multiple random access preambles or a random access preamble transmitted by the same terminal device, including multiple sequences, to avoid multiple responses to multiple random access preambles or sequences of the same terminal device. Improves the efficiency of response and saves resource loss due to repeated response.
  • the processor is further configured to: the information of the random access preamble or sequence that the terminal device that is included in the message that has been sent by the terminal device and that is not responded to include at least one of the following information.
  • the information of the random access preamble or sequence that the terminal device that is included in the message that has been sent by the terminal device and that is not responded to include at least one of the following information.
  • the processor is further configured to: when the received message carries the received signal quality RSRP, obtain the transmission power according to the random access preamble or sequence and the RSRP, and obtain each The path loss corresponding to the transmit beam is selected, and the transmit beam with a small path loss is selected to transmit subsequent messages.
  • the processor may also select a time and frequency resource indicated in the uplink scheduling grant in the random access response corresponding to the transmit beam to send a subsequent message.
  • the embodiment of the present application further provides a program for executing the random access response method described above when executed by a processor.
  • the embodiment of the present application further provides a program product, such as a computer readable storage medium, including the above program.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores instructions that, when run on a computer, cause the computer to execute the random access response method.
  • the embodiment of the present application further provides a program for executing the random access method described above when executed by a processor.
  • the embodiment of the present application further provides a program product, such as a computer readable storage medium, including the above program.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores instructions that, when run on a computer, cause the computer to execute the random access method.
  • FIG. 1 is a schematic diagram of a random access procedure according to an embodiment of the present invention
  • FIG. 2(a) is a schematic diagram of an implementation manner of a method for a base station to send multiple random access preambles in response to a terminal device according to an embodiment of the present disclosure
  • FIG. 2(b) is a schematic diagram of another implementation manner of a method for a base station to send multiple random access preambles in response to a terminal device according to an embodiment of the present disclosure
  • FIG. 2(c) is a schematic diagram of still another implementation manner of a method for a base station to send multiple random access preambles in response to a terminal device according to an embodiment of the present disclosure
  • FIG. 3(a) is a schematic diagram of an implementation manner of a base station responding to a random access preamble sent by a terminal device including multiple sequences according to an embodiment of the present disclosure
  • FIG. 3(b) is a schematic diagram of another implementation manner of a base station responding to a random access preamble sent by a terminal device including multiple sequences according to an embodiment of the present disclosure
  • FIG. 3(c) is a schematic diagram of still another implementation manner of a base station responding to a random access preamble sent by a terminal device including multiple sequences according to an embodiment of the present disclosure
  • 4(a) is a schematic diagram of an implementation manner of a base station in response to two terminal devices respectively transmitting multiple random access preambles according to an embodiment of the present invention
  • FIG. 4(b) is a schematic diagram of another implementation manner of a base station responding to two terminal devices respectively sending multiple random access preambles according to an embodiment of the present disclosure
  • FIG. 4(c) is a schematic diagram of still another implementation manner of a base station responding to two terminal devices respectively sending multiple random access preambles according to an embodiment of the present disclosure
  • FIG. 5(a) is a schematic diagram of an implementation manner of a base station responding to a random access preamble sent by two terminal devices, including multiple sequences, according to an embodiment of the present disclosure
  • FIG. 5(b) is a schematic diagram of another implementation manner of a base station responding to a random access preamble sent by two terminal devices, including multiple sequences, according to an embodiment of the present disclosure
  • 6(a) is a schematic diagram of an implementation manner of two base stations in response to two terminal devices respectively transmitting multiple random access preambles according to an embodiment of the present invention
  • FIG. 6(b) is a schematic diagram of an implementation manner of two base stations in response to two base station devices respectively transmitting a random access preamble including multiple sequences according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a base station 3000 according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a terminal device 4000 according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a base station 5000 according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a terminal device 6000 according to an embodiment of the present invention.
  • first and second in the embodiments of the present invention are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • FIG. 1 is a schematic diagram of a random access procedure according to an embodiment of the present invention, which is applied to random access between a base station and a terminal device.
  • the communication system composed of the base station and the terminal device in FIG. 1 may be a Global System for Mobile Communication (GSM), a Code Division Multiple Access (CDMA) system, and a Wideband Code Division Multiple Access (Wideband Code).
  • Division Multiple Access (WCDMA) system may be a Global System for Mobile Communication (GSM), a Code Division Multiple Access (CDMA) system, and a Wideband Code Division Multiple Access (Wideband Code).
  • Division Multiple Access (WCDMA) system Wideband Code Division Multiple Access (WCDMA) system, Worldwide Interoperability for Microwave Access (WiMAX) system, long term evolution (LTE) system, 5G communication system (such as new radio (NR) system,
  • GSM Global System for Mobile Communication
  • CDMA Code Division Multiple Access
  • Wideband Code Wideband Code Division Multiple Access
  • WiMAX Worldwide Interoperability for Micro
  • the terminal device in the present application is a device having an infinite communication function, and may be a handheld device having a wireless communication function, an in-vehicle device, a wearable device, a computing device, or other processing device connected to a wireless modem.
  • Terminal devices in different networks may be called different names, such as: user equipment, access terminals, subscriber units, subscriber stations, mobile stations, mobile stations, remote stations, remote terminals, mobile devices, user terminals, terminals, wireless communications.
  • Device, user agent or user device cellular phone, cordless phone, Session Initiation Protocol (SIP) phone, Wireless Local Loop (WLL) station, Personal Digital Assistant (PDA), Terminal equipment in a 5G network or a future evolution network.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the base station in the present application may also be referred to as a base station device, and is a device deployed in the radio access network to provide wireless communication functions, including but not limited to: a base station (for example, BTS (Base Transceiver Station, BTS), Node B) (NodeB, NB), an evolved base station B (eNB or eNodeB), a transmission node or a transmission reception point (TRP or TP) in the NR system, or a generation node B (gNB), Base stations or network devices in future communication networks, relay stations, access points, in-vehicle devices, wearable devices, Wireless-Fidelity (Wi-Fi) sites, wireless backhaul nodes, small stations, micro stations, etc. Wait.
  • BTS Base Transceiver Station
  • NodeB Node B
  • eNB evolved base station B
  • TRP or TP transmission reception point
  • gNB generation node B
  • Base stations or network devices in future communication networks relay stations, access points, in-vehi
  • the following describes the process of implementing random access between a terminal device and a base station in an LTE system as an example.
  • the terminal device first receives the downlink system information (System information block-2, SIB2) sent by the base station, and obtains the configuration parameters of the random access, including but not limited to the terminal device receiving the random access response ( Random access response, RAR), etc.
  • the terminal device generates a random access preamble (ie, message 1) according to the obtained configuration parameter, and sends the packet.
  • the random access preamble includes a sequence for distinguishing different terminal devices in random access.
  • the configuration parameters of the downlink system information sent by the base station usually specify the format of the random access preamble to be adopted.
  • the terminal device generates a random access preamble according to the format specified by the base station. It should be noted that, in the LTE system, multiple random access preamble formats are defined, and the random access preambles of different formats have different time lengths.
  • the base station detects the received signal, and if a sequence in a random access preamble or random access preamble is detected, a corresponding RAR, message 2, is generated. As shown in FIG. 1 , after detecting the random access preamble sent by the terminal device, the base station generates a random access response message and sends the message to the terminal device.
  • the random access response includes, but is not limited to, an index corresponding to the random access preamble, a time advance (TA), an uplink scheduling grant (Uplink grant), and the like.
  • the TA refers to a channel delay estimated by the base station based on the random access sequence.
  • the terminal device After receiving the random access response sent by the base station, the terminal device generates a message 3 and sends it to the base station.
  • the message 3 includes, but is not limited to, a Common Control Channel (CCCH) or a Cell Radio Network Temporary Identifier (C-RNTI).
  • CCCH Common Control Channel
  • C-RNTI Cell Radio Network Temporary Identifier
  • the base station After successfully receiving the message 3, the base station sends a message 4 to the terminal device.
  • the message 4 contains a CCCH message.
  • the CCCH message is used to assist in resolving conflicts generated when multiple terminal devices use the same sequence at the same time.
  • the terminal device if the terminal device does not receive the RAR sent by the base station within the time of receiving the RAR, the terminal device sends the random access preamble again. That is, the terminal device transmits the random access preamble only once during the receiving RAR time specified by the base station.
  • the time at which the terminal device receives the RAR is the time when the terminal device attempts to receive the RAR after transmitting the random access preamble. If the corresponding RAR is received during this time, the RAR reception is terminated and message 3 is sent on the time and frequency resources specified by the RAR. If the corresponding RAR is not received within this time, the terminal device fails to access the random access and needs to resend the random access preamble.
  • the terminal device only sends the random access preamble once before receiving the RAR, and the time taken by the random access is too long; in the multi-beam network, the requirements of the future communication network cannot be met. If the terminal device sends multiple random access preambles or a random access preamble includes multiple sequences before receiving the RAR, the time of random access can be shortened, and the efficiency of random access is improved.
  • the multiple random access preambles or one preamble includes multiple sequences, including but not limited to: the base station receives multiple sequences in the same random access preamble through different receiving beams; multiple random connections The incoming preambles are respectively transmitted through different transmit beams, and the base station receives the multiple random access preambles through the same receive beam, and each random access preamble is performed in one transmit-receive beam pair; multiple random access preambles respectively pass The same or different transmit beam transmissions, the base station receives the multiple random access preambles through different receive beams, and each random access preamble is performed in multiple transmit-receive beam pairs.
  • the base station when the base station receives one or more random access preambles, multiple random access preambles are successfully detected, or a sequence of multiple random access preambles is successfully detected.
  • the base station needs an effective response mechanism, and multiple random access preambles or a random connection successfully received before transmitting the RAR. Multiple sequences included in the preamble are responded.
  • the base station takes the random access between the base station and the terminal device as an example.
  • the base station sends multiple random access preambles or sends a random access preamble before sending the RAR or before the terminal device receives the RAR in different scenarios.
  • the base station describes the response mode of the random access preamble.
  • preamble refers to a random access preamble
  • sequence refers to a sequence in a random access preamble.
  • Scenario 1 The terminal device sends a random access preamble twice, each time sending a random access preamble.
  • the two transmissions may be continuous in time or may be spaced apart from each other. That is, the base station receives two random access preambles before responding to the received preamble.
  • the random access preambles sent twice may be the same or different.
  • the terminal device may use the same transmit beam to send a random access preamble in the same base station receive beam, and the terminal device may use the same transmit beam to send a random access preamble in different base station receive beams, or may use different
  • the transmit beam transmits a random access preamble in the same base station receive beam, and may also use different transmit beams to transmit a random access preamble in different base station receive beams.
  • the manner in which the base station responds to the random access preamble sent by the terminal device can be implemented by the implementation manners of FIG. 2(a), FIG. 2(b), and FIG. 2(c).
  • the order of time is shown from left to right, and different rectangular block diagrams represent different beams.
  • the rectangular block diagram representing the beams used by the base station is different.
  • the terminal device uses the same transmit beam to transmit the random access preamble, and the rectangular block diagram of the transmit beam used by the terminal device is the same; the terminal device uses the same receive beam to receive the response sent by the base station, and represents a rectangular block diagram of the receive beam used by the terminal device. the same. Since the transmission beam used by the terminal device is different from the reception beam, the rectangular block diagram of the transmission beam used on behalf of the terminal device is different from the rectangular block diagram representing the reception beam used by the terminal device.
  • the terminal device transmits the preamble 1 for the first time and the preamble 2 for the second time.
  • the meanings of the structures and illustrations of Figures 2(b) and 2(c) are similar to those of Figure 2(a) and will not be described again.
  • the base station if the base station successfully detects the preamble 1 and the preamble 2 transmitted by the terminal device, it responds to the preamble 1 and the preamble 2 in one or more downlink transmission beams, respectively.
  • the preamble 1 and the preamble 2 transmitted by the two different downlink transmission beam response terminal devices are taken as an example for description.
  • the base station can respond to the preamble sent by the terminal device by using two or more downlink transmit beams, and can avoid the delay of the time that the terminal device receives the response by using another downlink transmit beam when the downlink transmit beam receiving response fails. In response to the efficiency of the terminal device, the time at which the terminal device receives the response is reduced.
  • the downlink transmission beam refers to a transmission beam when the base station sends a message or a response to the terminal device.
  • the base station in the random access response for the preamble 1 or the preamble 2, may include at least one of the following information: an index number corresponding to the preamble, and a received signal received power of the preamble (Reference signals received power, RSRP), the time and/or frequency domain location information of the preamble.
  • the time and/or frequency domain location information of the preamble may be recorded by adding a field in the response message to the preamble, and the time and/or frequency domain location information of the preamble is recorded through the field.
  • the time and/or frequency domain location information of the preamble may also be carried by a random access-radio network temporary identifier (RA-RNTI).
  • RA-RNTI random access-radio network temporary identifier
  • the terminal device can obtain the path loss corresponding to each transmit beam according to the transmit power of the transmit preamble and the RSRP carried in the RAR. For example, the terminal device can calculate the path loss according to the transmit power at the time of transmitting the preamble and the RSRP carried in the preamble RAR. After acquiring the path loss, the terminal device may select a transmission beam with a small path loss to transmit a subsequent message. For example, a transmission beam with a small path loss is selected to transmit a subsequent message such as message 3. Further, the terminal device may also select the time and frequency resources indicated in the uplink scheduling grant in the RAR corresponding to the sending beam to send subsequent messages, including but not limited to the message 3.
  • the terminal device first determines the power of each preamble to be sent when each preamble is sent, and the terminal device can obtain the transmit power of each preamble.
  • the terminal device may receive multiple RARs, obtain the RAR of the preamble sent by the RAR according to the identifier in the RAR, and obtain the path loss according to the RSRP in the obtained RAR and the power of the preamble.
  • the implementation shown in FIG. 2(b) is different from that in FIG. 2(a) in that if the base station successfully detects the preamble 1 and the preamble 2, the response is in the corresponding downlink transmission beam, and the two responses are in time according to the terminal device.
  • the sending preamble and the time when the base station receives the preamble are performed sequentially.
  • the base station receives the receive beam of the random access preamble, and has a certain relationship with the transmit beam used by the base station to send the response of the random access preamble, for example, the receive beam and the transmit beam are substantially the same in the direction.
  • a transmit beam that is associated with a receive beam is referred to as a downlink transmit beam corresponding to the receive beam.
  • the implementation shown in FIG. 2(c) is different from that in FIG. 2(b) in that if the base station successfully detects the preamble 1 and the preamble 2, the response is in the corresponding downlink transmission beam, and the two responses are in time sequence. Determined by the base station.
  • the order in which the base station selects the response preamble 1 and the preamble 2 may be implemented in such a manner that the order of the response preamble 1 and the preamble 2 is determined according to the strength of the detection signal, for example, a signal first response or the like.
  • the order of responding to the preamble 1 and the preamble 2 is determined according to information (including but not limited to information such as priority) carried by the detected preamble, for example, responding in order of priority, and the like.
  • the order of the response preamble 1 and the preamble 2 may also be determined according to the number of preambles detected in the receive beam, for example, responding to a large number of preambles and the like.
  • the base station may also respond to the preamble by using a corresponding downlink transmit beam.
  • the base station may also respond to the preamble through one or more downlink transmit beams.
  • the time that the base station responds to the terminal device in response to the random access preamble may also be referred to as an RAR time window.
  • the RAR time windows of the receiving beams of the base station may not overlap at all, or may overlap partially or completely. If the RAR time windows corresponding to the two receiving beams partially overlap, the RAR content (such as time and/or frequency domain location, etc.) or the radio network temporary identifier (RNTI) corresponding to the RAR may be used to distinguish each. RAR time window.
  • the plurality of random access preambles sent by the terminal device are specified in advance by the base station or the base station knows a plurality of preambles that the terminal device may send. At this time, the base station only responds to one of the plurality of detected preambles.
  • Scenario 2 The terminal device sends a random access preamble, and the random access preamble contains more than two sequences. That is, the base station includes more than two sequences in the received preamble before responding to the preamble. Two or more sequences may be continuous in time or may be spaced apart from each other. Among them, two or more sequences may be the same or different.
  • the terminal device may use the same transmit beam to transmit a random access preamble in the same base station receive beam, and the terminal device may use the same transmit beam to transmit a random access preamble in different base station receive beams, or may use different transmit beams.
  • the same base station receives the random access preamble in the receive beam, and may also use different transmit beams to transmit the random access preamble in different base station receive beams.
  • the order of time is shown from left to right, and different rectangular block diagrams represent different beams.
  • the rectangular block diagram representing the beams used by the base station is different.
  • the terminal device uses the same transmit beam to transmit the random access preamble, and the rectangular block diagram of the transmit beam used by the terminal device is the same; the terminal device uses the same receive beam to receive the response sent by the base station, and represents a rectangular block diagram of the receive beam used by the terminal device. the same. Since the transmission beam used by the terminal device is different from the reception beam, the rectangular block diagram of the transmission beam used on behalf of the terminal device is different from the rectangular block diagram representing the reception beam used by the terminal device.
  • the terminal device transmits sequence 1 and sequence 2.
  • the meanings of the structures and illustrations of Figures 3(b) and 3(c) are similar to those of Figure 3(a) and will not be described again.
  • FIG. 3(a) if the base station successfully detects sequence 1 and sequence 2 transmitted by the terminal device, it responds to the index number corresponding to the sequence in each downlink transmission beam.
  • FIG. 3(a) illustrates an example of a preamble 1 and a preamble 2 transmitted by two different downlink transmit beam response terminal devices.
  • the base station can respond with two or more downstream transmit beams.
  • the sequence of the preamble transmitted by the base station by the two or more downlink transmit beams in response to the terminal device can avoid the time delay caused by the terminal device receiving the response through another downlink transmit beam when the downlink transmit beam receiving response fails.
  • the efficiency of receiving the response by the terminal device can be improved, and the time for the terminal device to receive the response is reduced.
  • the base station may include at least one of the following information in the random access response for sequence 1 or sequence 2: an index number of the sequence, an RSRP of the sequence, a time of sending the preamble of the sequence, and / or frequency domain location information, time and / or frequency domain location information of the sequence.
  • the time and/or frequency domain location information of the preamble of the sequence is sent, and the time and/or frequency domain location information of the sequence may be added by adding a field in the response message to the sequence, where the field is used for recording and sending.
  • the time and/or frequency domain location information of the preamble transmitting the sequence, and the time and/or frequency domain location information of the sequence may also be carried in the RA-RNTI.
  • the implementation shown in FIG. 3(b) is different from that in FIG. 3(a) in that if the base station successfully detects sequence 1 and sequence 2, it responds in the corresponding downlink transmission beam, and the two responses are temporally followed by the terminal device.
  • the transmission sequence and the time sequence in which the base station receives the sequence are performed sequentially.
  • the base station receives the receive beam of the sequence in the random access preamble, and has a certain relationship with the transmit beam used by the base station to send the response of the sequence in the random access preamble.
  • the receive beam and the transmit beam are substantially the same in direction. Wait.
  • the transmit beam associated with the receive beam and the associated relationship is referred to as a downlink transmit beam corresponding to the receive beam.
  • the implementation shown in Figure 3(c) differs from Figure 3(b) in that if the base station successfully detects sequence 1 and sequence 2, it responds in the corresponding downlink transmit beam, and the two responses are in time sequence. Determined by the base station.
  • the order in which the base station selects the response sequence 1 and the sequence 2 may be implemented in such a manner that the order of the response sequence 1 and the sequence 2 is determined according to the strength of the detection signal, for example, a signal first response or the like.
  • the order of the response preamble 1 and the preamble 2 is determined according to the information carried by the detected preamble (including but not limited to information such as priority), or the order of the response sequence 1 and the sequence 2 is determined according to the number of preambles detected within the reception beam.
  • the base station may also send a beam response sequence through a corresponding downlink.
  • the base station may also pass the response sequence in one or more downlink transmission beams.
  • the RAR time windows of the receiving beams of the base station may not overlap at all, or may overlap partially or completely. If the RAR time windows corresponding to the two receiving beams are partially overlapped, each RAR time window may be distinguished by content in the RAR (eg, time and/or frequency domain location, etc.) or a Radio Network Temporary Identity (RNTI) corresponding to the RAR. .
  • RTI Radio Network Temporary Identity
  • the sequence consisting of the random access preamble sent by the terminal device is specified in advance by the base station or the base station knows the composition of the preamble that the terminal device may transmit. At this time, the base station only responds to one of the plurality of detected preamble sequences.
  • Scenario 3 Two terminal devices, such as terminal device 1 and terminal device 2, respectively transmit preambles. For example, before the base station responds to the preamble, the terminal device 1 transmits the preamble twice, such as the preamble 1 and the preamble 2; the terminal device 2 also transmits the preamble twice, such as the preamble 3 and the preamble 4.
  • the preamble 1 and the preamble 2 may be continuous in time or may be spaced apart from each other; the preamble 3 and the preamble 4 may be continuous in time or may be spaced apart from each other.
  • the random access preamble sent by each terminal device may be the same or different; that is, the preamble 1 and the preamble 2 may be the same or different, and the preamble 3 and the preamble 4 may be the same or different.
  • Each terminal device may use the same transmit beam to transmit a random access preamble in different base station receive beams, or may use different transmit beams to transmit random access preambles in the same base station receive beam, and may also use different transmit beams.
  • the random access preamble is transmitted in different base station receive beams, and the random access preamble can also be transmitted in the same base station receive beam using the same transmit beam.
  • the base station responds to the preamble 2 and the preamble 4 sent by the terminal device 1 and the preamble 3 and the preamble 4 sent by the terminal device as an example to describe the manner in which the base station responds to the random access preamble sent by the terminal device.
  • the base station successfully detects the preamble 3 for the first transmission of the terminal device 1 and the terminal device 2, and transmits the second transmission to the terminal device 1 and the terminal device 2 for the second time.
  • the order of time is shown from left to right, and different rectangular block diagrams represent different beams.
  • the base station first responds to the preamble 3 successfully detected in the preamble transmitted by the terminal device 2 for the first time. After successfully receiving the response corresponding to the preamble 3 in the corresponding RAR receiving time, the terminal device 2 transmits the message 3 in the time and frequency resource of the uplink scheduling grant indication included in the response.
  • the resource indicated by the uplink scheduling grant may be a time-frequency resource that the base station instructs the terminal device 2 to send the message 3.
  • the message 3 of the terminal device 2 contains the information of the preamble that it has sent but has not yet responded to, including but not limited to the transmission time, frequency, index, power headroom of the unresponsive preamble.
  • the base station After receiving the message 3 of the terminal device 2, the base station determines, according to the information in the message 3, that the preamble 4 and the preamble 3 that have been detected are sent by the same terminal device, and the terminal device has been responded, then the terminal device is In the response of the second transmission of the preamble, only the successfully detected preamble 2 is responded.
  • the message 3 sent by the terminal device 2 to the base station may further include a power headroom of the preamble 3.
  • the base station selects the channel with low path loss according to the power headroom of the preamble 3 and the power headroom of the preamble 4, combined with the signal quality of the successfully detected preamble 3 and the preamble 4.
  • the beam serves as a receiving beam for receiving a message transmitted by the terminal device 2.
  • the base station may retransmit the RAR for the preamble 3 under other downlink transmission beams.
  • the response of the base station to the preamble 3 can be sent through multiple downlink transmit beams.
  • the base station After completing the response to the preamble 3, the base station only responds to the preamble 2 in the next response.
  • the base station first responds to the preamble 2 and the preamble 4 that were successfully detected in the preamble transmitted by the terminal device for the second time.
  • the terminal device 2 After the terminal device 2 successfully receives the response of the base station to the preamble 4 in the corresponding RAR receiving time, the terminal device 2 sends a message 3 in the uplink scheduling authorization resource included in the response sent by the base station, and the sent message 3 includes the terminal device 2 once sent.
  • the preamble 3 that has been responded to, including but not limited to at least one of the transmission time, frequency, index, and power headroom of the unresponsive preamble 3.
  • the base station can know that the preamble 3 and the preamble 4 are the preambles sent by the same terminal device (the terminal device 2) according to the information of the preamble 3 carried in the message 3, and does not need to respond to the preamble 3.
  • the terminal device 1 sends a message 3 in the uplink scheduling grant resource included in the response sent by the base station, and the sent message 3 includes the terminal device 1 The information of the preamble 1 that was sent but not yet responded.
  • the base station since the base station does not detect the preamble 1, there is no need to respond to the preamble 1, that is, it is not necessary to transmit the RAR to the preamble 1.
  • the message 3 sent by the terminal device 2 may further include a power headroom of the preamble 4.
  • the base station can select the receiving beam from which the receiving terminal device 2 transmits the message according to the power headroom of the preamble 3 and the preamble 4, combined with the signal quality of the successfully detected preamble. Since the base station does not detect the preamble 1, and the signal quality of the preamble 1 is not detected, there is no need to re-adjust the receive beam.
  • the base station may retransmit the RAR for the preamble 2 under other downlink transmit beams.
  • the base station may retransmit the RAR for the preamble 4 under other downlink transmission beams.
  • the response of the base station to the preamble 2 may be sent by using multiple downlink transmit beams, and the response of the base station to the preamble 4 may also be sent by multiple downlink transmit beams.
  • the base station may determine the order of the response preambles based on the strength of the detected signals or the chronological order in which the respective preambles are received. Or determining, according to the information carried by the detected preamble (including but not limited to information such as priority, according to the number of preambles detected in the receiving beam, or according to resources that can be scheduled in each beam), first or all of the detected responses. Leading.
  • the method provided by the embodiment of the present invention may further include: the method that the terminal device 1 sends to the base station, when the terminal device uses the different transmit beams to transmit the random access preamble in the same base station receive beam.
  • the message 3 contains at least one of the following information of the preamble 1 and the preamble 2: transmission time, frequency, index, power headroom, and the like.
  • the message 3 transmitted by the terminal device 2 to the base station includes at least one of the following information of the preamble 3 and the preamble 4: transmission time, frequency, index, power headroom, and the like.
  • the base station After receiving the message 3 of the two terminal devices, the base station selects the terminal device to send the preamble transmission beam to the base station according to the power headroom of each preamble and the detected received signal quality of each preamble.
  • the base station may, in the downlink message 4, instruct the terminal device to transmit a subsequent message through the selected transmit beam.
  • the base station may instruct the terminal device 2 to reselect the transmission beam when the terminal device 2 transmits the preamble 3.
  • the manner indicated by the base station may include the time of transmitting the preamble 3 or the time of receiving the preamble 3 in the message 4 to instruct the terminal device 2 to transmit the subsequent message by using the transmit beam of the transmit preamble 3.
  • the base station may determine the order of response preamble 1 and preamble 2 based on the strength of the detected signal or the chronological order in which the respective preambles are received. Or determining the detected portion of the first response according to the information carried by the detected preamble (including but not limited to information such as priority, or according to the number of preambles detected within the receiving beam, or according to resources that can be scheduled within each beam) Or all leading.
  • Scenario 4 Two terminal devices, such as terminal device 1 and terminal device 2, respectively transmit a preamble, and each preamble includes more than two sequences.
  • the preamble transmitted by the terminal device 1 includes the sequence 1 and the sequence 2, and the sequence 1 and the sequence 2 may be consecutive or spaced apart from each other; the preamble transmitted by the terminal device 2 includes the sequence. 3 and sequence 4, sequence 3 and sequence 4 may be continuous or spaced apart from each other in time.
  • the sequence sent by each terminal device may be the same or different; that is, sequence 1 and sequence 2 may be the same or different, and sequence 3 and sequence 4 may be the same or different.
  • Each terminal device may use the same transmit beam to transmit a random access preamble in the same base station receive beam, or may use the same transmit beam to transmit a random access preamble in different base station receive beams, or may use different transmit beams.
  • the random access preamble is transmitted in the same base station receive beam, and the random access preamble can also be transmitted in different base station receive beams using different transmit beams.
  • the base station successfully detects the random access preamble sent by the base station in response to the sequence 2 sent by the terminal device 1 and the sequence 3 and sequence 4 sent by the terminal device 2 as an example.
  • the base station successfully detects the sequence 3 for the preamble transmitted by the terminal device 1, and successfully detects the sequence 2 and the sequence 4 for the preamble transmitted by the terminal device 2.
  • the order of time is shown from left to right, and different rectangular block diagrams represent different beams.
  • the base station first responds to the sequence 3 successfully detected in the preamble transmitted by the terminal device 2. After successfully receiving the response corresponding to the sequence 3 in the corresponding RAR receiving time, the terminal device 2 transmits the message 3 in the resource of the uplink scheduling grant indication included in the response.
  • the resource indicated by the uplink scheduling grant may be a time-frequency resource that the base station instructs the terminal device 2 to send the message 3.
  • the message 3 of the terminal device 2 contains information of a sequence that it has transmitted but has not yet responded to, such as the transmission time, frequency, index or power headroom of the sequence 4.
  • the base station After receiving the message 3 of the terminal device 2, the base station determines, according to the information in the message 3, that the sequence 4 and the sequence 3 that have been detected are transmitted by the terminal device 2, and the terminal device 2 has been responded, and then sends the terminal device 2 In the preamble response, only the successfully detected sequence 2 is responded to.
  • the message 3 sent by the terminal device 2 to the base station may further include a power headroom of the sequence 3.
  • the base station selects the reception with small path loss according to the power up space of the sequence 3 and the power headroom of the sequence 4, combined with the signal quality of the successfully detected sequence 3 and sequence 4.
  • the beam serves as a receiving beam for receiving a message transmitted by the terminal device 2.
  • the base station may retransmit the RAR for the sequence 3 under other downlink transmission beams.
  • the response of the base station to sequence 3 can be sent through multiple downlink transmit beams.
  • the base station After completing the response to sequence 3, the base station only responds to sequence 2 in the next response.
  • the base station first responds to Sequence 2 and Sequence 4 successfully detected in the preamble transmitted by the terminal device 1 and the terminal device 2.
  • the terminal device 2 After successfully receiving the response of the base station to the sequence 4 in the corresponding RAR receiving time, the terminal device 2 sends the message 3 in the uplink scheduling authorization resource included in the response sent by the base station.
  • the resource indicated by the uplink scheduling grant may be a time-frequency resource that the base station instructs the terminal device 2 to send the message 3.
  • the transmitted message 3 contains information of the sequence 3 that the terminal device 2 has transmitted but has not yet responded to, such as the transmission time, frequency, index of the sequence 3, and the corresponding power headroom.
  • the base station can know that the sequence 3 and the sequence 4 are the preambles sent by the same terminal device (the terminal device 2) according to the information of the sequence 3 carried in the message 3, and does not need to respond to the sequence 3.
  • the terminal device 1 sends a message 3 in the uplink scheduling authorization resource included in the response sent by the base station, and the sent message 3 includes the terminal device 1 The information of sequence 1 that was sent but not yet responded.
  • the response sequence 1 is not required, that is, it is not necessary to transmit the RAR for the sequence 1.
  • the message 3 sent by the terminal device 2 may further include a power headroom of the sequence 4.
  • the base station can select the receiving beam from which the receiving terminal device 2 transmits the message according to the power headroom of sequence 3 and sequence 4, in combination with the signal quality of the successfully detected preamble. Since the base station does not detect sequence 1, and does not detect the signal quality of sequence 1, there is no need to re-adjust the receive beam.
  • the base station may retransmit the RAR for the sequence 2 under other downlink transmission beams.
  • the base station may retransmit the RAR for the sequence 4 under other downlink transmission beams.
  • the response of the base station to the sequence 2 may be sent by using multiple downlink transmit beams, and the response of the base station to the sequence 4 may also be sent by multiple downlink transmit beams.
  • the base station may determine the order of the response preamble or sequence based on the strength of the detected preamble or sequence signal, or the chronological order in which the respective preamble or sequence is received. Or determining the first response detection according to the information carried by the detected preamble or sequence (including but not limited to information such as priority, or according to the number of preambles or sequences detected in the receiving beam, or according to resources that can be scheduled in each beam) Some or all of the leading or sequence to.
  • the terminal device may simultaneously send multiple preambles or one preamble to the two base stations including multiple sequences.
  • each of the two base stations can refer to FIG. 2(a), FIG. 2(b), FIG. 2(c), FIG. 3(a), FIG. 3(b), FIG. (c) Implementation of the base station in the embodiments described in Figures 4(a), 4(b), 4(c), 5(a) and 5(b).
  • two or more base stations can communicate with each other through the message, and no longer respond to the preamble and sequence that have sent the response.
  • the following is an example in which two base stations respectively receive preambles sent by two terminal devices.
  • the following is an example in which the terminal device 1 has acquired the random access configuration information from the base station 1 and the terminal device 2 has acquired the random access configuration information from the base station 2.
  • the random access configuration information from the base station 1 acquired by the terminal device 1 indicates the transmission power when the terminal device 1 transmits the preamble to the base station 1, the time at which the random access response is received (for example, the RAR time window), and the like.
  • the random access configuration information from the base station 2 acquired by the terminal device 2 indicates the transmission power when the terminal device 2 transmits the preamble to the base station 2, the time at which the random access response is received (for example, the RAR time window), and the like.
  • the base station 1 receives the preambles 1 and 2 from the terminal device 1, and the preamble 4 from the terminal device 2; the base station 2 receives the preamble 2 from the terminal device 1, and the terminal device 2 Leads 3 and 4.
  • the base station 1 responds to the preamble 2 by transmitting a response to the preamble 2 to the terminal device 1; the base station 2 responds to the preamble 4 by transmitting a response to the preamble 4 to the terminal device 2.
  • the terminal device 1 and the terminal device 2 respectively send a message 3.
  • the message 3 sent by the terminal device 1 to the base station 1 includes information of the preamble 1 that has been transmitted but has not yet been responded, including but not limited to: at least one of the time, frequency, index, and power headroom of the preamble 1 One. For example, at least one of the transmission time, frequency, index, and power headroom of the preamble 1.
  • the base station 1 determines, based on the information in the message 3, that the preamble 2 and the preamble 1 that have been detected are transmitted by the same terminal device, and the terminal device has been responded.
  • the message 3 sent by the terminal device 2 to the base station 2 includes information of the preamble 3 that has been transmitted but has not yet been responded, including but not limited to: at least one of a time, a frequency, an index, and a power headroom of the preamble. . For example, at least one of the transmission time, frequency, index, and power headroom of the preamble 3.
  • the base station 2 determines, based on the information in the message 3, that the preamble 3 and the preamble 4 that have been detected are transmitted by the same terminal device, and the terminal device has been responded.
  • the base station 1 After receiving the message 3 sent by the terminal device 1, the base station 1 does not respond to the preamble 1 according to the information of the preamble 1 carried in the message 3 sent by the terminal device 1; after receiving the message 3 sent by the terminal device 2, the base station 2 receives the message 3 According to the information of the preamble 3 carried in the message 3 sent by the terminal device 2, the preamble 3 is no longer responded.
  • the message 3 sent by the terminal device 1 to the base station 1 may further include a power headroom of the preamble 2.
  • the base station 1 selects the path loss according to the power headroom of the preamble 2 and the power headroom of the preamble 1 in combination with the successfully detected signal quality of the preamble 1 and the preamble 2.
  • the receiving beam serves as a receiving beam for receiving a message transmitted by the terminal device 1.
  • the power headroom of the preamble 4 may also be included.
  • the base station 2 selects the path loss according to the power headroom of the preamble 3 and the power headroom of the preamble 4, combined with the successfully detected signal quality of the preamble 3 and the preamble 4.
  • the receiving beam serves as a receiving beam for receiving a message transmitted by the terminal device 2.
  • the base station 1 and the base station 2 can exchange messages, that is, the base station 1 transmits a message to the base station 2, and has responded to the preamble 1 and the preamble 2 of the terminal device 1; the base station 2 transmits a message to the base station 1 for the preamble 3 and the preamble 4 of the terminal device 2 response. In this way, the base station 2 can respond to the preamble 2 of the terminal device 1 without responding to the preamble 4 of the terminal device 2.
  • the base station 1 may be implemented by using a backhaul link.
  • the embodiment of the present invention does not limit the manner in which the specific interaction message between the base station 1 and the base station 2 is used.
  • only the preamble 1 and the preamble 2 may be configured in the base station 1 , and only the preamble 3 and the preamble 4 are configured in the base station 2 .
  • base station 1 detects preamble 1 and preamble 4
  • base station 2 detects preamble 2 and preamble 3.
  • the partial information detected by the base station 1 includes, but is not limited to, the ID corresponding to the preamble 4, the time-frequency resource location, the RSRP, and the resources that the base station 1 can allocate (including but not It is limited to information such as bandwidth and subframes available for uplink transmission in the base station 1, and notifies the base station 2 or notifies the third-party processing device.
  • the base station 2 After receiving the message sent by the base station 1, the base station 2 responds to the preamble 4; or after receiving the message sent by the base station 1, the third-party processing device selects an appropriate base station to respond to the preamble 4.
  • the partial information of the preamble 2 includes, but is not limited to, the ID corresponding to the preamble 2 (including but not limited to the bandwidth and subframes available for uplink transmission in the base station 2).
  • the base station 1 is notified or the third-party processing device is notified. After receiving the message sent by the base station 2, the base station 1 responds to the preamble 2; or after receiving the message sent by the base station 2, the third party processing device selects an appropriate base station to respond to the preamble 2.
  • the base station 1 and the base station 2 respectively select the detected preamble to respond according to the information of the preamble detected by itself and the information acquired from the other party; or select a suitable device by the third party processing device.
  • the base station notifies the base station to respond.
  • the base station or the third party device may select the detected preamble according to the resources that each base station can allocate, the quality of the received signal of the preamble, and the like.
  • the third-party device refers to a device that assumes the scheduling, configuration, and processing functions of resources (including but not limited to random access resources, such as time, frequency, and preamble resources, etc.) between the respective base stations.
  • the third-party device may be a base station having a radio resource control (RRC) layer resource scheduling configuration function, and the base station 1 and the base station 2 only have partial functions (for example, a media access control (MAC) and / or physical layer signal generation base station for transmission acceptance processing, etc.).
  • RRC radio resource control
  • the base station 1 or the base station 2 may send the received message 3 to the third-party device, and the third-party device determines whether to respond to other preambles detected in the respective base stations.
  • the terminal device 1 transmits a preamble, the preamble consists of sequence 1 and sequence 2; the terminal device 2 transmits a preamble, and the preamble consists of sequence 3 and sequence 4.
  • Base station 1 and base station 2 receive one of the preambles through two receive beams, respectively. For example, base station 1 receives sequences 1 and 2 from terminal device 1, and sequence 4 from terminal device 2; base station 2 receives sequence 2 from terminal device 1, and sequences 3 and 4 from terminal device 2.
  • the base station 1 responds to sequence 2 by transmitting a response to sequence 2 to the terminal device 1; in response to sequence 4, the base station 2 transmits a response to sequence 4 to the terminal device 2.
  • the terminal device 1 and the terminal device 2 respectively send a message 3.
  • the message 3 sent by the terminal device 1 to the base station 1 includes information of the sequence 1 that has been transmitted but has not yet been responded, including but not limited to: at least one of the time, frequency, index, and power headroom of the sequence 1. One. For example, at least one of the transmission time, the frequency, the index, and the power headroom of the sequence 1.
  • the base station 1 determines from the information in the message 3 that the sequence 2 and the sequence 1 that have been detected are transmitted by the same terminal device, and the terminal device has been responded.
  • the message 3 sent by the terminal device 2 to the base station 2 includes information of the sequence 3 that has been transmitted but has not yet been responded, including but not limited to at least one of sequence time, frequency, index, and power headroom.
  • the base station 2 determines from the information in the message 3 that the sequence 3 and the sequence 4 that have been detected are transmitted by the same terminal device, and the terminal device has been responded.
  • the base station 1 After receiving the message 3 sent by the terminal device 1, the base station 1 does not respond to the sequence 1 according to the information of the sequence 1 carried in the message 3 sent by the terminal device 1; after receiving the message 3 sent by the terminal device 2, the base station 2 receives the message 3 According to the information of the sequence 3 carried in the message 3 sent by the terminal device 2, the sequence 3 is no longer responded.
  • each base station in response to the sequence sent by the terminal device can also refer to FIG. 3(a), FIG. 3(b), FIG. 3(c), FIG. 5(a) and FIG.
  • the implementation in b) is implemented.
  • the power headroom of the sequence 2 may also be included.
  • the base station 1 selects the path loss according to the power up space of the sequence 2 and the power headroom of the sequence 1, combined with the signal quality of the successfully detected sequence 1 and sequence 2.
  • the receiving beam serves as a receiving beam for receiving a message transmitted by the terminal device 1.
  • the power headroom of the sequence 4 may also be included.
  • the base station 2 selects the path loss according to the power up space of the sequence 3 and the power headroom of the sequence 4, combined with the successfully detected signal quality of the sequence 3 and the sequence 4.
  • the receiving beam serves as a receiving beam for receiving a message transmitted by the terminal device 2.
  • the base station 1 and the base station 2 can exchange messages, that is, the base station 1 transmits a message to the base station 2, and has responded to the sequence 1 and sequence 2 of the terminal device 1; the base station 2 transmits a message to the base station 1 for the sequence 3 and sequence 4 of the terminal device 2 response.
  • the base station 2 can respond to sequence 1 and sequence 2 of the terminal device 1, and the base station 1 does not have to respond to sequence 3 and sequence 4 of the terminal device 2.
  • the base station 1 may be implemented by using a backhaul link.
  • the embodiment of the present invention does not limit the manner in which the specific interaction message between the base station 1 and the base station 2 is used.
  • sequence 1 and sequence 2 can be configured in base station 1, and only sequence 3 and sequence 4 are configured in base station 2.
  • the implementation is similar to the implementation in FIG. 6(a) and will not be described again.
  • the base station after receiving the message 3 sent by the terminal device, the base station can independently determine whether to continue to respond to other successfully detected preambles or sequences. It is also possible to request that other base stations or multiple base stations share message 3 with each other, and then determine whether it is necessary to continue to respond to other detected preambles or sequences. Message 3 may also be notified to a third party device that determines whether to respond to other detected preambles or sequences within each base station.
  • the third-party device determines the preamble and sequence that have been responded according to the received message 3, and notifies the base station that has successfully detected these preambles or sequences but has not responded, and no longer responds to these. A preamble or sequence that has been responded to by other base stations.
  • the preamble received by the base station 1 and the base station 2 is composed of two sequences, and the random access of the base station 1 and the base station 2 is the same at the time and frequency positions,
  • the interference caused by the random access of the terminal equipment in the base station may be reduced by the two base stations respectively adopting different preambles and/or sequences.
  • a preamble contains N sequences and participates in N sequences constituting a preamble, which can be written as s1, s2, ..., sN.
  • N is an integer, for example, N may be 1, 2 or 70 or the like.
  • the preamble can be written as [si, sj].
  • the preamble indicating that the base station can be used is ⁇ [s1, s2], [s2, s3], ..., [sN, s1] ⁇ for a total of N preambles.
  • the preamble indicating that the base station can be used is ⁇ [s1, s3], [s2, s4], ..., [sN, s2] ⁇ , a total of N preambles, that is, the i-th base station, using the preamble Set ⁇ [s1,s 1+K(i) ],[s2,s 2+K(i) ],...,[sN,s N+K(i) ] ⁇ , K(i) is the ith base station Corresponding offset value).
  • any one of the preambles in the base station 1 and any one of the preambles of the base station 2 have the same sequence at most one position.
  • the embodiment of the invention further provides a random access response method, including:
  • S100 Receive two or more random access preambles before responding to random access of the terminal device, where each of the two or more random access preambles includes more than one sequence, or The random access preamble of the terminal device receives a random access preamble, and the one random access preamble includes two or more sequences;
  • S104 Respond to the successfully detected sequence or the random access preamble including the successfully detected sequence.
  • random connection in various scenarios in Fig. 4(a), Fig. 4(b), Fig. 4(c), Fig. 5(a), Fig. 5(b), Fig. 6(a) and Fig. 6(b) Implemented by means of preamble or sequence response.
  • the manner in which the base station implements a random access preamble or sequence response in various scenarios in FIG. 4(c), FIG. 5(a), FIG. 5(b), FIG. 6(a), and FIG. 6(b) achieve. No longer.
  • the embodiment of the invention further provides a random access method, including:
  • each of the two or more random access preambles includes more than one sequence, or Sending a random access preamble before the response of the access, the one random access preamble includes two or more sequences;
  • S202 Receive a message that the base station responds to the successfully detected sequence or the random access preamble including the successfully detected sequence.
  • the effective receiving base station responds to the successfully detected sequence or the random access preamble including the successfully detected sequence. Message.
  • the preamble or sequence response is implemented in a way.
  • FIG. 7 is a schematic structural diagram of a base station 3000 according to an embodiment of the present invention.
  • the base station 3000 may include a transmitter 31, a receiver 32, a processor 33, and a memory 34.
  • the processor 33 and the memory 34 are connected to one another via a bus 35.
  • the memory 34 includes, but is not limited to, a random access memory (RAM), a read-only memory (ROM), an Erasable Programmable Read Only Memory (EPROM), or A Compact Disc Read-Only Memory (CD-ROM) for storing related instructions and data.
  • the transmitter 31 is configured to transmit data and/or signals, such as transmitting a random access response message or the like.
  • Receiver 32 is operative to receive data and/or signals, such as receiving random access messages and the like.
  • the processor 33 may include one or more processors, for example, including one or more central processing units (CPUs).
  • CPUs central processing units
  • the CPU may be a single core CPU, It can be a multi-core CPU.
  • the processor 33 in the base station 3000 is configured to read the program code stored in the memory 34 and perform the following operations:
  • each of the two or more random access preambles comprising more than one sequence, or in the pair of terminal devices Before receiving the random access response, receiving a random access preamble, the one random access preamble comprising more than two sequences;
  • the preamble or sequence response is implemented in a way.
  • the manner in which the base station implements a random access preamble or sequence response in various scenarios in FIG. 4(c), FIG. 5(a), FIG. 5(b), FIG. 6(a), and FIG. 6(b) achieve. No longer.
  • FIG. 8 is a schematic structural diagram of a terminal device 4000 according to an embodiment of the present invention.
  • the terminal device 4000 may include a transmitter 41, a receiver 42, a processor 43, and a memory 44.
  • the receiver 42, the processor 43, and the memory 44 are connected to one another via a bus 45.
  • Memory 44 includes, but is not limited to, a random access memory, a read only memory, an erasable programmable read only memory, or a portable read only memory for use in associated instructions and data.
  • the transmitter 41 is configured to send a message such as a random access preamble
  • the receiver 42 is configured to receive a message such as a random access response.
  • the processor 43 may be one or more central processors.
  • the processor 43 may be a single core CPU or a multi-core CPU.
  • the processor 43 in the terminal device 4000 is configured to read the program code stored in the memory 44 and perform the following operations:
  • each of the two or more random access preambles includes more than one sequence, or random access at the base station Sending a random access preamble before the response, the one random access preamble includes more than two sequences;
  • random connection in various scenarios in Fig. 4(a), Fig. 4(b), Fig. 4(c), Fig. 5(a), Fig. 5(b), Fig. 6(a) and Fig. 6(b) Implemented by means of preamble or sequence response.
  • FIG. 9 is a schematic structural diagram of a base station 5000 according to an embodiment of the present invention. As shown in FIG. 9, the base station 5000 includes:
  • the receiving unit 21 is configured to receive two or more random access preambles before the response to the random access of the terminal device, where each of the two or more random access preambles includes more than one sequence Receiving, before responding to the random access of the terminal device, receiving a random access preamble, the one random access preamble comprising two or more sequences;
  • the detecting unit 22 is configured to detect a sequence in the random access preamble received by the receiving unit 21;
  • the response unit 23 is configured to respond to the sequence successfully detected by the detecting unit 22 or the random access preamble including the successfully detected sequence.
  • the response unit 23 is further configured to respond to only one of the random access preambles or a sequence when receiving multiple random access preambles or multiple sequences sent by the same terminal device.
  • the response unit 23 is further configured to respond to the successfully detected sequence or the random access preamble including the successfully detected sequence by using two or more downlink transmissions.
  • the receiving unit 21 is further configured to receive a message that is sent by the terminal device after receiving the random access response, where the message includes a random access preamble or sequence that the terminal device has sent and is not responded to. information;
  • the response unit 23 is further configured to no longer respond to the successfully detected random access preamble or sequence that the terminal device included in the message has sent and is not responded to.
  • the information about the random access preamble or sequence that the terminal device has sent and that is not responded to in the message includes at least one of the following information: random access that has been sent and is not responded to The transmission time, frequency, index, and power headroom of the preamble or sequence.
  • the receiving unit 21 is further configured to select, according to the power headroom of the successfully detected random access preamble or sequence included in the message, and the successfully received quality of the received signal of the random access preamble or sequence. Receiving, by the terminal device, a beam for transmitting random access.
  • the base station 5000 is further configured to: when two or more base stations respectively receive multiple random access preambles or multiple sequences sent by the same terminal device, send the already-random random access preamble or sequence to another Base station, or receiving a random access preamble or sequence that has been sent by another base station;
  • the response unit 23 is further configured to no longer respond to the random access preamble or sequence that has responded.
  • the base station 5000 is further configured to: when the two or more base stations respectively receive multiple random access preambles or multiple sequences sent by the same terminal device, the randomly detected preamble or sequence information is successfully detected. Transmitting to a third party device, the third party device determining, by the third party device, a base station that responds to the successfully detected random access preamble or sequence;
  • the third-party device refers to a device that assumes resource scheduling, configuration, and/or processing functions between the respective base stations.
  • the response of the random access preamble sent by the response unit 23 includes at least one of the following: an index number corresponding to the random access preamble, a received signal quality of the random access preamble, and random access.
  • the time and/or frequency domain location of the preamble or at least one of the following: the index number of the sequence, the received signal quality of the sequence, the time of the sequence, and/or the frequency domain location.
  • the response unit 23 determines an order in which the random access preamble response is sent according to one of the following information:
  • the preamble or sequence response is implemented in a way.
  • the manner in which the base station implements a random access preamble or sequence response in various scenarios in FIG. 4(c), FIG. 5(a), FIG. 5(b), FIG. 6(a), and FIG. 6(b) achieve. No longer.
  • FIG. 10 is a schematic structural diagram of a terminal device 6000 according to an embodiment of the present invention. As shown in FIG. 10, the terminal device 6000 includes:
  • the sending unit 31 is configured to send two or more random access preambles before the base station responds to the random access, where each of the two or more random access preambles includes more than one sequence, or Sending a random access preamble before the base station responds to the random access, the one random access preamble includes two or more sequences;
  • the receiving unit 32 is configured to receive, by the base station, a message that the successfully detected sequence or the random access preamble including the successfully detected sequence is responded to.
  • the receiving unit 32 is further configured to receive, by the base station, a message that is sent by using two or more downlink transmissions, and responds to the successfully detected sequence or the random access preamble including the successfully detected sequence.
  • the sending unit 31 is further configured to send a message to the base station after receiving a message that successfully responds to the successfully detected sequence or the random access preamble including the successfully detected sequence, where the message includes Information about a random access preamble or sequence that the terminal device has sent and that has not been responded to.
  • the information about the random access preamble or sequence that the terminal device has sent and that is not responded to in the message includes at least one of the following information: random access that has been sent and is not responded to The transmission time, frequency, index, power headroom of the preamble or sequence, the power headroom of the random access preamble or sequence that has been responded to.
  • the sending unit 31 is further configured to:
  • the path loss corresponding to each transmit beam is obtained according to the transmit power of the random access preamble or sequence and the RSRP, and the transmit beam with a small path loss is selected. Subsequent news.
  • random connection in various scenarios in Fig. 4(a), Fig. 4(b), Fig. 4(c), Fig. 5(a), Fig. 5(b), Fig. 6(a) and Fig. 6(b) Implemented by means of preamble or sequence response.
  • the embodiment of the present invention uses two random access preambles as an example for description.
  • the base station may receive more than two random access preambles, and the implementation manner thereof is similar to the implementation manner of two random access preambles.
  • a random access preamble includes two sequences as an example.
  • the base station may receive a random access preamble including more than three sequences, and the implementation manner and the two sequences. The implementation is similar. The details will not be described again.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本申请提供一种随机接入响应方法和设备以及随机接入的方法和设备,以实现对多个随机接入前导或同一个随机接入前导包含多个序列的响应。本申请提供的一种随机接入响应方法,通过在对终端设备的随机接入的响应之前,接收两个以上的随机接入前导,该两个以上的随机接入前导中的每个随机接入前导包括一个以上的序列,或在对终端设备的随机接入的响应之前,接收一个随机接入前导,该一个随机接入前导包括两个以上序列;对接收到的随机接入前导中的序列进行检测;对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应。通过上述方法和设备,实现了对成功检测到的多个随机接入前导或同一个随机接入前导包含多个序列的响应。

Description

随机接入响应的方法和设备以及随机接入的方法和设备
本申请要求于2017年03月24日提交中国专利局、申请号为201710184799.8、发明名称为“随机接入响应的方法和设备以及随机接入的方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种无线通信***中随机接入响应的方法和设备以及随机接入的方法和设备。
背景技术
移动业务的发展对无线通信的数据速率和效率要求越来越高。在未来无线通信***中,波束成型技术用来将传输信号的能量限制在某个波束方向内。波束成型技术能够有效扩大无线信号的传输范围,降低信号干扰,从而达到更高的通信效率和获取更高的网络容量。然而,在采用波束成型技术的通信网络中,首先需要进行发送波束和接收波束匹配,使得接收波束比较好地获得来自发送波束的信号,否则无法取得比较高的通信效率甚至无法进行通信。在终端设备与基站进行下行和上行同步时,需要进行发送波束和接收波束之间的匹配,这一功能借助于波束扫描来完成。在发送波束和接收波束数量比较多的时候,波束扫描会耗费大量的时间与资源。在无线通信网络中,终端设备通过使用随机接入,获取设备与基站之间的上行同步。随机接入的方式,决定上行同步时的时延。
终端设备在随机接入时,生成随机接入前导并发送。所述随机接入前导包含序列,所述序列用于区分随机接入的终端设备。基站对接收到的信号进行检测,如果检测到某个序列,则生成该序列对应的随机接入响应。
现有技术中,基站在对随机接入前导的响应之前,接收到的多个前导或者同一个前导中包含的多个序列,没有有效的响应机制。
发明内容
本发明实施例提供一种随机接入响应方法和设备以及随机接入的方法和设备,以实现对多个随机接入前导或同一个随机接入前导包含多个序列的响应。
一方面,本发明实施例提供了一种随机接入响应方法,包括:
在对终端设备的随机接入的响应之前,接收两个以上的随机接入前导,该两个以上的随机接入前导中的每个随机接入前导包括一个以上的序列,或在对终端设备的随机接入的响应之前接收一个随机接入前导,该一个随机接入前导包括两个以上序列;
对接收到的随机接入前导中的序列进行检测;
对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应。
通过上述方法,实现了对成功检测到的多个随机接入前导或同一个随机接入前导包含多个序列的响应。
可选的,所述序列是终端设备进行随机接入时使用的序列信息或信号。在终端设备 进行随机接入时,会从一定数量(例如64个)的序列信息或信号中,选择一个序列信息或信号作为此次随机接入的序列发送给基站。
在一种可能的实现方式中,所述方法还包括:当接收到同一终端设备发送的多个随机接入前导或多个序列时,只对其中一个随机接入前导或一个序列进行响应。
在一种可能的实现方式中,所述方法还包括:通过两次以上的下行发送,对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应。这样,能够避免终端设备在某一个下行发送波束接收响应失败时再通过其它下行发送波束接收响应所带来的时间的延迟,能够提高响应终端设备的效率,减少终端设备接收响应的时间。
在一种可能的实现方式中,所述方法还包括:接收终端设备在接收到随机接入响应后发送的消息,所述消息中包含所述终端设备已经发送且没有被响应的随机接入前导或序列的信息;
对成功检测到的、所述消息中包含的所述终端设备已经发送且没有被响应的随机接入前导或序列,不再响应。
这样,对同一终端设备发送的多个随机接入前导或一个随机接入前导中包括多个序列时,只对其中一个随机接入前导或序列进行响应,避免了对同一个终端设备的多个随机接入前导或序列的响应,提升了响应的效率,节省了因重复响应带来的资源损耗。
在一种可能的实现方式中,所述消息中包含的所述终端设备已经发送且没有被响应的随机接入前导或序列的信息包括下述信息中的至少其中一项:已经发送且没有被响应的随机接入前导或序列的发送时间、频率、索引、功率上升空间。
在一种可能的实现方式中,所述方法还包括:根据所述消息中包含的成功检测的随机接入前导或序列的功率上升空间,以及成功检测到的随机接入前导或序列的接收信号质量,选择接收所述终端设备发送随机接入的波束。
可选的,还可以在向终端设备发送的消息中包括选择的、所述终端设备发送随机接入前导的时间,或者接收所述随机接入前导的时间,以指示所述终端设备采用发送所述随机接入前导的发送波束来发送后续的消息。
在一种可能的实现方式中,当两个以上基站分别接收到同一终端设备发送的多个随机接入前导或多个序列时,所述两个以上基站通过消息交互,对已经响应的随机接入前导或序列,不再响应。
可选的,所述两个以上基站通过回传链路实现消息的交互。
在一种可能的实现方式中,当两个以上基站分别接收到同一终端设备发送的多个随机接入前导或多个序列时,所述两个以上基站分别将成功检测到的随机接入前导或序列的信息发送给第三方设备,由所述第三方设备确定对所述成功检测到的随机接入前导或序列进行响应的基站;其中,所述第三方设备是指承担各个基站之间的资源调度、配置和/或处理功能的设备。
可选的,所述两个以上基站可以将接收到的、终端设备接收随机接入响应后发送的消息发送给第三方设备,由第三方设备决定是否响应各个基站内检测到的其它随机接入前导前导或序列。进一步的,所述第三方设备在决定响应各个基站内检测到的其它前导或序列后,还可以决定响应这些随机接入前导或序列的基站。
可选的,上述方法还可以包括:在接收到终端设备发送随机接入前导或序列时,将 成功检测到的随机接入前导或序列发送给其它所述第三方设备,由所述第三方设备确定响应所述随机接入前导或序列的基站。例如,当两个以上基站分别接收到同一终端设备发送的多个随机接入前导或多个序列时,由接收到终端设备发送随机接入前导或序列的基站将成功检测到的随机接入前导或序列发送给其它所述第三方设备,由所述第三方设备确定响应所述随机接入前导或序列的基站。
在一种可能的实现方式中,所述基站发送的随机接入前导的响应中,包括下述信息中的至少其中一个:随机接入前导对应的索引号、随机接入前导的接收信号质量、随机接入前导的时间和/或频域位置;或包括下述信息中的至少其中一个:序列的索引号、序列的接收信号质量,序列的时间和/或频域位置。
可选的,所述随机接入前导的时间和/或频域位置可以通过对所述随机接入前导的响应消息中新增一个字段,通过该字段记录该前导的时间和/或频域位置信息;也可以通过随机接入无线网络临时标识(Random access-radio network temporary identifier,RA-RNTI)携带该随机接入前导的时间和/或频域位置信息。
可选的,所述序列的时间和/或频域位置可以通过对所述序列的响应消息中新增一个字段,通过该字段记录该前导的时间和/或频域位置信息;也可以通过RA-RNTI携带所述序列的时间和/或频域位置信息。
在一种可能的实现方式中,按照下述信息之一,确定发送随机接入前导响应的顺序:
接收前导的时间先后顺序,检测到的信号的强度,检测到的随机接入前导所携带的优先级信息或一个接收波束内检测到的随机接入前导的数量。
在一种可能的实现方式中,当两个基站分别发送包含两个以上序列的随机接入前导,且所述两个基站的随机接入时间和频率位置相同时,每个基站接收到的随机接入前导中只有一个序列相同。
另一方面,本发明实施例提供了一种随机接入方法,包括:
在基站对随机接入的响应之前,发送两个以上的随机接入前导,该两个以上的随机接入前导中的每个随机接入前导包括一个以上的序列,或在基站对随机接入的响应之前发送一个随机接入前导,该一个随机接入前导包括两个以上序列;
接收所述基站对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应的消息。
通过上述方法,终端设备能够在基站对随机接入的响应之前,发送两个以上的随机接入前导,并接收基站对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应的消息。
可选的,所述序列是终端设备进行随机接入时使用的序列信息或信号。在终端设备进行随机接入时,会从一定数量(例如64个)的序列信息或信号中,选择一个序列信息或信号作为此次随机接入的序列发送给基站。
在一种可能的实现方式中,所述方法还包括:接收所述基站通过两次以上的下行发送所发送的,对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应的消息。
这样,能够避免终端设备在某一个下行发送波束接收响应失败时再通过其它下行发 送波束接收响应所带来的时间的延迟,能够提高响应终端设备的效率,减少终端设备接收响应的时间。
在一种可能的实现方式中,所述方法还包括:在接收到对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应的消息后,向所述基站发送消息,所述消息包含所述终端设备已经发送且没有被响应的随机接入前导或序列的信息。
这样,能够使得基站对同一终端设备发送的多个随机接入前导或一个随机接入前导中包括多个序列只响应一次,避免了对同一个终端设备的多个随机接入前导或序列的响应,提升了响应的效率,节省了因重复响应带来的资源损耗。
在一种可能的实现方式中,所述消息中包含的所述终端设备已经发送且没有被响应的随机接入前导或序列的信息包括下述信息中的至少其中一项:已经发送且没有被响应的随机接入前导或序列的发送时间、频率、索引、功率上升空间、已经被响应的随机接入前导或序列的功率上升空间。
在一种可能的实现方式中,所述方法还包括:当接收到的所述消息中携带接收信号质量RSRP时,根据发送随机接入前导或序列的发送功率和所述RSRP,获取每个发送波束对应的路径损耗,并选择路径损耗小的发送波束发送后续的消息。这样,后续发送消息时,路径损耗小,能够提升后续发送消息的质量。
可选的,在选择路径损耗小的发送波束后,还可以选择该发送波束对应的随机接入响应中的上行调度授权中指示的时间、频率资源来发送后续的消息。
再一方面,本发明实施例提供了一种基站,包括:接收器、发射器、存储器和处理器;其中,所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,执行以下操作:
在对终端设备的随机接入的响应之前,接收两个以上的随机接入前导,该两个以上的随机接入前导中的每个随机接入前导包括一个以上的序列,或在对终端设备的随机接入的响应之前接收一个随机接入前导,该一个随机接入前导包括两个以上序列;
对接收到的随机接入前导中的序列进行检测;
对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应。
通过上述基站,实现了对成功检测到的多个随机接入前导或同一个随机接入前导包含多个序列的响应。
可选的,所述序列是终端设备进行随机接入时使用的序列信息或信号。在终端设备进行随机接入时,会从一定数量(例如64个)的序列信息或信号中,选择一个序列信息或信号作为此次随机接入的序列发送给基站。
在一种可能的实现方式中,所述处理器还用于:当接收到同一终端设备发送的多个随机接入前导或多个序列时,只对其中一个随机接入前导或一个序列进行响应。
在一种可能的实现方式中,所述处理器还用于:通过两次以上的下行发送,对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应。这样,能够避免终端设备在某一个下行发送波束接收响应失败时再通过其它下行发送波束接收响应所带来的时间的延迟,能够提高响应终端设备的效率,减少终端设备接收响应的时间。
在一种可能的实现方式中,所述处理器还用于:接收终端设备在接收到随机接入响应后发送的消息,所述消息中包含所述终端设备已经发送且没有被响应的随机接入前导 或序列的信息;
对成功检测到的、所述消息中包含的所述终端设备已经发送且没有被响应的随机接入前导或序列,不再响应。
这样,对同一终端设备发送的多个随机接入前导或一个随机接入前导中包括多个序列时,只对其中一个随机接入前导或序列进行响应,避免了对同一个终端设备的多个随机接入前导或序列的响应,提升了响应的效率,节省了因重复响应带来的资源损耗。
在一种可能的实现方式中,所述消息中包含的所述终端设备已经发送且没有被响应的随机接入前导或序列的信息包括下述信息中的至少其中一项:已经发送且没有被响应的随机接入前导或序列的发送时间、频率、索引、功率上升空间。
在一种可能的实现方式中,所述处理器还用于:根据所述消息中包含的成功检测的随机接入前导或序列的功率上升空间,以及成功检测到的随机接入前导或序列的接收信号质量,选择接收所述终端设备发送随机接入的波束。
可选的,所述基站还可以在向终端设备发送的消息中包括选择的、所述终端设备发送随机接入前导的时间,或者接收所述随机接入前导的时间,以指示所述终端设备采用发送所述随机接入前导的发送波束来发送后续的消息。
在一种可能的实现方式中,当两个以上基站分别接收到同一终端设备发送的多个随机接入前导或多个序列时,将已经响应的随机接入前导或序列发送给另外的基站,或接收另外的基站发送的已经响应的随机接入前导或序列,并对已经响应的随机接入前导或序列,不再响应。
可选的,所述两个以上基站通过回传链路实现消息的交互。
在一种可能的实现方式中,当两个以上基站分别接收到同一终端设备发送的多个随机接入前导或多个序列时,将成功检测到的随机接入前导或序列的信息发送给第三方设备,由所述第三方设备确定对所述成功检测到的随机接入前导或序列进行响应的基站;
其中,所述第三方设备是指承担各个基站之间的资源调度、配置和/或处理功能的设备。
可选的,所述两个以上基站可以将接收到的、终端设备接收随机接入响应后发送的消息发送给第三方设备,由第三方设备决定是否响应各个基站内检测到的其它随机接入前导前导或序列。进一步的,所述第三方设备在决定响应各个基站内检测到的其它前导或序列后,还可以决定响应这些随机接入前导或序列的基站。
可选的,所述基站还可以在接收到终端设备发送随机接入前导或序列时,将成功检测到的随机接入前导或序列发送给其它所述第三方设备,由所述第三方设备确定响应所述随机接入前导或序列的基站。例如,当两个以上基站分别接收到同一终端设备发送的多个随机接入前导或多个序列时,由接收到终端设备发送随机接入前导或序列的基站将成功检测到的随机接入前导或序列发送给其它所述第三方设备,由所述第三方设备确定响应所述随机接入前导或序列的基站。
在一种可能的实现方式中,所述基站发送的随机接入前导的响应中,包括下述信息中的至少其中一个:随机接入前导对应的索引号、随机接入前导的接收信号质量、随机接入前导的时间和/或频域位置;或包括下述信息中的至少其中一个:序列的索引号、序列的接收信号质量,序列的时间和/或频域位置。
可选的,所述随机接入前导的时间和/或频域位置可以通过对所述随机接入前导的响应消息中新增一个字段,通过该字段记录该前导的时间和/或频域位置信息;也可以通过RA-RNTI携带该随机接入前导的时间和/或频域位置信息。
在一种可能的实现方式中,所述处理器按照下述信息之一,确定发送随机接入前导响应的顺序:
接收随机接入前导的时间先后顺序,检测到的信号的强度,检测到的随机接入前导所携带的优先级信息或一个接收波束内检测到的随机接入前导的数量。
在一种可能的实现方式中,当两个基站分别发送包含两个以上序列的随机接入前导,且所述两个基站的随机接入时间和频率位置相同时,每个基站接收到的随机接入前导中只有一个序列相同。
再一方面,本发明实施例提供了一种终端设备,包括:接收器、发射器、存储器和处理器;其中,所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,执行以下操作:
在基站对随机接入的响应之前,发送两个以上的随机接入前导,该两个以上的随机接入前导中的每个随机接入前导包括一个以上的序列,或在基站对随机接入的响应之前发送一个随机接入前导,该一个随机接入前导包括两个以上序列;
接收所述基站对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应的消息。
上述终端设备能够在基站对随机接入的响应之前,发送两个以上的随机接入前导,并接收基站对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应的消息。
可选的,所述序列是终端设备进行随机接入时使用的序列信息或信号。在终端设备进行随机接入时,会从一定数量(例如64个)的序列信息或信号中,选择一个序列信息或信号作为此次随机接入的序列发送给基站。
在一种可能的实现方式中,所述处理器还用于:接收所述基站通过两次以上的下行发送所发送的,对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应的消息。这样,能够避免终端设备在某一个下行发送波束接收响应失败时再通过其它下行发送波束接收响应所带来的时间的延迟,能够提高响应终端设备的效率,减少终端设备接收响应的时间。
在一种可能的实现方式中,所述处理器还用于:在接收到对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应的消息后,向所述基站发送消息,所述消息包含所述终端设备已经发送且没有被响应的随机接入前导或序列的信息。这样,能够使得基站对同一终端设备发送的多个随机接入前导或一个随机接入前导中包括多个序列只响应一次,避免了对同一个终端设备的多个随机接入前导或序列的响应,提升了响应的效率,节省了因重复响应带来的资源损耗。
在一种可能的实现方式中,所述处理器还用于:所述消息中包含的所述终端设备已经发送且没有被响应的随机接入前导或序列的信息包括下述信息中的至少其中一项:已经发送且没有被响应的随机接入前导或序列的发送时间、频率、索引、功率上升空间、已经被响应的随机接入前导或序列的功率上升空间。
在一种可能的实现方式中,所述处理器还用于:当接收到的所述消息中携带接收信号质量RSRP时,根据发送随机接入前导或序列的发送功率和所述RSRP,获取每个发送波束对应的路径损耗,并选择路径损耗小的发送波束发送后续的消息。
可选的,所述处理器在选择路径损耗小的发送波束后,还可以选择该发送波束对应的随机接入响应中的上行调度授权中指示的时间、频率资源来发送后续的消息。
本申请实施例还提供一种程序,该程序在被处理器执行时用于执行上述随机接入响应方法。
本申请实施例还提供一种程序产品,例如计算机可读存储介质,包括上述程序。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述随机接入响应方法。
本申请实施例还提供一种程序,该程序在被处理器执行时用于执行上述随机接入方法。
本申请实施例还提供一种程序产品,例如计算机可读存储介质,包括上述程序。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述随机接入方法。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例涉及的一种随机接入过程示意图;
图2(a)为本发明实施例提供的基站响应终端设备发送多个随机接入前导的方式一种实现方式示意图;
图2(b)为本发明实施例提供的基站响应终端设备发送多个随机接入前导的方式另一种实现方式示意图;
图2(c)为本发明实施例提供的基站响应终端设备发送多个随机接入前导的方式再一种实现方式示意图;
图3(a)为本发明实施例提供的基站响应终端设备发送的随机接入前导包括多个序列时的一种实现方式示意图;
图3(b)为本发明实施例提供的基站响应终端设备发送的随机接入前导包括多个序列时的另一种实现方式示意图;
图3(c)为本发明实施例提供的基站响应终端设备发送的随机接入前导包括多个序列时的再一种实现方式示意图;
图4(a)为本发明实施例提供的基站响应两个终端设备分别发送多个随机接入前导时的一种实现方式示意图;
图4(b)为本发明实施例提供的基站响应两个终端设备分别发送多个随机接入前导时的另一种实现方式示意图;
图4(c)为本发明实施例提供的基站响应两个终端设备分别发送多个随机接入前导 时的再一种实现方式示意图;
图5(a)为本发明实施例提供的基站响应两个终端设备分别发送的随机接入前导包括多个序列时的一种实现方式示意图;
图5(b)为本发明实施例提供的基站响应两个终端设备分别发送的随机接入前导包括多个序列时的另一种实现方式示意图;
图6(a)为本发明实施例提供的两个基站响应两个终端设备分别发送多个随机接入前导时的一种实现方式示意图;
图6(b)为本发明实施例提供的两个基站响应两个终端设备分别发送的随机接入前导包括多个序列时的一种实现方式示意图;
图7为本发明实施例提供的一种基站3000的结构示意图;
图8为本发明实施例提供的一种终端设备4000的结构示意图;
图9为本发明实施例提供的一种基站5000的结构示意图;
图10为本发明实施例提供的一种终端设备6000的结构示意图。
具体实施方式
下面结合附图,对本发明的实施例进行描述。
另外,本发明实施例中的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
图1为本发明实施例涉及的一种随机接入过程示意图,应用于基站和终端设备之间的随机接入。图1中基站与终端设备所组成的通信***可以是全球移动通信***(Global System for Mobile Communication,GSM),码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***,全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX)***、长期演进(long term evolution,LTE)***,5G通信***(例如新空口(new radio,NR)***、多种通信技术融合的通信***(例如LTE技术和NR技术融合的通信***),或者后续演进通信***。
本申请中的终端设备是一种具有无限通信功能的设备,可以是具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备等。在不同的网络中终端设备可以叫做不同的名称,例如:用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置、蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、5G网络或未来演进网络中的终端设备等。
本申请中的基站也可以称为基站设备,是一种部署在无线接入网用以提供无线通信功能的设备,包括但不限于:基站(例如:BTS(Base Transceiver Station,BTS),节点B(NodeB,NB),演进型基站B(Evolutional Node B,eNB或eNodeB),NR***中的传输节点或收发点(transmission reception point,TRP或者TP)或者下一代节点B(generation nodeB,gNB),未来通信网络中的基站或网络设备)、中继站、接入 点、车载设备、可穿戴设备,无线保真(Wireless-Fidelity,Wi-Fi)的站点、无线回传节点、小站、微站等等。
下面以LTE***中终端设备与基站之间实现随机接入的过程为例进行说明。
如错误!未找到引用源。所示,终端设备在进行随机接入时,首先接收基站发送的下行***信息(System information block-2,SIB2),获取随机接入的配置参数,包括但不限于终端设备接收随机接入响应(random access response,RAR)的时间等。终端设备根据获取到的配置参数,生成随机接入前导(即消息1)并发送。所述随机接入前导包括序列,所述序列用于在随机接入中区分不同的终端设备。其中,基站发送的所述下行***信息的配置参数中,通常会指定需要采用的随机接入前导的格式。终端设备会按照基站指定的格式生成随机接入前导。需要说明的是,在LTE***中定义了多种随机接入前导的格式,不同格式的随机接入前导的时间长度不同。
基站对接收到的信号进行检测,如果检测到某个随机接入前导或随机接入前导中的序列,则生成相应的RAR,即消息2。如图1中,基站检测到终端设备发送的随机接入前导后,生成随机接入响应消息并发送给终端设备。该随机接入响应中包括但不限于随机接入前导对应的索引、时间提前(Time advance,TA)、上行调度授权(Uplink grant)等。其中,所述TA是指基站基于所述随机接入序列估计出的信道时延。
终端设备接收到基站发送的随机接入响应后,生成消息3并发送给基站。所述消息3包括但不限于公共控制信道消息(Common control channel,CCCH)或者小区无线网络临时标识(Cell radio network temporary identifier,C-RNTI)等。
基站在成功接收到消息3之后,向终端设备发送消息4。所述消息4中包含CCCH消息。其中CCCH消息用于辅助解决多个终端设备同时使用相同的序列时产生的冲突。
上述过程中,如果终端设备在所述接收RAR的时间内没有接收到基站发送的RAR,则终端设备会再次发送随机接入前导。即终端设备在基站所指定的接收RAR时间内只发送一次随机接入前导。所述终端设备接收RAR的时间,是终端设备发送随机接入前导后,尝试接收RAR的时间。如果在这段时间内接收到对应的RAR,则终止RAR接收并且在RAR指定的时间和频率资源上发送消息3。如果在这段时间内没有接收到对应的RAR,则终端设备此次随机接入失败,需重新发送随机接入前导。
终端设备在接收到RAR之前只发送一次随机接入前导的方式,随机接入所占用的时间过长;在多波束网络中,无法满足未来通信网络的需求。如果终端设备在接收到RAR之前,发送多个随机接入前导或一个随机接入前导包括多个序列,就能够缩短随机接入的时间,提高随机接入的效率。在基站发送RAR之前,多个随机接入前导或一个前导包括多个序列的实现方式包括但不限于:基站通过不同的接收波束接收同一个随机接入前导中的多个序列;多个随机接入前导分别通过不同的发送波束发送,基站通过相同的接收波束接收该多个随机接入前导,且每个随机接入前导在一个发送-接收波束对内进行;多个随机接入前导分别通过相同或者不同的发送波束发送,基站通过不同的接收波束接收该多个随机接入前导,且每个随机接入前导在多个发送-接收波束对内进行等。
这样,基站在接收一个或者多个随机接入前导时,出现多个随机接入前导被成功检测到,或一个随机接入前导包含的多个序列被成功检测到的情况。针对被检测到的多个随机接入前导或一个随机接入前导中包括多个序列时,基站需要有效的响应机制,对在 发送RAR之前成功接收到的多个随机接入前导或一个随机接入前导中包括的多个序列进行响应。
下面以基站与终端设备之间实现随机接入为例,针对不同场景下基站在发送RAR之前或终端设备在接收到RAR之前,发送多个随机接入前导或发送的一个随机接入前导包含多个序列时,基站对随机接入前导的响应方式进行说明。需要说明的是,为清楚地描述本发明实施例提供的技术方案,下述的前导即指随机接入前导,下述的序列即指随机接入前导中的序列。
场景1:终端设备两次分别发送随机接入前导,每次发送一个随机接入前导,两次发送在时间上可以连续,也可以相互之间有间隔。即基站在对接收到的前导响应前,接收到两个随机接入前导。其中,两次发送的随机接入前导可以相同,也可以不同。具体的,终端设备可以使用相同的发送波束在相同的基站接收波束内发送随机接入前导,终端设备可以使用相同的发送波束在不同的基站接收波束内发送随机接入前导,也可以使用不同的发送波束在相同的基站接收波束内发送随机接入前导,还可以使用不同的发送波束在不同的基站接收波束内发送随机接入前导。
在这种场景下,基站响应终端设备发送的随机接入前导的方式,可以通过如图2(a)、图2(b)和图2(c)的实现方式来实现。
如图2(a)所示,从左到右表示时间的先后顺序,不同的矩形框图代表不同的波束。例如基站使用不同的接收波束或不同的发送波束,则代表基站使用的波束的矩形框图不同。终端设备使用相同的发送波束发送随机接入前导,则代表终端设备使用的发送波束的矩形框图相同;终端设备使用相同的接收波束接收基站发送的响应,则代表终端设备使用的接收波束的矩形框图相同。由于终端设备使用的发送波束与接收波束不同,所以,代表终端设备使用的发送波束的矩形框图与代表终端设备使用的接收波束的矩形框图不同。并且,图2(a)中,终端设备第一次发送前导1,通过第二次发送前导2。图2(b)和图2(c)的结构和图示所代表的含义,与图2(a)类似,不再赘述。
图2(a)中,如果基站成功检测到终端设备发送的前导1和前导2,则分别在一个或两个以上的下行发送波束中响应前导1和前导2。图2(a)中以通过两个不同的下行发送波束响应终端设备发送的前导1和前导2为例进行说明。基站通过两个或两个以上下行发送波束响应终端设备发送的前导,能够避免终端设备在某一个下行发送波束接收响应失败时再通过其它下行发送波束接收响应所带来的时间的延迟,能够提高响应终端设备的效率,减少终端设备接收响应的时间。需要说明的是,本发明实施例中,所述下行发送波束是指基站向终端设备发送消息或响应时的发送波束。
可选的,基站在针对前导1或前导2的随机接入响应中,可以包含下述信息中的至少其中之一:该前导对应的索引号,该前导的接收信号质量(Reference signals received power,RSRP),该前导的时间和/或频域位置信息。其中,该前导的时间和/或频域位置信息,可以通过在对前导的响应消息中新增一个字段,通过该字段记录该前导的时间和/或频域位置信息。也可以通过随机接入无线网络临时标识(Random access-radio network temporary identifier,RA-RNTI)携带该前导的时间和/或频域位置信息。
如果基站在随机接入响应中携带RSRP,则终端设备可以根据发送前导的发送功率和 RAR中携带的RSRP,获取每个发送波束对应的路径损耗。例如终端设备可以根据发送前导时的发送功率和该前导的RAR中携带的RSRP,计算出路径损耗。在获取路径损耗后,终端设备可以选择路径损耗小的发送波束发送后续的消息。例如,选择路径损耗小的发送波束发送消息3等后续消息。进一步的,终端设备还可以选择该发送波束对应的RAR中的的上行调度授权中指示的时间、频率资源来发送后续的消息,包括但不限于消息3。其中,终端设备在发送每一个前导时,会先决定发送每个前导的功率,终端设备能够获取到每个前导的发送功率。并且,终端设备可能会接收到多个RAR,可以根据RAR中的标识获取自身发送的前导的RAR,并根据获取到的RAR中的RSRP和发送前导的功率,获取路径损耗。
图2(b)所示的实现方式与图2(a)的不同在于:如果基站成功检测到前导1和前导2,则在对应的下行发送波束中响应,两次响应在时间上按照终端设备发送前导和基站接收前导的时间先后进行。其中,基站接收随机接入前导的接收波束,与基站用于发送随机接入前导的响应的发送波束之间,存在一定的关联关系,例如接收波束与发送波束在方向上大致相同等。本发明实施例将与接收波束有关联关系的发送波束,称为与接收波束对应的下行发送波束。
图2(c)所示的实现方式与图2(b)的不同在于:如果基站成功检测到前导1和前导2,则在对应的下行发送波束中响应,两次响应在时间上的先后顺序由基站决定。其中,基站选择响应前导1和前导2的顺序可以按照下述方式来实现:根据检测信号的强度确定响应前导1和前导2的顺序,例如信号强的先响应等。根据检测到的前导所携带的信息(包括但不限于优先级等信息)确定响应前导1和前导2的顺序,例如按照优先级的顺序进行响应等。也可以根据接收波束内检测到的前导的数量确定响应前导1和前导2的顺序,例如先响应数量多的前导等。
可选的,图2(a)中,基站也可以通过对应的下行发送波束响应前导。图2(b)和图2(c)中,基站也可以通过一个或两个以上的下行发送波束中响应前导。
本发明实施例中,基站向终端设备响应随机接入前导的时间也可以称为RAR时间窗。上述图2(a)、图2(b)和图2(c)的实现方式中,基站各个接收波束的RAR时间窗可以完全没有重叠,也可以部分重叠,还可以完全相同。如果两个接收波束对应的RAR时间窗有部分重叠,则可以通过RAR内容(例如时间和/或频域位置等)或者该RAR对应的无线网络临时标识(radio network temporary identifier,RNTI)来区分各个RAR时间窗。
在另外的实施例中,终端设备发送的多个随机接入前导,由基站提前指定或者基站已知终端设备可能发送的多个前导。这时,基站只响应多个检测到的前导中的一个。
场景2:终端设备发送一个随机接入前导,该随机接入前导中包含两个以上的序列。即基站在对前导的响应之前,接收的前导中包括两个以上的序列。两个以上序列在时间上可以连续,也可以相互之间有间隔。其中,两个以上序列可以相同,也可以不同。终端设备可以使用相同的发送波束在相同的基站接收波束内发送随机接入前导,终端设备可以使用相同的发送波束在不同的基站接收波束内发送随机接入前导,也可以使用不同的发送波束在相同的基站接收波束内发送随机接入前导,还可以使用不同的发送波束在不同的基站接收波束内发送随机接入前导。
如图3(a)所示,从左到右表示时间的先后顺序,不同的矩形框图代表不同的波束。例如基站使用不同的接收波束或不同的发送波束,则代表基站使用的波束的矩形框图不同。终端设备使用相同的发送波束发送随机接入前导,则代表终端设备使用的发送波束的矩形框图相同;终端设备使用相同的接收波束接收基站发送的响应,则代表终端设备使用的接收波束的矩形框图相同。由于终端设备使用的发送波束与接收波束不同,所以,代表终端设备使用的发送波束的矩形框图与代表终端设备使用的接收波束的矩形框图不同。终端设备发送序列1和序列2。图3(b)和图3(c)的的结构和图示所代表的含义,与图3(a)类似,不再赘述。
图3(a)中,如果基站成功检测到终端设备发送的序列1和序列2,则在每一个下行发送波束中响应该序列对应的索引号。图3(a)中以通过两个不同的下行发送波束响应终端设备发送的前导1和前导2为例进行说明。针对每一个序列,基站可以通过两个或两个以上的下行发送波束进行响应。基站通过两个或两个以上下行发送波束响应终端设备发送的前导中的序列,能够避免终端设备在某一个下行发送波束接收响应失败时再通过其它下行发送波束接收响应所带来的时间的延迟,能够提高终端设备接收响应的效率,减少终端设备接收响应的时间。
可选的,基站在针对序列1或序列2的随机接入响应中,可以包含下述信息中的至少其中之一:该序列的索引号,该序列的RSRP,发送该序列的前导的时间和/或频域位置信息,该序列的时间和/或频域位置信息。其中,发送该序列的前导的时间和/或频域位置信息,该序列的时间和/或频域位置信息,可以通过在对该序列的响应消息中新增一个字段,该字段用于记录发送该序列的前导的时间和/或频域位置信息,及该序列的时间和/或频域位置信息。也可以在RA-RNTI中携带发送该序列的前导的时间和/或频域位置信息,以及该序列的时间和/或频域位置信息。
图3(b)所示的实现方式与图3(a)的不同在于:如果基站成功检测到序列1和序列2,则在对应的下行发送波束中响应,两次响应在时间上按照终端设备发送序列和基站接收序列的时间先后进行。其中,基站接收随机接入前导中序列的接收波束,与基站用于发送随机接入前导中序列的响应的发送波束之间,存在一定的关联关系,例如接收波束与发送波束在方向上大致相同等。本发明实施例将与接收波束与关联关系的发送波束,称为与接收波束对应的下行发送波束。
图3(c)所示的实现方式与图3(b)的不同在于:如果基站成功检测到序列1和序列2,则在对应的下行发送波束中响应,两次响应在时间上的先后顺序由基站决定。其中,基站选择响应序列1和序列2的顺序可以按照下述方式来实现:根据检测信号的强度确定响应序列1和序列2的顺序,例如信号强的先响应等。根据检测到的前导所携带的信息(包括但不限于优先级等信息)确定响应前导1和前导2的顺序,或根据接收波束内检测到的前导的数量确定响应序列1和序列2的顺序。
可选的,图3(a)中,基站也可以通过对应的下行发送波束响应序列。图3(b)和图3(c)中,基站也可以通过一个或两个以上的下行发送波束中响应序列。
上述图3(a)、图3(b)和图3(c)的实现方式中,基站各个接收波束的RAR时间窗可以完全没有重叠,也可以部分重叠,还可以完全相同。如果两个接收波束对应的RAR时间窗有部分重叠,则可以通过RAR中的内容(例如时间和/或频域位置等)或者该RAR 对应的无线网络临时标识(RNTI)来区分各个RAR时间窗。
在另外的实施例中,终端设备发送的随机接入前导所组成的序列,由基站提前指定或者基站已知终端设备可能发送的前导的构成。这时,基站只响应多个检测到的前导序列中的一个。
场景3:两个终端设备,例如终端设备1和终端设备2,分别发送前导。例如,在基站对前导的响应之前,终端设备1发送两次前导,例如前导1和前导2;终端设备2也发送两次前导,例如前导3和前导4。前导1和前导2在时间上可以连续,也可以相互之间有间隔;前导3和前导4在时间上可以连续,也可以相互之间有间隔。每个终端设备两次发送的随机接入前导可以相同,也可以不同;即前导1和前导2可以相同也可以不同,前导3和前导4可以相同也可以不同。每个终端设备可以使用相同的发送波束在不同的基站接收波束内发送随机接入前导,也可以使用不同的发送波束在相同的基站接收波束内发送随机接入前导,还可以使用不同的发送波束在不同的基站接收波束内发送随机接入前导,还可以使用相同的发送波束在相同的基站接收波束内发送随机接入前导。
下面以基站成功检测到终端设备1发送的前导2和终端设备2发送的前导3、前导4为例,对基站响应终端设备发送的随机接入前导的方式进行描述。例如在图4(a)和图4(b)中,基站对终端设备1和终端设备2第一次发送的前导,成功检测到前导3,对终端设备1和终端设备2第二次发送的前导,成功检测到前导2和前导4。如图4(a)和图4(b)所示,从左到右表示时间的先后顺序,不同的矩形框图代表不同的波束。
在图4(a)中,基站首先响应终端设备2第一次发送的前导中被成功检测到的前导3。终端设备2在对应的RAR接收时间内成功接收到与前导3对应的响应后,在该响应内包含的上行调度授权指示的时间和频率资源内发送消息3。其中,所述上行调度授权指示的资源可以是基站指示终端设备2发送消息3的时频资源。终端设备2的消息3中包含它曾经发送的、但是还没有被响应的前导的信息,这些信息包括但不限于未响应的前导的发送时间、频率、索引、功率上升空间(power headroom)中的至少其中之一,例如前导4的发送时间、频率、索引、功率上升空间中的至少其中之一。基站在接收到终端设备2的消息3后,根据消息3中的信息确定已经检测到的前导4和前导3是由同一个终端设备发送的,并且该终端设备已经被响应,则在对终端设备第二次发送的前导的响应中,只响应成功检测到的前导2。
可选的,终端设备2向基站发送的消息3中,还可以包括前导3的功率上升空间。这样,基站在接收到终端设备2发送的消息3后,根据前导3的功率上升空间、前导4的功率上升空间,结合成功检测到的前导3和前导4的信号质量,选择路径损耗小的接收波束作为接收终端设备2发送的消息的接收波束。
可选的,如果基站没有接收到终端设备2发送的消息3,基站还可以在其它下行发送波束下重新发送针对前导3的RAR。
可选的,基站对前导3的响应可以通过多个下行发送波束发送。
基站在完成对前导3的响应后,在下一次响应中,只响应前导2。
在图4(b)中,基站首先响应终端设备第二次发送的前导中被成功检测到的前导2和前导4。终端设备2在对应的RAR接收时间内成功接收到基站对前导4的响应后,在 基站发送的响应所包含的上行调度授权资源内发送消息3,发送的消息3中包含终端设备2曾经发送的、但是还没有被响应的前导3的信息,这些信息包括但不限于未响应的前导3的发送时间、频率、索引、功率上升空间中的至少其中之一。这样,基站能够根据消息3中携带的前导3的信息,获知前导3和前导4是同一个终端设备(终端设备2)发送的前导,不需要再对前导3做出响应。类似地,终端设备1在对应的RAR接收时间内成功接收到基站对前导2的响应后,在基站发送的响应所包含的上行调度授权资源内发送消息3,发送的消息3中包含终端设备1曾经发送的、但是还没有被响应的前导1的信息。这里,由于基站未检测到前导1,不需要响应前导1,即不需要发送对前导1的RAR。可选的,终端设备2发送的消息3中还可以包括前导4的功率上升空间。这样,基站可以根据前导3和前导4的功率上升空间,结合成功检测到的前导的信号质量,选择接收终端设备2发送消息的接收波束。由于基站未检测到前导1,没有检测到前导1的信号质量的,无需重新调整接收波束。
可选的,如果基站没有接收到终端设备1发送的消息3,基站还可以在其它下行发送波束下重新发送针对前导2的RAR。或者,如果基站没有接收到终端设备2发送的消息3,基站还可以在其它下行发送波束下重新发送针对前导4的RAR。
可选的,基站对前导2的响应可以通过多个下行发送波束发送,基站对前导4的响应也可以通过多个下行发送波束发送。
在另外的实施例中,基站可以根据检测信号的强度或接收各个前导的时间顺序,确定响应前导的顺序。或者根据检测到的前导所携带的信息(包括但不限于优先级等信息,根据接收波束内检测到的前导的数量,或者根据各个波束内可以调度的资源)决定首先响应检测到的部分或者全部前导。
当终端设备使用不同的发送波束在相同的基站接收波束内发送随机接入前导时,如图4(c)所示,本发明实施例提供的方法还可以进一步包括:终端设备1向基站发送的消息3中包含前导1和前导2的下述信息的至少其中之一:发送时间、频率、索引、功率上升空间等。终端设备2向基站发送的消息3中包含前导3和前导4的下述信息的至少其中之一:发送时间、频率、索引、功率上升空间等。基站接收到两个终端设备的消息3后,根据各个前导的功率上升空间和检测到的各个前导的接收信号质量,选择终端设备向基站发送前导的发送波束。基站可以在下行消息4中,指示终端设备通过选择的发送波束发送后续的消息。例如图4(c),基站可以指示终端设备2重新选择终端设备2发送前导3时的发送波束。基站指示的方式可以通过在消息4中包括发送前导3的时间或者接收前导3的时间,以指示终端设备2采用发送前导3的发送波束发送后续的消息。
在另外的实施例中,基站可以根据检测信号的强度或接收各个前导的时间顺序,确定响应前导1和前导2的顺序。或者根据检测到的前导所携带的信息(包括但不限于优先级等信息,或根据接收波束内检测到的前导的数量,或者根据各个波束内可以调度的资源)决定首先响应的检测到的部分或者全部前导。
场景4:两个终端设备,例如终端设备1和终端设备2,分别发送一个前导,每个前导中包括两个以上的序列。例如,在基站对前导的响应之前,终端设备1发送的前导中包括序列1和序列2,序列1和序列2在时间上可以连续也可以相互之间有间隔;终端设备2发送的前导包括序列3和序列4,序列3和序列4在时间上可以连续也可以相 互之间有间隔。每个终端设备发送的序列可以相同,也可以不同;即序列1和序列2可以相同也可以不同,序列3和序列4可以相同也可以不同。每个终端设备可以使用相同的发送波束在相同的基站接收波束内发送随机接入前导,也可以使用相同的发送波束在不同的基站接收波束内发送随机接入前导,也可以使用不同的发送波束在相同的基站接收波束内发送随机接入前导,还可以使用不同的发送波束在不同的基站接收波束内发送随机接入前导。
下面以基站成功检测到终端设备1发送的序列2和终端设备2发送的序列3、序列4为例,对基站响应终端设备发送的随机接入前导的方式进行描述。例如在图5(a)和图5(b)中,基站对终端设备1发送的前导,成功检测到序列3,对终端设备2发送的前导,成功检测到序列2和序列4。如图5(a)和图5(b)所示,从左到右表示时间的先后顺序,不同的矩形框图代表不同的波束。
在图5(a)中,基站首先响应终端设备2发送的前导中被成功检测到的序列3。终端设备2在对应的RAR接收时间内成功接收到与序列3对应的响应后,在该响应包含的上行调度授权指示的资源内发送消息3。其中,所述上行调度授权指示的资源可以是基站指示终端设备2发送消息3的时频资源。终端设备2的消息3中包含它曾经发送的、但是还没有被响应的序列的信息,例如序列4的发送时间、频率、索引或功率上升空间。基站在接收到终端设备2的消息3后,根据消息3中的信息确定已经检测到的序列4和序列3是由终端设备2发送的,并且终端设备2已经被响应,则在对终端设备发送的前导的响应中,只响应成功检测到的序列2。
可选的,终端设备2向基站发送的消息3中,还可以包括序列3的功率上升空间。这样,基站在接收到终端设备2发送的消息3后,根据序列3的功率上升空间、序列4的功率上升空间,结合成功检测到的序列3和序列4的信号质量,选择路径损耗小的接收波束作为接收终端设备2发送的消息的接收波束。
可选的,如果基站没有接收到终端设备2发送的消息3,基站还可以在其它下行发送波束下重新发送针对序列3的RAR。
可选的,基站对序列3的响应可以通过多个下行发送波束发送。
基站在完成对序列3的响应后,在下一次响应中,只响应序列2。
在图5(b)中,基站首先响应终端设备1和终端设备2发送的前导中被成功检测到的序列2和序列4。终端设备2在对应的RAR接收时间内成功接收到基站对序列4的响应后,在基站发送的响应所包含的上行调度授权资源内发送消息3。其中,所述上行调度授权指示的资源可以是基站指示终端设备2发送消息3的时频资源。发送的消息3中包含终端设备2曾经发送的、但是还没有被响应的序列3的信息,例如序列3的发送时间、频率、索引、对应的功率上升空间。这样,基站能够根据消息3中携带的序列3的信息,获知序列3和序列4是同一个终端设备(终端设备2)发送的前导,不需要再对序列3做出响应。类似地,终端设备1在对应的RAR接收时间内成功接收到基站对序列2的响应后,在基站发送的响应所包含的上行调度授权资源内发送消息3,发送的消息3中包含终端设备1曾经发送的、但是还没有被响应的序列1的信息。这里,由于基站未检测到序列1,不需要响应序列1,即不需要发送对序列1的RAR。进一步的,终端设备2发送的消息3中还可以包括序列4的功率上升空间。这样,基站可以根据序列3和序 列4的功率上升空间,结合成功检测到的前导的信号质量,选择接收终端设备2发送消息的接收波束。由于基站未检测到序列1,没有检测到序列1的信号质量的,无需重新调整接收波束。
可选的,如果基站没有接收到终端设备1发送的消息3,基站还可以在其它下行发送波束下重新发送针对序列2的RAR。或者,如果基站没有接收到终端设备2发送的消息3,基站还可以在其它下行发送波束下重新发送针对序列4的RAR。
可选的,基站对序列2的响应可以通过多个下行发送波束发送,基站对序列4的响应也可以通过多个下行发送波束发送。
在另外的实施例中,基站可以根据检测到的前导或序列的信号的强度,或接收各个前导或序列的时间顺序,确定响应前导或序列的顺序。或者根据检测到的前导或序列所携带的信息(包括但不限于优先级等信息,或根据接收波束内检测到的前导或序列的数量,或者根据各个波束内可以调度的资源)决定首先响应检测到的部分或者全部前导或序列。
上述图2(a)、图2(b)、图2(c)、图3(a)、图3(b)、图3(c)、图4(a)、图4(b)、图4(c)、图5(a)和图5(b)所示的实施例中,一个或多个终端设备,发送多个前导或一个前导包括多个序列给一个基站的实现方式,在终端设备同时处于两个或两个以上的基站的覆盖范围内时,终端设备可能会同时向两个基站发送多个前导或一个前导包括多个序列。在这种情况下,两个基站中的每个基站都可以参照上述图2(a)、图2(b)、图2(c)、图3(a)、图3(b)、图3(c)、图4(a)、图4(b)、图4(c)、图5(a)和图5(b)所描述的实施方式中基站的实现方式来实现。
同时,为进一步提升基站响应终端设备随机接入前导的效率,两个或两个以上基站之间可以通过消息交互,对已经发送响应的前导和序列不再响应。
下面以两个基站分别接收两个终端设备发送的前导为例,进行说明。下面以终端设备1已获取到来自基站1的随机接入配置信息,终端设备2已获取到来自基站2的随机接入配置信息为例进行说明。终端设备1获取的自基站1的随机接入配置信息指示终端设备1向基站1发送前导时的发送功率,接收随机接入响应的时间(例如RAR时间窗)等。终端设备2获取的自基站2的随机接入配置信息指示终端设备2向基站2发送前导时的发送功率,接收随机接入响应的时间(例如RAR时间窗)等。
如图6(a)所示,基站1接收到来自终端设备1的前导1和2,以及来自终端设备2的前导4;基站2接收到来自终端设备1的前导2,以及来自终端设备2的前导3和4。基站1响应前导2,即向终端设备1发送对前导2的响应;基站2响应前导4,即向终端设备2发送对前导4的响应。终端设备1和终端设备2在收到相应的RAR后,分别发送消息3。
终端设备1向基站1发送的消息3中,包含已经发送的、但是还没有被响应的前导1的信息,包括但不限于:前导1的时间、频率、索引、功率上升空间中的至少其中之一。例如前导1的发送时间、频率、索引、功率上升空间中的至少其中之一。基站1在接收到终端设备1的消息3后,根据消息3中的信息确定已经检测到的前导2和前导1是由同一个终端设备发送的,并且该终端设备已经被响应。终端设备2向基站2发送的消息3中,包含已经发送的、但是还没有被响应的前导3的信息,包括但不限于:前导 的时间、频率、索引、功率上升空间中的至少其中之一。例如前导3的发送时间、频率、索引、功率上升空间中的至少其中之一。基站2在接收到终端设备2的消息3后,根据消息3中的信息确定已经检测到的前导3和前导4是由同一个终端设备发送的,并且该终端设备已经被响应。
基站1接收到终端设备1发送的消息3后,根据终端设备1发送的消息3中携带的前导1的信息,不再对前导1做出响应;基站2接收到终端设备2发送的消息3后,根据终端设备2发送的消息3中携带的前导3的信息,不再对前导3做出响应。
图6(a)中每个基站响应终端设备发送的前导的实现方式,也可以参考上述图2(a)、图2(b)、图2(c)、图4(a)、图4(b)和图4(c)中的实现方式来实现。例如,终端设备1向基站1发送的消息3中,还可以包括前导2的功率上升空间。这样,基站1在接收到终端设备1发送的消息3后,根据前导2的功率上升空间、前导1的功率上升空间,结合成功检测到的前导1和前导2的信号质量,选择路径损耗小的接收波束作为接收终端设备1发送的消息的接收波束。再例如,终端设备2向基站2发送的消息3中,还可以包括前导4的功率上升空间。这样,基站2在接收到终端设备2发送的消息3后,根据前导3的功率上升空间、前导4的功率上升空间,结合成功检测到的前导3和前导4的信号质量,选择路径损耗小的接收波束作为接收终端设备2发送的消息的接收波束。
下面针对图6(a)中区别于上述实现方式的部分进行描述。基站1和基站2可以交互消息,即基站1向基站2发送消息,针对终端设备1的前导1和前导2已经响应;基站2向基站1发送消息,针对终端设备2的前导3和前导4已经响应。这样,基站2可以不用对终端设备1的前导2进行响应,基站1也可以不用对终端设备2的前导4进行响应。需要说明的是,基站1与基站2之间交互消息的方式可以有多种,例如可以通过回传链路来实现消息的交互。本发明实施例不限定基站1与基站2之间具体交互消息的方式。
作为一种可选的实现方式,如图6(a)的实现方式中,也可以在基站1仅配置前导1和前导2,在基站2仅配置前导3和前导4。例如,基站1检测到前导1和前导4,基站2检测到前导2和前导3。当基站1检测到的前导4的信息时,将基站1检测到的部分信息,包括但不限于:前导4对应的ID、时频资源位置、RSRP、以及基站1可分配的资源(包括但不限于基站1内可用于上行传输的带宽、子帧)等信息,通知基站2或者通知第三方处理设备。基站2接收到基站1发送的消息后,对前导4进行响应;或第三方处理设备接收到基站1发送的消息后,选取合适的基站对前导4进行响应。同样,当基站2检测到的前导2的信息时,将前导2的部分信息,包括但不限于前导2(包括但不限于基站2内可用于上行传输的带宽、子帧)对应的ID、时频资源位置、RSRP、基站2可分配资源等信息时,通知基站1或者通知第三方处理设备。基站1接收到基站2发送的消息后,对前导2进行响应;或第三方处理设备接收到基站2发送的消息后,选取合适的基站对前导2进行响应。
对于在两个基站内同时检测到的前导,基站1和基站2分别根据自身检测到前导的信息以及从另外一方获取的信息,选择已经检测到的前导进行响应;或者由第三方处理设备选取合适的基站,通知该基站进行响应。基站或者第三方设备可以根据各基站可分配的资源、前导的接收信号质量等选择检测到的前导。
本发明实施例中,第三方设备是指承担各个基站之间的资源(包括但是不限于随机接入资源,例如时间、频率、前导资源等)调度、配置和处理功能的设备。例如,第三方设备可以为具有无线资源控制(Radio resource control,RRC)层资源调度配置功能的基站,基站1和基站2只是具有部分功能(例如,媒体访问控制层(Media access control,MAC)和/或物理层信号生成发送接受处理等)的基站。
在一种可选的实现方式中,基站1或基站2可以将接收到的消息3发送给第三方设备,由第三方设备决定是否响应各个基站内检测到的其它前导。
如图6(b)所示,终端设备1发送一个前导,前导由序列1和序列2组成;终端设备2发送一个前导,前导由序列3和序列4组成。基站1和基站2分别通过两个接收波束接收前导中的一个序列。例如:基站1接收到来自终端设备1的序列1和2,以及来自终端设备2的序列4;基站2接收到来自终端设备1的序列2,以及来自终端设备2的序列3和4。基站1响应序列2,即向终端设备1发送对序列2的响应;基站2响应序列4,即向终端设备2发送对序列4的响应。终端设备1和终端设备2在收到相应的RAR后,分别发送消息3。
终端设备1向基站1发送的消息3中,包含已经发送的、但是还没有被响应的序列1的信息,包括但不限于:序列1的时间、频率、索引、功率上升空间中的至少其中之一。例如序列1的发送时间、频率、索引、功率上升空间中的至少其中之一。基站1在接收到终端设备1的消息3后,根据消息3中的信息确定已经检测到的序列2和序列1是由同一个终端设备发送的,并且该终端设备已经被响应。终端设备2向基站2发送的消息3中,包含已经发送的、但是还没有被响应的序列3的信息,包括但不限于:序列时间、频率、索引、功率上升空间中的至少其中之一。例如序列3的发送时间、频率、索引、功率上升空间中的至少其中之一。基站2在接收到终端设备2的消息3后,根据消息3中的信息确定已经检测到的序列3和序列4是由同一个终端设备发送的,并且该终端设备已经被响应。
基站1接收到终端设备1发送的消息3后,根据终端设备1发送的消息3中携带的序列1的信息,不再对序列1做出响应;基站2接收到终端设备2发送的消息3后,根据终端设备2发送的消息3中携带的序列3的信息,不再对序列3做出响应。
图6(b)中每个基站响应终端设备发送的序列的实现方式,也可以参考上述图3(a)、图3(b)、图3(c)、图5(a)和图5(b)中的实现方式来实现。例如,终端设备1向基站1发送的消息3中,还可以包括序列2的功率上升空间。这样,基站1在接收到终端设备1发送的消息3后,根据序列2的功率上升空间、序列1的功率上升空间,结合成功检测到的序列1和序列2的信号质量,选择路径损耗小的接收波束作为接收终端设备1发送的消息的接收波束。再例如,终端设备2向基站2发送的消息3中,还可以包括序列4的功率上升空间。这样,基站2在接收到终端设备2发送的消息3后,根据序列3的功率上升空间、序列4的功率上升空间,结合成功检测到的序列3和序列4的信号质量,选择路径损耗小的接收波束作为接收终端设备2发送的消息的接收波束。
下面针对图6(b)中区别于上述实现方式的部分进行描述。基站1和基站2可以交互消息,即基站1向基站2发送消息,针对终端设备1的序列1和序列2已经响应;基站2向基站1发送消息,针对终端设备2的序列3和序列4已经响应。这样,基站2可 以不用对终端设备1的序列1和序列2进行响应,基站1也可以不用对终端设备2的序列3和序列4进行响应。需要说明的是,基站1与基站2之间交互消息的方式可以有多种,例如可以通过回传链路来实现消息的交互。本发明实施例不限定基站1与基站2之间具体交互消息的方式。
可选的,也可以在基站1仅配置序列1和序列2,在基站2仅配置序列3和序列4。在这种情况下,实现方式与图6(a)中的实现方式类似,不再赘述。
作为一种可选的实现方式,上述图6(a)和图6(b)中,基站在接收到终端设备发送的消息3后,可以独立判断是否继续响应其它成功检测到的前导或序列。也可以请求其它基站或者多个基站相互共享消息3,再判断是否需要继续响应其它检测到的前导或序列。还可以将消息3通知第三方设备,由所述第三方设备决定是否响应各个基站内其它检测到的前导或序列。在这种情况下,所述第三方设备根据接收到的消息3,确定已经响应过的前导和序列,并通知已经成功检测到这些前导或序列但还未做出响应的基站,不再响应这些已经被其它基站响应过的前导或序列。
需要说明的是,本发明实施例中,当基站1和基站2接收到的前导是由2个序列构成,并且基站1和基站2的随机接入在时间和频率位置相同时,为降低两个基站内终端设备随机接入时带来的干扰,可以通过两个基站分别采取不相同的前导和/或序列来降低干扰。
例如,一个前导中包含N个序列,参与构成前导的N个序列,可以记为s1,s2,…,sN。其中,N为整数,例如N可以为1,2或70等。一个前导包括两个序列时,前导可以记为[si,sj]。基站1的下行***信息中,指示该基站可以使用的前导为{[s1,s2],[s2,s3],…,[sN,s1]}总共N个前导。基站2的下行***信息中,指示该基站可以使用的前导为{[s1,s3],[s2,s4],…,[sN,s2]}总共N个前导,即第i个基站,使用前导集合{[s1,s 1+K(i)],[s2,s 2+K(i)],…,[sN,s N+K(i)]},K(i)为第i个基站对应的偏移值)。这样,基站1中的任意一个前导,和基站2的前导中的任意一个前导,最多有一个位置上的序列相同。这样,能够降低不同基站内终端设备随机接入时带来的干扰。即分别位于两个基站的两个终端设备,分别采取不相同的前导和/或序列。上述每个前导长度为2只是举例,在具体实现时,还可以是的多个序列,其具体实现方式与两个序列的方式类似,不再赘述。
对于三个以上的基站接收两个以上的终端设备的实现方式,可以参照上述两个基站时的实现方式来实现,不再赘述。
本发明实施例还提供了一种随机接入响应方法,包括:
S100:在对终端设备的随机接入的响应之前,接收两个以上的随机接入前导,该两个以上的随机接入前导中的每个随机接入前导包括一个以上的序列,或在对终端设备的随机接入的响应之前接收一个随机接入前导,该一个随机接入前导包括两个以上序列;
S102:对接收到的随机接入前导中的序列进行检测;
S104:对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应。
通过上述方法,能够实现多个随机接入前导或同一个随机接入前导包含多个序列时的有效响应。
上述随机接入响应方法具体的实现方式,还可以参考上述图2(a)、图2(b)、图2(c)、图3(a)、图3(b)、图3(c)、图4(a)、图4(b)、图4(c)、图5(a)、图5(b)、图6(a)和图6(b)中各种场景下实现随机接入前导或序列响应的方式来实现。特别的,可以参考上述图2(a)、图2(b)、图2(c)、图3(a)、图3(b)、图3(c)、图4(a)、图4(b)、图4(c)、图5(a)、图5(b)、图6(a)和图6(b)中各种场景下基站实现随机接入前导或序列响应的方式来实现。不再赘述。
本发明实施例还提供了一种随机接入方法,包括:
S200:在基站对随机接入的响应之前,发送两个以上的随机接入前导,该两个以上的随机接入前导中的每个随机接入前导包括一个以上的序列,或在基站对随机接入的响应之前发送一个随机接入前导,该一个随机接入前导包括两个以上序列;
S202:接收所述基站对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应的消息。
通过上述方法,能够使得发送多个随机接入前导或同一个随机接入前导包含多个序列时,有效接收基站对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应的消息。
上述随机接入方法具体的实现方式,还可以参考上述图2(a)、图2(b)、图2(c)、图3(a)、图3(b)、图3(c)、图4(a)、图4(b)、图4(c)、图5(a)、图5(b)、图6(a)和图6(b)中各种场景下实现随机接入前导或序列响应的方式来实现。特别的,可以参考上述图2(a)、图2(b)、图2(c)、图3(a)、图3(b)、图3(c)、图4(a)、图4(b)、图4(c)、图5(a)、图5(b)、图6(a)和图6(b)中各种场景下终端设备实现随机接入前导或序列响应的方式来实现。不再赘述。
请参见图7,图7是本发明实施例提供的一种基站3000的结构示意图,该基站3000可以包括发射器31、接收器32、处理器33和存储器34,所述发射器31、接收器32、处理器33和存储器34通过总线35相互连接。
存储器34包括但不限于是随机存储记忆体(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM),该存储器34用于相关指令及数据。发射器31用于发送数据和/或信号,例如发送随机接入响应消息等。接收器32用于接收数据和/或信号,例如接收随机接入消息等。
处理器33可以包括是一个或多个处理器,例如包括一个或多个中央处理器(Central Processing Unit,CPU),在处理器33是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该基站3000中的处理器33用于读取所述存储器34中存储的程序代码,执行以下操作:
在对终端设备的随机接入的响应之前,接收两个以上的随机接入前导,该两个以上的随机接入前导中的每个随机接入前导包括一个以上的序列,或在对终端设备的随机接入的响应之前,接收一个随机接入前导,该一个随机接入前导包括两个以上序列;
对接收到的随机接入前导中的序列进行检测;
对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应。
图7中基站3000具体的实现方式,还可以参考上述图2(a)、图2(b)、图2(c)、图3(a)、图3(b)、图3(c)、图4(a)、图4(b)、图4(c)、图5(a)、图5(b)、图6(a)和图6(b)中各种场景下实现随机接入前导或序列响应的方式来实现。特别的,可以参考上述图2(a)、图2(b)、图2(c)、图3(a)、图3(b)、图3(c)、图4(a)、图4(b)、图4(c)、图5(a)、图5(b)、图6(a)和图6(b)中各种场景下基站实现随机接入前导或序列响应的方式来实现。不再赘述。
请参见图8,图8是本发明实施例提供的一种终端设备4000的结构示意图,该终端设备4000可以包括发射器41、接收器42、处理器43和存储器44,所述发射器41、接收器42、处理器43和存储器44通过总线45相互连接。
存储器44包括但不限于是随机存储记忆体、只读存储器、可擦除可编程只读存储器、或便携式只读存储器,该存储器44用于相关指令及数据。发射器41用于发送随机接入前导等消息,接收器42用于接收随机接入响应等消息。
处理器43可以是一个或多个中央处理器,在处理器43是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该终端设备4000中的处理器43用于读取所述存储器44中存储的程序代码,执行以下操作:
在基站对随机接入的响应之前,发送两个以上的随机接入前导,该两个以上的随机接入前导中的每个随机接入前导包括一个以上的序列,或在基站对随机接入的响应之前发送一个随机接入前导,该一个随机接入前导包括两个以上序列;
接收所述基站对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应的消息。
图8中终端设备4000具体的实现方式,还可以参考上述图2(a)、图2(b)、图2(c)、图3(a)、图3(b)、图3(c)、图4(a)、图4(b)、图4(c)、图5(a)、图5(b)、图6(a)和图6(b)中各种场景下实现随机接入前导或序列响应的方式来实现。特别的,可以参考上述图2(a)、图2(b)、图2(c)、图3(a)、图3(b)、图3(c)、图4(a)、图4(b)、图4(c)、图5(a)、图5(b)、图6(a)和图6(b)中各种场景下终端设备实现随机接入前导或序列响应的方式来实现。不再赘述。
参考图9,图9为本发明实施例提供的一种基站5000的结构示意图。如图9所示,基站5000包括:
接收单元21,用于在对终端设备的随机接入的响应之前,接收两个以上的随机接入前导,该两个以上的随机接入前导中的每个随机接入前导包括一个以上的序列,或在对终端设备的随机接入的响应之前,接收一个随机接入前导,该一个随机接入前导包括两个以上序列;
检测单元22,用于对接收单元21接收到的随机接入前导中的序列进行检测;
响应单元23,用于对检测单元22成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应。
可选的,所述响应单元23还用于,当接收到同一终端设备发送的多个随机接入前导或多个序列时,只对其中一个随机接入前导或一个序列进行响应。
这样,能够避免重复响应,节约基站5000的资源消耗。
可选的,所述响应单元23还用于,通过两次以上的下行发送,对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应。
可选的,所述接收单元21还用于接收终端设备在接收到随机接入响应后发送的消息,所述消息中包含所述终端设备已经发送且没有被响应的随机接入前导或序列的信息;
所述响应单元23还用于,对成功检测到的、所述消息中包含的所述终端设备已经发送且没有被响应的随机接入前导或序列,不再响应。
可选的,所述消息中包含的所述终端设备已经发送且没有被响应的随机接入前导或序列的信息包括下述信息中的至少其中一项:已经发送且没有被响应的随机接入前导或序列的发送时间、频率、索引、功率上升空间。
可选的,所述接收单元21还用于根据所述消息中包含的成功检测的随机接入前导或序列的功率上升空间,以及成功检测到的随机接入前导或序列的接收信号质量,选择接收所述终端设备发送随机接入的波束。
可选的,所述基站5000还用于,当两个以上基站分别接收到同一终端设备发送的多个随机接入前导或多个序列时,将已经响应的随机接入前导或序列发送给另外的基站,或接收另外的基站发送的已经响应的随机接入前导或序列;
所述响应单元23还用于,对已经响应的随机接入前导或序列,不再响应。
可选的,所述基站5000还用于,当两个以上基站分别接收到同一终端设备发送的多个随机接入前导或多个序列时,将成功检测到的随机接入前导或序列的信息发送给第三方设备,由所述第三方设备确定对所述成功检测到的随机接入前导或序列进行响应的基站;
其中,所述第三方设备是指承担各个基站之间的资源调度、配置和/或处理功能的设备。
可选的,所述响应单元23发送的随机接入前导的响应中,包括下述信息中的至少其中一个:随机接入前导对应的索引号、随机接入前导的接收信号质量、随机接入前导的时间和/或频域位置;或包括下述信息中的至少其中一个:序列的索引号、序列的接收信号质量,序列的时间和/或频域位置。
可选的,所述响应单元23按照下述信息之一,确定发送随机接入前导响应的顺序:
接收随机接入前导的时间先后顺序,检测到的信号的强度,检测到的随机接入前导所携带的优先级信息或一个接收波束内检测到的随机接入前导的数量。
图9中基站5000具体的实现方式,还可以参考上述图2(a)、图2(b)、图2(c)、图3(a)、图3(b)、图3(c)、图4(a)、图4(b)、图4(c)、图5(a)、图5(b)、图6(a)和图6(b)中各种场景下实现随机接入前导或序列响应的方式来实现。特别的,可以参考上述图2(a)、图2(b)、图2(c)、图3(a)、图3(b)、图3(c)、图4(a)、图4(b)、图4(c)、图5(a)、图5(b)、图6(a)和图6(b)中各种场景下基站实现随机接入前导或序列响应的方式来实现。不再赘述。
参考图10,图10为本发明实施例提供的一种终端设备6000的结构示意图。如图10所示,终端设备6000包括:
发送单元31,用于在基站对随机接入的响应之前,发送两个以上的随机接入前导,该两个以上的随机接入前导中的每个随机接入前导包括一个以上的序列,或在基站对随机接入的响应之前发送一个随机接入前导,该一个随机接入前导包括两个以上序列;
接收单元32,用于接收所述基站对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应的消息。
可选的,所述接收单元32还用于接收所述基站通过两次以上的下行发送所发送的,对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应的消息。
可选的,所述发送单元31还用于在接收到对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应的消息后,向所述基站发送消息,所述消息包含所述终端设备已经发送且没有被响应的随机接入前导或序列的信息。
可选的,所述消息中包含的所述终端设备已经发送且没有被响应的随机接入前导或序列的信息包括下述信息中的至少其中一项:已经发送且没有被响应的随机接入前导或序列的发送时间、频率、索引、功率上升空间、已经被响应的随机接入前导或序列的功率上升空间。
可选的,所述发送单元31还用于
当接收到的所述消息中携带接收信号质量RSRP时,根据发送随机接入前导或序列的发送功率和所述RSRP,获取每个发送波束对应的路径损耗,并选择路径损耗小的发送波束发送后续的消息。
图8中终端设备6000具体的实现方式,还可以参考上述图2(a)、图2(b)、图2(c)、图3(a)、图3(b)、图3(c)、图4(a)、图4(b)、图4(c)、图5(a)、图5(b)、图6(a)和图6(b)中各种场景下实现随机接入前导或序列响应的方式来实现。特别的,可以参考上述图2(a)、图2(b)、图2(c)、图3(a)、图3(b)、图3(c)、图4(a)、图4(b)、图4(c)、图5(a)、图5(b)、图6(a)和图6(b)中各种场景下终端设备实现随机接入前导或序列响应的方式来实现。不再赘述。
需要说明的是,本发明实施例中,为了描述的清晰和简洁,以具体的示例对相关场景的实现方案进行描述,并不代表本发明实施例只限定在这些场景中。例如,本发明实施例以两个随机接入前导为例进行说明,在具体实现时,基站可以接收到两个以上的随机接入前导,其实现方式与两个随机接入前导的实现方式类似。在例如,本发明实施例以一个随机接入前导包括两个序列为例进行说明,在具体实现时,基站可以接收到一个随机接入前导包括三个以上的序列,其实现方式与两个序列的实现方式类似。具体不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系 统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (31)

  1. 一种随机接入响应方法,其特征在于:
    在对终端设备的随机接入的响应之前,接收两个以上的随机接入前导,该两个以上的随机接入前导中的每个随机接入前导包括一个以上的序列,或在对终端设备的随机接入的响应之前接收一个随机接入前导,该一个随机接入前导包括两个以上序列;
    对接收到的随机接入前导中的序列进行检测;
    对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当接收到同一终端设备发送的多个随机接入前导或多个序列时,只对其中一个随机接入前导或一个序列进行响应。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    通过两次以上的下行发送,对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应。
  4. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收终端设备在接收到随机接入响应后发送的消息,所述消息中包含所述终端设备已经发送且没有被响应的随机接入前导或序列的信息;
    对成功检测到的、所述消息中包含的所述终端设备已经发送且没有被响应的随机接入前导或序列,不再响应。
  5. 根据权利要求4所述的方法,其特征在于:
    所述消息中包含的所述终端设备已经发送且没有被响应的随机接入前导或序列的信息包括下述信息中的至少其中一项:已经发送且没有被响应的随机接入前导或序列的发送时间、频率、索引、功率上升空间。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    根据所述消息中包含的成功检测的随机接入前导或序列的功率上升空间,以及成功检测到的随机接入前导或序列的接收信号质量,选择接收所述终端设备发送随机接入的波束。
  7. 根据权利要求1-6任意一项所述的方法,其特征在于:
    当两个以上基站分别接收到同一终端设备发送的多个随机接入前导或多个序列
    时,所述两个以上基站通过消息交互,对已经响应的随机接入前导或序列,不再响应。
  8. 根据权利要求1-6任意一项所述的方法,其特征在于:
    当两个以上基站分别接收到同一终端设备发送的多个随机接入前导或多个序列时,所述两个以上基站分别将成功检测到的随机接入前导或序列的信息发送给第三方 设备,由所述第三方设备确定对所述成功检测到的随机接入前导或序列进行响应的基站;
    其中,所述第三方设备是指承担各个基站之间的资源调度、配置和/或处理功能的设备。
  9. 根据权利要求1-8任意一项所述的方法,其特征在于:
    所述基站发送的随机接入前导的响应中,包括下述信息中的至少其中一个:随机接入前导对应的索引号、随机接入前导的接收信号质量、随机接入前导的时间和/或频域位置;或包括下述信息中的至少其中一个:序列的索引号、序列的接收信号质量,序列的时间和/或频域位置。
  10. 根据权利要求1-9任意一项所述的方法,其特征在于,所述方法还包括:
    按照下述信息之一,确定发送随机接入前导响应的顺序:
    接收前导的时间先后顺序,检测到的信号的强度,检测到的随机接入前导所携带的优先级信息或一个接收波束内检测到的随机接入前导的数量。
  11. 根据权利要求1-10任意一项所述的方法,其特征在于,所述方法还包括:
    当两个基站分别发送包含两个以上序列的随机接入前导,且所述两个基站的随机接入时间和频率位置相同时,每个基站接收到的随机接入前导中只有一个序列相同。
  12. 一种随机接入方法,其特征在于:
    在基站对随机接入的响应之前,发送两个以上的随机接入前导,该两个以上的随机接入前导中的每个随机接入前导包括一个以上的序列,或在基站对随机接入的响应之前发送一个随机接入前导,该一个随机接入前导包括两个以上序列;
    接收所述基站对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应的消息。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    接收所述基站通过两次以上的下行发送所发送的,对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应的消息。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    在接收到对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应的消息后,向所述基站发送消息,所述消息包含所述终端设备已经发送且没有被响应的随机接入前导或序列的信息。
  15. 根据权利要求14所述的方法,其特征在于:
    所述消息中包含的所述终端设备已经发送且没有被响应的随机接入前导或序列的信息包括下述信息中的至少其中一项:已经发送且没有被响应的随机接入前导或序列的 发送时间、频率、索引、功率上升空间、已经被响应的随机接入前导或序列的功率上升空间。
  16. 根据权利要求12-15任意一项所述的方法,其特征在于,所述方法还包括:
    当接收到的所述消息中携带接收信号质量RSRP时,根据发送随机接入前导或序列的发送功率和所述RSRP,获取每个发送波束对应的路径损耗,并选择路径损耗小的发送波束发送后续的消息。
  17. 一种基站,其特征在于,包括:接收器、发射器、存储器和处理器;其中,所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,执行以下操作:
    在对终端设备的随机接入的响应之前,接收两个以上的随机接入前导,该两个以上的随机接入前导中的每个随机接入前导包括一个以上的序列,或在对终端设备的随机接入的响应之前接收一个随机接入前导,该一个随机接入前导包括两个以上序列;
    对接收到的随机接入前导中的序列进行检测;
    对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应。
  18. 根据权利要求17所述的基站,其特征在于,所述处理器还用于:
    当接收到同一终端设备发送的多个随机接入前导或多个序列时,只对其中一个随机接入前导或一个序列进行响应。
  19. 根据权利要求17或18所述的基站,其特征在于,所述处理器还用于:
    通过两次以上的下行发送,对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应。
  20. 根据权利要求17或18所述的基站,其特征在于,所述处理器还用于:
    接收终端设备在接收到随机接入响应后发送的消息,所述消息中包含所述终端设备已经发送且没有被响应的随机接入前导或序列的信息;
    对成功检测到的、所述消息中包含的所述终端设备已经发送且没有被响应的随机接入前导或序列,不再响应。
  21. 根据权利要求20所述的基站,其特征在于:
    所述消息中包含的所述终端设备已经发送且没有被响应的随机接入前导或序列的信息包括下述信息中的至少其中一项:已经发送且没有被响应的随机接入前导或序列的发送时间、频率、索引、功率上升空间。
  22. 根据权利要求21所述的基站,其特征在于,所述处理器还用于:
    根据所述消息中包含的成功检测的随机接入前导或序列的功率上升空间,以及成功检测到的随机接入前导或序列的接收信号质量,选择接收所述终端设备发送随机接入 的波束。
  23. 根据权利要求17-22任意一项所述的基站,其特征在于:
    当两个以上基站分别接收到同一终端设备发送的多个随机接入前导或多个序列时,将已经响应的随机接入前导或序列发送给另外的基站,或接收另外的基站发送的已经响应的随机接入前导或序列,并对已经响应的随机接入前导或序列,不再响应。
  24. 根据权利要求17-22任意一项所述的基站,其特征在于:
    当两个以上基站分别接收到同一终端设备发送的多个随机接入前导或多个序列时,将成功检测到的随机接入前导或序列的信息发送给第三方设备,由所述第三方设备确定对所述成功检测到的随机接入前导或序列进行响应的基站;
    其中,所述第三方设备是指承担各个基站之间的资源调度、配置和/或处理功能的设备。
  25. 根据权利要求17-24任意一项所述的基站,其特征在于,所述基站发送的随机接入前导的响应中,包括下述信息中的至少其中一个:随机接入前导对应的索引号、随机接入前导的接收信号质量、随机接入前导的时间和/或频域位置;或包括下述信息中的至少其中一个:序列的索引号、序列的接收信号质量,序列的时间和/或频域位置。
  26. 根据权利要求17-24任意一项所述的基站,其特征在于,所述处理器按照下述信息之一,确定发送随机接入前导响应的顺序:
    接收随机接入前导的时间先后顺序,检测到的信号的强度,检测到的随机接入前导所携带的优先级信息或一个接收波束内检测到的随机接入前导的数量。
  27. 一种终端设备,其特征在于,包括:接收器、发射器、存储器和处理器;其中,所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,执行以下操作:
    在基站对随机接入的响应之前,发送两个以上的随机接入前导,该两个以上的随机接入前导中的每个随机接入前导包括一个以上的序列,或在基站对随机接入的响应之前发送一个随机接入前导,该一个随机接入前导包括两个以上序列;
    接收所述基站对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应的消息。
  28. 根据权利要求27所述的终端设备,其特征在于,所述处理器还用于:
    接收所述基站通过两次以上的下行发送所发送的,对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应的消息。
  29. 根据权利要求27或28所述的终端设备,其特征在于,所述处理器还用于:
    在接收到对成功检测到的序列或包含成功检测到的序列的随机接入前导进行响应 的消息后,向所述基站发送消息,所述消息包含所述终端设备已经发送且没有被响应的随机接入前导或序列的信息。
  30. 根据权利要求29所述的终端设备,其特征在于,所述处理器还用于:
    所述消息中包含的所述终端设备已经发送且没有被响应的随机接入前导或序列的信息包括下述信息中的至少其中一项:已经发送且没有被响应的随机接入前导或序列的发送时间、频率、索引、功率上升空间、已经被响应的随机接入前导或序列的功率上升空间。
  31. 根据权利要求27-30任意一项所述的终端设备,其特征在于,所述处理器还用于:
    当接收到的所述消息中携带接收信号质量RSRP时,根据发送随机接入前导或序列的发送功率和所述RSRP,获取每个发送波束对应的路径损耗,并选择路径损耗小的发送波束发送后续的消息。
PCT/CN2018/079830 2017-03-24 2018-03-21 随机接入响应的方法和设备以及随机接入的方法和设备 WO2018171626A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP23205793.5A EP4340518A3 (en) 2017-03-24 2018-03-21 Random access responding method and device, and random access method and device
EP18770234.5A EP3573410B1 (en) 2017-03-24 2018-03-21 Random access response method and device, and random access method and device
US16/579,860 US11076422B2 (en) 2017-03-24 2019-09-24 Random access responding method and device, and random access method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710184799.8 2017-03-24
CN201710184799.8A CN108633100B (zh) 2017-03-24 2017-03-24 随机接入响应的方法和设备以及随机接入的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/579,860 Continuation US11076422B2 (en) 2017-03-24 2019-09-24 Random access responding method and device, and random access method and device

Publications (1)

Publication Number Publication Date
WO2018171626A1 true WO2018171626A1 (zh) 2018-09-27

Family

ID=63584161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079830 WO2018171626A1 (zh) 2017-03-24 2018-03-21 随机接入响应的方法和设备以及随机接入的方法和设备

Country Status (4)

Country Link
US (1) US11076422B2 (zh)
EP (2) EP4340518A3 (zh)
CN (2) CN117460078A (zh)
WO (1) WO2018171626A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110475338B (zh) * 2018-05-11 2021-09-07 华为技术有限公司 上行传输的方法和用户设备
US11362776B2 (en) * 2018-11-04 2022-06-14 Semiconductor Components Industries, Llc Early link detection based adaptive selection of receive parameters
CN115843116A (zh) * 2019-02-15 2023-03-24 华为技术有限公司 一种随机接入方法、设备及***
CN111629448B (zh) 2019-02-28 2022-05-10 华为技术有限公司 随机接入方法和装置
MX2022003826A (es) * 2019-09-30 2022-05-10 Huawei Tech Co Ltd Metodo y dispositivo de comunicacion.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016053179A1 (en) * 2014-10-03 2016-04-07 Telefonaktiebolaget L M Ericsson (Publ) Handling physical random access channel transmissions in multi-carrier scenarios
US20160192401A1 (en) * 2014-12-29 2016-06-30 Electronics And Telecommunications Research Institute Method and apparatus for random access in communications system
CN105830359A (zh) * 2013-12-18 2016-08-03 阿尔卡特朗讯 用于基站收发机和移动收发机的波束形成装置、方法和计算机程序

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101175309A (zh) * 2006-11-02 2008-05-07 北京三星通信技术研究有限公司 传输随机接入响应消息的设备和方法
CN101203029B (zh) * 2006-12-11 2010-11-10 大唐移动通信设备有限公司 一种随机接入的实现方法及基站
US8665857B2 (en) * 2007-12-18 2014-03-04 Qualcomm Incorporated Method and apparatus for sending and receiving random access response in a wireless communication system
US8111656B2 (en) * 2008-05-02 2012-02-07 Nokia Corporation Method and apparatus for providing random access window configuration
GB2461780B (en) * 2008-06-18 2011-01-05 Lg Electronics Inc Method for detecting failures of random access procedures
US9008050B2 (en) * 2010-04-01 2015-04-14 Panasonic Intellectual Property Corporation Of America Transmit power control for physical random access channels
CN102802270B (zh) * 2011-05-27 2014-12-31 华为技术有限公司 随机接入的处理方法、基站、终端及***
CN103298128B (zh) * 2012-02-23 2016-10-05 华为技术有限公司 随机接入处理方法和设备
CN105264931B (zh) * 2013-03-22 2019-05-03 华为技术有限公司 数据传输的方法、用户设备、基站及***
WO2015061948A1 (zh) * 2013-10-28 2015-05-07 华为技术有限公司 一种随机接入方法、随机接入配置方法、设备及***
EP3493641B1 (en) * 2014-01-28 2022-03-23 Huawei Technologies Co., Ltd. Physical random access channel enhanced transmission method, apparatus and computer-readable storage medium
CA2943148C (en) * 2014-03-21 2019-09-10 Huawei Technologies Co., Ltd. Random access response method, base station, and terminal
CN103929826B (zh) * 2014-05-05 2015-11-18 盐城工学院 一种机器类通信终端自适应随机接入方法及***
US9603165B2 (en) * 2015-01-30 2017-03-21 Telefonaktiebolaget L M Ericsson (Publ) Random-access response with analog beamforming
CN106455113B (zh) * 2015-08-11 2019-09-17 电信科学技术研究院 一种随机接入方法、设备和***
US11064447B2 (en) * 2015-11-18 2021-07-13 Ipcom Gmbh & Co. Kg Single frequency network random access
CN108391319B (zh) * 2017-02-03 2023-05-16 华为技术有限公司 一种发送随机接入前导的方法及其装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105830359A (zh) * 2013-12-18 2016-08-03 阿尔卡特朗讯 用于基站收发机和移动收发机的波束形成装置、方法和计算机程序
WO2016053179A1 (en) * 2014-10-03 2016-04-07 Telefonaktiebolaget L M Ericsson (Publ) Handling physical random access channel transmissions in multi-carrier scenarios
US20160192401A1 (en) * 2014-12-29 2016-06-30 Electronics And Telecommunications Research Institute Method and apparatus for random access in communications system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3573410A4

Also Published As

Publication number Publication date
EP3573410B1 (en) 2023-11-22
EP4340518A2 (en) 2024-03-20
EP3573410A1 (en) 2019-11-27
CN108633100B (zh) 2023-10-20
CN117460078A (zh) 2024-01-26
EP4340518A3 (en) 2024-04-03
EP3573410A4 (en) 2020-02-19
CN108633100A (zh) 2018-10-09
US11076422B2 (en) 2021-07-27
US20200029359A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
CN110945957B (zh) 执行随机接入过程的方法和装置
CN107431544B (zh) 用于设备到设备通信的方法和装置
WO2018171626A1 (zh) 随机接入响应的方法和设备以及随机接入的方法和设备
US20200187266A1 (en) Random access method, device, and system
WO2019157911A1 (zh) 波束管理方法、终端、网络设备以及存储介质
US10931334B2 (en) Beam recovery method and apparatus
JP2020503803A (ja) 通信方法、ネットワークデバイス、および端末デバイス
US20230397020A1 (en) Method and apparatus for controlling data transmission, and storage medium
JP2019512959A (ja) 無線通信システムにおける接続を管理するためのシステムおよび方法
WO2017168701A1 (ja) 無線通信システム、無線機器、リレーノード、及び、基地局
US20230388919A1 (en) Mobility for small data transmission procedure
WO2018233503A1 (zh) 通信方法和通信设备
CN108271256B (zh) 资源映射方法和装置
WO2018141115A1 (zh) 一种用于传输信号的方法、终端设备和网络设备
JP2022549691A (ja) ランダムアクセス方法、装置及び通信システム
US20190182882A1 (en) Network access method, access device, and terminal device
JP2014533451A (ja) 方法及び装置
WO2017166023A1 (zh) 一种随机接入的方法及装置
EP3606181B1 (en) Method for terminal device to access network and terminal device
US20220287019A1 (en) Sidelink aided scalable initial access for massive iiot support
US11108597B2 (en) Data transmission method and apparatus
US10667299B2 (en) Control plane latency reduction in a wireless communications network
WO2018058537A1 (zh) 传输信号的方法和装置
WO2023108564A1 (zh) 无线通信方法、终端设备以及网络设备
WO2024109723A1 (zh) 随机接入方法及装置、终端、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018770234

Country of ref document: EP

Effective date: 20190821

NENP Non-entry into the national phase

Ref country code: DE