WO2018168435A1 - 感光性シロキサン樹脂組成物、硬化膜およびタッチパネル用部材 - Google Patents

感光性シロキサン樹脂組成物、硬化膜およびタッチパネル用部材 Download PDF

Info

Publication number
WO2018168435A1
WO2018168435A1 PCT/JP2018/007150 JP2018007150W WO2018168435A1 WO 2018168435 A1 WO2018168435 A1 WO 2018168435A1 JP 2018007150 W JP2018007150 W JP 2018007150W WO 2018168435 A1 WO2018168435 A1 WO 2018168435A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
group
siloxane resin
polysiloxane
photosensitive siloxane
Prior art date
Application number
PCT/JP2018/007150
Other languages
English (en)
French (fr)
Inventor
小林秀行
諏訪充史
飯塚英祐
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020197022236A priority Critical patent/KR102490287B1/ko
Priority to CN201880017542.6A priority patent/CN110419000B/zh
Priority to JP2018511507A priority patent/JP6458902B1/ja
Publication of WO2018168435A1 publication Critical patent/WO2018168435A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/068Polysiloxanes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a photosensitive siloxane resin composition, a cured film using the same, a laminate, a manufacturing method thereof, and a touch panel member.
  • the sensor substrate of the capacitive touch panel has wiring in which ITO (Indium Tin Oxide) and metal (silver, molybdenum, aluminum, etc.) are patterned on glass, and an insulating film, ITO, and metal are placed at the intersection of the wiring.
  • ITO Indium Tin Oxide
  • metal silver, molybdenum, aluminum, etc.
  • a structure having a protective film for protection is common.
  • the touch panel system is an out-cell type in which a touch panel layer is formed between the cover glass and the liquid crystal panel, an OGS (One Glass Solution) type in which the touch panel layer is directly formed on the cover glass, and a touch panel layer is formed on the liquid crystal panel. It is roughly classified into an on-cell type and an in-cell type in which a touch panel layer is formed inside a liquid crystal panel. In recent years, an on-cell type has been actively developed because the manufacturing process can be simplified as compared with the prior art. In the on-cell type, since the touch panel layer is formed directly on the liquid crystal panel, it is necessary to form the wiring, the protective film, and the insulating film at a low temperature lower than the heat resistant temperature of the liquid crystal.
  • the protective film of the touch panel is often formed of high-hardness inorganic SiO 2 , SiN x , a photosensitive transparent material, or the like, and the insulating film is often formed of a photosensitive transparent material.
  • inorganic materials such as SiO 2 and SiN x need to be formed by high-temperature film formation by CVD (Chemical Vapor Deposition), and are difficult to apply to the on-cell type. Therefore, there is a need for a photosensitive transparent material that can be cured at low temperature, has high hardness, is excellent in chemical resistance and substrate adhesion, and can be patterned.
  • a photosensitive transparent material As a photosensitive transparent material, a polymer having a (meth) acryloyl group and an acid group, a trifunctional or higher functional ethylenically unsaturated compound, a photopolymerization initiator, and a phosphate ester structure and an ethylenically unsaturated group
  • a photosensitive resin composition containing a compound for example, see Patent Document 1
  • a negative-type photosensitive resin composition for photospacers that can be developed with alkali for example, see Patent Document 2 has been proposed.
  • Patent Document 1 has a problem of insufficient hardness.
  • the inclusion of the phosphoric acid compound improves the substrate adhesion, but there is a problem that the storage stability is lowered due to the strong acidity of the phosphoric acid compound.
  • Patent Document 2 discloses a salt with a cation such as a quaternary ammonium ion as a salt of an acidic group in a polyfunctional (meth) acrylate monomer.
  • a salt with a cation such as a quaternary ammonium ion as a salt of an acidic group in a polyfunctional (meth) acrylate monomer.
  • the resolution is lowered.
  • problems such as deterioration of pattern processability such as generation of development residues and chemical resistance.
  • the present invention is a photosensitivity that can be cured at low temperature, has excellent storage stability and resolution, can suppress development residue, has high hardness, and has a high chemical resistance and substrate adhesion. It is an object to provide a siloxane resin composition.
  • the present invention is a photosensitive siloxane resin composition containing (A) polysiloxane, (B) a photoradical polymerization initiator, (C) a polyfunctional monomer, and (D) a phosphoric acid derivative amine salt.
  • the photosensitive siloxane resin composition of the present invention can be cured at low temperature, has excellent storage stability and resolution, and can suppress development residue. According to the photosensitive siloxane resin composition of the present invention, a cured film having high hardness and excellent chemical resistance and substrate adhesion can be obtained.
  • the photosensitive siloxane resin composition of the present invention contains (A) polysiloxane, (B) a photo radical polymerization initiator, (C) a polyfunctional monomer, and (D) a phosphoric acid derivative amine salt.
  • A By containing polysiloxane, the thermal polymerization (condensation) of polysiloxane proceeds by heating and the crosslink density is improved, so that a cured film having high hardness can be obtained.
  • polymerization of (C) polyfunctional monomer proceeds by radicals generated from (B) the photoradical polymerization initiator by light irradiation.
  • the exposed portion of the photosensitive siloxane resin composition is insolubilized in the alkaline aqueous solution, and a negative pattern can be formed.
  • low temperature curing becomes possible by combining (A) thermal polymerization reaction of polysiloxane and (C) photo radical polymerization reaction of polyfunctional monomer.
  • C photo radical polymerization reaction of polyfunctional monomer.
  • D a phosphoric acid derivative amine salt
  • (A) Polysiloxane is a hydrolyzed / dehydrated condensate of organosilane, and in the present invention, it preferably has (a1) a radical polymerizable group and (a2) a hydrophilic group.
  • the (a1) radical polymerizable group in the polysiloxane the hardness and chemical resistance can be further improved. Since the contrast of the degree of cure between the exposed area and the unexposed area is easily obtained, the resolution can be further improved and development residues can be further suppressed.
  • a hydrophilic group (a2) in the polysiloxane the developability can be further improved and development residues can be further suppressed.
  • the (a1) radical polymerizable group examples include a vinyl group, an ⁇ -methylvinyl group, an allyl group, a styryl group, and a (meth) acryloyl group. You may have 2 or more types of these. Among these, a styryl group is preferable, and the hardness and chemical resistance of the cured film and the adhesion to the MAM (molybdenum / aluminum / molybdenum) substrate can be further improved.
  • the polysiloxane preferably contains (a1) 20 to 85 mol% of repeating units having a styryl group as a radical polymerizable group in all repeating units.
  • the hardness and chemical resistance of the cured film and the adhesion to the MAM substrate can be further improved. More preferably, it contains 40 mol% or more of repeating units having a styryl group.
  • the resolution can be further improved by containing 85 mol% or less of a repeating unit having a styryl group. It is more preferable to contain 70 mol% or less of repeating units having a styryl group.
  • the content ratio of the organosilane unit having a styryl group is measured by 29 Si-NMR, and the ratio of the integrated value of Si derived from the organosilane unit having a styryl group to the integrated value of the entire Si derived from the organosilane is calculated. Can be obtained.
  • Examples of the (a2) hydrophilic group include a carboxyl group, a carboxylic acid anhydride group, a sulfonic acid group, a phenolic hydroxyl group, and a hydroxyimide group. You may have 2 or more types of these. Among these, a carboxyl group and a carboxylic anhydride group are preferable, and a carboxylic anhydride group is more preferable from the viewpoint of further suppressing development residue and further improving storage stability.
  • the (a) polysiloxane preferably contains 5 to 20 mol% of (a2) repeating units having a carboxylic anhydride group as a hydrophilic group in all repeating units.
  • a development residue can be suppressed more by containing 5 mol% or more of repeating units which have a carboxylic anhydride group.
  • the resolution can be further improved by containing 20 mol% or less of a repeating unit having a carboxylic acid anhydride group.
  • the content ratio of the organosilane unit containing a carboxylic acid anhydride group is determined by measuring 29 Si-NMR, and the Si content derived from the organosilane unit having a carboxylic acid anhydride group with respect to the integrated value of the entire Si derived from the organosilane. It can be obtained by calculating the ratio of the integral value.
  • the polysiloxane having (a1) radical polymerizable group and (a2) hydrophilic group hydrolyzes a plurality of organosilane compounds including, for example, an organosilane compound having a radical polymerizable group and an organosilane compound having a hydrophilic group. And can be obtained by dehydration condensation.
  • An organosilane compound other than an organosilane compound having a radical polymerizable group and an organosilane compound having a hydrophilic group may be hydrolyzed and dehydrated together with them.
  • organosilane compound having a radical polymerizable group examples include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri (methoxyethoxy) silane, vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, and vinylmethyldi (methoxyethoxy) silane.
  • Organosilane compounds having a vinyl group Organosilane compounds having an allyl group such as allyltrimethoxysilane, allyltriethoxysilane, allyltri (methoxyethoxy) silane, allylmethyldimethoxysilane, allylmethyldiethoxysilane, allylmethyldi (methoxyethoxy) silane Compound: styryltrimethoxysilane, styryltriethoxysilane, styryltri (methoxyethoxy) silane, styrylmethyldimethoxysilane, styryl Organosilane compounds having a styryl group such as methyldiethoxysilane, styrylmethyldimethoxysilane, styrylmethyldi (methoxyethoxy) silane; ⁇ -acryloylpropyltrimethoxysilane, ⁇ -acryloylpropyltri
  • organosilane compounds having a styryl group are preferable, styryltrimethoxysilane and styryltriethoxysilane are more preferable, and styryltrimethoxysilane is more preferable.
  • an organosilane compound having a hydrophilic group an organosilane compound having a carboxylic acid group and / or a carboxylic acid anhydride group is preferable, and an organosilane compound having a carboxylic acid anhydride group is more preferable.
  • organosilane compound having a carboxylic acid anhydride group examples include organosilane compounds having a structure represented by any one of the following general formulas (3) to (5). Two or more of these may be used.
  • R 6 to R 8 , R 10 to R 12 and R 14 to R 16 are each independently an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms.
  • An alkoxy group having 1 to 6 carbon atoms is preferred.
  • R 9 , R 13 and R 17 are each independently a single bond, a divalent chain aliphatic hydrocarbon group having 1 to 10 carbon atoms, or 3 to 16 carbon atoms.
  • —C 2 H 4 —, —C 3 H 6 —, —C 4 H 8 —, —O—, —C 3 H 6 OCH 2 CH (OH) CH 2 O 2 C—, —CO—, —CO 2 —, —CONH—, a group having the following structure, and the like are preferable.
  • h and k each independently represents an integer of 0 to 3.
  • An integer of 0 to 2 is preferred.
  • organosilane compound having a structure represented by the general formula (3) examples include 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxysilylsilylpropyl succinic anhydride, and 3-triphenoxysilylpropyl succinic acid. An acid anhydride etc. are mentioned.
  • organosilane compound having a structure represented by the general formula (4) examples include 3-trimethoxysilylpropylcyclohexyl dicarboxylic acid anhydride.
  • organosilane compound having a structure represented by the general formula (5) examples include 3-trimethoxysilylsilylpropylphthalic anhydride.
  • organosilane compound other than the organosilane compound having a radical polymerizable group and the organosilane compound having a hydrophilic group examples include, for example, methyltrimethoxysilane, methyltriethoxysilane, methyltri (methoxyethoxy) silane, methyltripropoxysilane, Methyltriisopropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, hexyltrimethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxy Silane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3-chloropropyltrimethoxys
  • the weight average molecular weight (Mw) of the polysiloxane is preferably 1,000 or more, and more preferably 2,000 or more, from the viewpoint of coating properties.
  • Mw of (A) polysiloxane is preferably 50,000 or less, and more preferably 20,000 or less.
  • Mw of (A) polysiloxane in the present invention refers to a polystyrene conversion value measured by gel per emission chromatography (GPC).
  • the content of (A) polysiloxane can be arbitrarily set depending on the desired film thickness and application, but is 10 to 80% by weight in the photosensitive siloxane resin composition. Is common. Moreover, 10 weight% or more is preferable in solid content of the photosensitive siloxane resin composition, and, as for content of (A) polysiloxane, 30 weight% or more is more preferable. On the other hand, the content of (A) polysiloxane is preferably 70% by weight or less in the solid content of the photosensitive siloxane resin composition.
  • the polysiloxane can be obtained by hydrolyzing the aforementioned organosilane compound and then subjecting the hydrolyzate to a dehydration condensation reaction in the presence of a solvent or without a solvent.
  • Various conditions in the hydrolysis can be set according to the physical properties suitable for the intended application in consideration of the reaction scale, the size and shape of the reaction vessel, and the like. Examples of various conditions include acid concentration, reaction temperature, reaction time, and the like.
  • an acid catalyst such as hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acid or its anhydride, or an ion exchange resin can be used.
  • an acidic aqueous solution containing formic acid, acetic acid and / or phosphoric acid is preferable.
  • the amount of the acid catalyst added is 0.05 wt.
  • the addition amount of the acid catalyst is preferably 20 parts by weight or less and more preferably 10 parts by weight or less with respect to 100 parts by weight of the total alkoxysilane compound.
  • the total amount of the alkoxysilane compound means an amount including all of the alkoxysilane compound, its hydrolyzate and its condensate, and the same shall apply hereinafter.
  • the hydrolysis reaction can be performed in a solvent.
  • the solvent can be appropriately selected in consideration of the stability, wettability, volatility, etc. of the photosensitive siloxane resin composition.
  • Examples of the solvent include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butanol, pentanol, 4-methyl-2-pentanol, 3-methyl-2-butanol, and 3-methyl-3-methoxy.
  • -1-alcohols such as butanol and diacetone alcohol; glycols such as ethylene glycol and propylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether , Propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ethylene glycol dimethyl ether, ethylene glycol Ethers such as coal diethyl ether, ethylene glycol dibutyl ether, diethyl ether; ketones such as methyl ethyl ketone, acetyl acetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, 2-heptanone; dimethylformamide, Amides such as dimethylacetamide;
  • diacetone alcohol propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene Glycol mono-t-butyl ether, ⁇ -butyrolactone and the like are preferably used.
  • the hydrolysis can be carried out without a solvent. After completion of the hydrolysis reaction, it is also preferable to adjust the concentration to be appropriate as the photosensitive siloxane resin composition by adding a solvent. It is also possible to distill and remove all or part of the product alcohol etc. by heating and / or under reduced pressure after hydrolysis and then adding a suitable solvent.
  • the amount of the solvent added is preferably 50 parts by weight or more and more preferably 80 parts by weight or more with respect to 100 parts by weight of the total alkoxysilane compound from the viewpoint of suppressing gel formation.
  • the addition amount of the solvent is preferably 500 parts by weight or less and more preferably 200 parts by weight or less with respect to 100 parts by weight of the total alkoxysilane compound from the viewpoint of allowing hydrolysis to proceed more rapidly.
  • water used for the hydrolysis reaction ion-exchanged water is preferable.
  • the amount of water can be arbitrarily set, but is preferably 1.0 to 4.0 mol with respect to 1 mol of all alkoxysilane compounds.
  • Examples of the dehydration condensation method include a method of heating a silanol compound solution obtained by hydrolysis reaction of an organosilane compound as it is.
  • the heating temperature is preferably 50 ° C. or higher and the boiling point of the solvent or lower, and the heating time is preferably 1 to 100 hours.
  • reheating or addition of a base catalyst may be performed.
  • an appropriate amount such as the generated alcohol may be distilled and removed under heating and / or reduced pressure, and then a suitable solvent may be added.
  • the polysiloxane solution after hydrolysis and dehydration condensation preferably does not contain the catalyst, and the catalyst can be removed as necessary.
  • the catalyst removal method water washing, treatment with an ion exchange resin, and the like are preferable from the viewpoint of easy operation and removability.
  • Water washing is a method of concentrating an organic layer obtained by diluting a polysiloxane solution with an appropriate hydrophobic solvent and then washing several times with water with an evaporator or the like.
  • the treatment with an ion exchange resin is a method in which a polysiloxane solution is brought into contact with an appropriate ion exchange resin.
  • the photoradical polymerization initiator may be any one that decomposes and / or reacts with light (including ultraviolet rays and electron beams) to generate radicals.
  • the photoradical polymerization initiator may be any one that decomposes and / or reacts with light (including ultraviolet rays and electron beams) to generate radicals.
  • 2-methyl- [4- (methylthio) phenyl] -2-morpholinopropan-1-one 2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpholin-4-yl ⁇ -aminoalkylphenone compounds such as -phenyl) -butan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1
  • 2,4,6-trimethylbenzoylphenyl Phosphine oxide bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxy
  • a benzyl ketal compound 2-hydroxy-2-methyl-1-phenylpropan-1-one 1- (4-Isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenylketone ⁇ -hydroxy ketone compounds such as: benzophenone, 4,4-bis (dimethylamino) benzophenone, 4,4-bis (diethylamino) benzophenone, methyl O-benzoylbenzoate, 4-phenylbenzophenone, 4,4-dichlorobenzophenone, Benzophenone compounds such as hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide, alkylated benzophenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone; 2,2-diethoxy Acetov
  • acylphosphine oxide compounds and oxime ester compounds are preferred from the viewpoint of further improving exposure sensitivity and hardness of the cured film. Since these compounds are also involved in crosslinking of siloxane as an acid during light irradiation and thermosetting, the hardness can be further improved.
  • the content of the (B) photoradical polymerization initiator in the photosensitive siloxane resin composition of the present invention is preferably 0.01% by weight or more, preferably 1% by weight in the solid content from the viewpoint of effectively promoting radical curing. The above is more preferable.
  • the content of (B) radical photopolymerization initiator is 20% by weight or less in the solid content. Is preferable, and 10 weight% or less is more preferable.
  • a polyfunctional monomer refers to a compound having two or more ethylenically unsaturated double bonds in the molecule. Considering the ease of radical polymerization, the (C) polyfunctional monomer preferably has a (meth) acryl group.
  • the double bond equivalent of the (C) polyfunctional monomer is preferably 80 g / mol or more from the viewpoint of further improving the sensitivity in pattern processing and the hardness of the cured film.
  • the double bond equivalent of the polyfunctional monomer (C) is preferably 400 g / mol or less from the viewpoint of further improving the resolution in pattern processing.
  • the polyfunctional monomer for example, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, trimethylolpropane diacrylate, trimethylol Methylolpropane triacrylate, trimethylolpropane dimethacrylate, trimethylolpropane trimethacrylate, 1,3-butanediol diacrylate, 1,3-butanediol dimethacrylate, neopentyl glycol diacrylate, 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol diacrylate 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, dimethylol-tricyclo
  • the content of the (C) polyfunctional monomer in the photosensitive siloxane resin composition of the present invention is preferably 1% by weight or more in the solid content from the viewpoint of effectively promoting radical curing.
  • the content of the polyfunctional monomer (C) is preferably 40% by weight or less in the solid content from the viewpoint of suppressing radical excess reaction and further improving the resolution.
  • Phosphoric acid derivative amine salt in the present invention refers to a salt of (d1) phosphoric acid derivative compound and (d2) amine compound. Part of the photosensitive siloxane resin composition may be dissociated.
  • Examples of phosphoric acid derivative compounds include phosphorous acid, phosphorous acid ester, phosphonic acid, phosphonic acid ester, phosphinic acid, phosphinic acid ester, and phosphoric acid ester. Two or more of these may be used. Among these, a phosphoric acid derivative compound having a structure represented by the following general formula (1) is preferable. Since the phosphoric acid derivative compound having a structure represented by the following general formula (1) has a radical polymerizable group and a hydroxyl group, when the photosensitive siloxane resin composition is cured by heat and / or light, phosphoric acid derivative compound The acid derivative amine salt is efficiently incorporated into the (A) polysiloxane, and bleeding out can be suppressed. Moreover, chemical resistance and adhesion with the MAM substrate can be further improved.
  • R 1 represents a monovalent organic group having a radical polymerizable group.
  • the monovalent organic group having a radical polymerizable group for example, at least a part of hydrogen of an alkyl group having 1 to 10 carbon atoms is a vinyl group, an ⁇ -methylvinyl group, an allyl group, a styryl group, (meth) And a group substituted with a radical polymerizable group such as an acryloyl group.
  • the radical polymerizable group is preferably a (meth) acryloyl group, and the alkyl group preferably has 1 to 6 carbon atoms.
  • R 2 represents hydrogen, an alkyl group having 1 to 20 carbon atoms, or a monovalent organic group having a radical polymerizable group.
  • the monovalent organic group having a radical polymerizable group include those exemplified for R 1 .
  • an alkyl group having 1 to 6 carbon atoms and an alkyl group having 1 to 6 carbon atoms in which at least a part of hydrogen is substituted with a (meth) acryloyl group are preferable.
  • Examples of the phosphoric acid derivative compound having the structure represented by the general formula (1) include 2-methacryloyloxyethyl acid phosphate (trade name P-1M, manufactured by Kyoeisha Chemical Co., Ltd.), 2-acryloyloxy. Ethyl acid phosphate (trade name P-1A, manufactured by Kyoeisha Chemical Co., Ltd.), ethylene oxide-modified phosphoric acid dimethacrylate (trade name PM-21, manufactured by Nippon Kayaku Co., Ltd.), phosphoric acid-containing epoxy methacrylate (trade name “ Phosphoric acid (meth) acrylates such as “New Frontier” (registered trademark) S-23A, manufactured by Daiichi Kogyo Seiyaku Co., Ltd .; vinylphosphonic acid (trade names VPA-90, VPA-100, manufactured by BASF) Examples include vinyl phosphate compounds. Two or more of these may be used.
  • Examples of amine compounds include primary amines, secondary amines, and tertiary amines. Two or more of these may be used. Among these, an amine compound having a structure represented by the following general formula (2) is preferable. Since the amine compound having the structure represented by the following general formula (2) has a hydroxyl group, when the photosensitive siloxane resin composition is cured by heat and / or light, the phosphoric acid derivative amine salt is (A ) Efficiently incorporated into the polysiloxane to suppress bleed out. Moreover, chemical resistance and adhesion with the MAM substrate can be further improved.
  • R 3 represents a monovalent organic group having 1 to 20 carbon atoms and having a hydroxyl group.
  • the monovalent organic group include an alkyl group, an acyl group, and an aryl group, and examples thereof include an alkyl group having 1 to 10 carbon atoms, an acyl group having 2 to 6 carbon atoms, and an aryl group having 6 to 15 carbon atoms. preferable.
  • an alkyl group having 1 to 6 carbon atoms in which at least a part of hydrogen is substituted with a hydroxyl group is preferable.
  • R 4 and R 5 each independently represent hydrogen, an alkyl group having 1 to 10 carbon atoms, or a monovalent organic group having 1 to 20 carbon atoms having a hydroxyl group.
  • the monovalent organic group having 1 to 20 carbon atoms having a hydroxyl group include those exemplified for R 3 .
  • hydrogen, an alkyl group having 1 to 6 carbon atoms, and an alkyl group having 1 to 6 carbon atoms in which at least a part of hydrogen is substituted with a hydroxyl group are preferable.
  • Examples of the amine compound having the structure represented by the general formula (2) include ethanolamine, diethanolamine, triethanolamine, propanolamine, methanolamine, dimethylethanolamine, diethylethanolamine, dibutylethanolamine, and N-methyl.
  • Examples include alkanolamines. Two or more of these may be used.
  • (D) Phosphoric acid derivative amine salt can be obtained by forming a salt by reaction of (d1) phosphoric acid derivative compound and (d2) amine compound.
  • the weight ratio (d2 / d1) of the (d2) amine compound to the (d1) phosphoric acid derivative compound used for salt formation is 0.1 / 9. 9 or more is preferable and 0.3 / 9.7 or more is more preferable.
  • (d2 / d1) is preferably 1/9 or less, and more preferably 0.5 / 9.5 or less.
  • the photosensitive polysiloxane resin composition of the present invention only needs to contain (D) a phosphoric acid derivative amine salt, and the above-mentioned (A) polysiloxane, (B) photo radical polymerization initiator, (C) polyfunctional (D) A phosphoric acid derivative amine salt may be blended together with a monomer or the like, or (d1) a phosphoric acid derivative compound and (d2) an amine compound may be blended with these in the photosensitive polysiloxane composition. (D) A phosphoric acid derivative amine salt may be formed.
  • the photosensitive polysiloxane resin composition of the present invention further contains a thermal radical generator.
  • a thermal radical generator By containing a thermal radical generator, radicals are generated by heating and crosslinking of unsaturated double bonds is promoted, so that the hardness can be further improved.
  • the thermal radical generator include 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamine], 2,2′-azobis [2-methyl-N- (2-propenyl).
  • the content of the (E) thermal radical generator in the photosensitive siloxane resin composition of the present invention is preferably 0.5% by weight or more in the solid content from the viewpoint of more effectively curing.
  • the content of the (E) thermal radical generator is preferably 5% by weight or less in the solid content.
  • the photosensitive siloxane resin composition of the present invention may further contain a curing agent, an ultraviolet absorber, a polymerization inhibitor, a solvent, a surfactant, a dissolution inhibitor, a stabilizer, an antifoaming agent, etc., if necessary. Good.
  • a curing agent in the photosensitive siloxane resin composition of the present invention, curing can be promoted and hardness can be further improved.
  • the curing agent include nitrogen-containing organic substances, silicone resin curing agents, various metal alcoholates, various metal chelate compounds, isocyanate compounds and polymers thereof, methylolated melamine derivatives, and methylolated urea derivatives. Two or more of these may be contained.
  • metal chelate compounds, methylolated melamine derivatives, and methylolated urea derivatives are preferably used from the viewpoints of stability of the curing agent and processability of the coating film.
  • the light resistance of the cured film can be improved and the resolution can be further improved.
  • an ultraviolet absorber 2- (2H-benzotriazol-2-yl) phenol, 2- (2H-benzotriazol-2-yl) -4,6-tert is used from the viewpoint of suppressing coloring and improving transparency.
  • the resolution can be further improved by including a polymerization inhibitor in the photosensitive siloxane resin composition of the present invention.
  • a polymerization inhibitor examples include di-t-butylhydroxytoluene, butylhydroxyanisole, hydroquinone, 4-methoxyphenol, 1,4-benzoquinone, and t-butylcatechol.
  • polymerization inhibitors include “IRGANOX” (registered trademark) 1010, “IRGANOX” 1035, “IRGANOX” 1076, “IRGANOX” 1098, “IRGANOX” 1135, “IRGANOX” 1330, “IRGANOX” 1726, “ IRGANOX “1425,” IRGANOX “1520,” IRGANOX “245,” IRGANOX “259,” IRGANOX "3114,” IRGANOX “565,” IRGANOX “295 (above, trade name, manufactured by BASF Japan Ltd.) . Two or more of these may be contained.
  • the viscosity suitable for coating can be easily adjusted, and the uniformity of the coating film can be improved. It is preferable to combine a solvent whose boiling point under atmospheric pressure exceeds 150 ° C. and is 250 ° C. or less with a solvent that is 150 ° C. or less. By containing a solvent having a boiling point exceeding 150 ° C. and not more than 250 ° C., the solvent volatilizes appropriately at the time of coating, and drying of the coating proceeds, thereby suppressing coating unevenness and improving film thickness uniformity. Can do. Furthermore, by containing a solvent having a boiling point of 150 ° C.
  • a solvent having a boiling point of 150 ° C. or less under atmospheric pressure is contained by 50% by weight or more of the whole solvent. Is preferred.
  • Examples of the solvent having a boiling point of 150 ° C. or lower under atmospheric pressure include, for example, ethanol, isopropyl alcohol, 1-propyl alcohol, 1-butanol, 2-butanol, isopentyl alcohol, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol mono Ethyl ether, methoxymethyl acetate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monopropyl ether, ethylene glycol monomethyl ether acetate, 1-methoxypropyl-2-acetate, acetol, acetylacetone, methyl Isobutyl ketone, methyl ethyl ketone, methyl propyl ketone, methyl lactate Toluene, cyclopentanone, cyclohexane, normal heptane, benzene, methyl
  • Examples of the solvent having a boiling point exceeding 150 ° C. and not higher than 250 ° C. include ethylene glycol diethyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol mono-tert-butyl ether, propylene glycol mono n-butyl ether, propylene Glycol mono t-butyl ether, 2-ethoxyethyl acetate, 3-methoxy-1-butanol, 3-methoxy-3-methylbutanol, 3-methoxy-3-methylbutyl acetate, 3-methoxybutyl acetate, 3-ethoxypropionic acid Ethyl, propylene glycol monomethyl ether propionate, dipropylene glycol methyl ether, diisobutyl ketone, diacetone alcohol, ethyl lactate, butyl lactate, dimethylformamide, dimethyl ester Ruasetoamido, .gamma.-butyrolactone, .
  • the content of the solvent can be arbitrarily set according to the application method.
  • the content is generally 50% by weight or more and 95% by weight or less in the photosensitive siloxane resin composition.
  • the flowability during coating can be improved.
  • the surfactant include “Megafac” (registered trademark) F142D, F172, F173, F183, F445, F470, F475, and F477 (above, trade names, manufactured by Dainippon Ink and Chemicals, Inc.), NBX- 15, Fluorosurfactants such as FTX-218 (trade name, manufactured by Neos Co., Ltd.); “BYK” (registered trademark) -333, “BYK” -301, “BYK” -331, “BYK” -345, “BYK” -307 (trade name, manufactured by Big Chemie Japan Co., Ltd.) and other silicone surfactants; polyalkylene oxide surfactants; poly (meth) acrylate surfactants and the like It is done. Two or more of these may be contained.
  • the solid content concentration of the photosensitive siloxane resin composition of the present invention can be arbitrarily set according to the coating method and the like.
  • the solid content concentration is generally 5% by weight or more and 50% by weight or less.
  • the photosensitive siloxane resin composition of the present invention can be obtained by mixing the aforementioned components (A) to (D) and other components as necessary. More specifically, for example, (B) a radical photopolymerization initiator, (C) a polyfunctional monomer, (D) a phosphate ester amine salt and other additives as required are added to an arbitrary solvent and stirred. (A) Polysiloxane is added, and the mixture is further stirred for 20 minutes to 3 hours, and the resulting solution is filtered.
  • the cured film of the present invention comprises a cured product of the above-described photosensitive polysiloxane resin composition of the present invention.
  • the thickness of the cured film is preferably 0.1 to 15 ⁇ m.
  • the transmittance of light having a wavelength of 400 nm when the thickness of the cured film is 1.5 ⁇ m is preferably 85% or more. The transmittance can be adjusted to a desired range by selecting the exposure amount and the thermosetting temperature in the cured film production method described later.
  • the cured film of the present invention includes a protective film for a touch panel, various hard coating materials, a flattening film for TFT, an overcoat for a color filter, an antireflection film, a passivation film, and other protective films, an optical filter, an insulating film for a touch panel, a TFT It can be suitably used for insulating films for color, photo spacers for color filters, and the like. Among these, since it has high chemical resistance and substrate adhesion, it can be suitably used as an insulating film for touch panels.
  • the cured film of the present invention can be obtained, for example, by applying the above-mentioned photosensitive polysiloxane resin composition of the present invention in a film shape, patterning it if necessary, and then curing it. It is preferable that the photosensitive siloxane resin composition of the present invention is applied on a substrate and pre-baked, and then a negative pattern is formed by exposure and development, followed by heat curing.
  • Examples of the application method for applying the photosensitive siloxane resin composition on the substrate include microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, and slit coating.
  • Examples of the pre-bake device include a heating device such as a hot plate and an oven.
  • the prebake temperature is preferably 50 to 130 ° C.
  • the prebake time is preferably 30 seconds to 30 minutes.
  • the film thickness after pre-baking is preferably 0.1 to 15 ⁇ m.
  • the exposure may be performed through a desired mask or may be performed without using a mask.
  • Examples of the exposure machine include a stepper, a mirror projection mask aligner (MPA), and a parallel light mask aligner (PLA).
  • Exposure intensity is 10 ⁇ 4000J / m 2 approximately (wavelength 365nm exposure equivalent) are preferred.
  • Examples of the exposure light source include ultraviolet rays such as i-line, g-line, and h-line, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like.
  • Developing methods include methods such as shower, dipping and paddle.
  • the immersion time in the developer is preferably 5 seconds to 10 minutes.
  • the developer include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine, and diethanolamine, tetramethyl
  • alkaline developers such as aqueous solutions containing quaternary ammonium salts such as ammonium hydroxide and choline. After development, it is preferable to rinse with water, followed by drying and baking in the range of 50 to 130 ° C.
  • thermosetting temperature is preferably 80 to 150 ° C.
  • thermosetting time is preferably about 15 minutes to 1 hour.
  • the laminate of the present invention has the above-described cured film of the present invention on a substrate.
  • the base material examples include glass substrates such as soda lime glass and alkali-free glass, transparent base materials made of plastics such as polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, and polyimide, and electrodes or metals on them.
  • glass substrates such as soda lime glass and alkali-free glass
  • transparent base materials made of plastics such as polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, and polyimide, and electrodes or metals on them.
  • Examples include a substrate having wiring.
  • examples of the material for forming the electrode or metal wiring include metal oxides such as indium, tin, zinc, aluminum, and gallium; molybdenum, silver, copper, aluminum, chromium, titanium Metal such as CNT (Carbon Nano Tube).
  • the metal oxide include indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), indium gallium zinc oxide (IGZO), and zinc oxide (ZnO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • AZO aluminum zinc oxide
  • IGZO indium gallium zinc oxide
  • ZnO zinc oxide
  • a base material having a metal wiring containing molybdenum is preferable.
  • the laminate of the present invention can be obtained, for example, by a production method including the steps of applying the above-described photosensitive polysiloxane resin composition of the present invention on a substrate and heating the coating film at 80 to 150 ° C. in this order. Can do.
  • coating the photosensitive polysiloxane resin composition on a base material the method illustrated as a manufacturing method of a cured film, etc. are mentioned.
  • Examples of the method for heating the coating film at 80 to 150 ° C. include the methods exemplified as the method for producing a cured film. By setting the heating temperature to 80 ° C. or higher, the reaction can proceed sufficiently, and the hardness, chemical resistance, and substrate adhesion can be further improved.
  • the heating temperature to 150 ° C. or lower, it is possible to suppress excessive reaction and accompanying stress and further improve the substrate adhesion. Since the photosensitive siloxane resin composition of the present invention can be cured at a low temperature, it can be sufficiently cured at a temperature of 150 ° C. or lower.
  • the touch panel member of the present invention has the above-mentioned laminated body and a display panel. Furthermore, the cured film in the laminate is preferably an interlayer insulating film.
  • the solid content concentrations of the polysiloxane solutions in Synthesis Examples 1 to 6 and the acrylic resin solution in Synthesis Example 7 were determined by the following method. In an aluminum cup, 1.5 g of the polysiloxane solution or acrylic resin solution was weighed and heated at 250 ° C. for 30 minutes using a hot plate to evaporate the liquid. The weight of the solid content remaining in the heated aluminum cup was weighed, and the solid content concentration of the polysiloxane solution or the acrylic resin solution was determined from the ratio to the weight before the heating.
  • the content ratio of each organosilane unit in the polysiloxane in Synthesis Examples 1 to 6 was determined by the following method.
  • the polysiloxane solution is injected into an NMR sample tube made of “Teflon” (registered trademark) having a diameter of 10 mm, and 29 Si-NMR measurement is performed.
  • the polysiloxane solution is derived from a specific organosilane unit relative to the integral value of the entire Si derived from organosilane.
  • the content ratio of each organosilane unit was calculated from the ratio of the integrated value of Si.
  • the 29 Si-NMR measurement conditions are shown below.
  • Apparatus Nuclear magnetic resonance apparatus (JNM-GX270; manufactured by JEOL Ltd.) Measurement method: Gated decoupling method Measurement nuclear frequency: 53.6669 MHz ( 29 Si nucleus) Spectrum width: 20000Hz Pulse width: 12 ⁇ s (45 ° pulse) Pulse repetition time: 30.0 seconds Solvent: Acetone-d6 Reference substance: Tetramethylsilane Measurement temperature: 23 ° C Sample rotation speed: 0.0 Hz.
  • Nitrogen was allowed to flow at 0.05 liter / min during the temperature rise and heating and stirring. During the reaction, a total of 36.90 g of methanol and water as by-products were distilled out. PGME was added to the obtained polysiloxane solution so that the solid concentration was 40% by weight to obtain a polysiloxane (A-1) solution.
  • the molar ratio of the repeating unit having a styryl group, the repeating unit having an acryloyl group, and the repeating unit having a hydrophilic group in the polysiloxane (A-1) was 65 mol%, 20 mol%, and 15 mol%, respectively.
  • the weight average molecular weight of the polysiloxane (A-1) was 4,000.
  • a polysiloxane solution was obtained by the same procedure as in Synthesis Example 1 except that a phosphoric acid aqueous solution in which 0.317 g of phosphoric acid (0.50% by weight with respect to the charged monomer) was dissolved was added over 30 minutes. PGME was added to the obtained polysiloxane solution so that the solid concentration was 40% by weight to obtain a polysiloxane (A-2) solution.
  • the molar ratio of the repeating unit having an acryloyl group and the repeating unit having a hydrophilic group in the polysiloxane (A-2) was 35 mol% and 15 mol%, respectively.
  • the weight average molecular weight of the polysiloxane (A-2) was 2,500.
  • a polysiloxane solution was obtained by the same procedure as in Synthesis Example 1 except that phosphoric acid in which 0.279 g of phosphoric acid (0.50 wt% with respect to the charged monomer) was dissolved in 74 g was added. PGME was added to the obtained polysiloxane solution so that the solid concentration was 40% by weight to obtain a polysiloxane (A-3) solution.
  • the molar ratio of the repeating unit having a styryl group, the repeating unit having an acryloyl group, and the repeating unit having a hydrophilic group in the polysiloxane (A-3) was 20 mol%, 20 mol%, and 10 mol%, respectively.
  • the weight average molecular weight of the polysiloxane (A-3) was 3,500.
  • a polysiloxane solution was obtained by the same procedure as in Synthesis Example 1 except that phosphoric acid in which .50 wt% was dissolved was added. PGME was added to the obtained polysiloxane solution so that the solid concentration was 40% by weight to obtain a polysiloxane (A-4) solution.
  • the molar ratio of the repeating unit having a styryl group, the repeating unit having an acryloyl group, and the repeating unit having a hydrophilic group in the polysiloxane (A-4) was 80 mol%, 10 mol%, and 10 mol%, respectively.
  • the weight average molecular weight of the polysiloxane (A-4) was 4,000.
  • Synthesis Example 5 Synthesis of polysiloxane (A-5) solution 7.87 g (0.03 mol) of 3-trimethoxysilylpropyl succinic anhydride, 20.43 g (0.15 mol) of methyltrimethoxysilane, phenyltrimethoxy 17.85 g (0.09 mol) of silane, 7.09 g (0.03 mol) of 3-glycidoxypropyltrimethoxysilane, and 49.61 g of PGME were charged, and phosphoric acid was added to 16.74 g of water while stirring at room temperature.
  • a polysiloxane solution was obtained by the same procedure as in Synthesis Example 1 except that phosphoric acid in which 0.266 g (0.50% by weight with respect to the charged monomer) was dissolved was added. PGME was added to the obtained polysiloxane solution so that the solid concentration was 40% by weight to obtain a polysiloxane (A-5) solution.
  • the molar ratio of the repeating unit having a hydrophilic group in the polysiloxane (A-5) was 10 mol%.
  • the weight average molecular weight of the polysiloxane (A-5) was 3,000.
  • Synthesis Example 6 Synthesis of Polysiloxane (A-6) Solution 13.46 g (0.06 mol) of p-styryltrimethoxysilane, 14.06 g (0.06 mol) of ⁇ -acryloylpropyltrimethoxysilane, methyltrimethoxysilane 12.26 g (0.09 mol), tetratrimethoxysilane 13.68 g (0.09 mol), TBC 0.0826 g and PGME 51.56 g were charged, and phosphoric acid was added to 17.82 g of water while stirring at room temperature.
  • a polysiloxane solution was obtained by the same procedure as in Synthesis Example 1 except that phosphoric acid in which 0.267 g (0.50% by weight with respect to the charged monomer) was dissolved was added. PGME was added to the obtained polysiloxane solution so that the solid concentration was 40% by weight to obtain a polysiloxane (A-6) solution.
  • the molar ratio of the repeating unit having a styryl group and the repeating unit having an acryloyl group in the polysiloxane (A-6) was 20 mol% and 20 mol%, respectively.
  • the weight average molecular weight of the polysiloxane (A-6) was 5,000.
  • Synthesis Example 7 Synthesis of Acrylic Resin (a) Solution A 500 ml three-necked flask was charged with 3 g of 2,2′-azobis (isobutyronitrile) and 50 g of PGME. Thereafter, 30 g of methacrylic acid, 35 g of benzyl methacrylate, and 35 g of tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate were charged and stirred for a while at room temperature. The mixture was stirred at 5 ° C. for 5 hours.
  • the prepared film is 100 ⁇ m, 50 ⁇ m, 40 ⁇ m, 30 ⁇ m, 20 ⁇ m, 15 ⁇ m, 10 ⁇ m in width. It exposed with the gap of 100 micrometers through the gray scale mask which has a line & space pattern. Thereafter, using an automatic developing device (“AD-2000 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), the film was shower-developed with 0.045 wt% potassium hydroxide aqueous solution for 60 seconds and then rinsed with water for 30 seconds.
  • AD-2000 automatic developing device
  • the exposure amount for forming a line and space pattern having a width of 100 ⁇ m in a one-to-one width was taken as the optimum exposure amount, and the minimum pattern size after development at the optimum exposure amount was taken as the resolution.
  • the developed pattern was observed visually and with a microscope whose magnification was adjusted to 50 to 100 times, and the development residue was evaluated according to the following criteria according to the degree of undissolved portion of the unexposed area. 5: A residue is not recognized visually, and a residue is also not recognized by the fine pattern below 50 micrometers in microscopic observation.
  • the prepared film was exposed using a parallel light mask aligner (trade name PLA-501F, manufactured by Canon Inc.) using an ultra-high pressure mercury lamp as a light source, and using an oven (trade name IHPS-222, manufactured by ESPEC Corporation). Then, it was cured in air at 120 ° C. for 1 hour to produce a cured film having a thickness of 1.5 ⁇ m.
  • 11 parallel vertical and horizontal lines are drawn at 1 mm intervals so as to reach the substrate of the glass plate with a cutter knife. 100 pieces were produced.
  • Condition 1 50 ° C., 2 minutes Condition 2: 60 ° C., 2 minutes Condition 3: 70 ° C., 2 minutes Condition 4: 80 ° C., 2 minutes
  • Chemical resistance based on conditions judged to have chemical resistance Was evaluated according to the following criteria, and one or more was regarded as acceptable. 4: Conditions 1, 2, 3, 4 all have chemical resistance 3: Conditions 1, 2, and 3 have chemical resistance 2: Conditions 1 and 2 have chemical resistance 1: Conditions 1 have chemical resistance only Yes: No chemical resistance under any conditions.
  • Example 1 Under a yellow light, (B) as radical photopolymerization initiator, etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyl) Oxime) (“Irgacure” (registered trademark) OXE-02 (trade name), manufactured by BASF Japan Ltd.) 0.080 g and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (“Irgacure” ( Registered trademark) -819 (trade name), manufactured by BASF Japan Ltd.) 0.160 g, ethylenebis (oxyethylene) bis [3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate] (“ Irganox ”(registered trademark) -245 (trade name), BASF Japan Ltd.) PGME 10% by weight solution 0.120 g, tetrakis (acetyl) 3.998 g of
  • Example 2 A photosensitive siloxane resin composition (P-2) was obtained in the same manner as in Example 1 except that 6.167 g of the polysiloxane (A-2) solution was used instead of the polysiloxane (A-1) solution. Evaluation was performed in the same manner as in Example 1 using the obtained photosensitive siloxane resin composition (P-2).
  • Example 3 A photosensitive siloxane resin composition (P-3) was obtained in the same manner as in Example 1 except that 6.167 g of the polysiloxane (A-3) solution was used instead of the polysiloxane (A-1) solution. Evaluation was performed in the same manner as in Example 1 by using the obtained photosensitive siloxane resin composition (P-3).
  • Example 4 A photosensitive siloxane resin composition (P-4) was obtained in the same manner as in Example 1 except that 6.167 g of the polysiloxane (A-4) solution was used instead of the polysiloxane (A-1) solution. Evaluation was performed in the same manner as in Example 1 using the obtained photosensitive siloxane resin composition (P-4).
  • Example 5 A photosensitive siloxane resin composition (P-5) was obtained in the same manner as in Example 1 except that 6.167 g of the polysiloxane (A-5) solution was used instead of the polysiloxane (A-1) solution. Evaluation was performed in the same manner as in Example 1 by using the obtained photosensitive siloxane resin composition (P-5).
  • Example 6 A photosensitive siloxane resin composition (P-6) was obtained in the same manner as in Example 1 except that 6.167 g of the polysiloxane (A-6) solution was used instead of the polysiloxane (A-1) solution. Evaluation was performed in the same manner as in Example 1 by using the obtained photosensitive siloxane resin composition (P-6).
  • Example 7 The same procedure as in Example 1 was conducted except that 2-acryloyloxyethyl acid phosphate (P-1A (trade name), manufactured by Kyoeisha Chemical Co., Ltd.) was used instead of the phosphoric acid derivative compound (d1) P-1M. A photosensitive siloxane resin composition (P-7) was obtained. The obtained photosensitive siloxane resin composition (P-7) was used for evaluation in the same manner as in Example 1.
  • P-1A 2-acryloyloxyethyl acid phosphate
  • d1 P-1M phosphoric acid derivative compound
  • Example 8 Amine compound (d2) A photosensitive siloxane resin composition (P-8) was obtained in the same manner as in Example 1 except that triethanolamine was used instead of monoethanolamine. Evaluation was performed in the same manner as in Example 1 by using the obtained photosensitive siloxane resin composition (P-8).
  • Example 9 The same procedure as in Example 1 was carried out except that ethyl acid phosphate (JP502 (trade name), manufactured by Johoku Chemical Industry Co., Ltd.) was used instead of the phosphoric acid derivative compound (d1) P-1M. A product (P-9) was obtained. Evaluation was performed in the same manner as in Example 1 by using the obtained photosensitive siloxane resin composition (P-9).
  • JP502 trade name
  • Example 10 Amine compound (d2) A photosensitive siloxane resin composition (P-10) was obtained in the same manner as in Example 1 except that triethylamine was used instead of monoethanolamine. Evaluation was performed in the same manner as in Example 1 using the obtained photosensitive siloxane resin composition (P-10).
  • a photosensitive siloxane resin composition (P-13) was obtained in the same manner as in Example 1 except that 3.999 g of the solution was used. Evaluation was performed in the same manner as in Example 1 by using the obtained photosensitive siloxane resin composition (P-13).
  • a photosensitive siloxane resin composition (P-14) was obtained in the same manner as in Example 1 except that was used. Evaluation was performed in the same manner as in Example 1 by using the obtained photosensitive siloxane resin composition (P-14).
  • Example 15 The amount of the polysiloxane (A-1) solution was 5.967 g, (E) 0.080 g of dimethyl 2,2′-azobis (isobutyrate) was added as a thermal radical generator, and the mixed solvent was PGME 1.797 g and PGMEA 3
  • a photosensitive siloxane resin composition (P-15) was obtained in the same manner as in Example 1 except that the amount was 200 g. Evaluation was performed in the same manner as in Example 1 by using the obtained photosensitive siloxane resin composition (P-15).
  • Example 16 A photosensitive siloxane resin composition (P-16) was obtained in the same manner as in Example 15 except that the polysiloxane (A-2) solution was used instead of the polysiloxane (A-1) solution. Evaluation was performed in the same manner as in Example 1 by using the obtained photosensitive siloxane resin composition (P-16).
  • Example 17 A photosensitive siloxane resin composition (P-17) was obtained in the same manner as in Example 15 except that the polysiloxane (A-5) solution was used instead of the polysiloxane (A-1) solution. Evaluation was performed in the same manner as in Example 1 by using the obtained photosensitive siloxane resin composition (P-17).
  • Example 18 A photosensitive siloxane resin composition (P-18) was obtained in the same manner as in Example 15 except that the polysiloxane (A-6) solution was used instead of the polysiloxane (A-1) solution. Evaluation was performed in the same manner as in Example 1 by using the obtained photosensitive siloxane resin composition (P-18).
  • Example 19 The amount of the polysiloxane (A-1) solution is 5.967 g, (E) 0.080 g of dimethyl 2,2′-azobis (isobutyrate) is added as a thermal radical generator, and the mixed solvent is PGME 1.797 g and PGMEA3.
  • a photosensitive siloxane resin composition (P-19) was obtained in the same manner as in Example 9 except for 200 g. Evaluation was performed in the same manner as in Example 1 by using the obtained photosensitive siloxane resin composition (P-19).
  • Example 20 The amount of the polysiloxane (A-1) solution was 5.967 g, (E) 0.080 g of dimethyl 2,2′-azobis (isobutyrate) was added as a thermal radical generator, and the mixed solvent was PGME 1.797 g and PGMEA 3
  • a photosensitive siloxane resin composition (P-20) was obtained in the same manner as in Example 10 except that the amount was 200 g. Evaluation was performed in the same manner as in Example 1 by using the obtained photosensitive siloxane resin composition (P-20).
  • Example 1 except that the amount of the polysiloxane (A-1) solution was 8.166 g, (D) the phosphate ester amine salt was not added, and the mixed solvent was PGME 3.676 g and PGMEA 3.200 g. And a photosensitive siloxane resin composition (P-21) was obtained. Evaluation was performed in the same manner as in Example 1 by using the obtained photosensitive siloxane resin composition (P-21).
  • Comparative Example 2 A photosensitive siloxane resin was prepared in the same manner as in Example 1 except that the phosphate ester amine salt was not added and the amount of the phosphoric acid derivative compound (d1) P-1M in 20% by weight of PGME was changed to 3.999 g. A composition (P-22) was obtained. The obtained photosensitive siloxane resin composition (P-22) was used for evaluation in the same manner as in Example 1. Comparative Example 3 A photosensitive siloxane resin composition (P-23) was obtained in the same manner as in Example 1 except that tetraethylammonium, which is a quaternary ammonium cation, was used as the amine compound (d2) instead of monoethanolamine. Evaluation was performed in the same manner as in Example 1 using the obtained photosensitive siloxane resin composition (P-23).
  • Comparative Example 4 A photosensitive acrylic resin composition (P-24) was obtained in the same manner as in Example 1 except that 6.167 g of the acrylic resin (a) solution was used instead of the polysiloxane (A-1) solution. Evaluation was performed in the same manner as in Example 1 using the obtained photosensitive acrylic resin composition (P-24).
  • Tables 2 to 4 show the compositions of Examples 1 to 20 and Comparative Examples 1 to 4, and Table 5 shows the evaluation results.
  • Cured films obtained by curing the photosensitive siloxane resin composition of the present invention include various hard coat films such as touch panel protective films, insulating films for touch sensors, flattened films for TFTs of liquid crystals and organic EL displays, It is suitably used for metal wiring protective films, insulating films, antireflection films, optical filters, color filter overcoats, pillar materials, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Human Computer Interaction (AREA)
  • Materials For Photolithography (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Silicon Polymers (AREA)

Abstract

本発明は、低温硬化が可能で、保存安定性および解像度に優れ、現像残渣を抑制することでき、硬度が高く、耐薬品性、基板密着性に優れる硬化膜を得ることのできる感光性シロキサン樹脂組成物を提供することを課題とする。本発明は、(A)ポリシロキサン、(B)光ラジカル重合開始剤、(C)多官能モノマーおよび(D)リン酸誘導体アミン塩を含有する感光性シロキサン樹脂組成物である。

Description

感光性シロキサン樹脂組成物、硬化膜およびタッチパネル用部材
 本発明は、感光性シロキサン樹脂組成物と、それを用いた硬化膜、積層体とその製造方法およびタッチパネル用部材に関する。
 現在、スマートフォンやタブレット端末の多くに静電容量式タッチパネルが使用されている。静電容量式タッチパネルのセンサー基板は、ガラス上にITO(Indium Tin Oxide)や金属(銀、モリブデン、アルミニウムなど)がパターニングされた配線を有し、配線の交差部に絶縁膜、ITOおよび金属を保護する保護膜を有する構造が一般的である。
 タッチパネルの方式は、カバーガラスと液晶パネルとの間にタッチパネル層を形成するOut-cellタイプ、カバーガラスにタッチパネル層を直接形成するOGS(One Glass Solution)タイプ、液晶パネル上にタッチパネル層を形成するOn-cellタイプ、液晶パネルの内部にタッチパネル層を形成するIn-cellタイプに大別される。近年、従来よりも製造プロセスが簡略化できることから、On-cellタイプの開発が盛んに行われている。On-cellタイプにおいては、液晶パネル上に直接タッチパネル層を形成するため、配線や保護膜、絶縁膜を液晶の耐熱温度以下の低温で形成する必要がある。
 従来、タッチパネルの保護膜は高硬度な無機系のSiO、SiNや感光性透明材料などにより形成される場合が多く、絶縁膜は感光性透明材料により形成される場合が多かった。しかしながら、SiOやSiNなどの無機系材料は、CVD(Chemial Vapor Deposition)により高温製膜して形成する必要があり、On-cellタイプへの適用は難しい。そこで、低温硬化が可能で、硬度が高く、耐薬品性、基板密着性に優れ、パターン加工可能な感光性透明材料が求められている。
 感光性透明材料として、(メタ)アクリロイル基と酸基とを有する重合体、3官能以上のエチレン性不飽和化合物、光重合開始剤、及び、リン酸エステル構造とエチレン性不飽和基とを有する化合物とを含む感光性樹脂組成物(例えば、特許文献1参照)や、リン酸基などの特定の酸性基を含有する多官能(メタ)アクリレートモノマー、シロキサン化合物、および光ラジカル重合開始剤を含有するアルカリ現像可能なネガ型のフォトスペーサ用感光性樹脂組成物(例えば、特許文献2参照)が提案されている。
特開2016-153834号公報 特開2011-203577号公報
 特許文献1に開示された樹脂組成物は、硬度が不十分である課題があった。また、リン酸化合物を含有することにより、基板密着性が向上する反面、リン酸化合物の強酸性により保存安定性が低下する課題があった。また、特許文献2には、多官能(メタ)アクリレートモノマー中の酸性基の塩として4級アンモニウムイオンなどのカチオンとの塩が開示されているが、かかる塩の高い親水性により、解像度の低下や現像残渣の発生などのパターン加工性の低下および耐薬品性の低下などの課題があった。
 そこで、本発明は、低温硬化が可能で、保存安定性および解像度に優れ、現像残渣を抑制することでき、硬度が高く、耐薬品性、基板密着性に優れる硬化膜を得ることのできる感光性シロキサン樹脂組成物を提供することを課題とする。
 本発明は、(A)ポリシロキサン、(B)光ラジカル重合開始剤、(C)多官能モノマーおよび(D)リン酸誘導体アミン塩を含有する感光性シロキサン樹脂組成物である。
 本発明の感光性シロキサン樹脂組成物は、低温硬化が可能で、保存安定性および解像度に優れ、現像残渣を抑制することができる。本発明の感光性シロキサン樹脂組成物によれば、硬度が高く、耐薬品性および基板密着性に優れる硬化膜を得ることができる。
 本発明の感光性シロキサン樹脂組成物は(A)ポリシロキサン、(B)光ラジカル重合開始剤、(C)多官能モノマーおよび(D)リン酸誘導体アミン塩を含有する。(A)ポリシロキサンを含有することにより、加熱によりポリシロキサンの熱重合(縮合)が進行し、架橋密度が向上するため、高硬度の硬化膜を得ることができる。また、(B)光ラジカル重合開始剤および(C)多官能モノマーを含有することにより、光照射により(B)光ラジカル重合開始剤から発生したラジカルによって(C)多官能モノマーの重合が進行し、感光性シロキサン樹脂組成物の露光部がアルカリ水溶液に対して不溶化し、ネガ型のパターンを形成することができる。このように、(A)ポリシロキサンの熱重合反応および(C)多官能モノマーの光ラジカル重合反応を組み合わせることにより、低温硬化が可能となる。さらに、(D)リン酸誘導体アミン塩を含有することにより、保存安定性および解像度を向上させ、現像残渣を抑制することでき、耐薬品性および基板密着性を大幅に向上させることができる。
 (A)ポリシロキサン
 (A)ポリシロキサンは、オルガノシランの加水分解・脱水縮合物であり、本発明においては、(a1)ラジカル重合性基および(a2)親水性基を有することが好ましい。ポリシロキサン中に(a1)ラジカル重合性基を有することにより、硬度および耐薬品性をより向上させることができる。露光部と未露光部の硬化度のコントラストがつきやすくなるため、解像度をより向上させ、現像残渣をより抑制することができる。また、ポリシロキサン中に(a2)親水性基を有することにより、現像性をより向上させ、現像残渣をより抑制することができる。
 (a1)ラジカル重合性基としては、例えば、ビニル基、α―メチルビニル基、アリル基、スチリル基、(メタ)アクリロイル基などが挙げられる。これらを2種以上有してもよい。これらの中でも、スチリル基が好ましく、硬化膜の硬度や耐薬品性、MAM(モリブデン/アルミニウム/モリブデンの積層膜)基板との密着性をより向上させることができる。(A)ポリシロキサンは、(a1)ラジカル重合性基としてスチリル基を有する繰り返し単位を、全繰り返し中20~85モル%含有することが好ましい。スチリル基を有する繰り返し単位を20モル%以上含有することにより、硬化膜の硬度や耐薬品性、MAM基板との密着性をより向上させることができる。スチリル基を有する繰り返し単位を40モル%以上含有することがさらに好ましい。一方、スチリル基を有する繰り返し単位を85モル%以下含有することにより、解像度をより向上させることができる。スチリル基を有する繰り返し単位を70モル%以下含有することがさらに好ましい。スチリル基を有するオルガノシラン単位の含有比率は、29Si-NMR測定を行い、オルガノシランに由来するSi全体の積分値に対する、スチリル基を有するオルガノシラン単位に由来するSiの積分値の割合を算出することにより求めることができる。
 (a2)親水性基としては、例えば、カルボキシル基、カルボン酸無水物基、スルホン酸基、フェノール性水酸基、ヒドロキシイミド基などが挙げられる。これらを2種以上有してもよい。これらの中でも、現像残渣をより抑制し、保存安定性をより向上させる観点から、カルボキシル基、カルボン酸無水物基が好ましく、カルボン酸無水物基がより好ましい。(a)ポリシロキサンは、(a2)親水性基としてカルボン酸無水物基を有する繰り返し単位を、全繰り返し中5~20モル%含有することが好ましい。カルボン酸無水物基を有する繰り返し単位を5モル%以上含有することにより、現像残渣をより抑制することができる。一方、カルボン酸無水物基を有する繰り返し単位を20モル%以下含有することにより、解像度をより向上させることができる。カルボン酸無水物基を含むオルガノシラン単位の含有比率は、29Si-NMR測定を行い、オルガノシランに由来するSi全体の積分値に対する、カルボン酸無水物基を有するオルガノシラン単位に由来するSiの積分値の割合を算出することにより求めることができる。
 (a1)ラジカル重合性基および(a2)親水性基を有するポリシロキサンは、例えば、ラジカル重合性基を有するオルガノシラン化合物および親水性基を有するオルガノシラン化合物を含む複数のオルガノシラン化合物を加水分解および脱水縮合することによって得ることができる。ラジカル重合性基を有するオルガノシラン化合物および親水性基を有するオルガノシラン化合物以外のオルガノシラン化合物をこれらとともに加水分解および脱水縮合してもよい。
 ラジカル重合性基を有するオルガノシラン化合物としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(メトキシエトキシ)シラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、ビニルメチルジ(メトキシエトキシ)シランなどのビニル基を有するオルガノシラン化合物;アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリ(メトキシエトキシ)シラン、アリルメチルジメトキシシラン、アリルメチルジエトキシシラン、アリルメチルジ(メトキシエトキシ)シランなどのアリル基を有するオルガノシラン化合物;スチリルトリメトキシシラン、スチリルトリエトキシシラン、スチリルトリ(メトキシエトキシ)シラン、スチリルメチルジメトキシシラン、スチリルメチルジエトキシシラン、スチリルメチルジメトキシシラン、スチリルメチルジ(メトキシエトキシ)シランなどのスチリル基を有するオルガノシラン化合物;γ-アクリロイルプロピルトリメトキシシラン、γ-アクリロイルプロピルトリエトキシシラン、γ-アクリロイルプロピルトリ(メトキシエトキシ)シラン、γ-メタクリロイルプロピルトリメトキシシラン、γ-メタクリロイルプロピルトリエトキシシラン、γ-メタクリロイルプロピルトリ(メトキシエトキシ)シラン、γ-メタクリロイルプロピルメチルジメトキシシラン、γ-メタクリロイルプロピルメチルジエトキシシラン、γ-アクリロイルプロピルメチルジメトキシシラン、γ-アクリロイルプロピルメチルジエトキシシラン、γ-メタクリロイルプロピル(メトキシエトキシ)シランなどの(メタ)アクリロイル基を有するオルガノシラン化合物などが挙げられる。これらを2種以上用いてもよい。これらの中でも、スチリル基を有するオルガノシラン化合物が好ましく、スチリルトリメトキシシラン、スチリルトリエトキシシランがより好ましく、スチリルトリメトキシシランがさらに好ましい。
 親水性基を有するオルガノシラン化合物としては、カルボン酸基および/またはカルボン酸無水物基を有するオルガノシラン化合物が好ましく、カルボン酸無水物基を有するオルガノシラン化合物がより好ましい。
 カルボン酸無水物基を有するオルガノシラン化合物としては、例えば、下記一般式(3)~(5)のいずれかで表される構造を有するオルガノシラン化合物などが挙げられる。これらを2種以上用いてもよい。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(3)~(5)中、R~R、R10~R12およびR14~R16はそれぞれ独立に、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、フェニル基、フェノキシ基または炭素数2~6のアルキルカルボニルオキシ基を表す。炭素数1~6のアルコキシ基が好ましい。
 上記一般式(3)~(5)中、R、R13およびR17はそれぞれ独立に、単結合、炭素数1~10の2価の鎖状脂肪族炭化水素基、炭素数3~16の2価の環状脂肪族炭化水素基、カルボニル基、エーテル基、アミド基、芳香族基またはこれらのいずれかを有する2価の基を表す。-C-、-C-、-C-、-O-、-COCHCH(OH)CHC-、-CO-、-CO-、-CONH-、以下の構造を有する基などが好ましい。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(3)~(5)中、hおよびkはそれぞれ独立に0~3の整数を表す。0~2の整数が好ましい。
 一般式(3)で表される構造を有するオルガノシラン化合物としては、例えば、3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシシリルプロピルコハク酸無水物、3-トリフェノキシシリルプロピルコハク酸無水物などが挙げられる。
 一般式(4)で表される構造を有するオルガノシラン化合物としては、例えば、3-トリメトキシシリルプロピルシクロヘキシルジカルボン酸無水物などが挙げられる。
 一般式(5)で表される構造を有するオルガノシラン化合物としては、例えば、3-トリメトキシシシリルプロピルフタル酸無水物などが挙げられる。
 ラジカル重合性基を有するオルガノシラン化合物および親水性基を有するオルガノシラン化合物以外のオルガノシラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ(メトキシエトキシ)シラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ヘキシルトリメトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-(N,N-グリシジル)アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、β-シアノエチルトリエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α-グリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリイソプロポキシシラン、γ-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシプロピルトリ(メトキシエトキシ)シラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、β-グリシドキシブチルトリメトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、σ-グリシドキシブチルトリメトキシシラン、σ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリフェノキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメチルジメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、グリシドキシメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルメチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルメチルジエトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、β-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジ(メトキシエトキシ)シラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルメチルジエトキシシラン、シクロヘキシルメチルジメトキシシラン、オクタデシルメチルジメトキシシラン、テトラメトキシシラン、テトラエトキシシランなどが挙げられる。これらを2種以上用いてもよい。
 (A)ポリシロキサンの重量平均分子量(Mw)は、塗布特性の観点から、1,000以上が好ましく、2,000以上がより好ましい。一方、現像性の観点から、(A)ポリシロキサンのMwは、50,000以下が好ましく、20,000以下がより好ましい。ここで、本発明における(A)ポリシロキサンのMwとは、ゲルパーエミッションクロマトグラフィー(GPC)で測定されるポリスチレン換算値を言う。
 本発明の感光性シロキサン樹脂組成物において、(A)ポリシロキサンの含有量は、所望の膜厚や用途により任意に設定することができるが、感光性シロキサン樹脂組成物中、10~80重量%が一般的である。また、(A)ポリシロキサンの含有量は、感光性シロキサン樹脂組成物の固形分中、10重量%以上が好ましく、30重量%以上がより好ましい。一方、(A)ポリシロキサンの含有量は、感光性シロキサン樹脂組成物の固形分中、70重量%以下が好ましい。
 (A)ポリシロキサンは、前述のオルガノシラン化合物を加水分解した後、該加水分解物を溶媒の存在下または無溶媒で脱水縮合反応させることによって得ることができる。
 加水分解における各種条件は、反応スケール、反応容器の大きさ、形状などを考慮して、目的とする用途に適した物性に合わせて設定することができる。各種条件としては、例えば、酸濃度、反応温度、反応時間などが挙げられる。
 加水分解反応には、塩酸、酢酸、蟻酸、硝酸、蓚酸、塩酸、硫酸、リン酸、ポリリン酸、多価カルボン酸やその無水物、イオン交換樹脂などの酸触媒を用いることができる。これらの中でも、蟻酸、酢酸および/またはリン酸を含む酸性水溶液が好ましい。
 加水分解反応に酸触媒を用いる場合、酸触媒の添加量は、加水分解をより速やかに進行させる観点から、加水分解反応に使用される全アルコキシシラン化合物100重量部に対して、0.05重量部以上が好ましく、0.1重量部以上がより好ましい。一方、加水分解反応の進行を適度に調整する観点から、酸触媒の添加量は、全アルコキシシラン化合物100重量部に対して、20重量部以下が好ましく、10重量部以下がより好ましい。ここで、全アルコキシシラン化合物量とは、アルコキシシラン化合物、その加水分解物およびその縮合物の全てを含む量のことを言い、以下同じとする。
 加水分解反応は、溶媒中で行うことができる。感光性シロキサン樹脂組成物の安定性、濡れ性、揮発性などを考慮して、溶媒を適宜選択することができる。溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、t-ブタノール、ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシ-1-ブタノール、ジアセトンアルコールなどのアルコール類;エチレングリコール、プロピレングリコールなどのグリコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチルエーテルなどのエーテル類;メチルエチルケトン、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、2-ヘプタノンなどのケトン類;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類;エチルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類;トルエン、キシレン、ヘキサン、シクロヘキサンなどの芳香族または脂肪族炭化水素;γ-ブチロラクトン、N-メチル-2-ピロリドン、ジメチルスルホキシドなどが挙げられる。これらを2種以上用いてもよい。
 これらの中でも、硬化膜の透過率およびクラック耐性等の観点から、ジアセトンアルコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、γ-ブチロラクトン等が好ましく用いられる。
 加水分解反応によって溶媒が生成する場合には、無溶媒で加水分解を行うことも可能である。加水分解反応終了後に、さらに溶媒を添加することにより、感光性シロキサン樹脂組成物として適切な濃度に調整することも好ましい。また、加水分解後に加熱および/または減圧下により生成アルコール等の全量あるいは一部を留出、除去し、その後好適な溶媒を添加することも可能である。
 加水分解反応に溶媒を使用する場合、溶媒の添加量は、ゲルの生成を抑制する観点から、全アルコキシシラン化合物100重量部に対して、50重量部以上が好ましく、80重量部以上がより好ましい。一方、溶媒の添加量は、加水分解をより速やかに進行させる観点から、全アルコキシシラン化合物100重量部に対して、500重量部以下が好ましく、200重量部以下がより好ましい。
 また、加水分解反応に用いる水としては、イオン交換水が好ましい。水の量は任意に設定することができるが、全アルコキシシラン化合物1モルに対して、1.0~4.0モルが好ましい。
 脱水縮合反応の方法としては、例えば、オルガノシラン化合物の加水分解反応により得られたシラノール化合物溶液をそのまま加熱する方法などが挙げられる。加熱温度は、50℃以上、溶媒の沸点以下が好ましく、加熱時間は、1~100時間が好ましい。また、ポリシロキサンの重合度を高めるために、再加熱または塩基触媒の添加を行ってもよい。また、目的に応じて、加水分解後に、生成アルコールなどの適量を加熱および/または減圧下にて留出、除去し、その後好適な溶媒を添加してもよい。
 感光性ポリシロキサン樹脂組成物の保存安定性の観点から、加水分解、脱水縮合後のポリシロキサン溶液には前記触媒が含まれないことが好ましく、必要に応じて触媒の除去を行うことができる。触媒除去方法としては、操作の簡便さと除去性の観点から、水洗浄、イオン交換樹脂による処理などが好ましい。水洗浄とは、ポリシロキサン溶液を適当な疎水性溶媒で希釈した後、水で数回洗浄して得られた有機層をエバポレーター等で濃縮する方法である。イオン交換樹脂による処理とは、ポリシロキサン溶液を適当なイオン交換樹脂に接触させる方法である。
 (B)光ラジカル重合開始剤
 (B)光ラジカル重合開始剤は、光(紫外線、電子線を含む)により分解および/または反応し、ラジカルを発生させるものであればどのようなものでもよく、例えば、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1などのα-アミノアルキルフェノン化合物;2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)-フォスフィンオキサイドなどのアシルホスフィンオキサイド化合物;1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、1-フェニル-1,2-ブタジオン-2-(O-メトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(O-エトキシカルボニル)オキシム、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)などのオキシムエステル化合物;ベンジルジメチルケタールなどのベンジルケタール化合物;2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトンなどのα-ヒドロキシケトン化合物;ベンゾフェノン、4,4-ビス(ジメチルアミノ)ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、O-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4,4-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アルキル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノンなどのベンゾフェノン化合物;2,2-ジエトキシアセトフェノン、2,3-ジエトキシアセトフェノン、4-t-ブチルジクロロアセトフェノン、ベンザルアセトフェノン、4-アジドベンザルアセトフェノンなどのアセトフェノン化合物;2-フェニル-2-オキシ酢酸メチルなどの芳香族ケトエステル化合物;4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(2-エチル)ヘキシル、4-ジエチルアミノ安息香酸エチル、2-ベンゾイル安息香酸メチルなどの安息香酸エステル化合物などが挙げられる。これらを2種以上含有してもよい。
 これらの中でも、露光感度および硬化膜の硬度をより向上させる観点から、アシルホスフィンオキサイド化合物、オキシムエステル化合物が好ましい。これらの化合物は、光照射および熱硬化の際に酸としてシロキサンの架橋にも関与することから、硬度をより向上させることができる。
 本発明の感光性シロキサン樹脂組成物中における(B)光ラジカル重合開始剤の含有量は、ラジカル硬化を効果的に進める観点から、固形分中、0.01重量%以上が好ましく、1重量%以上がより好ましい。一方、残留した(B)光ラジカル重合開始剤の溶出等を抑制し、耐薬品性をより向上させる観点から、(B)光ラジカル重合開始剤の含有量は、固形分中、20重量%以下が好ましく、10重量%以下がより好ましい。
 (C)多官能モノマー
 (C)多官能モノマーとは、分子中に2つ以上のエチレン性不飽和二重結合を有する化合物をいう。ラジカル重合性のしやすさを考えると、(C)多官能モノマーは、(メタ)アクリル基を有することが好ましい。また、(C)多官能モノマーの二重結合当量は、パターン加工における感度および硬化膜の硬度をより向上させる観点から、80g/mol以上が好ましい。一方、(C)多官能モノマーの二重結合当量は、パターン加工における解像度をより向上させる観点から、400g/mol以下が好ましい。
 (C)多官能モノマーとしては、例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、1,3-ブタンジオールジアクリレート、1,3-ブタンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリペンタエリスリトールヘプタアクリレート、トリペンタエリスリトールオクタアクリレート、テトラペンタエリスリトールノナアクリレート、テトラペンタエリスリトールデカアクリレート、ペンタペンタエリスリトールウンデカアクリレート、ペンタペンタエリスリトールドデカアクリレート、トリペンタエリスリトールヘプタメタクリレート、トリペンタエリスリトールオクタメタクリレート、テトラペンタエリスリトールノナメタクリレート、テトラペンタエリスリトールデカメタクリレート、ペンタペンタエリスリトールウンデカメタクリレート、ペンタペンタエリスリトールドデカメタクリレート、ジメチロール-トリシクロデカンジアクリレートなどが挙げられる。これらを2種以上含有してもよい。これらの中でも、現像時の残渣をより抑制する観点から、ペンタエリスリトールアクリレートが好ましい。
 本発明の感光性シロキサン樹脂組成物中における(C)多官能モノマーの含有量は、ラジカル硬化を効果的に進める観点から、固形分中、1重量%以上が好ましい。一方、ラジカルの過剰反応を抑制し解像度をより向上させる観点から、(C)多官能モノマーの含有量は、固形分中、40重量%以下が好ましい。
 (D)リン酸誘導体アミン塩
 本発明における(D)リン酸誘導体アミン塩とは、(d1)リン酸誘導体化合物と(d2)アミン化合物の塩を言う。感光性シロキサン樹脂組成物中において、その一部が解離していてもよい。
 (d1)リン酸誘導体化合物としては、例えば、亜リン酸、亜リン酸エステル、ホスホン酸、ホスホン酸エステル、ホスフィン酸、ホスフィン酸エステル、リン酸エステルなどが挙げられる。これらを2種以上用いてもよい。これらの中でも、下記一般式(1)で表される構造を有するリン酸誘導体化合物が好ましい。下記一般式(1)で表される構造を有するリン酸誘導体化合物は、ラジカル重合性基とヒドロキシル基を有することから、感光性シロキサン樹脂組成物を熱および/または光により硬化させる際に、リン酸誘導体アミン塩が(A)ポリシロキサン中に効率的に取り込まれ、ブリードアウトを抑制することができる。また、耐薬品性およびMAM基板との密着性をより向上させることができる。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(1)中、Rはラジカル重合性基を有する1価の有機基を示す。ラジカル重合性基を有する1価の有機基としては、例えば、炭素数1~10のアルキル基の水素の少なくとも一部が、ビニル基、α-メチルビニル基、アリル基、スチリル基、(メタ)アクリロイル基などのラジカル重合性基により置換された基などが挙げられる。前記ラジカル重合性基としては(メタ)アクリロイル基が好ましく、前記アルキル基の炭素数は1~6が好ましい。
 前記一般式(1)中、Rは水素、炭素数1~20のアルキル基またはラジカル重合性基を有する1価の有機基を示す。ラジカル重合性基を有する1価の有機基としては、Rにおいて例示したものが挙げられる。中でも、炭素数1~6のアルキル基、水素の少なくとも一部が(メタ)アクリロイル基により置換された炭素数1~6のアルキル基が好ましい。
 前記一般式(1)で表される構造を有するリン酸誘導体化合物としては、例えば、2-メタクリロイロキシエチルアシッドホスフェート(商品名P-1M、共栄社化学(株)製)、2-アクリロイロキシエチルアシッドホスフェート(商品名P-1A、共栄社化学(株)製)、エチレンオキサイド変性リン酸ジメタクリレート(商品名PM-21、日本化薬(株)製)、リン酸含有エポキシメタクリレート(商品名“ニューフロンティア”(登録商標)S-23A、第一工業製薬(株)製)などのリン酸(メタ)アクリレート類;ビニルホスホン酸(商品名VPA-90、VPA-100、BASF社製)などのリン酸ビニル化合物などが挙げられる。これらを2種以上用いてもよい。
 (d2)アミン化合物としては、例えば、第1級アミン、第2級アミン、第3級アミンなどが挙げられる。これらを2種以上用いてもよい。これらの中でも、下記一般式(2)で表される構造を有するアミン化合物が好ましい。下記一般式(2)で表される構造を有するアミン化合物は、ヒドロキシル基を有することから、感光性シロキサン樹脂組成物を熱および/または光により硬化させる際に、リン酸誘導体アミン塩が(A)ポリシロキサン中に効率的に取り込まれ、ブリードアウトを抑制することができる。また、耐薬品性およびMAM基板との密着性をより向上させることができる。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(2)中、Rはヒドロキシル基を有する炭素数1~20の1価の有機基を示す。1価の有機基としては、例えば、アルキル基、アシル基、アリール基などが挙げられ、炭素数1~10のアルキル基、炭素数2~6のアシル基、炭素数6~15のアリール基が好ましい。これらの中でも、水素の少なくとも一部がヒドロキシル基で置換された炭素数1~6のアルキル基が好ましい。
 前記一般式(2)中、RおよびRはそれぞれ独立に水素、炭素数1~10のアルキル基またはヒドロキシル基を有する炭素数1~20の1価の有機基を示す。ヒドロキシル基を有する炭素数1~20の1価の有機基としては、Rにおいて例示したものが挙げられる。これらの中でも、水素、炭素数1~6のアルキル基、水素の少なくとも一部がヒドロキシル基で置換された炭素数1~6のアルキル基が好ましい。
 前記一般式(2)で表される構造を有するアミン化合物としては、例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、プロパノールアミン、メタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、ジブチルエタノールアミン、N-メチルエタノールアミン、N-メチルジエタノールアミン、N-エチルエタノールアミン、N-エチルジエタノールアミン、N-n-ブチルエタノールアミン、N-n-ブチルジエタノールアミン、N-t-ブチルエタノールアミン、N-t-ブチルジエタノールアミンなどのアルカノールアミンが挙げられる。これらを2種以上用いてもよい。
 (D)リン酸誘導体アミン塩は、(d1)リン酸誘導体化合物と(d2)アミン化合物との反応により塩を形成させることにより得ることができる。塩形成に用いる(d1)リン酸誘導体化合物に対する(d2)アミン化合物の重量比(d2/d1)は、感光性シロキサン樹脂組成物の保存安定性をより向上させる観点から、0.1/9.9以上が好ましく、0.3/9.7以上がより好ましい。一方、感光性シロキサン樹脂組成物の保存安定性をより向上させる観点から、(d2/d1)は、1/9以下が好ましく、0.5/9.5以下がより好ましい。
 本発明の感光性ポリシロキサン樹脂組成物は、(D)リン酸誘導体アミン塩を含有していればよく、前述の(A)ポリシロキサン、(B)光ラジカル重合開始剤、(C)多官能モノマーなどとともに(D)リン酸誘導体アミン塩を配合したものであってもよいし、これらに(d1)リン酸誘導体化合物と(d2)アミン化合物を配合して、感光性ポリシロキサン組成物中において(D)リン酸誘導体アミン塩を形成したものであってもよい。感光性ポリシロキサン樹脂組成物の保存安定性をより向上させる観点から、前述の(A)ポリシロキサン、(B)光ラジカル重合開始剤、(C)多官能モノマーなどとともに(D)リン酸誘導体アミン塩を配合したものが好ましい。
 (E)熱ラジカル発生剤
 本発明の感光性ポリシロキサン樹脂組成物は、さらに熱ラジカル発生剤を含有することが好ましい。熱ラジカル発生剤を含有することにより、加熱によりラジカルが発生し、不飽和二重結合の架橋が促進されることから、硬度をより向上させることができる。熱ラジカル発生剤としては、例えば、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミン]、2,2’-アゾビス[2-メチル-N-(2-プロペニル)-2-メチルプロピオンアミン]、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミン)、ジメチル2,2’-アゾビス(イソブチレート)、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]2塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス(2-メチルプロピオンアミジン)2塩酸塩、2,2’-アゾビス[N-(2-カルボキシエチル)2-メチルプロピオンアミジン]n水和物などが挙げられる。これらを2種以上含有してもよい。これらの中でも、硬化膜の硬度をより向上させる観点から、ジメチル2,2’-アゾビス(イソブチレート)が好ましい。
 本発明の感光性シロキサン樹脂組成物中における(E)熱ラジカル発生剤の含有量は、硬化をより効果的に進める観点から、固形分中、0.5重量%以上が好ましい。一方、着色を抑制して透明性を向上させる観点から、(E)熱ラジカル発生剤の含有量は、固形分中、5重量%以下が好ましい。
 本発明の感光性シロキサン樹脂組成物は、必要に応じて、硬化剤、紫外線吸収剤、重合禁止剤、溶媒、界面活性剤、溶解抑止剤、安定剤、消泡剤などをさらに含有してもよい。
 本発明の感光性シロキサン樹脂組成物に硬化剤を含有することにより、硬化を促進することができ、硬度をより向上させることができる。硬化剤としては、例えば、窒素含有有機物、シリコーン樹脂硬化剤、各種金属アルコレート、各種金属キレート化合物、イソシアネート化合物およびその重合体、メチロール化メラミン誘導体、メチロール化尿素誘導体などが挙げられる。これらを2種以上含有してもよい。これらの中でも、硬化剤の安定性、塗布膜の加工性などの観点から、金属キレート化合物、メチロール化メラミン誘導体、メチロール化尿素誘導体が好ましく用いられる。
 本発明の感光性シロキサン樹脂組成物に紫外線吸収剤を含有することにより、硬化膜の耐光性を向上させ、解像度をより向上させることができる。紫外線吸収剤としては、着色を抑制して透明性を向上させる観点から、2-(2Hベンゾトリアゾール-2-イル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-tert-ペンチルフェノール、2-(2Hベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール、2-(2’-ヒドロキシ-5’-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾールなどのベンゾトリアゾール系化合物;2-ヒドロキシ-4-メトキシベンゾフェノンなどのベンゾフェノン系化合物;2-(4,6-ジフェニル-1,3,5トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノールなどのトリアジン系化合物が好ましく用いられる。
 本発明の感光性シロキサン樹脂組成物に重合禁止剤を含有することにより、解像度をより向上させることができる。重合禁止剤としては、例えば、ジ-t-ブチルヒドロキシトルエン、ブチルヒドロキシアニソール、ハイドロキノン、4-メトキシフェノール、1,4-ベンゾキノン、t-ブチルカテコールが挙げられる。また、市販の重合禁止剤としては、“IRGANOX”(登録商標)1010、“IRGANOX”1035、“IRGANOX”1076、“IRGANOX”1098、“IRGANOX”1135、“IRGANOX”1330、“IRGANOX”1726、“IRGANOX”1425、“IRGANOX”1520、“IRGANOX”245、“IRGANOX”259、“IRGANOX”3114、“IRGANOX”565、“IRGANOX”295(以上、商品名、BASFジャパン(株)製)などが挙げられる。これらを2種以上含有してもよい。
 本発明の感光性シロキサン樹脂組成物に溶媒を含有することにより、塗布に適した粘度に容易に調整し、塗布膜の均一性を向上させることができる。大気圧下の沸点が150℃を超えて250℃以下の溶媒と、150℃以下の溶媒を組み合わせることが好ましい。沸点が150℃を超えて250℃以下の溶媒を含有することにより、塗布時に適度に溶媒が揮発して塗膜の乾燥が進行するため、塗布ムラを抑制し、膜厚均一性を向上させることができる。さらに、大気圧下の沸点が150℃以下の溶媒を含有することにより、後述する本発明の硬化膜中への溶媒の残存を抑制することができる。硬化膜中への溶媒の残存を抑制し、耐薬品性および密着性を長期間より向上させる観点から、大気圧下の沸点が150℃以下の溶媒を、溶媒全体の50重量%以上含有することが好ましい。
 大気圧下の沸点が150℃以下の溶媒としては、例えば、エタノール、イソプロピルアルコール、1-プロピルアルコール、1-ブタノール、2-ブタノール、イソペンチルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテル、酢酸メトキシメチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノプロピルエーテル、エチレングリコールモノメチルエーテルアセテート、1-メトキシプロピル-2-アセテート、アセトール、アセチルアセトン、メチルイソブチルケトン、メチルエチルケトン、メチルプロピルケトン、乳酸メチル、トルエン、シクロペンタノン、シクロヘキサン、ノルマルヘプタン、ベンゼン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、酢酸イソペンチル、酢酸ペンチル、3-ヒドロキシ-3-メチル-2-ブタノン、4-ヒドロキシ-3-メチル-2-ブタノン、5-ヒドロキシ-2-ペンタノンが挙げられる。これらを2種以上用いてもよい。
 大気圧下の沸点が150℃を超えて250℃以下の溶媒としては、例えば、エチレングリコールジエチルエーテル、エチレングリコールモノ-n-ブチルエーテル、エチレングリコールモノ-tert-ブチルエーテル、プロピレングリコールモノn-ブチルエーテル、プロピレングリコールモノt-ブチルエーテル、酢酸2-エトキシエチル、3-メトキシ-1-ブタノール、3-メトキシ-3-メチルブタノール、3-メトキシ-3-メチルブチルアセテート、3-メトキシブチルアセテート、3-エトキシプロピオン酸エチル、プロピレングリコールモノメチルエーテルプロピオネート、ジプロピレングリコールメチルエーテル、ジイソブチルケトン、ジアセトンアルコール、乳酸エチル、乳酸ブチル、ジメチルホルムアミド、ジメチルアセトアミド、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、炭酸プロピレン、N-メチルピロリドン、シクロヘキサノン、シクロヘプタノン、ジエチレングリコールモノブチルエーテル、エチレングリコールジブチルエーテルが挙げられる。これらを2種以上用いてもよい。
 溶媒の含有量は、塗布方法などに応じて任意に設定することができる。例えば、スピンコーティングにより膜形成を行う場合には、感光性シロキサン樹脂組成物中、50重量%以上、95重量%以下とすることが一般的である。
 本発明の感光性シロキサン樹脂組成物に界面活性剤を含有することにより、塗布時のフロー性を向上させることができる。界面活性剤としては、例えば、“メガファック”(登録商標)F142D、F172、F173、F183、F445、F470、F475、F477(以上、商品名、大日本インキ化学工業(株)製)、NBX-15、FTX-218(以上、商品名、(株)ネオス製)などのフッ素系界面活性剤;“BYK”(登録商標)-333、“BYK”-301、“BYK”-331、“BYK”-345、“BYK”-307(以上、商品名、ビックケミー・ジャパン(株)製)などのシリコーン系界面活性剤;ポリアルキレンオキシド系界面活性剤;ポリ(メタ)アクリレート系界面活性剤などが挙げられる。これらを2種以上含有してもよい。
 本発明の感光性シロキサン樹脂組成物の固形分濃度は、塗布方法などに応じて任意に設定することができる。例えば、後述のようにスピンコーティングにより膜形成を行う場合には、固形分濃度を、5重量%以上、50重量%以下とすることが一般的である。
 次に、本発明の感光性シロキサン樹脂組成物の製造方法について説明する。前述の(A)~(D)成分および必要に応じてその他成分を混合することにより、本発明の感光性シロキサン樹脂組成物を得ることができる。より具体的には、例えば、(B)光ラジカル重合開始剤、(C)多官能モノマー、(D)リン酸エステルアミン塩および必要に応じてその他の添加剤を任意の溶媒に加え、撹拌して溶解させた後、(A)ポリシロキサンを加え、さらに20分間~3時間撹拌し、得られた溶液を濾過する方法などが挙げられる。
 次に、本発明の硬化膜について説明する。本発明の硬化膜は、前述の本発明の感光性ポリシロキサン樹脂組成物の硬化物からなる。硬化膜の膜厚は、0.1~15μmが好ましい。また、硬化膜の膜厚1.5μmにおける波長400nmの光の透過率は、85%以上が好ましい。なお、透過率は、後述する硬化膜の製造方法において、露光量や熱硬化温度を選択することにより、所望の範囲に調整することができる。
 本発明の硬化膜は、タッチパネル用保護膜、各種ハードコート材、TFT用平坦化膜、カラーフィルター用オーバーコート、反射防止フィルム、パッシベーション膜などの各種保護膜、光学フィルター、タッチパネル用絶縁膜、TFT用絶縁膜、カラーフィルター用フォトスペーサーなどに好適に用いることができる。これらの中でも、高い耐薬品性、基板密着性を有することから、タッチパネル用絶縁膜として好適に用いることができる。
 本発明の硬化膜は、例えば、前述の本発明の感光性ポリシロキサン樹脂組成物を膜状に塗布し、必要に応じてパターン加工した後、硬化させることにより得ることができる。本発明の感光性シロキサン樹脂組成物を基材上に塗布し、プリベークした後、露光・現像によりネガ型のパターンを形成し、熱硬化させることが好ましい。
 基材上に感光性シロキサン樹脂組成物を塗布する塗布方法としては、例えば、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング、スリットコーティングなどの方法が挙げられる。プリベーク装置としては、ホットプレート、オーブンなどの加熱装置が挙げられる。プリベーク温度は50~130℃が好ましく、プリベーク時間は30秒間~30分間が好ましい。プリベーク後の膜厚は、0.1~15μmが好ましい。
 露光は、所望のマスクを介して行ってもよいし、マスクを介さずに行ってもよい。露光機としては、例えば、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(PLA)などが挙げられる。露光強度は10~4000J/m程度(波長365nm露光量換算)が好ましい。露光光源としては、i線、g線、h線等の紫外線や、KrF(波長248nm)レーザー、ArF(波長193nm)レーザー等が挙げられる。
 現像方法としては、シャワー、ディッピング、パドルなどの方法が挙げられる。現像液に浸漬する時間は5秒間~10分間が好ましい。現像液としては、例えば、アルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩などの無機アルカリ、2-ジエチルアミノエタノール、モノエタノールアミン、ジエタノールアミン等のアミン類、テトラメチルアンモニウムヒドロキサイド、コリン等の4級アンモニウム塩を含む水溶液等のアルカリ現像液が挙げられる。現像後、水でリンスすることが好ましく、続いて50~130℃の範囲で乾燥ベークを行うこともできる。
 熱硬化に用いる加熱装置としては、ホットプレート、オーブンなどが挙げられる。熱硬化温度は80~150℃が好ましく、熱硬化時間は15分間~1時間程度が好ましい。
 次に、本発明の積層体について説明する。本発明の積層体は、基材上に前述の本発明の硬化膜を有する。
 基材としては、例えば、ソーダライムガラス、無アルカリガラス等のガラス基板、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリイミド等のプラスチックからなる透明基材や、それらの上に電極または金属配線を有する基材などが挙げられる。
 電極または金属配線を有する基材において、電極または金属配線を形成する材料としては、例えば、インジウム、スズ、亜鉛、アルミニウム、ガリウムなどの金属の酸化物;モリブデン、銀、銅、アルミニウム、クロム、チタンなどの金属;CNT(Carbon Nano Tube)などが挙げられる。金属の酸化物としては、例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化アルミニウム亜鉛(AZO)、酸化インジウムガリウム亜鉛(IGZO)、酸化亜鉛(ZnO)が挙げられる。これらの中でも、モリブデンを含有する金属配線を有する基材が好ましい。
 本発明の積層体は、例えば、前述の本発明の感光性ポリシロキサン樹脂組成物を基材上に塗布する工程および塗布膜を80~150℃で加熱する工程をこの順に含む製造方法により得ることができる。なお、感光性ポリシロキサン樹脂組成物を基材上に塗布する方法としては、硬化膜の製造方法として例示した方法などが挙げられる。また、塗布膜を80~150℃で加熱する方法としては、硬化膜の製造方法として例示した方法などが挙げられる。加熱温度を80℃以上とすることにより、反応を十分に進行させ、硬度、耐薬品性、基板密着性をより向上させることができる。一方、加熱温度を150℃以下とすることにより、過剰な反応とそれに伴う応力を抑制し、基板密着性をより向上させることができる。本発明の感光性シロキサン樹脂組成物は低温硬化可能であるため、150℃以下の温度で十分に硬化させることができる。
 次に、本発明のタッチパネル用部材について説明する。本発明のタッチパネル用部材は、前述の積層体と表示パネルを有することが好ましい。さらに、前記積層体中の硬化膜が層間絶縁膜であることが好ましい。
 以下、実施例を挙げて、本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されない。合成例および実施例に用いた化合物のうち、略語を使用しているものについて、その内容を以下に示す。
PGMEA:プロピレングリコールモノメチルエーテルアセテート
PGME:プロピレングリコールモノメチルエーテル
TBC:4-tert-ブチルピロカテコール
P-1M:2-メタクリロイロキシエチルアシッドホスフェート(共栄社化学(株)製)。
 合成例1~6におけるポリシロキサン溶液および合成例7におけるアクリル樹脂溶液の固形分濃度は、以下の方法により求めた。アルミカップにポリシロキサン溶液またはアクリル樹脂溶液を1.5g秤取し、ホットプレートを用いて250℃で30分間加熱して液分を蒸発させた。加熱後のアルミカップに残った固形分の重量を秤量して、加熱前の重量に対する割合からポリシロキサン溶液またはアクリル樹脂溶液の固形分濃度を求めた。
 合成例1~6におけるポリシロキサンおよび合成例7におけるアクリル樹脂の重量平均分子量は、以下の方法により求めた。GPC分析装置(HLC-8220;東ソー(株)製)を用い、流動層としてテトラヒドロフランを用いて、「JIS K7252-3(制定年月日=2008/03/20)」に基づきGPC分析を行い、ポリスチレン換算の重量平均分子量を測定した。
 合成例1~6におけるポリシロキサン中の各オルガノシラン単位の含有比率は、以下の方法により求めた。ポリシロキサン溶液を直径10mmの“テフロン”(登録商標)製NMRサンプル管に注入して29Si-NMR測定を行い、オルガノシランに由来するSi全体の積分値に対する、特定のオルガノシラン単位に由来するSiの積分値の割合から、各オルガノシラン単位の含有比率を算出した。29Si-NMR測定条件を以下に示す。
装置:核磁気共鳴装置(JNM-GX270;日本電子(株)製)
測定法:ゲーテッドデカップリング法
測定核周波数:53.6693MHz(29Si核)
スペクトル幅:20000Hz
パルス幅:12μs(45°パルス)
パルス繰り返し時間:30.0秒
溶媒:アセトン-d6
基準物質:テトラメチルシラン
測定温度:23℃
試料回転数:0.0Hz。
 合成例1 ポリシロキサン(A-1)溶液
 500mlの三口フラスコに、p-スチリルトリメトキシシランを43.74g(0.195mol)、γ-アクリロイルプロピルトリメトキシシランを14.06g(0.06mol)、3-トリメトキシシリルプロピルコハク酸無水物を11.80g(0.045mol)、TBCを0.173g、PGMEを74.58g仕込み、室温で撹拌しながら、水17.01gにリン酸0.348g(仕込みモノマーに対して0.50重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、三口フラスコを70℃のオイルバスに浸けて90分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に三口フラスコの内温(溶液温度)が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、昇温および加熱撹拌中、窒素を0.05リットル/分流した。反応中に、副生成物であるメタノールおよび水が合計36.90g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEを追加し、ポリシロキサン(A-1)溶液を得た。ポリシロキサン(A-1)のスチリル基を有する繰り返し単位、アクリロイル基を有する繰り返し単位、親水性基を有する繰り返し単位のモル比は、それぞれ65mol%、20mol%、15mol%であった。ポリシロキサン(A-1)の重量平均分子量は、4,000であった。
 合成例2 ポリシロキサン(A-2)溶液
 γ-アクリロイルプロピルトリメトキシシランを24.60g(0.105mol)、フェニルトリメトキシシランを8.92g(0.045mol)、3-トリメトキシシリルプロピルコハク酸無水物を11.80g(0.045mol)、メチルトリメトキシシランを14.30g(0.105mol)、TBCを0.0738g、PGMEを59.61g仕込み、室温で撹拌しながら、水17.01gにリン酸0.317g(仕込みモノマーに対して0.50重量%)を溶かしたリン酸水溶液を30分間かけて添加したこと以外は合成例1と同様の手順により、ポリシロキサン溶液を得た。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEを追加し、ポリシロキサン(A-2)溶液を得た。ポリシロキサン(A-2)のアクリロイル基を有する繰り返し単位、親水性基を有する繰り返し単位のモル比は、それぞれ35mol%、15mol%であった。ポリシロキサン(A-2)の重量平均分子量は、2,500であった。
 合成例3 ポリシロキサン(A-3)溶液
 p-スチリルトリメトキシシランを13.46g(0.06mol)、γ-アクリロイルプロピルトリメトキシシランを14.06g(0.06mol)、3-トリメトキシシリルプロピルコハク酸無水物を7.87g(0.03mol)、メチルトリメトキシシランを20.43g(0.15mol)、TBCを0.114g、PGMEを53.49g仕込み、室温で撹拌しながら、水16.74gにリン酸0.279g(仕込みモノマーに対して0.50重量%)を溶かしたリン酸を添加したこと以外は合成例1と同様の手順により、ポリシロキサン溶液を得た。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEを追加し、ポリシロキサン(A-3)溶液を得た。ポリシロキサン(A-3)のスチリル基を有する繰り返し単位、アクリロイル基を有する繰り返し単位、親水性基を有する繰り返し単位のモル比は、それぞれ20mol%、20mol%、10mol%であった。ポリシロキサン(A-3)の重量平均分子量は、3,500であった。
 合成例4 ポリシロキサン(A-4)溶液
 p-スチリルトリメトキシシランを53.84g(0.24mol)、γ-アクリロイルプロピルトリメトキシシランを7.03g(0.03mol)、3-トリメトキシシリルプロピルコハク酸無水物を7.87g(0.03mol)、TBCを0.114g、PGMEを72.87g仕込み、室温で撹拌しながら、水16.74gにリン酸0.344g(仕込みモノマーに対して0.50重量%)を溶かしたリン酸を添加したこと以外は合成例1と同様の手順により、ポリシロキサン溶液を得た。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEを追加し、ポリシロキサン(A-4)溶液を得た。ポリシロキサン(A-4)のスチリル基を有する繰り返し単位、アクリロイル基を有する繰り返し単位、親水性基を有する繰り返し単位のモル比は、それぞれ80mol%、10mol%、10mol%であった。ポリシロキサン(A-4)の重量平均分子量は、4,000であった。
 合成例5 ポリシロキサン(A-5)溶液の合成
 3-トリメトキシシリルプロピルコハク酸無水物を7.87g(0.03mol)、メチルトリメトキシシランを20.43g(0.15mol)、フェニルトリメトキシシランを17.85g(0.09mol)、3-グリシドキシプロピルトリメトキシシランを7.09g(0.03mol)、PGMEを49.61g仕込み、室温で撹拌しながら、水16.74gにリン酸0.266g(仕込みモノマーに対して0.50重量%)を溶かしたリン酸添加したこと以外は合成例1と同様の手順により、ポリシロキサン溶液を得た。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEを追加し、ポリシロキサン(A-5)溶液を得た。ポリシロキサン(A-5)の親水性基を有する繰り返し単位のモル比は、10mol%であった。ポリシロキサン(A-5)の重量平均分子量は、3,000であった。
 合成例6 ポリシロキサン(A-6)溶液の合成
 p-スチリルトリメトキシシランを13.46g(0.06mol)、γ-アクリロイルプロピルトリメトキシシランを14.06g(0.06mol)、メチルトリメトキシシランを12.26g(0.09mol)、テトラトリメトキシシランを13.68g(0.09mol)、TBCを0.0826g、PGMEを51.56g仕込み、室温で撹拌しながら、水17.82gにリン酸0.267g(仕込みモノマーに対して0.50重量%)を溶かしたリン酸を添加したこと以外は合成例1と同様の手順により、ポリシロキサン溶液を得た。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEを追加し、ポリシロキサン(A-6)溶液を得た。ポリシロキサン(A-6)のスチリル基を有する繰り返し単位、アクリロイル基を有する繰り返し単位のモル比は、それぞれ20mol%、20mol%であった。ポリシロキサン(A-6)の重量平均分子量は、5,000であった。
 合成例7 アクリル樹脂(a)溶液の合成
 500mlの三口フラスコに、2,2’-アゾビス(イソブチロニトリル)を3g、PGMEを50g仕込んだ。その後、メタクリル酸を30g、ベンジルメタクリレートを35g、トリシクロ[5.2.1.02,6]デカン-8-イルメタクリレートを35g仕込み、室温でしばらく撹拌し、フラスコ内を窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを15g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、アクリル樹脂(a)溶液を得た。得られたアクリル樹脂(a)溶液に固形分濃度が40重量%になるようにPGMEを加えた。アクリル樹脂(a)の重量平均分子量は、10,000であった。
 各合成例の原料比率を表1に示す。
Figure JPOXMLDOC01-appb-T000007
 (1)パターン加工性
 各実施例および比較例により得られた感光性シロキサン樹脂組成物または感光性アクリル樹脂組成物を、スピンコーター(商品名1H-360S、ミカサ(株)製)を用いて、シリコンウエハ上にスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、100℃で2分間プリベークし、膜厚2.0μmの膜を作製した。
 作製した膜を、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、100μm、50μm、40μm、30μm、20μm、15μm、10μmの各幅のライン&スペースパターンを有するグレースケールマスクを介して、100μmのギャップで露光した。その後、自動現像装置(滝沢産業(株)製「AD-2000(商品名)」)を用いて、0.045重量%水酸化カリウム水溶液で60秒間シャワー現像し、次いで水で30秒間リンスした。
 露光、現像後、100μm幅のラインアンドスペースパターンを1対1の幅に形成する露光量を最適露光量とし、最適露光量における現像後の最小パターン寸法を解像度とした。また、現像後のパターンを目視および倍率を50~100倍に調整した顕微鏡により観察し、未露光部の溶け残り程度により、以下の基準により現像残渣を評価した。
5:目視では残渣が認められず、顕微鏡の観察において、50μm以下の微細パターンも残渣が認められない。
4:目視では残渣認められず、顕微鏡観察において、50μm超のパターンには残渣が認められないが、50μm以下のパターンには残渣が認められる。
3:目視では残渣が認められないが、顕微鏡観察において、50μm超のパターンに残渣が認められる。
2:目視で基板端部(厚膜部)に残渣が認められる。
1:目視で未露光部全体に残渣が認められる。
 (2)基板密着性
 各実施例および比較例により得られた感光性シロキサン樹脂組成物または感光性アクリル樹脂組成物を、スピンコーター(商品名1H-360S、ミカサ(株)製)を用いて、表面にITOまたはMAMをスパッタリングしたガラス基板(以下、「ITO基板」または「MAM基板」という)上にスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて100℃で2分間プリベークし、膜厚2.0μmの膜を作製した。
 作製した膜を、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製を用いて、超高圧水銀灯を光源として露光し、オーブン(商品名IHPS-222、エスペック(株)製)を用いて、空気中120℃で1時間キュアし、膜厚1.5μmの硬化膜を作製した。
 得られた硬化膜について、JIS「K5600-5-6(制定年月日=1999/04/20)」に準じてITO基板またはMAM基板と硬化膜との接着性(基板密着性)を評価した。すなわち、ITO基板またはMAM基板上の硬化膜表面に、カッターナイフでガラス板の素地に到達するように、直交する縦横11本ずつの平行な直線を1mm間隔で引いて、1mm×1mmのマス目を100個作製した。切られた硬化膜表面にセロハン粘着テープ(幅=18mm、粘着力=3.7N/10mm)を貼り付け、消しゴム(JIS S6050合格品)で擦って密着させ、テープの一端を持ち、板に直角を保ち瞬間的に剥離した際のマス目の残存数を目視によって計数した。マス目の剥離面積により、以下の基準により接着性を評価し、4以上を合格とした。
5:剥離面積=0%
4:剥離面積=1~4%
3:剥離面積=5~14%
2:剥離面積=15~34%
1:剥離面積=35~64%
0:剥離面積=65~100%。
 (3)耐薬品性
 ITO基板およびMAM基板上に、前記(2)記載の方法と同様にして膜厚1.5μmの硬化膜を形成した。レジスト剥離液であるN300に、下記条件1~4の各条件で硬化膜を浸漬した後、JIS「K5600-5-6(制定年月日=1999/04/20)」に準じて、上記(2)に記載の方法と同様にして基板密着性を評価した。マス目の剥離面積が5%以下である場合に、その条件における耐薬品性があると判断した。
条件1:50℃、2分間
条件2:60℃、2分間
条件3:70℃、2分間
条件4:80℃、2分間
 耐薬品性があると判断された条件をもとに、耐薬品性を以下の基準により評価し、1以上を合格とした。
4:条件1、2、3、4いずれも耐薬品性あり
3:条件1、2、3において耐薬品性あり
2:条件1、2のみにおいて耐薬品性あり
1:条件1のみにおいて耐薬品性あり
0:いずれの条件においても耐薬品性なし。
 (4)硬度
 ITO基板上に、前記(2)記載の方法と同様にして得られた膜厚1.5μmの硬化膜を形成した。得られた硬化膜について、JIS「K5600-5-4(制定年月日=1999/04/20)」に準拠して鉛筆硬度を測定した。
 (5)保存安定性
 各実施例および比較例により得られた感光性シロキサン樹脂組成物または感光性アクリル樹脂組成物について、調合終了後に粘度(保管前粘度)を測定した。また、各実施例および比較例により得られた感光性シロキサン樹脂組成物または感光性アクリル樹脂組成物を密封容器に入れ、23℃で7日保管後の粘度を同様に測定した。粘度変化率({|保管後粘度-保管前粘度|/保管前粘度}×100)から以下の基準により保存安定性を評価した。
A:粘度変化率5%未満
B:粘度変化率5%以上10%未満
C:粘度変化率10%以上。
 実施例1
 黄色灯下にて、(B)光ラジカル重合開始剤として、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)(“イルガキュア”(登録商標)OXE-02(商品名)、BASFジャパン(株)製)0.080gおよびビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(“イルガキュア”(登録商標)-819(商品名)、BASFジャパン(株)製)0.160g、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート](“イルガノックス”(登録商標)-245(商品名)、BASFジャパン(株)製)のPGME10重量%溶液0.120g、テトラキス(アセチルアセトナート)ジルコニウム(IV)(ZC-150(商品名)、マツモトファインケミカル(株)製)のPGME2重量%溶液3.998g、(C)多官能モノマーとして、ペンタエリスリトールアクリレート(“ライトアクリレート”(登録商標)PE-3A(商品名)、共栄社化学(株)製)0.400gを、PGME1.667gとPGMEA3.200gの混合溶剤に溶解させ、シリコーン系界面活性剤(商品名“BYK”(登録商標)-333、ビックケミー・ジャパン(株)製)のPGME1重量%希釈溶液0.200g(濃度100ppmに相当)を加え、撹拌した。その後、(A)ポリシロキサンとして、ポリシロキサン(A-1)溶液6.167g、(D)リン酸エステルアミン塩として、事前にリン酸誘導体化合物(d1)P-1Mとアミン化合物(d2)モノエタノールアミンを(d2/d1)=0.5/9.5の重量割合で反応させて得られた反応物の濃度20重量%のPGME溶液3.998gを加え撹拌した。次いで0.45μmのフィルターでろ過を行い、感光性シロキサン樹脂組成物(P-1)を得た。得られた感光性シロキサン樹脂組成物(P-1)について、前述の方法により、パターン加工性、基板密着性、耐薬品性、硬度、保存安定性を評価した。
 実施例2
 ポリシロキサン(A-1)溶液の代わりにポリシロキサン(A-2)溶液6.167gを用いた以外は実施例1と同様に行い、感光性シロキサン樹脂組成物(P-2)を得た。得られた感光性シロキサン樹脂組成物(P-2)を用いて、実施例1と同様にして評価を行った。
 実施例3
 ポリシロキサン(A-1)溶液の代わりにポリシロキサン(A-3)溶液6.167gを用いた以外は実施例1と同様に行い、感光性シロキサン樹脂組成物(P-3)を得た。得られた感光性シロキサン樹脂組成物(P-3)を用いて、実施例1と同様にして評価を行った。
 実施例4
 ポリシロキサン(A-1)溶液の代わりにポリシロキサン(A-4)溶液6.167gを用いた以外は実施例1と同様に行い、感光性シロキサン樹脂組成物(P-4)を得た。得られた感光性シロキサン樹脂組成物(P-4)を用いて、実施例1と同様にして評価を行った。
 実施例5
 ポリシロキサン(A-1)溶液の代わりにポリシロキサン(A-5)溶液6.167gを用いた以外は実施例1と同様に行い、感光性シロキサン樹脂組成物(P-5)を得た。得られた感光性シロキサン樹脂組成物(P-5)を用いて、実施例1と同様にして評価を行った。
 実施例6
 ポリシロキサン(A-1)溶液の代わりにポリシロキサン(A-6)溶液6.167gを用いた以外は実施例1と同様に行い、感光性シロキサン樹脂組成物(P-6)を得た。得られた感光性シロキサン樹脂組成物(P-6)を用いて、実施例1と同様にして評価を行った。
 実施例7
 リン酸誘導体化合物(d1)P-1Mの代わりに2-アクリロイロキシエチルアシッドホスフェート(P-1A(商品名)、共栄社化学(株)製)を用いた以外は実施例1と同様に行い、感光性シロキサン樹脂組成物(P-7)を得た。得られた感光性シロキサン樹脂組成物(P-7)を用いて、実施例1と同様にして評価を行った。
 実施例8
 アミン化合物(d2)モノエタノールアミンの代わりにトリエタノールアミンを用いた以外は実施例1と同様に行い、感光性シロキサン樹脂組成物(P-8)を得た。得られた感光性シロキサン樹脂組成物(P-8)を用いて、実施例1と同様にして評価を行った。
 実施例9
 リン酸誘導体化合物(d1)P-1Mの代わりにエチルアシッドフォスフェート(JP502(商品名)、城北化学工業(株)製)を用いた以外は実施例1と同様に行い、感光性シロキサン樹脂組成物(P-9)を得た。得られた感光性シロキサン樹脂組成物(P-9)を用いて、実施例1と同様にして評価を行った。
 実施例10
 アミン化合物(d2)モノエタノールアミンの代わりにトリエチルアミンを用いた以外は実施例1と同様に行い、感光性シロキサン樹脂組成物(P-10)を得た。得られた感光性シロキサン樹脂組成物(P-10)を用いて、実施例1と同様にして評価を行った。
 実施例11
 ポリシロキサン(A-1)溶液の量を7.166gとし、リン酸誘導体化合物(d1)P-1Mとアミン化合物(d2)モノエタノールアミンとの重量割合(d2/d1)=0.5/9.5の反応物のPGME溶液の量を1.999gとし、混合溶剤を、PGME2.667gとPGMEA3.200gとした以外は実施例1と同様に行い、感光性シロキサン樹脂組成物(P-11)を得た。得られた感光性シロキサン樹脂組成物(P-11)を用いて、実施例1と同様にして評価を行った。
 実施例12
 ポリシロキサン(A-1)溶液の量を5.167gとし、リン酸誘導体化合物(d1)P-1Mとアミン化合物(d2)モノエタノールアミンとの重量割合(d2/d1)=0.5/9.5の反応物のPGME溶液の量を5.997gとし、混合溶剤を、PGME0.678gとPGMEA3.200gとした以外は実施例1と同様に行い、感光性シロキサン樹脂組成物(P-12)を得た。得られた感光性シロキサン樹脂組成物(P-12)を用いて、実施例1と同様にして評価を行った。
 実施例13
 リン酸誘導体化合物(d1)P-1Mとアミン化合物(d2)モノエタノールアミンとの重量割合(d2/d1)=0.5/9.5の反応物のPGME溶液の代わりに、事前にリン酸誘導体化合物(d1)P-1Mとアミン化合物(d2)モノエタノールアミンを(d2/d1)=0.1/9.9の重量割合で反応させて得られた反応物の濃度20重量%のPGME溶液3.999gを用いた以外は実施例1と同様に行い、感光性シロキサン樹脂組成物(P-13)を得た。得られた感光性シロキサン樹脂組成物(P-13)を用いて、実施例1と同様にして評価を行った。
 実施例14
 リン酸誘導体化合物(d1)P-1Mとアミン化合物(d2)モノエタノールアミンとの重量割合(d2/d1)=0.5/9.5の反応物のPGME溶液の代わりに、事前にリン酸誘導体化合物(d1)P-1Mとアミン化合物(d2)モノエタノールアミンを(d2/d1)=1/9の重量割合で反応させて得られた反応物の濃度20重量%のPGME溶液3.999gを用いた以外は実施例1と同様に行い、感光性シロキサン樹脂組成物(P-14)を得た。得られた感光性シロキサン樹脂組成物(P-14)を用いて、実施例1と同様にして評価を行った。
 実施例15
 ポリシロキサン(A-1)溶液の量を5.967gとし、(E)熱ラジカル発生剤としてジメチル2,2’-アゾビス(イソブチレート)0.080gを添加し、混合溶剤を、PGME1.797gとPGMEA3.200gとした以外は実施例1と同様に行い、感光性シロキサン樹脂組成物(P-15)を得た。得られた感光性シロキサン樹脂組成物(P-15)を用いて、実施例1と同様にして評価を行った。
 実施例16
 ポリシロキサン(A-1)溶液の代わりにポリシロキサン(A-2)溶液を用いた以外は実施例15と同様に行い、感光性シロキサン樹脂組成物(P-16)を得た。得られた感光性シロキサン樹脂組成物(P-16)を用いて、実施例1と同様にして評価を行った。
 実施例17
 ポリシロキサン(A-1)溶液の代わりにポリシロキサン(A-5)溶液を用いた以外は実施例15と同様に行い、感光性シロキサン樹脂組成物(P-17)を得た。得られた感光性シロキサン樹脂組成物(P-17)を用いて、実施例1と同様にして評価を行った。
 実施例18
 ポリシロキサン(A-1)溶液の代わりにポリシロキサン(A-6)溶液を用いた以外は実施例15と同様に行い、感光性シロキサン樹脂組成物(P-18)を得た。得られた感光性シロキサン樹脂組成物(P-18)を用いて、実施例1と同様にして評価を行った。
 実施例19
 ポリシロキサン(A-1)溶液の量を5.967gとし、(E)熱ラジカル発生剤としてジメチル2,2’-アゾビス(イソブチレート)0.080gを添加し、混合溶剤をPGME1.797gとPGMEA3.200gとした以外は実施例9と同様に行い、感光性シロキサン樹脂組成物(P-19)を得た。得られた感光性シロキサン樹脂組成物(P-19)を用いて、実施例1と同様にして評価を行った。
 実施例20
 ポリシロキサン(A-1)溶液の量を5.967gとし、(E)熱ラジカル発生剤としてジメチル2,2’-アゾビス(イソブチレート)0.080gを添加し、混合溶剤を、PGME1.797gとPGMEA3.200gとした以外は実施例10と同様に行い、感光性シロキサン樹脂組成物(P-20)を得た。得られた感光性シロキサン樹脂組成物(P-20)を用いて、実施例1と同様にして評価を行った。
 比較例1
 ポリシロキサン(A-1)溶液の量を8.166gとし、(D)リン酸エステルアミン塩を添加せず、混合溶剤を、PGME3.676gとPGMEA3.200gとした以外は実施例1と同様に行い、感光性シロキサン樹脂組成物(P-21)を得た。得られた感光性シロキサン樹脂組成物(P-21)を用いて、実施例1と同様にして評価を行った。
 比較例2
 (D)リン酸エステルアミン塩を添加せず、リン酸誘導体化合物(d1)P-1MのPGME20重量%溶液の量を3.999gとした以外は実施例1と同様に行い、感光性シロキサン樹脂組成物(P-22)を得た。得られた感光性シロキサン樹脂組成物(P-22)を用いて、実施例1と同様にして評価を行った
 比較例3
 アミン化合物(d2)としてモノエタノールアミンの代わりに4級アンモニウムカチオンであるテトラエチルアンモニウムを用いた以外は実施例1と同様に行い、感光性シロキサン樹脂組成物(P-23)を得た。得られた感光性シロキサン樹脂組成物(P-23)を用いて、実施例1と同様にして評価を行った。
 比較例4
 ポリシロキサン(A-1)溶液の代わりにアクリル樹脂(a)溶液6.167gを用いたた以外は実施例1と同様に行い、感光性アクリル樹脂組成物(P-24)を得た。得られた感光性アクリル樹脂組成物(P-24)を用いて、実施例1と同様にして評価を行った。
 実施例1~20、比較例1~4の組成を表2~4に、評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 本発明の感光性シロキサン樹脂組成物を硬化して得られる硬化膜は、タッチパネルの保護膜などの各種ハードコート膜の他、タッチセンサー用絶縁膜、液晶や有機ELディスプレイのTFT用平坦化膜、金属配線保護膜、絶縁膜、反射防止膜、光学フィルター、カラーフィルター用オーバーコート、柱材などに好適に用いられる。

Claims (14)

  1. (A)ポリシロキサン、(B)光ラジカル重合開始剤、(C)多官能モノマーおよび(D)リン酸誘導体アミン塩を含有する感光性シロキサン樹脂組成物。
  2. 前記(C)リン酸誘導体アミン塩が下記一般式(1)で表される構造を有するリン酸誘導体化合物とアミン化合物の塩である請求項1記載の感光性シロキサン樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)中、Rはラジカル重合性基を有する1価の有機基を示す。Rは水素、炭素数1~20のアルキル基またはラジカル重合性基を有する1価の有機基を示す。)
  3. 前記アミン化合物が下記一般式(2)で表される構造を有する請求項2記載の感光性シロキサン樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (上記一般式(2)中、Rはヒドロキシル基を含有する炭素数1~20の1価の有機基を示す。RおよびRはそれぞれ独立に水素、炭素数1~20のアルキル基またはヒドロキシル基を有する炭素数1~20の1価の有機基を示す。)
  4. 前記(A)ポリシロキサンが少なくとも(a1)ラジカル重合性基および(a2)親水性基を有する請求項1~3のいずれか記載の感光性シロキサン樹脂組成物。
  5. 前記(A)ポリシロキサンが(a1)ラジカル重合性基としてスチリル基を有する繰り返し単位を全繰り返し単位中20~85モル%含有する請求項4記載の感光性シロキサン樹脂組成物。
  6. 前記(A)ポリシロキサンが(a2)親水性基としてカルボキシル基および/またはカルボン酸無水物基を有する請求項4または5記載の感光性シロキサン樹脂組成物。
  7. さらに(E)熱ラジカル発生剤を含む、請求項6記載の感光性シロキサン樹脂組成物。
  8. 請求項1~7のいずれか記載の感光性シロキサン樹脂組成物の硬化物からなる硬化膜。
  9. 請求項8記載の硬化膜を基材上に有する積層体。
  10. 前記基材が金属配線を有する請求項9記載の積層体。
  11. 前記金属配線がモリブデン、チタン、クロム、銅および/または銀を含有する請求項10記載の積層体。
  12. 請求項9~11のいずれか記載の積層体を有するタッチパネル用部材。
  13. 前記積層体中の硬化膜が層間絶縁膜である請求項12記載のタッチパネル用部材。
  14. 請求項1~7のいずれか記載の感光性シロキサン樹脂組成物を基材上に塗布する工程および塗布膜を80~150℃で加熱する工程をこの順に含む積層体の製造方法。
PCT/JP2018/007150 2017-03-15 2018-02-27 感光性シロキサン樹脂組成物、硬化膜およびタッチパネル用部材 WO2018168435A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197022236A KR102490287B1 (ko) 2017-03-15 2018-02-27 감광성 실록산 수지 조성물, 경화막 및 터치패널용 부재
CN201880017542.6A CN110419000B (zh) 2017-03-15 2018-02-27 感光性硅氧烷树脂组合物、固化膜及触摸面板用构件
JP2018511507A JP6458902B1 (ja) 2017-03-15 2018-02-27 感光性シロキサン樹脂組成物、硬化膜およびタッチパネル用部材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-049436 2017-03-15
JP2017049436 2017-03-15

Publications (1)

Publication Number Publication Date
WO2018168435A1 true WO2018168435A1 (ja) 2018-09-20

Family

ID=63522383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007150 WO2018168435A1 (ja) 2017-03-15 2018-02-27 感光性シロキサン樹脂組成物、硬化膜およびタッチパネル用部材

Country Status (5)

Country Link
JP (1) JP6458902B1 (ja)
KR (1) KR102490287B1 (ja)
CN (1) CN110419000B (ja)
TW (1) TWI765978B (ja)
WO (1) WO2018168435A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4257632A1 (en) * 2021-02-18 2023-10-11 Hunet Plus Co., Ltd. Photosensitive composition comprising organic metal compound and polysiloxane copolymer, and preparation method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136870A (ja) * 2005-11-18 2007-06-07 Eastman Kodak Co 画像形成要素および画像形成方法
JP2011203577A (ja) * 2010-03-26 2011-10-13 Sanyo Chem Ind Ltd 感光性樹脂組成物
JP2016153834A (ja) * 2015-02-20 2016-08-25 富士フイルム株式会社 感光性樹脂組成物、硬化膜の製造方法、硬化膜、タッチパネル、タッチパネル表示装置、液晶表示装置、及び、有機el表示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100589067B1 (ko) * 2001-10-30 2006-06-14 가부시키가이샤 가네카 감광성 수지 조성물, 이것을 이용한 감광성 필름 및 적층체
TW200728908A (en) * 2006-01-25 2007-08-01 Kaneka Corp Photosensitive dry film resist, printed wiring board using same, and method for producing printed wiring board
KR101800015B1 (ko) * 2007-12-10 2017-11-21 카네카 코포레이션 알칼리 현상성을 갖는 경화성 조성물 및 그것을 사용한 절연성 박막 및 박막 트랜지스터
JP5515714B2 (ja) * 2009-12-16 2014-06-11 Jsr株式会社 着色組成物、カラーフィルタおよびカラー液晶表示素子
JP5624783B2 (ja) * 2010-03-26 2014-11-12 三洋化成工業株式会社 感光性樹脂組成物
CN103221485B (zh) * 2010-11-17 2014-10-29 横滨橡胶株式会社 有机硅树脂组合物、使用该组合物的含有有机硅树脂的结构体、光半导体元件密封体、有机硅树脂组合物的使用方法
TWI569096B (zh) * 2011-08-10 2017-02-01 東亞合成股份有限公司 活性能量線硬化型空隙填充用薄膜及其製造方法
TWI458630B (zh) * 2012-09-21 2014-11-01 Nippon Synthetic Chem Ind Laminated body and its use
CN105122137B (zh) * 2013-03-28 2020-02-07 东丽株式会社 感光性树脂组合物、保护膜或绝缘膜、触摸面板及其制造方法
JP6488149B2 (ja) * 2015-02-26 2019-03-20 太陽ホールディングス株式会社 光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板
JP6240240B2 (ja) * 2016-03-04 2017-11-29 株式会社日本触媒 感光性樹脂組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136870A (ja) * 2005-11-18 2007-06-07 Eastman Kodak Co 画像形成要素および画像形成方法
JP2011203577A (ja) * 2010-03-26 2011-10-13 Sanyo Chem Ind Ltd 感光性樹脂組成物
JP2016153834A (ja) * 2015-02-20 2016-08-25 富士フイルム株式会社 感光性樹脂組成物、硬化膜の製造方法、硬化膜、タッチパネル、タッチパネル表示装置、液晶表示装置、及び、有機el表示装置

Also Published As

Publication number Publication date
TW201837609A (zh) 2018-10-16
JP6458902B1 (ja) 2019-01-30
KR20190122656A (ko) 2019-10-30
JPWO2018168435A1 (ja) 2019-03-28
TWI765978B (zh) 2022-06-01
CN110419000B (zh) 2023-07-28
CN110419000A (zh) 2019-11-05
KR102490287B1 (ko) 2023-01-19

Similar Documents

Publication Publication Date Title
JP5459315B2 (ja) シランカップリング剤、ネガ型感光性樹脂組成物、硬化膜、およびタッチパネル用部材
KR101643262B1 (ko) 실록산 수지 조성물 및 그것을 사용한 터치 패널용 보호막
JP5212571B2 (ja) タッチパネル部材
JP5671936B2 (ja) ネガ型感光性樹脂組成物およびそれを用いた硬化膜
JP5407210B2 (ja) シロキサン樹脂組成物およびそれを用いた硬化膜
JP5327345B2 (ja) ネガ型感光性樹脂組成物、硬化膜、およびタッチパネル用部材。
JPWO2011129312A1 (ja) ネガ型感光性樹脂組成物、硬化膜、およびタッチパネル用部材
JP6489288B1 (ja) 透明樹脂組成物、透明被膜および透明樹脂被覆ガラス基板
TWI769334B (zh) 矽氧烷樹脂組成物、硬化膜及顯示裝置
JP6458902B1 (ja) 感光性シロキサン樹脂組成物、硬化膜およびタッチパネル用部材
JP7119390B2 (ja) ネガ型感光性樹脂組成物およびそれを用いた硬化膜
JP2022064302A (ja) ネガ型シロキサン樹脂組成物、硬化膜および素子
JP2018120069A (ja) ネガ型感光性樹脂組成物、硬化膜およびタッチパネル部材
WO2023048062A1 (ja) 硬化膜形成用シロキサン樹脂組成物、硬化膜およびポリシロキサンの製造方法
JP2023137277A (ja) 感光性樹脂組成物および硬化膜
TW202402979A (zh) 聚矽氧烷系組成物、皮膜形成用組成物、積層體、觸控面板、及硬化皮膜之形成方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018511507

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766833

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197022236

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18766833

Country of ref document: EP

Kind code of ref document: A1