WO2024109723A1 - 随机接入方法及装置、终端、网络设备 - Google Patents

随机接入方法及装置、终端、网络设备 Download PDF

Info

Publication number
WO2024109723A1
WO2024109723A1 PCT/CN2023/132843 CN2023132843W WO2024109723A1 WO 2024109723 A1 WO2024109723 A1 WO 2024109723A1 CN 2023132843 W CN2023132843 W CN 2023132843W WO 2024109723 A1 WO2024109723 A1 WO 2024109723A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch
random access
terminal
ack
harq
Prior art date
Application number
PCT/CN2023/132843
Other languages
English (en)
French (fr)
Inventor
雷珍珠
Original Assignee
展讯半导体(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯半导体(南京)有限公司 filed Critical 展讯半导体(南京)有限公司
Publication of WO2024109723A1 publication Critical patent/WO2024109723A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1806Go-back-N protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present application relates to the field of communication technology, and in particular to a random access method and apparatus, a terminal, and a network device.
  • satellite communication is an application scenario of the fifth-generation (5G) communication technology.
  • 5G fifth-generation
  • satellite communication has higher requirements for uplink coverage of terminals.
  • Random access is a key step in establishing a communication link between a terminal and a network device. Therefore, how to enhance the uplink coverage performance of a terminal during random access deserves further study.
  • the embodiments of the present application provide a random access method and apparatus, a terminal, and a network device, which can enhance the uplink coverage performance when a terminal randomly accesses.
  • an embodiment of the present application provides a random access method, comprising: in response to successful random access, repeatedly sending a hybrid automatic repeat request acknowledgment HARQ-ACK.
  • the random access success includes: receiving a random access response RAR and/or a contention resolution identifier of the terminal.
  • the HARQ-ACK is carried on a physical uplink control channel PUCCH.
  • the number of repeated transmissions of the PUCCH is determined according to the target synchronization signal block SSB or the SSB group to which the target SSB belongs.
  • the method before repeatedly sending HARQ-ACK, the method also includes: receiving configuration information, the configuration information including: at least one candidate value of the number of PUCCH repetition transmissions associated with each SSB in multiple SSBs, or at least one candidate value of the number of PUCCH repetition transmissions associated with each SSB group in multiple SSB groups.
  • the configuration information also includes: SSB group configuration information, the SSB group configuration information including SSB member information of each SSB group; wherein, the multiple SSBs or the SSBs in each SSB group are all SSBs actually sent by the network device.
  • the HARQ-ACK is carried on a PUCCH, and the number of repeated transmissions of the PUCCH is determined according to the number of repeated transmissions of a physical random access channel PRACH and/or the number of repeated transmissions of a physical uplink shared channel PUSCH during a random access process.
  • the method before repeatedly sending HARQ-ACK, the method also includes: receiving first indication information, the first indication information being used to indicate a reference number of transmissions, the reference number of transmissions being: the number of repeated transmissions of the PRACH and/or the number of repeated transmissions of the PUSCH; wherein the reference number of transmissions is associated with at least one candidate value of the number of repeated transmissions of the PUCCH, and the number of repeated transmissions of the PUCCH is one of at least one candidate value of the number of repeated transmissions of the PUCCH associated with the reference number of transmissions.
  • the HARQ-ACK is carried on the PUCCH, and before repeatedly sending the HARQ-ACK, the method further includes: receiving second indication information, where the second indication information is used to indicate the number of repeated sending times of the PUCCH.
  • the second indication information is carried in the RAR or downlink control information DCI, and the DCI is used to schedule a contention resolution identifier of the RAR and/or the terminal.
  • the method before repeatedly sending the HARQ-ACK, the method further includes: selecting, according to the second indication information, the number of repeated transmissions of the PUCCH from the candidate values of the number of repeated transmissions of the PUCCH associated with the target SSB or the target SSB group, or selecting from the candidate values of the number of repeated transmissions of the PUCCH associated with the number of repeated transmissions of the PRACH
  • the number of repeated transmissions of the PUCCH, or the number of repeated transmissions of the PUCCH is selected from candidate values of the number of repeated transmissions of the PUCCH associated with the number of repeated transmissions of the PUSCH.
  • the HARQ-ACK is carried on PUCCH, and the number of repeated transmissions of the PUCCH is determined according to the channel quality of PRACH and/or PUSCH.
  • an embodiment of the present application provides a random access device, including: a communication module, configured to repeatedly send a hybrid automatic repeat request acknowledgment HARQ-ACK in response to a successful random access.
  • an embodiment of the present application provides a random access method, including: if the terminal randomly accesses successfully, receiving a hybrid automatic repeat request acknowledgment HARQ-ACK, and the number of repeated transmissions of the HARQ-ACK is greater than 1 or equal to 1.
  • the successful random access of the terminal includes: the terminal receiving a random access response RAR and/or a contention resolution identifier of the terminal.
  • the HARQ-ACK is carried on a physical uplink control channel PUCCH, and the number of repeated transmissions of the PUCCH is determined according to a target synchronization signal block SSB or an SSB group to which the target SSB belongs.
  • the method before receiving HARQ-ACK, the method further includes: sending configuration information, the configuration information including: at least one candidate value of the number of PUCCH repetition transmissions associated with each SSB in multiple SSBs, or at least one candidate value of the number of PUCCH repetition transmissions associated with each SSB group in multiple SSB groups.
  • the configuration information also includes: SSB group configuration information, the SSB group configuration information including SSB member information of each SSB group; wherein, the multiple SSBs or the SSBs in each SSB group are all SSBs actually sent by the network device.
  • the HARQ-ACK is carried on a PUCCH, and the number of repeated transmissions of the PUCCH is determined according to the number of repeated transmissions of a physical random access channel PRACH and/or the number of repeated transmissions of a physical uplink shared channel PUSCH during a random access process.
  • the method before receiving HARQ-ACK, the method also includes: sending first indication information, the first indication information is used to indicate a reference sending number, the reference sending number is: the number of repeated sendings of the PRACH and/or the number of repeated sendings of the PUSCH; wherein the reference sending number is associated with at least one candidate value of the number of repeated sendings of the PUCCH, and the number of repeated sendings of the PUCCH is one of the at least one candidate value of the number of repeated sendings of the PUCCH associated with the reference sending number.
  • the HARQ-ACK is carried on PUCCH, and before receiving the HARQ-ACK, the method further includes: sending second indication information, where the second indication information is used to indicate the number of repeated transmissions of the PUCCH.
  • the second indication information is carried in the RAR or downlink control information DCI, and the DCI is used to schedule a contention resolution identifier of the RAR and/or the terminal.
  • the number of repeated transmissions of the PUCCH is selected by the terminal from candidate values of the number of repeated transmissions of the PUCCH associated with the target SSB or the target SSB group according to the second indication information, or, the number of repeated transmissions of the PUCCH is selected from candidate values of the number of repeated transmissions of the PUCCH associated with the number of repeated transmissions of the PRACH according to the second indication information, or, the number of repeated transmissions of the PUCCH is selected from candidate values of the number of repeated transmissions of the PUCCH associated with the number of repeated transmissions of the PUSCH according to the second indication information.
  • the HARQ-ACK is carried on PUCCH, and the number of repeated transmissions of the PUCCH is determined according to the channel quality of PRACH and/or PUSCH.
  • an embodiment of the present application provides a random access device, including: a communication module, used to receive a physical uplink control channel PUCCH and a hybrid automatic repeat request confirmation HARQ-ACK if the terminal successfully performs random access, and the number of repeated transmissions of the HARQ-ACK is greater than 1 or equal to 1.
  • an embodiment of the present application provides a computer-readable storage medium having a computer program stored thereon.
  • the computer program is executed by a processor, the random access method provided in the first aspect or the third aspect is executed.
  • an embodiment of the present application provides a terminal, comprising a memory and a processor, wherein the memory stores a computer program executable on the processor, and the processor executes the steps of the random access method provided in the first aspect when executing the computer program.
  • an embodiment of the present application provides a network device, comprising a memory and a processor, wherein the memory stores a computer program that can be executed on the processor, and when the processor runs the computer program, the steps of the random access method provided in the third aspect are executed.
  • the scheme of the embodiment of the present application in response to the success of random access, repeatedly sends a Hybrid Automatic Repeat Request Acknowledgement (HARQ-ACK).
  • HARQ-ACK Hybrid Automatic Repeat Request Acknowledgement
  • the terminal determines that the random access is successful, by repeatedly sending HARQ-ACK, it can improve the reliability of the network device receiving the HARQ-ACK and achieve uplink coverage enhancement in the random access process.
  • HARQ-ACK is carried on the Physical Uplink Control Channel (PUCCH)
  • the repeated transmission of HARQ-ACK also means the repeated transmission of PUCCH during the random access process. Therefore, the above scheme is also conducive to enhancing the uplink coverage of PUCCH during the random access process.
  • FIG1 is a schematic diagram of a flow chart of a random access method in the prior art
  • FIG2 is a schematic diagram of a flow chart of another random access method in the prior art
  • FIG3 is a schematic diagram of a random access method in an embodiment of the present application.
  • FIG4 is a schematic diagram of the structure of a random access device in an embodiment of the present application.
  • FIG5 is a schematic diagram of the structure of a terminal in an embodiment of the present application.
  • the communication systems applicable to the embodiments of the present application are not limited to the third generation system (3rd generation, referred to as 3G), long term evolution (long term evolution,
  • the present invention relates to a 5G network, a 4th generation (4G) system, a 5th generation (5G) system, a new radio (NR) system, and a future evolution system or a plurality of communication fusion systems.
  • the 5G system can be a non-standalone (NSA) 5G system or a standalone (SA) 5G system.
  • SA standalone
  • the solution of the embodiment of the present application can also be applied to various new communication systems in the future, for example, 6G, 7G, etc.
  • the terminal in the embodiments of the present application may refer to various forms of user equipment (UE), access terminal, user unit, user station, mobile station, mobile station (MS), remote station, remote terminal, mobile device, user terminal, terminal equipment (Terminal Equipment), wireless communication equipment, user agent or user device.
  • UE user equipment
  • MS mobile station
  • remote station remote terminal
  • mobile device user terminal
  • Terminal Equipment Terminal Equipment
  • wireless communication equipment user agent or user device.
  • the terminal may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal in a future 5G network or a terminal in a future evolved Public Land Mobile Network (PLMN), etc., and the embodiments of the present application are not limited to this.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device in the embodiment of the present application may also be referred to as an access network device, for example, a base station (BS) (also referred to as a base station device), and the network device is a device deployed in a radio access network (RAN) to provide wireless communication functions.
  • BS base station
  • RAN radio access network
  • the device that provides base station functions in the second generation (2nd-generation, 2G) network includes a base transceiver station (BTS), the device that provides base station functions in the third generation (3rd-generation, 3G) network includes a node B, the device that provides base station functions in the fourth generation (4th-generation, 4G) network includes an evolved Node B (eNB), in wireless local area networks (WLAN), the device that provides base station functions is an access point (AP), the device that provides base station functions in NR is a next generation node base station (gNB), and a further evolved Node B (ng-eNB), wherein gNB
  • the NR technology is used for communication between the gNB and the terminal equipment, and the Evolved Universal Terrestrial Radio Access (E-UTRA) technology is used for communication between the ng-eNB and the terminal equipment.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • Both the gNB and the ng-eNB can be connected to the 5G core network.
  • Figure 1 is a flow chart of a random access method in the prior art. Specifically, Figure 1 shows a signaling interaction process of a 4-step random access type. The random access method shown in Figure 1 includes steps S11 to S14.
  • Step S11 the terminal sends message 1 to the network device.
  • message 1 is carried on a physical random access channel (PRACH for short), and message 1 may refer to a random access request, which may include a random access preamble (RA preamble for short).
  • RA preamble may be to request access to a network device, so that the network device can estimate the transmission delay between the network device and the terminal based on the RA preamble and calibrate the uplink timing based on the RA preamble, and indicate it to the terminal.
  • Step S12 The network device sends message 2 to the terminal.
  • the network device sends a message 2 to the terminal in a physical downlink shared channel (PDSCH for short), and the message 2 may refer to a random access response (Random Access Response, RAR for short).
  • PDSCH physical downlink shared channel
  • RAR Random Access Response
  • the network device sends a RAR message to the terminal on the payload resource of the PDSCH.
  • the RAR message may include a time adjustment amount required for specifying uplink synchronization, an uplink resource required for the terminal to send message 3, etc.
  • the RAR may be obtained by scrambling a random access radio network temporary identifier (RA-RNTI), and the value of the RA-RNTI may be determined by the time-frequency position of the resource carrying the RA preamble.
  • RA-RNTI random access radio network temporary identifier
  • the terminal can monitor the physical downlink control channel (PDCCH) within the RAR time window according to the RA-RNTI to obtain downlink control information (DCI).
  • the DCI here is used to schedule RAR.
  • the terminal uses the RA-RNTI to parse the payload of PDSCH according to the DCI to receive the RAR corresponding to the RA-RNTI scrambled. If the RAR is not received within the RAR time window, it is considered that the random access process has failed.
  • Step S13 The terminal sends message 3 to the network device.
  • the terminal sends message 3 to the network device on the physical uplink shared channel (PUSCH).
  • Message 3 may include a unique identifier of the terminal.
  • the identifier can be used for conflict resolution in step 4.
  • the unique identifier of the terminal device is the cell radio network temporary identifier (Cell-Radio Network Temporary Identifier, C-RNTI for short).
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the unique identifier of the terminal is a unique identifier from the core network (such as a system architecture evolution temporary mobile user identifier (S-TMSI for short) or a random number).
  • S-TMSI system architecture evolution temporary mobile user identifier
  • Step S14 the network device sends message 4 to the terminal.
  • message 4 carries the contention resolution identity (Contention Resolution Identity) of the terminal to indicate the terminal that wins the competition.
  • contention resolution identity Contention Resolution Identity
  • the terminal can monitor the physical downlink control channel PDCCH to obtain DCI, where the DCI is used to schedule message 4. Further, when the terminal contention resolution identifier decoded by the terminal according to the DCI is the same as the terminal identifier carried in message 3, the terminal determines that the random access is successful. If the decoded terminal contention resolution identifier is different from the terminal identifier in message 3, it is determined that the random access has failed, and the terminal can re-initiate the random access process.
  • the 4-step random access process is a random access based on contention.
  • messages 1 and 2 are mainly used to complete uplink time synchronization, while messages 3 and 4 are mainly used to specify a unique and legal identity (ie, C-RNTI) for the terminal for subsequent data transmission.
  • C-RNTI unique and legal identity
  • Fig. 2 is a flow chart of another random access method in the prior art.
  • Fig. 2 shows a signaling interaction process of a 2-step random access type.
  • the random access method shown in Fig. 2 includes steps S21 to S22.
  • Step S21 The terminal sends message A to the network device.
  • the terminal sends a message A to the network device, where the message A includes the RA preamble carried on the PRACH and the payload data carried on the PUSCH.
  • the payload data carried on the PUSCH may include a unique identifier of the terminal.
  • Step S22 The network device sends message B to the terminal.
  • the message B may also refer to the RAR in the 2-step random access process.
  • the terminal monitors a response (ie, message B) from the network device within a configured time window.
  • the terminal can determine that the random access is successful.
  • the terminal may determine that the random access is successful.
  • the terminal if the terminal successfully accesses the random access, the terminal needs to send a HARQ-ACK to the network device on the PUCCH to inform the network device that the terminal successfully accesses the random access.
  • an embodiment of the present application provides a random access method.
  • HARQ-ACK in response to the success of the random access, HARQ-ACK is repeatedly sent.
  • the terminal determines that the random access is successful, by repeatedly sending HARQ-ACK.
  • the repeated transmission of HARQ-ACK also means the repeated transmission of PUCCH in the random access process. Therefore, the above scheme is also conducive to enhancing the uplink coverage of PUCCH in the random access process.
  • Fig. 3 is a schematic flow chart of a random access method in an embodiment of the present application.
  • the method shown in Fig. 3 may be executed by a terminal.
  • the random access method shown in Fig. 3 may include step S31.
  • Step S31 In response to a successful random access, repeatedly send a hybrid automatic repeat request acknowledgement HARQ-ACK.
  • the repeated transmission of HARQ-ACK can be equivalent to the repeated transmission of PUCCH or the repeated transmission of PUCCH.
  • the repeated transmission of PUCCH refers to the repeated transmission of HARQ-ACK using PUCCH. That is, in response to the success of random access, the terminal repeatedly sends HARQ-ACK to the network through repeated transmission of PUCCH. Through the repeated transmission of PUCCH, the uplink coverage of PUCCH during random access can be enhanced. Furthermore, the number of repeated transmissions of HARQ-ACK is the number of repeated transmissions of PUCCH. Among them, the repeated transmission can be sent more than once.
  • the number of repeated transmissions of PUCCH refers to the number of times HARQ-ACK is repeatedly transmitted using PUCCH. For example, if the number of repeated transmissions of PUCCH is 2, it means that the terminal transmits HARQ-ACK twice using PUCCH. For another example, if the number of repeated transmissions of PUCCH is 4, it means that the terminal transmits HARQ-ACK four times using PUCCH.
  • the number of repeated transmissions of PUCCH is determined according to the target synchronization signal block (Synchronization Signal Block, SSB for short).
  • target synchronization signal block Synchronization Signal Block, SSB for short.
  • the network device sends multiple SSBs to the terminal, and the terminal measures the signal quality of each SSB. Further, the terminal takes one SSB among at least one SSB whose signal quality is greater than or equal to the threshold as the Target SSB. As an example, if the signal qualities of multiple SSBs are all less than a threshold, one of the SSBs can be randomly selected from the multiple SSBs as the target SSB. As another example, if there are multiple SSBs whose signal quality is greater than or equal to the threshold, the SSB with the best signal quality can be used as the target SSB.
  • the signal quality can be characterized by the reference signal receiving quality (Reference Signal Receiving Quality, referred to as RSRQ) or the reference signal receiving power (Reference Signal Receiving Power, referred to as RSRP).
  • Each SSB is associated with one or more PRACH resources, and the terminal can select resources for sending PRACH from the PRACH resources associated with the target SSB.
  • each SSB corresponds to beams one by one, and the distances between geographical locations and satellites in different beam coverage areas are different. Based on this principle, in the solution of this embodiment, each SSB is associated with at least one candidate value of the number of PUCCH repetition transmissions. After the terminal determines the target SSB, it can also determine the number of PUCCH repetition transmissions from at least one candidate value of the number of PUCCH repetition transmissions associated with the target SSB.
  • the candidate value of the number of PUCCH repetition transmissions associated with each SSB can be pre-configured by the network device.
  • the network device sends configuration information to the terminal, and correspondingly, the terminal receives the configuration information sent by the network device.
  • the configuration information may include: at least one candidate value of the number of PUCCH repetition transmissions associated with each SSB in a plurality of SSBs.
  • At least one candidate value of the number of PUCCH repetition transmissions associated with each SSB in multiple SSBs may also be pre-defined by the protocol.
  • the terminal can directly use the candidate value for the number of PUCCH repetition transmissions associated with the target SSB as The number of repetitions of PUCCH transmission.
  • the terminal can determine one of the multiple candidate values of the number of PUCCH repetitions associated with the target SSB as the number of PUCCH repetitions.
  • the candidate value of the number of PUCCH repetitions is a positive integer. That is, the candidate value of the number of PUCCH repetitions is greater than 1 or equal to 1.
  • the terminal can determine the number of PUCCH repetition transmissions from multiple PUCCH repetition transmission number candidate values associated with the target SSB according to the instructions of the network device.
  • the network device may send a second indication information to the terminal, and the second indication information may be used to indicate the number of repeated transmissions of the PUCCH. More specifically, the terminal may select the number of repeated transmissions of the PUCCH from a plurality of candidate values of the number of repeated transmissions of the PUCCH associated with the target SSB according to the second indication information.
  • the second indication information may include an index of the candidate value, and the terminal may select the number of repeated transmissions of the PUCCH from a plurality of candidate values of the number of repeated transmissions of the PUCCH associated with the target SSB according to the index of the candidate value.
  • the second indication information may be carried in an existing signaling or message in a random access process to save signaling overhead.
  • the second indication information may be carried in the RAR.
  • the second indication information may be carried in message 2 in the 4-step random access procedure, or the second indication information may be carried in message B in the 2-step random access procedure.
  • a dedicated bit may be set in the RAR for indicating the number of repeated transmissions of the PUCCH. More specifically, the dedicated bit for indicating the number of repeated transmissions of the PUCCH may be a reserved bit in the RAR or a newly added bit in the RAR.
  • the second indication information may be carried in a DCI.
  • the DCI may be used to schedule a contention resolution identifier of the RAR and/or the terminal.
  • the DCI may be a DCI for scheduling message 2 or the DCI may be a DCI for scheduling message 4, or the DCI may be a DCI for scheduling message B.
  • a dedicated bit may be provided in the DCI to indicate the repetition of the PUCCH. More specifically, the dedicated bit for indicating the number of repeated transmissions of the PUCCH may be a bit reserved in the DCI or a bit newly added in the DCI.
  • the number of dedicated bits used to indicate the number of PUCCH repetitions is determined according to the number of PUCCH repetition candidate values associated with each SSB. For example, if each SSB is associated with 2 PUCCH repetition candidate values, 1 bit is required to indicate the number of PUCCH repetitions. For another example, if each SSB is associated with 4 PUCCH repetition candidate values, 2 bits are required to indicate the number of PUCCH repetitions.
  • the second indication information may explicitly indicate the number of repetitions of the PUCCH.
  • the second indication information may be carried in the RAR or DCI, and the number of dedicated bits in the RAR or DCI for indicating the number of repetitions of the PUCCH depends on the value of the number of repetitions of the PUCCH.
  • the terminal can select the number of PUCCH repetitions from multiple PUCCH repetition candidate values associated with the target SSB. For example, the terminal can randomly select a PUCCH repetition candidate value as the number of PUCCH repetitions. For another example, the terminal selects the PUCCH repetition candidate value with the largest value as the number of PUCCH repetitions by default, so as to enhance the uplink coverage as much as possible. For another example, the terminal selects the PUCCH repetition candidate value with the smallest value as the number of PUCCH repetitions by default, so as to enhance the uplink coverage while taking into account the power consumption considerations.
  • the terminal can determine the number of repeated transmissions of PUCCH according to the target SSB.
  • each SSB is associated with multiple PRACH resources. Therefore, after the network device receives message 1 or message A, it can determine the target SSB according to the PRACH resources used to send message 1 or message A, and then determine the number of repeated transmissions of PUCCH.
  • the number of repeated transmissions of the PUCCH is determined according to the SSB group in which the target SSB is located.
  • the SSB group in which the target SSB is located is referred to as the target SSB group below.
  • the network device sends multiple SSBs to the terminal, and the multiple SSBs sent by the network device belong to different SSB groups.
  • the network device sends SSB1, SSB2, SSB3, and SSB4 to the terminal, where SSB1 and SSB2 belong to SSB group 1, and SSB3 and SSB4 belong to SSB group 2.
  • the SSB group can be divided by the network device or pre-defined by the protocol, and this embodiment does not limit this.
  • the SSBs corresponding to beams with a closer coverage area can be included in the same SSB group. In other words, the coverage areas of the beams corresponding to the SSBs belonging to the same SSB group are closer.
  • each SSB group is associated with at least one candidate value of the number of PUCCH repetition transmissions.
  • the number of PUCCH repetition transmissions can be determined from at least one candidate value of the number of PUCCH repetition transmissions associated with the target SSB group.
  • the candidate value of the number of PUCCH repetition transmissions associated with each SSB group can be pre-configured by a network device. It should be noted that in other embodiments, at least one candidate value of the number of PUCCH repetition transmissions associated with each SSB group can also be pre-defined by the protocol.
  • the network device sends configuration information to the terminal, wherein the configuration information may include: at least one candidate value of the number of PUCCH repetition transmissions associated with each SSB group in multiple SSB groups.
  • the configuration information may also include SSB member information of each SSB group.
  • the SSB member information of the SSB group may refer to the identifiers of each SSB included in the SSB group, etc., so that after the terminal determines the target SSB, it can determine the target SSB group according to the SSB member information of each SSB group.
  • the terminal may directly use the candidate value for the number of PUCCH repetition transmissions associated with the target SSB group as the number of PUCCH repetition transmissions.
  • the terminal can determine one of the multiple candidate values of the number of PUCCH repetition transmissions associated with the target SSB group as the number of PUCCH repetition transmissions.
  • the terminal may determine the PUCCH repetition transmission frequency from multiple PUCCH repetition transmission frequency candidate values associated with the target SSB group according to the instruction of the network device. number.
  • the network device may send second indication information to the terminal, and the second indication information may be used to indicate the number of repeated transmissions of the PUCCH. More specifically, the terminal may select the number of repeated transmissions of the PUCCH from a plurality of candidate values of the number of repeated transmissions of the PUCCH associated with the target SSB group according to the second indication information.
  • the second indication information may include an index of the candidate value, and the terminal may select the number of repeated transmissions of the PUCCH from a plurality of candidate values of the number of repeated transmissions of the PUCCH associated with the target SSB group according to the index of the candidate value.
  • the terminal can select the number of PUCCH repetition transmissions by itself from multiple PUCCH repetition transmission number candidate values associated with the target SSB group.
  • the second indication information may be carried in the RAR or DCI, and a dedicated bit may be set in the RAR or DCI to indicate the number of repeated transmissions of the PUCCH.
  • the number of dedicated bits used to indicate the number of repeated transmissions of the PUCCH is determined according to the number of candidate values of the number of repeated transmissions of the PUCCH associated with each SSB group.
  • multiple SSBs or SSBs in multiple SSB groups in the embodiments of the present application are all SSBs actually sent by the network device.
  • the number of repetitions of PUCCH is determined according to the number of repetitions of PRACH. In other words, the number of repetitions of PUCCH is determined according to the number of repetitions of message 1 or message A.
  • the terminal may be pre-configured with an association relationship between the number of repeated transmissions of the PRACH and the number of repeated transmissions of the PUCCH, and the association relationship between the number of repeated transmissions of the PRACH and the number of repeated transmissions of the PUCCH includes:
  • the association relationship between the PRACH repetition transmission times and the PUCCH repetition transmission times can be pre-configured by a network device or pre-defined by a protocol.
  • the number of repeated transmissions of the PUCCH can be determined from at least one candidate value of the number of repeated transmissions of the PUCCH associated with the number of repeated transmissions of the PRACH according to the above association relationship.
  • the number of repeated transmissions of the PRACH is one of the multiple candidate values of the number of repeated transmissions of the PRACH.
  • the network device sends the first indication information to the terminal, and accordingly, the terminal receives the first indication information, and the first indication information can be used to indicate a reference number of transmissions, and the reference number of transmissions can be a number of repeated transmissions of the PRACH.
  • the first indication information is carried in a system message, and the network device indicates the number of repeated transmissions of the PRACH to the terminal through the system message.
  • each candidate value of the number of repetitions of PRACH is associated with a candidate value of the number of repetitions of PUCCH, and the terminal can directly use the candidate value of the number of repetitions of PUCCH associated with the number of repetitions of PRACH as the number of repetitions of PUCCH.
  • Table 1 which exemplarily shows a correlation relationship between the number of repeated transmissions of the PRACH and the number of repeated transmissions of the PUCCH.
  • the terminal can determine that the number of repeated transmissions of the PUCCH is 4.
  • the network device does not need to additionally indicate the number of repeated transmissions of the PUCCH to the terminal, which is conducive to saving the signaling overhead of the network device, thereby ensuring the reliable transmission of the PUCCH while also saving the PUCCH resource overhead of the network device.
  • each candidate value of the number of repetitions of PRACH is associated with multiple candidate values of the number of repetitions of PUCCH
  • the terminal can determine one of the multiple candidate values of the number of repetitions of PUCCH associated with the number of repetitions of PRACH as the number of repetitions of PUCCH.
  • the terminal can determine the number of repetitions of PUCCH from multiple candidate values of the number of repetitions of PUCCH associated with the number of repetitions of PRACH according to the instruction of the network device.
  • the network device may send second indication information to the terminal, and the second indication information may be used to indicate the number of repeated transmissions of the PUCCH. More specifically, the terminal may select the number of repeated transmissions of the PUCCH from the candidate values of the number of repeated transmissions of the PRCCH associated with the number of repeated transmissions of the PRACH according to the second indication information.
  • the second indication information may include an index of the candidate value, and the terminal may select the number of repeated transmissions of the PUCCH from multiple candidate values of the number of repeated transmissions of the PRCCH associated with the number of repeated transmissions of the PRACH according to the index of the candidate value.
  • the terminal may select the number of repetition transmissions of the PUCCH from a plurality of candidate values of the number of repetition transmissions of the PUCCH associated with the number of repetition transmissions of the PRACH.
  • the terminal can determine the number of repeated transmissions of PUCCH according to the number of repeated transmissions of PRACH.
  • the above only specifically describes the differences between the scheme of the third embodiment and the scheme of the first embodiment.
  • For more information about the third embodiment please refer to the relevant content of the first embodiment above, which will not be repeated here.
  • the number of repetitions of PUCCH is determined according to the number of repetitions of PUSCH in the random access process.
  • the number of repetitions of PUCCH can be determined according to the number of repetitions of sending message 3 or message A to the network device using PUSCH.
  • the terminal may be pre-configured with a PUSCH re-
  • the association relationship between the number of retransmissions and the number of retransmissions of PUCCH, the association relationship between the number of retransmissions of PUSCH and the number of retransmissions of PUCCH may include: multiple candidate values of the number of retransmissions of PUSCH, and at least one candidate value of the number of retransmissions of PUCCH associated with each candidate value of the number of retransmissions of PUSCH.
  • the association relationship between the number of retransmissions of PUSCH and the number of retransmissions of PUCCH may be pre-configured by a network device, or may be pre-defined by a protocol.
  • the terminal After determining the number of repetitions of PUSCH, the terminal can determine the number of repetitions of PUCCH from at least one candidate value of PUCCH repetitions associated with the number of repetitions of PUSCH according to the above association relationship, wherein the number of repetitions of PUSCH is one of the multiple candidate values of PUSCH repetitions.
  • the network device sends first indication information to the terminal, and the first indication information can be used to indicate a reference number of transmissions, and the reference number of transmissions can be a number of repeated transmissions of the PUSCH.
  • the first indication information is carried in the RAR, and the network device indicates the number of repeated transmissions of the PUSCH to the terminal through the RAR.
  • each PUSCH repetition transmission number candidate value is associated with a PUCCH repetition transmission number candidate value, and the terminal can directly use the PUCCH repetition transmission number candidate value associated with the PUSCH repetition transmission number as the PUCCH repetition transmission number.
  • Table 2 which exemplarily shows a correlation relationship between the number of repeated transmissions of a PUSCH and the number of repeated transmissions of a PUCCH.
  • the terminal may determine that the number of repeated transmissions of the PUCCH is 4.
  • each PUSCH repetition transmission number candidate value is associated with multiple PUCCH repetition transmission number candidate values, and the terminal can determine one of the multiple PUCCH repetition transmission number candidate values associated with the PUSCH repetition transmission number as the PUCCH repetition transmission number. At least part of the multiple PUCCH repetition transmission number candidate values associated with each PUSCH repetition transmission number candidate value is greater than 1.
  • the terminal may determine the number of repetitions of the PUCCH from a plurality of candidate values of the number of repetitions of the PUCCH associated with the number of repetitions of the PUSCH according to an instruction of the network device.
  • the network device may send the second indication information to the terminal, and the terminal may select the number of repeated transmissions of the PUCCH from the candidate values of the number of repeated transmissions of the PUCCH associated with the number of repeated transmissions of the PUSCH according to the second indication information.
  • the second indication information may include an index of the candidate value, and the terminal may select the number of repeated transmissions of the PUCCH from multiple candidate values of the number of repeated transmissions of the PUCCH associated with the number of repeated transmissions of the PUSCH according to the index of the candidate value.
  • the terminal may select the number of repetition transmissions of the PUCCH from a plurality of candidate values of the number of repetition transmissions of the PUCCH associated with the number of repetition transmissions of the PUSCH.
  • the terminal can determine the number of repeated transmissions of PUCCH according to the number of repeated transmissions of PUSCH.
  • the above only specifically describes the differences between the scheme of the fourth embodiment and the schemes of the first embodiment and the third embodiment.
  • For more information about the fourth embodiment please refer to the relevant content above, which will not be repeated here.
  • the number of repeated transmissions of PUCCH is greater than or equal to the above-mentioned reference transmission number (that is, the number of repeated transmissions of PUSCH or the number of repeated transmissions of PRACH).
  • the number of repetitions of the PUCCH may be determined according to the channel quality of the PRACH and/or the PUSCH.
  • the network device can determine the number of repeated transmissions of the PUCCH according to the channel quality of the PRACH and/or PUSCH, and then indicate to the terminal through the second indication information: The number of repetitions of PUCCH.
  • the network device sends the second indication information to the terminal after receiving PRACH, or the network device sends the second indication information to the terminal after receiving PUSCH (for example, the second indication information can be carried in the DCI for scheduling message 4).
  • the above method can be implemented in the form of a software program, which runs in a processor integrated inside a chip or a chip module; or, the method can be implemented in hardware or a combination of hardware and software, such as using a dedicated chip or chip module, or using a dedicated chip or chip module in combination with a software program.
  • FIG. 4 is a schematic diagram of the structure of a random access device in an embodiment of the present application.
  • the random access device shown in FIG. 4 may be deployed in the above-mentioned terminal.
  • the device shown in FIG. 4 may include:
  • the communication module 41 is configured to repeatedly send a hybrid automatic repeat request acknowledgment HARQ-ACK in response to a successful random access.
  • the random access device shown in FIG. 4 may correspond to a chip with a communication function in a terminal; or correspond to a chip or chip module with a communication function in a terminal, or correspond to a terminal.
  • An embodiment of the present application also provides another random access device, which can be deployed in the above-mentioned network device.
  • the random access device may include: a communication module, which is used to receive a physical uplink control channel PUCCH and a hybrid automatic repeat request confirmation HARQ-ACK if the terminal successfully accesses the random access, and the number of repeated transmissions of the HARQ-ACK is greater than 1 or equal to 1.
  • the random access device may correspond to a chip with a communication function in a network device; or correspond to a chip or chip module with a communication function in a network device, or correspond to a network device.
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the above-mentioned random access method is executed.
  • the storage medium may include ROM, RAM, a magnetic disk or an optical disk, etc.
  • the storage medium may also include a non-volatile memory (non-volatile) or a non-transitory memory, etc.
  • the embodiment of the present application also provides a terminal, including a memory and a processor, wherein the memory stores a computer program that can be run on the processor, and the processor executes the steps of the above-mentioned random access method when running the computer program.
  • the terminal includes but is not limited to terminal devices such as mobile phones, computers, and tablet computers.
  • FIG. 5 is a schematic diagram of the structure of a terminal in an embodiment of the present application.
  • the terminal shown in Figure 5 includes a memory 51, a processor 52 and a transceiver 53.
  • the processor 52 is coupled to the memory 51 and the transceiver 53.
  • the memory 51 can be located inside the terminal or outside the terminal.
  • the memory 51, the processor 52 and the transceiver 53 can be connected via a communication bus.
  • the transceiver 53 is used to communicate with other devices or communication networks.
  • the transceiver 53 can be a transmitter.
  • the memory 51 stores a computer program that can be run on the processor 52. When the processor 52 runs the computer program, the transceiver 53 performs the steps in the random access method provided in the above embodiment.
  • the embodiment of the present application also provides a network device, including a memory and a processor, wherein the memory stores a computer program that can be run on the processor, and the processor executes the steps of the above-mentioned random access method when running the computer program.
  • a network device including a memory and a processor, wherein the memory stores a computer program that can be run on the processor, and the processor executes the steps of the above-mentioned random access method when running the computer program.
  • the specific structure of the network device can refer to the relevant description of Figure 5, which will not be repeated here.
  • the processor may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the processor may be a microprocessor or any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static RAM
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous link DRAM
  • DR RAM direct rambus RAM
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination thereof.
  • the above embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs.
  • the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program may be stored in a computer-readable storage medium, or may be transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program may be transmitted from one website, computer, server or data center to another website, computer, server or data center by wired or wireless means.
  • the size of the sequence number of the above-mentioned processes is not It does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the disclosed methods, devices and systems can be implemented in other ways.
  • the device embodiments described above are merely schematic; for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation; for example, multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of hardware plus software functional units.
  • each module/unit contained therein may be implemented in the form of hardware such as circuits, or at least some of the modules/units may be implemented in the form of software programs, which run on a processor integrated inside the chip, and the remaining (if any) modules/units may be implemented in the form of hardware such as circuits;
  • each module/unit contained therein may be implemented in the form of hardware such as circuits, and different modules/units may be located in the same component (such as a chip, circuit module, etc.) or different components of the chip module, or at least some of the modules/units may be implemented in the form of software programs, which run on a processor integrated inside the chip module, and the remaining (if any) modules/units may be implemented in the form of hardware such as circuits; for each device or product applied to or integrated in a terminal, each module/unit contained therein may be implemented in the form of hardware such as circuits, and different The modules
  • the above-mentioned integrated unit implemented in the form of a software functional unit can be stored in a computer-readable storage medium.
  • the above-mentioned software functional unit is stored in a storage medium, including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to perform some steps of the method described in each embodiment of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM), disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种随机接入方法及装置、终端、网络设备,所述方法包括:响应于随机接入成功,重复发送混合自动重传请求确认HARQ-ACK。本申请提供的方案有利于增强终端随机接入时的上行覆盖性能。

Description

随机接入方法及装置、终端、网络设备
本申请要求于2022年11月25日提交中国专利局、申请号为202211490743.2、发明名称为“随机接入方法及装置、终端、网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种随机接入方法及装置、终端、网络设备。
背景技术
随着无线通信技术的发展,各种通信场景对于终端上行覆盖增强的要求越来越高。例如,卫星通信是第五代(5th-generation,简称5G)通信技术的一种应用场景,相较于陆地网络,卫星通信对于终端的上行覆盖要求更高。随机接入是终端与网络设备建立通信链路的关键步骤,因此,如何增强终端随机接入时的上行覆盖性能值得进一步研究。
发明内容
本申请实施例提供一种随机接入方法及装置、终端、网络设备,能够增强终端随机接入时的上行覆盖性能。
第一方面,本申请实施例提供一种随机接入方法,包括:响应于随机接入成功,重复发送混合自动重传请求确认HARQ-ACK。
可选的,所述随机接入成功包括:接收到随机接入响应RAR和/或终端的竞争解决标识。
可选的,所述HARQ-ACK承载于物理上行控制信道PUCCH, 所述PUCCH的重复发送次数根据目标同步信号块SSB或者所述目标SSB所在的SSB组确定。
可选的,重复发送HARQ-ACK之前,所述方法还包括:接收配置信息,所述配置信息包括:多个SSB中每个SSB关联的至少一个PUCCH重复发送次数候选值,或者,多个SSB组中每个SSB组关联的至少一个PUCCH重复发送次数候选值。
可选的,所述配置信息还包括:SSB组配置信息,所述SSB组配置信息包括各个SSB组的SSB成员信息;其中,所述多个SSB或者所述各个SSB组中的SSB均为网络设备实际发送的SSB。
可选的,所述HARQ-ACK承载于PUCCH,所述PUCCH的重复发送次数根据物理随机接入信道PRACH的重复发送次数和/或随机接入过程中物理上行共享信道PUSCH的重复发送次数确定。
可选的,重复发送HARQ-ACK之前,所述方法还包括:接收第一指示信息,所述第一指示信息用于指示参考发送次数,所述参考发送次数为:所述PRACH的重复发送次数和/或所述PUSCH的重复发送次数;其中,所述参考发送次数关联至少一个PUCCH重复发送次数候选值,所述PUCCH的重复发送次数为所述参考发送次数关联的至少一个PUCCH重复发送次数候选值中的一个。
可选的,所述HARQ-ACK承载于PUCCH,重复发送HARQ-ACK之前,所述方法还包括:接收第二指示信息,所述第二指示信息用于指示所述PUCCH的重复发送次数。
可选的,所述第二指示信息承载于RAR或者下行控制信息DCI中,所述DCI用于调度所述RAR和/或终端的竞争解决标识。
可选的,重复发送HARQ-ACK之前,所述方法还包括:根据所述第二指示信息,从目标SSB或者目标SSB组关联的PUCCH重复发送次数候选值中选择所述PUCCH的重复发送次数,或者,从PRACH的重复发送次数关联的PUCCH重复发送次数候选值中选择 所述PUCCH的重复发送次数,或者,从PUSCH的重复发送次数关联的PUCCH重复发送次数候选值中选择所述PUCCH的重复发送次数。
可选的,所述HARQ-ACK承载于PUCCH,所述PUCCH的重复发送次数根据PRACH和/或PUSCH的信道质量确定。
第二方面,本申请实施例提供一种随机接入装置,包括:通信模块,用于响应于随机接入成功,重复发送混合自动重传请求确认HARQ-ACK。
第三方面,本申请实施例提供一种随机接入方法,包括:如果终端随机接入成功,接收混合自动重传请求确认HARQ-ACK,所述HARQ-ACK的重复发送次数大于1或者等于1。
可选的,所述终端随机接入成功包括:所述终端接收到随机接入响应RAR和/或终端的竞争解决标识。
可选的,所述HARQ-ACK承载于物理上行控制信道PUCCH,所述PUCCH的重复发送次数根据目标同步信号块SSB或者所述目标SSB所在的SSB组确定。
可选的,接收HARQ-ACK之前,所述方法还包括:发送配置信息,所述配置信息包括:多个SSB中每个SSB关联的至少一个PUCCH重复发送次数候选值,或者,多个SSB组中每个SSB组关联的至少一个PUCCH重复发送次数候选值。
可选的,所述配置信息还包括:SSB组配置信息,所述SSB组配置信息包括各个SSB组的SSB成员信息;其中,所述多个SSB或者所述各个SSB组中的SSB均为网络设备实际发送的SSB。
可选的,所述HARQ-ACK承载于PUCCH,所述PUCCH的重复发送次数根据物理随机接入信道PRACH的重复发送次数和/或随机接入过程中物理上行共享信道PUSCH的重复发送次数确定。
可选的,接收HARQ-ACK之前,所述方法还包括:发送第一指示信息,所述第一指示信息用于指示参考发送次数,所述参考发送次数为:所述PRACH的重复发送次数和/或所述PUSCH的重复发送次数;其中,所述参考发送次数关联至少一个PUCCH重复发送次数候选值,所述PUCCH的重复发送次数为所述参考发送次数关联的至少一个PUCCH重复发送次数候选值中的一个。
可选的,所述HARQ-ACK承载于PUCCH,接收HARQ-ACK之前,所述方法还包括:发送第二指示信息,所述第二指示信息用于指示所述PUCCH的重复发送次数。
可选的,所述第二指示信息承载于RAR或者下行控制信息DCI中,所述DCI用于调度所述RAR和/或终端的竞争解决标识。
可选的,所述PUCCH的重复发送次数是所述终端根据所述第二指示信息从目标SSB或者目标SSB组关联的PUCCH重复发送次数候选值中选择的,或者,所述PUCCH的重复发送次数是根据所述第二指示信息从PRACH的重复发送次数关联的PUCCH重复发送次数候选值中选择的,或者,所述PUCCH的重复发送次数是根据所述第二指示信息从PUSCH的重复发送次数关联的PUCCH重复发送次数候选值中选择的。
可选的,所述HARQ-ACK承载于PUCCH,所述PUCCH的重复发送次数根据PRACH和/或PUSCH的信道质量确定。
第四方面,本申请实施例提供一种随机接入装置,包括:通信模块,用于如果终端随机接入成功,接收物理上行控制信道PUCCH,接收混合自动重传请求确认HARQ-ACK,所述HARQ-ACK的重复发送次数大于1或者等于1。
第五方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时,使得第一方面或者第三方面提供的随机接入方法被执行。
第六方面,本申请实施例提供一种终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时第一方面提供的随机接入方法的步骤。
第七方面,本申请实施例提供一种网络设备,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行第三方面提供的随机接入方法的步骤。
与现有技术相比,本申请实施例的技术方案具有以下有益效果:
本申请实施例的方案,响应于随机接入成功,重复发送混合自动重传请求确认(Hybrid Automatic Repeat Request Acknowledgement,简称HARQ-ACK)。上述方案中,终端确定随机接入成功之后,通过重复发送HARQ-ACK,能够提高网络设备接收到HARQ-ACK的可靠性,实现随机接入过程的上行覆盖增强。此外,由于HARQ-ACK承载于物理上行控制信道(Physical Uplink Control Channel,简称PUCCH),HARQ-ACK的重复发送也意味着随机接入过程中PUCCH的重复传输,因此,上述方案也有利于增强随机接入过程中PUCCH的上行覆盖。
附图说明
图1是现有技术中一种随机接入方法的流程示意图;
图2是现有技术中另一种随机接入方法的流程示意图;
图3是本申请实施例中一种随机接入方法的流程示意图;
图4是本申请实施例中一种随机接入装置的结构示意图;
图5是本申请实施例中一种终端的结构示意图。
具体实施方式
需要说明的是,本申请实施例适用的通信***包括但不限于第三代***(3th-generation,简称3G)、长期演进(long term evolution, 简称LTE)***、******(4th-generation,简称4G)、第五代(5th-generation,简称5G)***、新空口(New Radio,简称NR)***,以及未来演进***或者多种通信融合***。其中,5G***可以为非独立组网(non-standalone,简称NSA)的5G***或独立组网(standalone,简称SA)的5G***。本申请实施例的方案还可适用于未来新的各种通信***,例如,6G、7G等。
本申请实施例中的终端可以指各种形式的用户设备(User Equipment,简称UE)、接入终端、用户单元、用户站、移动站、移动台(Mobile Station,简称MS)、远方站、远程终端、移动设备、用户终端、终端设备(Terminal Equipment)、无线通信设备、用户代理或用户装置。终端还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称SIP)电话、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,简称PLMN)中的终端等,本申请实施例对此并不限定。
本申请实施例中的网络设备也可以称为接入网设备,例如,可以为基站(base station,简称BS)(也可称为基站设备),网络设备是一种部署在无线接入网(Radio Access Network,RAN)用以提供无线通信功能的装置。例如在第二代(2nd-generation,简称2G)网络中提供基站功能的设备包括基地无线收发站(base transceiver station,简称BTS),第三代(3rd-generation,简称3G)网络中提供基站功能的设备包括节点B(Node B),在***(4th-generation,简称4G)网络中提供基站功能的设备包括演进的节点B(evolved NodeB,简称eNB),在无线局域网络(wireless local area networks,简称WLAN)中,提供基站功能的设备为接入点(access point,简称AP),NR中的提供基站功能的设备下一代基站节点(next generation node base station,简称gNB),以及继续演进的节点B(ng-eNB),其中gNB 和终端设备之间采用NR技术进行通信,ng-eNB和终端设备之间采用演进的通用地面无线电接入(Evolved Universal Terrestrial Radio Access,简称E-UTRA)技术进行通信,gNB和ng-eNB均可连接到5G核心网。本申请实施例中的网络设备还包含在未来新的通信***中提供基站功能的设备等。
如背景技术所述,如何增强终端随机接入时的上行覆盖性能值得进一步研究。
参照图1,图1是现有技术一种随机接入方法的流程示意图。具体地,图1示出了4步(4-step)随机接入类型的信令交互过程。图1示出的随机接入方法包括步骤S11至步骤S14。
步骤S11,终端向网络设备发送消息1。
具体地,消息1承载于物理随机接入信道(Physical Random Access Channel,简称PRACH),消息1可以是指随机接入请求,随机接入请求可以包括随机接入前导码(random access preamble,简称RA preamble)。其中,RA preamble的主要作用可以是向网络设备请求接入,使网络设备能基于RA preamble估计与终端之间的传输时延并以此校准上行定时,并指示给终端。
步骤S12,网络设备向终端发送消息2。
具体地,网络设备在物理下行共享信道(Physical Downlink Shared Channel,简称PDSCH)向终端发送消息2,消息2可以是指随机接入响应(Random Access Response,简称RAR)。
更具体地,网络设备在PDSCH的有效载荷(payload)资源上向终端发送RAR消息。RAR消息可以包含用于指定上行同步所需要的时间调整量、终端发送消息3所需的上行资源等。作为一个示例,RAR可以是通过随机接入无线网络临时标识(random access radio network temporary identifier,RA-RNTI)加扰得到的,RA-RNTI的取值可以是由承载RA preamble的资源的时频位置决定的。
对于终端来说,终端发送消息1后,终端可以根据RA-RNTI在RAR时间窗内监听物理下行控制信道(Physical Downlink Control Channel,简称PDCCH)以获取下行控制信息(Downlink Control Information,简称DCI),这里的DCI用于调度RAR。进一步地,终端根据DCI使用该RA-RNTI解析PDSCH的payload,以接收对应由RA-RNTI加扰得到的RAR。如果在该RAR时间窗内没有接收到RAR,则认为此次随机接入过程失败。
步骤S13,终端向网络设备发送消息3。
具体地,终端接收到消息2之后,在物理上行共享信道(Physical Uplink Share Channel,简称PUSCH)上向网络设备发送消息3。消息3可以包含终端唯一的标识。该标识可以用于步骤四的冲突解决。例如,对于处于无线资源控制(Radio Resource Control,简称RRC)连接态的终端来说,终端设备唯一的标识是小区无线网络临时标识(Cell-Radio Network Temporary Identifier,简称C-RNTI)。又例如,对于非RRC连接态的终端来说,终端唯一的标识是来自核心网的唯一的标识(如为***架构演进临时移动用户标识(System Architecture Evolution Temporary Mobile Subscriber Identity,简称S-TMSI)或一个随机数)。
步骤S14,网络设备向终端发送消息4。
具体地,网络设备在冲突解决机制中,消息4携带有终端的竞争解决标识(Contention Resolution Identity),以指示竞争胜出的终端。
对于终端来说,终端发送消息3后,终端可以监听物理下行控制信道PDCCH以获取DCI,这里的DCI用于调度消息4。进一步地,终端根据DCI解码出的终端竞争解决标识与消息3中携带的终端标识相同时,终端确定随机接入成功,如果解码出的终端竞争解决标识与消息3中的终端标识不同,则确定随机接入失败,终端可以重新发起随机接入过程。
由上,4步随机接入过程是基于竞争的随即接入,在4步随机接入过程中,消息1和消息2主要用于完成上行的时间同步,而消息3和消息4主要用于为终端指定一个唯一且合法的身份(也即,C-RNTI),以用于后续的数据传输。
参照图2,图2是现有技术中另一种随机接入方法的流程示意图。图2示出了2步(2-step)随机接入类型的信令交互过程。图2示出的随机接入方法包括步骤S21至步骤S22。
步骤S21,终端向网络设备发送消息A。
具体地,终端向网络设备发送消息A,消息A包括PRACH上承载的RA preamble和PUSCH上承载的载荷数据。其中,PUSCH上承载的载荷数据可以包括终端唯一的标识。
步骤S22,网络设备向终端发送消息B。
其中,消息B也可以是指2步随机接入过程中的RAR。
具体地,终端向网络设备发送消息A之后,终端在一个配置的时间窗内监听来自网络设备的响应(也即,消息B)。
对于非竞争的随机接入过程,终端接收到消息B之后,可以确定随机接入成功。
对于基于竞争的随机接入过程,如果消息B包含的终端竞争解决标识与消息A中携带的终端竞争解决标识相同,则终端可以确定随机接入成功。
不论是何种随机接入类型,如果终端随机接入成功,终端需要在PUCCH向网络设备发送HARQ-ACK,以告知网络设备终端随机接入成功。
有鉴于此,本申请实施例提供一种随机接入方法,在本申请实施例的方案中,响应于随机接入成功,重复发送HARQ-ACK。上述方案中,终端确定随机接入成功之后,通过重复发送HARQ-ACK,能 够提高网络设备接收到HARQ-ACK的可靠性,从而能够实现随机接入过程的上行覆盖增强。此外,由于HARQ-ACK承载于PUCCH,HARQ-ACK的重复发送也意味着随机接入过程中PUCCH的重复发送,因此,上述方案也有利于增强随机接入过程中PUCCH的上行覆盖。
下面结合附图对本申请的具体实施例做详细的说明。
参照图3,图3是本申请实施例中一种随机接入方法的流程示意图。图3示出的方法可以由终端执行。图3示出的随机接入方法可以包括步骤S31。
步骤S31:响应于随机接入成功,重复发送混合自动重传请求确认HARQ-ACK。
需要说明的是,HARQ-ACK的重复发送可以等价于PUCCH的重复发送或者PUCCH的重复传输。PUCCH的重复传输是指利用PUCCH重复发送HARQ-ACK。也即,响应于随机接入成功,终端通过PUCCH的重复传输向网络重复发送HARQ-ACK。通过PUCCH的重复传输,可以增强随机接入过程中PUCCH的上行覆盖。进一步地,HARQ-ACK的重复发送次数即为PUCCH的重复发送次数。其中,重复发送可以是不止一次地发送。
还需要说明的是,PUCCH的重复发送次数是指利用PUCCH重复发送HARQ-ACK的次数。例如,PUCCH的重复发送次数为2,是指终端利用PUCCH发送2次HARQ-ACK。又例如,PUCCH的重复发送次数为4,是指终端利用PUCCH发送4次HARQ-ACK。
在本申请的第一个实施例中,PUCCH的重复发送次数根据目标同步信号块(Synchronization Signal Block,简称SSB)确定。
具体地,网络设备向终端发送多个SSB,终端对各个SSB的信号质量进行测量。进一步地,终端根据各个SSB的信号质量测量结果,将信号质量大于或等于阈值的至少一个SSB中的一个SSB作为 目标SSB。作为一个示例,如果多个SSB的信号质量均小于阈值,则可以从多个SSB中随机选择其中一个SSB作为目标SSB。作为另一个示例,如果信号质量大于或等于阈值的SSB有多个,则可以将信号质量最优的SSB作为目标SSB。其中,信号质量可以由参考信号接收质量(Reference Signal Receiving Quality,简称RSRQ)或者参考信号接收功率(Reference Signal Receiving Power,简称RSRP)来表征。
进一步地,由于SSB和波束一一对应,不同波束覆盖区域内的地理位置与网络设备之间的距离不一样,或者说,不同波束覆盖区域内的地理位置与中继(如卫星)之间的距离不一样,每个SSB关联一个或多个PRACH资源,终端可以从目标SSB关联的PRACH资源中选择用于发送PRACH的资源。
SSB和波束一一对应,且不同波束覆盖区域内的地理位置与卫星之间的距离不一样。基于该原理,在本实施例的方案中,每个SSB关联至少一个PUCCH重复发送次数候选值,终端确定目标SSB之后,还可以从目标SSB关联的至少一个PUCCH重复发送次数候选值中确定PUCCH的重复发送次数。
在具体实施中,每个SSB关联的PUCCH重复发送次数候选值可以是由网络设备预先配置的。
具体地,网络设备向终端发送配置信息,相应的,终端接收网络设备发送的配置信息。其中,配置信息可以包括:多个SSB中的每个SSB关联的至少一个PUCCH重复发送次数候选值。
需要说明的是,在其他实施例中,多个SSB中的各个SSB关联的至少一个PUCCH重复发送次数候选值也可以是由协议预先定义的。
进一步地,如果每个SSB关联一个PUCCH重复发送次数候选值,则终端可以直接将目标SSB关联的PUCCH重复发送次数候选值作为 PUCCH的重复发送次数。
如果每个SSB关联多个PUCCH重复发送次数候选值,则终端可以从目标SSB关联的多个PUCCH重复发送次数候选值中确定其中一个作为PUCCH的重复发送次数。需要说明的是,本申请实施例的方案中,PUCCH重复发送次数候选值为正整数。也即,PUCCH重复发送次数候选值大于1或者等于1。
作为一个示例,终端可以根据网络设备的指示从目标SSB关联的多个PUCCH重复发送次数候选值中确定PUCCH的重复发送次数。
具体地,网络设备可以向终端发送第二指示信息,第二指示信息可以用于指示PUCCH的重复发送次数。更具体地,终端可以根据第二指示信息,从目标SSB关联的多个PUCCH重复发送次数候选值中选择PUCCH的重复发送次数。例如,第二指示信息可以包括候选值的索引,终端可以根据候选值的索引,从目标SSB关联的多个PUCCH重复发送次数候选值中选择PUCCH的重复发送次数。
在具体实施中,第二指示信息可以承载于随机接入过程中的现有信令或消息中,以节省信令开销。
在一个非限制性的例子中,第二指示信息可以承载于RAR中。换言之,第二指示信息可以承载于4步随机接入过程中的消息2,或者,第二指示信息可以承载于2步随机接入过程中的消息B。
具体地,RAR中可以设置有专用比特位用于指示PUCCH的重复发送次数。更具体地,所述用于指示PUCCH重复发送次数的专用比特位可以是RAR中预留的比特位,也可以是在RAR中新增的比特位。
在另一个非限制性的例子中,第二指示信息可以承载于DCI中。所述DCI可以用于调度RAR和/或终端的竞争解决标识。换言之,所述DCI可以是用于调度消息2的DCI,或者,所述DCI可以是用于调度消息4的DCI,或者,所述DCI可以是用于调度消息B的DCI。
具体地,DCI中可以设置有专用比特位用于指示PUCCH的重复 发送次数。更具体地,所述用于指示PUCCH重复发送次数的专用比特位可以是DCI中预留的比特位,也可以是在DCI中新增的比特位。
在具体实施中,用于指示PUCCH重复发送次数的专用比特位的数目根据每个SSB关联的PUCCH重复发送次数候选值的数量确定。例如,每个SSB关联2个PUCCH重复发送次数候选值,则需要1比特指示PUCCH的重复发送次数。又例如,每个SSB关联4个PUCCH重复发送次数候选值,则需要2比特指示PUCCH的重复发送次数。
在其他实施例中,第二指示信息可以显式地指示PUCCH的重复发送次数。例如,第二指示信息可以承载于RAR或者DCI中,且RAR或者DCI中用于指示PUCCH重复发送次数的专用比特位的数目取决于PUCCH的重复发送次数的值。
作为另一个示例,终端可以自行从目标SSB关联的多个PUCCH重复发送次数候选值中选择PUCCH的重复发送次数。例如,终端可以随机选择一个PUCCH重复发送次数候选值作为PUCCH的重复发送次数。又例如,终端默认选择数值最大的PUCCH重复发送次数候选值作为PUCCH的重复发送次数,以尽可能增强上行覆盖。再例如,终端默认选择数值最小的PUCCH重复发送次数候选值作为PUCCH的重复发送次数,以在增强上行覆盖的同时兼顾功耗的考量。
由上,终端可以根据目标SSB确定PUCCH的重复发送次数。此外,如上文所述,每个SSB关联的多个PRACH资源。因此,网络设备接收到消息1或者消息A之后,可以根据用于发送消息1或者消息A的PRACH资源,确定目标SSB,进而确定PUCCH的重复发送次数。
在本申请的第二个实施例的方案中,PUCCH的重复发送次数根据目标SSB所在的SSB组确定。为便于描述,下文将目标SSB所在的SSB组记为目标SSB组。
具体而言,网络设备向终端发送多个SSB,网络设备发送的多个SSB属于不同的SSB组。例如,网络设备向终端发送SSB1、SSB2、SSB3和SSB4,其中,SSB1和SSB2属于SSB组1,SSB3和SSB4属于SSB组2。其中,SSB组可以是由网络设备划分的,也可以是由协议预先定义的,本实施例对此并不进行限制。在具体实施中,可以将覆盖区域距离较近的波束对应的SSB划入同一个SSB组。换言之,属于同一个SSB组的SSB对应的波束的覆盖区域距离较近。
在本实施例的方案中,每个SSB组关联至少一个PUCCH重复发送次数候选值,终端确定目标SSB之后,可以从目标SSB组关联的至少一个PUCCH重复发送次数候选值中确定PUCCH的重复发送次数。在具体实施中,每个SSB组关联的PUCCH重复发送次数候选值可以是由网络设备预先配置的。需要说明的是,在其他实施例中,各个SSB组关联的至少一个PUCCH重复发送次数候选值也可以由协议预先定义。
具体地,网络设备向终端发送配置信息,其中,配置信息可以包括:多个SSB组中每个SSB组关联的至少一个PUCCH重复发送次数候选值。此外,配置信息还可以包括各个SSB组的SSB成员信息。其中,SSB组的SSB成员信息可以是指SSB组包括的各个SSB的标识等,以便终端确定目标SSB之后,可以根据各个SSB组的SSB成员信息确定目标SSB组。
进一步地,如果每个SSB组关联一个PUCCH重复发送次数候选值,则终端可以直接将目标SSB组关联的PUCCH重复发送次数候选值作为PUCCH的重复发送次数。
如果每个SSB组关联多个PUCCH重复发送次数候选值,则终端可以从目标SSB组关联的多个PUCCH重复发送次数候选值中确定其中一个作为PUCCH的重复发送次数。
作为一个示例,终端可以根据网络设备的指示从目标SSB组关联的多个PUCCH重复发送次数候选值中确定PUCCH的重复发送次 数。
具体地,网络设备可以向终端发送第二指示信息,第二指示信息可以用于指示PUCCH的重复发送次数。更具体地,终端可以根据第二指示信息,从目标SSB组关联的多个PUCCH重复发送次数候选值中选择PUCCH的重复发送次数。例如,第二指示信息可以包括候选值的索引,终端可以根据候选值的索引,从目标SSB组关联的多个PUCCH重复发送次数候选值中选择PUCCH的重复发送次数。
作为另一个示例,终端可以自行从目标SSB组关联的多个PUCCH重复发送次数候选值中选择PUCCH的重复发送次数。
第二指示信息可以承载于RAR或者DCI中,RAR或者DCI中可以设置专用比特位用于指示PUCCH的重复发送次数。用于指示PUCCH重复发送次数的专用比特位的数目根据每个SSB组关联的PUCCH重复发送次数候选值的数量确定。
需要说明的是,本申请实施例中的多个SSB或者多个SSB组中的SSB均为网络设备实际发送的SSB。
相较于第一个实施例提供的方案,预先配置SSB组关联的PUCCH重复发送次数候选值,无需为每个SSB配置关联的PUCCH重复发送次数候选值,有利于节省信令开销。
上文仅就第二个实施例的方案与第一个实施例的方案的不同之处进行具体描述,关于第二个实施例的更多内容可以参照上文关于第一个实施例的相关内容,在此不再赘述。
在本申请的第三个实施例中,PUCCH的重复发送次数根据PRACH的重复发送次数确定。换言之,PUCCH的重复发送次数根据消息1或者消息A的重复发送次数确定。
具体地,本实施例的方案中,终端可以预先配置有PRACH的重复发送次数和PUCCH的重复发送次数之间的关联关系,所述PRACH的重复发送次数和PUCCH的重复发送次数之间的关联关系包括:多 个PRACH重复发送次数候选值,以及每个PRACH重复发送次数候选值关联的至少一个PUCCH重复发送次数候选值。所述PRACH的重复发送次数和PUCCH的重复发送次数之间的关联关系可以由网络设备预先配置,也可以由协议预先定义。
终端确定PRACH的重复发送次数之后,可以根据上述的关联关系从PRACH的重复发送次数关联的至少一个PUCCH的重复发送次数候选值中确定PUCCH的重复发送次数。其中,PRACH的重复发送次数为所述多个PRACH重复发送次数候选值中的一个。
在具体实施中,网络设备向终端发送第一指示信息,相应的,终端接收第一指示信息,第一指示信息可以用于指示参考发送次数,所述参考发送次数可以是PRACH的重复发送次数。作为一个示例,第一指示信息承载于***消息中,网络设备通过***消息向终端指示PRACH的重复发送次数。
在一个例子中,每个PRACH的重复发送次数候选值关联一个PUCCH的重复发送次数候选值,则终端可以直接将PRACH的重复发送次数关联的PUCCH的重复发送次数候选值作为PUCCH的重复发送次数。
参见表1,表1示例性地给出了一种PRACH的重复发送次数和PUCCH的重复发送次数之间的关联关系。
表1
假设***消息指示的PRACH的重复发送次数为2,则终端可以确定PUCCH的重复发送次数为4。
采用这样的方案,在保证PUCCH重复发送次数配置的灵活性的 前提下,不需要网络设备额外向终端指示PUCCH的重复发送次数,有利于节省网络设备的信令开销,从而能够在保证PUCCH的可靠传输的同时也能节省网络设备的PUCCH资源开销。
在另一个例子中,每个PRACH的重复发送次数候选值关联多个PUCCH重复发送次数候选值,终端可以从PRACH的重复发送次数关联的多个PUCCH重复发送次数候选值中确定其中一个作为PUCCH的重复发送次数。作为一个示例,终端可以根据网络设备的指示从PRACH的重复发送次数关联的多个PUCCH重复发送次数候选值中确定PUCCH的重复发送次数。
具体地,网络设备可以向终端发送第二指示信息,第二指示信息可以用于指示PUCCH的重复发送次数。更具体地,终端可以根据第二指示信息,从PRACH的重复发送次数关联的PUCCH重复发送次数候选值中选择PUCCH的重复发送次数。例如,第二指示信息可以包括候选值的索引,终端可以根据候选值的索引,从PRACH的重复发送次数关联的多个PUCCH重复发送次数候选值中选择PUCCH的重复发送次数。
作为另一个示例,终端可以自行从PRACH的重复发送次数关联的多个PUCCH重复发送次数候选值中选择PUCCH的重复发送次数。
由上,终端可以根据PRACH的重复发送次数确定PUCCH的重复发送次数。上文仅就第三个实施例的方案与第一个实施例的方案的不同之处进行具体描述,关于第三个实施例的更多内容可以参照上文关于第一个实施例的相关内容,在此不再赘述。
在本申请的第四个实施例中,PUCCH的重复发送次数根据随机接入过程中PUSCH的重复发送次数确定。换言之,PUCCH的重复发送次数可以根据利用PUSCH向网络设备发送消息3或者消息A的重复发送次数确定。
具体地,本实施例的方案中,终端可以预先配置有PUSCH的重 复发送次数和PUCCH的重复发送次数之间的关联关系,所述PUSCH的重复发送次数和PUCCH的重复发送次数之间的关联关系可以包括:多个PUSCH重复发送次数候选值,以及每个PUSCH重复发送次数候选值关联的至少一个PUCCH重复发送次数候选值。所述PUSCH的重复发送次数和PUCCH的重复发送次数之间的关联关系可以由网络设备预先配置,或者,也可以由协议预先定义。
终端确定PUSCH的重复发送次数之后,可以根据上述的关联关系从PUSCH的重复发送次数关联的至少一个PUCCH重复发送次数候选值中确定PUCCH的重复发送次数。其中,PUSCH的重复发送次数为所述多个PUSCH重复发送次数候选值中的一个。
在具体实施中,网络设备向终端发送第一指示信息,第一指示信息可以用于指示参考发送次数,所述参考发送次数可以是PUSCH的重复发送次数。作为一个示例,第一指示信息承载于RAR中,网络设备通过RAR向终端指示PUSCH的重复发送次数。
在一个例子中,每个PUSCH重复发送次数候选值关联一个PUCCH重复发送次数候选值,则终端可以直接将PUSCH的重复发送次数关联的PUCCH重复发送次数候选值作为PUCCH的重复发送次数。
参见表2,表2示例性地给出了一种PUSCH的重复发送次数和PUCCH的重复发送次数之间的关联关系。
表2
假设RAR指示的PUSCH的重复发送次数为2,则终端可以确定PUCCH的重复发送次数为4。
在另一个例子中,每个PUSCH重复发送次数候选值关联多个PUCCH重复发送次数候选值,终端可以从PUSCH的重复发送次数关联的多个PUCCH重复发送次数候选值中确定其中一个作为PUCCH的重复发送次数。其中,每个PUSCH重复发送次数候选值关联的多个PUCCH重复发送次数候选值中的至少一部分大于1。
作为一个示例,终端可以根据网络设备的指示从PUSCH的重复发送次数关联的多个PUCCH重复发送次数候选值中确定PUCCH的重复发送次数。
具体地,网络设备可以向终端发送第二指示信息,终端可以根据第二指示信息,从PUSCH的重复发送次数关联的PUCCH重复发送次数候选值中选择PUCCH的重复发送次数。例如,第二指示信息可以包括候选值的索引,终端可以根据候选值的索引,从PUSCH的重复发送次数关联的多个PUCCH重复发送次数候选值中选择PUCCH的重复发送次数。
作为另一个示例,终端可以自行从PUSCH的重复发送次数关联的多个PUCCH重复发送次数候选值中选择PUCCH的重复发送次数。
由上,终端可以根据PUSCH的重复发送次数确定PUCCH的重复发送次数。上文仅就第四个实施例的方案与第一个实施例、第三个实施例的方案的不同之处进行具体描述,关于第四个实施例的更多内容可以参照上文的相关内容,在此不再赘述。
本申请实施例的方案中,PUCCH的重复发送次数大于或等于上述的参考发送次数(也即,PUSCH的重复发送次数或PRACH的重复发送次数)。
在一个非限制性的例子中,PUCCH的重复发送次数可以根据PRACH和/或PUSCH的信道质量确定。
具体地,网络设备可以根据PRACH和/或PUSCH的信道质量,确定PUCCH的重复发送次数,然后通过第二指示信息向终端指示 PUCCH的重复发送次数。在这种情况下,网络设备在接收PRACH之后,向终端发送第二指示信息,或者,网络设备在接收PUSCH之后,向终端发送第二指示信息(例如,第二指示信息可以承载于用于调度消息4的DCI中)。
可以理解的是,在具体实施中,上述方法可以采用软件程序的方式实现,该软件程序运行于芯片或芯片模组内部集成的处理器中;或者,该方法可以采用硬件或者软硬结合的方式来实现,例如用专用的芯片或芯片模组来实现,或者,用专用的芯片或芯片模组结合软件程序来实现。
参照图4,图4是本申请实施例中一种随机接入装置的结构示意图,图4示出的随机接入装置可以部署于上述的终端,图4示出的装置可以包括:
通信模块41,用于响应于随机接入成功,重复发送混合自动重传请求确认HARQ-ACK。
在具体实施中,图4示出的随机接入装置可以对应于终端中具有通信功能的芯片;或者对应于终端中包括具有通信功能的芯片或芯片模组,或者对应于终端。
本申请实施例还提供另一种随机接入装置,该随机接入装置可以部署于上述的网络设备,该随机接入装置可以包括:通信模块,用于如果终端随机接入成功,接收物理上行控制信道PUCCH,接收混合自动重传请求确认HARQ-ACK,所述HARQ-ACK的重复发送次数大于1或者等于1。
在具体实施中,该随机接入装置可以对应于网络设备中具有通信功能的芯片;或者对应于网络设备中包括具有通信功能的芯片或芯片模组,或者对应于网络设备。
关于本申请实施例中的随机接入装置的工作原理、工作方法和有益效果等更多内容,可以参照上文关于随机接入方法的相关描述,在 此不再赘述。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时,上述的随机接入方法被执行。所述存储介质可以包括ROM、RAM、磁盘或光盘等。所述存储介质还可以包括非挥发性存储器(non-volatile)或者非瞬态(non-transitory)存储器等。
本申请实施例还提供一种终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述的随机接入方法的步骤。所述终端包括但不限于手机、计算机、平板电脑等终端设备。
参照图5,图5是本申请实施例中一种终端的结构示意图。图5示出的终端包括存储器51、处理器52和收发器53,处理器52和存储器51、收发器53耦合,存储器51可以位于终端内,也可以位于终端外。存储器51、处理器52和收发器53可以通过通信总线连接。收发器53用于与其他设备或通信网络通信。可选的,收发器53可以为发射机。所述存储器51上存储有可在所述处理器52上运行的计算机程序,所述处理器52运行所述计算机程序时收发器53执行上述实施例所提供的随机接入方法中的步骤。
本申请实施例还提供一种网络设备,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述的随机接入方法的步骤。关于所述网络设备的具体结构可以参照关于图5的相关描述,在此不再赘述。
应理解,本申请实施例中,所述处理器可以为中央处理单元(central processing unit,简称CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,简称DSP)、专用集成电路(application specific integrated circuit,简称ASIC)、现场可编程门阵列(field programmable gate array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用 处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,简称ROM)、可编程只读存储器(programmable ROM,简称PROM)、可擦除可编程只读存储器(erasable PROM,简称EPROM)、电可擦除可编程只读存储器(electrically EPROM,简称EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,简称RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,简称RAM)可用,例如静态随机存取存储器(static RAM,简称SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,简称SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,简称DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,简称ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,简称SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,简称DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并 不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法、装置和***,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的;例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式;例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的 模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,表示前后关联对象是一种“或”的关系。
本申请实施例中出现的“多个”是指两个或两个以上。
本申请实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本申请实施例中对设备个数的特别限定,不能构成对本申请实施例的任何限制。
虽然本申请披露如上,但本申请并非限定于此。任何本领域技术人员,在不脱离本申请的精神和范围内,均可作各种更动与修改,因此本申请的保护范围应当以权利要求所限定的范围为准。

Claims (27)

  1. 一种随机接入方法,其特征在于,包括:
    响应于随机接入成功,重复发送混合自动重传请求确认HARQ-ACK。
  2. 根据权利要求1所述的随机接入方法,其特征在于,所述随机接入成功包括:接收到随机接入响应RAR和/或终端的竞争解决标识。
  3. 根据权利要求1所述的随机接入方法,其特征在于,所述HARQ-ACK承载于物理上行控制信道PUCCH,所述PUCCH的重复发送次数根据目标同步信号块SSB或者所述目标SSB所在的SSB组确定。
  4. 根据权利要求3所述的随机接入方法,其特征在于,重复发送HARQ-ACK之前,所述方法还包括:
    接收配置信息,所述配置信息包括:多个SSB中每个SSB关联的至少一个PUCCH重复发送次数候选值,或者,多个SSB组中每个SSB组关联的至少一个PUCCH重复发送次数候选值。
  5. 根据权利要求4所述的随机接入方法,其特征在于,所述配置信息还包括:SSB组配置信息,所述SSB组配置信息包括各个SSB组的SSB成员信息;
    其中,所述多个SSB或者所述各个SSB组中的SSB均为网络设备实际发送的SSB。
  6. 根据权利要求1所述的随机接入方法,其特征在于,所述HARQ-ACK承载于PUCCH,所述PUCCH的重复发送次数根据物理随机接入信道PRACH的重复发送次数和/或随机接入过程中物理上行共享信道PUSCH的重复发送次数确定。
  7. 根据权利要求6所述的随机接入方法,其特征在于,重复发送 HARQ-ACK之前,所述方法还包括:
    接收第一指示信息,所述第一指示信息用于指示参考发送次数,所述参考发送次数为:所述PRACH的重复发送次数和/或所述PUSCH的重复发送次数;
    其中,所述参考发送次数关联至少一个PUCCH重复发送次数候选值,所述PUCCH的重复发送次数为所述参考发送次数关联的至少一个PUCCH重复发送次数候选值中的一个。
  8. 根据权利要求1所述的随机接入方法,其特征在于,所述HARQ-ACK承载于PUCCH,重复发送HARQ-ACK之前,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示所述PUCCH的重复发送次数。
  9. 根据权利要求8所述的随机接入方法,其特征在于,所述第二指示信息承载于RAR或者下行控制信息DCI中,所述DCI用于调度所述RAR和/或终端的竞争解决标识。
  10. 根据权利要求8所述的随机接入方法,其特征在于,重复发送HARQ-ACK之前,所述方法还包括:
    根据所述第二指示信息,从目标SSB或者目标SSB组关联的PUCCH重复发送次数候选值中选择所述PUCCH的重复发送次数,或者,从PRACH的重复发送次数关联的PUCCH重复发送次数候选值中选择所述PUCCH的重复发送次数,或者,从PUSCH的重复发送次数关联的PUCCH重复发送次数候选值中选择所述PUCCH的重复发送次数。
  11. 根据权利要求1所述的随机接入方法,其特征在于,所述HARQ-ACK承载于PUCCH,所述PUCCH的重复发送次数根据PRACH和/或PUSCH的信道质量确定。
  12. 一种随机接入装置,其特征在于,包括:
    通信模块,用于响应于随机接入成功,重复发送混合自动重传请求确认HARQ-ACK。
  13. 一种随机接入方法,其特征在于,包括:
    如果终端随机接入成功,接收混合自动重传请求确认HARQ-ACK,所述HARQ-ACK的重复发送次数大于1或者等于1。
  14. 根据权利要求13所述的随机接入方法,其特征在于,所述终端随机接入成功包括:所述终端接收到随机接入响应RAR和/或终端的竞争解决标识。
  15. 根据权利要求13所述的随机接入方法,其特征在于,所述HARQ-ACK承载于物理上行控制信道PUCCH,所述PUCCH的重复发送次数根据目标同步信号块SSB或者所述目标SSB所在的SSB组确定。
  16. 根据权利要求15所述的随机接入方法,其特征在于,接收HARQ-ACK之前,所述方法还包括:
    发送配置信息,所述配置信息包括:多个SSB中每个SSB关联的至少一个PUCCH重复发送次数候选值,或者,多个SSB组中每个SSB组关联的至少一个PUCCH重复发送次数候选值。
  17. 根据权利要求16所述的随机接入方法,其特征在于,所述配置信息还包括:SSB组配置信息,所述SSB组配置信息包括各个SSB组的SSB成员信息;其中,所述多个SSB或者所述各个SSB组中的SSB均为网络设备实际发送的SSB。
  18. 根据权利要求13所述的随机接入方法,其特征在于,所述HARQ-ACK承载于PUCCH,所述PUCCH的重复发送次数根据物理随机接入信道PRACH的重复发送次数和/或随机接入过程中 物理上行共享信道PUSCH的重复发送次数确定。
  19. 根据权利要求18所述的随机接入方法,其特征在于,接收HARQ-ACK之前,所述方法还包括:
    发送第一指示信息,所述第一指示信息用于指示参考发送次数,所述参考发送次数为:所述PRACH的重复发送次数和/或所述PUSCH的重复发送次数;
    其中,所述参考发送次数关联至少一个PUCCH重复发送次数候选值,所述PUCCH的重复发送次数为所述参考发送次数关联的至少一个PUCCH重复发送次数候选值中的一个。
  20. 根据权利要求13所述的随机接入方法,其特征在于,所述HARQ-ACK承载于PUCCH,接收HARQ-ACK之前,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于指示所述PUCCH的重复发送次数。
  21. 根据权利要求20所述的随机接入方法,其特征在于,所述第二指示信息承载于RAR或者下行控制信息DCI中,所述DCI用于调度所述RAR和/或终端的竞争解决标识。
  22. 根据权利要求20所述的随机接入方法,其特征在于,所述PUCCH的重复发送次数是所述终端根据所述第二指示信息从目标SSB或者目标SSB组关联的PUCCH重复发送次数候选值中选择的,或者,所述PUCCH的重复发送次数是根据所述第二指示信息从PRACH的重复发送次数关联的PUCCH重复发送次数候选值中选择的,或者,所述PUCCH的重复发送次数是根据所述第二指示信息从PUSCH的重复发送次数关联的PUCCH重复发送次数候选值中选择的。
  23. 根据权利要求13所述的随机接入方法,其特征在于,所述HARQ-ACK承载于PUCCH,所述PUCCH的重复发送次数根据 PRACH和/或PUSCH的信道质量确定。
  24. 一种随机接入装置,其特征在于,包括:
    通信模块,用于如果终端随机接入成功,接收物理上行控制信道PUCCH,接收混合自动重传请求确认HARQ-ACK,所述HARQ-ACK的重复发送次数大于1或者等于1。
  25. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器运行时,使得权利要求1至11或13至23任一项所述的随机接入方法被执行。
  26. 一种终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序时执行权利要求1至11任一项所述的随机接入方法的步骤。
  27. 一种网络设备,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序时执行权利要求13至23任一项所述的随机接入方法的步骤。
PCT/CN2023/132843 2022-11-25 2023-11-21 随机接入方法及装置、终端、网络设备 WO2024109723A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211490743.2A CN118119030A (zh) 2022-11-25 2022-11-25 随机接入方法及装置、终端、网络设备
CN202211490743.2 2022-11-25

Publications (1)

Publication Number Publication Date
WO2024109723A1 true WO2024109723A1 (zh) 2024-05-30

Family

ID=91195274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/132843 WO2024109723A1 (zh) 2022-11-25 2023-11-21 随机接入方法及装置、终端、网络设备

Country Status (2)

Country Link
CN (1) CN118119030A (zh)
WO (1) WO2024109723A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536471A (zh) * 2019-03-28 2019-12-03 中兴通讯股份有限公司 传输控制方法、装置、终端、基站、通信***及存储介质
CN114175841A (zh) * 2019-08-23 2022-03-11 华为技术有限公司 一种数据传输方法及装置
CN114363986A (zh) * 2020-09-29 2022-04-15 维沃移动通信有限公司 Pucch重复传输次数确定方法、装置及终端
CN114697982A (zh) * 2020-12-25 2022-07-01 展讯通信(上海)有限公司 Pucch重传次数的确定方法、装置及用户设备
US20220256620A1 (en) * 2019-11-07 2022-08-11 Fujitsu Limited Random access method and apparatus and communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536471A (zh) * 2019-03-28 2019-12-03 中兴通讯股份有限公司 传输控制方法、装置、终端、基站、通信***及存储介质
CN114175841A (zh) * 2019-08-23 2022-03-11 华为技术有限公司 一种数据传输方法及装置
US20220256620A1 (en) * 2019-11-07 2022-08-11 Fujitsu Limited Random access method and apparatus and communication system
CN114363986A (zh) * 2020-09-29 2022-04-15 维沃移动通信有限公司 Pucch重复传输次数确定方法、装置及终端
CN114697982A (zh) * 2020-12-25 2022-07-01 展讯通信(上海)有限公司 Pucch重传次数的确定方法、装置及用户设备

Also Published As

Publication number Publication date
CN118119030A (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
JP6994041B2 (ja) ランダムアクセス方法、端末装置、及びネットワーク装置
WO2020020270A1 (zh) 随机接入的方法和通信设备
WO2019157911A1 (zh) 波束管理方法、终端、网络设备以及存储介质
JP7520883B2 (ja) ランダムアクセス方法、装置及び通信システム
CN113905453B (zh) 随机接入的方法和设备
JP2022528329A (ja) ランダムアクセスレスポンスの受信方法、装置及び通信システム
EP4333489A1 (en) Sdt failure reporting method, terminal device, and network device
WO2020191679A1 (zh) 随机接入方法、终端设备和网络设备
WO2020186465A1 (zh) 用于两步随机接入的方法、终端设备和网络设备
TW202010334A (zh) 一種資料傳輸方法及裝置、終端
WO2020248944A1 (zh) 一种随机接入方法及装置
WO2021077343A1 (zh) 无线通信方法和终端设备
US12035379B2 (en) Communication method and apparatus
TW202025839A (zh) 用於隨機存取的方法、網路設備和終端設備
WO2022067519A1 (zh) 随机接入方法和终端设备
WO2023198022A1 (zh) 随机接入方法及设备
CN112567873B (zh) 一种信息传输的方法、设备及计算机存储介质
WO2017166023A1 (zh) 一种随机接入的方法及装置
WO2020223878A1 (zh) 随机接入的方法、终端设备和网络设备
WO2024109723A1 (zh) 随机接入方法及装置、终端、网络设备
CN113812191B (zh) 发送或接收反馈信息的方法和装置
WO2020206658A1 (zh) 无线通信方法、终端设备和网络设备
WO2020020352A1 (zh) 随机接入方法、终端设备和网络设备
US12048021B2 (en) Random access method and device
US20240080817A1 (en) Wireless communication method, terminal device, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23893813

Country of ref document: EP

Kind code of ref document: A1