WO2018168569A1 - Production method for mass of chemically modified cellulose fibers - Google Patents

Production method for mass of chemically modified cellulose fibers Download PDF

Info

Publication number
WO2018168569A1
WO2018168569A1 PCT/JP2018/008544 JP2018008544W WO2018168569A1 WO 2018168569 A1 WO2018168569 A1 WO 2018168569A1 JP 2018008544 W JP2018008544 W JP 2018008544W WO 2018168569 A1 WO2018168569 A1 WO 2018168569A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemically modified
cellulose fiber
modified cellulose
sheet
fiber aggregate
Prior art date
Application number
PCT/JP2018/008544
Other languages
French (fr)
Japanese (ja)
Inventor
結花 北野
圭樹 伊藤
橋本 賀之
Original Assignee
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一工業製薬株式会社 filed Critical 第一工業製薬株式会社
Publication of WO2018168569A1 publication Critical patent/WO2018168569A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur

Definitions

  • the present invention relates to a method for producing a sheet-like chemically modified cellulose fiber aggregate.
  • Cellulose fibers are used as industrial raw materials such as food, cosmetics, functional paper, and resin reinforcement. Further, chemically modified cellulose fibers obtained by chemically modifying the surface of cellulose fibers are easily dispersed in an organic solvent, so that the scope of application as industrial raw materials is widened and promising. In particular, chemically modified cellulose fine fibers that have been chemically modified and refined are excellent in reinforcement and transparency, and thus can be applied to various applications.
  • a method of obtaining chemically modified cellulose fine fibers a method of obtaining a chemically modified cellulose nanofiber dispersion by reacting a compound having a reactive functional group on the surface of cellulose nanofibers finely defibrated in advance (for example, Patent Document 1).
  • Another method is to obtain a chemically modified cellulose nanofiber dispersion by subjecting cellulose nanofibers that have been finely defibrated in advance with an ionic liquid and an aprotic solvent to acetylation treatment followed by mild defibration treatment.
  • a method is known (for example, Patent Document 2).
  • An object of the present invention is to provide a method for producing a chemically modified cellulose fiber aggregate in an industrially advantageous manner with high efficiency and high productivity.
  • a sheet-like cellulose fiber aggregate is reacted with a silylating agent having a group represented by the following general formula (1) to form a sheet-like material.
  • a chemically modified cellulose fiber aggregate is obtained.
  • R 1, R 2 and R 3 each independently represent some or all of the hydrogen atoms of the hydrocarbon group which ⁇ 1 carbon atoms which may be 10 substituted with a halogen atom.
  • a sheet-like cellulose fiber aggregate is used as a raw material.
  • the sheet shape includes a relatively thin material such as a film shape and a relatively thick material such as a plate shape.
  • the thickness of the sheet-like cellulose fiber aggregate is not particularly limited, but is preferably 0.01 to 100 mm, and may be 0.1 to 10 mm.
  • cellulose raw materials constituting the cellulose fiber aggregate include plants (for example, wood, cotton, bamboo, hemp, jute, kenaf, farmland waste, cloth, pulp, recycled pulp, waste paper), animals (for example, ascidians)
  • plants for example, wood, cotton, bamboo, hemp, jute, kenaf, farmland waste, cloth, pulp, recycled pulp, waste paper
  • animals for example, ascidians
  • those originating from algae, microorganisms for example, acetic acid bacteria), microbial products and the like are known, and any of them can be used in the present embodiment.
  • plant-derived pulp is mentioned as a preferable raw material.
  • pulp examples include chemical pulp (craft pulp (KP), sulfite pulp (SP)), semi-chemical pulp (obtained by pulping plant raw materials chemically or mechanically, or a combination of both).
  • SCP Chemi-Grand Pulp
  • CMP Chemi-Mechanical Pulp
  • GP Crushed Wood Pulp
  • RMP Refiner Mechanical Pulp
  • TMP Thermo-Mechanical Pulp
  • CMP Chemi-thermo-Mechanical Pulp
  • the cellulose raw material it may be chemically modified within a range not impairing the object of the present embodiment, that is, chemically modified pulp may be used.
  • some or most of the hydroxyl groups present on the surface of cellulose fibers are esterified including acetate ester, nitrate ester, sulfate ester, alkyl ethers such as methyl ether, hydroxypropyl ether, and carboxymethyl ether.
  • the 6-position hydroxyl group is oxidized by a carboxy ether, an etherified product containing cyanoethyl ether, or a TEMPO (abbreviation of 2,2,6,6-tetramethylpiperidinyl-1-oxyl) oxidation catalyst. What became a group (an acid type and a salt type are included) can be included.
  • a cellulose raw material having a cellulose I-type crystal and a crystallinity of 40% or more may be used.
  • Cellulose I-type crystallinity means the ratio of the amount of crystal region in the whole cellulose.
  • the cellulose I type crystallinity value of the cellulose raw material is preferably 50% or more, more preferably 60% or more, and may be 80% or more.
  • the upper limit of the cellulose I type crystallinity is not particularly limited, but may be 98% or less, 95% or less, or 90% or less, for example.
  • the cellulose fiber aggregate subjected to the silylation reaction is preferably in the form of a sheet, and the bulk density is preferably 1 to 100 kg / m 3 . Since the silylation reaction is performed using such a material having a large bulk density, the bulkiness is reduced and the operability at the time of preparation is improved. Further, since the raw material charge can be increased, the processing capacity is improved. Further, by the bulk density of 1 ⁇ 100kg / m 3, in order to easily immersed in the chemical mixing the silylating agent and the solvent, it is possible to infiltrate uniformly chemical liquid to cellulose fibers.
  • the bulk density of the sheet-like cellulose fiber aggregate is more preferably 1 to 50 kg / m 3 , and further preferably 5 to 30 kg / m 3 .
  • the size of the sheet-shaped cellulose fiber aggregate subjected to the silylation reaction is not particularly limited, well area of the front and back one side even 1 ⁇ 2.5 ⁇ 10 5 cm 2 , 1 ⁇ 2. It may be 5 ⁇ 10 3 cm 2 .
  • it when cutting into a rectangular shape by a cutting process described later, it may be 1 to 500 cm square, 1 to 50 cm square, or 1 to 5 cm square.
  • silylating agent having a group represented by the following general formula (1) is used as the compound having a reactive functional group.
  • R 1 , R 2 and R 3 each independently represent a hydrocarbon group having 1 to 10 carbon atoms in which some or all of the hydrogen atoms may be substituted with halogen atoms. That is, R 1 , R 2 and R 3 are a hydrocarbon group having 1 to 10 carbon atoms, or a hydrocarbon group having 1 to 10 carbon atoms in which part or all of the hydrogen atoms are substituted with halogen atoms. , May be the same or different.
  • R 1 , R 2 and R 3 each independently represent a hydrocarbon group having 1 to 6 carbon atoms in which some or all of the hydrogen atoms may be substituted with halogen, and more preferably, Independently represents an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, or a halophenyl group, and more preferably each independently a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, or a halomethyl group.
  • a group or a halophenyl group examples include an alkyl group in which one or two or more hydrogen atoms are substituted with a halogen atom.
  • Examples of the halophenyl group include a phenyl group in which one or two or more hydrogen atoms are substituted with a halogen atom.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the silylating agent can be represented by the following general formula (2).
  • R 1, R 2 and R 3 are the same as R 1, R 2 and R 3 of formula (1)
  • X represents a leaving group.
  • the leaving group include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), amino group, alkylamino group, dialkylamino group, 1-imidazolyl group, acetamide group, —N (CH 3 ).
  • the silylating agent include at least one selected from the group consisting of a trimethylsilylating agent, a dimethylalkylsilylating agent, a halomethyldimethylsilylating agent, and a pentafluorophenyldimethylsilylating agent.
  • a trimethylsilylating agent and a dimethylalkylsilylating agent is preferable from the viewpoint of expanding the space between cellulose fine fibers.
  • trimethylsilylating agent examples are not particularly limited, but trimethylchlorosilane (TMCS), hexamethyldisilazane (HMDS), N, O-bis (trimethylsilyl) acetamide (BSA), N-trimethylsilylimidazole (TMSI), N , O-bis (trimethylsilyl) trifluoroacetamide, N-trimethylsilylacetamide, N-methyl-N-trimethylsilylacetamide, N-methyl-N-trimethylsilylfluoroacetamide, N- (trimethylsilyl) diethylamine, N- (trimethylsilyl) dimethylamine, etc. Is mentioned.
  • TMCS trimethylchlorosilane
  • HMDS hexamethyldisilazane
  • BSA O-bis (trimethylsilyl) acetamide
  • TMSI N-trimethylsilylimidazole
  • N O-bis (trimethylsilyl) trifluoro
  • dimethylalkylsilylating agent examples include 1- (dimethylisopropylsilyl) imidazole, 1- (tert-butyldimethylsilyl) imidazole, 1- (dimethylethylsilyl) imidazole, N- (tert-butyldimethylsilyl)- N-methyltrifluoroacetamide is mentioned.
  • the carbon number of “alkyl” in the dimethylalkylsilylating agent is preferably 2 to 8, more preferably 2 to 6.
  • halomethyldimethylsilylating agent examples include 1,3-bis (chloromethyl) tetramethyldisilazane, chloro (chloromethyl) dimethylsilane, bromomethyldimethylchlorosilane (BMMDCS), and the like.
  • pentafluorophenyldimethylsilylating agent examples include pentafluorophenyldimethylsilyldiethylamine and pentafluorophenyldimethylchlorosilane.
  • silylating agents of the specific examples listed above may be used alone or in combination of two or more.
  • Method for producing chemically modified cellulose fiber aggregate In this embodiment, the sheet-like cellulose fiber aggregate is reacted with a silylating agent to obtain a sheet-like chemically modified cellulose fiber aggregate.
  • the sheet-like cellulose fiber aggregate Prior to the reaction with the silylating agent, the sheet-like cellulose fiber aggregate may be subjected to a cutting treatment as necessary as a pretreatment.
  • the cutting process is a process of cutting a sheet-like cellulose raw material into a sheet having a predetermined size. By performing this cutting process in advance, preparation can be performed more efficiently.
  • Examples of the cutting method include a method using a paper cutter, a shredder, a rotary cutter, and the like.
  • the sheet-like cellulose fiber aggregate as a pretreatment for the reaction with the silylating agent. That is, it is preferable not to perform a pretreatment that impairs the cellulose fiber shape.
  • a chemically modified cellulose fiber aggregate that can be easily defibrated is obtained by silylation treatment without pre-defibration or pulverization. Therefore, the process load can be reduced by omitting preliminary defibration and preliminary pulverization. Further, since the silylation treatment is performed without preliminary defibration or preliminary pulverization, the viscosity of the cellulose fiber dispersion in the silylation treatment can be reduced, and the efficiency and productivity can be improved.
  • the reaction between the sheet-like cellulose fiber aggregate and the silylating agent (that is, silylation reaction) can be performed by immersing the sheet-like cellulose fiber aggregate in a chemical solution containing the silylating agent.
  • the surface of the cellulose fine fiber that is a constituent element of the cellulose fiber is chemically modified with a silylating agent while maintaining the cellulose fiber shape with respect to the cellulose fiber contained in the sheet-like cellulose fiber aggregate.
  • the cellulose fiber is a bundle of cellulose fine fibers (also referred to as cellulose nanofibers).
  • the silylation treatment is performed in a state where the cellulose fibers are not defibrated, an increase in viscosity of the cellulose fiber dispersion can be suppressed, and efficiency and productivity can be improved.
  • a sheet-like chemically modified cellulose fiber aggregate by subjecting the sheet-like cellulose fiber aggregate to a silylation treatment while maintaining the sheet-like form. That is, in the present embodiment, the sheet-like cellulose fiber polymer is immersed in a chemical solution and processed for silylation without forming a slurry. Efficiency and productivity can be improved by carrying out silylation while maintaining the sheet-like form.
  • the sheet-like form before the silylation treatment and the sheet-like form of the chemically modified cellulose fiber aggregate may be the same or different. That is, you may obtain the chemically modified cellulose fiber assembly which hold
  • the amount of the silylating agent used can be appropriately adjusted in consideration of the amount of substituents introduced into the cellulose fibers contained in the cellulose fiber aggregate.
  • the silylating agent can be used, for example, in an amount of preferably 0.001 to 50 mol, more preferably 0.01 to 10 mol per mol of anhydroglucose unit in the cellulose molecule.
  • the chemical solution for performing the silylation reaction is a mixture of a silylating agent and a solvent, and a catalyst may or may not be added.
  • the catalyst is not particularly limited, and examples thereof include hydrogen chloride, chlorotrimethylsilane, hydrogen sulfide, methanesulfonic acid, p-toluenesulfonic acid, trifluoroacetic acid, ammonium sulfide, and pyridine.
  • a weakly basic catalyst may be used in combination from the viewpoint of promoting the reaction and maintaining the degree of cellulose polymerization.
  • the amount of the catalyst used is not particularly limited, but is preferably 0.001 to 10 mol, more preferably 0.005 to 2.5 mol, more preferably 0.01 to 2 per mol of anhydroglucose unit in the cellulose molecule. More preferred is 0.0 mole.
  • the catalyst may be used as it is at a high concentration, or may be diluted with a solvent in advance.
  • the basic catalyst can be added by batch addition, divided addition, continuous addition, or a combination thereof.
  • the type of solvent used in the chemical solution is not particularly limited.
  • a nonpolar organic solvent or a polar organic solvent can be used.
  • the nonpolar organic solvent include hexane, diethyl ether, hexane, toluene, carbon tetrachloride and the like.
  • the polar organic solvent include tetrahydrofuran, dioxane, acetonitrile, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, pyridine and the like.
  • a polar organic solvent is more preferable from the viewpoint of promoting the swelling of the cellulose fiber aggregate.
  • aprotic organic solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, pyridine and the like are more preferable.
  • the said organic solvent may be used independently and may be used in combination of 2 or more type.
  • the amount of the solvent used is not particularly limited.
  • the solvent content of the cellulose fiber aggregate (that is, the ratio of the mass of the solvent to the dry mass of the cellulose fiber aggregate) is 10% by mass or more, preferably 10 to 10000 mass. %, More preferably 20 to 5000% by mass, still more preferably 50 to 2000% by mass. The smaller the amount of solvent, the more convenient the cleaning process.
  • post-treatment After completion of the silylation reaction, post-treatment such as washing, solvent removal, and sheeting treatment may be performed, whereby a sheet-like chemically modified cellulose fiber aggregate can be obtained.
  • a step of stopping the reaction by adding a compound having a reaction-stopping action of the silylation reaction may be provided as necessary.
  • the reaction may be stopped by introducing a substance that easily reacts with the silylating agent into the chemical solution containing the chemically modified cellulose fiber, and the type of the substance is not particularly limited. Further, the silylation reaction may be terminated by adding an alcohol such as ethanol.
  • the washing step is a step performed for the purpose of stopping the reaction and / or for the purpose of removing silylating agent residue, residual catalyst, solvent and the like, and washing the chemically modified cellulose fiber in a wet state.
  • the washing conditions are not particularly limited, it is preferable to wash the chemically modified cellulose fiber after completion of the reaction using an organic solvent.
  • the sheet-like chemically modified cellulose fiber aggregate after the silylation reaction may be made into a slurry form only in the washing step and returned to the sheet form in the subsequent sheeting treatment step.
  • the solvent removal step is a step of removing the solvent and washing solvent during the silica reaction, but it is not necessary to completely remove the solvent.
  • a method for removing the solvent is not particularly limited, and a centrifugal sedimentation method, filtration, and the like can be used. Moreover, you may perform a sheeting process and a solvent removal simultaneously by pressing the chemically modified cellulose fiber wetted in the sheeting process.
  • the sheet forming treatment can be performed, for example, by pressing chemically modified cellulose fibers in a wet paper state (that is, in a state where a sheet-like chemically modified cellulose fiber aggregate is swollen).
  • a method for pressing the chemically modified cellulose fiber in a wet state is not particularly limited, and for example, a roll press, a pressure press, or the like can be used.
  • the organic solvent content of the sheet-like chemically modified cellulose fiber aggregate (that is, the ratio of the mass of the organic solvent to the dry mass of the chemically modified cellulose fiber aggregate) is preferably 1 to 500% by mass, more preferably 10%. To 100% by mass, more preferably 10 to 50% by mass.
  • the hydrogen of the hydroxyl group in the cellulose is substituted by the silyl group represented by the general formula (1), that is, the cellulose fiber has a silyl group.
  • the silyl group is introduced on the surface of the cellulose fine fiber constituting the cellulose fiber, and not only the cellulose fine fiber existing on the surface of the cellulose fiber but also the cellulose fine fiber existing inside the cellulose fiber is also the cellulose fine fiber. It is preferable that a silyl group is introduced on the surface of the fiber.
  • the thickness of the sheet-like chemically modified cellulose fiber aggregate is not particularly limited, but is preferably 0.01 to 100 mm, and may be 0.1 to 10 mm.
  • the fiber width (average width) of the chemically modified cellulose fibers is not particularly limited, but may be, for example, 1 to 100 ⁇ m, 5 to 80 ⁇ m, or 10 to 50 ⁇ m.
  • the fiber width is obtained by measuring the fiber width of 50 chemically modified cellulose fibers by optical microscope observation and calculating an average value.
  • the chemically modified cellulose fine fiber which is a constituent element of the chemically modified cellulose fiber aggregate, preferably has cellulose I-type crystals and a crystallinity of 40% or more.
  • the crystallinity value is preferably 50% or more, more preferably 60% or more.
  • the upper limit of the crystallinity is not particularly limited, but may be 98% or less, 95% or less, or 90% or less, for example.
  • the degree of substitution (DS) that is the degree to which the hydrogen of the hydroxyl group in cellulose is substituted with the silyl group represented by the general formula (1) is not particularly limited, but is 0 It is preferably 10 to 0.70, more preferably 0.20 to 0.60.
  • the sheet-like chemically modified cellulose fiber aggregate obtained in this embodiment can be dispersed in an organic solvent, and a chemically modified cellulose fiber dispersion in which chemically modified cellulose fibers are dispersed in an organic solvent can be obtained.
  • the stirrer is not particularly limited, and examples thereof include a stirrer, a blender, and a homomixer.
  • the concentration (slurry concentration) of the chemically modified cellulose fiber dispersion is not particularly limited as long as it can be stirred, but is preferably 0.1 to 5% by mass.
  • a chemically modified cellulose fine fiber dispersion can be easily obtained by performing a defibrating treatment on the chemically modified cellulose fiber dispersion.
  • the defibrating treatment is not particularly limited as long as the chemically modified cellulose fiber is mechanically defibrated.
  • a refiner a high-pressure homogenizer, a medium stirring mill (for example, a rocking mill, a ball mill, etc.), a grinder, two The method of processing using a shaft kneader (double-screw extruder), a stone mill, a vibration mill, etc. is mentioned.
  • the fiber width (average width) of the chemically modified cellulose fine fibers after defibration is not particularly limited, and may be, for example, 4 to 200 nm or 4 to 100 nm.
  • the fiber width is determined by measuring the fiber width of 50 chemically modified cellulose fine fibers by optical microscope observation and calculating an average value.
  • sheet-like chemically modified cellulose fiber aggregate according to the present embodiment is not particularly limited, and can be used as industrial raw materials such as foods, cosmetics, functional paper, and resin reinforcing materials.
  • a chemically modified cellulose fiber aggregate can be obtained while maintaining the fiber shape.
  • a sheet-like chemically modified cellulose fiber aggregate can be produced with high productivity.
  • the obtained chemically modified cellulose fiber aggregate can be easily dispersed in an organic solvent and can be easily refined by a defibrating process, so that the defibrating process can be performed by the user. is there. Therefore, the sheet can be supplied to the user and the distribution cost can be suppressed.
  • Cellulose I-type crystallinity The X-ray diffraction intensity of the cellulose raw material and the chemically modified cellulose fiber aggregate was measured by the X-ray diffraction method, and was calculated from the measurement result by the following formula using the Segal method.
  • Cellulose type I crystallinity (%) [(I 22.6 -I 18.5 ) / I 22.6 ] ⁇ 100
  • degree of substitution (DS) of chemically modified cellulose fiber aggregate
  • the degree of substitution of chemically modified cellulose fiber aggregate was obtained by desilylating a sheet of undried chemically modified cellulose fiber aggregate after desolvation treatment. Then, it calculated by quantifying the produced
  • the chemically modified cellulose fiber dispersion after washing with ethanol was subjected to a fine fiber treatment, and the transparency of the solution was measured.
  • the chemically modified cellulose fiber dispersion after washing is diluted with N-methylpyrrolidone so as to have a solid content concentration of 0.5% by mass, and a high-pressure homogenizer (H11, manufactured by Sanwa Engineering Co., Ltd.) is used as a refining treatment at a pressure of 100 MPa.
  • H11 high-pressure homogenizer
  • the treatment was performed once, and the resulting dispersion was evaluated for transparency with an ultraviolet-visible spectrophotometer (UV-Vis) and evaluated according to the following criteria.
  • UV-Vis ultraviolet-visible spectrophotometer
  • Fiber dispersity (%) (fiber retention volume / total volume of dispersion) ⁇ 100 Based on the degree of fiber dispersion, the workability in the washing process was evaluated as follows. ⁇ : Fiber dispersity is less than 30% (good workability in washing process) X: Fiber dispersity of 30% or more (poor workability in washing process)
  • Example 1 A separable flask was charged with 30 mL of N-methylpyrrolidone (NMP), 8.9 g of pyridine, and 4.5 g of hexamethyldisilazane (HMDS), and stirred for 5 minutes while cooling the flask with a 0 ° C. refrigerant. Further, 0.2 g of chlorotrimethylsilane (TMCS) was added dropwise little by little, followed by stirring for 5 minutes.
  • NMP N-methylpyrrolidone
  • HMDS hexamethyldisilazane
  • a sheet-like cellulose fiber aggregate which is a cellulose raw material
  • a sheet-like softwood pulp cut into a side of 10 mm NNKP, thickness: 1 mm, bulk density: 10 kg / m 3 , cellulose type I crystallinity: 85%
  • HMDS hydroxymethylcellulose
  • the usage-amount of TMCS which is a catalyst, and the pyridine were 0.1 mol and 6 mol per mol of anhydroglucose unit in a cellulose molecule, respectively.
  • the obtained sheet-like chemically modified cellulose fiber aggregate is washed 2 to 3 times with ethanol, and then subjected to desolvation treatment and drying by pressing with a pressure press (room temperature, 0.2 MPa), and a sheet having a thickness of 2 mm A chemically modified cellulose fiber aggregate was obtained.
  • Example 2 Comparative Examples 1 and 2
  • Example 1 except that the type of cellulose raw material, the type and amount of silylating agent, the type and amount of catalyst, the type and amount of solvent, and the reaction temperature were changed to the conditions shown in Tables 1 to 3. Reaction, washing, and solvent removal treatment were performed in the same manner as in Example 1.
  • Comparative Example 1 since the silylating agent is not used, the cellulose fiber is not chemically modified, is inferior in dispersibility in an organic solvent, and is not sufficiently defibrated by the micronization treatment and is a fiber dispersion. The transparency of was also inferior.
  • Comparative Example 2 silylation was performed using CNF obtained by pre-defining cellulose fibers, and the fiber dispersion was 100% in the evaluation of dispersion, that is, the fibers were dispersed throughout ethanol. This means that a three-dimensional network between fibers is formed in the entire dispersion, and the viscosity of the fibers increases due to the inclusion of ethanol, which makes it difficult to recover the fibers, and washing and desolvation. The workability of the treatment was inferior.
  • the silyl group could be introduced onto the surface of the fine cellulose fiber while maintaining the shape of the cellulose fiber, although it was a short reaction.
  • the fiber since the fiber is chemically modified without defibration, the fiber dispersion is low in the evaluation of dispersibility. Therefore, the filtrate has high filtrate and low viscosity, and the workability of washing and desolvation treatment is excellent. Therefore, a chemically modified cellulose fiber aggregate could be obtained with high efficiency and high productivity.
  • the obtained chemically modified cellulose fiber aggregate is excellent in dispersibility in organic solvents, and is easily defibrated into cellulose fine fibers by a refining treatment. The transparency of the obtained fine fiber dispersion liquid It was excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

The present invention produces a mass of chemically modified cellulose fibers efficiently and industrially advantageously at high productivity. An embodiment of the production method for a mass of chemically modified cellulose fibers comprises reacting a sheet-shaped mass of cellulose fibers with a silylating agent having a group represented by general formula (1), thereby obtaining a sheet-shaped mass of chemically modified cellulose fibers. In formula (1), R1, R2, and R3 each independently represent a C1-10 hydrocarbon group in which some or all of the hydrogen atoms may be replaced with halogen atoms.

Description

化学修飾セルロース繊維集合体の製造方法Method for producing chemically modified cellulose fiber aggregate
 本発明は、シート状の化学修飾セルロース繊維集合体の製造方法に関する。 The present invention relates to a method for producing a sheet-like chemically modified cellulose fiber aggregate.
 セルロース繊維は、食品、化粧品、機能紙、樹脂補強材等の工業原料として用いられる。また、セルロース繊維表面を化学修飾した化学修飾セルロース繊維は有機溶媒中への分散が容易となるため、工業原料としての適用範囲が広がり有望視されている。特に、化学修飾されるとともに微細化処理された化学修飾セルロース微細繊維は補強性・透明性に優れるため、多岐用途に適用可能である。 Cellulose fibers are used as industrial raw materials such as food, cosmetics, functional paper, and resin reinforcement. Further, chemically modified cellulose fibers obtained by chemically modifying the surface of cellulose fibers are easily dispersed in an organic solvent, so that the scope of application as industrial raw materials is widened and promising. In particular, chemically modified cellulose fine fibers that have been chemically modified and refined are excellent in reinforcement and transparency, and thus can be applied to various applications.
 化学修飾セルロース微細繊維を得る方法としては、あらかじめ微細解繊したセルロースナノファイバー表面に反応性官能基を有する化合物を反応させて、化学変性セルロースナノファイバー分散液を得る方法が知られている(例えば、特許文献1)。また、別の手法として、イオン液体と非プロトン性溶媒であらかじめ微細解繊したセルロースナノファイバーに対しアセチル化処理した後、軽度の解繊処理をすることで化学修飾セルロースナノファイバー分散液を得る製造方法が知られている(例えば、特許文献2)。 As a method of obtaining chemically modified cellulose fine fibers, a method of obtaining a chemically modified cellulose nanofiber dispersion by reacting a compound having a reactive functional group on the surface of cellulose nanofibers finely defibrated in advance (for example, Patent Document 1). Another method is to obtain a chemically modified cellulose nanofiber dispersion by subjecting cellulose nanofibers that have been finely defibrated in advance with an ionic liquid and an aprotic solvent to acetylation treatment followed by mild defibration treatment. A method is known (for example, Patent Document 2).
 しかしながら、特許文献1及び2で開示されている従来技術では、微細化処理した上で化学修飾を行っておりエネルギー的に負荷が大きい。つまり、セルロース繊維は解繊処理に多大なエネルギーを要するため、解繊処理してから化学修飾を行うとプロセスが煩雑になり高コストになってしまう。また、セルロースナノファイバー分散液は数%の固形分量で粘性が高くなってしまうため、セルロース原料の仕込量に制限がでてしまい、生産性に乏しい。さらに、高粘性の分散液は洗浄工程、脱溶媒工程に多大な時間を要してしまうため効率性及び生産性において満足できるものではない。 However, in the prior art disclosed in Patent Documents 1 and 2, chemical modification is performed after the miniaturization process, and the energy load is large. That is, since cellulose fiber requires a great deal of energy for defibrating treatment, if chemical modification is performed after defibrating treatment, the process becomes complicated and the cost becomes high. Further, since the viscosity of the cellulose nanofiber dispersion becomes high at a solid content of several percent, the amount of the cellulose raw material charged is limited, and the productivity is poor. Furthermore, since a highly viscous dispersion requires a great deal of time for the washing process and the solvent removal process, it is not satisfactory in efficiency and productivity.
WO2013/133436A1WO2013 / 133436A1 特開2010-104768号公報JP 2010-104768 A
 本発明は、化学修飾セルロース繊維集合体を効率的かつ高い生産性で工業的に有利に製造する方法を提供することを課題とする。 An object of the present invention is to provide a method for producing a chemically modified cellulose fiber aggregate in an industrially advantageous manner with high efficiency and high productivity.
 本発明の実施形態に係る化学修飾セルロース繊維集合体の製造方法は、シート状のセルロース繊維集合体と下記一般式(1)で表される基を有するシリル化剤とを反応させてシート状の化学修飾セルロース繊維集合体を得るものである。 In the method for producing a chemically modified cellulose fiber aggregate according to an embodiment of the present invention, a sheet-like cellulose fiber aggregate is reacted with a silylating agent having a group represented by the following general formula (1) to form a sheet-like material. A chemically modified cellulose fiber aggregate is obtained.
Figure JPOXMLDOC01-appb-C000002
 式(1)中、R、R及びRは、それぞれ独立に、一部又は全ての水素原子がハロゲン原子に置換されてもよい炭素数1~10の炭化水素基を示す。
Figure JPOXMLDOC01-appb-C000002
Wherein (1), R 1, R 2 and R 3 each independently represent some or all of the hydrogen atoms of the hydrocarbon group which ~ 1 carbon atoms which may be 10 substituted with a halogen atom.
 本実施形態によれば、効率的かつ高い生産性で、シート状の化学修飾セルロース繊維集合体を製造することができるので、工業的に有利である。 According to this embodiment, since a sheet-like chemically modified cellulose fiber aggregate can be produced with high efficiency and high productivity, it is industrially advantageous.
 以下、実施形態に係る化学修飾セルロース繊維集合体の製造方法について詳細に説明する。 Hereinafter, the manufacturing method of the chemically modified cellulose fiber aggregate according to the embodiment will be described in detail.
 [セルロース繊維集合体]
 本実施形態では、原料にシート状のセルロース繊維集合体を用いる。ここで、シート状には、膜状のように比較的薄いものから板状のように比較的厚いものも含まれる。シート状のセルロース繊維集合体の厚みは、特に限定しないが、0.01~100mmであることが好ましく、0.1~10mmでもよい。
[Cellulose fiber aggregate]
In this embodiment, a sheet-like cellulose fiber aggregate is used as a raw material. Here, the sheet shape includes a relatively thin material such as a film shape and a relatively thick material such as a plate shape. The thickness of the sheet-like cellulose fiber aggregate is not particularly limited, but is preferably 0.01 to 100 mm, and may be 0.1 to 10 mm.
 セルロース繊維集合体を構成するセルロース原料の具体例としては、植物(例えば木材、綿、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ、再生パルプ、古紙)、動物(例えばホヤ類)、藻類、微生物(例えば酢酸菌)、微生物産生物等を起源とするものが知られているが、本実施形態ではそのいずれも使用できる。これらの中で、植物由来パルプが好ましい原材料として挙げられる。 Specific examples of cellulose raw materials constituting the cellulose fiber aggregate include plants (for example, wood, cotton, bamboo, hemp, jute, kenaf, farmland waste, cloth, pulp, recycled pulp, waste paper), animals (for example, ascidians) In addition, those originating from algae, microorganisms (for example, acetic acid bacteria), microbial products and the like are known, and any of them can be used in the present embodiment. Among these, plant-derived pulp is mentioned as a preferable raw material.
 前記パルプとしては、植物原料を化学的、若しくは機械的に、又は両者を併用してパルプ化することで得られる、ケミカルパルプ(クラフトパルプ(KP)、亜硫酸パルプ(SP))、セミケミカルパルプ(SCP)、ケミグランドパルプ(CGP)、ケミメカニカルパルプ(CMP)、砕木パルプ(GP)、リファイナーメカニカルパルプ(RMP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)が好ましいものとして挙げられる。 Examples of the pulp include chemical pulp (craft pulp (KP), sulfite pulp (SP)), semi-chemical pulp (obtained by pulping plant raw materials chemically or mechanically, or a combination of both). SCP), Chemi-Grand Pulp (CGP), Chemi-Mechanical Pulp (CMP), Crushed Wood Pulp (GP), Refiner Mechanical Pulp (RMP), Thermo-Mechanical Pulp (TMP), Chemi-thermo-Mechanical Pulp (CTMP) .
 また、セルロース原料としては、本実施形態の目的を阻害しない範囲内で化学修飾されていてもよく、即ち、化学変性パルプを用いてもよい。例えば、セルロース繊維表面に存在する一部あるいは大部分の水酸基が酢酸エステル、硝酸エステル、硫酸エステルを含むエステル化されたもの、メチルエーテル、ヒドロキシプロピルエーテルを代表とするアルキルエーテル、カルボキシメチルエーテルを代表とするカルボキシエーテル、シアノエチルエーテルを含むエーテル化されたもの、またTEMPO(2,2,6,6-テトラメチルピペリジニル-1-オキシルの略称)酸化触媒によって6位の水酸基が酸化され、カルボキシル基(酸型、塩型を含む)となったものを含むことができる。 Further, as the cellulose raw material, it may be chemically modified within a range not impairing the object of the present embodiment, that is, chemically modified pulp may be used. For example, some or most of the hydroxyl groups present on the surface of cellulose fibers are esterified including acetate ester, nitrate ester, sulfate ester, alkyl ethers such as methyl ether, hydroxypropyl ether, and carboxymethyl ether. The 6-position hydroxyl group is oxidized by a carboxy ether, an etherified product containing cyanoethyl ether, or a TEMPO (abbreviation of 2,2,6,6-tetramethylpiperidinyl-1-oxyl) oxidation catalyst. What became a group (an acid type and a salt type are included) can be included.
 本実施形態に使用されるセルロース原料としては、セルロースI型結晶を有しその結晶化度が40%以上であるものを用いてもよい。セルロースI型結晶化度とは、セルロース全体のうち結晶領域量の占める割合のことを意味する。セルロース原料のセルロースI型結晶化度の値は、50%以上が好ましく、より好ましくは60%以上であり、80%以上でもよい。セルロースI型結晶化度の上限は、特に限定されないが、例えば、98%以下でもよく、95%以下でもよく、90%以下でもよい。 As the cellulose raw material used in this embodiment, a cellulose raw material having a cellulose I-type crystal and a crystallinity of 40% or more may be used. Cellulose I-type crystallinity means the ratio of the amount of crystal region in the whole cellulose. The cellulose I type crystallinity value of the cellulose raw material is preferably 50% or more, more preferably 60% or more, and may be 80% or more. The upper limit of the cellulose I type crystallinity is not particularly limited, but may be 98% or less, 95% or less, or 90% or less, for example.
 本実施形態において、シリル化反応に供するセルロース繊維集合体はシート状であり、その嵩密度は1~100kg/mであることが好ましい。このように嵩密度が大きいものを用いてシリル化反応を行うため、嵩高さが低減されて仕込み時の操作性が向上する。また、原料仕込み量を多くすることができるので処理能力が向上する。また、嵩密度が1~100kg/mであることにより、シリル化剤と溶媒を混合した薬液に容易に浸漬するため、セルロース繊維に対し均一に薬液を浸透させることができる。シート状のセルロース繊維集合体の嵩密度はより好ましくは1~50kg/mであり、更に好ましくは5~30kg/mである。 In the present embodiment, the cellulose fiber aggregate subjected to the silylation reaction is preferably in the form of a sheet, and the bulk density is preferably 1 to 100 kg / m 3 . Since the silylation reaction is performed using such a material having a large bulk density, the bulkiness is reduced and the operability at the time of preparation is improved. Further, since the raw material charge can be increased, the processing capacity is improved. Further, by the bulk density of 1 ~ 100kg / m 3, in order to easily immersed in the chemical mixing the silylating agent and the solvent, it is possible to infiltrate uniformly chemical liquid to cellulose fibers. The bulk density of the sheet-like cellulose fiber aggregate is more preferably 1 to 50 kg / m 3 , and further preferably 5 to 30 kg / m 3 .
 本実施形態において、シリル化反応に供するシート状のセルロース繊維集合体の大きさは、特に限定されず、表裏一方面の面積が1~2.5×10cmでもよく、1~2.5×10cmでもよい。例えば、後述する裁断処理により矩形状に裁断する場合、1~500cm角でもよく、1~50cm角でもよく、1~5cm角でもよい。 In the present embodiment, the size of the sheet-shaped cellulose fiber aggregate subjected to the silylation reaction is not particularly limited, well area of the front and back one side even 1 ~ 2.5 × 10 5 cm 2 , 1 ~ 2. It may be 5 × 10 3 cm 2 . For example, when cutting into a rectangular shape by a cutting process described later, it may be 1 to 500 cm square, 1 to 50 cm square, or 1 to 5 cm square.
 [シリル化剤]
 本実施形態では、反応性官能基を有する化合物として、下記一般式(1)で表される基を有するシリル化剤を用いる。
[Silylating agent]
In this embodiment, a silylating agent having a group represented by the following general formula (1) is used as the compound having a reactive functional group.
Figure JPOXMLDOC01-appb-C000003
 式(1)中、R、R及びRは、それぞれ独立に、一部又は全ての水素原子がハロゲン原子に置換されてもよい炭素数1~10の炭化水素基を示す。すなわち、R、R及びRは、炭素数1~10の炭化水素基、又は、その一部又は全ての水素原子がハロゲン原子で置換された炭素数1~10の炭化水素基であり、同一であってもよく、異なっていてもよい。より好ましくは、R、R及びRは、それぞれ独立に、一部又は全ての水素原子がハロゲンに置換されてもよい炭素数1~6の炭化水素基を示し、更に好ましくは、それぞれ独立に、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、又はハロフェニル基を示し、更に好ましくは、それぞれ独立に、メチル基、エチル基、イソプロピル基、tert-ブチル基、ハロメチル基、又はハロフェニル基を示す。前記ハロアルキル基としては、1つ又は2つ以上の水素原子がハロゲン原子に置換されたアルキル基が挙げられる。前記ハロフェニル基としては、1つ又は2つ以上の水素原子がハロゲン原子に置換されたフェニル基が挙げられる。ここで、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。
Figure JPOXMLDOC01-appb-C000003
In the formula (1), R 1 , R 2 and R 3 each independently represent a hydrocarbon group having 1 to 10 carbon atoms in which some or all of the hydrogen atoms may be substituted with halogen atoms. That is, R 1 , R 2 and R 3 are a hydrocarbon group having 1 to 10 carbon atoms, or a hydrocarbon group having 1 to 10 carbon atoms in which part or all of the hydrogen atoms are substituted with halogen atoms. , May be the same or different. More preferably, R 1 , R 2 and R 3 each independently represent a hydrocarbon group having 1 to 6 carbon atoms in which some or all of the hydrogen atoms may be substituted with halogen, and more preferably, Independently represents an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, or a halophenyl group, and more preferably each independently a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, or a halomethyl group. A group or a halophenyl group; Examples of the haloalkyl group include an alkyl group in which one or two or more hydrogen atoms are substituted with a halogen atom. Examples of the halophenyl group include a phenyl group in which one or two or more hydrogen atoms are substituted with a halogen atom. Here, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 シリル化剤は、下記一般式(2)で表すことができる。 The silylating agent can be represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000004
 式(2)中、R、R及びRは式(1)のR、R及びRと同じであり、Xは脱離基を示す。脱離基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子など)、アミノ基、アルキルアミノ基、ジアルキルアミノ基、1-イミダゾリル基、アセトアミド基、-N(CH)-CO-CH、-N(CH)-CO-CFH、-N(CH)-CO-CF、-NH-SiR、-O-C(CH)=N-SiR、-O-C(CF)=N-SiRなどが挙げられる(R、R及びRは式(1)のR、R及びRと同じ)。
Figure JPOXMLDOC01-appb-C000004
Wherein (2), R 1, R 2 and R 3 are the same as R 1, R 2 and R 3 of formula (1), X represents a leaving group. Examples of the leaving group include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), amino group, alkylamino group, dialkylamino group, 1-imidazolyl group, acetamide group, —N (CH 3 ). —CO—CH 3 , —N (CH 3 ) —CO—CFH 2 , —N (CH 3 ) —CO—CF 3 , —NH—SiR 1 R 2 R 3 , —O—C (CH 3 ) = N -SiR 1 R 2 R 3, -O -C (CF 3) = , etc. N-SiR 1 R 2 R 3 and the like (R 1, R 2 and R 3 are R 1, R 2, and of formula (1) Same as R 3 ).
 シリル化剤の具体例としては、トリメチルシリル化剤、ジメチルアルキルシリル化剤、ハロメチルジメチルシリル化剤、及び、ペンタフルオロフェニルジメチルシリル化剤からなる群から選択される少なくとも1種が挙げられる。これらの中でも、セルロース微細繊維間を広げる観点から、トリメチルシリル化剤、及び、ジメチルアルキルシリル化剤からなる群から選択される少なくとも1種が好ましい。 Specific examples of the silylating agent include at least one selected from the group consisting of a trimethylsilylating agent, a dimethylalkylsilylating agent, a halomethyldimethylsilylating agent, and a pentafluorophenyldimethylsilylating agent. Among these, at least one selected from the group consisting of a trimethylsilylating agent and a dimethylalkylsilylating agent is preferable from the viewpoint of expanding the space between cellulose fine fibers.
 トリメチルシリル化剤の具体例としては、特に限定されないが、トリメチルクロロシラン(TMCS)、ヘキサメチルジシラザン(HMDS)、N,O-ビス(トリメチルシリル)アセトアミド(BSA)、N-トリメチルシリルイミダゾール(TMSI)、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N-トリメチルシリルアセトアミド、N-メチル-N-トリメチルシリルアセトアミド、N-メチル-N-トリメチルシリルフルオロアセトアミド、N-(トリメチルシリル)ジエチルアミン、N-(トリメチルシリル)ジメチルアミンなどが挙げられる。 Specific examples of the trimethylsilylating agent are not particularly limited, but trimethylchlorosilane (TMCS), hexamethyldisilazane (HMDS), N, O-bis (trimethylsilyl) acetamide (BSA), N-trimethylsilylimidazole (TMSI), N , O-bis (trimethylsilyl) trifluoroacetamide, N-trimethylsilylacetamide, N-methyl-N-trimethylsilylacetamide, N-methyl-N-trimethylsilylfluoroacetamide, N- (trimethylsilyl) diethylamine, N- (trimethylsilyl) dimethylamine, etc. Is mentioned.
 ジメチルアルキルシリル化剤の具体例としては、1-(ジメチルイソプロピルシリル)イミダゾール、1-(tert-ブチルジメチルシリル)イミダゾール、1-(ジメチルエチルシリル)イミダゾール、N-(tert-ブチルジメチルシリル)-N-メチルトリフルオロアセトアミドが挙げられる。ここで、ジメチルアルキルシリル化剤における「アルキル」の炭素数は2~8が好ましく、より好ましくは2~6である。 Specific examples of the dimethylalkylsilylating agent include 1- (dimethylisopropylsilyl) imidazole, 1- (tert-butyldimethylsilyl) imidazole, 1- (dimethylethylsilyl) imidazole, N- (tert-butyldimethylsilyl)- N-methyltrifluoroacetamide is mentioned. Here, the carbon number of “alkyl” in the dimethylalkylsilylating agent is preferably 2 to 8, more preferably 2 to 6.
 ハロメチルジメチルシリル化剤の具体例としては、1,3-ビス(クロロメチル)テトラメチルジシラザン、クロロ(クロロメチル)ジメチルシラン、ブロモメチルジメチルクロロシラン(BMDMCS)などが挙げられる。 Specific examples of the halomethyldimethylsilylating agent include 1,3-bis (chloromethyl) tetramethyldisilazane, chloro (chloromethyl) dimethylsilane, bromomethyldimethylchlorosilane (BMMDCS), and the like.
 ペンタフルオロフェニルジメチルシリル化剤の具体例としては、ペンタフルオロフェニルジメチルシリルジエチルアミン、ペンタフルオロフェニルジメチルクロロシランなどが挙げられる。 Specific examples of the pentafluorophenyldimethylsilylating agent include pentafluorophenyldimethylsilyldiethylamine and pentafluorophenyldimethylchlorosilane.
 以上列挙した具体例のシリル化剤は、いずれか1種単独で用いても、2種以上組み合わせて用いてもよい。 The silylating agents of the specific examples listed above may be used alone or in combination of two or more.
 [化学修飾セルロース繊維集合体の製造方法]
 本実施形態においては、上記のシート状のセルロース繊維集合体とシリル化剤とを反応させてシート状の化学修飾セルロース繊維集合体を得る。
[Method for producing chemically modified cellulose fiber aggregate]
In this embodiment, the sheet-like cellulose fiber aggregate is reacted with a silylating agent to obtain a sheet-like chemically modified cellulose fiber aggregate.
 [前処理]
 上記シート状のセルロース繊維集合体に対しては、シリル化剤による反応に先立ち、前処理として、必要に応じて裁断処理を行ってもよい。裁断処理とは、シート状のセルロース原料を所定の大きさのシート状に裁断する処理である。この裁断処理を予め行うことにより、仕込みをより効率的に行うことができる。
[Preprocessing]
Prior to the reaction with the silylating agent, the sheet-like cellulose fiber aggregate may be subjected to a cutting treatment as necessary as a pretreatment. The cutting process is a process of cutting a sheet-like cellulose raw material into a sheet having a predetermined size. By performing this cutting process in advance, preparation can be performed more efficiently.
 裁断処理方法としては、例えば、ペーパーカッター、シュレッダー、ロータリーカッター等を使用する方法が挙げられる。 Examples of the cutting method include a method using a paper cutter, a shredder, a rotary cutter, and the like.
 本実施形態では、シート状のセルロース繊維集合体に対し、シリル化剤による反応の前処理として予備解繊及び/又は予備粉砕を行わないことが好ましい。すなわち、セルロース繊維形状を損なうような前処理は行わないことが好ましい。本実施形態によれば、予備解繊や予備粉砕を行わなくても、シリル化処理することにより容易に解繊可能な化学修飾セルロース繊維集合体が得られる。そのため、予備解繊や予備粉砕を省略することで、工程負荷を低減することができる。また、予備解繊や予備粉砕せずにシリル化処理するため、シリル化処理におけるセルロース繊維分散液の粘性を低減して、効率性及び生産性を向上することができる。 In this embodiment, it is preferable not to preliminarily defibrate and / or preliminarily pulverize the sheet-like cellulose fiber aggregate as a pretreatment for the reaction with the silylating agent. That is, it is preferable not to perform a pretreatment that impairs the cellulose fiber shape. According to this embodiment, a chemically modified cellulose fiber aggregate that can be easily defibrated is obtained by silylation treatment without pre-defibration or pulverization. Therefore, the process load can be reduced by omitting preliminary defibration and preliminary pulverization. Further, since the silylation treatment is performed without preliminary defibration or preliminary pulverization, the viscosity of the cellulose fiber dispersion in the silylation treatment can be reduced, and the efficiency and productivity can be improved.
 [シリル化処理]
 シート状のセルロース繊維集合体とシリル化剤との反応(即ち、シリル化反応)は、シリル化剤を含む薬液にシート状のセルロース繊維集合体を浸漬することにより行うことができる。
[Silylation]
The reaction between the sheet-like cellulose fiber aggregate and the silylating agent (that is, silylation reaction) can be performed by immersing the sheet-like cellulose fiber aggregate in a chemical solution containing the silylating agent.
 本実施形態では、シート状のセルロース繊維集合体に含まれるセルロース繊維に対し、セルロース繊維形状を保ったまま、当該セルロース繊維の構成要素であるセルロース微細繊維の表面をシリル化剤で化学修飾することが好ましい。すなわち、セルロース繊維は、セルロース微細繊維(セルロースナノファイバーとも称される)を構成要素として、これが束になったものである。本実施形態では、かかるセルロース微細繊維の束であるセルロース繊維の形状を保持したまま(即ち、解繊することなく)、セルロース微細繊維の表面をシリル化剤で化学修飾することが好ましい。このようにセルロース繊維を解繊しない状態でシリル化処理するため、セルロース繊維分散液の粘性上昇を抑えて、効率性及び生産性を向上することができる。 In this embodiment, the surface of the cellulose fine fiber that is a constituent element of the cellulose fiber is chemically modified with a silylating agent while maintaining the cellulose fiber shape with respect to the cellulose fiber contained in the sheet-like cellulose fiber aggregate. Is preferred. That is, the cellulose fiber is a bundle of cellulose fine fibers (also referred to as cellulose nanofibers). In the present embodiment, it is preferable to chemically modify the surface of the cellulose fine fiber with a silylating agent while maintaining the shape of the cellulose fiber that is a bundle of such cellulose fine fibers (that is, without defibrating). As described above, since the silylation treatment is performed in a state where the cellulose fibers are not defibrated, an increase in viscosity of the cellulose fiber dispersion can be suppressed, and efficiency and productivity can be improved.
 本実施形態では、シート状のセルロース繊維集合体を、当該シート状の形態を保持したままシリル化処理し、シート状の化学修飾セルロース繊維集合体を得ることが好ましい。すなわち、本実施形態では、シート状のセルロース繊維重合体を、スラリー状にすることなく、薬液に浸漬してシリル化処理する。シート状の形態を保持したままシリル化することにより、効率性及び生産性を向上することができる。なお、シリル化処理前のシート状の形態と、化学修飾セルロース繊維集合体のシート状の形態とは、同一でもよく、異なっていてもよい。すなわち、シリル化処理前のシート状の形態をそのまま保持した化学修飾セルロース繊維集合体を得てもよい。また、例えば、前処理としての裁断処理により小さなシート片としてシリル化処理した場合に、後述するシート化処理において、複数のシート片をプレスにより合体させて1枚のシート状に形成してもよい。 In this embodiment, it is preferable to obtain a sheet-like chemically modified cellulose fiber aggregate by subjecting the sheet-like cellulose fiber aggregate to a silylation treatment while maintaining the sheet-like form. That is, in the present embodiment, the sheet-like cellulose fiber polymer is immersed in a chemical solution and processed for silylation without forming a slurry. Efficiency and productivity can be improved by carrying out silylation while maintaining the sheet-like form. In addition, the sheet-like form before the silylation treatment and the sheet-like form of the chemically modified cellulose fiber aggregate may be the same or different. That is, you may obtain the chemically modified cellulose fiber assembly which hold | maintained the sheet-like form before a silylation process as it is. Further, for example, when a silylation process is performed as a small sheet piece by a cutting process as a pretreatment, a plurality of sheet pieces may be combined by a press to form a single sheet in the sheeting process described later. .
 シリル化剤の使用量は、セルロース繊維集合体に含まれるセルロース繊維への置換基の導入量を考慮して適宜調整することができる。シリル化剤は、例えば、セルロース分子中のアンヒドログルコース単位1モル当たり、好ましくは0.001~50モル、より好ましくは0.01~10モルで使用することができる。 The amount of the silylating agent used can be appropriately adjusted in consideration of the amount of substituents introduced into the cellulose fibers contained in the cellulose fiber aggregate. The silylating agent can be used, for example, in an amount of preferably 0.001 to 50 mol, more preferably 0.01 to 10 mol per mol of anhydroglucose unit in the cellulose molecule.
 シリル化反応を行う薬液は、シリル化剤と溶媒を混合してなるものであり、更に触媒を添加してもよく、添加しなくてもよい。触媒としては、特に限定されないが、例えば、塩化水素、クロロトリメチルシラン、硫化水素、メタンスルホン酸、p-トルエンスルホン酸、トリフルオロ酢酸、硫化アンモニウム、ピリジンなどが挙げられる。酸性触媒を用いる場合、反応促進とセルロース重合度保持の観点から、弱塩基性触媒を併用してもよい。 The chemical solution for performing the silylation reaction is a mixture of a silylating agent and a solvent, and a catalyst may or may not be added. The catalyst is not particularly limited, and examples thereof include hydrogen chloride, chlorotrimethylsilane, hydrogen sulfide, methanesulfonic acid, p-toluenesulfonic acid, trifluoroacetic acid, ammonium sulfide, and pyridine. When an acidic catalyst is used, a weakly basic catalyst may be used in combination from the viewpoint of promoting the reaction and maintaining the degree of cellulose polymerization.
 触媒の使用量は、特に限定されないが、たとえば、セルロース分子中のアンヒドログルコース単位1モル当たり0.001~10モルが好ましく、0.005~2.5モルがより好ましく、0.01~2.0モルが更に好ましい。 The amount of the catalyst used is not particularly limited, but is preferably 0.001 to 10 mol, more preferably 0.005 to 2.5 mol, more preferably 0.01 to 2 per mol of anhydroglucose unit in the cellulose molecule. More preferred is 0.0 mole.
 触媒は、高濃度のものをそのまま用いてもよく、或いは、事前に溶媒で希釈して用いてもよい。また、特に限定するものではないが、塩基性触媒の添加方法は、一括添加、分割添加、連続的添加、又はこれらの組合せで行うことができる。 The catalyst may be used as it is at a high concentration, or may be diluted with a solvent in advance. Although not particularly limited, the basic catalyst can be added by batch addition, divided addition, continuous addition, or a combination thereof.
 薬液に使用する溶媒について、その種類は特に限定されないが、例えば、無極性有機溶媒や極性有機溶媒を用いることができる。無極性有機溶媒としては、例えば、ヘキサン、ジエチルエーテル、ヘキサン、トルエン、四塩化炭素などが挙げられる。極性有機溶媒としては、テトラヒドロフラン、ジオキサン、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、N-メチルピロリドン、ピリジンなどが挙げられる。上記の有機溶媒の中では、セルロース繊維集合体の膨潤を促進する観点から、極性有機溶媒がより好ましい。また、反応性および膨潤度の高さから、非プロトン性有機溶媒、たとえばジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、N-メチルピロリドン、ピリジンなどがさらに好ましい。なお、上記有機溶媒は単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The type of solvent used in the chemical solution is not particularly limited. For example, a nonpolar organic solvent or a polar organic solvent can be used. Examples of the nonpolar organic solvent include hexane, diethyl ether, hexane, toluene, carbon tetrachloride and the like. Examples of the polar organic solvent include tetrahydrofuran, dioxane, acetonitrile, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, pyridine and the like. Among the above organic solvents, a polar organic solvent is more preferable from the viewpoint of promoting the swelling of the cellulose fiber aggregate. In view of high reactivity and swelling, aprotic organic solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, pyridine and the like are more preferable. In addition, the said organic solvent may be used independently and may be used in combination of 2 or more type.
 溶媒の使用量は、特に限定されないが、たとえば、セルロース繊維集合体の溶媒含有量(即ち、セルロース繊維集合体の乾燥質量に対する溶媒の質量の比率)が10質量%以上、好ましくは10~10000質量%、より好ましくは20~5000質量%、更に好ましくは50~2000質量%で使用される。溶媒量が少ないほど、洗浄工程の利便性が向上する。 The amount of the solvent used is not particularly limited. For example, the solvent content of the cellulose fiber aggregate (that is, the ratio of the mass of the solvent to the dry mass of the cellulose fiber aggregate) is 10% by mass or more, preferably 10 to 10000 mass. %, More preferably 20 to 5000% by mass, still more preferably 50 to 2000% by mass. The smaller the amount of solvent, the more convenient the cleaning process.
 [後処理]
 シリル化反応の終了後に、洗浄、脱溶媒、シート化処理などの後処理を行ってもよく、これにより、シート状の化学修飾セルロース繊維集合体を得ることができる。
[Post-processing]
After completion of the silylation reaction, post-treatment such as washing, solvent removal, and sheeting treatment may be performed, whereby a sheet-like chemically modified cellulose fiber aggregate can be obtained.
 本実施形態では、洗浄に先立ち、必要に応じて、シリル化反応の反応停止作用を有する化合物を添加して反応を停止する工程を設けてもよい。反応の停止は、化学修飾セルロース繊維を含む薬液中にシリル化剤と反応しやすい物質を投入すればよく、その物質の種類は特に限定されない。また、エタノール等のアルコールを投入することによってシリル化反応を終了させてもよい。 In this embodiment, prior to washing, a step of stopping the reaction by adding a compound having a reaction-stopping action of the silylation reaction may be provided as necessary. The reaction may be stopped by introducing a substance that easily reacts with the silylating agent into the chemical solution containing the chemically modified cellulose fiber, and the type of the substance is not particularly limited. Further, the silylation reaction may be terminated by adding an alcohol such as ethanol.
 洗浄工程は、反応停止の目的、及び/又は、シリル化剤残渣、残留触媒、溶媒などの除去の目的で行う工程であり、湿潤状態の化学修飾セルロース繊維を洗浄する。この時、洗浄条件は特に限定されないが、有機溶媒を用いて、反応終了後の化学修飾セルロース繊維を洗浄するのが好ましい。場合によっては、試薬除去効率を高める観点から、シリル化反応後のシート状の化学修飾セルロース繊維集合体を、洗浄工程のみスラリー状にし、後のシート化処理工程でシート状に戻してもよい。 The washing step is a step performed for the purpose of stopping the reaction and / or for the purpose of removing silylating agent residue, residual catalyst, solvent and the like, and washing the chemically modified cellulose fiber in a wet state. At this time, although the washing conditions are not particularly limited, it is preferable to wash the chemically modified cellulose fiber after completion of the reaction using an organic solvent. In some cases, from the viewpoint of increasing the reagent removal efficiency, the sheet-like chemically modified cellulose fiber aggregate after the silylation reaction may be made into a slurry form only in the washing step and returned to the sheet form in the subsequent sheeting treatment step.
 脱溶媒工程は、シリカ反応時の溶媒や洗浄溶媒を除去する工程であるが、完全に除去する必要はない。脱溶媒の方法は、特に限定されないが、遠心沈降法、濾過などが使用できる。また、シート化処理工程において湿潤した化学修飾セルロース繊維をプレスすることにより、シート化処理と脱溶媒を同時に行ってもよい。 The solvent removal step is a step of removing the solvent and washing solvent during the silica reaction, but it is not necessary to completely remove the solvent. A method for removing the solvent is not particularly limited, and a centrifugal sedimentation method, filtration, and the like can be used. Moreover, you may perform a sheeting process and a solvent removal simultaneously by pressing the chemically modified cellulose fiber wetted in the sheeting process.
 シート化処理は、例えば、湿紙状態の化学修飾セルロース繊維(すなわち、シート状の化学修飾セルロース繊維集合体が膨潤した状態のもの)をプレスすることで実施することができる。湿潤状態の化学修飾セルロース繊維をプレスする方法としては、特に限定されないが、例えば、ロールプレス、加圧プレスなどを用いることができる。 The sheet forming treatment can be performed, for example, by pressing chemically modified cellulose fibers in a wet paper state (that is, in a state where a sheet-like chemically modified cellulose fiber aggregate is swollen). A method for pressing the chemically modified cellulose fiber in a wet state is not particularly limited, and for example, a roll press, a pressure press, or the like can be used.
 ここで、有機溶媒を完全に除去せず、シートを有機溶媒で湿潤状態にしておくことが好ましい。シート状の化学修飾セルロース繊維集合体の有機溶媒含有量(即ち、化学修飾セルロース繊維集合体の乾燥質量に対する有機溶媒の質量の比率)は1~500質量%であることが好ましく、より好ましくは10~100質量%であり、更に好ましくは10~50質量%である。 Here, it is preferable not to completely remove the organic solvent, but to keep the sheet wet with the organic solvent. The organic solvent content of the sheet-like chemically modified cellulose fiber aggregate (that is, the ratio of the mass of the organic solvent to the dry mass of the chemically modified cellulose fiber aggregate) is preferably 1 to 500% by mass, more preferably 10%. To 100% by mass, more preferably 10 to 50% by mass.
 [化学修飾セルロース繊維集合体]
 本実施形態により得られるシート状の化学修飾セルロース繊維集合体においては、セルロース中の水酸基の水素が上記一般式(1)で表されるシリル基によって置換されており、すなわち、セルロース繊維にシリル基が導入されている。シリル基は、セルロース繊維を構成するセルロース微細繊維の表面に導入されており、セルロース繊維の表面に存在するセルロース微細繊維だけでなく、セルロース繊維の内部に存在するセルロース微細繊維についても、それらセルロース微細繊維の表面にシリル基が導入されていることが好ましい。
[Chemically modified cellulose fiber aggregate]
In the sheet-like chemically modified cellulose fiber aggregate obtained by the present embodiment, the hydrogen of the hydroxyl group in the cellulose is substituted by the silyl group represented by the general formula (1), that is, the cellulose fiber has a silyl group. Has been introduced. The silyl group is introduced on the surface of the cellulose fine fiber constituting the cellulose fiber, and not only the cellulose fine fiber existing on the surface of the cellulose fiber but also the cellulose fine fiber existing inside the cellulose fiber is also the cellulose fine fiber. It is preferable that a silyl group is introduced on the surface of the fiber.
 シート状の化学修飾セルロース繊維集合体の厚みは、特に限定しないが、0.01~100mmであることが好ましく、0.1~10mmでもよい。 The thickness of the sheet-like chemically modified cellulose fiber aggregate is not particularly limited, but is preferably 0.01 to 100 mm, and may be 0.1 to 10 mm.
 シート状の化学修飾セルロース繊維集合体において、化学修飾セルロース繊維の繊維幅(平均幅)は、特に限定されないが、例えば1~100μmでもよく、5~80μmでもよく、10~50μmでもよい。ここで、繊維幅は、光学顕微鏡観察で50本の化学修飾セルロース繊維の繊維幅を測定し平均値を算出することにより求められる。 In the sheet-like chemically modified cellulose fiber aggregate, the fiber width (average width) of the chemically modified cellulose fibers is not particularly limited, but may be, for example, 1 to 100 μm, 5 to 80 μm, or 10 to 50 μm. Here, the fiber width is obtained by measuring the fiber width of 50 chemically modified cellulose fibers by optical microscope observation and calculating an average value.
 化学修飾セルロース繊維集合体の構成要素である化学修飾セルロース微細繊維は、セルロースI型結晶を有しその結晶化度が40%以上であることが好ましい。結晶化度が40%以上であることにより、セルロース結晶構造に由来する特性を発現できる。該結晶化度の値は50%以上が好ましく、より好ましくは60%以上である。該結晶化度の上限は、特に限定されないが、例えば、98%以下でもよく、95%以下でもよく、90%以下でもよい。 The chemically modified cellulose fine fiber, which is a constituent element of the chemically modified cellulose fiber aggregate, preferably has cellulose I-type crystals and a crystallinity of 40% or more. When the crystallinity is 40% or more, characteristics derived from the cellulose crystal structure can be expressed. The crystallinity value is preferably 50% or more, more preferably 60% or more. The upper limit of the crystallinity is not particularly limited, but may be 98% or less, 95% or less, or 90% or less, for example.
 シート状の化学修飾セルロース繊維集合体において、セルロース中の水酸基の水素が一般式(1)で表されるシリル基で置換されている程度である置換度(DS)は、特に限定されないが、0.10~0.70であることが好ましく、より好ましくは0.20~0.60である。 In the sheet-like chemically modified cellulose fiber aggregate, the degree of substitution (DS) that is the degree to which the hydrogen of the hydroxyl group in cellulose is substituted with the silyl group represented by the general formula (1) is not particularly limited, but is 0 It is preferably 10 to 0.70, more preferably 0.20 to 0.60.
 本実施形態で得られたシート状の化学修飾セルロース繊維集合体は、有機溶媒へ分散させることができ、有機溶媒中に化学修飾セルロース繊維が分散した化学修飾セルロース繊維分散体を得ることができる。攪拌装置は、特に限定されないが、スターラー、ブレンダー、ホモミキサーなどが挙げられる。化学修飾セルロース繊維分散体の濃度(スラリー濃度)は、攪拌可能であれば特に限定されないが、0.1~5質量%が好ましい。 The sheet-like chemically modified cellulose fiber aggregate obtained in this embodiment can be dispersed in an organic solvent, and a chemically modified cellulose fiber dispersion in which chemically modified cellulose fibers are dispersed in an organic solvent can be obtained. The stirrer is not particularly limited, and examples thereof include a stirrer, a blender, and a homomixer. The concentration (slurry concentration) of the chemically modified cellulose fiber dispersion is not particularly limited as long as it can be stirred, but is preferably 0.1 to 5% by mass.
 また、該化学修飾セルロース繊維分散体に対して解繊処理を行うことで、容易に化学修飾セルロース微細繊維分散体を得ることができる。解繊処理としては、化学修飾セルロース繊維を機械的に解繊するものであれば、特に限定されず、例えば、リファイナー、高圧ホモジナイザー、媒体撹拌ミル(例えば、ロッキングミル、ボールミルなど)、グラインダー、二軸混錬機(二軸押出機)、石臼、振動ミル等を用いて処理する方法が挙げられる。 Moreover, a chemically modified cellulose fine fiber dispersion can be easily obtained by performing a defibrating treatment on the chemically modified cellulose fiber dispersion. The defibrating treatment is not particularly limited as long as the chemically modified cellulose fiber is mechanically defibrated. For example, a refiner, a high-pressure homogenizer, a medium stirring mill (for example, a rocking mill, a ball mill, etc.), a grinder, two The method of processing using a shaft kneader (double-screw extruder), a stone mill, a vibration mill, etc. is mentioned.
 解繊後の化学修飾セルロース微細繊維の繊維幅(平均幅)としては、特に限定されず、例えば、4~200nmでもよく、4~100nmでもよい。ここで、繊維幅は、光学顕微鏡観察で50本の化学修飾セルロース微細繊維の繊維幅を測定し平均値を算出することにより求められる。 The fiber width (average width) of the chemically modified cellulose fine fibers after defibration is not particularly limited, and may be, for example, 4 to 200 nm or 4 to 100 nm. Here, the fiber width is determined by measuring the fiber width of 50 chemically modified cellulose fine fibers by optical microscope observation and calculating an average value.
 本実施形態に係るシート状の化学修飾セルロース繊維集合体の用途は特に限定されず、例えば、食品、化粧品、機能紙、樹脂補強材等の工業原料として用いることができる。 The use of the sheet-like chemically modified cellulose fiber aggregate according to the present embodiment is not particularly limited, and can be used as industrial raw materials such as foods, cosmetics, functional paper, and resin reinforcing materials.
 本実施形態によれば、シート状のセルロース繊維集合体を用い、これをシリル化剤と反応させることにより、繊維形状を保持したまま化学修飾セルロース繊維集合体を得ることができるため、効率的かつ高い生産性で、シート状の化学修飾セルロース繊維集合体を製造することができる。また、得られた化学修飾セルロース繊維集合体は、有機溶媒に容易に分散させることができ、また解繊処理により容易に微細化することができるため、ユーザーで解繊処理を行うことも可能である。そのため、シート状でユーザーに供給することを可能にして流通コストを抑えることができる。 According to this embodiment, since a sheet-like cellulose fiber aggregate is used and reacted with a silylating agent, a chemically modified cellulose fiber aggregate can be obtained while maintaining the fiber shape. A sheet-like chemically modified cellulose fiber aggregate can be produced with high productivity. In addition, the obtained chemically modified cellulose fiber aggregate can be easily dispersed in an organic solvent and can be easily refined by a defibrating process, so that the defibrating process can be performed by the user. is there. Therefore, the sheet can be supplied to the user and the distribution cost can be suppressed.
 以下、実施例により更に詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 各実施例及び各比較例における測定・評価方法は以下の通りである。 The measurement and evaluation methods in each example and each comparative example are as follows.
 (1)セルロースI型結晶化度
 セルロース原料および化学修飾セルロース繊維集合体のX線回折強度をX線回折法にて測定し、その測定結果からSegal法を用いて下記式により算出した。
セルロースI型結晶化度(%)=〔(I22.6-I18.5)/I22.6〕×100
 式中、I22.6は、X線回折における格子面(002面)(回折角2θ=22.6°)の回折強度、I18.5は、アモルファス部(回折角2θ=18.5°)の回折強度を示す。また、サンプルのX線回折強度の測定を、株式会社リガク製の「RINT2200」を用いて以下の条件にて実施した:
 X線源:Cu/Kα-radiation
 管電圧:40Kv
 管電流:30mA
 測定範囲:回折角2θ=5~35°
 X線のスキャンスピード:10°/min
(1) Cellulose I-type crystallinity The X-ray diffraction intensity of the cellulose raw material and the chemically modified cellulose fiber aggregate was measured by the X-ray diffraction method, and was calculated from the measurement result by the following formula using the Segal method.
Cellulose type I crystallinity (%) = [(I 22.6 -I 18.5 ) / I 22.6 ] × 100
In the formula, I 22.6 is the diffraction intensity of the lattice plane (002 plane) (diffraction angle 2θ = 22.6 °) in X-ray diffraction, and I 18.5 is the diffraction intensity of the amorphous portion (diffraction angle 2θ = 18.5 °). Indicates. Moreover, the measurement of the X-ray diffraction intensity of the sample was carried out using “RINT2200” manufactured by Rigaku Corporation under the following conditions:
X-ray source: Cu / Kα-radiation
Tube voltage: 40Kv
Tube current: 30 mA
Measurement range: Diffraction angle 2θ = 5-35 °
X-ray scanning speed: 10 ° / min
 (2)セルロース繊維集合体の嵩密度
 シート状のセルロース繊維集合体を5cm角四方に切り出したものを5サンプル用意し、厚みおよび質量を測定し平均値を算出した。セルロース繊維集合体の質量をその外容積で除した値を嵩密度とした。
(2) Bulk density of cellulose fiber aggregate Five samples of sheet-like cellulose fiber aggregates cut out in 5 cm square were prepared, the thickness and mass were measured, and the average value was calculated. The value obtained by dividing the mass of the cellulose fiber aggregate by its outer volume was taken as the bulk density.
 (3)化学修飾セルロース繊維集合体の同定
 化学修飾セルロース繊維集合体において導入基の同定は、フーリエ赤外分光光度計(FT-IR、ATR法)で行った。
(3) Identification of Chemically Modified Cellulose Fiber Assembly The introduction group in the chemically modified cellulose fiber assembly was identified with a Fourier infrared spectrophotometer (FT-IR, ATR method).
 (4)化学修飾セルロース繊維集合体の置換度(DS)の算出
 化学修飾セルロース繊維集合体の置換度は、脱溶媒処理後における未乾燥の化学修飾セルロース繊維集合体のシートを脱シリル化処理した後、生成したシリル化合物をガスクロマトグラフィーで定量することで算出した。詳細には、スクリュー管にアセトン(10mL)、フェノール(480mg)、及び、炭酸カリウム(510mg)を入れて攪拌した後、化学修飾セルロース繊維集合体[A](400mg)を投入し室温中1日間攪拌を行った。繊維が凝集したことを確認した後、赤外分光光度計で脱シリル化の進行を確認した。その後、得られた脱シリル化処理パルプ[B]の重量を計測し、下記計算式から置換度(DS)を算出した。なお、脱シリル化処理パルプ[B]の物質量は、脱シリル化処理されたパルプのグルコースユニット当たりのモル数(=パルプ質量/162)である。
(4) Calculation of degree of substitution (DS) of chemically modified cellulose fiber aggregate The degree of substitution of chemically modified cellulose fiber aggregate was obtained by desilylating a sheet of undried chemically modified cellulose fiber aggregate after desolvation treatment. Then, it calculated by quantifying the produced | generated silyl compound with a gas chromatography. Specifically, acetone (10 mL), phenol (480 mg), and potassium carbonate (510 mg) were added to a screw tube and stirred, and then chemically modified cellulose fiber aggregate [A] (400 mg) was added for 1 day at room temperature. Stirring was performed. After confirming that the fibers were aggregated, the progress of desilylation was confirmed with an infrared spectrophotometer. Thereafter, the weight of the resulting desilylated pulp [B] was measured, and the degree of substitution (DS) was calculated from the following formula. The substance amount of the desilylated pulp [B] is the number of moles per glucose unit of the desilylated pulp (= pulp mass / 162).
 DS={(Aの重量-Bの重量)/(シリル化剤の分子量)}/(Bの物質量) DS = {(weight of A−weight of B) / (molecular weight of silylating agent)} / (weight of substance of B)
 (5)化学修飾セルロース繊維集合体の繊維幅測定
 シート状の化学修飾セルロース繊維集合体において、化学修飾セルロース繊維の繊維幅の測定は光学顕微鏡観察で行い、50本の繊維を測定し平均値を算出した。
(5) Fiber width measurement of chemically modified cellulose fiber aggregate In the sheet-like chemically modified cellulose fiber aggregate, the fiber width of the chemically modified cellulose fiber is measured by optical microscope observation, 50 fibers are measured, and the average value is obtained. Calculated.
 (6)化学修飾セルロース繊維集合体の繊維形状評価
 シート状の化学修飾セルロース繊維集合体において、化学修飾セルロース繊維の形状評価は、光学顕微鏡観察で行い、下記の基準で評価した。
○:繊維形状を保持しており、繊維の二次壁中層(S2層)が膨潤している。
△:繊維形状を保持しているが、繊維の二次壁中層(S2層)の膨潤は観察できない。
×:繊維形状が保持されず、繊維が溶解または短繊維化している。
(6) Evaluation of Fiber Shape of Chemically Modified Cellulose Fiber Assembly In the sheet-like chemically modified cellulose fiber assembly, the shape of the chemically modified cellulose fiber was evaluated by observation with an optical microscope and evaluated according to the following criteria.
◯: The fiber shape is maintained, and the secondary wall middle layer (S2 layer) of the fiber is swollen.
(Triangle | delta): Although the fiber shape is hold | maintained, the swelling of the secondary wall middle layer (S2 layer) of a fiber cannot be observed.
X: The fiber shape is not maintained, and the fiber is dissolved or shortened.
 (7)セルロース微細繊維表面への置換基導入の評価
 エタノールによる洗浄後の化学修飾セルロース繊維分散液を微細繊維化処理し、溶液の透明性を測定することで評価した。洗浄後の化学修飾セルロース繊維分散液を固形分濃度0.5質量%になるようN―メチルピロリドンで希釈し、微細化処理として高圧ホモジナイザー(H11、三和エンジニアリング社製)を用いて圧力100MPaで1回処理を行い、得られた分散液について紫外可視分光光度計(UV-Vis)にて透明性を評価し、下記の基準で評価した。透明性が高いほど置換基であるシリル基がセルロース微細繊維表面に十分に導入されており、微細繊維化処理による解繊効果に優れることを意味する。
◎:660nmにおける透過率が80%以上
○:660nmにおける透過率が70%以上80%未満
△:660nmにおける透過率が70%未満
×:微細化処理されず、繊維が沈降し、固液分離している。
(7) Evaluation of introduction of substituents on the surface of cellulose fine fibers The chemically modified cellulose fiber dispersion after washing with ethanol was subjected to a fine fiber treatment, and the transparency of the solution was measured. The chemically modified cellulose fiber dispersion after washing is diluted with N-methylpyrrolidone so as to have a solid content concentration of 0.5% by mass, and a high-pressure homogenizer (H11, manufactured by Sanwa Engineering Co., Ltd.) is used as a refining treatment at a pressure of 100 MPa. The treatment was performed once, and the resulting dispersion was evaluated for transparency with an ultraviolet-visible spectrophotometer (UV-Vis) and evaluated according to the following criteria. The higher the transparency, the more the silyl group, which is a substituent, is sufficiently introduced on the surface of the cellulose fine fiber, which means that the fibrillation effect by the fine fiber treatment is excellent.
A: Transmittance at 660 nm is 80% or more. O: Transmittance at 660 nm is 70% or more and less than 80%. Δ: Transmittance at 660 nm is less than 70%. ing.
 (8)化学修飾セルロース繊維集合体の溶媒分散性評価
 脱溶媒処理後における未乾燥の化学修飾セルロース繊維集合体のシート(固形分:100mg)を50mL容バイアル管(スクリュー管:No.7、株式会社マルエム製)に投入した。そこにエタノールまたは酢酸エチルまたはヘキサン50mLを投入し、攪拌を行った(固形分率:0.2質量%)。それから一晩静置した後、繊維状態を目視で観察し、下記の基準で評価した。
○:繊維が溶媒中で分散している。
△:繊維が溶媒中で膨潤している。
×:繊維が溶媒中で凝集している。
(8) Solvent Dispersibility Evaluation of Chemically Modified Cellulose Fiber Aggregate An undried chemically modified cellulose fiber aggregate sheet (solid content: 100 mg) after desolvation treatment is placed in a 50 mL vial tube (screw tube: No. 7, stock) (Made by Maruemu company). Ethanol, ethyl acetate or hexane 50 mL was added thereto and stirred (solid content: 0.2% by mass). Then, after standing overnight, the fiber state was visually observed and evaluated according to the following criteria.
○: The fiber is dispersed in the solvent.
Δ: The fiber is swollen in the solvent.
X: The fibers are aggregated in the solvent.
 (9)化学修飾セルロース繊維集合体の分散度評価
 上記(8)と同様の手順でエタノール分散液を調製した。一晩静置した後、エタノール中における繊維分散度を下記式により算出した。式中の「繊維の保有体積」とは、エタノール分散液において繊維が分散している部分の体積である。繊維分散度が低いほど、繊維の回収がし易く、洗浄及び脱溶媒処理の作業性にも優れることを意味する。
(9) Evaluation of degree of dispersion of chemically modified cellulose fiber aggregate An ethanol dispersion was prepared by the same procedure as in (8) above. After leaving still overnight, the fiber dispersion degree in ethanol was calculated by the following formula. The “fiber holding volume” in the formula is the volume of the portion where the fibers are dispersed in the ethanol dispersion. It means that the lower the fiber dispersity, the easier the fibers can be collected and the better the workability of washing and solvent removal treatment.
 繊維分散度(%)=(繊維の保有体積/分散液全体の体積)×100
 繊維分散度を踏まえた上で洗浄工程における作業性を以下のように評価した。
○:繊維分散度が30%未満(洗浄工程における作業性が良い)
×:繊維分散度が30%以上(洗浄工程における作業性が悪い)
Fiber dispersity (%) = (fiber retention volume / total volume of dispersion) × 100
Based on the degree of fiber dispersion, the workability in the washing process was evaluated as follows.
○: Fiber dispersity is less than 30% (good workability in washing process)
X: Fiber dispersity of 30% or more (poor workability in washing process)
 [実施例1]
 セパラブルフラスコにN-メチルピロリドン(NMP)30mL、ピリジン8.9g、ヘキサメチルジシラザン(HMDS)4.5gを投入し、0℃の冷媒でフラスコを冷却しながら5分間攪拌を行った。さらにクロロトリメチルシラン(TMCS)0.2gを少量ずつ滴下した後5分間攪拌を行った。その後、セルロース原料であるシート状のセルロース繊維集合体として、一辺10mmにカットしたシート状の針葉樹パルプ(NBKP、厚み:1mm、嵩密度:10kg/m、セルロースI型結晶化度:85%)3.0gを投入し、シート状のまま25℃で2時間反応させた後、エタノールを投入し反応を停止した。ここで、シリル化剤であるHMDSの使用量は、セルロース分子中のアンヒドログルコース単位1モル当たり3モルとした。また、触媒であるTMCS及びピリジンの使用量は、セルロース分子中のアンヒドログルコース単位1モル当たりそれぞれ0.1モル及び6モルとした。
[Example 1]
A separable flask was charged with 30 mL of N-methylpyrrolidone (NMP), 8.9 g of pyridine, and 4.5 g of hexamethyldisilazane (HMDS), and stirred for 5 minutes while cooling the flask with a 0 ° C. refrigerant. Further, 0.2 g of chlorotrimethylsilane (TMCS) was added dropwise little by little, followed by stirring for 5 minutes. Then, as a sheet-like cellulose fiber aggregate which is a cellulose raw material, a sheet-like softwood pulp cut into a side of 10 mm (NBKP, thickness: 1 mm, bulk density: 10 kg / m 3 , cellulose type I crystallinity: 85%) 3.0 g was added and reacted in the form of a sheet at 25 ° C. for 2 hours, and then ethanol was added to stop the reaction. Here, the amount of HMDS used as the silylating agent was 3 mol per mol of anhydroglucose unit in the cellulose molecule. Moreover, the usage-amount of TMCS which is a catalyst, and the pyridine were 0.1 mol and 6 mol per mol of anhydroglucose unit in a cellulose molecule, respectively.
 得られたシート状の化学修飾セルロース繊維集合体をエタノールで2~3回洗浄した後、加圧プレス(室温、0.2MPa)で加圧することで脱溶媒処理および乾燥を行い、厚み2mmのシート状の化学修飾セルロース繊維集合体を得た。 The obtained sheet-like chemically modified cellulose fiber aggregate is washed 2 to 3 times with ethanol, and then subjected to desolvation treatment and drying by pressing with a pressure press (room temperature, 0.2 MPa), and a sheet having a thickness of 2 mm A chemically modified cellulose fiber aggregate was obtained.
 [実施例2~15、比較例1~2]
 実施例1において、セルロース原料の種類、シリル化剤の種類および仕込量、触媒の種類および仕込量、溶媒の種類および仕込量、反応温度を、表1~3に示す条件に変えた以外は、実施例1と同様にして反応、洗浄、脱溶媒処理を行った。
[Examples 2 to 15, Comparative Examples 1 and 2]
In Example 1, except that the type of cellulose raw material, the type and amount of silylating agent, the type and amount of catalyst, the type and amount of solvent, and the reaction temperature were changed to the conditions shown in Tables 1 to 3. Reaction, washing, and solvent removal treatment were performed in the same manner as in Example 1.
 表中の略称は以下の通りである。
・BSA:N,O-ビス(トリメチルシリル)アセトアミド
・TMSI:N-トリメチルシリルイミダゾール
・TFA:トリフルオロ酢酸
・DMF:ジメチルホルムアミド
・DMSO:ジメチルスルホキシド
・BMDMCS:ブロモメチルジメチルクロロシラン
・TEMPO酸化処理NBKP:特開2011-116865号公報に記載の実施例1における酸化反応工程及び精製工程と同様の手順で調製
・CNF:セルロースナノファイバー(NBKP由来、平均繊維径:20nm)
Abbreviations in the table are as follows.
BSA: N, O-bis (trimethylsilyl) acetamide TMSI: N-trimethylsilylimidazole TFA: trifluoroacetic acid DMF: dimethylformamide DMSO: dimethylsulfoxide BMDMCS: bromomethyldimethylchlorosilane TEMPO oxidation treatment NBKP: JP Prepared by the same procedure as the oxidation reaction step and the purification step in Example 1 described in Japanese Patent Application No. 2011-116865. CNF: cellulose nanofiber (derived from NBKP, average fiber diameter: 20 nm)
 得られた化学修飾セルロース繊維集合体について、導入基の同定、置換度及び結晶化度の算出、繊維幅の測定、繊維形状の評価、微細繊維表面への置換基導入の評価、化学修飾セルロース繊維集合体の溶媒分散性の評価、及び、化学修飾セルロース繊維集合体の分散度評価を行った。結果を表1~3に示す。 About the obtained chemically modified cellulose fiber aggregate, identification of introduced group, calculation of substitution degree and crystallization degree, measurement of fiber width, evaluation of fiber shape, evaluation of introduction of substituents on the surface of fine fibers, chemically modified cellulose fiber Evaluation of the solvent dispersibility of the aggregate and evaluation of the degree of dispersion of the chemically modified cellulose fiber aggregate were performed. The results are shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 結果は表1~3に示す通りである。比較例1では、シリル化剤を使用していないため、セルロース繊維は化学修飾されておらず、有機溶媒への分散性に劣っており、また微細化処理による解繊が不十分で繊維分散液の透明性にも劣っていた。比較例2では、セルロース繊維を事前解繊したCNFを用いてシリル化しており、分散度評価において繊維分散度が100%であり、すなわち、エタノールの全体に繊維が分散していた。これは、分散液の全体に繊維間の三次元ネットワークが形成されていることを意味し、繊維がエタノールを抱くことにより粘性が高くなっており、そのため、繊維を回収しにくく、洗浄及び脱溶媒処理の作業性に劣っていた。
Figure JPOXMLDOC01-appb-T000007
The results are as shown in Tables 1 to 3. In Comparative Example 1, since the silylating agent is not used, the cellulose fiber is not chemically modified, is inferior in dispersibility in an organic solvent, and is not sufficiently defibrated by the micronization treatment and is a fiber dispersion. The transparency of was also inferior. In Comparative Example 2, silylation was performed using CNF obtained by pre-defining cellulose fibers, and the fiber dispersion was 100% in the evaluation of dispersion, that is, the fibers were dispersed throughout ethanol. This means that a three-dimensional network between fibers is formed in the entire dispersion, and the viscosity of the fibers increases due to the inclusion of ethanol, which makes it difficult to recover the fibers, and washing and desolvation. The workability of the treatment was inferior.
 これに対し、実施例1~15では、短時間の反応でありながら、セルロース繊維形状を保持したままセルロース微細繊維表面にシリル基を導入することができた。また、解繊せずに化学修飾するため、分散度評価において繊維分散度が低く、そのため、ろ液性が高く、粘性の低いものであり、洗浄及び脱溶媒処理の作業性に優れていた。従って、効率的かつ高い生産性で化学修飾セルロース繊維集合体を得ることができた。また、得られた化学修飾セルロース繊維集合体は有機溶媒への分散性に優れており、また微細化処理により容易にセルロース微細繊維に解繊されており、得られた微細繊維分散液の透明性に優れていた。 On the other hand, in Examples 1 to 15, the silyl group could be introduced onto the surface of the fine cellulose fiber while maintaining the shape of the cellulose fiber, although it was a short reaction. In addition, since the fiber is chemically modified without defibration, the fiber dispersion is low in the evaluation of dispersibility. Therefore, the filtrate has high filtrate and low viscosity, and the workability of washing and desolvation treatment is excellent. Therefore, a chemically modified cellulose fiber aggregate could be obtained with high efficiency and high productivity. In addition, the obtained chemically modified cellulose fiber aggregate is excellent in dispersibility in organic solvents, and is easily defibrated into cellulose fine fibers by a refining treatment. The transparency of the obtained fine fiber dispersion liquid It was excellent.
 以上、本発明のいくつかの実施形態を説明したが、これら実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその省略、置き換え、変更などは、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their omissions, replacements, changes, and the like are included in the inventions described in the claims and their equivalents as well as included in the scope and gist of the invention.

Claims (5)

  1.  シート状のセルロース繊維集合体と下記一般式(1)で表される基を有するシリル化剤とを反応させてシート状の化学修飾セルロース繊維集合体を得る、化学修飾セルロース繊維集合体の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、R、R及びRは、それぞれ独立に、一部又は全ての水素原子がハロゲン原子に置換されてもよい炭素数1~10の炭化水素基を示す。
    A process for producing a chemically modified cellulose fiber aggregate, wherein a sheet-like chemically modified cellulose fiber aggregate is obtained by reacting a sheet-like cellulose fiber aggregate with a silylating agent having a group represented by the following general formula (1) .
    Figure JPOXMLDOC01-appb-C000001
    In the formula (1), R 1 , R 2 and R 3 each independently represent a hydrocarbon group having 1 to 10 carbon atoms in which some or all of the hydrogen atoms may be substituted with halogen atoms.
  2.  前記シート状のセルロース繊維集合体に含まれるセルロース繊維に対し、セルロース繊維形状を保ったまま、当該セルロース繊維の構成要素であるセルロース微細繊維の表面を前記シリル化剤で化学修飾する、請求項1に記載の化学修飾セルロース繊維集合体の製造方法。 The surface of the cellulose fine fiber which is the component of the said cellulose fiber is chemically modified with the said silylating agent with respect to the cellulose fiber contained in the said sheet-like cellulose fiber aggregate, keeping a cellulose fiber shape. The manufacturing method of the chemically modified cellulose fiber assembly as described in 2.
  3.  反応前の前記シート状のセルロース繊維集合体の嵩密度が1~100kg/mである、請求項1又は2に記載の化学修飾セルロース繊維集合体の製造方法。 The method for producing a chemically modified cellulose fiber aggregate according to claim 1 or 2, wherein the sheet-like cellulose fiber aggregate before the reaction has a bulk density of 1 to 100 kg / m 3 .
  4.  前記シート状のセルロース繊維集合体に対し、シリル化剤による反応の前処理として予備解繊及び/又は予備粉砕を行わない、請求項1~3のいずれか1項に記載の化学修飾セルロース繊維集合体の製造方法。 The chemically modified cellulose fiber aggregate according to any one of claims 1 to 3, wherein the sheet-like cellulose fiber aggregate is not subjected to preliminary defibration and / or preliminary pulverization as a pretreatment of a reaction with a silylating agent. Body manufacturing method.
  5.  化学修飾セルロース繊維集合体の構成要素である化学修飾セルロース微細繊維が、セルロースI型結晶を有しその結晶化度が40%以上である、請求項1~4のいずれか1項に記載の化学修飾セルロース繊維集合体の製造方法。 The chemical modification according to any one of claims 1 to 4, wherein the chemically modified cellulose fine fiber which is a constituent element of the chemically modified cellulose fiber aggregate has cellulose I-type crystals and has a crystallinity of 40% or more. A method for producing a modified cellulose fiber aggregate.
PCT/JP2018/008544 2017-03-13 2018-03-06 Production method for mass of chemically modified cellulose fibers WO2018168569A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-047639 2017-03-13
JP2017047639A JP6348199B1 (en) 2017-03-13 2017-03-13 Method for producing chemically modified cellulose fiber aggregate

Publications (1)

Publication Number Publication Date
WO2018168569A1 true WO2018168569A1 (en) 2018-09-20

Family

ID=62706265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008544 WO2018168569A1 (en) 2017-03-13 2018-03-06 Production method for mass of chemically modified cellulose fibers

Country Status (2)

Country Link
JP (1) JP6348199B1 (en)
WO (1) WO2018168569A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184816A (en) * 2010-03-05 2011-09-22 Olympus Corp Cellulose nanofiber and method for producing the same, composite resin composition, and molded article
JP2012167202A (en) * 2011-02-15 2012-09-06 Olympus Corp Composite resin composition and molding
JP2013044076A (en) * 2011-08-26 2013-03-04 Olympus Corp Cellulose nanofiber, method for producing the same, composite resin composition and molded body
JP2014090024A (en) * 2012-10-29 2014-05-15 Taiyo Yuden Co Ltd Electrochemical device and separator for use therein
JP2016216749A (en) * 2016-09-27 2016-12-22 王子ホールディングス株式会社 Cationized pulp and manufacturing method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142795A (en) * 1979-04-23 1980-11-07 Lawton William R Quality improvement of cellulose product
JPH05321147A (en) * 1992-05-23 1993-12-07 Sumitomo Electric Ind Ltd Fiber product such as paper and cloth having water and oil repellency
DE10006603A1 (en) * 2000-02-15 2001-08-16 Clariant Gmbh Hydrophobically modified cellulose ethers, processes for their preparation and their use
CA2798405A1 (en) * 2010-05-17 2011-11-24 Dow Corning Corporation Hydrophobic cellulosic substrates and methods for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184816A (en) * 2010-03-05 2011-09-22 Olympus Corp Cellulose nanofiber and method for producing the same, composite resin composition, and molded article
JP2012167202A (en) * 2011-02-15 2012-09-06 Olympus Corp Composite resin composition and molding
JP2013044076A (en) * 2011-08-26 2013-03-04 Olympus Corp Cellulose nanofiber, method for producing the same, composite resin composition and molded body
JP2014090024A (en) * 2012-10-29 2014-05-15 Taiyo Yuden Co Ltd Electrochemical device and separator for use therein
JP2016216749A (en) * 2016-09-27 2016-12-22 王子ホールディングス株式会社 Cationized pulp and manufacturing method therefor

Also Published As

Publication number Publication date
JP6348199B1 (en) 2018-06-27
JP2018150454A (en) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6462051B2 (en) Chemically modified cellulose fiber and method for producing the same
JP7196051B2 (en) Phosphate-esterified fine cellulose fiber and method for producing the same
JP7036565B2 (en) Method for manufacturing chemically modified cellulose fiber
Im et al. Optimization of carboxymethylation reaction as a pretreatment for production of cellulose nanofibrils
JP6737864B2 (en) Chemically modified cellulose fiber and method for producing the same
JP6831935B1 (en) Cellulose composition and method for producing cellulose composition
JP6348199B1 (en) Method for producing chemically modified cellulose fiber aggregate
JP2017066274A (en) Fine fibrous cellulose-containing material
JP2018159068A (en) Method for producing hydroxypropyl methylcellulose
JP2019007117A (en) Chemically modified cellulose fiber
JP7191616B2 (en) gel composition
JP2020050736A (en) Resin composition
JP6869395B1 (en) Cellulose composition and method for producing cellulose composition
JP6888274B2 (en) Molding composition and molded article
JP7015970B2 (en) Rubber composition and its manufacturing method
JP2020165062A (en) Sheet
JP7127005B2 (en) Fine fibrous cellulose inclusions
WO2020137012A1 (en) Method for manufacturing chemically modified cellulose fiber
WO2020050348A1 (en) Fibrous cellulose-containing material, fluffed cellulose and composition
JP2021161353A (en) Fibrous cellulose, fibrous cellulose-containing material, and molding
JP2021116430A (en) Method for producing microfibrous cellulose/nanocarbon-containing material, and microfibrous cellulose/nanocarbon-containing material
JP2020165063A (en) Composition
JP2020164712A (en) Fine fibrous cellulose-containing composition and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767919

Country of ref document: EP

Kind code of ref document: A1