WO2018168473A1 - 光学モジュールの製造方法及び光学モジュール - Google Patents

光学モジュールの製造方法及び光学モジュール Download PDF

Info

Publication number
WO2018168473A1
WO2018168473A1 PCT/JP2018/007574 JP2018007574W WO2018168473A1 WO 2018168473 A1 WO2018168473 A1 WO 2018168473A1 JP 2018007574 W JP2018007574 W JP 2018007574W WO 2018168473 A1 WO2018168473 A1 WO 2018168473A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
resin
substrate
optical module
emitting element
Prior art date
Application number
PCT/JP2018/007574
Other languages
English (en)
French (fr)
Inventor
誠 北爪
位 小野
俊樹 小宮山
勇樹 犬飼
Original Assignee
ミツミ電機株式会社
誠 北爪
位 小野
俊樹 小宮山
勇樹 犬飼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミツミ電機株式会社, 誠 北爪, 位 小野, 俊樹 小宮山, 勇樹 犬飼 filed Critical ミツミ電機株式会社
Priority to US16/484,189 priority Critical patent/US10971666B2/en
Priority to CN201880014777.XA priority patent/CN110352504B/zh
Publication of WO2018168473A1 publication Critical patent/WO2018168473A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to an optical module manufacturing method and an optical module.
  • a light emitting element and a first frame are formed on the surface of a metal plate in which a plurality of first frames and a plurality of second frames are alternately arranged.
  • the 1st resin which covers the 2nd frame is formed, and the sacrifice sheet is stuck on the surface of the 1st resin.
  • a groove along the outer periphery of the resin package is formed in the first resin and the sacrificial sheet on the metal plate, the second resin is filled in the groove, and the second resin is divided along the groove.
  • a resin package in which the outer edge of the first resin is covered with the second resin is formed.
  • an adhesive sheet having a higher adhesive force than the sacrificial sheet is attached on the second resin covering the upper surface of the divided resin package, and the adhesive sheet is peeled off to remove the first resin.
  • the second resin formed on the upper surface is removed together with the sacrificial sheet.
  • the light emitting surface is exposed and the semiconductor light emitting device is completed.
  • the method of manufacturing a semiconductor light emitting device described in Patent Document 1 includes a step of sticking a sacrificial sheet that is finally removed to the surface of the first resin.
  • a sacrificial sheet is an unnecessary material for the product, which increases the manufacturing cost.
  • half cutting by dicing is performed once by forming a groove in the first resin, and further half cutting by dicing is performed when the second resin is divided along the groove. It is performed once and a total of two half cuts are performed. Performing such half-cutting by multiple times of dicing becomes a factor that complicates the manufacturing process.
  • an object of the present invention is to provide an optical module manufacturing method and an optical module that can realize a reduction in the height and size of the module while shortening the process.
  • a method of manufacturing an optical module includes a step of mounting a light emitting element face down on a substrate having a plurality of electrodes on the surface, A resin sheet containing a light wavelength converting substance and a light emitting element mounting surface of the substrate are opposed to each other, and a first light is transmitted into a space between the resin sheet and the substrate including between the resin sheet and the light emitting element.
  • the method of manufacturing an optical module includes a step of mounting a light emitting element face down on a substrate having a plurality of electrodes on the surface, Sealing the upper surface of the substrate including a side surface, an upper surface and a lower surface of the light emitting element with a first light-transmitting resin mixed with a light wavelength conversion material; Covering the upper surface of the surface sealed with the first light-transmitting resin with a second light-transmitting resin; Forming a groove reaching the predetermined depth of the substrate from the upper surface of the second light transmissive resin so as to surround the light emitting element; Filling the groove with a light reflecting resin and covering the upper surface of the second light transmitting resin with the light reflecting resin; Removing the light reflective resin on the second light transmissive resin; Dicing is performed along the light-reflective resin so that the outer surface is covered with the light-reflective resin, leaving a part of the light-reflective resin filled in the groove, and the light-emitting elements are
  • An optical module includes a substrate having a plurality of electrodes on the surface; A light emitting device mounted face down on the plurality of electrodes of the substrate; A resin sheet containing a light wavelength conversion material provided above the light emitting element; A first light-transmitting resin that seals between the substrate and the resin sheet including between the light-emitting element and the resin sheet; A second light-transmitting resin that covers a surface of the resin sheet opposite to the surface sealed by the first light-transmitting resin; Light provided so as to cover the outer peripheral side surface along the outer peripheral side surface of the laminate composed of the substrate, the light emitting element, the resin sheet, the first light transmitting resin, and the second light transmitting resin. And a light-reflective resin containing a reflective substance.
  • An optical module includes a substrate having a plurality of electrodes on the surface; A light emitting device mounted face down on the plurality of electrodes of the substrate; A first light-transmitting resin mixed with a light wavelength conversion material that seals the surface of the substrate including the light-emitting element; A second light transmissive resin covering the top surface of the first light transmissive resin; A light-reflective material provided so as to cover the outer peripheral side surface along the outer peripheral side surface of the laminate composed of the substrate, the light emitting element, the first light transmitting resin, and the second light transmitting resin. A light-reflective resin.
  • An optical module includes a substrate having a rectangular planar shape, provided with a plurality of electrodes on the front surface and a plurality of external connection terminals for electrical connection to the motherboard on the back surface, A plurality of light emitting elements mounted face down on the electrodes along the longitudinal direction of the rectangle; A light-transmitting resin that seals the surface of the substrate including the plurality of light-emitting elements,
  • the plurality of light emitting elements include a plurality of light emitting element groups in which a predetermined number of the light emitting elements are electrically connected in series.
  • FIG. 1 is a diagram showing an example of a substrate preparation process in the method for manufacturing an optical module according to the first embodiment of the present invention.
  • a printed wiring board 10 for mounting an LED (Light Emitting Diode) chip is prepared.
  • the printed wiring board 10 is an example of a substrate for mounting an LED chip, and other substrates may be used as long as the LED chip can be mounted.
  • the printed wiring board 10 is used as a substrate will be described.
  • the printed wiring board 10 may be configured to have, for example, a rectangular planar shape.
  • the printed wiring board 10 has an electrode 20 for mounting an LED chip on the front surface, and an external connection terminal 30 for electrical connection to the motherboard on the back surface.
  • a plurality of electrodes 20 and external connection terminals 30 are provided. Since the LED chip to be mounted usually has two terminals of an anode and a cathode, a plurality of both electrodes 20 and external connection terminals 30 are provided. Usually, since a plurality of LED chips are mounted on the surface of the printed wiring board 10, the number of electrodes 20 and external connection terminals 30 is determined according to the number of LED chips to be mounted.
  • the front-side electrode 20 and the back-side external connection terminal 30 are connected by a wiring pattern inside the printed wiring board 10, and the details of this point will be described later.
  • the printed wiring board 10 is prepared, and the printed wiring board 10 is cleaned in order to remove foreign matters adhering to the printed wiring board 10. Further, after cleaning, the printed wiring board 10 is dried by baking.
  • FIG. 2 is a diagram showing an example of a bonding paste application process of the method for manufacturing an optical module according to the first embodiment of the present invention.
  • the external connection terminals 30 are not directly related to the method of manufacturing the optical module, and are not shown in FIG. The external connection terminal 30 will be described in detail when the internal structure of the printed wiring board 10 is described.
  • the bonding paste 40 is applied onto the electrode 20 provided on the surface of the printed wiring board 10.
  • various bonding pastes 40 can be used as long as the electrodes of the LED chip and the electrodes 20 on the surface of the printed wiring board 10 are bonded by heating and melting and can be electrically connected.
  • an Au—Sn (gold-tin) paste may be used.
  • the joining paste 40 is fuse
  • the LED chip can be mounted on the electrode 20.
  • FIG. 3 is a diagram showing an example of a mounting process of the method for manufacturing an optical module according to the first embodiment of the present invention.
  • the LED chips 50 separated from the wafer are mounted on the printed wiring board 10.
  • the LED chip 50 is an example of a light emitting element, and other elements may be mounted as long as they can emit light.
  • the LED chip 50 is used as a light emitting element will be described.
  • the LED chip 50 is mounted on the printed wiring board 10 face down. That is, the terminal (or electrode) of the LED chip is disposed on the lower surface, and is directly bonded to the electrode 20 via the bonding paste 40 without using a bonding wire.
  • Such flip chip mounting eliminates the need for bonding wires and enables low-profile mounting.
  • the mounting of the LED chip 50 on the electrode 20 is usually performed by a thermocompression bonding method, but is not limited to this as long as flip chip mounting is possible, and various mounting methods may be used.
  • the thermocompression bonding method is a method in which the LED chip 50 is pressure-bonded to the substrate 10 (more precisely, the electrode 20) using a pressure-bonding head or the like while heating.
  • the LED chip 50 has a surface opposite to the printed wiring board 10, that is, an upper surface in the example of FIG. That is, the surface opposite to the terminal (or electrode) of the LED chip 50 becomes the light emission extraction surface, and light is emitted upward in the example of FIG.
  • FIG. 4 is a diagram showing an example of a sealing process of the method for manufacturing an optical module according to the first embodiment of the present invention.
  • the sealing step the mounting surface of the printed wiring board 10 on which the LED chip 50 is mounted and the resin sheet 60 containing the light wavelength conversion substance are opposed to each other, and the printed wiring board 10 and the resin sheet 60 containing the light wavelength conversion substance are placed. The space between them is sealed with a silicone resin 70.
  • the LED chip 50 is installed so that the upper and lower sides thereof are reversed and the light emitting surface of the LED chip 50 is the lower surface.
  • the light wavelength conversion material in the resin sheet 60 including the light wavelength conversion material may include, for example, a material necessary for converting light of the LED chip 50 emitting blue light into white light.
  • a material necessary for converting light of the LED chip 50 emitting blue light into white light For example, when yttrium aluminum garnet is used as the light wavelength conversion substance, white light can be obtained. Also, in order to obtain white light, white light can be obtained as one light source using a light emitting diode chip of red, green, and blue, which are the three primary colors of light, without using a light wavelength conversion material. Furthermore, light of colors other than white light can be obtained in various colors by combining the emission color of the LED chip and the light wavelength conversion material. In addition, by coating the light extraction surface of the LED chip with a light wavelength conversion material, light of a desired color can be obtained without using a resin sheet containing the light wavelength conversion material.
  • the silicone resin 70 is a thermosetting resin and can constitute a transparent body when cured. Note that the silicone resin 70 is an example, and other resins may be used as long as they can constitute a transparent body that transmits light when cured.
  • the sealing step may be realized by various sealing methods as long as the space between the facing printed wiring board 10 and the resin sheet 60 including the light wavelength conversion substance including the LED chip 50 can be sealed.
  • an example of the sealing process will be described below.
  • the resin sheet 60 containing the light wavelength conversion substance is placed in a sealing mold, and the entire upper surface of the resin sheet 60 containing the light wavelength conversion substance is covered with the silicone resin 70. That is, the silicone resin 70 is applied to the upper surface of the resin sheet 60 containing the light wavelength conversion substance.
  • the LED chip 50 is sealed with a resin sheet 60 containing a silicone resin 70 and a light wavelength conversion substance using a sealing device. That is, the space between the mounting surface of the printed wiring board 10 and the resin sheet 60 containing the light wavelength conversion material is filled with the silicone resin 70, and the printed wiring board 10, the LED chip 50, and the resin sheet 60 containing the light wavelength conversion material.
  • the sealing method is not particularly limited, and a compression molding method, a transfer molding method, or the like can be used depending on the application.
  • the compression molding method is a molding method in which a measured silicone resin 70 is placed in a concave portion (cavity) of a heated mold and is pressed and cured with a compression molding machine.
  • the transfer molding method the preheated silicone resin 70 is put into a heating chamber called a transfer chamber, softened, and then press-fitted into a metal mold with an auxiliary ram (plunger), and held as it is to cure the silicone resin 70.
  • This is a method of taking out the molded body after it has been removed.
  • the silicone resin 70 functions as a sealing material and also functions as an adhesive. Therefore, between the upper surface of the resin sheet 60 containing the light wavelength conversion substance and the lower surface (light emission extraction surface) of the LED chip 50, the silicone resin 70 is thinly present as an adhesive layer and sealed. Therefore, in this case, the opposing surfaces of the LED chip 50 and the resin sheet 60 containing the light wavelength conversion substance are sealed in a state where they are opposed to each other with a slight space of the adhesive layer. As a result, the optical module can be reduced in height and size.
  • the silicone resin 70 functions as a sealing material, the sealing is possible even in a state where the LED chip 50 and the resin sheet 60 containing the light wavelength conversion substance are separated greatly. Therefore, the facing interval between the LED chip 50 and the resin sheet 60 containing the light wavelength conversion substance can be set to an appropriate interval depending on the application.
  • the example in which the silicone resin 70 is applied to the upper surface of the resin sheet 60 containing the light wavelength conversion substance and the LED chip 50 is disposed thereon has been described.
  • the resin containing the light wavelength conversion substance from the beginning. It is also possible to make the sheet 60 and the mounting surface of the printed wiring board 10 face each other and inject a silicone resin 70 into a space between them to seal the sheet.
  • the sealing process can be realized by various methods.
  • FIG. 5 is a diagram showing an example of a transparent resin coating process of the method for manufacturing an optical module according to the first embodiment of the present invention.
  • the surface opposite to the sealing surface of the resin sheet 60 containing the light wavelength conversion substance is covered with the silicone resin 80.
  • the resin including the light wavelength conversion material is arranged so that the printed circuit board 10 is disposed at the lower side and the resin sheet 60 including the light wavelength conversion material is positioned at the upper side.
  • the upper surface of the sheet 60 is an exposed surface. Therefore, the upper surface of the resin sheet 60 containing the light wavelength conversion substance is covered with a silicone resin 80.
  • the silicone resin 80 is a resin constituting a transparent body that transmits light when thermally cured, and a resin other than the silicone resin 80 may be used as long as it has such properties.
  • the silicone resin 80 may be the same resin (the same product) as or different from the silicone resin 70 used for sealing between the printed wiring board 10 and the resin sheet 60 containing the light wavelength conversion substance. Resins (different products) may be used.
  • the silicone resin 80 has a role of protecting the resin sheet 60 containing the light wavelength conversion substance. That is, the exposed resin sheet 60 containing the light wavelength conversion substance is covered, and the exposed surface of the resin sheet 60 containing the light wavelength conversion substance is protected without blocking light.
  • the formation method of the silicone resin 80 is not particularly limited, and the above-described compression molding method or transfer molding method may be used, or may be formed by potting, printing, or the like. Note that potting is coating with resin.
  • the light emitted from the LED chip 50 is transmitted upward through the silicone resin 70, the resin sheet 60 containing the light wavelength conversion substance, and the silicone resin 80.
  • FIG. 6 is a diagram showing an example of a groove forming step in the method for manufacturing an optical module according to the first embodiment of the present invention.
  • a groove 90 that reaches the printed wiring board 10 through the resin sheet 60 containing the light wavelength conversion substance and the silicone resin 70 from the upper surface of the silicone resin 80 is formed.
  • the groove 90 does not penetrate the printed wiring board 10, but is formed at a depth at which the groove 90 is formed also in the printed wiring board 10, and the bottom surface 91 of the groove 90 is formed in the printed wiring board 10.
  • substrate) is also called a half cut, you may call this process a half cut process.
  • the groove 90 is formed so as to surround the LED chip 50.
  • the groove 90 is formed so as to surround the LED chips except for the area between the LED chips.
  • the groove 90 is formed in the vicinity of the outer periphery of the individualized optical module 150 described later.
  • FIG. 6 only a cross section in one direction is shown, but grooves 90 are formed at both ends also in a direction perpendicular to the cutting direction in FIG. 6. That is, the groove 90 is formed so as to surround the LED chip 50 with a rectangle, and the groove 90 is formed so as to form a rectangular frame.
  • a circular groove 90 may be formed around the LED chip 50.
  • the printed wiring board 10 has a rectangular planar shape and the grooves 90 are formed along the outer shape of the printed wiring board 10 so as to surround the LED chip 50 with a rectangular frame will be described.
  • FIG. 7 is a view showing an example of a light reflecting resin sealing step of the method for manufacturing an optical module according to the first embodiment of the present invention.
  • the groove 90 is filled with a resin containing a light reflecting substance.
  • the resin containing the light reflecting material may be selected from various resins.
  • the white resin 100 is used as the light reflecting resin will be described. Since the white resin 100 contains a light reflective material, it can be suitably used as a light reflective resin.
  • the white resin 100 filled in the groove 90 constitutes a reflector of the optical module.
  • the filling method of the white resin 100 is not particularly limited, and a compression molding method, a transfer molding method, potting, printing, and the like can be appropriately used as in the coating process. Since the groove 90 reaches the printed wiring board 10 and is half-cut, the adhesion between the white resin 100 and the groove 90 can be improved. That is, since the white resin 100 has reached the middle of the printed wiring board 10 in the thickness direction, it can be in a state similar to that when the pile is driven into the ground, and the contact area of the white resin 100 is also increased. Therefore, high adhesion can be realized.
  • the white resin 100 When filling the groove 90 with the white resin 100, not only the groove 90 but also the upper surface of the silicone resin 80 may be covered with the white resin 100. Since it is usually difficult to fill only the groove 90 with the white resin 100, the white resin 100 including the upper surface of the silicone resin 80 may be sealed.
  • FIG. 8 is a diagram showing an example of a surface grinding process of the method for manufacturing an optical module according to the first embodiment of the present invention.
  • the upper surface is ground until the silicone resin 80 is exposed. Thereby, the unnecessary white resin 100 is removed and the light emission surface of the optical module which consists of a transparent body (silicone resin 80) is formed.
  • the surface grinding may be performed by various methods. For example, the white resin 100 on the upper surface may be ground by grinding.
  • FIG. 9 is a diagram showing an example of a module separation step in the method for manufacturing an optical module according to the first embodiment of the present invention.
  • dicing is performed along the groove 90 so as to leave a part of the white resin 100, and the optical module is singulated.
  • the outer peripheral side surface of the separated optical module is covered with the white resin 100, and a reflector is formed on the outer peripheral side surface.
  • emitted in the side surface direction among the light light-emitted by the LED chip 50 can be reflected inside, and light can be efficiently emitted upward.
  • the singulated optical module 150 is completed.
  • the flip-chip mounting to the printed wiring board 10 of the LED chip 50, the printed wiring board 10 with the resin sheet 60 containing a light wavelength conversion substance is carried out.
  • Manufacturing a low-profile and compact optical module with a small number of processes by sealing the space between the mounting surface with a transparent resin and coating the exposed surface of the resin sheet containing the light wavelength conversion substance with a transparent resin. Can do.
  • the adhesiveness of the white resin 100 can be improved by forming the groove
  • FIG. 10 is a diagram showing an example of the circuit configuration of the optical module according to the first embodiment of the present invention.
  • FIG. 1 to FIG. 9 for ease of explanation, an example in which one optical module 150 is configured by two LED chips has been described.
  • an optical module 150 is configured by arranging a large number of LED chips 50.
  • FIG. 10 shows three LED chip units (LED chip group) 140a, 140b, 140c in which a plurality of LED chips 50 are connected in series.
  • the whole of the assembly of the LED chip units 140a, 140b, and 140c corresponds to the optical module 150 shown in FIG.
  • the optical module 150 includes three LED chip units 140a, 140b, and 140c, and each LED chip unit 140a, 140b, and 140c includes a plurality of LED chips 50.
  • each of the three LED chip units 140a, 140b, and 140c has two terminals, an anode and a cathode.
  • the anode is connected to a common external connection terminal 31a
  • the cathode is connected to different external connection terminals 32a, 32b, and 32c.
  • the voltage is divided in the series circuit. Therefore, in order to light all the LED chips 50, it is necessary to apply a high voltage. Since it is difficult to prepare such a power supply in an actual product such as a smartphone, the LED chip units 140a and 140b configured in a series circuit so that all LED chips can be lit with an applicable voltage. 140c are connected in parallel. With such a circuit configuration, the voltage required for lighting all the LED chips 50 is divided by the LED chip units 140a, 140b, 140c, and the LED chips 50 in the LED chip units 140a, 140b, 140c are divided. The voltage is reduced to the voltage required for lighting.
  • the number of LED chips 50 in one unit is determined by the voltage that can be applied and the threshold voltage necessary for lighting the LED chip 50, and by providing the necessary number of LED chip units 140a, 140b, 140c, a large number of LEDs can be obtained.
  • the chip 50 can be turned on simultaneously.
  • FIG. 11 is a diagram illustrating an example of an internal configuration of the printed wiring board 10 of the optical module 150 according to the first embodiment.
  • the circuit configuration is the same as that of FIG.
  • the inside of the printed wiring board 10 is constituted by a plurality of substrate layers 11, 12, 13, and 14, and wirings along the vias B1 to B18 and the substrate layers 11 to 14 penetrating each substrate layer. Layers 24 and 35 to 37 are formed.
  • the anodes of the LED chip units 140a, 140b, and 140c are connected to the electrodes 21a, 21b, and 21c, respectively, and pass through the vias B1, B5, and B6 of the substrate layer 11, the wiring layer 24, and the substrate layers 12 to 14, respectively.
  • the external connection terminal 31a is connected in common via vias B2, B3, and B4.
  • the cathode of the LED chip unit 140a has an electrode 22a, a via B7 penetrating the uppermost substrate layer 11, a wiring layer 35 between the substrate layers 11 and 12, and vias B8 and B9 penetrating the substrate layers 12 to 14, It is connected to the external connection terminal 32a via B10.
  • the cathode of the LED chip unit 140b includes the electrode 22b, the uppermost layer and vias B11 and B12 penetrating the second substrate layers 11 and 12, the wiring layer 36 between the substrate layers 12 and 13, and the substrate layers 13 and 14. It is connected to the external connection terminal 32b through the penetrating vias B13 and B14.
  • the cathode of the LED chip unit 140c includes an electrode 22c, vias B15, B16, B17 penetrating the uppermost to third substrate layers 11, 12, 13, a wiring layer 37 between the substrate layers 13, 14, and a substrate layer. 14 is connected to the external connection terminal 32 c through a via B 18 penetrating through the connector 14.
  • the steps of the substrate layers 11 to 14 are used, and the wirings are independently formed and connected to the external connection terminals 32a to 32c.
  • the external connection terminals 31a, 32a to 32c are collectively formed at the end of the printed wiring board 10. This is to facilitate power supply and to enable power supply from one place.
  • the external connection terminals 31a, 32a to 32c are uniformly distributed on the back surface of the printed wiring board 10 from the viewpoint of preventing local warping. Therefore, if necessary, a dummy external connection terminal 33 to which no wiring is connected may be provided. Thereby, even if heat is generated in the optical module 150, the stress generated in the printed wiring board 10 can be made uniform, and local warping or the like can be prevented.
  • a dummy via not filled with a metal material may be formed as necessary. That is, similarly to the vias B1 to B4 and the vias B8 to B10, vias penetrating the predetermined substrate layers 11 to 14 may be formed at locations that do not hinder wiring, and the vias may be made uniform.
  • an example in which the anode is common and the cathode is individually configured is described.
  • a configuration in which the cathode is common and the anode is individually configured may be employed.
  • Which of the anode and the cathode is configured as a common terminal can be appropriately set depending on the application.
  • FIG. 12 is a diagram illustrating an example in which the optical module 150 according to the first embodiment is applied to the backlight unit 160.
  • 12A is a diagram illustrating an example of a configuration in which the optical module 150 is incorporated in the backlight unit 160
  • FIG. 12B is a diagram in which the optical module 150 incorporated in the backlight module 160 is taken out. It is.
  • the optical module 150 is provided at one end in the longitudinal direction of the backlight 160 so as to be along one short side of the outer shape of the backlight 160.
  • the light emitting surface is oriented horizontally along the surface of the backlight 160.
  • the width of the optical module 150 affects the height of the backlight unit 160 when incorporated in the backlight unit 160, so that the width can be reduced. It is requested. Further, since the height of the optical module 150 affects the planar area of the backlight unit 160, the optical module 150 is required to have a low profile.
  • the optical module 150 is required to be downsized in both height and width. According to the optical module and the manufacturing method thereof according to the present embodiment, the optical module 150 with a reduced height can be manufactured and configured, and this requirement can be met.
  • the backlight unit An optical module 150 suitable for 160 can be configured.
  • FIG. 13 is a diagram showing an example of a method for manufacturing an optical module according to the second embodiment of the present invention.
  • the optical module manufacturing method according to the second embodiment is different from the optical module manufacturing method according to the first embodiment in the sealing step.
  • the sealing step the upper surface of the printed wiring board 10 including the LED chip 50 is sealed using the silicone resin 71 mixed with the light wavelength conversion substance. Yes.
  • the side surface, the upper surface, and the lower surface of the LED chip 50 is sealed using the silicone resin 71 mixed with the light wavelength conversion substance.
  • the silicone resin 71 mixed with the light wavelength conversion substance has a light wavelength conversion function and is transparent, the function of the optical module 151 can be appropriately realized.
  • the transparent resin coating process is a difference between whether the object to be coated with the silicone resin 80 is the resin sheet 60 containing the light wavelength converting substance or the silicone resin 71 mixed with the light wavelength converting substance, and the process itself. Is the same as in the first embodiment. Other steps are also the same as those in the first embodiment, and the description thereof is omitted. In this case, the silicone resin 71 and the silicone resin 80 are naturally different silicone resins.
  • the optical module 151 according to the second embodiment does not include the resin sheet 60 and the silicone resin 70 including a single light wavelength conversion substance, but instead is provided with a silicone resin 71 mixed with the light wavelength conversion substance. This is different from the optical module 150 according to the first embodiment. Since other configurations are the same as those in the first embodiment, the description thereof is omitted.
  • the process and the number of parts can be further reduced, and the process can be further shortened and reduced in height.
  • FIG. 14 is a diagram showing an example of a method for manufacturing an optical module according to the third embodiment of the present invention.
  • the manufacturing method of the optical module 152 according to the third embodiment is the same as the first and second embodiments in that it further includes an inorganic layer forming step between the groove forming step and the light-reflective resin sealing step. This is different from the manufacturing method of the optical modules 150 and 151.
  • the inorganic layer forming step after the groove 90 is formed in the groove forming step, the inorganic layer 110 made of an inorganic material is formed on the inner surface of the groove 90.
  • the inorganic layer 110 may be made of a metal material such as aluminum or copper having a high light reflectance, for example.
  • the inorganic substance has a role of improving the light reflection efficiency of the white resin 100 containing the light reflective substance, and can also block moisture and contribute to reduction of moisture absorption.
  • the optical module 152 includes a printed wiring board 10, an LED chip 50, a resin sheet 60 containing a light wavelength conversion substance, a silicone resin 70 or a silicone resin 71, and a laminate made of a silicone resin 80.
  • the light reflection efficiency of the white resin 100 can be improved and the moisture absorption of the optical module 152 can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

表面に複数の電極を有する基板上に発光素子をフェイスダウンで実装する工程と、 光波長変換物質を含む樹脂シートと前記基板の発光素子実装面とを対向させ、前記樹脂シートと前記発光素子との間を含む前記樹脂シートと前記基板との間の空間に第1の光透過性樹脂を充填する工程と、 前記樹脂シートの前記第1の光透過性樹脂が充填された面と反対側の面を第2の光透過性樹脂で覆う工程と、 前記発光素子を囲むように、前記第2の光透過性樹脂の上面から前記基板の所定深さまで到達する溝を形成する工程と、 前記溝に光反射性樹脂を充填するとともに前記第2の光透過性樹脂の上面を前記光反射性樹脂で覆う工程と、 前記第2の光透過性樹脂上の前記光反射性樹脂を除去する工程と、 前記溝に充填された前記光反射性樹脂の一部を残して外側面が前記光反射性樹脂で覆われるように前記光反射性樹脂に沿ってダイシングを行い、前記発光素子を個片化する工程と、を有する。

Description

光学モジュールの製造方法及び光学モジュール
 本発明は、光学モジュールの製造方法及び光学モジュールに関する。
 従来から、発光素子が固着された第1のフレームと、第1のフレームから離間して配置され、発光素子の電極と金属ワイヤで接続された第2のフレームと、発光素子と第1のフレームと第2のフレームとを覆う樹脂パッケージとを有する半導体発光装置の製造方法が知られている(例えば、特許文献1参照)。
 かかる特許文献1に記載の半導体発光装置の製造方法では、まず、複数の第1のフレームと複数の第2のフレームとが交互に配置された金属プレートの表面に、発光素子、第1のフレーム及び第2のフレームを覆う第1の樹脂を形成し、第1の樹脂の表面に犠牲シートを貼着する。そして、金属プレート上の第1の樹脂及び犠牲シートに樹脂パッケージの外周に沿った溝を形成し、溝の内部に第2の樹脂を充填し、第2の樹脂を溝に沿って分断することにより、第1の樹脂の外縁を第2の樹脂で覆った樹脂パッケージを形成する。その後は、分断された樹脂パッケージの上面を覆っている第2の樹脂上に、犠牲シートよりも粘着力の大きい粘着シートを貼着し、この粘着シートを引き剥がすことにより、第1の樹脂の上面に形成された第2の樹脂を犠牲シートと共に取り除く。これにより、発光面を露出させ、半導体発光装置を完成させる。
特開2013-4807号公報
 しかしながら、特許文献1に記載の半導体発光装置の製造方法では、最終的に除去される犠牲シートを第1の樹脂の表面に貼着する工程を含んでいる。かかる犠牲シートは、製品に不要な材料なので、製造コストを増加させてしまう。
 また、かかる半導体発光装置の製造方法では、第1の樹脂への溝の形成でダイシングによるハーフカットを1回行い、更に第2の樹脂を溝に沿って分断する際にダイシングによるハーフカットをもう1回行っており、合計で2回のハーフカットを行っている。このような、複数回のダイシングによるハーフカットを行うことは、製造工程を複雑化させる要因となる。
 そこで、本発明は、工程を短縮化しつつ、モジュールの低背化及び小型化を実現できる光学モジュールの製造方法及び光学モジュールを提供することを目的とする。
 上記目的を達成するため、本発明の一態様に係る光学モジュールの製造方法は、表面に複数の電極を有する基板上に発光素子をフェイスダウンで実装する工程と、
 光波長変換物質を含む樹脂シートと前記基板の発光素子実装面とを対向させ、前記樹脂シートと前記発光素子との間を含む前記樹脂シートと前記基板との間の空間に第1の光透過性樹脂を充填する工程と、
 前記樹脂シートの前記第1の光透過性樹脂が充填された面と反対側の面を第2の光透過性樹脂で覆う工程と、
 前記発光素子を囲むように、前記第2の光透過性樹脂の上面から前記基板の所定深さまで到達する溝を形成する工程と、
 前記溝に光反射性樹脂を充填するとともに前記第2の光透過性樹脂の上面を前記光反射性樹脂で覆う工程と、
 前記第2の光透過性樹脂上の前記光反射性樹脂を除去する工程と、
 前記溝に充填された前記光反射性樹脂の一部を残して外側面が前記光反射性樹脂で覆われるように前記光反射性樹脂に沿ってダイシングを行い、前記発光素子を個片化する工程と、を有する。
 本発明の他の態様に係る光学モジュールの製造方法は、表面に複数の電極を有する基板上に発光素子をフェイスダウンで実装する工程と、
 前記発光素子の側面、上面及び下面を含む前記基板上面を光波長変換物質が混合された第1の光透過性樹脂で封止する工程と、
 前記第1の光透過性樹脂が封止された面の上面を第2の光透過性樹脂で覆う工程と、
 前記発光素子を囲むように、前記第2の光透過性樹脂の上面から前記基板の所定深さまで到達する溝を形成する工程と、
 前記溝に光反射性樹脂を充填するとともに前記第2の光透過性樹脂の上面を前記光反射性樹脂で覆う工程と、
 前記第2の光透過性樹脂上の前記光反射性樹脂を除去する工程と、
 前記溝に充填された前記光反射性樹脂の一部を残して外側面が前記光反射性樹脂で覆われるように前記光反射性樹脂に沿ってダイシングを行い、前記発光素子を個片化する工程と、を有する。
 本発明の他の態様に係る光学モジュールは、表面に複数の電極を有する基板と、
 前記基板の前記複数の電極にフェイスダウンで実装された発光素子と、
 前記発光素子の上方に設けられた、光波長変換物質を含む樹脂シートと、
 前記発光素子と前記樹脂シートとの間を含めて前記基板と前記樹脂シートとの間を封止する第1の光透過性樹脂と、
 前記樹脂シートの前記第1の光透過性樹脂が封止する面の反対側の面を覆う第2の光透過性樹脂と、
 前記基板、前記発光素子、前記樹脂シート、前記第1の光透過性樹脂及び前記第2の光透過性樹脂からなる積層体の外周側面に沿って該外周側面を覆うように設けられた、光反射性物質を含む光反射性樹脂と、を有する。
 本発明の他の態様に係る光学モジュールは、表面に複数の電極を有する基板と、
 前記基板の前記複数の電極にフェイスダウンで実装された発光素子と、
 前記発光素子を含めて前記基板の前記表面上を封止する、光波長変換物質が混合された第1の光透過性樹脂と、
 前記第1の光透過性樹脂の上面を覆う第2の光透過性樹脂と、
 前記基板、前記発光素子、前記第1の光透過性樹脂及び前記第2の光透過性樹脂からなる積層体の外周側面に沿って該外周側面を覆うように設けられた、光反射性物質を含む光反射性樹脂と、を有する。
 本発明の他の態様に係る光学モジュールは、表面に複数の電極が設けられ、裏面にマザーボードに電気的接続を行うための複数の外部接続端子を備えた長方形の平面形状を有する基板と、
 前記長方形の長手方向に沿って前記電極にフェイスダウンで実装された複数の発光素子と、
 前記複数の発光素子を含めて前記基板の前記表面上を封止する光透過性樹脂と、を有し、
 前記複数の発光素子は、所定個数の前記発光素子が電気的に直列に接続された発光素子群を複数群含む。
 本発明によれば、工程を短縮化しつつ、モジュールの低背化及び小型化を実現できる。
本発明の第1の実施形態に係る光学モジュールの製造方法の基板用意工程の一例を示した図である。 本発明の第1の実施形態に係る光学モジュールの製造方法の接合ペースト塗布工程の一例を示した図である。 本発明の第1の実施形態に係る光学モジュールの製造方法の実装工程の一例を示した図である。 本発明の第1の実施形態に係る光学モジュールの製造方法の封止工程の一例を示した図である。 本発明の第1の実施形態に係る光学モジュールの製造方法の透明樹脂コーティング工程の一例を示した図である。 本発明の第1の実施形態に係る光学モジュールの製造方法の溝形成工程の一例を示した図である。 本発明の第1の実施形態に係る光学モジュールの製造方法の光反射樹脂封止工程の一例を示した図である。 本発明の第1の実施形態に係る光学モジュールの製造方法の表面研削工程の一例を示した図である。 本発明の第1の実施形態に係る光学モジュールの製造方法のモジュール個片化工程の一例を示した図である。 本発明の第1の実施形態に係る光学モジュールの回路構成の一例を示した図である。 第1の実施形態に係る光学モジュールのプリント配線板の内部構成の一例を示した図である。 バックライトユニットに第1の実施形態に係る光学モジュールを適用した例を示した図である。 本発明の第2の実施形態に係る光学モジュールの製造方法の一例を示した図である。 本発明の第3の実施形態に係る光学モジュールの製造方法の一例を示した図である。
 以下、図面を参照して、本発明を実施するための形態の説明を行う。
 [第1の実施形態]
 図1は、本発明の第1の実施形態に係る光学モジュールの製造方法の基板用意工程の一例を示した図である。基板用意工程においては、LED(Light Emitting Diode)チップを実装するためのプリント配線板10が用意される。プリント配線板10は、LEDチップを実装するための基板の一例であり、LEDチップを実装することができれば、他の基板が用いられてもよい。本実施形態においては、基板としてプリント配線板10を用いた例を挙げて説明する。なお、プリント配線板10は、例えば、長方形の平面形状を有して構成されてもよい。
 プリント配線板10は、表面にLEDチップを実装するための電極20を有し、裏面にはマザーボードに電気的接続を行うための外部接続端子30を有する。電極20及び外部接続端子30は、ともに複数個設けられる。実装するLEDチップは、通常、アノード及びカソードの2個の端子を有するため、電極20及び外部接続端子30はともに複数個設けられる。また、通常、プリント配線板10の表面上には複数個のLEDチップが実装されるため、実装されるLEDチップの数に合わせて電極20及び外部接続端子30の個数が定められる。
 なお、表面側の電極20と裏面側の外部接続端子30とは、プリント配線板10の内部で配線パターンにより接続されているが、その点の詳細については後述する。
 また、基板用意工程においては、プリント配線板10を用意する他、プリント配線板10に付着している異物を除去するべくプリント配線板10の洗浄を行う。また、洗浄後は、ベーキングによってプリント配線板10を乾燥させる。
 図2は、本発明の第1の実施形態に係る光学モジュールの製造方法の接合ペースト塗布工程の一例を示した図である。なお、外部接続端子30は、光学モジュールの製造方法には直接は関連しないので、図2以降は図示を省略する。外部接続端子30については、プリント配線板10の内部構造を説明するときに詳細に説明する。
 接合ペースト塗布工程においては、プリント配線板10の表面に設けられた電極20上に接合ペースト40を塗布する。接合ペースト40は、加熱溶融によりLEDチップの電極とプリント配線板10の表面上の電極20とを接合し、電気的に接続できる限り、種々の接合ペースト40を用いることができる。接合ペースト40としては、例えば、Au-Sn(金-錫)ペーストを用いてもよい。なお、接合ペースト40を電極20の表面上に塗布した後は、加熱により接合ペースト40を溶融し、その後冷却する。冷却後には、洗浄によりフラックス残渣を除去する。接合ペースト塗布工程により、電極20上にLEDチップが実装可能な状態となる。
 図3は、本発明の第1の実施形態に係る光学モジュールの製造方法の実装工程の一例を示した図である。実装工程においては、ウエハーから個片化されたLEDチップ50をプリント配線板10に実装する。なお、LEDチップ50は発光素子の一例であり、発光可能な素子であれば、他の素子が実装されてもよい。本実施形態においては、発光素子としてLEDチップ50を用いた例を挙げて説明する。
 LEDチップ50は、フェイスダウンでプリント配線板10に実装される。つまり、LEDチップの端子(又は電極)が下面に配置され、ボンディングワイヤを用いることなく、接合ペースト40を介して電極20に直接接合される。かかるフリップチップ実装により、ボンディングワイヤが不要となり、低背化実装が可能となる。
 なお、LEDチップ50の電極20上への実装は、通常は、熱圧着工法により行われるが、フリップチップ実装が可能な限り、これに限定されず、種々の実装方法が用いられてよい。なお、熱圧着工法は、加熱しながら圧着ヘッド等を用いてLEDチップ50を基板10(正確には電極20)に圧着する方法である。
 また、LEDチップ50は、プリント配線板10と反対側の面、図3の例では上面が発光取り出し面となる。つまり、LEDチップ50の端子(又は電極)と反対側の面が発光取り出し面となり、図3の例では、上方に向かって光が放出される。
 図4は、本発明の第1の実施形態に係る光学モジュールの製造方法の封止工程の一例を示した図である。封止工程においては、LEDチップ50を実装したプリント配線板10の実装面と光波長変換物質を含む樹脂シート60とを対向させ、プリント配線板10と光波長変換物質を含む樹脂シート60との間の空間をシリコーン樹脂70で封止する。なお、図4に示されるように、図3とは上下が反転し、LEDチップ50の発光取り出し面が下面となるように設置されている。
 ここで、光波長変換物質を含む樹脂シート60における光波長変換物質は、例えば、青色を発光するLEDチップ50の光を、白色光に変換するのに必要な物質を含んでもよい。例えば光波長変換物質として、イットリウム・アルミニウム・ガーネット(Yttrium Aluminum Garnet)を用いると白色光を得ることができる。また、白色光を得るために、光波長変換物質を用いずに光の三原色である赤色・緑色・青色の発光ダイオードのチップを用いて1つの発光源として白色光を得ることもできる。更に白色光以外の色の光もLEDチップの発光色と光波長変換物質の組合わせにより、様々な色の光を得ることができる。また、LEDチップの発光取り出し面に光波長変換物質をコーティングすることによって、光波長変換物質を含む樹脂シートを用いずに所望の色の光を得ることができる。
 シリコーン樹脂70は、熱硬化性樹脂であり、硬化した際に透明体を構成することができる。なお、シリコーン樹脂70は一例であり、硬化したときに光を透過する透明体を構成することができれば、他の樹脂を用いてもよい。
 封止工程は、対向するプリント配線板10と光波長変換物質を含む樹脂シート60との間の空間をLEDチップ50も含めて封止することができれば、種々の封止方法により実現されてよいが、以下、封止工程の一例について説明する。
 まず、光波長変換物質を含む樹脂シート60を封止用金型内に載置し、シリコーン樹脂70で光波長変換物質を含む樹脂シート60の上面全体を覆う。つまり、光波長変換物質を含む樹脂シート60の上面に、シリコーン樹脂70を塗布する。その後、封止装置を用いて、LEDチップ50をシリコーン樹脂70と光波長変換物質を含む樹脂シート60で封止する。つまり、プリント配線板10の実装面と光波長変換物質を含む樹脂シート60との間の空間にシリコーン樹脂70を充填し、プリント配線板10、LEDチップ50及び光波長変換物質を含む樹脂シート60を一体として封止する。なお、封止方法は特に限定されず、コンプレッションモールド法、トランスファーモールド法等を用途に応じて使用することができる。
 コンプレッションモールド法は、計量したシリコーン樹脂70を加熱した金型の凹部(キャビティ)に入れ、圧縮成形機で加圧して硬化させる成形方法である。また、トランスファーモールド法は、予熱したシリコーン樹脂70をトランスファー室と呼ばれる加熱室に入れ、軟化させてから補助ラム(プランジャ)で金属製の型に圧入し、そのまま保持してシリコーン樹脂70が硬化してから成形体を取り出す方法である。
 上の例のように、光波長変換物質を含む樹脂シート60の上面にシリコーン樹脂70を塗布することにより、接着剤が光波長変換物質を含む樹脂シート60の上面に塗布されたのと同じ状態となる。つまり、シリコーン樹脂70は、封止材として機能するとともに、接着剤としても機能する。よって、光波長変換物質を含む樹脂シート60の上面とLEDチップ50の下面(発光取り出し面)との間には、シリコーン樹脂70が接着剤層として薄く存在した状態となって封止される。よって、この場合には、LEDチップ50と光波長変換物質を含む樹脂シート60の対向面同士は、接着剤層の僅かな空間だけ離間して対向した状態で封止される。これにより、光学モジュールの低背化及び小型化を実現することができる。
 但し、シリコーン樹脂70は封止材として機能するので、LEDチップ50と光波長変換物質を含む樹脂シート60とを大きく離間させた状態でも封止は可能である。よって、LEDチップ50と光波長変換物質を含む樹脂シート60との対向間隔は、用途に応じて適宜適切な間隔に設定することができる。
 なお、上の例では、光波長変換物質を含む樹脂シート60の上面にシリコーン樹脂70を塗布し、その上にLEDチップ50を配置する例について説明したが、最初から光波長変換物質を含む樹脂シート60とプリント配線板10の実装面とを対向させ、その間の空間にシリコーン樹脂70を注入して封止することも可能である。このように、種々の方法により封止工程は実現され得る。
 図5は、本発明の第1の実施形態に係る光学モジュールの製造方法の透明樹脂コーティング工程の一例を示した図である。透明樹脂コーティング工程においては、光波長変換物質を含む樹脂シート60の封止面と反対側の面をシリコーン樹脂80で覆う。図5に示されるように、図4の例と上下が反転し、プリント配線板10が下部、光波長変換物質を含む樹脂シート60が上部に位置する配置とすると、光波長変換物質を含む樹脂シート60の上面が露出面となる。そこで、光波長変換物質を含む樹脂シート60の上面を、シリコーン樹脂80を用いて覆う。上述のように、シリコーン樹脂80は、熱硬化したときに光を透過させる透明体を構成する樹脂であり、そのような性質を有する樹脂であれば、シリコーン樹脂80以外の樹脂を用いてもよい。また、シリコーン樹脂80は、プリント配線板10と光波長変換物質を含む樹脂シート60との間の封止に用いたシリコーン樹脂70と全く同一の樹脂(同一製品)を用いてもよいし、異なる樹脂(異なる製品)を用いてもよい。
 なお、シリコーン樹脂80は、光波長変換物質を含む樹脂シート60を保護する役割を有する。つまり、露出した光波長変換物質を含む樹脂シート60を覆い、光を遮ることなく光波長変換物質を含む樹脂シート60の露出面を保護する。
 シリコーン樹脂80の形成方法は特に限定されず、上述のコンプレッションモールド法、トランスファーモールド法を用いてもよいし、ポッティング、印刷等により形成してもよい。なお、ポッティングは樹脂盛りによるコーティングである。
 図5に示される通り、LEDチップ50から放出された光は、シリコーン樹脂70、光波長変換物質を含む樹脂シート60、シリコーン樹脂80を透過して上方に出射されることになる。
 図6は、本発明の第1の実施形態に係る光学モジュールの製造方法の溝形成工程の一例を示した図である。溝形成工程においては、シリコーン樹脂80の上面から光波長変換物質を含む樹脂シート60、シリコーン樹脂70を貫通してプリント配線板10にまで到達する溝90を形成する。溝90は、プリント配線板10を貫通しないが、プリント配線板10にも溝90が形成される深さで形成され、溝90の底面91がプリント配線板10内に形成される。なお、このようなプリント配線板10(基板)の途中まで溝90を形成することをハーフカットとも呼ぶので、本工程をハーフカット工程と呼んでもよい。
 溝90は、LEDチップ50を囲むように形成される。LEDチップが複数個実装されている場合は、LEDチップ間の領域を除いてLEDチップを囲むように溝90を形成する。溝90は、後述する個片化された光学モジュール150の外周近傍に形成される。図6においては、1方向の断面しか示されていないが、図6の切断方向と垂直な方向においても両端に溝90が形成されている。つまり、LEDチップ50を長方形で囲むように溝90が形成され、長方形の枠を形成するように溝90が形成される。なお、LEDチップ50を丸く囲みたい場合には、円形の溝90をLEDチップ50の周囲に形成すればよい。以下の例においては、プリント配線板10が長方形の平面形状を有し、プリント配線板10の外形に沿って、LEDチップ50を長方形の枠で囲むように溝90を形成した例について説明する。
 図7は、本発明の第1の実施形態に係る光学モジュールの製造方法の光反射樹脂封止工程の一例を示した図である。光反射樹脂封止工程においては、溝90に光反射性物質を含む樹脂を充填する。光反射性物質を含む樹脂は、種々の樹脂から選択されてよいが、本実施形態においては、白樹脂100を光反射性樹脂として用いた例を挙げて説明する。白樹脂100は、光反射性物質を含んでいるので、光反射性樹脂として好適に使用可能である。溝90に充填された白樹脂100は、光学モジュールのリフレクタを構成する。
 白樹脂100の充填方法は特に限定されず、コーティング工程と同様に、コンプレッションモールド法、トランスファーモールド法、ポッティング、印刷等を適宜利用することができる。溝90は、プリント配線板10まで到達してハーフカットされているので、白樹脂100と溝90との密着性を高めることができる。即ち、白樹脂100がプリント配線板10の厚さ方向の途中まで到達しているので、杭を地面に打ち込んだのと類似した状態とすることができ、更に白樹脂100の接触面積も増加させることができるので、高い密着性を実現することができる。
 なお、白樹脂100を溝90に充填する際、溝90のみならず、シリコーン樹脂80の上面をも白樹脂100で覆ってもよい。溝90にのみ白樹脂100を充填するのは通常は困難なので、シリコーン樹脂80の上面も含めて白樹脂100で封止してよい。
 図8は、本発明の第1の実施形態に係る光学モジュールの製造方法の表面研削工程の一例を示した図である。表面研削工程においては、シリコーン樹脂80が露出するまで上面を研削する。これにより、不要な白樹脂100が除去され、透明体(シリコーン樹脂80)からなる光学モジュールの発光面が形成される。なお、表面研削は、種々の方法により行われてよいが、例えば、グラインド研削により上面の白樹脂100を研削してもよい。
 図9は、本発明の第1の実施形態に係る光学モジュールの製造方法のモジュール個片化工程の一例を示した図である。モジュール個片化工程においては、白樹脂100の一部を残すように、溝90に沿ってダイシングを行い、光学モジュールを個片化する。白樹脂100の一部を残すことにより、個片化された光学モジュールの外周側面が白樹脂100で覆われ、外周側面にリフレクタが形成された状態となるからである。これにより、LEDチップ50で発光した光のうち、側面方向に放射する光を内側に反射させ、効率良く上方に向けて光を出射させることができる。なお、モジュール個片化工程の終了により、個片化された光学モジュール150が完成する。
 このように、第1の実施形態に係る光学モジュールの製造方法によれば、LEDチップ50のプリント配線板10へのフリップチップ実装、光波長変換物質を含む樹脂シート60とのプリント配線板10の実装面との間の空間の透明樹脂による封止、更に光波長変換物質を含む樹脂シートの露出面の透明樹脂によるコーティングにより、少ない工程数で低背化、小型化した光学モジュールを製造することができる。また、溝90をハーフカットで形成することにより、白樹脂100の密着性を向上させることができる。
 図10は、本発明の第1の実施形態に係る光学モジュールの回路構成の一例を示した図である。図1乃至図9においては、説明の容易のため、2つのLEDチップで1個の光学モジュール150を構成する例を挙げて説明した。
 しかしながら、光学モジュールを、液晶画面を照らすバックライトユニット等に適用する場合には、非常に多くのLEDチップ50を配列して光学モジュール150を構成する。
 図10において、LEDチップ50が複数個直列接続された3個のLEDチップユニット(LEDチップ群)140a、140b、140cが示されている。ここで、LEDチップユニット140a、140b、140cの集合体からなる全体が、図9に示した光学モジュール150に対応する。このように、図1乃至9では、便宜上、2個のLEDチップ50のみを例示しているが、光学モジュール150は、通常はもっと多くのLEDチップ50を含んで構成される場合が多い。ここでは、光学モジュール150が、3個のLEDチップユニット140a、140b、140cを備え、更に個々のLEDチップユニット140a、140b、140cが複数のLEDチップ50を含む例を挙げて説明する。
 図10に示されるように、3個のLEDチップユニット140a、140b、140cは各々、アノードとカソードの2個の端子を備えている。そして、アノードは共通の外部接続端子31aに接続され、カソードは各々異なる外部接続端子32a、32b、32cに接続されている。
 総てのLEDチップ50を直列接続すると、直列回路においては電圧が分圧されるため、総てのLEDチップ50を点灯させるためには高い電圧を印加する必要が生じる。そのような電源を用意することは、スマートフォン等の実際の製品では困難であるため、印加可能な電圧で総てのLEDチップを点灯できるように、直列回路で構成されたLEDチップユニット140a、140b、140cを並列的に接続している。このような回路構成とすることにより、総てのLEDチップ50の点灯に必要な電圧をLEDチップユニット140a、140b、140cで分割し、各LEDチップユニット140a、140b、140c内のLEDチップ50を点灯させるのに必要な電圧に低下させている。
 よって、印加可能な電圧とLEDチップ50の点灯に必要な閾値電圧により1ユニット内のLEDチップ50の個数が定まり、そのLEDチップユニット140a、140b、140cを必要な個数設けることにより、多数のLEDチップ50の同時点灯を可能にすることができる。
 図11は、第1の実施形態に係る光学モジュール150のプリント配線板10の内部構成の一例を示した図である。回路構成は、図10の回路構成と同一である。
 図11に示される通り、プリント配線板10の内部を、複数の基板層11、12、13、14により構成し、各基板層を貫通するビアB1~B18、基板層11~14に沿った配線層24、35~37を形成している。そして、LEDチップユニット140a、140b、140cの各アノードは、電極21a、21b、21cに各々接続され、基板層11のビアB1、B5,B6及び配線層24、更に基板層12~14を貫通するビアB2,B3、B4を介して、外部接続端子31aに共通に接続されている。
 一方、LEDチップユニット140aのカソードは、電極22a、最上層の基板層11を貫通するビアB7、基板層11、12間の配線層35、及び基板層12~14を貫通するビアB8,B9、B10を介して外部接続端子32aに接続されている。また、LEDチップユニット140bのカソードは、電極22b、最上層及び2番目の基板層11、12を貫通するビアB11,B12、基板層12、13間の配線層36、及び基板層13、14を貫通するビアB13,B14を介して外部接続端子32bに接続されている。更に、LEDチップユニット140cのカソードは、電極22c、最上層~3番目の基板層11、12、13を貫通するビアB15,B16,B17、基板層13、14間の配線層37、及び基板層14を貫通するビアB18を介して外部接続端子32cに接続されている。このように、LEDチップユニット140a~140cの各カソードの接続においては、基板層11~14の段差を利用し、各配線が独立に形成されて各外部接続端子32a~32cに接続されている。このような構成を採ることにより、プリント配線板10の内部に複数の配線経路を設け、光学モジュールの小型化を実現することができる。
 ここで、外部接続端子31a、32a~32cは、プリント配線板10の端部にまとめて形成されている。これは、電源供給を容易にするためであり、1箇所から電源供給を可能とするためである。
 一方で、外部接続端子31a、32a~32cは、局所的な反りを防止する観点から、プリント配線板10の裏面に分散して万遍なく形成されていることが好ましい。よって、必要に応じて、配線が接続されないダミーの外部接続端子33を設けるようにしてもよい。これにより、光学モジュール150に発熱が生じても、プリント配線板10に発生する応力を均一にすることができ、局所的な反り等を防止することができる。
 また、同様の観点から、金属材料を充填しないダミービアを必要に応じて形成してもよい。つまり、ビアB1~B4、ビアB8~B10と同様に、所定の基板層11~14を貫通するビアを配線を妨げない箇所に形成し、ビアについても均一化を図るようにしてもよい。
 図10及び図11において、アノードを共通、カソードを個別に構成した例を挙げて説明しているが、カソードを共通、アノードを個別にする構成としてもよい。アノードとカソードのいずれを共通端子として構成するかは、用途に応じて適宜設定可能である。
 図12は、バックライトユニット160に第1の実施形態に係る光学モジュール150を適用した例を示した図である。図12(a)は、光学モジュール150をバックライトユニット160に組み込んだ構成の一例を示した図であり、図12(b)は、バックライトモジュール160に組み込まれた光学モジュール150を取り出した図である。
 図12(a)に示されるように、バックライト160の長手方向における一端に、バックライト160の外形の1つの短辺に沿うように光学モジュール150は設けられる。発光面は、バックライト160の面に沿った横向きとなる。
 図12(a)、(b)に示されるように、光学モジュール150の幅は、バックライトユニット160に組み込んだ場合に、バックライトユニット160の高さに影響を与えるので、幅の縮小化が要求されている。また、光学モジュール150の高さは、バックライトユニット160の平面面積に影響を与えるので、光学モジュール150の低背化が要求されている。
 このように、光学モジュール150は、高さ、幅の双方において小型化が要求されている。本実施形態に係る光学モジュール及びその製造方法によれば、低背化した光学モジュール150を製造及び構成することができ、かかる要求に応えることができる。
 なお、図11、12に示されるように、プリント配線板10が長方形の平面形状を有する場合には、長方形の長手方向に沿ってLEDチップユニット140a、140b、140cを配置すれば、バックライトユニット160に適した光学モジュール150を構成することができる。
 [第2の実施形態]
 図13は、本発明の第2の実施形態に係る光学モジュールの製造方法の一例を示した図である。第2の実施形態に係る光学モジュールの製造方法は、封止工程が第1の実施形態に係る光学モジュールの製造方法と異なっている。
 第2の実施形態に係る光学モジュールの製造方法では、封止工程において、光波長変換物質を混合させたシリコーン樹脂71を用いて、LEDチップ50を含むプリント配線板10の上面を封止している。光波長変換物質を混合させたシリコーン樹脂71を用いてLEDチップ50の側面、上面及び下面を封止することにより、光学モジュール151の低背化が可能となる。また、光波長変換物質を混合させたシリコーン樹脂71は、光波長変換機能を有するとともに透明であるので、光学モジュール151の機能を適切に実現することができる。
 なお、透明樹脂コーティング工程は、シリコーン樹脂80でコーティングする対象が光波長変換物質を含む樹脂シート60であるか、光波長変換物質を混合させたシリコーン樹脂71であるかの相違であり、工程そのものは第1の実施形態と同様である。その他の工程も、第1の実施形態と同様であるので、その説明を省略する。なお、この場合、シリコーン樹脂71とシリコーン樹脂80は、当然に異なるシリコーン樹脂となる。
 また、第2の実施形態に係る光学モジュール151は、単独の光波長変換物質を含む樹脂シート60及びシリコーン樹脂70が存在せず、代わりに光波長変換物質が混合されたシリコーン樹脂71が設けられている点で、第1の実施形態に係る光学モジュール150と異なる。その他の構成については、第1の実施形態と同様であるので、その説明を省略する。
 第2の実施形態に係る光学モジュール151の製造方法及び光学モジュール151によれば、工程及び部品点数を更に減少させることができ、更なる工程の短縮化と低背化が可能となる。
 [第3の実施形態]
 図14は、本発明の第3の実施形態に係る光学モジュールの製造方法の一例を示した図である。第3の実施形態に係る光学モジュール152の製造方法は、溝形成工程と光反射性樹脂封止工程との間に、無機物層形成工程を更に有する点で、第1及び第2の実施形態に係る光学モジュール150、151の製造方法と異なっている。無機物層形成工程では、溝形成工程で溝90が形成された後、溝90の内面に無機物からなる無機物層110を形成する。無機物層110は、例えば、光反射率の高いアルミニウム、銅等の金属材料から構成されてもよい。無機物は、光反射性物質を含んだ白樹脂100の光反射効率を向上させる役割を持つとともに、水分を遮蔽し、吸湿の低減にも寄与することができる。
 その他の工程は、第1及び第2の光学モジュール150、151の製造方法と同様であるので、その説明を省略する。なお、第3の実施形態に係る光学モジュール152の製造方法は、第1及び第2の光学モジュール150、151の製造方法のいずれにも適用可能である。
 第3の実施形態に係る光学モジュール152は、プリント配線板10、LEDチップ50、光波長変換物質を含む樹脂シート60及びシリコーン樹脂70若しくはシリコーン樹脂71、及びシリコーン樹脂80の積層体からなる封止体120の外周側面と、白樹脂100との間に、封止体120の外周側面を覆う無機物層110が更に設けられる点以外は、第1及び第2の実施形態に係る光学モジュール150、151と同様である。よって、その説明を省略する。
 第3の実施形態に係る光学モジュール152の製造方法及び光学モジュール152によれば、白樹脂100の光反射効率を向上させるとともに、光学モジュール152の吸湿を低減させることができる。
 以上、本発明の好ましい実施形態について詳説したが、本発明は、上述した実施形態に制限されることはなく、特許請求の範囲を逸脱することなく、上述した実施形態に種々の変形及び置換を加えることができる。
 本願は、日本特許庁に2017年3月15日に出願された基礎出願2017-049732号の優先権を主張するものであり、その全内容を参照によりここに援用する。
 10  プリント配線板
 11~14  基板層
 20、21a~21c、22a~22c  電極
 24、35、36、37  配線層
 30、31a、32a~32c、33  外部接続端子
 40  接合ペースト
 50  LEDチップ
 60  光波長変換物質を含む樹脂シート
 70、71、80  シリコーン樹脂
 90  溝
 100  白樹脂
 110  無機物層
 140a~140c  LEDチップユニット
 150、151、152、  光学モジュール
 160  バックライトユニット
 B1~B18  ビア

Claims (11)

  1.  表面に複数の電極を有する基板上に発光素子をフェイスダウンで実装する工程と、
     光波長変換物質を含む樹脂シートと前記基板の発光素子実装面とを対向させ、前記樹脂シートと前記発光素子との間を含む前記樹脂シートと前記基板との間の空間に第1の光透過性樹脂を充填する工程と、
     前記樹脂シートの前記第1の光透過性樹脂が充填された面と反対側の面を第2の光透過性樹脂で覆う工程と、
     前記発光素子を囲むように、前記第2の光透過性樹脂の上面から前記基板の所定深さまで到達する溝を形成する工程と、
     前記溝に光反射性樹脂を充填するとともに前記第2の光透過性樹脂の上面を前記光反射性樹脂で覆う工程と、
     前記第2の光透過性樹脂上の前記光反射性樹脂を除去する工程と、
     前記溝に充填された前記光反射性樹脂の一部を残して外側面が前記光反射性樹脂で覆われるように前記光反射性樹脂に沿ってダイシングを行い、前記発光素子を個片化する工程と、を有する光学モジュールの製造方法。
  2.  表面に複数の電極を有する基板上に発光素子をフェイスダウンで実装する工程と、
     前記発光素子の側面、上面及び下面を含む前記基板上面を光波長変換物質が混合された第1の光透過性樹脂で封止する工程と、
     前記第1の光透過性樹脂が封止された面の上面を第2の光透過性樹脂で覆う工程と、
     前記発光素子を囲むように、前記第2の光透過性樹脂の上面から前記基板の所定深さまで到達する溝を形成する工程と、
     前記溝に光反射性樹脂を充填するとともに前記第2の光透過性樹脂の上面を前記光反射性樹脂で覆う工程と、
     前記第2の光透過性樹脂上の前記光反射性樹脂を除去する工程と、
     前記溝に充填された前記光反射性樹脂の一部を残して外側面が前記光反射性樹脂で覆われるように前記光反射性樹脂に沿ってダイシングを行い、前記発光素子を個片化する工程と、を有する光学モジュールの製造方法。
  3.  前記溝を形成する工程と前記光反射性樹脂を充填する工程との間に、前記溝の表面に無機膜からなる層を形成する工程を更に有する請求項1または2に記載の光学モジュールの製造方法。
  4.  表面に複数の電極を有する基板と、
     前記基板の前記複数の電極にフェイスダウンで実装された発光素子と、
     前記発光素子の上方に設けられた、光波長変換物質を含む樹脂シートと、
     前記発光素子と前記樹脂シートとの間を含めて前記基板と前記樹脂シートとの間を封止する第1の光透過性樹脂と、
     前記樹脂シートの前記第1の光透過性樹脂が封止する面の反対側の面を覆う第2の光透過性樹脂と、
     前記基板、前記発光素子、前記樹脂シート、前記第1の光透過性樹脂及び前記第2の光透過性樹脂からなる積層体の外周側面に沿って該外周側面を覆うように設けられた、光反射性物質を含む光反射性樹脂と、を有する光学モジュール。
  5.  前記積層体の前記外周側面と前記光反射性樹脂との間には、無機膜からなる層が更に設けられた請求項4に記載の光学モジュール。
  6.  表面に複数の電極を有する基板と、
     前記基板の前記複数の電極にフェイスダウンで実装された発光素子と、
     前記発光素子を含めて前記基板の前記表面上を封止する、光波長変換物質が混合された第1の光透過性樹脂と、
     前記第1の光透過性樹脂の上面を覆う第2の光透過性樹脂と、
     前記基板、前記発光素子、前記第1の光透過性樹脂及び前記第2の光透過性樹脂からなる積層体の外周側面に沿って該外周側面を覆うように設けられた、光反射性物質を含む光反射性樹脂と、を有する光学モジュール。
  7.  前記積層体の前記外周側面と前記光反射性樹脂との間には、無機膜からなる層が更に
    設けられた請求項6に記載の光学モジュール。
  8.  前記基板は長方形の平面形状を有し、
     前記基板上には、前記長方形の長手方向に沿って前記発光素子が複数実装されており、
     前記発光素子は、所定個数の前記発光素子が直列接続された発光素子群を複数含み、
     前記基板の裏面には、マザーボードと電気的接続を行うための複数の外部接続端子が設けられている請求項4乃至7のいずれか一項に記載の光学モジュール。
  9.  複数の前記発光素子群は各々2つの端子を有し、
     複数の前記発光素子群の各々の一方の端子は前記複数の外部接続端子のうち1つに共通に接続され、
     複数の前記発光素子群の各々の他方の端子は各々別個の前記外部接続端子に接続された請求項8に記載の光学モジュール。
  10.  前記基板は複数の層を有し、
     複数の前発光素子群の各々の前記他方の端子は、前記基板の異なる層に設けられた配線を通じて各々別個の前記外部接続端子に接続された請求項9に記載の光学モジュール。
  11.  表面に複数の電極が設けられ、裏面にマザーボードに電気的接続を行うための複数の外部接続端子を備えた長方形の平面形状を有する基板と、
     前記長方形の長手方向に沿って前記電極にフェイスダウンで実装された複数の発光素子と、
     前記複数の発光素子を含めて前記基板の前記表面上を封止する光透過性樹脂と、を有し、
     前記複数の発光素子は、所定個数の前記発光素子が電気的に直列に接続された発光素子群を複数群含む光学モジュール。
PCT/JP2018/007574 2017-03-15 2018-02-28 光学モジュールの製造方法及び光学モジュール WO2018168473A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/484,189 US10971666B2 (en) 2017-03-15 2018-02-28 Method for manufacturing an optical module and optical module
CN201880014777.XA CN110352504B (zh) 2017-03-15 2018-02-28 光学模块的制造方法和光学模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017049732A JP6823262B2 (ja) 2017-03-15 2017-03-15 光学モジュールの製造方法及び光学モジュール
JP2017-049732 2017-03-15

Publications (1)

Publication Number Publication Date
WO2018168473A1 true WO2018168473A1 (ja) 2018-09-20

Family

ID=63523060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007574 WO2018168473A1 (ja) 2017-03-15 2018-02-28 光学モジュールの製造方法及び光学モジュール

Country Status (5)

Country Link
US (1) US10971666B2 (ja)
JP (1) JP6823262B2 (ja)
CN (1) CN110352504B (ja)
TW (1) TW201843847A (ja)
WO (1) WO2018168473A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111522175A (zh) * 2019-02-01 2020-08-11 三星显示有限公司 显示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021034642A (ja) * 2019-08-28 2021-03-01 浜松ホトニクス株式会社 光半導体装置及び光半導体装置の製造方法
WO2024009823A1 (ja) * 2022-07-08 2024-01-11 日亜化学工業株式会社 波長変換部材及び波長変換部材の製造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005070082A (ja) * 2003-08-22 2005-03-17 Ngk Spark Plug Co Ltd 光部品支持基板及びその製造方法、光部品付き光部品支持基板及びその製造方法
JP2008071806A (ja) * 2006-09-12 2008-03-27 C I Kasei Co Ltd 発光装置
WO2009066430A1 (ja) * 2007-11-19 2009-05-28 Panasonic Corporation 半導体発光装置および半導体発光装置の製造方法
JP2010010279A (ja) * 2008-06-25 2010-01-14 Sharp Corp 発光装置およびその製造方法
JP2011238928A (ja) * 2010-05-07 2011-11-24 Samsung Led Co Ltd チップ・パッケージ用リードフレーム、チップ・パッケージ、パッケージ・モジュール及びパッケージ・モジュールを採用した照明装置
JP2012069577A (ja) * 2010-09-21 2012-04-05 Citizen Electronics Co Ltd 半導体発光装置及びその製造方法
JP2013077679A (ja) * 2011-09-30 2013-04-25 Citizen Electronics Co Ltd 半導体発光装置とその製造方法
WO2014017108A1 (ja) * 2012-07-27 2014-01-30 コニカミノルタ株式会社 Led装置及びその製造方法
US20150179901A1 (en) * 2013-12-23 2015-06-25 Jung-Tae OK Method of fabricating white led devices
WO2016052025A1 (ja) * 2014-09-30 2016-04-07 株式会社 東芝 Ledモジュール及び照明装置
WO2016088522A1 (ja) * 2014-12-05 2016-06-09 ソニー株式会社 多層配線基板および表示装置、並びに電子機器
WO2016152562A1 (ja) * 2015-03-24 2016-09-29 シャープ株式会社 発光装置、および発光装置パッケージ

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532441A (ja) * 2009-07-03 2012-12-13 ソウル セミコンダクター カンパニー リミテッド 発光ダイオードパッケージ
EP3047949A1 (en) 2011-01-14 2016-07-27 JX Nippon Oil & Energy Corporation Diffraction grating, method for producing diffraction grating and method for producing mold
JP2012174710A (ja) * 2011-02-17 2012-09-10 Fujikura Ltd 多層配線板及びその製造方法
JP5753446B2 (ja) * 2011-06-17 2015-07-22 株式会社東芝 半導体発光装置の製造方法
AU2012338004B2 (en) 2011-11-18 2015-07-09 Jx Nippon Oil & Energy Corporation Organic EL element
JP6197422B2 (ja) 2013-07-11 2017-09-20 富士通セミコンダクター株式会社 半導体装置の製造方法および支持基板付きウェハ
JP2015073084A (ja) * 2013-09-06 2015-04-16 日東電工株式会社 波長変換シート、封止光半導体素子および光半導体素子装置
US10278243B2 (en) * 2014-03-06 2019-04-30 Seoul Semiconductor Co., Ltd. Backlight module with MJT LED and backlight unit including the same
KR102351666B1 (ko) 2014-07-14 2022-01-14 삼성디스플레이 주식회사 터치 패널을 구비한 플랙서블 표시 장치
TWI657597B (zh) * 2015-03-18 2019-04-21 新世紀光電股份有限公司 側照式發光二極體結構及其製造方法
US10009523B2 (en) 2015-05-11 2018-06-26 Samsung Electro-Mechanics Co., Ltd. Electronic module and method of manufacturing the same
US9799243B2 (en) * 2015-07-07 2017-10-24 CI Holdings C.V. Lighting devices including solid state emitter groups for illuminating printed material with enhanced vibrancy
JP6713872B2 (ja) 2015-07-31 2020-06-24 日東電工株式会社 積層フィルム、積層フィルムの製造方法、光学部材、画像表示装置、光学部材の製造方法および画像表示装置の製造方法
JP2017069003A (ja) 2015-09-29 2017-04-06 日東電工株式会社 フレキシブル発光デバイス、照明装置および画像表示装置
JP6729143B2 (ja) 2015-10-29 2020-07-22 三菱マテリアル株式会社 樹脂組成物、接合体及び半導体装置
TWI722048B (zh) 2016-06-10 2021-03-21 日商半導體能源研究所股份有限公司 顯示裝置及電子裝置
US10121945B2 (en) * 2016-12-16 2018-11-06 Samsung Electronics Co., Ltd. Semiconductor light emitting device
JP7136532B2 (ja) * 2018-03-30 2022-09-13 ミネベアミツミ株式会社 モジュールの製造方法及び光学モジュールの製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005070082A (ja) * 2003-08-22 2005-03-17 Ngk Spark Plug Co Ltd 光部品支持基板及びその製造方法、光部品付き光部品支持基板及びその製造方法
JP2008071806A (ja) * 2006-09-12 2008-03-27 C I Kasei Co Ltd 発光装置
WO2009066430A1 (ja) * 2007-11-19 2009-05-28 Panasonic Corporation 半導体発光装置および半導体発光装置の製造方法
JP2010010279A (ja) * 2008-06-25 2010-01-14 Sharp Corp 発光装置およびその製造方法
JP2011238928A (ja) * 2010-05-07 2011-11-24 Samsung Led Co Ltd チップ・パッケージ用リードフレーム、チップ・パッケージ、パッケージ・モジュール及びパッケージ・モジュールを採用した照明装置
JP2012069577A (ja) * 2010-09-21 2012-04-05 Citizen Electronics Co Ltd 半導体発光装置及びその製造方法
JP2013077679A (ja) * 2011-09-30 2013-04-25 Citizen Electronics Co Ltd 半導体発光装置とその製造方法
WO2014017108A1 (ja) * 2012-07-27 2014-01-30 コニカミノルタ株式会社 Led装置及びその製造方法
US20150179901A1 (en) * 2013-12-23 2015-06-25 Jung-Tae OK Method of fabricating white led devices
WO2016052025A1 (ja) * 2014-09-30 2016-04-07 株式会社 東芝 Ledモジュール及び照明装置
WO2016088522A1 (ja) * 2014-12-05 2016-06-09 ソニー株式会社 多層配線基板および表示装置、並びに電子機器
WO2016152562A1 (ja) * 2015-03-24 2016-09-29 シャープ株式会社 発光装置、および発光装置パッケージ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111522175A (zh) * 2019-02-01 2020-08-11 三星显示有限公司 显示装置

Also Published As

Publication number Publication date
US20190355887A1 (en) 2019-11-21
JP6823262B2 (ja) 2021-02-03
TW201843847A (zh) 2018-12-16
CN110352504A (zh) 2019-10-18
JP2018152536A (ja) 2018-09-27
CN110352504B (zh) 2022-12-02
US10971666B2 (en) 2021-04-06

Similar Documents

Publication Publication Date Title
JP5842813B2 (ja) 発光装置および発光装置の製造方法
US9512968B2 (en) LED module
JP6205897B2 (ja) 発光装置及びその製造方法
JP6299176B2 (ja) 発光装置およびその製造方法ならびにこの発光装置を備える照明装置
KR100634189B1 (ko) 박막형 발광 다이오드 패키지 및 그 제조 방법
JP2014112669A (ja) 半導体発光装置及びその製造方法
JP2005011953A (ja) 発光装置
CN113380776A (zh) Led显示模组的制造方法
KR20120119395A (ko) 발광소자 패키지 및 그 제조방법
JP2011233552A (ja) 半導体発光装置及びその製造方法
WO2018168473A1 (ja) 光学モジュールの製造方法及び光学モジュール
JP2013062416A (ja) 半導体発光装置およびその製造方法
KR101974348B1 (ko) 발광소자 패키지 및 그 제조방법
JP6802620B2 (ja) 半導体発光装置の製造方法及び半導体発光装置
JP6460189B2 (ja) 発光装置及びその製造方法
JP7208470B2 (ja) 発光モジュールの製造方法及び発光モジュール
CN110323317B (zh) 模块的制造方法和光学模块的制造方法
WO2013168037A1 (en) Remote phosphor and led package
EP2551926B1 (en) Light emitting diode module and method for manufacturing the same
JP7088985B2 (ja) 半導体発光装置の製造方法、積層基板の製造方法、及び半導体発光装置
JP7193698B2 (ja) 発光装置及び発光装置の製造方法
JP4737218B2 (ja) 発光装置の製造方法
CN111244245A (zh) Led阵列及led显示屏
JP2019050374A (ja) 発光装置
JP2012156176A (ja) 発光装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768048

Country of ref document: EP

Kind code of ref document: A1