WO2018170960A1 - 一种裸眼三维显示装置 - Google Patents

一种裸眼三维显示装置 Download PDF

Info

Publication number
WO2018170960A1
WO2018170960A1 PCT/CN2017/080060 CN2017080060W WO2018170960A1 WO 2018170960 A1 WO2018170960 A1 WO 2018170960A1 CN 2017080060 W CN2017080060 W CN 2017080060W WO 2018170960 A1 WO2018170960 A1 WO 2018170960A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
substrate
tin oxide
indium tin
oxide electrode
Prior art date
Application number
PCT/CN2017/080060
Other languages
English (en)
French (fr)
Inventor
王利民
黄泰钧
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/531,602 priority Critical patent/US10804339B2/en
Publication of WO2018170960A1 publication Critical patent/WO2018170960A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a naked eye three-dimensional display device.
  • Three-dimensional display technology has been widely used.
  • the three-dimensional display technology utilizes the parallax of the left and right eyes of the human body to give the viewer a sense of depth.
  • the more popular three-dimensional display technology can be divided into three-dimensional display that requires wearing spectroscopic glasses and three-dimensional display that is viewed by naked eyes.
  • 3D display technology is used in many fields, such as military, medical, entertainment, education, advertising and data visualization.
  • the naked eye three-dimensional display technology can bring a more intuitive and three-dimensional sensory experience, and the three-dimensional liquid crystal prism technology is a research hotspot in the naked eye three-dimensional display technology, and has broad application prospects.
  • OLED (Organic Light-Emitting Diode) transparent display is also a new technology with broad market prospects.
  • the naked-eye three-dimensional liquid crystal prism is mounted on the OLED transparent display, which enables the ordinary transparent display to have a direct three-dimensional effect.
  • 1 is a schematic structural view of a display device in which a three-dimensional liquid crystal prism is mounted on an OLED transparent display in the prior art.
  • the display device is an OLED transparent display 11, a transparent adhesive layer 12, a first glass substrate 13, a first indium tin oxide (ITO) electrode layer 14, a three-dimensional prism liquid crystal layer 15, and a second from bottom to top. Indium tin oxide electrode layer 16 and second glass substrate 17.
  • the OLED transparent display 11 itself includes the lower substrate 111 and the upper substrate 112, when the first glass substrate 13 and the second glass substrate 17 are mounted again, the thickness and weight of the entire display device are significantly increased, and higher cost.
  • the display device since the display device has four layers of substrates, the transparency thereof is affected.
  • the OLED transparent display and the three-dimensional liquid crystal prism structure are separately mounted, the three-dimensional liquid crystal prism is difficult to accurately align with the pixels, resulting in accurate alignment. Poor display.
  • the present invention proposes a naked eye three-dimensional display device.
  • the naked eye three-dimensional display device is sequentially disposed from a bottom to the top as a first substrate, a light emitting layer, a second substrate, a first indium tin oxide electrode, a three-dimensional prism liquid crystal layer, a second indium tin oxide electrode, and a third substrate.
  • a thin film transistor arranged in a matrix is disposed on a side of the first substrate facing the light emitting layer, and the first indium tin oxide electrode is disposed on the second substrate.
  • the naked eye three-dimensional display device of the present invention directly places the first indium tin oxide electrode on one side of the substrate of the OLED transparent display facing the three-dimensional prism liquid crystal layer, thereby reducing one substrate and the transparent photo-adhesive layer, and reducing the entire display device.
  • the weight reduces the cost and avoids its influence on the transmitted light, increasing the brightness of the display device.
  • the pixels of the first indium tin oxide electrode and the OLED transparent display can be uniformly designed and uniformly manufactured, thereby ensuring the alignment accuracy of the two. Improve the display quality of the product.
  • the first indium tin oxide electrode comprises liquid crystal prism electrode units arranged in a matrix.
  • the illuminating layer includes pixel units arranged in a matrix, and the pixel unit sequentially includes a transparent area and a display area in a first direction, wherein the first direction is a direction in which columns of pixel units arranged in a matrix are located.
  • the liquid crystal prism electrode unit sequentially overlaps with the display area of the pixel unit as viewed in the normal direction of the third substrate.
  • the pixel unit is mainly used for displaying a corresponding color.
  • the display area is used for displaying a color
  • the transparent area is capable of transmitting the light source to improve the brightness of the display device.
  • the liquid crystal prism electrode unit is matched with the pixel unit, which is favorable for applying a voltage to the three-dimensional prism liquid crystal layer, which is favorable for the formation of different colors.
  • the liquid crystal prism electrode unit is overlapped with the display area of the pixel unit in the normal direction of the third substrate, the liquid crystal prism electrode unit is no longer disposed in the transparent region, so that the transparent region does not have a naked eye 3D effect. Thus, the effect of transmitted light on the naked eye 3D display is avoided.
  • the pixel unit includes a plurality of sub-pixels sequentially arranged in a second direction, the second direction being a direction in which rows of pixel units arranged in a matrix are located.
  • the sub-pixels sequentially include a sub-pixel transparent area and a sub-pixel display area in the first direction, the sub-pixel transparent areas collectively constituting a transparent area of the pixel unit, and the sub-pixel display areas collectively constitute the pixel unit Display area.
  • the liquid crystal prism electrode unit is sequentially observed along the normal direction of the third substrate.
  • the display areas of the pixel units overlap each other.
  • the pixel unit of this arrangement can match various colors according to the colors displayed by the respective sub-pixels, thereby improving the color vividness of the display device.
  • the sub-pixel includes the sub-pixel transparent area and the sub-pixel display area
  • the required color is displayed through the sub-pixel display area
  • the sub-pixel transparent area is used to increase the projection of the light source, thereby improving the brightness of the display device.
  • the liquid crystal prism electrode unit is disposed at a position of the display region which is formed by the sub-pixel display regions, and the liquid crystal prism electrode unit is not disposed in the transparent region of the sub-pixel, so that the display region can generate the naked eye 3D.
  • the effect while the transparent area does not produce a naked-eye 3D effect, thereby avoiding the influence of transmitted light on the naked-eye 3D display.
  • the sub-pixels are sequentially disposed corresponding to the thin film transistors as viewed in the normal direction of the third substrate.
  • the thin film transistor controls the corresponding sub-pixel.
  • adjacent sub-pixels in the pixel unit exhibit different colors. This is similar to the conventional liquid crystal display device.
  • the sub-pixels formed by R, G, and B respectively display different colors, and then display various colors according to the gray scales of R, G, and B.
  • the second indium tin oxide electrode and the first indium tin oxide electrode are sequentially disposed correspondingly.
  • Such a second indium tin oxide electrode and a first indium tin oxide electrode can collectively constitute an electrode that controls the movement of the three-dimensional prism liquid crystal layer to display different colors.
  • the first substrate, the second substrate, and the third substrate are made of glass.
  • Glass is a commonly used substrate material in display devices. When glass is used as the substrate, the procurement cost can be reduced and the utilization rate of the product can be improved. At the same time, since the glass has good light transmittance, the brightness of the display device is improved.
  • the naked-eye three-dimensional display device proposed by the present invention reduces the weight and cost of the display device and reduces the brightness of the display device by reducing a substrate and a transparent photo-adhesive layer.
  • the naked-eye three-dimensional display device of the present invention has the first indium tin oxide electrode disposed on the second substrate, so that the pixels of the first indium tin oxide electrode and the OLED transparent display can be uniformly designed and uniformly manufactured, thereby ensuring the two.
  • the alignment accuracy improves the display quality of the product.
  • the liquid crystal prism electrode unit is disposed only in the display area of the pixel unit, not only the transparent area of the pixel unit can better transmit the light source to further improve the brightness, but also avoid the naked-eye 3D effect of the transparent area, and avoid the naked-eye 3D. Show the effect of the effect.
  • FIG. 1 is a schematic structural view of a display device equipped with a three-dimensional liquid crystal prism in an OLED transparent display in the prior art
  • FIG. 2 is a schematic cross-sectional structural view of a naked eye three-dimensional display device according to the present invention.
  • FIG. 3 is a schematic structural view of a light-emitting layer 23
  • FIG. 4 is a schematic view showing the positional relationship between the liquid crystal prism electrode unit and the display area in the pixel unit as viewed along the normal direction of the third substrate;
  • FIG. 5 is a schematic structural view of a pixel unit
  • FIG. 6 is a schematic diagram showing the correspondence between sub-pixels and thin film transistors as viewed along the normal direction of the third substrate.
  • FIG. 2 is a schematic cross-sectional view of the naked eye three-dimensional display device 20 of the first embodiment.
  • the display device 20 is sequentially disposed from the bottom to the top of the first substrate 21, the light emitting layer 23, and the second substrate 24.
  • the thin film transistors 22 arranged in a matrix are disposed on the side of the first substrate 21 facing the light-emitting layer 23, and the first indium tin oxide electrode 25 is disposed on the upper side of the second substrate 24.
  • the display device 20 in this embodiment reduces the first glass substrate 13 and takes the first indium oxide.
  • the tin electrode is directly formed on the upper substrate 112 of the OLED transparent display, thereby constituting the naked eye three-dimensional display device 20 of the present invention as shown in FIG. 2. Therefore, the weight and cost of the display device 20 in the present embodiment are greatly reduced, and at the same time, since a substrate is reduced, the transmittance of the light source is increased, and the brightness of the display device is improved.
  • the pixels of the first indium tin oxide electrode and the OLED transparent display can be uniformly designed and uniformly manufactured, thereby ensuring the alignment accuracy of the two. Improve the display quality of the product.
  • FIG. 3 is a schematic structural view of the luminescent layer 23 in the embodiment.
  • the illuminating layer 23 is provided with pixel units 231 arranged in a matrix, and pixel units arranged in a matrix are arranged here.
  • the direction in which the columns are located is the first direction 40, and the direction of the rows of the pixel units arranged in a matrix is the second direction 50.
  • a luminescent material is disposed in the pixel unit 231 so that the display device 20 can be provided The light source needed.
  • the pixel unit 231 is configured to be capable of displaying light of a plurality of colors, the pixel unit 231 functions not only as a backlight but also as a color resist in an ordinary liquid crystal display.
  • the pixel unit 231 sequentially includes a transparent area 232 and a display area 233 in the first direction 40. This arrangement is such that the light-emitting layer 23 exhibits a structure in which the transparent region and the display region are sequentially spaced apart in the first direction 40. The setting of the transparent area further increases the brightness of the display device.
  • the first indium tin oxide electrode 25 includes liquid crystal prism electrode units 251 arranged in a matrix. As viewed in the normal direction of the third substrate 28 of the display device 20, the liquid crystal prism electrode unit 251 is overlapped with the display region 233 in order, as shown in FIG. 4, which is a schematic view in which the liquid crystal prism electrode unit 251 and the display region 233 overlap each other.
  • This arrangement makes the display area 233 have a naked-eye 3D display effect, and the transparent area 232 does not have a naked-eye 3D display effect because it does not have a liquid crystal prism electrode, thereby avoiding the influence of transmitted light on the naked-eye 3D display effect.
  • the pixel unit 231 includes a plurality of sub-pixels 235 arranged in the second direction 50.
  • the number of the sub-pixels 235 is 3, as shown in FIG. 5, adjacent sub-pixels exhibit different colors.
  • the three sub-pixels 235 are sequentially arranged to respectively emit R (red light), G (green light), and B (blue light) colors.
  • the light, R, G, and B are three basic colors, and the mixed light of different colors can be displayed by the combination of different gray levels, thereby ensuring that the pixel unit 231 can display light of a plurality of colors.
  • each of the sub-pixels 235 sequentially includes a sub-pixel transparent area 2351 for transmitting light and a sub-pixel display area 2352 for emitting light of a corresponding color, and thus the pixel, in the first direction 40.
  • the transparent area of the unit 231 is composed of three sub-pixel transparent areas 2351, and the display area is composed of three sub-pixel display areas 2352.
  • the pixel unit 231 thus disposed, when viewed along the normal direction of the third substrate 28 of the display device 20, will overlap the three sub-pixel display regions 2352 in the pixel unit 231.
  • the pixel unit 231 may also include four sub-pixels, and the four sub-pixels may be sequentially arranged to emit light of R (red light), G (green light), B (blue light), and W (white light) colors, respectively.
  • Sub-pixels can also emit light of other colors, which is not limited here.
  • the pixel unit 231 includes a plurality of sub-pixels 235 arranged in the second direction, the sub-pixels 235 arranged in a matrix and the thin film arranged in a matrix on the first substrate 21 are viewed from the normal direction of the third substrate 28.
  • the transistors 22 are sequentially disposed correspondingly as shown in FIG. 6, so that each of the thin film transistors controls the corresponding sub-pixels, which facilitates display by the display device 20.
  • the second indium tin oxide electrode 27 and the first indium tin oxide electrode 25 are sequentially disposed correspondingly.
  • the first substrate, the second substrate, and the third substrate in the embodiment are all selected from a glass substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种裸眼三维显示装置(20)。其自下而上依次设置有第一基板(21)、发光层(23)、第二基板(24)、第一氧化铟锡电极(25)、三维棱镜液晶层(26)、第二氧化铟锡电极(27)和第三基板(28),在第一基板上朝向发光层的一侧设置有薄膜晶体管(22)。第一氧化铟锡电极直接设置在第二基板上,减少了一块基板和透明光胶层,降低了装置的重量,提高了显示的亮度,保证了对位精准度。当第一氧化铟锡电极中的液晶棱镜电极单元(251)与发光层中的像素单元(231)中的显示区(233)相互重叠设置时,避免了透射光对裸眼3D显示的影响,提高了3D显示效果。

Description

一种裸眼三维显示装置
相关申请的交叉引用
本申请要求享有于2017年3月21日提交的名称为“一种裸眼三维显示装置”的中国专利申请CN201710169953.4的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及显示技术领域,尤其涉及一种裸眼三维显示装置。
背景技术
三维显示技术得到了广泛的应用。三维显示技术利用人体左右两眼的视差使观看者获得深度感。目前比较流行的三维显示技术,可分为需要佩戴分光眼镜的三维显示和裸眼观看的三维显示。三维显示技术在很多领域都有广泛的应用,如军事、医疗、娱乐、教育、广告和数据可视化等。
裸眼三维显示技术可以给人带来更为直观和立体的感官体验,而三维液晶棱镜技术则是裸眼三维显示技术中的研究热点,具有广泛的应用前景。OLED(有机发光二极管)透明显示器也是具有广泛市场前景的新技术,在OLED透明显示器上搭载裸眼三维液晶棱镜,能够使普通的透明显示器拥有直接的三维效果。图1为现有技术中OLED透明显示器搭载三维液晶棱镜的显示装置的结构示意图。该显示装置自下而上依次为OLED透明显示器11、透明光胶层12、第一玻璃基板13、第一氧化铟锡(ITO,indium tin oxide)电极层14、三维棱镜液晶层15、第二氧化铟锡电极层16和第二玻璃基板17。该显示装置,由于OLED透明显示器11本身就含有下基板111和上基板112,因此当其再次搭载第一玻璃基板13和第二玻璃基板17后,整个显示装置的厚度和重量均明显增加,而且成本较高。同时由于该显示装置具有四层基板,从而使得其透明度受到影响,再者,由于OLED透明显示器与三维液晶棱镜结构是分体搭载在一起的,因此三维液晶棱镜很难与像素精准对位,导致显示不良。
发明内容
为了克服现有技术中OLED透明显示器搭载三维棱镜液晶构成的3D显示装置所存在的技术问题,本发明提出了一种裸眼三维显示装置。
本发明提出的裸眼三维显示装置,自下而上依次设置为第一基板、发光层、第二基板、第一氧化铟锡电极、三维棱镜液晶层、第二氧化铟锡电极和第三基板,其中,在所述第一基板上朝向所述发光层的一侧设置有呈矩阵式排列的薄膜晶体管,所述第一氧化铟锡电极设置在所述第二基板上。
本发明的裸眼三维显示装置,直接将第一氧化铟锡电极设置在OLED透明显示器的朝向三维棱镜液晶层的基板的一面上,从而减少了一块基板和透明光胶层,降低了整个显示装置的重量,降低了成本,并避免了其对透射光的影响,增加了显示装置的亮度。同时,由于第一氧化铟锡电极直接设置在OLED透明显示器的基板上,使得第一氧化铟锡电极与OLED透明显示器的像素能够进行统一设计、统一制作,保证了二者的对位精准度,提高了产品的显示品质。
作为对本发明的进一步改进,所述第一氧化铟锡电极包含呈矩阵式排列的液晶棱镜电极单元。所述发光层包含呈矩阵式排列的像素单元,所述像素单元在第一方向上依次包括透明区和显示区,所述第一方向为呈矩阵式排列的像素单元的列所在的方向。沿所述第三基板的法线方向观测,所述液晶棱镜电极单元依次与所述像素单元的显示区相互重叠。
像素单元主要用于显示对应的颜色,当像素单元包括透明区和显示区时,显示区用于显示颜色,透明区能够使光源透过,提高显示装置的亮度。液晶棱镜电极单元与像素单元匹配设置,有利于对三维棱镜液晶层施加电压,有利于不同颜色的形成。尤其当沿第三基板的法线方向观测,液晶棱镜电极单元依次与像素单元的显示区相互重叠时,使得透明区内不再设置有液晶棱镜电极单元,从而透明区就不会产生裸眼3D效果,从而避免了透射光对裸眼3D显示的影响。
作为对像素单元的进一步改进,所述像素单元包括若干个沿第二方向依次排列的子像素,所述第二方向为呈矩阵式排列的像素单元的行所在的方向。所述子像素在所述第一方向上依次包括子像素透明区和子像素显示区,所述子像素透明区共同构成所述像素单元的透明区,所述子像素显示区共同构成所述像素单元的显示区。此时,沿所述第三基板的法线方向观测,所述液晶棱镜电极单元依次与 所述像素单元的显示区相互重叠。
这种设置的像素单元,能够根据各个子像素显示的颜色匹配出各种不同的颜色,从而提高了显示装置的色彩鲜艳度。同时,当子像素包含子像素透明区和子像素显示区时,需要的颜色通过子像素显示区进行显示,子像素透明区用于增加光源的投射,提高了显示装置的亮度。同样,沿第三基板的法线方向看,在由子像素显示区共同构成的的显示区位置设置液晶棱镜电极单元,而不在子像素透明区设置液晶棱镜电极单元,从而使得显示区能够产生裸眼3D效果,而透明区不会产生裸眼3D效果,从而避免了透射光对裸眼3D显示的影响。
作为对本发明的进一步改进,沿所述第三基板的法线方向观测,所述子像素与所述薄膜晶体管依次对应设置。这种设置,薄膜晶体管控制对应的子像素。
进一步,所述像素单元中的相邻的子像素呈现出不同的颜色。这就类似于现有的液晶显示装置,如R、G、B分别构成的子像素显示出不同的颜色,再根据R、G、B各个灰阶的不同,显示出各种不同的颜色。
作为对本发明的进一步改进,所述第二氧化铟锡电极与所述第一氧化铟锡电极依次对应设置。这样的第二氧化铟锡电极和第一氧化铟锡电极能够共同构成控制三维棱镜液晶层运动的电极,以便显示不同的颜色。
在一个优选的实施例中,所述第一基板、所述第二基板和所述第三基板的材质均为玻璃。玻璃是显示装置中常用的基板材料,选用玻璃作为基板,就能降低采购成本,提高产品的利用率,同时,由于玻璃具有良好的光透射率,这样就提高了显示装置的亮度。
总之,本发明提出的裸眼三维显示装置,由于减少了一块基板和透明光胶层,降低了显示装置的重量和成本,增加了显示装置的亮度。而且,本发明的裸眼三维显示装置,将第一氧化铟锡电极设置在第二基板上,使得第一氧化铟锡电极与OLED透明显示器的像素能够进行统一设计、统一制作,保证了二者的对位精准度,提高了产品的显示品质。尤其当液晶棱镜电极单元只设置在像素单元的显示区时,不仅使得像素单元的透明区能够更好地透射光源进一步提高亮度,而且也避免了透明区产生裸眼3D效果,避免了其对裸眼3D显示效果的影响。
附图说明
在下文中将基于实施例并参考附图来对本发明进行更详细的描述。其中:
图1为现有技术中OLED透明显示器搭载三维液晶棱镜的显示装置的结构示意图;
图2为本发明提出的裸眼三维显示装置剖面结构示意图;
图3为发光层23的结构示意图;
图4为沿第三基板法线方向观测,液晶棱镜电极单元与像素单元中的显示区位置关系的示意图;
图5为像素单元结构示意图;
图6为沿第三基板法线方向观测,子像素与薄膜晶体管对应关系示意图。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例。
具体实施方式
以下将结合附图对本发明的内容作出详细的说明,下文中的“上”“下”“左”“右”均为相对于图示方向,不应理解为对本发明的限制。
图2为实施例一的裸眼三维显示装置20的剖面结构示意图,从图2中可以看出,该显示装置20自下而上依次设置为第一基板21、发光层23、第二基板24、第一氧化铟锡电极25、三维棱镜液晶层26、第二氧化铟锡电极27和第三基板28。在本实施例中,在第一基板21上朝向发光层23的一侧设置有呈矩阵式排列的薄膜晶体管22,并且第一氧化铟锡电极25设置在第二基板24的上侧面上。
相比于如图1所示的现有技术中的OLED透明显示器搭载三维液晶棱镜的显示装置的结构示意图,本实施例中的显示装置20减少了第一玻璃基板13,采取将第一氧化铟锡电极直接制作在OLED透明显示器的上基板112上,从而构成了如图2所示的本发明的裸眼三维显示装置20。所以,本实施例中的显示装置20的重量和成本大大降低,同时,由于减少了一块基板,从而增加了光源的透射率,提高了显示装置的亮度。尤其当将第一氧化铟锡电极25直接制作在第二基板24上时,使得第一氧化铟锡电极与OLED透明显示器的像素能够进行统一设计、统一制作,保证了二者的对位精准度,提高了产品的显示品质。
图3为本实施例中的发光层23的结构示意图,从图3中可以看出,发光层23上设置有呈矩阵式排列的像素单元231,在这里设定,呈矩阵式排列的像素单元的列所在的方向为第一方向40,呈矩阵式排列的像素单元的行所在的方向为第二方向50。像素单元231中设置有发光材料,从而能够为显示装置20提供其所 需要的光源。尤其当像素单元231设置成能够显示出多种颜色的光时,使得像素单元231不仅起到了背光源的作用,而且起到了普通液晶显示器中色阻的作用。为了进一步提高显示装置20的亮度,像素单元231在第一方向40上依次包括透明区232和显示区233。这种设置,使得发光层23在第一方向40上呈现出透明区和显示区依次间隔设置的结构。透明区的设置进一步提高了显示装置的亮度。
在本实施例中,第一氧化铟锡电极25包含呈矩阵式排列的液晶棱镜电极单元251。沿显示装置20的第三基板28的法线方向观测,液晶棱镜电极单元251依次与显示区233相互重叠,如图4所示为液晶棱镜电极单元251与显示区233相互重叠的示意图。这种设置,使得显示区233具有裸眼3D显示效果,而透明区232由于不具有液晶棱镜电极而不具有裸眼3D显示效果,从而避免了透射光对裸眼3D显示效果的影响。
为了能够保证像素单元231能够显示多种颜色的光,优选地,像素单元231包括若干个沿第二方向50依次排列的子像素235,在本实施例中,优选地,子像素235的数量为3个,如图5所示,相邻的子像素呈现出不同的颜色,在这里,3个子像素235依次设置为分别发出R(红色光)、G(绿色光)、B(蓝色光)颜色的光,R、G、B为三种基本颜色,通过不同灰阶的组合,能够显示出不同颜色的混合光,从而保证了像素单元231能够显示多种颜色的光。在这里,每个子像素235沿第一方向40依次包括子像素透明区2351和子像素显示区2352,子像素透明区2351用于透射光,子像素显示区2352用于发出对应颜色的光,因此像素单元231的透明区由3个子像素透明区2351共同构成,显示区由3个子像素显示区2352共同构成。这样设置的像素单元231,当沿显示装置20的第三基板28的法线方向观测时,液晶棱镜电极单元251将会与像素单元231中的3个子像素显示区2352相互重叠。
当然,像素单元231也可以包含4个子像素,4个子像素可以依次设置为分别发出R(红色光)、G(绿色光)、B(蓝色光)、W(白色光)颜色的光。子像素也可以发出其他颜色的光,在这里不做限制。
当像素单元231包括若干个沿第二方向依次排列的子像素235时,从第三基板28的法线方向看,呈矩阵式排列的子像素235与第一基板21上呈矩阵式排列的薄膜晶体管22依次对应设置,如图6所示,从而每个薄膜晶体管控制对应的子像素,有利于显示装置20进行显示。
为了保证三维棱镜液晶层26中液晶的旋转方向,优选地,第二氧化铟锡电极27与第一氧化铟锡电极25依次对应设置。
为了进一步控制成本,本实施例中的第一基板、第二基板和第三基板均选用玻璃基板。
最后说明的是,以上实施例仅用于说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换。尤其是,只要不存在结构上的冲突,各实施例中的特征均可相互结合起来,所形成的组合式特征仍属于本发明的范围内。只要不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (18)

  1. 一种裸眼三维显示装置,其中,所述显示装置自下而上依次设置有第一基板、发光层、第二基板、第一氧化铟锡电极、三维棱镜液晶层、第二氧化铟锡电极和第三基板,其中,
    在所述第一基板上朝向所述发光层的一侧设置有呈矩阵式排列的薄膜晶体管,
    所述第一氧化铟锡电极设置在所述第二基板上。
  2. 根据权利要求1所述的显示装置,其中,所述第一氧化铟锡电极包含呈矩阵式排列的液晶棱镜电极单元。
  3. 根据权利要求2所述的显示装置,其中,所述发光层包含呈矩阵式排列的像素单元,所述像素单元在第一方向上依次包括透明区和显示区,所述第一方向为呈矩阵式排列的像素单元的列所在的方向。
  4. 根据权利要求3所述的显示装置,其中,所述像素单元包括若干个沿第二方向依次排列的子像素,所述第二方向为呈矩阵式排列的像素单元的行所在的方向。
  5. 根据权利要求4所述的显示装置,其中,所述子像素在所述第一方向上依次包括子像素透明区和子像素显示区,所述子像素透明区共同构成所述像素单元的透明区,所述子像素显示区共同构成所述像素单元的显示区。
  6. 根据权利要求5所述的显示装置,其中,沿所述第三基板的法线方向观测,所述子像素与所述薄膜晶体管依次对应设置。
  7. 根据权利要求5所述的显示装置,其中,所述像素单元中的相邻的子像素呈现出不同的颜色。
  8. 根据权利要求3所述的显示装置,其中,沿所述第三基板的法线方向观测,所述液晶棱镜电极单元依次与所述像素单元的显示区相互重叠。
  9. 根据权利要求5所述的显示装置,其中,沿所述第三基板的法线方向观测,所述液晶棱镜电极单元依次与所述像素单元的显示区相互重叠。
  10. 根据权利要求6所述的显示装置,其中,沿所述第三基板的法线方向观测,所述液晶棱镜电极单元依次与所述像素单元的显示区相互重叠。
  11. 根据权利要求7所述的显示装置,其中,沿所述第三基板的法线方向观 测,所述液晶棱镜电极单元依次与所述像素单元的显示区相互重叠。
  12. 根据权利要求1所述的显示装置,其中,所述第二氧化铟锡电极与所述第一氧化铟锡电极依次对应设置。
  13. 根据权利要求2所述的显示装置,其中,所述第二氧化铟锡电极与所述第一氧化铟锡电极依次对应设置。
  14. 根据权利要求3所述的显示装置,其中,所述第二氧化铟锡电极与所述第一氧化铟锡电极依次对应设置。
  15. 根据权利要求4所述的显示装置,其中,所述第二氧化铟锡电极与所述第一氧化铟锡电极依次对应设置。
  16. 根据权利要求5所述的显示装置,其中,所述第二氧化铟锡电极与所述第一氧化铟锡电极依次对应设置。
  17. 根据权利要求6所述的显示装置,其中,所述第二氧化铟锡电极与所述第一氧化铟锡电极依次对应设置。
  18. 根据权利要求12所述的显示装置,其中,所述第一基板、所述第二基板和所述第三基板的材质均为玻璃。
PCT/CN2017/080060 2017-03-21 2017-04-11 一种裸眼三维显示装置 WO2018170960A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/531,602 US10804339B2 (en) 2017-03-21 2017-04-11 Naked-eye three-dimensional display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710169953.4 2017-03-21
CN201710169953.4A CN107065206B (zh) 2017-03-21 2017-03-21 一种裸眼三维显示装置

Publications (1)

Publication Number Publication Date
WO2018170960A1 true WO2018170960A1 (zh) 2018-09-27

Family

ID=59620949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080060 WO2018170960A1 (zh) 2017-03-21 2017-04-11 一种裸眼三维显示装置

Country Status (3)

Country Link
US (1) US10804339B2 (zh)
CN (1) CN107065206B (zh)
WO (1) WO2018170960A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021070236A1 (ja) * 2019-10-08 2021-04-15 シャープ株式会社 発光デバイス
HUP2000327A1 (hu) 2020-10-06 2022-05-28 Von Schleinitz Robert Eljárás és eszköz térbeli vizuális kép megjelenítésére

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104969121A (zh) * 2013-03-27 2015-10-07 松下知识产权经营株式会社 图像显示装置
CN105929600A (zh) * 2016-06-30 2016-09-07 京东方科技集团股份有限公司 一种透明显示屏以及透明显示装置
US20160266447A1 (en) * 2015-03-10 2016-09-15 Samsung Display Co., Ltd. Liquid crystal lens panel and display device including liquid crystal lens panel
CN105974668A (zh) * 2016-07-22 2016-09-28 京东方科技集团股份有限公司 透明显示装置及其制造方法
CN205656404U (zh) * 2016-05-31 2016-10-19 京东方科技集团股份有限公司 显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM368088U (en) * 2009-04-07 2009-11-01 Chunghwa Picture Tubes Ltd Integrated electro chromic 2D/3D display device
CN103176308B (zh) * 2013-04-03 2015-10-14 上海交通大学 基于液晶棱镜阵列的全分辨率自由立体显示设备及方法
CN103941469B (zh) * 2014-04-09 2023-03-03 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
TWI533448B (zh) * 2014-09-26 2016-05-11 友達光電股份有限公司 有機發光二極體的畫素結構
CN104795434B (zh) * 2015-05-12 2019-01-29 京东方科技集团股份有限公司 Oled像素单元、透明显示装置及制作方法、显示设备
CN106959528B (zh) * 2016-01-08 2023-09-19 京东方科技集团股份有限公司 一种显示装置
CN105679232A (zh) * 2016-03-28 2016-06-15 王金 触控式立体有机电致发光显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104969121A (zh) * 2013-03-27 2015-10-07 松下知识产权经营株式会社 图像显示装置
US20160266447A1 (en) * 2015-03-10 2016-09-15 Samsung Display Co., Ltd. Liquid crystal lens panel and display device including liquid crystal lens panel
CN205656404U (zh) * 2016-05-31 2016-10-19 京东方科技集团股份有限公司 显示装置
CN105929600A (zh) * 2016-06-30 2016-09-07 京东方科技集团股份有限公司 一种透明显示屏以及透明显示装置
CN105974668A (zh) * 2016-07-22 2016-09-28 京东方科技集团股份有限公司 透明显示装置及其制造方法

Also Published As

Publication number Publication date
CN107065206A (zh) 2017-08-18
US10804339B2 (en) 2020-10-13
US20190386075A1 (en) 2019-12-19
CN107065206B (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
US10515597B2 (en) Display device and driving method
US11113997B2 (en) Multi-view display device
US20130141481A1 (en) Display panel and display device
US10283059B2 (en) Display device and driving method
US9870741B2 (en) Display substrate and display device
JP5662290B2 (ja) 表示装置
US10627641B2 (en) 3D display panel assembly, 3D display device and driving method thereof
US9325979B2 (en) 3D display method and 3D display device having increased viewing angle
US10102788B2 (en) Display device having white pixel and driving method therefor
CN104269432A (zh) 一种显示装置及其制作、驱动方法
WO2017092397A1 (zh) 一种三维显示装置及其驱动方法
CN103439832B (zh) 透明显示装置
WO2018170960A1 (zh) 一种裸眼三维显示装置
CN102998827A (zh) 显示装置、显示方法以及电子设备
WO2017118072A1 (zh) 显示装置
US10283024B2 (en) Display device and method for driving display device
JP2020187180A (ja) 表示装置
JP2008268839A (ja) 画像表示装置
WO2020052115A1 (zh) 像素结构、显示面板及显示装置
JP5192302B2 (ja) 液晶表示装置
JP2015138217A (ja) 電気光学装置および電子機器
KR102034044B1 (ko) 입체 영상 표시 장치 및 그의 구동 방법
JP2013114067A (ja) 液晶表示装置
KR20120139221A (ko) 영상표시장치
JP2015084110A (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902406

Country of ref document: EP

Kind code of ref document: A1