WO2018168626A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2018168626A1
WO2018168626A1 PCT/JP2018/008924 JP2018008924W WO2018168626A1 WO 2018168626 A1 WO2018168626 A1 WO 2018168626A1 JP 2018008924 W JP2018008924 W JP 2018008924W WO 2018168626 A1 WO2018168626 A1 WO 2018168626A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
display
polarization
display panel
display device
Prior art date
Application number
PCT/JP2018/008924
Other languages
English (en)
French (fr)
Inventor
笠原 滋雄
一樹 高木
井上 学
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019505930A priority Critical patent/JPWO2018168626A1/ja
Publication of WO2018168626A1 publication Critical patent/WO2018168626A1/ja
Priority to US16/565,986 priority patent/US20200007857A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/346Image reproducers using prisms or semi-transparent mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/52Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels the 3D volume being constructed from a stack or sequence of 2D planes, e.g. depth sampling systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/60Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images involving reflecting prisms and mirrors only
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/388Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume
    • H04N13/395Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume with depth sampling, i.e. the volume being constructed from a stack or sequence of 2D image planes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof

Definitions

  • the present disclosure relates to a display device that displays an image.
  • a DFD (depth fused 3D) display device As a display device that displays an image, a DFD (depth fused 3D) display device is known.
  • a DFD (depth fused 3D) display device In this type of display device, two transparent LCD (Liquid Crystal Display) panels are overlapped at intervals, and light from the backlight passes through each of the two LCD panels.
  • two transparent LCD (Liquid Crystal Display) panels are overlapped at intervals, and light from the backlight passes through each of the two LCD panels.
  • a two-dimensional image using the optical illusion phenomenon that two images are fused and displayed as one image is displayed.
  • This disclosure provides a display device that can increase the efficiency of use of light from a backlight.
  • the display device includes a display panel that displays an image, a backlight that irradiates light toward the back surface of the display panel, and a polarization state of light that represents an image from the display panel.
  • a polarization modulator that modulates the first polarization from the polarization modulator and reflects the first polarization from the polarization modulator toward the user.
  • a first mirror that transmits the second polarized light, and a second mirror that is disposed to face the first mirror at a distance from each other and reflects the second polarized light transmitted through the first mirror toward the user. And comprising.
  • the display device in the present disclosure it is possible to increase the utilization efficiency of light from the backlight.
  • FIG. 1 is a diagram illustrating a configuration of the display device according to the first embodiment.
  • FIG. 2 is a block diagram showing an electrical configuration of the display device according to Embodiment 1 (and 2).
  • FIG. 3 is a cross-sectional view showing the configuration of the polarization modulator of the display device according to the first embodiment.
  • FIG. 4 is a diagram for explaining the operation of the polarization modulator of the display device according to the first embodiment.
  • FIG. 5 is a diagram for explaining the operation of the polarization modulator according to the modification of the first embodiment.
  • FIG. 6 is a timing chart illustrating the operation of the display device according to the first embodiment.
  • FIG. 7 is a diagram for explaining an image displayed by the display device according to the first embodiment.
  • FIG. 8 is a diagram for explaining the operation of the display device according to the first embodiment.
  • FIG. 9 is a diagram for explaining the operation of the display device according to the first embodiment.
  • FIG. 10 is a timing chart illustrating the operation of the display device according to the second embodiment.
  • FIG. 11 is a block diagram illustrating an electrical configuration of the display device according to the third embodiment.
  • FIG. 12 is a timing chart illustrating the operation of the display device according to the third embodiment.
  • FIG. 13 is a diagram illustrating a configuration of a display device according to the fourth embodiment.
  • FIG. 14A is a diagram for explaining the configuration of the polarization modulator of the display device according to the fourth embodiment.
  • FIG. 14B is a diagram for explaining the configuration of the polarization modulator of the display device according to Embodiment 4.
  • FIG. 14A is a diagram for explaining the configuration of the polarization modulator of the display device according to the fourth embodiment.
  • FIG. 14B is a diagram for explaining the configuration of the polar
  • FIG. 15 is a diagram for explaining the configuration of the polarization modulator of the display device according to the fourth embodiment.
  • FIG. 16A is a diagram for explaining an image displayed by the display device according to Embodiment 4.
  • FIG. 16B is a diagram for explaining an image displayed by the display device according to Embodiment 4.
  • FIG. 17A is a diagram showing a configuration of the polarization modulator according to the first modification of the fourth embodiment.
  • FIG. 17B is a diagram illustrating a configuration of the polarization modulator according to the second modification of the fourth embodiment.
  • FIG. 17C is a diagram illustrating a configuration of the polarization modulator according to the third modification of the fourth embodiment.
  • FIG. 17D is a diagram illustrating a configuration of the polarization modulator according to the fourth modification of the fourth embodiment.
  • FIG. 17E is a diagram illustrating a configuration of the polarization modulator according to the fifth modification of the fourth embodiment.
  • FIG. 17F is a diagram illustrating a configuration of the polarization modulator according to the sixth modification of the fourth embodiment.
  • FIG. 18 is a diagram illustrating a configuration of a display device according to the fifth embodiment.
  • FIG. 19A is a diagram for explaining the configuration of the polarization modulator of the display device according to the fifth embodiment.
  • FIG. 19B is a diagram for explaining the configuration of the polarization modulator of the display device according to Embodiment 5.
  • FIG. 19A is a diagram for explaining the configuration of the polarization modulator of the display device according to the fifth embodiment.
  • FIG. 19B is a diagram for explaining the configuration of the polarization modulator of the display device according to Embodiment 5.
  • FIG. 20 is a diagram for explaining the configuration of the polarization modulator of the display device according to the fifth embodiment.
  • FIG. 21 is a diagram illustrating a configuration of a display device according to the sixth embodiment.
  • FIG. 22 is a diagram illustrating the configuration of the display device according to the seventh embodiment.
  • FIG. 1 is a diagram illustrating a configuration of a display device 2 according to the first embodiment.
  • the display device 2 is a DFD liquid crystal display device.
  • the display device 2 is mounted on a vehicle such as an automobile, for example, and displays a stereoscopic image 4 representing the speedometer of the vehicle or the like to the user 6.
  • the display device 2 includes a liquid crystal display module 8, a polarization modulator 10, a first mirror 12, and a second mirror 14.
  • the liquid crystal display module 8 has a backlight 16, a back polarizing film 18, a display panel 20, and a front polarizing film 22.
  • the backlight 16 is disposed to face the back polarizing film 18.
  • the backlight 16 irradiates light toward the back surface (surface opposite to the liquid crystal display unit 24) of the display panel 20 via the back polarizing film 18. Note that light from the backlight 16 includes light of any polarization direction.
  • the back polarizing film 18 is disposed between the backlight 16 and the display panel 20 and is disposed to face the back surface of the display panel 20.
  • the back polarizing film 18 has a first transmission axis that indicates the polarization direction of light transmitted through the back polarizing film 18. That is, the back polarizing film 18 transmits only light having a polarization direction substantially parallel to the first transmission axis among the light incident on the back polarizing film 18 from the backlight 16.
  • the display panel 20 is, for example, a liquid crystal display panel that transmits visible light. More specifically, the display panel 20 is, for example, a twisted nematic liquid crystal display panel in which the alignment direction of liquid crystal molecules is twisted by 90 °. A liquid crystal display unit 24 for displaying an image is formed on the front surface of the display panel 20.
  • the display panel 20 is not limited to a twisted nematic liquid crystal display panel.
  • an in-plane switching liquid crystal display panel, a vertical alignment liquid crystal display panel, or a blue phase liquid crystal display panel is used.
  • it may be a ferroelectric liquid crystal display panel or an OCB (Optically Compensated Bend) type liquid crystal display panel.
  • the front polarizing film 22 is disposed to face the liquid crystal display unit 24 of the display panel 20.
  • the front polarizing film 22 has a second transmission axis that indicates the polarization direction of light transmitted through the front polarizing film 22. That is, the front polarizing film 22 transmits only light having a polarization direction substantially parallel to the second transmission axis among light incident on the front polarizing film 22 from the liquid crystal display unit 24 of the display panel 20. Note that the direction of the second transmission axis is substantially perpendicular to the direction of the first transmission axis.
  • the light emitted from the front polarizing film 22 is, for example, S-polarized light (described later).
  • the polarization modulator 10 is a so-called active retarder.
  • the polarization modulator 10 changes the polarization state of light representing an image from the display panel 20 (that is, light emitted from the front polarizing film 22) with S-polarized light (an example of first polarized light) whose polarization directions are different from each other by 90 °. Modulate to one of P-polarized light (an example of second polarized light).
  • S-polarized light is linearly polarized light in the first polarization direction (X-axis direction).
  • P-polarized light is linearly polarized light having a second polarization direction (Y-axis direction) that is 90 ° different from the first polarization direction.
  • the first mirror 12 is, for example, a polarization beam splitter, and is disposed at an angle of 45 ° with respect to the display panel 20, for example.
  • the first mirror 12 reflects the S-polarized light from the polarization modulator 10 toward the user 6 and transmits the P-polarized light from the polarization modulator 10.
  • the inclination angle of the first mirror 12 with respect to the display panel 20 is 45 °.
  • the present invention is not limited to this, and the inclination angle may be an arbitrary angle.
  • the second mirror 14 is, for example, a reflecting mirror, and is disposed to face the first mirror 12 with an interval.
  • the second mirror 14 is disposed substantially parallel to the first mirror 12.
  • the second mirror 14 reflects the P-polarized light transmitted through the first mirror 12 toward the user 6.
  • the display device 2 is a 3D display that displays a stereoscopic image 4 to the user 6.
  • a front image 26 is displayed at a position substantially symmetrical to the user 6 with respect to the first mirror 12, and a back image 28 is displayed at a position approximately symmetrical to the user 6 with respect to the second mirror 14. Is displayed. Since the first mirror 12 and the second mirror 14 are arranged at intervals, the front image 26 and the back image 28 are displayed at different positions in the depth direction (Y-axis direction). The contents of the front image 26 and the back image 28 are the same, but the brightness is different from each other. As a result, the front image 26 and the back image 28 are fused to display a stereoscopic image 4 using an illusion phenomenon that appears as one image.
  • FIG. 2 is a block diagram showing an electrical configuration of the display device 2 according to the first embodiment.
  • the display device 2 includes a polarization modulator 10, a display panel 20, a backlight 16, and a control circuit board 30 as an electrical configuration.
  • the polarization modulator 10 has a pair of transparent electrodes 32 and 34 to which the drive voltage from the polarization modulator control circuit 48 is applied.
  • the display panel 20 includes a liquid crystal display unit 24, a scanning line driving circuit 36, and a video line driving circuit 38.
  • a plurality of scanning lines 40 extending from the scanning line driving circuit 36 and a plurality of video lines 42 extending from the video line driving circuit 38 are arranged.
  • the backlight 16 includes an LED (Light Emitting Diode) light source 44 and a light guide plate 46 that guides light from the LED light source 44 to the back polarizing film 18.
  • the arrangement of the LED light source 44 of the backlight 16 may be a direct type or an edge light type.
  • the backlight 16 may further include a diffusion plate for uniformly diffusing the light from the light guide plate 46.
  • the control circuit board 30 is electrically connected to each of the polarization modulator 10, the display panel 20, and the backlight 16.
  • the control circuit board 30 supplies power, control signals, and the like to each of the polarization modulator 10, the display panel 20, and the backlight 16.
  • the control circuit board 30 includes a polarization modulator control circuit 48 (an example of a drive control unit), an image control circuit 50 (an example of a display control unit), an AC / DC converter 52, and a backlight control circuit 54 (a lighting control unit). Example).
  • the polarization modulator control circuit 48 controls the drive voltage applied between the pair of transparent electrodes 32 and 34 of the polarization modulator 10 based on the vertical synchronization signal from the display panel 20.
  • the drive voltage is, for example, a rectangular wave voltage having a frequency of 1 to 2 kHz.
  • the image control circuit 50 generates a vertical synchronization signal, a gradation voltage, a common voltage, and the like based on an image signal acquired from the outside of the control circuit board 30 and supplies them to the display panel 20. Accordingly, the display panel 20 operates the scanning line 40 and the video line 42 by driving the scanning line driving circuit 36 and the video line driving circuit 38. As a result, the image control circuit 50 causes the liquid crystal display unit 24 of the display panel 20 to display the first image 56 and the second image 58 (FIG. 7A and FIG. b) is repeatedly displayed alternately at a predetermined cycle (for example, 60 Hz). At this time, the image control circuit 50 makes the luminance of the first image 56 and the luminance of the second image 58 different from each other.
  • the first image 56 and the second image 58 are images for forming the front image 26 and the back image 28, respectively.
  • the AC / DC converter 52 converts AC power supplied from the commercial power supply 60 into DC power, and supplies the converted DC power to each of the display panel 20 and the polarization modulator control circuit 48.
  • the backlight control circuit 54 controls the lighting of the LED light source 44 of the backlight 16 based on the AC power supplied from the commercial power supply 60.
  • FIG. 3 is a cross-sectional view illustrating a configuration of the polarization modulator 10 of the display device 2 according to the first embodiment.
  • FIG. 4 is a diagram for explaining the operation of the polarization modulator 10 of the display device 2 according to the first embodiment.
  • 4A shows the operation of the polarization modulator 10 when a drive voltage is applied between the pair of transparent electrodes 32 and 34.
  • FIG. 4B shows the operation of the polarization modulator 10 when no driving voltage is applied between the pair of transparent electrodes 32 and 34.
  • FIG. 4C shows the drive voltage applied between the pair of transparent electrodes 32 and 34.
  • the polarization modulator 10 is configured by laminating a glass substrate 62, a transparent electrode 32, a liquid crystal layer 64, a transparent electrode 34, and a glass substrate 66 in this order. Note that an extremely thin alignment film for aligning liquid crystal molecules is laminated between the transparent electrode 32 and the liquid crystal layer 64 and between the transparent electrode 34 and the liquid crystal layer 64, respectively. In FIG. 3, the illustration thereof is omitted.
  • the liquid crystal layer 64 is made of, for example, twisted nematic liquid crystal. As shown in FIGS. 4A and 4C, when a driving voltage is applied between the pair of transparent electrodes 32 and 34, the alignment directions of the liquid crystal molecules 68 are as follows. The transparent electrodes 32 are aligned in the direction from the transparent electrode 34 to the transparent electrode 34. At this time, the polarization modulator 10 is in the first state in which the direction of the polarization axis is 0 °. That is, the polarization direction of the outgoing polarized light emitted from the liquid crystal layer 64 is the same as the polarization direction of the incident polarized light incident on the liquid crystal layer 64.
  • the alignment directions ( The rubbing direction) is 90 ° twisted.
  • the polarization modulator 10 is in the second state in which the direction of the polarization axis is 90 °. That is, the polarization direction of the outgoing polarized light emitted from the liquid crystal layer 64 is 90 ° different from the polarization direction of the incident polarized light incident on the liquid crystal layer 64.
  • FIG. 5 is a diagram for explaining the operation of the polarization modulator 10A according to the modification of the first embodiment.
  • 5A shows the operation of the polarization modulator 10A when a drive voltage is applied between the pair of transparent electrodes 32 and 34.
  • FIG. 5B shows the operation of the polarization modulator 10 ⁇ / b> A when no drive voltage is applied between the pair of transparent electrodes 32 and 34.
  • FIG. 5C shows the drive voltage applied between the pair of transparent electrodes 32 and 34.
  • the liquid crystal layer 64A is composed of a nematic liquid crystal.
  • the alignment directions of the plurality of liquid crystal molecules 68 are as follows.
  • the transparent electrodes 32 are aligned in the direction from the transparent electrode 34 to the transparent electrode 34.
  • the polarization modulator 10A is in the first state in which the direction of the polarization axis is 0 °. That is, the polarization direction of the outgoing polarized light emitted from the liquid crystal layer 64A is the same as the polarization direction of the incident polarized light incident on the liquid crystal layer 64A.
  • the alignment directions of the liquid crystal molecules 68 are as follows.
  • the liquid crystal layer 64A is inclined by 45 ° with respect to the polarization direction of the outgoing polarized light emitted from the liquid crystal layer 64A.
  • the polarization modulator 10A is in the second state in which the direction of the polarization axis is 90 °. That is, the polarization direction of the outgoing polarized light emitted from the liquid crystal layer 64A is 90 ° different from the polarization direction of the incident polarized light incident on the liquid crystal layer 64A.
  • FIG. 6 is a timing chart showing the operation of the display device 2 according to the first embodiment.
  • FIG. 7 is a diagram for explaining an image 4 displayed by the display device 2 according to the first embodiment.
  • 8 and 9 are diagrams for explaining the operation of the display device 2 according to the first embodiment.
  • the image control circuit 50 causes the display panel 20 to display the first image 56 and the second image 58 on a predetermined cycle based on the vertical synchronization signal. Press repeatedly to display. At this time, the image control circuit 50 switches the display on the display panel 20 from one of the first image 56 and the second image 58 to the other at the timing when the vertical synchronization signal rises from the Low level to the High level. In the present embodiment, as shown in FIG. 6E, the backlight control circuit 54 always turns on the backlight 16.
  • FIG. 7A shows a first image 56 in the liquid crystal display unit 24 of the display panel 20.
  • FIG. FIG. 7B shows a second image 58 in the liquid crystal display unit 24 of the display panel 20.
  • (C) of FIG. 7 has shown the image 4 which the user 6 visually recognizes.
  • the image control circuit 50 determines the display position of the first image 56 on the liquid crystal display unit 24 of the display panel 20 as the second position on the liquid crystal display unit 24.
  • the display position of the image 58 is shifted by a distance D in a predetermined direction (minus direction of the Y axis).
  • the distance D is set so that the front image 26 and the back image 28 are completely overlapped as seen from the user 6, as shown in FIG. 7C.
  • the polarization modulator control circuit 48 controls the drive voltage applied to the polarization modulator 10 based on the vertical synchronization signal. At this time, the polarization modulator control circuit 48 switches from the case where the drive voltage is applied to the polarization modulator 10 and the case where the drive voltage is not applied to the other at the timing when the vertical synchronization signal rises from the Low level to the High level.
  • the polarization modulation is performed.
  • the vessel 10 is switched to the first state in which the direction of the polarization axis is 0 °. Therefore, as shown in FIG. 8, the S-polarized light (the polarization state of the light representing the first image 56) emitted from the liquid crystal display module 8 is maintained as S-polarized light by the polarization modulator 10.
  • S-polarized light from the polarization modulator 10 is reflected by the first mirror 12 toward the user 6.
  • the front image 26 corresponding to the first image 56 is displayed at a position substantially symmetrical to the user 6 with respect to the first mirror 12. .
  • the front image 26 and the back image 28 are alternately and repeatedly displayed at a predetermined cycle (for example, 60 Hz).
  • a predetermined cycle for example, 60 Hz.
  • the display position of the first image 56 on the liquid crystal display unit 24 of the display panel 20 is shifted in the negative direction of the Y axis with respect to the display position of the second image 58, the front surface is viewed from the user 6.
  • the image 26 and the back image 28 are completely overlapped. If the first image 56 and the second image 58 are displayed at the same display position on the liquid crystal display unit 24 of the display panel 20, the front image 26 and the rear image 28 are viewed from the user 6. Are overlapped in a state shifted in the Z-axis direction.
  • the three-dimensional image 4 (see FIG. 1) is displayed by an illusion phenomenon in which the front image 26 and the rear image 28 having different luminances are fused and look like one image.
  • the display device 2 displays the display panel 20 that displays an image, the backlight 16 that irradiates light toward the back of the display panel 20, and the polarization state of light that represents the image from the display panel 20.
  • the polarization modulator 10 that modulates either the first polarized light or the second polarized light whose polarization directions are different from each other, and the tilted arrangement with respect to the display panel 20, and the first polarized light from the polarization modulator 10 is changed to the user 6
  • the first mirror 12 that reflects toward the first light and transmits the second polarized light from the polarization modulator 10 is disposed to face the first mirror 12 with a space therebetween, and is transmitted through the first mirror 12.
  • a second mirror 14 that reflects the second polarized light toward the user 6.
  • the first mirror 12 and the second mirror 14 are tilted with respect to the display panel 20, so that the front image 26 formed by the first polarized light reflected by the first mirror 12, and the second The stereoscopic image 4 can be displayed by fusing the rear image 28 formed by the second polarized light reflected by the mirror 14.
  • the light from the backlight 16 need only be transmitted through one display panel 20, the light from the backlight 16 is transmitted to each of the two display panels as described in the background art section. Compared with the case of transmitting, the luminance of the backlight 16 can be suppressed, and the utilization efficiency of light from the backlight 16 can be increased.
  • the display device 2 further includes an image control circuit 50 that controls an image displayed on the display panel 20 and a polarization modulator control circuit 48 that controls driving of the polarization modulator 10.
  • the image control circuit 50 causes the display panel 20 to alternately display the first image 56 and the second image 58.
  • the polarization modulator control circuit 48 modulates the polarization state of the light representing the first image 56 into the first polarization.
  • the polarization modulator 10 modulates the polarization state of the light representing the second image 58 into the second polarization. Switch to the second state.
  • a stereoscopic image 4 can be displayed using the polarization modulator 10 which is a so-called active retarder.
  • the image control circuit 50 switches the display from one of the first image 56 and the second image 58 on the display panel 20 based on the vertical synchronization signal.
  • the polarization modulator control circuit 48 switches the polarization modulator 10 from one of the first state and the second state to the other based on the vertical synchronization signal.
  • the image control circuit 50 shifts the display position of the first image 56 on the display panel 20 in a predetermined direction with respect to the display position of the second image 58 on the display panel 20.
  • the display device 2 can display the front image 26 formed by the first image 56 and the rear image 28 formed by the second image 58 in a completely overlapping manner as viewed from the user 6. it can.
  • the first mirror 12 is a polarization beam splitter.
  • the second mirror 14 is a reflecting mirror.
  • the display device 2 can be configured easily.
  • FIG. 10 is a timing chart showing the operation of the display device 2B according to the second embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the period T1 is a transient response period in which the polarization modulator 10 (see FIG. 1) is switched from the first state to the second state.
  • the period T2 is a transient response period in which the polarization modulator 10 is switched from the second state to the first state.
  • a part of the S-polarized light emitted from the liquid crystal display module 8 is maintained as the S-polarized light by the polarization modulator 10, and the S-polarized light emitted from the liquid crystal display module 8 is retained.
  • the remaining part is modulated to P-polarized light by the polarization modulator 10. Therefore, if the second image 58 is displayed on the display panel 20 (see FIG. 1) in the period T1 and the period T2, the second image 58 is converted into the front image 26 and the rear image 28 (see FIG. 1). ), So-called crosstalk is displayed.
  • the image control circuit 50B (see FIG. 2) of the display device 2B according to the second embodiment displays the second image 58 on the display panel 20 in the periods T1 and T2. Do not display (that is, display black). Thereby, since neither the front image 26 nor the back image 28 is displayed in the period T1 and the period T2, it is possible to suppress the occurrence of the above-described crosstalk.
  • Embodiment 3 Next, Embodiment 3 will be described with reference to FIGS. 11 and 12.
  • FIG. 11 is a block diagram showing an electrical configuration of a display device 2C according to the third embodiment.
  • FIG. 12 is a timing chart showing the operation of the display device 2C according to the third embodiment.
  • the backlight control circuit 54C of the display device 2C controls the lighting of the backlight 16 based on the vertical synchronization signal from the display panel 20. Specifically, as shown in FIGS. 12B and 12E, the backlight control circuit 54C displays one of the first image 56 and the second image 58 on the display panel 20. During this period, the backlight 16 is turned on. In addition, the backlight control circuit 54C turns the backlight 16 on during a period (a period including the period T1 or the period T2) in which the display is switched from one of the first image 56 and the second image 58 on the display panel 20. Turn off the light.
  • display device 2 ⁇ / b> C further includes backlight control circuit 54 ⁇ / b> C that controls lighting of backlight 16.
  • backlight control circuit 54 ⁇ / b> C controls lighting of backlight 16.
  • the backlight 16 is turned on, and the first image 56 and the first image 56 are displayed on the display panel 20.
  • the backlight 16 is turned off during the period when the display is switched from one of the two images 58 to the other.
  • FIG. 13 is a diagram illustrating a configuration of a display device 2D according to the fourth embodiment.
  • 14A, 14B, and 15 are diagrams for explaining the configuration of the polarization modulator 10D of the display device 2D according to Embodiment 4.
  • FIG. 16A and 16B are diagrams for explaining an image 4D displayed by the display device 2D according to the fourth embodiment.
  • the display panel 20 and the polarization modulator 10D are displayed in an overlapping manner.
  • the display device 2D according to the fourth embodiment includes a polarization modulator 10D instead of the polarization modulator 10 described in the first embodiment.
  • the polarization modulator 10D is a so-called pattern retarder.
  • the polarization modulator 10D has a plurality of first phase difference regions 70 and a plurality of second phase difference regions 72.
  • the first phase difference regions 70 and the second phase difference regions 72 are alternately arranged in a stripe shape along the depth direction (Y-axis direction).
  • the plurality of first phase difference regions 70 and the plurality of second phase difference regions 72 are disposed substantially parallel to the scanning lines extending in the X-axis direction of the display panel 20.
  • the size of each of the first retardation region 70 and the second retardation region 72 in the Y-axis direction is Y of one display line in the liquid crystal display unit 24 of the display panel 20. It is approximately the same size as the axial size.
  • the size of each of the first retardation region 70 and the second retardation region 72 in the Y-axis direction may be approximately the same as the size of the adjacent display lines in the X-axis direction. .
  • the first retardation region 70 is made of a transparent glass plate
  • the second retardation region 72 is made of a ⁇ / 2 plate (1/2 wavelength plate).
  • the direction of the slow axis of the ⁇ / 2 plate constituting the second phase difference region 72 is the arrangement direction of the first phase difference region 70 and the second phase difference region 72 (Y axis). Direction).
  • the S-polarized light that has entered the first phase difference region 70 of the polarization modulator 10 ⁇ / b> D is maintained at the S-polarized light by the glass plate in the first position. The light is emitted from the phase difference region 70.
  • the S-polarized light that has entered the second phase difference region 72 of the polarization modulator 10 ⁇ / b> D is modulated into P-polarized light by the ⁇ / 2 plate, and is transmitted from the second phase difference region 72.
  • the first image 56D and the second image 58D are simultaneously displayed on the liquid crystal display unit 24 of the display panel 20.
  • a plurality of display lines are alternately arranged in a stripe shape along the depth direction (Y-axis direction).
  • a first display area 74 for displaying the first image 56D is arranged on the even-numbered display lines among the plurality of display lines.
  • a second display area 76 for displaying the second image 58D is arranged on the odd-numbered display lines among the plurality of display lines.
  • the display position of the first image 56D on the liquid crystal display unit 24 is in a predetermined direction (the negative direction of the Y axis) with respect to the display position of the second image 58D on the liquid crystal display unit 24. It is shifted by a predetermined distance D.
  • the plurality of first display areas 74 of the display panel 20 are respectively arranged corresponding to the plurality of first phase difference areas 70 of the polarization modulator 10D.
  • the plurality of second display areas 76 of the display panel 20 are respectively arranged corresponding to the plurality of second phase difference areas 72 of the polarization modulator 10D.
  • the size of each of the first display area 74 and the second display area 76 in the Y-axis direction is shown larger than the actual size.
  • the first retardation region 70 is made of a glass plate
  • the second retardation region 72 is made of a ⁇ / 2 plate.
  • the region 70 may be composed of a ⁇ / 2 plate
  • the second retardation region 72 may be composed of a glass plate. That is, only one of the first phase difference region 70 and the second phase difference region 72 may be formed of a ⁇ / 2 plate.
  • the first image 56D is displayed in the plurality of first display areas 74 of the liquid crystal display unit 24 of the display panel 20, and the second image 58D is displayed in the plurality of second display areas 76. Is displayed.
  • the S-polarized light (the polarization state of the light representing the first image 56D) from each of the plurality of first display areas 74 of the display panel 20 is each of the plurality of first lights of the polarization modulator 10D.
  • the S-polarized light is maintained by the phase difference region 70.
  • S-polarized light from each of the plurality of first retardation regions 70 of the polarization modulator 10 ⁇ / b> D is reflected toward the user 6 by the first mirror 12.
  • a front image 26 ⁇ / b> D corresponding to the first image 56 ⁇ / b> D is displayed at a position substantially symmetrical to the user 6 with respect to the first mirror 12.
  • the S-polarized light (the polarization state of light representing the second image 58D) from each of the plurality of second display regions 76 of the display panel 20 is respectively the plurality of second phase difference regions 72 of the polarization modulator 10D.
  • the P-polarized light from each of the plurality of second phase difference regions 72 of the polarization modulator 10D passes through the first mirror 12 and is then reflected toward the user 6 by the second mirror 14. Again. At this time, as shown in FIG. 13, a rear image 28D corresponding to the second image 58D is displayed at a position substantially symmetrical to the user 6 with respect to the second mirror 14.
  • the front image 26D and the back image 28D are displayed simultaneously as shown in FIG. 16B.
  • a three-dimensional image 4D is displayed by an illusion phenomenon in which the front image 26D and the back image 28D having different luminances are fused to look like one image.
  • the S-polarized light from the second display region 76 of the display panel 20 is modulated to P-polarized light and then passes through the first mirror 12 twice, so that the luminance of the rear image 28D is that of the front image 26D. Less than. Therefore, the luminance of each of the first image 56D and the second image 58D may be changed and adjusted, or by adjusting the area ratio of the first phase difference region 70 and the second phase difference region 72. The brightness of the front image 26D and the back image 28D may be adjusted.
  • the display device 2D further includes the image control circuit 50 that controls the image displayed on the display panel 20.
  • the image control circuit 50 displays the first image 56D and the second image 58D in the first display area 74 and the second display area 76 of the display panel 20, respectively.
  • the polarization modulator 10D is arranged corresponding to the first display region 74, and a first phase difference region that modulates the polarization state of the light representing the first image 56D from the display panel 20 to the first polarization.
  • 70 and a second retardation region 72 that is arranged corresponding to the second display region 76 and modulates the polarization state of the light representing the second image 58D from the display panel 20 to the second polarization.
  • a stereoscopic image 4D can be displayed using the polarization modulator 10D which is a so-called pattern retarder.
  • first phase difference region 70 and the second phase difference region 72 are composed of a ⁇ / 2 plate.
  • the polarization modulator 10D can be configured easily.
  • FIGS. 17A to 17F are diagrams showing configurations of polarization modulators 10E to 10J according to modifications 1 to 6 of Embodiment 4, respectively.
  • the first phase difference regions 70E and the second phase difference regions 72E are alternately arranged in a stripe shape along the X-axis direction.
  • the first retardation region 70E and the second retardation region 72E are disposed substantially perpendicular to the scanning line extending in the X-axis direction of the display panel 20 (see FIG. 13).
  • each of the first retardation region 70E and the second retardation region 72E in the X-axis direction is the same as the size of one display line in the liquid crystal display unit 24 of the display panel 20 in the X-axis direction. is there.
  • the size of each of the first phase difference region 70E and the second phase difference region 72E in the X-axis direction may be the same as the size in the X-axis direction of a plurality of adjacent display lines.
  • the plurality of first phase difference regions 70F and the plurality of second phase difference regions 72F are alternately arranged in a staggered manner.
  • Each of the first retardation region 70F and the second retardation region 72F is formed in a rectangular shape.
  • the plurality of second phase difference regions 72G are arranged in a staggered manner.
  • the second phase difference region 72G is formed in an indefinite shape (a bowl shape).
  • the first retardation region 70G is arranged so as to fill a region other than the plurality of second retardation regions 72G.
  • the plurality of second phase difference regions 72H are arranged in a staggered manner.
  • Each of the plurality of second retardation regions 72H is formed in a circular shape having a uniform size.
  • the first retardation region 70H is disposed so as to fill a region other than the plurality of second retardation regions 72H.
  • the plurality of second phase difference regions 72I are non-uniformly arranged.
  • Each of the plurality of second retardation regions 72I is formed in a circular shape having a uniform size.
  • the first retardation region 70I is arranged so as to fill a region other than the plurality of second retardation regions 72I.
  • the plurality of second phase difference regions 72J are non-uniformly arranged.
  • Each of the plurality of second retardation regions 72J is formed in a circular shape having a non-uniform size.
  • the first retardation region 70J is arranged so as to fill a region other than the plurality of second retardation regions 72J.
  • FIG. 18 is a diagram illustrating a configuration of a display device 2K according to the fifth embodiment.
  • 19A, FIG. 19B, and FIG. 20 are diagrams for explaining the configuration of the polarization modulator 10K of the display device 2K according to the fifth embodiment.
  • the display device 2K according to the fifth embodiment includes a polarization modulator 10K instead of the polarization modulator 10 described in the first embodiment.
  • the polarization modulator 10K is a so-called pattern retarder.
  • a ⁇ / 4 film 78 is disposed between the first mirror 12K and the second mirror 14.
  • the polarization modulator 10K has a plurality of first phase difference regions 70K and a plurality of second phase difference regions 72K.
  • the first retardation regions 70K and the second retardation regions 72K are alternately arranged in a stripe shape along the depth direction (Y-axis direction).
  • the first retardation region 70K and the second retardation region 72K are disposed substantially parallel to the scanning line extending in the X-axis direction of the display panel 20.
  • the size of each of the first retardation region 70K and the second retardation region 72K in the Y-axis direction is Y of one display line in the liquid crystal display unit 24 of the display panel 20. It is approximately the same size as the axial size.
  • the size in the Y-axis direction of each of the first retardation region 70K and the second retardation region 72K may be approximately the same as the size in the X-axis direction of a plurality of adjacent display lines. .
  • the first retardation region 70K is composed of a first ⁇ / 4 plate (1/4 wavelength plate) having a first slow axis.
  • the second retardation region 72K is composed of a second ⁇ / 4 plate having a second slow axis.
  • the direction of the first slow axis of the first ⁇ / 4 plate constituting the first retardation region 70K is the first retardation region 70K and the second retardation region 72K. Is inclined by ⁇ 45 ° with respect to the arrangement direction (Y-axis direction).
  • the direction of the second slow axis of the second ⁇ / 4 plate constituting the second retardation region 72K is the arrangement direction of the first retardation region 70K and the second retardation region 72K (Y-axis direction). ) To + 45 °. That is, the direction of the second slow axis is 90 ° different from the direction of the first slow axis.
  • the S-polarized light incident on the first retardation region 70K of the polarization modulator 10K is counterclockwise circularly polarized (first) by the first ⁇ / 4 plate. 1), and is emitted from the first retardation region 70K.
  • the S-polarized light that has entered the second retardation region 72K of the polarization modulator 10K is clockwise-circularly polarized (an example of second polarized light) by the second ⁇ / 4 plate. ) And output from the second phase difference region 72K.
  • the first image 56D and the second image 58D are simultaneously displayed on the liquid crystal display unit 24 of the display panel 20 as in the fourth embodiment.
  • the plurality of first display areas 74 (see FIG. 16A) of the display panel 20 are arranged corresponding to the plurality of first phase difference areas 70K of the polarization modulator 10K, respectively.
  • the plurality of second display areas 76 (see FIG. 16A) of the display panel 20 are respectively arranged corresponding to the plurality of second phase difference areas 72K of the polarization modulator 10K.
  • the first mirror 12K reflects the clockwise circularly polarized light from the polarization modulator 10K toward the user 6 and transmits the counterclockwise circularly polarized light from the polarization modulator 10K.
  • the first image 56D is displayed in the plurality of first display areas 74 of the liquid crystal display unit 24 of the display panel 20, and the second image 58D is displayed in the plurality of second display areas 76. Is displayed.
  • the S-polarized light (the polarization state of light representing the first image 56D) from each of the plurality of first display regions 74 is the plurality of first phase difference regions of the polarization modulator 10K.
  • the light is modulated into clockwise circularly polarized light by 70K.
  • the clockwise circular polarized light from each of the plurality of first phase difference regions 70K of the polarization modulator 10K is reflected toward the user 6 by the first mirror 12K.
  • a front image 26D corresponding to the first image 56D is displayed at a position substantially symmetric to the user 6 with respect to the first mirror 12K.
  • the S-polarized light (the polarization state of the light representing the second image 58D) from each of the plurality of second display regions 76 is counterclockwise by the plurality of second phase difference regions 72K of the polarization modulator 10K. Modulated to polarized light.
  • the counterclockwise circularly polarized light from each of the plurality of second retardation regions 72K of the polarization modulator 10K passes through the first mirror 12K and then passes through the ⁇ / 4 film 78 to form linearly polarized light (example in FIG. 18). Is converted to P-polarized light.
  • the linearly polarized light (P-polarized light) transmitted through the ⁇ / 4 film 78 is reflected toward the user 6 by the second mirror 14.
  • the linearly polarized light (P-polarized light) reflected by the second mirror 14 passes through the ⁇ / 4 film 78 and is converted into counterclockwise circularly polarized light, and then passes through the first mirror 12 again.
  • a back image 28D corresponding to the second image 58D is displayed at a position substantially symmetrical to the user 6 with respect to the second mirror 14.
  • a three-dimensional image 4D is displayed by an illusion phenomenon in which the front image 26D and the back image 28D having different luminances are fused to look like one image.
  • the first retardation region 70K is composed of the first ⁇ / 4 plate having the first slow axis.
  • the second phase difference region 72K is configured by a second ⁇ / 4 plate having a second slow axis whose direction is different by 90 ° with respect to the first slow axis.
  • the polarization modulator 10K can be configured easily.
  • FIG. 21 is a diagram showing a configuration of a display device 2L according to the sixth embodiment.
  • the display device 2L includes a ⁇ / 4 sheet 80 in addition to the components described in the first embodiment.
  • the ⁇ / 4 sheet 80 is disposed between the first mirror 12 and the user 6.
  • S-polarized light reflected by the first mirror 12 passes through the ⁇ / 4 sheet 80 and is converted to clockwise circularly polarized light. Further, the P-polarized light reflected by the second mirror 14 passes through the ⁇ / 4 sheet 80 and is converted into counterclockwise circularly polarized light.
  • each of the first polarized light reflected by the first mirror 12 and the second polarized light reflected by the second mirror 14 is linearly polarized light.
  • the display device 2L further includes a ⁇ / 4 sheet 80 that converts each of the first polarized light reflected by the first mirror 12 and the second polarized light reflected by the second mirror 14 from linearly polarized light into circularly polarized light. .
  • the user 6 can visually recognize the image 4 in three dimensions even when the user wears the polarized sunglasses 82.
  • FIG. 22 is a diagram illustrating a configuration of a display device 2M according to the seventh embodiment.
  • the arrangement of the ⁇ / 4 film 84 is different from that of the fifth embodiment.
  • the ⁇ / 4 film 84 is interposed between the polarization modulator 10K that converts linearly polarized light similar to that in the fifth embodiment to circularly polarized light and the first mirror 12 that is similar to the first embodiment. Is arranged.
  • the ⁇ / 4 film 84 has a slow axis at an angle of about 45 ° with respect to the polarization axis of the light emitted from the liquid crystal display module 8.
  • the circularly polarized light incident on the ⁇ / 4 film 84 is converted into P-polarized light and S-polarized light orthogonal to each other.
  • the S-polarized light emitted from the ⁇ / 4 film 84 is reflected toward the user 6 by the first mirror 12.
  • a front image 26D corresponding to the first image 56D is displayed at a position substantially symmetrical to the user 6 with respect to the first mirror 12.
  • the P-polarized light emitted from the ⁇ / 4 film 84 is transmitted through the first mirror 12, is then reflected toward the user 6 by the second mirror 14, and is transmitted through the first mirror 12 again.
  • a rear image 28D corresponding to the second image 58D is displayed at a position substantially symmetrical to the user 6 with respect to the second mirror 14.
  • the display device 2 (2B, 2C, 2D, 2K, 2L, 2M) is mounted on the vehicle.
  • the present invention is not limited to this, and for example, the display device is a television receiver or the like. It may be used.
  • the present disclosure is applicable to a display device that displays an image. Specifically, the present disclosure is applicable to, for example, a DFD display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

表示装置(2)は、画像を表示する表示パネル(20)と、表示パネル(20)の背面に向けて光を照射するバックライト(16)と、表示パネル(20)からの画像を表す光の偏光状態を、互いに偏光方向が異なる第1の偏光及び第2の偏光のいずれかに変調する偏光変調器(10)と、表示パネル(20)に対して傾いて配置され、偏光変調器(10)からの第1の偏光をユーザ(6)に向けて反射し、偏光変調器(10)からの第2の偏光を透過する第1のミラー(12)と、第1のミラー(12)と間隔を置いて対向して配置され、第1のミラー(12)を透過した第2の偏光をユーザ(6)に向けて反射する第2のミラー(14)とを備える。

Description

表示装置
 本開示は、画像を表示する表示装置に関する。
 画像を表示する表示装置の一つとして、DFD(Depth Fused 3D)方式の表示装置が知られている。この種の表示装置では、2枚の透明なLCD(Liquid Crystal Display)パネルが間隔を置いて重ね合わされており、バックライトからの光が2枚のLCDパネルの各々を透過する。各LCDパネルに表示される画像の輝度比を変化させることにより、2つの像が融合して1つの像に見える錯視現象を利用した立体的な画像が表示される。
特開2000-214413号公報
 本開示は、バックライトからの光の利用効率を高めることができる表示装置を提供する。
 本開示における表示装置は、画像を表示する表示パネルと、表示パネルの背面に向けて光を照射するバックライトと、表示パネルからの画像を表す光の偏光状態を、互いに偏光方向が異なる第1の偏光及び第2の偏光のいずれかに変調する偏光変調器と、表示パネルに対して傾いて配置され、偏光変調器からの第1の偏光をユーザに向けて反射し、偏光変調器からの第2の偏光を透過する第1のミラーと、第1のミラーと間隔を置いて対向して配置され、第1のミラーを透過した第2の偏光をユーザに向けて反射する第2のミラーと、を備える。
 本開示における表示装置によれば、バックライトからの光の利用効率を高めることができる。
図1は、実施の形態1に係る表示装置の構成を示す図である。 図2は、実施の形態1(及び2)に係る表示装置の電気的構成を示すブロック図である。 図3は、実施の形態1に係る表示装置の偏光変調器の構成を示す断面図である。 図4は、実施の形態1に係る表示装置の偏光変調器の動作を説明するための図である。 図5は、実施の形態1の変形例に係る偏光変調器の動作を説明するための図である。 図6は、実施の形態1に係る表示装置の動作を示すタイミングチャートである。 図7は、実施の形態1に係る表示装置により表示される画像を説明するための図である。 図8は、実施の形態1に係る表示装置の動作を説明するための図である。 図9は、実施の形態1に係る表示装置の動作を説明するための図である。 図10は、実施の形態2に係る表示装置の動作を示すタイミングチャートである。 図11は、実施の形態3に係る表示装置の電気的構成を示すブロック図である。 図12は、実施の形態3に係る表示装置の動作を示すタイミングチャートである。 図13は、実施の形態4に係る表示装置の構成を示す図である。 図14Aは、実施の形態4に係る表示装置の偏光変調器の構成を説明するための図である。 図14Bは、実施の形態4に係る表示装置の偏光変調器の構成を説明するための図である。 図15は、実施の形態4に係る表示装置の偏光変調器の構成を説明するための図である。 図16Aは、実施の形態4に係る表示装置により表示される画像を説明するための図である。 図16Bは、実施の形態4に係る表示装置により表示される画像を説明するための図である。 図17Aは、実施の形態4の変形例1に係る偏光変調器の構成を示す図である。 図17Bは、実施の形態4の変形例2に係る偏光変調器の構成を示す図である。 図17Cは、実施の形態4の変形例3に係る偏光変調器の構成を示す図である。 図17Dは、実施の形態4の変形例4に係る偏光変調器の構成を示す図である。 図17Eは、実施の形態4の変形例5に係る偏光変調器の構成を示す図である。 図17Fは、実施の形態4の変形例6に係る偏光変調器の構成を示す図である。 図18は、実施の形態5に係る表示装置の構成を示す図である。 図19Aは、実施の形態5に係る表示装置の偏光変調器の構成を説明するための図である。 図19Bは、実施の形態5に係る表示装置の偏光変調器の構成を説明するための図である。 図20は、実施の形態5に係る表示装置の偏光変調器の構成を説明するための図である。 図21は、実施の形態6に係る表示装置の構成を示す図である。 図22は、実施の形態7に係る表示装置の構成を示す図である。
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、発明者らは、当業者が本開示を十分に理解するために添付図面及び以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
 (実施の形態1)
 [1-1.表示装置の全体構成]
 まず、図1を参照しながら、実施の形態1に係る表示装置2の全体構成について説明する。図1は、実施の形態1に係る表示装置2の構成を示す図である。
 表示装置2は、DFD方式の液晶表示装置である。表示装置2は、例えば自動車等の車両に搭載され、車両のスピードメータ等を表す立体的な画像4をユーザ6に対して表示する。
 図1に示すように、表示装置2は、液晶表示モジュール8と、偏光変調器10と、第1のミラー12と、第2のミラー14とを備えている。
 液晶表示モジュール8は、バックライト16と、背面偏光フィルム18と、表示パネル20と、前面偏光フィルム22とを有している。
 バックライト16は、背面偏光フィルム18に対向して配置されている。バックライト16は、背面偏光フィルム18を介して、表示パネル20の背面(液晶表示部24と反対側の面)に向けて光を照射する。なお、バックライト16からの光には、あらゆる偏光方向の光が含まれている。
 背面偏光フィルム18は、バックライト16と表示パネル20との間に配置され、表示パネル20の背面に対向して配置されている。背面偏光フィルム18は、当該背面偏光フィルム18を透過する光の偏光方向を示す第1の透過軸を有している。すなわち、背面偏光フィルム18は、バックライト16から背面偏光フィルム18に入射した光のうち、第1の透過軸に対して略平行な偏光方向の光のみを透過させる。
 表示パネル20は、例えば可視光を透過する液晶表示パネルである。より具体的には、表示パネル20は、例えば液晶分子の配向方向が90°ツイストしたツイステッドネマティック(Twisted Nematic)型の液晶表示パネルである。表示パネル20の正面には、画像を表示するための液晶表示部24が形成されている。
 なお、表示パネル20は、ツイステッドネマティック型の液晶表示パネルに限定されず、例えば、インプレイン・スイッチング(In-Plane Switching)型の液晶表示パネル、バーチカルアライメント型の液晶表示パネル、ブルー相液晶表示パネル、強誘電性液晶表示パネル、又は、OCB(Optically Compensated Bend)型の液晶表示パネル等であってもよい。
 前面偏光フィルム22は、表示パネル20の液晶表示部24に対向して配置されている。前面偏光フィルム22は、当該前面偏光フィルム22を透過する光の偏光方向を示す第2の透過軸を有している。すなわち、前面偏光フィルム22は、表示パネル20の液晶表示部24から前面偏光フィルム22に入射した光のうち、第2の透過軸に対して略平行な偏光方向の光のみを透過させる。なお、第2の透過軸の方向は、第1の透過軸の方向に対して略垂直である。前面偏光フィルム22から出射する光は、例えばS偏光(後述する)である。
 偏光変調器10は、いわゆるアクティブリターダ(active retarder)である。偏光変調器10は、表示パネル20からの画像を表す光(すなわち、前面偏光フィルム22から出射する光)の偏光状態を、互いに偏光方向が90°異なるS偏光(第1の偏光の一例)及びP偏光(第2の偏光の一例)のいずれかに変調する。S偏光は、第1の偏光方向(X軸方向)の直線偏光である。P偏光は、第1の偏光方向に対して90°異なる第2の偏光方向(Y軸方向)の直線偏光である。
 第1のミラー12は、例えば偏光ビームスプリッタであり、表示パネル20に対して例えば45°傾いて配置されている。第1のミラー12は、偏光変調器10からのS偏光をユーザ6に向けて反射し、且つ、偏光変調器10からのP偏光を透過する。なお、本実施の形態では、第1のミラー12の表示パネル20に対する傾斜角度を45°としたが、これに限定されず、上記傾斜角度は任意の角度でよい。
 第2のミラー14は、例えば反射鏡であり、第1のミラー12と間隔を置いて対向して配置されている。第2のミラー14は、第1のミラー12に対して略平行に配置されている。第2のミラー14は、第1のミラー12を透過したP偏光をユーザ6に向けて反射する。
 実施の形態1に係る表示装置2は、ユーザ6に対して立体的な画像4を表示する3Dディスプレイである。後述するように、第1のミラー12に対してユーザ6と略対称な位置には前面画像26が表示され、第2のミラー14に対してユーザ6と略対称な位置には背面画像28が表示される。第1のミラー12及び第2のミラー14は間隔を置いて配置されているため、前面画像26及び背面画像28は、奥行き方向(Y軸方向)において異なる位置に表示される。前面画像26及び背面画像28の内容は同一であるが、輝度が互いに異なる。これにより、前面画像26と背面画像28とが融合して1つの像に見える錯視現象を利用した、立体的な画像4が表示される。
 [1-2.表示装置の電気的構成]
 次に、図2を参照しながら、実施の形態1に係る表示装置2の電気的構成について説明する。図2は、実施の形態1に係る表示装置2の電気的構成を示すブロック図である。
 図2に示すように、表示装置2は、電気的構成として、偏光変調器10と、表示パネル20と、バックライト16と、制御回路基板30とを備えている。
 偏光変調器10は、偏光変調器制御回路48からの駆動電圧が印加される一対の透明電極32,34を有している。
 表示パネル20は、液晶表示部24と、走査線駆動回路36と、映像線駆動回路38とを有している。液晶表示部24には、走査線駆動回路36から延びる複数本の走査線40と、映像線駆動回路38から延びる複数本の映像線42とが配置されている。
 バックライト16は、LED(Light Emitting Diode)光源44と、LED光源44からの光を背面偏光フィルム18へと導く導光板46とを有している。なお、バックライト16のLED光源44の配置は、直下型であってもよいし、エッジライト型であってもよい。なお、バックライト16は、さらに、導光板46からの光を均一に拡散させるための拡散板等を有していてもよい。
 制御回路基板30は、偏光変調器10、表示パネル20及びバックライト16の各々と電気的に接続されている。制御回路基板30は、偏光変調器10、表示パネル20及びバックライト16の各々に対して、電力及び制御信号等の供給を行う。制御回路基板30は、偏光変調器制御回路48(駆動制御部の一例)と、画像制御回路50(表示制御部の一例)と、AC/DCコンバータ52と、バックライト制御回路54(点灯制御部の一例)とを有している。
 偏光変調器制御回路48は、表示パネル20からの垂直同期信号に基づいて、偏光変調器10の一対の透明電極32,34の間に印加する駆動電圧を制御する。駆動電圧は、例えば、1~2kHzの周波数の矩形波電圧である。
 画像制御回路50は、制御回路基板30の外部から取得した画像信号に基づいて、垂直同期信号、階調電圧及びコモン電圧等を生成し、これらを表示パネル20に供給する。これにより、表示パネル20は、走査線駆動回路36及び映像線駆動回路38を駆動することにより、走査線40及び映像線42を動作させる。その結果、画像制御回路50は、垂直同期信号に基づいて、表示パネル20の液晶表示部24に第1の画像56及び第2の画像58(後述する図7の(a)及び図7の(b)参照)を所定の周期(例えば60Hz)で交互に繰り返し表示する。このとき、画像制御回路50は、第1の画像56の輝度と第2の画像58の輝度とを互いに異ならせる。なお、第1の画像56及び第2の画像58はそれぞれ、上述した前面画像26及び背面画像28を形成するための画像である。
 AC/DCコンバータ52は、商用電源60から供給される交流電力を直流電力に変換し、変換した直流電力を表示パネル20及び偏光変調器制御回路48の各々に供給する。
 バックライト制御回路54は、商用電源60から供給される交流電力に基づいて、バックライト16のLED光源44の点灯を制御する。
 [1-3.偏光変調器の構成]
 次に、図3及び図4を参照しながら、偏光変調器10の構成について説明する。図3は、実施の形態1に係る表示装置2の偏光変調器10の構成を示す断面図である。図4は、実施の形態1に係る表示装置2の偏光変調器10の動作を説明するための図である。なお、図4の(a)は、一対の透明電極32,34の間に駆動電圧が印加された場合の偏光変調器10の動作を示している。図4の(b)は、一対の透明電極32,34の間に駆動電圧が印加されていない場合の偏光変調器10の動作を示している。図4の(c)は、一対の透明電極32,34の間に印加される駆動電圧を示している。
 図3に示すように、偏光変調器10は、ガラス基板62、透明電極32、液晶層64、透明電極34及びガラス基板66がこの順に積層されることにより構成されている。なお、透明電極32と液晶層64との間、及び、透明電極34と液晶層64との間にはそれぞれ、液晶分子を配向させるための極薄い配向膜が積層されているが、説明の都合上、図3ではそれらの図示を省略してある。
 液晶層64は、例えばツイステッドネマティック型の液晶で構成されている。図4の(a)及び図4の(c)に示すように、一対の透明電極32,34の間に駆動電圧が印加された場合には、複数の液晶分子68の各々の配向方向は、透明電極32から透明電極34に向かう方向に揃った状態となる。このとき、偏光変調器10は、その偏光軸の方向が0°となる第1の状態となる。すなわち、液晶層64から出射した出射偏光の偏光方向は、液晶層64に入射した入射偏光の偏光方向と同じ方向になる。
 図4の(b)及び図4の(c)に示すように、一対の透明電極32,34の間に駆動電圧が印加されていない場合には、複数の液晶分子68の各々の配向方向(ラビング方向)が90°ツイストした状態となる。このとき、偏光変調器10は、その偏光軸の方向が90°である第2の状態となる。すなわち、液晶層64から出射した出射偏光の偏光方向は、液晶層64に入射した入射偏光の偏光方向に対して90°異なっている。
 なお、本実施の形態では、液晶層64をツイステッドネマティック型の液晶で構成したが、これに限定されない。図5は、実施の形態1の変形例に係る偏光変調器10Aの動作を説明するための図である。なお、図5の(a)は、一対の透明電極32,34の間に駆動電圧が印加された場合の偏光変調器10Aの動作を示している。図5の(b)は、一対の透明電極32,34の間に駆動電圧が印加されていない場合の偏光変調器10Aの動作を示している。図5の(c)は、一対の透明電極32,34の間に印加される駆動電圧を示している。
 図5に示すように、変形例に係る偏光変調器10Aでは、液晶層64Aは、ネマティック型の液晶で構成されている。図5の(a)及び図5の(c)に示すように、一対の透明電極32,34の間に駆動電圧が印加された場合には、複数の液晶分子68の各々の配向方向は、透明電極32から透明電極34に向かう方向に揃った状態となる。このとき、偏光変調器10Aは、その偏光軸の方向が0°である第1の状態となる。すなわち、液晶層64Aから出射した出射偏光の偏光方向は、液晶層64Aに入射した入射偏光の偏光方向と同じ方向になる。
 図5の(b)及び図5の(c)に示すように、一対の透明電極32,34の間に駆動電圧が印加されていない場合には、複数の液晶分子68の各々の配向方向は、液晶層64Aから出射した出射偏光の偏光方向に対して45°傾斜している。このとき、偏光変調器10Aは、その偏光軸の方向が90°である第2の状態となる。すなわち、液晶層64Aから出射した出射偏光の偏光方向は、液晶層64Aに入射した入射偏光の偏光方向に対して90°異なっている。
 [1-4.表示装置の動作]
 次に、図6~図9を参照しながら、表示装置2の動作について説明する。図6は、実施の形態1に係る表示装置2の動作を示すタイミングチャートである。図7は、実施の形態1に係る表示装置2により表示される画像4を説明するための図である。図8及び図9は、実施の形態1に係る表示装置2の動作を説明するための図である。
 図6の(a)及び図6の(b)に示すように、画像制御回路50は、垂直同期信号に基づいて、表示パネル20に第1の画像56及び第2の画像58を所定の周期で交互に繰り返し表示する。このとき、画像制御回路50は、垂直同期信号がLowレベルからHighレベルに立ち上がるタイミングで、表示パネル20における表示を第1の画像56及び第2の画像58の一方から他方に切り替える。なお、本実施の形態では、図6の(e)に示すように、バックライト制御回路54は、バックライト16を常時点灯させる。
 図7の(a)は、表示パネル20の液晶表示部24における第1の画像56を示している。図7の(b)は、表示パネル20の液晶表示部24における第2の画像58を示している。図7の(c)は、ユーザ6が視認する画像4を示している。図7の(a)及び図7の(b)に示すように、画像制御回路50は、表示パネル20の液晶表示部24における第1の画像56の表示位置を、液晶表示部24における第2の画像58の表示位置に対して所定方向(Y軸のマイナス方向)に距離Dだけシフトさせる。なお、距離Dは、図7の(c)に示すように、ユーザ6から見て、前面画像26と背面画像28とが完全に重なるように設定されている。
 図6の(c)に示すように、偏光変調器制御回路48は、垂直同期信号に基づいて、偏光変調器10に印加する駆動電圧を制御する。このとき、偏光変調器制御回路48は、垂直同期信号がLowレベルからHighレベルに立ち上がるタイミングで、偏光変調器10へ駆動電圧を印加する場合及び印加しない場合から他方に切り替える。
 図6の(b)~(d)に示すように、表示パネル20に第1の画像56が表示されている期間には、偏光変調器10には駆動電圧が印加されているため、偏光変調器10は、その偏光軸の方向が0°となる第1の状態に切り替えられる。そのため、図8に示すように、液晶表示モジュール8から出射したS偏光(第1の画像56を表す光の偏光状態)は、偏光変調器10によりS偏光に維持される。偏光変調器10からのS偏光は、第1のミラー12でユーザ6に向けて反射される。このとき、図6の(f)及び図8に示すように、第1のミラー12に対してユーザ6と略対称な位置には、第1の画像56に対応する前面画像26が表示される。
 一方、図6の(b)~(d)に示すように、表示パネル20に第2の画像58が表示されている期間には、偏光変調器10には駆動電圧が印加されていないため、偏光変調器10は、その偏光軸の方向が90°となる第2の状態に切り替えられる。そのため、図9に示すように、液晶表示モジュール8から出射したS偏光(第2の画像58を表す光の偏光状態)は、偏光変調器10によりP偏光に変調される。偏光変調器10からのP偏光は、第1のミラー12を透過した後に、第2のミラー14でユーザ6に向けて反射されて第1のミラー12を再度透過する。このとき、図6の(g)及び図9に示すように、第2のミラー14に対してユーザ6と略対称な位置には、第2の画像58に対応する背面画像28が表示される。
 以上の動作が繰り返し行われることにより、前面画像26と背面画像28とが所定の周期(例えば60Hz)で交互に繰り返し表示される。このとき、第1の画像56及び第2の画像58の各輝度は互いに異なるため、前面画像26及び背面画像28の各輝度も互いに異なっている。
 また、表示パネル20の液晶表示部24における第1の画像56の表示位置が第2の画像58の表示位置に対してY軸のマイナス方向にシフトしているため、ユーザ6から見て、前面画像26と背面画像28とが完全に重なるようになる。仮に、表示パネル20の液晶表示部24において第1の画像56と第2の画像58とが同じ表示位置に表示されている場合には、ユーザ6から見て、前面画像26と背面画像28とがZ軸方向にずれた状態で重なるようになる。
 これにより、互いに輝度の異なる前面画像26と背面画像28とが融合して1つの像に見える錯視現象により、立体的な画像4(図1参照)が表示される。
 [1-5.効果]
 上述したように、表示装置2は、画像を表示する表示パネル20と、表示パネル20の背面に向けて光を照射するバックライト16と、表示パネル20からの画像を表す光の偏光状態を、互いに偏光方向が異なる第1の偏光及び第2の偏光のいずれかに変調する偏光変調器10と、表示パネル20に対して傾いて配置され、偏光変調器10からの第1の偏光をユーザ6に向けて反射し、偏光変調器10からの第2の偏光を透過する第1のミラー12と、第1のミラー12と間隔を置いて対向して配置され、第1のミラー12を透過した第2の偏光をユーザ6に向けて反射する第2のミラー14とを備える。
 これにより、第1のミラー12及び第2のミラー14を表示パネル20に対して傾けて配置するので、第1のミラー12で反射した第1の偏光により形成された前面画像26と、第2のミラー14で反射した第2の偏光により形成された背面画像28とを融合させて、立体的な画像4を表示することができる。その結果、バックライト16からの光を1枚の表示パネル20にのみ透過させればよいため、背景技術の欄で説明したように、バックライト16からの光を2枚の表示パネルの各々に透過させる場合と比較して、バックライト16の輝度を抑えることができ、バックライト16からの光の利用効率を高めることができる。
 表示装置2は、さらに、表示パネル20に表示される画像を制御する画像制御回路50と、偏光変調器10の駆動を制御する偏光変調器制御回路48とを備える。画像制御回路50は、表示パネル20に第1の画像56と第2の画像58とを交互に表示させる。偏光変調器制御回路48は、表示パネル20に第1の画像56が表示されている際には、偏光変調器10を、第1の画像56を表す光の偏光状態を第1の偏光に変調する第1の状態に切り替え、表示パネル20に第2の画像が表示されている際には、偏光変調器10を、第2の画像58を表す光の偏光状態を第2の偏光に変調する第2の状態に切り替える。
 これにより、いわゆるアクティブリターダである偏光変調器10を用いて、立体的な画像4を表示することができる。
 さらに、画像制御回路50は、垂直同期信号に基づいて、表示パネル20において第1の画像56及び第2の画像58の一方から他方に表示を切り替える。偏光変調器制御回路48は、垂直同期信号に基づいて、偏光変調器10を第1の状態及び第2の状態の一方から他方に切り替える。
 これにより、表示パネル20において第1の画像56及び第2の画像58の一方から他方に表示を切り替える動作と、偏光変調器10を第1の状態及び第2の状態の一方から他方に切り替える動作とを同期させることができる。
 さらに、画像制御回路50は、表示パネル20における第1の画像56の表示位置を、表示パネル20における第2の画像58の表示位置に対して所定方向にシフトさせる。
 これにより、表示装置2は、ユーザ6から見て、第1の画像56により形成された前面画像26と、第2の画像58により形成された背面画像28とを完全に重ねて表示させることができる。
 さらに、第1のミラー12は、偏光ビームスプリッタである。第2のミラー14は、反射鏡である。
 これにより、表示装置2を簡易に構成することができる。
 (実施の形態2)
 次に、図10を参照しながら、実施の形態2に係る表示装置2B(図2参照)の動作について説明する。図10は、実施の形態2に係る表示装置2Bの動作を示すタイミングチャートである。なお、以下の各実施の形態において、上記実施の形態1と同一の構成要素には同一の符号を付して、その説明を省略する。
 図10の(d)に示すように、期間T1は、偏光変調器10(図1参照)が第1の状態から第2の状態に切り替えられる過渡応答期間である。また、期間T2は、偏光変調器10が第2の状態から第1の状態に切り替えられる過渡応答期間である。これらの期間T1及び期間T2においては、液晶表示モジュール8(図1参照)から出射したS偏光の一部は、偏光変調器10によりS偏光に維持され、液晶表示モジュール8から出射したS偏光の残りの一部は、偏光変調器10によりP偏光に変調される。そのため、仮に、期間T1及び期間T2において、表示パネル20(図1参照)に第2の画像58が表示された場合には、第2の画像58が前面画像26及び背面画像28(図1参照)の両方に表示される、いわゆるクロストークが発生する。
 そのため、図10の(b)に示すように、実施の形態2に係る表示装置2Bの画像制御回路50B(図2参照)は、期間T1及び期間T2において表示パネル20に第2の画像58を表示させない(すなわち、黒表示させる)。これにより、期間T1及び期間T2において、前面画像26及び背面画像28のいずれもが表示されないため、上述したクロストークの発生を抑制することができる。
 (実施の形態3)
 次に、図11及び図12を参照しながら、実施の形態3について説明する。
 [3-1.表示装置の動作]
 図11及び図12を参照しながら、実施の形態3に係る表示装置2Cの動作について説明する。図11は、実施の形態3に係る表示装置2Cの電気的構成を示すブロック図である。図12は、実施の形態3に係る表示装置2Cの動作を示すタイミングチャートである。
 図11に示すように、実施の形態3に係る表示装置2Cのバックライト制御回路54Cは、表示パネル20からの垂直同期信号に基づいて、バックライト16の点灯を制御する。具体的には、図12の(b)及び図12の(e)に示すように、バックライト制御回路54Cは、表示パネル20において第1の画像56及び第2の画像58の一方が表示されている期間には、バックライト16を点灯させる。また、バックライト制御回路54Cは、表示パネル20において第1の画像56及び第2の画像58の一方から他方に表示が切り替わる期間(期間T1又は期間T2を含む期間)には、バックライト16を消灯させる。
 これにより、図12の(f)及び図12の(g)に示すように、期間T1及び期間T2において、前面画像26及び背面画像28(図1参照)のいずれもが表示されないため、上述したクロストークの発生を抑制することができる。
 [3-2.効果]
 上述したように、本実施の形態では、表示装置2Cは、さらに、バックライト16の点灯を制御するバックライト制御回路54Cを備える。バックライト制御回路54C、表示パネル20において第1の画像56及び第2の画像58の一方が表示されている期間には、バックライト16を点灯させ、表示パネル20において第1の画像56及び第2の画像58の一方から他方に表示が切り替わる期間には、バックライト16を消灯させる。
 これにより、上記各期間において、前面画像26及び背面画像28のいずれもが表示されないため、上述したクロストークの発生を抑制することができる。
 (実施の形態4)
 [4-1.表示装置の構成]
 次に、図13~図16Bを参照しながら、実施の形態4に係る表示装置2Dの構成について説明する。図13は、実施の形態4に係る表示装置2Dの構成を示す図である。図14A、図14B及び図15は、実施の形態4に係る表示装置2Dの偏光変調器10Dの構成を説明するための図である。図16A及び図16Bは、実施の形態4に係る表示装置2Dにより表示される画像4Dを説明するための図である。なお、説明の都合上、図16Aでは、表示パネル20と偏光変調器10Dとを重ねて表示してある。
 図13に示すように、実施の形態4に係る表示装置2Dは、上記実施の形態1で説明した偏光変調器10に代えて、偏光変調器10Dを備えている。偏光変調器10Dは、いわゆるパターンリターダ(pattern retarder)である。
 図14Aに示すように、偏光変調器10Dは、複数の第1の位相差領域70と、複数の第2の位相差領域72とを有している。第1の位相差領域70及び第2の位相差領域72は、奥行き方向(Y軸方向)に沿ってストライプ状に交互に配置されている。複数の第1の位相差領域70及び複数の第2の位相差領域72は、表示パネル20のX軸方向に延びる走査線に対して略平行に配置されている。また、図14Bに示すように、第1の位相差領域70及び第2の位相差領域72の各々のY軸方向の大きさは、表示パネル20の液晶表示部24における1つの表示ラインのY軸方向の大きさと概ね同じ大きさである。なお、第1の位相差領域70及び第2の位相差領域72の各々のY軸方向の大きさは、隣接する複数の表示ラインのX軸方向の大きさと概ね同じ大きさであってもよい。
 第1の位相差領域70は透明のガラス板で構成され、第2の位相差領域72はλ/2板(1/2波長板)で構成されている。図14Bに示すように、第2の位相差領域72を構成するλ/2板の遅相軸の方向は、第1の位相差領域70及び第2の位相差領域72の配置方向(Y軸方向)に対して+45°傾いている。
 図15に示すように、表示パネル20からのS偏光のうち、偏光変調器10Dの第1の位相差領域70に入射したS偏光は、ガラス板によってS偏光に維持されたまま第1の位相差領域70から出射する。また、表示パネル20からのS偏光のうち、偏光変調器10Dの第2の位相差領域72に入射したS偏光は、λ/2板によってP偏光に変調されて第2の位相差領域72から出射する。
 また、図16Aに示すように、表示パネル20の液晶表示部24には、第1の画像56Dと第2の画像58Dとが同時に表示される。液晶表示部24には、複数の表示ラインが奥行き方向(Y軸方向)に沿ってストライプ状に交互に配置されている。複数の表示ラインのうち偶数行の表示ラインには、第1の画像56Dを表示する第1の表示領域74が配置されている。複数の表示ラインのうち奇数行の表示ラインには、第2の画像58Dを表示する第2の表示領域76が配置されている。上記実施の形態1と同様に、液晶表示部24における第1の画像56Dの表示位置は、液晶表示部24における第2の画像58Dの表示位置に対して所定方向(Y軸のマイナス方向)に所定距離Dだけシフトされている。
 なお、図16Aに示すように、表示パネル20の複数の第1の表示領域74はそれぞれ、偏光変調器10Dの複数の第1の位相差領域70に対応して配置されている。また、表示パネル20の複数の第2の表示領域76はそれぞれ、偏光変調器10Dの複数の第2の位相差領域72に対応して配置されている。図16Aでは、説明の都合上、第1の表示領域74及び第2の表示領域76の各々のY軸方向の大きさを実際の大きさよりも大きく図示してある。
 なお、本実施の形態では、第1の位相差領域70をガラス板で構成し、第2の位相差領域72をλ/2板で構成したが、これとは反対に、第1の位相差領域70をλ/2板で構成し、第2の位相差領域72をガラス板で構成してもよい。すなわち、第1の位相差領域70及び第2の位相差領域72のいずれか一方のみをλ/2板で構成してもよい。
 [4-2.表示装置の動作]
 次に、図13を参照しながら、実施の形態4に係る表示装置2Dの動作について説明する。
 上述したように、表示パネル20の液晶表示部24の複数の第1の表示領域74には、第1の画像56Dが表示され、複数の第2の表示領域76には、第2の画像58Dが表示されている。
 図13に示すように、表示パネル20の複数の第1の表示領域74の各々からのS偏光(第1の画像56Dを表す光の偏光状態)はそれぞれ、偏光変調器10Dの複数の第1の位相差領域70によりS偏光に維持される。偏光変調器10Dの複数の第1の位相差領域70の各々からのS偏光は、第1のミラー12でユーザ6に向けて反射される。このとき、図13に示すように、第1のミラー12に対してユーザ6と略対称な位置には、第1の画像56Dに対応する前面画像26Dが表示される。
 また、表示パネル20の複数の第2の表示領域76の各々からのS偏光(第2の画像58Dを表す光の偏光状態)はそれぞれ、偏光変調器10Dの複数の第2の位相差領域72によりP偏光に変調される。偏光変調器10Dの複数の第2の位相差領域72の各々からのP偏光は、第1のミラー12を透過した後に、第2のミラー14でユーザ6に向けて反射され第1のミラー12を再度透過する。このとき、図13に示すように、第2のミラー14に対してユーザ6と略対称な位置には、第2の画像58Dに対応する背面画像28Dが表示される。
 以上のようにして、図16Bに示すように、前面画像26Dと背面画像28Dとが同時に表示される。互いに輝度の異なる前面画像26Dと背面画像28Dとが融合して1つの像に見える錯視現象により、立体的な画像4Dが表示される。
 なお、表示パネル20の第2の表示領域76からのS偏光は、P偏光に変調された後、第1のミラー12を2回透過するため、背面画像28Dの輝度は、前面画像26Dの輝度よりも低下する。そのため、第1の画像56D及び第2の画像58Dの各輝度を変えて調節してもよく、あるいは、第1の位相差領域70及び第2の位相差領域72の面積比を調節することにより、前面画像26D及び背面画像28Dの各輝度を調節してもよい。
 [4-3.効果]
 上述したように、本実施の形態では、表示装置2Dは、さらに、表示パネル20に表示される画像を制御する画像制御回路50を備える。画像制御回路50は、表示パネル20の第1の表示領域74及び第2の表示領域76にそれぞれ第1の画像56D及び第2の画像58Dを表示させる。偏光変調器10Dは、第1の表示領域74に対応して配置され、表示パネル20からの第1の画像56Dを表す光の偏光状態を、第1の偏光に変調する第1の位相差領域70と、第2の表示領域76に対応して配置され、表示パネル20からの第2の画像58Dを表す光の偏光状態を、第2の偏光に変調する第2の位相差領域72とを有する。
 これにより、いわゆるパターンリターダである偏光変調器10Dを用いて、立体的な画像4Dを表示することができる。
 さらに、第1の位相差領域70及び第2の位相差領域72のいずれか一方のみがλ/2板で構成されている。
 これにより、偏光変調器10Dを簡易に構成することができる。
 [4-4.偏光変調器の変形例]
 次に、図17A~図17Fを参照しながら、実施の形態4の変形例1~6に係る偏光変調器10E~10Jの各構成について説明する。図17A~図17Fはそれぞれ、実施の形態4の変形例1~6に係る偏光変調器10E~10Jの構成を示す図である。
 図17Aに示すように、変形例1に係る偏光変調器10Eでは、第1の位相差領域70E及び第2の位相差領域72Eは、X軸方向に沿ってストライプ状に交互に配置されている。第1の位相差領域70E及び第2の位相差領域72Eは、表示パネル20(図13参照)のX軸方向に延びる走査線に対して略垂直に配置されている。
 第1の位相差領域70E及び第2の位相差領域72Eの各々のX軸方向の大きさは、表示パネル20の液晶表示部24における1つの表示ラインのX軸方向の大きさと同じ大きさである。なお、第1の位相差領域70E及び第2の位相差領域72Eの各々のX軸方向の大きさは、隣接する複数の表示ラインのX軸方向の大きさと同じ大きさであってもよい。
 図17Bに示すように、変形例2に係る偏光変調器10Fでは、複数の第1の位相差領域70F及び複数の第2の位相差領域72Fは、千鳥状に交互に配置されている。第1の位相差領域70F及び第2の位相差領域72Fの各々は、矩形状に形成されている。
 図17Cに示すように、変形例3に係る偏光変調器10Gでは、複数の第2の位相差領域72Gは、千鳥状に配置されている。第2の位相差領域72Gは、不定形状(瓢箪形状)に形成されている。第1の位相差領域70Gは、複数の第2の位相差領域72G以外の領域を埋めるように配置されている。
 図17Dに示すように、変形例4に係る偏光変調器10Hでは、複数の第2の位相差領域72Hは、千鳥状に配置されている。複数の第2の位相差領域72Hの各々は、均一な大きさの円形状に形成されている。第1の位相差領域70Hは、複数の第2の位相差領域72H以外の領域を埋めるように配置されている。
 図17Eに示すように、変形例5に係る偏光変調器10Iでは、複数の第2の位相差領域72Iは、不均一に配置されている。複数の第2の位相差領域72Iの各々は、均一な大きさの円形状に形成されている。第1の位相差領域70Iは、複数の第2の位相差領域72I以外の領域を埋めるように配置されている。
 図17Fに示すように、変形例6に係る偏光変調器10Jでは、複数の第2の位相差領域72Jは、不均一に配置されている。複数の第2の位相差領域72Jの各々は、不均一な大きさの円形状に形成されている。第1の位相差領域70Jは、複数の第2の位相差領域72J以外の領域を埋めるように配置されている。
 (実施の形態5)
 [5-1.表示装置の構成]
 次に、図18~図20を参照しながら、実施の形態5に係る表示装置2Kの構成について説明する。図18は、実施の形態5に係る表示装置2Kの構成を示す図である。図19A、図19B及び図20は、実施の形態5に係る表示装置2Kの偏光変調器10Kの構成を説明するための図である。
 図18に示すように、実施の形態5に係る表示装置2Kは、上記実施の形態1で説明した偏光変調器10に代えて、偏光変調器10Kを備えている。偏光変調器10Kは、いわゆるパターンリターダである。また、第1のミラー12Kと第2のミラー14との間には、λ/4フィルム78が配置されている。
 図19Aに示すように、偏光変調器10Kは、複数の第1の位相差領域70Kと、複数の第2の位相差領域72Kとを有している。第1の位相差領域70K及び第2の位相差領域72Kは、奥行き方向(Y軸方向)に沿ってストライプ状に交互に配置されている。第1の位相差領域70K及び第2の位相差領域72Kは、表示パネル20のX軸方向に延びる走査線に対して略平行に配置されている。また、図19Bに示すように、第1の位相差領域70K及び第2の位相差領域72Kの各々のY軸方向の大きさは、表示パネル20の液晶表示部24における1つの表示ラインのY軸方向の大きさと概ね同じ大きさである。なお、第1の位相差領域70K及び第2の位相差領域72Kの各々のY軸方向の大きさは、隣接する複数の表示ラインのX軸方向の大きさと概ね同じ大きさであってもよい。
 第1の位相差領域70Kは、第1の遅相軸を有する第1のλ/4板(1/4波長板)で構成されている。第2の位相差領域72Kは、第2の遅相軸を有する第2のλ/4板で構成されている。図19Bに示すように、第1の位相差領域70Kを構成する第1のλ/4板の第1の遅相軸の方向は、第1の位相差領域70K及び第2の位相差領域72Kの配置方向(Y軸方向)に対して-45°傾いている。第2の位相差領域72Kを構成する第2のλ/4板の第2の遅相軸の方向は、第1の位相差領域70K及び第2の位相差領域72Kの配置方向(Y軸方向)に対して+45°傾いている。すなわち、第2の遅相軸の方向は、第1の遅相軸の方向に対して90°異なっている。
 図20に示すように、表示パネル20からのS偏光のうち、偏光変調器10Kの第1の位相差領域70Kに入射したS偏光は、第1のλ/4板によって左回り円偏光(第1の偏光の一例)に変調されて第1の位相差領域70Kから出射する。また、表示パネル20からのS偏光のうち、偏光変調器10Kの第2の位相差領域72Kに入射したS偏光は、第2のλ/4板によって右回り円偏光(第2の偏光の一例)に変調されて第2の位相差領域72Kから出射する。
 また、図16A、図18に示すように、上記実施の形態4と同様に、表示パネル20の液晶表示部24には、第1の画像56Dと第2の画像58Dとが同時に表示される。
 なお、表示パネル20の複数の第1の表示領域74(図16A参照)はそれぞれ、偏光変調器10Kの複数の第1の位相差領域70Kに対応して配置されている。また、表示パネル20の複数の第2の表示領域76(図16A参照)はそれぞれ、偏光変調器10Kの複数の第2の位相差領域72Kに対応して配置されている。
 また、第1のミラー12Kは、偏光変調器10Kからの右回り円偏光をユーザ6に向けて反射し、且つ、偏光変調器10Kからの左回り円偏光を透過する。
 [5-2.表示装置の動作]
 次に、図18を参照しながら、実施の形態5に係る表示装置2Kの動作について説明する。
 上述したように、表示パネル20の液晶表示部24の複数の第1の表示領域74には、第1の画像56Dが表示され、複数の第2の表示領域76には、第2の画像58Dが表示されている。
 図18に示すように、複数の第1の表示領域74の各々からのS偏光(第1の画像56Dを表す光の偏光状態)はそれぞれ、偏光変調器10Kの複数の第1の位相差領域70Kにより右回り円偏光に変調される。偏光変調器10Kの複数の第1の位相差領域70Kの各々からの右回り円偏光は、第1のミラー12Kでユーザ6に向けて反射される。このとき、図18に示すように、第1のミラー12Kに対してユーザ6と略対称な位置には、第1の画像56Dに対応する前面画像26Dが表示される。
 また、複数の第2の表示領域76の各々からのS偏光(第2の画像58Dを表す光の偏光状態)はそれぞれ、偏光変調器10Kの複数の第2の位相差領域72Kにより左回り円偏光に変調される。偏光変調器10Kの複数の第2の位相差領域72Kの各々からの左回り円偏光は、第1のミラー12Kを透過した後に、λ/4フィルム78を透過して直線偏光(図18の例ではP偏光)に変換される。λ/4フィルム78を透過した直線偏光(P偏光)は、第2のミラー14でユーザ6に向けて反射される。第2のミラー14で反射された直線偏光(P偏光)は、λ/4フィルム78を透過して左回り円偏光に変換された後に、第1のミラー12を再度透過する。このとき、図18に示すように、第2のミラー14に対してユーザ6と略対称な位置には、第2の画像58Dに対応する背面画像28Dが表示される。
 以上のようにして、前面画像26Dと背面画像28Dとが同時に表示される。互いに輝度の異なる前面画像26Dと背面画像28Dとが融合して1つの像に見える錯視現象により、立体的な画像4Dが表示される。
 [5-3.効果]
 上述したように、本実施の形態では、第1の位相差領域70Kは、第1の遅相軸を有する第1のλ/4板で構成される。第2の位相差領域72Kは、第1の遅相軸に対して方向が90°異なる第2の遅相軸を有する第2のλ/4板で構成されている。
 これにより、偏光変調器10Kを簡易に構成することができる。
 (実施の形態6)
 [6-1.表示装置の構成]
 次に、図21を参照しながら、実施の形態6に係る表示装置2Lの構成について説明する。図21は、実施の形態6に係る表示装置2Lの構成を示す図である。
 図21に示すように、実施の形態6に係る表示装置2Lは、上記実施の形態1で説明した構成要素に加えて、λ/4シート80を備えている。λ/4シート80は、第1のミラー12とユーザ6との間に配置されている。
 第1のミラー12で反射したS偏光は、λ/4シート80を透過して右回り円偏光に変換される。また、第2のミラー14で反射したP偏光は、λ/4シート80を透過して左回り円偏光に変換される。
 これにより、ユーザ6がS偏光及びP偏光のいずれかを遮断する偏光サングラス82を着用している場合であっても、λ/4シート80からの右回り円偏光及び左回り円偏光は、偏光サングラス82を透過する。その結果、ユーザ6は、画像4を立体的に視認することができる。
 [6-2.効果]
 上述したように、本実施の形態では、第1のミラー12で反射した第1の偏光及び第2のミラー14で反射した第2の偏光の各々は直線偏光である。表示装置2Lは、さらに、第1のミラー12で反射した第1の偏光及び第2のミラー14で反射した第2の偏光の各々を直線偏光から円偏光に変換するλ/4シート80を備える。
 これにより、ユーザ6は、偏光サングラス82を着用している場合であっても、画像4を立体的に視認することができる。
 (実施の形態7)
 次に、図22を参照しながら、実施の形態7に係る表示装置2Mの構成について説明する。図22は、実施の形態7に係る表示装置2Mの構成を示す図である。
 図22に示すように、実施の形態7に係る表示装置2Mでは、λ/4フィルム84の配置が上記実施の形態5と異なっている。具体的には、λ/4フィルム84は、上記実施の形態5と同様の直線偏光を円偏光に変換する偏光変調器10Kと、実施の形態1と同様の第1のミラー12との間に配置されている。λ/4フィルム84は、液晶表示モジュール8の出射光の偏光軸に対して約45°の角度に遅相軸を有している。
 これにより、λ/4フィルム84に入射した円偏光は、互いに直交するP偏光とS偏光とに変換される。λ/4フィルム84から出射したS偏光は、第1のミラー12でユーザ6に向けて反射する。このとき、図22に示すように、第1のミラー12に対してユーザ6と略対称な位置には、第1の画像56D(図16A参照)に対応する前面画像26Dが表示される。
 また、λ/4フィルム84から出射したP偏光は、第1のミラー12を透過した後に、第2のミラー14でユーザ6に向けて反射して第1のミラー12を再度透過する。このとき、図22に示すように、第2のミラー14に対してユーザ6と略対称な位置には、第2の画像58D(図16A参照)に対応する背面画像28Dが表示される。
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記各実施の形態及び各変形例で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 そこで、以下、他の実施の形態を例示する。
 上記各実施の形態では、表示装置2(2B,2C,2D,2K,2L,2M)を車両に搭載する例について説明したが、これに限定されず、例えば表示装置をテレビジョン受像機等として用いてもよい。
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面及び詳細な説明を提供した。
 したがって、添付図面及び詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、画像を表示する表示装置に適用可能である。具体的には、例えばDFD方式の表示装置等に、本開示は適用可能である。
2,2B,2C,2D,2K,2L,2M 表示装置
4,4D 画像
6 ユーザ
8 液晶表示モジュール
10,10A,10D,10E,10F,10G,10H,10I,10J,10K 偏光変調器
12,12K 第1のミラー
14 第2のミラー
16 バックライト
18 背面偏光フィルム
20 表示パネル
22 前面偏光フィルム
24 液晶表示部
26,26D 前面画像
28,28D 背面画像
30 制御回路基板
32,34 透明電極
36 走査線駆動回路
38 映像線駆動回路
40 走査線
42 映像線
44 LED光源
46 導光板
48 偏光変調器制御回路
50,50B 画像制御回路
52 AC/DCコンバータ
54,54C バックライト制御回路
56,56D 第1の画像
58,58D 第2の画像
60 商用電源
62,66 ガラス基板
64,64A 液晶層
68 液晶分子
70,70E,70F,70G,70H,70I,70J,70K 第1の位相差領域
72,72E,72F,72G,72H,72I,72J,72K 第2の位相差領域
74 第1の表示領域
76 第2の表示領域
78,84 λ/4フィルム
80 λ/4シート
82 偏光サングラス

Claims (10)

  1.  画像を表示する表示パネルと、
     前記表示パネルの背面に向けて光を照射するバックライトと、
     前記表示パネルからの前記画像を表す光の偏光状態を、互いに偏光方向が異なる第1の偏光及び第2の偏光のいずれかに変調する偏光変調器と、
     前記表示パネルに対して傾いて配置され、前記偏光変調器からの前記第1の偏光をユーザに向けて反射し、前記偏光変調器からの前記第2の偏光を透過する第1のミラーと、
     前記第1のミラーと間隔を置いて対向して配置され、前記第1のミラーを透過した前記第2の偏光を前記ユーザに向けて反射する第2のミラーと、を備える
     表示装置。
  2.  前記表示装置は、さらに、
     前記表示パネルに表示される前記画像を制御する表示制御部と、
     前記偏光変調器の駆動を制御する駆動制御部と、を備え、
     前記表示制御部は、前記表示パネルに第1の画像と第2の画像とを交互に表示させ、
     前記駆動制御部は、
     前記表示パネルに前記第1の画像が表示されている際には、前記偏光変調器を、前記第1の画像を表す光の偏光状態を前記第1の偏光に変調する第1の状態に切り替え、
     前記表示パネルに前記第2の画像が表示されている際には、前記偏光変調器を、前記第2の画像を表す光の偏光状態を前記第2の偏光に変調する第2の状態に切り替える
     請求項1に記載の表示装置。
  3.  前記表示制御部は、垂直同期信号に基づいて、前記表示パネルにおいて前記第1の画像及び前記第2の画像の一方から他方に表示を切り替え、
     前記駆動制御部は、前記垂直同期信号に基づいて、前記偏光変調器を前記第1の状態及び前記第2の状態の一方から他方に切り替える
     請求項2に記載の表示装置。
  4.  前記表示装置は、さらに、前記バックライトの点灯を制御する点灯制御部を備え、
     前記点灯制御部は、
     前記表示パネルにおいて前記第1の画像及び前記第2の画像の一方が表示されている期間には、前記バックライトを点灯させ、
     前記表示パネルにおいて前記第1の画像及び前記第2の画像の一方から他方に表示が切り替わる期間には、前記バックライトを消灯させる
     請求項2に記載の表示装置。
  5.  前記表示制御部は、前記表示パネルにおける前記第1の画像の表示位置を、前記表示パネルにおける前記第2の画像の表示位置に対して所定方向にシフトさせる
     請求項2に記載の表示装置。
  6.  前記表示装置は、さらに、前記表示パネルに表示される前記画像を制御する表示制御部を備え、
     前記表示制御部は、前記表示パネルの第1の表示領域及び第2の表示領域にそれぞれ第1の画像及び第2の画像を表示させ、
     前記偏光変調器は、
     前記第1の表示領域に対応して配置され、前記表示パネルからの前記第1の画像を表す光の偏光状態を、前記第1の偏光に変調する第1の位相差領域と、
     前記第2の表示領域に対応して配置され、前記表示パネルからの前記第2の画像を表す光の偏光状態を、前記第2の偏光に変調する第2の位相差領域と、を有する
     請求項1に記載の表示装置。
  7.  前記第1の位相差領域及び前記第2の位相差領域のいずれか一方のみがλ/2板で構成されている
     請求項6に記載の表示装置。
  8.  前記第1の位相差領域は、第1の遅相軸を有する第1のλ/4板で構成され、
     前記第2の位相差領域は、前記第1の遅相軸に対して方向が90°異なる第2の遅相軸を有する第2のλ/4板で構成されている
     請求項6に記載の表示装置。
  9.  前記第1のミラーで反射した前記第1の偏光及び前記第2のミラーで反射した前記第2の偏光の各々は直線偏光であり、
     前記表示装置は、さらに、前記第1のミラーで反射した前記第1の偏光及び前記第2のミラーで反射した前記第2の偏光の各々を直線偏光から円偏光に変換するλ/4シートを備える
     請求項1に記載の表示装置。
  10.  前記第1のミラーは、偏光ビームスプリッタであり、
     前記第2のミラーは、反射鏡である
     請求項1に記載の表示装置。
PCT/JP2018/008924 2017-03-17 2018-03-08 表示装置 WO2018168626A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019505930A JPWO2018168626A1 (ja) 2017-03-17 2018-03-08 表示装置
US16/565,986 US20200007857A1 (en) 2017-03-17 2019-09-10 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017053670 2017-03-17
JP2017-053670 2017-03-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/565,986 Continuation US20200007857A1 (en) 2017-03-17 2019-09-10 Display device

Publications (1)

Publication Number Publication Date
WO2018168626A1 true WO2018168626A1 (ja) 2018-09-20

Family

ID=63523100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008924 WO2018168626A1 (ja) 2017-03-17 2018-03-08 表示装置

Country Status (3)

Country Link
US (1) US20200007857A1 (ja)
JP (1) JPWO2018168626A1 (ja)
WO (1) WO2018168626A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020145036A (ja) * 2019-03-05 2020-09-10 株式会社ポラテクノ 移動体用照灯
WO2020186498A1 (zh) * 2019-03-21 2020-09-24 京东方科技集团股份有限公司 集成成像显示***
JP2022506490A (ja) * 2018-11-02 2022-01-17 ゲイリー シャープ イノベーションズ リミテッド ライアビリティ カンパニー コンパクトな偏光ベースのマルチパス光アーキテクチャ
WO2022270636A1 (ja) * 2021-06-25 2022-12-29 マクセル株式会社 空間浮遊映像表示装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10730440B2 (en) * 2017-05-31 2020-08-04 Panasonic Intellectual Property Management Co., Ltd. Display system, electronic mirror system, and moving body
CN208044203U (zh) * 2018-04-28 2018-11-02 北京京东方光电科技有限公司 显示设备、光学***和虚拟现实头戴显示设备
CN109188700B (zh) * 2018-10-30 2021-05-11 京东方科技集团股份有限公司 光学显示***及ar/vr显示装置
WO2021175727A1 (de) 2020-03-02 2021-09-10 Carl Zeiss Meditec Ag Kopfgetragenes visualisierungssystem
CN111552080A (zh) * 2020-05-28 2020-08-18 Oppo广东移动通信有限公司 光路和ar眼镜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09146046A (ja) * 1995-11-28 1997-06-06 Olympus Optical Co Ltd 頭部装着型ディスプレイ
JP2002156603A (ja) * 2000-11-16 2002-05-31 Nippon Telegr & Teleph Corp <Ntt> 三次元表示方法および装置
JP2004258332A (ja) * 2003-02-26 2004-09-16 Canon Inc 頭部装着型画像表示装置
JP2005099425A (ja) * 2003-09-25 2005-04-14 Nippon Telegr & Teleph Corp <Ntt> 三次元表示装置
JP2012220774A (ja) * 2011-04-11 2012-11-12 Seiko Epson Corp 頭部装着型表示装置
US20150077443A1 (en) * 2009-05-22 2015-03-19 Chunghwa Picture Tubes, Ltd. Three-dimensional display apparatus
JP2016102874A (ja) * 2014-11-27 2016-06-02 カルソニックカンセイ株式会社 表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050157233A1 (en) * 2004-01-16 2005-07-21 Meng-Chai Wu Optical converter module for display system
TWI340268B (en) * 2006-03-31 2011-04-11 Wintek Corp Multi-domain lcd
US8687133B2 (en) * 2011-08-16 2014-04-01 Edzer Lienson Wu Stereoscopic display device with polarized backlights from single light source and display panel having alternating two visible images
JP2014032299A (ja) * 2012-08-03 2014-02-20 Seiko Epson Corp プロジェクター
WO2016125624A1 (ja) * 2015-02-02 2016-08-11 シャープ株式会社 表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09146046A (ja) * 1995-11-28 1997-06-06 Olympus Optical Co Ltd 頭部装着型ディスプレイ
JP2002156603A (ja) * 2000-11-16 2002-05-31 Nippon Telegr & Teleph Corp <Ntt> 三次元表示方法および装置
JP2004258332A (ja) * 2003-02-26 2004-09-16 Canon Inc 頭部装着型画像表示装置
JP2005099425A (ja) * 2003-09-25 2005-04-14 Nippon Telegr & Teleph Corp <Ntt> 三次元表示装置
US20150077443A1 (en) * 2009-05-22 2015-03-19 Chunghwa Picture Tubes, Ltd. Three-dimensional display apparatus
JP2012220774A (ja) * 2011-04-11 2012-11-12 Seiko Epson Corp 頭部装着型表示装置
JP2016102874A (ja) * 2014-11-27 2016-06-02 カルソニックカンセイ株式会社 表示装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022506490A (ja) * 2018-11-02 2022-01-17 ゲイリー シャープ イノベーションズ リミテッド ライアビリティ カンパニー コンパクトな偏光ベースのマルチパス光アーキテクチャ
JP7436478B2 (ja) 2018-11-02 2024-02-21 メタ プラットフォームズ テクノロジーズ, リミテッド ライアビリティ カンパニー コンパクトな偏光ベースのマルチパス光アーキテクチャ
JP2020145036A (ja) * 2019-03-05 2020-09-10 株式会社ポラテクノ 移動体用照灯
JP7266425B2 (ja) 2019-03-05 2023-04-28 日本化薬株式会社 移動体用照灯
WO2020186498A1 (zh) * 2019-03-21 2020-09-24 京东方科技集团股份有限公司 集成成像显示***
US11226491B2 (en) 2019-03-21 2022-01-18 Boe Technology Group Co., Ltd. Integrated imaging display system
WO2022270636A1 (ja) * 2021-06-25 2022-12-29 マクセル株式会社 空間浮遊映像表示装置

Also Published As

Publication number Publication date
US20200007857A1 (en) 2020-01-02
JPWO2018168626A1 (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
WO2018168626A1 (ja) 表示装置
US10477169B2 (en) Display device
US10578866B2 (en) Head up display device with a polarization separation element
KR101299728B1 (ko) 2차원/3차원 영상 호환용 고효율 디스플레이 장치
US9383589B2 (en) Display device
CN107889552B (zh) 使用调制器不对称驱动器的高亮度图像显示设备及其操作方法
JP5482789B2 (ja) 投射型画像表示装置およびその制御方法
JP2017527835A (ja) 指向性プライバシーディスプレイ
US20200201065A1 (en) Display device, optical system and virtual reality head-mounted display device
US20150009307A1 (en) Stereoscopic image display device
KR102028987B1 (ko) 홀로그램 영상 표시 장치
EP1746453A2 (en) Heads-up display system
KR20150108989A (ko) 표시장치
EP3570095A1 (en) Liquid crystal display for a near-eye display, a virtual reality display or an augmented reality display
KR101311303B1 (ko) 입체영상표시장치
JP2011191491A (ja) 画像表示装置
US10274755B2 (en) Beam modulator and display apparatus using the same
CN114902117B (zh) 偏振转换***、被动式线偏振3d眼镜及线偏振3d***
JP2004139054A (ja) 液晶表示パネル、および液晶表示装置
KR102268291B1 (ko) 영상 표시장치
CN217895986U (zh) 一种全息3d动态影像的洗衣机显示操作屏幕及洗衣机
JP5826685B2 (ja) レーザ用光学デバイス
US20140333860A1 (en) Three-dimensional display installation
KR101578436B1 (ko) 입체영상 디스플레이용 광학장치 및 이를 구비하는 입체영상 디스플레이 장치
JP2013020064A (ja) 画像表示装置およびその調整方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505930

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767505

Country of ref document: EP

Kind code of ref document: A1