WO2018168300A1 - 情報処理装置および情報処理プログラム - Google Patents

情報処理装置および情報処理プログラム Download PDF

Info

Publication number
WO2018168300A1
WO2018168300A1 PCT/JP2018/004914 JP2018004914W WO2018168300A1 WO 2018168300 A1 WO2018168300 A1 WO 2018168300A1 JP 2018004914 W JP2018004914 W JP 2018004914W WO 2018168300 A1 WO2018168300 A1 WO 2018168300A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood pressure
data
measurement
display
unit
Prior art date
Application number
PCT/JP2018/004914
Other languages
English (en)
French (fr)
Inventor
皓介 井上
就介 江下
Original Assignee
オムロン株式会社
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社, オムロンヘルスケア株式会社 filed Critical オムロン株式会社
Priority to CN201880018225.6A priority Critical patent/CN110446460B/zh
Priority to DE112018001354.5T priority patent/DE112018001354T5/de
Publication of WO2018168300A1 publication Critical patent/WO2018168300A1/ja
Priority to US16/549,010 priority patent/US20190374170A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/16Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring intraocular pressure, e.g. tonometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4818Sleep apnoea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/743Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/04Measuring blood pressure

Definitions

  • the present invention relates to an information processing apparatus and an information processing program, and more particularly to an information processing apparatus and an information processing program for displaying information related to blood pressure of a measurement subject on a display screen.
  • a measured blood pressure value is associated with measurement time information and measurement conditions.
  • a sphygmomanometer that calculates an average value obtained by averaging blood pressure values stored in a memory and measured a plurality of times in a specific time zone, and calculates and displays a risk value based on the calculation result.
  • the present invention has been made paying attention to the above circumstances, and is an information processing apparatus capable of easily grasping the health condition of a person to be measured using measurement data of a plurality of types of information including data of blood pressure values measured continuously. And an information processing program.
  • an information processing apparatus includes an information acquisition unit that acquires blood pressure data continuously measured from a specific person to be measured and measurement data of a plurality of elements other than blood pressure.
  • a blood pressure fluctuation detection unit that detects a blood pressure fluctuation equal to or greater than a reference value from the continuously measured blood pressure data acquired by the information acquisition unit, and an enlargement including a time zone of blood pressure fluctuation equal to or greater than the reference value detected by the blood pressure fluctuation detection unit
  • a display control unit that displays the blood pressure data in the period and the measurement data of at least one element other than the blood pressure in the expansion period on the display device in association with each other.
  • the measurement data of each element other than the blood pressure acquired by the information acquisition unit and the reference value detected by the blood pressure fluctuation detection unit A relevance determination unit that determines relevance to blood pressure fluctuations, and the display control unit associates the blood pressure data in the expansion period with the blood pressure fluctuations greater than a reference value by the relevance determination unit.
  • the measurement data of the element determined to have high property is displayed on the display device.
  • the information processing apparatus is the information processing apparatus according to the second aspect, wherein the display control unit corresponds to blood pressure data in the expansion period according to an instruction of an element to be displayed in the expansion period by the operator.
  • the element to be displayed is updated to the element designated by the operator.
  • the information processing apparatus is the information processing apparatus according to any one of the first to third aspects, wherein the display control unit causes the display device to display in response to an instruction of an enlargement period by an operator.
  • the expansion period is updated to the expansion period instructed by the operator.
  • An information processing apparatus is the information processing apparatus according to any one of the first to fourth aspects, further comprising: a correlation information generation unit that generates correlation display information indicating a correlation between the specific element and the blood pressure surge.
  • the display control unit causes the display device to display correlation display information generated by the correlation information generation unit in response to an operator's display instruction.
  • the information processing apparatus is the information processing apparatus according to any one of the first to fifth aspects, wherein the information acquisition unit includes a PTT method, a tonometry method, an optical method, a radio wave method, or an ultrasonic method.
  • the blood pressure data continuously measured by any one of the blood pressure sensors is acquired.
  • the first aspect of the present invention it is possible to enlarge and display the blood pressure data of the enlarged period based on the detection result of the blood pressure fluctuation equal to or higher than the reference value for the enormous amount of blood pressure data continuously measured for a long time, and further to enlarge the display.
  • the measurement data of one element selected from a plurality of elements other than blood pressure can be displayed in association with the blood pressure data.
  • blood pressure fluctuations to be watched from a huge amount of measurement data and measurement data of other elements can be displayed in a state that is easy for humans to see, reducing the burden on treatment and health management of the subject. Can help improve the health condition of the subject.
  • the second aspect of the present invention it is possible to determine the relevance between the blood pressure fluctuation equal to or higher than the reference value and each element other than the blood pressure, and the measurement data of the element determined to be highly relevant to the blood pressure fluctuation. Can be displayed on the display device in association with the blood pressure data. As a result, it is possible to reduce the burden for treatment and health management of the measurement subject, and to assist in improving the health status of the measurement subject.
  • the operator can specify the elements to be displayed in association with the blood pressure data, it is possible to easily confirm the relationship between the measurement data of various elements and the blood pressure data.
  • the accuracy of diagnosis can be improved while reducing the burden of diagnosis.
  • the operator can instruct the enlargement period to be enlarged, the relationship between the blood pressure data in the time zone designated by the operator and the measurement data of elements other than blood pressure can be easily visually confirmed. This can be confirmed, and the accuracy of diagnosis can be improved while reducing the burden of diagnosis by medical personnel.
  • the correlation information indicating the correlation between the specific element and the blood pressure surge can be displayed on the display device according to the instruction of the operator, the burden of diagnosis by the medical staff or the like The accuracy of diagnosis can be improved while reducing the above.
  • the continuously measured blood pressure data is not limited to measurement by a specific type of blood pressure sensor, but based on blood pressure data measured by various types of measurement devices. Information for grasping the health status of users can be provided.
  • FIG. 1 is a diagram schematically showing a configuration example of a measurement data management system including an information processing system as an information processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration example of the measurement terminal illustrated in FIG.
  • FIG. 3 is a block diagram illustrating a configuration example of the user terminal illustrated in FIG.
  • FIG. 4 is a block diagram illustrating a configuration example of the server illustrated in FIG.
  • FIG. 5 is a block diagram illustrating a configuration example of the medical staff terminal illustrated in FIG. 1.
  • FIG. 6 is a block diagram for explaining the functions of the server shown in FIG.
  • FIG. 7 is a diagram illustrating a transition example of the operation screen displayed when the measurement is performed in the measurement terminal illustrated in FIG. FIG.
  • FIG. 8 is a diagram illustrating a display example of blood pressure related information based on measurement data displayed by the information processing system.
  • FIG. 9 is a diagram illustrating a display example of blood pressure related information based on measurement data displayed by the information processing system.
  • FIG. 10 is a flowchart for explaining an operation example of the server as the information processing system.
  • FIG. 11 is a flowchart for explaining an operation example of the server as the information processing system.
  • FIG. 1 is a diagram schematically illustrating a configuration example of a measurement data management system including an information processing system 1 including an information processing apparatus according to an embodiment, a measurement terminal 2, and a sensor 3.
  • the measurement data management system is a system having an information processing system (information processing apparatus) 1, a measurement terminal 2, a sensor 3, and the like.
  • the information processing system 1 acquires measurement data of various elements from the measurement terminal 2 and the sensor 3, and analyzes the acquired measurement data.
  • the information processing system 1 includes a user terminal 11, a server 12, and a medical staff terminal 13.
  • the measurement terminal 2 and the sensor 3 are connected to the user terminal 11, and the user terminal 11 is connected to the server 12 via a network so that they can communicate with each other. Furthermore, the server 12 is communicably connected to the medical staff terminal 13 by wireless communication or wired communication.
  • the configuration of the measurement data management system and the information processing system 1 is not limited to the configuration shown in FIG.
  • the measurement terminal 2 and the sensor 3 may be communicatively connected to the server 12 without going through the user terminal 11.
  • the user terminal 11 can be omitted, and the operation of the user terminal 11 described later may be performed by the measurement terminal 2 or the server 12.
  • the sensor 3 may be connected to the measurement terminal 2 instead of the user terminal 11.
  • the sensor 3 may be configured to be able to communicate with the user terminal 11 or the server 12 via the measurement terminal 2. Further, the sensor 3 may be provided in the measurement terminal 2.
  • part or all of the functions (processing) realized by the server 12 described later may be performed by the user terminal 11 or the medical staff terminal 13, or the user terminal 11 or the medical staff terminal 13 and the server 12 May be implemented jointly. Further, a part or all of the functions of the user terminal 11, the server 12 and the medical staff terminal 13 which will be described later may be performed by the measurement terminal 2. For example, the information provided by the server 12 may be displayed on the display unit of the user terminal 11 or may be displayed on the display unit of the measurement terminal 2.
  • the measurement terminal 2 has a function of continuously measuring the blood pressure value of at least the person being measured (user).
  • the measurement terminal 2 is a wearable terminal device such as a wristwatch.
  • the measurement terminal 2 not only continuously measures the blood pressure value of the user, but also has a function of measuring biological data such as activity amount, number of steps, sleep state, and environmental data such as temperature and humidity.
  • the measurement terminal 2 has a plurality of sensors for measuring biological data and environmental data.
  • the measurement terminal 2 includes a biosensor group (biosensor) including a sensor for detecting signals indicating various values of biometric information such as blood pressure in a state where the measurement terminal 2 is in contact with or close to a part of the body of the subject. It has.
  • the biosensor included in the measurement terminal 2 is configured to be in contact with or close to a predetermined position in the measurement subject, for example, with a band or the like.
  • the measurement terminal 2 also includes an environment sensor (environment sensor group) including a sensor for detecting a signal indicating a value indicating an environment in which the measurement subject exists, such as temperature and humidity.
  • Sensor 3 is a sensor that detects a signal indicating the value of a specific element to be measured.
  • the sensor 3 is a sensor that detects, for example, a value of arterial blood oxygen saturation (SPO2) indicating a state of sleep apnea syndrome (SAS), and is attached to a predetermined part (for example, fingertip) of the specified person. .
  • SPO2 arterial blood oxygen saturation
  • SAS sleep apnea syndrome
  • the sensor 3 has a communication function with the user terminal 11 and transmits measured data to the user terminal.
  • the sensor 3 may be a communication connection with the measurement terminal 2 or may have a function of communication connection with the server 12. In the system configuration shown in FIG. 1, there is one type of sensor 3, but it may have a plurality of types of sensors.
  • User terminal 11 is an information communication terminal used by individual users.
  • the user terminal 11 is a portable information communication terminal such as a smartphone, a mobile phone, a tab red PC, or a notebook PC.
  • the user terminal 11 may be at least capable of transferring data measured by the measurement terminal 2 and the sensor 3 to the server 12.
  • As a measurement data management system there is a user terminal 11 at least for each user. Each user may have a plurality of user terminals.
  • the server 12 has a communication function with the user terminal 11 and a communication function with the medical staff terminal 13.
  • the server 12 communicates with the user terminal 11 via a wide area network and communicates with the medical staff terminal 13 via a local area network.
  • the server 12 should just be what can communicate with both the user terminal 11 and the medical person terminal 13, and a communication system and a communication form are not limited to a specific thing.
  • the server 12 acquires measurement data measured by the measurement terminal 2 and the sensor 3 from the user terminal 11 and analyzes the acquired measurement data.
  • the server 12 provides the medical person terminal 13 with the measurement data and the analysis result of the measurement data.
  • the medical person terminal 13 is an information communication device used by a medical person who instructs a user on a treatment policy or makes a proposal for improving life.
  • the user terminal 11 is an information communication device having a function of displaying information, such as a desktop PC, a notebook PC, or a tablet PC.
  • the medical staff terminal 13 displays information provided from the server 12 on the display device.
  • the medical staff terminal 13 has a function of requesting the server 12 for various processes (information display) according to operations by the medical staff.
  • FIG. 2 is a block diagram showing a configuration example of the measurement terminal 2 shown in FIG.
  • the measurement terminal 2 includes a control unit 21, a communication unit 22, a storage unit 23, an operation unit 24, a display unit 25, an acceleration sensor 26, a biological sensor 27, an environment sensor 28, and the like.
  • the control unit 21 includes at least one processor 21a and a memory 21b.
  • the control unit 21 implements various types of operation control, data processing, and the like by the processor 21a executing a program using the memory 21b.
  • the processor 21a is, for example, a CPU (Central Processing Unit) including an arithmetic circuit, an MPU (Micro Processing Unit), or the like.
  • CPU Central Processing Unit
  • MPU Micro Processing Unit
  • the memory 21b includes a non-volatile memory that stores a program executed by the processor 21a and a volatile memory such as a RAM that is used as a work memory. Further, the control unit 21 has a clock (not shown) and has a clock function for measuring the current date and time.
  • the processor 21 a can execute control of each unit and data processing by executing a program stored in the memory 21 b or the storage unit 23. That is, the processor 21a performs operation control of each unit in accordance with an operation signal from the operation unit 24, and performs data processing on measurement data measured by the biological sensor 27 and the environment sensor 28. For example, the control unit 21 performs an operation in a mode (screening mode) in which various types of information including the blood pressure value of the measurement subject are continuously measured in response to an instruction from the operation unit 24.
  • a mode screening mode
  • the communication unit 22 is a communication interface for communicating with the user terminal 11.
  • the communication unit 22 transmits data to the user terminal 11 and receives data from the user terminal 11.
  • Communication by the communication unit 22 may be either wireless communication or wired communication.
  • the communication unit 22 is described assuming that it communicates with the user terminal 11 by short-range wireless communication.
  • the communication unit 22 is not limited to this, and may communicate using a communication cable. Communicating via a network such as LAN (Local Area Network) may be used.
  • the storage unit 23 stores program data for controlling the measurement terminal 2, setting data for setting various functions of the measurement terminal 2, measurement data measured by the acceleration sensor 26, the biological sensor 27, and the environment sensor 28, and the like. To do.
  • the storage unit 23 may be used as a work memory when the program is executed.
  • the operation unit 24 includes operation devices such as a touch panel and operation buttons (operation keys).
  • the operation unit 24 detects an operation by a user (a person to be measured) and outputs an operation signal indicating the operation content to the control unit 21.
  • the operation unit 24 is not limited to a touch panel or operation buttons.
  • a voice recognition unit that recognizes an operation instruction by a user's voice
  • a biometric authentication unit that authenticates a part of the user's biological body, a user's face or body, and the like. You may provide the image recognition part etc. which recognize a user's facial expression and gesture from the image
  • the display unit 25 includes, for example, a display screen (for example, an LCD (Liquid Crystal Display) or an EL (Electroluminescence) display), an indicator, and the like, and displays information according to a control signal from the control unit 21.
  • a display screen for example, an LCD (Liquid Crystal Display) or an EL (Electroluminescence) display
  • an indicator for example, an LED (CPU) or a CPU (CPU) display
  • the operation unit 24 and the display unit 25 will be described as configured by a display device having a touch panel.
  • the acceleration sensor 26 detects the acceleration received by the main body of the measurement terminal 2. For example, the acceleration sensor obtains 3-axis or 6-axis acceleration data.
  • the acceleration data can be used to estimate the amount of activity (posture and / or movement) of the user wearing the measurement terminal 2.
  • the control unit 21 can associate the measurement time based on the time information with the acceleration data measured by the acceleration sensor 26 and output it as measurement data.
  • the change in the posture of the measured person estimated from the acceleration data can be data indicating the sleeping state (sleeping depth) of the measured person.
  • the sleep state is information that can be a factor of fluctuations in blood pressure of the user.
  • the control unit 21 associates the measurement time with the acceleration data measured by the acceleration sensor 26 while the user is sleeping, and outputs the measurement data of the sleep state (measurement data of one element other than blood pressure).
  • the change in motion estimated from the acceleration data can be data indicating the amount of activity of the user (for example, the amount of activity due to exercise such as walking or running).
  • the amount of activity is information that can cause fluctuations in blood pressure of the user.
  • the control unit 21 associates the measurement time with the acceleration data measured by the acceleration sensor 26 while the user wakes up, and outputs the data as activity measurement data (measurement data of one element other than blood pressure).
  • whether the user is sleeping or getting up may be detected by the user's movement detected by the acceleration sensor 26, or may be specified according to the user's operation. In the latter case, for example, the user may be instructed that the user is in a sleep state before sleeping by the operation unit 24 or may be instructed that the user has woken up when waking up.
  • the biosensor 27 measures the biometric information of the user and outputs biometric data as measurement data of the biometric information.
  • the control unit 21 outputs the measurement data (biological data) associated with the measurement time set based on the time information to each data output from the biological sensor 27.
  • the biological sensor 27 includes at least a blood pressure sensor 27a.
  • the blood pressure sensor 27a continuously measures the blood pressure value of the user.
  • the control unit 21 outputs measurement data (blood pressure data) in which the measurement time is associated with the blood pressure value measured by the blood pressure sensor 27a.
  • biological data acquired by the biological sensor 27 in addition to blood pressure values, pulse wave data, pulse data, electrocardiographic data, heart rate data, body temperature data, and the like are assumed, and a sensor for measuring these biological data is a biological data. It can be provided as a sensor 27. These biological data may be output as measurement data of elements other than blood pressure.
  • an electroencephalogram is an index indicating a human sleep state, and the human sleep state is considered as one of factors that can cause blood pressure fluctuations.
  • the electroencephalogram data measured by the biometric sensor 27 is information that can cause fluctuations in blood pressure of the user, and can be output as measurement data of elements other than blood pressure.
  • these measurement data may be used to measure elements other than blood pressure. It may be output as data.
  • the blood pressure sensor 27a is a continuous measurement type blood pressure sensor.
  • the blood pressure sensor 27a is a blood pressure sensor that can continuously measure the value of blood pressure (for example, systolic blood pressure and diastolic blood pressure).
  • the blood pressure sensor 27a may include a blood pressure sensor that can continuously measure the blood pressure for each beat, but is not limited thereto.
  • the blood pressure sensor 27a a continuous measurement type blood pressure sensor using a PTT method, a tonometry method, an optical method, a radio wave method, an ultrasonic method or the like can be applied.
  • the PTT method is a method of measuring a pulse wave propagation time (PTT; Pulse Transmit Time) and estimating a blood pressure value from the measured pulse wave propagation time.
  • the tonometry method is a method in which a blood pressure value is measured using information detected by a pressure sensor by bringing a pressure sensor into direct contact with a living body part through which an artery such as the radial artery of the wrist passes.
  • the optical system, radio wave system, and ultrasonic system are systems in which light, radio waves, or ultrasonic waves are applied to blood vessels and blood pressure values are measured from the reflected waves.
  • the continuous measurement type blood pressure sensor can measure the blood pressure waveform of the user, can obtain a blood pressure value based on the measured blood pressure waveform, and calculates a heart rate based on the period of the measured blood pressure waveform.
  • the heart rate data may include, for example, a heart rate, but is not limited thereto.
  • the heart rate is not limited to being measured by a continuous measurement type blood pressure sensor, and may be measured by a heart rate sensor.
  • the environmental sensor 28 includes a sensor that measures environmental information around the user and acquires the measured environmental data.
  • the environmental sensor 28 includes an air temperature sensor 28a.
  • the environmental sensor 28 may include a sensor that measures temperature, humidity, sound, light, and the like in addition to the air temperature.
  • the environmental sensor 28 may include a sensor that measures environmental information (environmental data) that is assumed to be directly or indirectly related to fluctuations in blood pressure values.
  • the control unit 21 acquires measurement data (environment data) associated with a measurement time set based on time information on measurement data measured by the environment sensor 28.
  • temperature change in temperature
  • the air temperature data measured by the environmental sensor 28 is information that can cause the blood pressure fluctuation of the user, and can be output as measurement data of one element other than the blood pressure.
  • temperature, humidity, sound, light, etc. can be considered as one of the factors that can cause blood pressure fluctuations, so that these measurement data are output as measurement data for elements other than blood pressure. good.
  • FIG. 3 is a block diagram showing a configuration example of the user terminal 11 shown in FIG.
  • the user terminal 11 includes a control unit 31, a storage unit 32, a communication unit 33, a display unit 34, an operation unit 35, a sensor interface (I / F) 36, and the like.
  • the user terminal 11 is a mobile communication terminal such as a smartphone or a tablet, for example, and is installed with application software (program) so that processing described later can be executed.
  • the control unit 31 includes at least one processor 31a and a memory 31b.
  • the control unit 31 performs various kinds of operation control, data processing, and the like by the processor 31a executing a program using the memory 31b.
  • the processor 31a is, for example, a CPU or MPU including an arithmetic circuit.
  • the memory 31b includes a non-volatile memory that stores a program executed by the processor 31a and a volatile memory such as a RAM that is used as a work memory. Further, the control unit 31 has a clock (not shown) and has a clock function for measuring the current date and time.
  • the storage unit 32 is a data memory.
  • the storage unit 32 includes, for example, a semiconductor memory (memory card, SSD (Solid State Drive)), a magnetic disk (HD (Hard Disk)), or the like.
  • the storage unit 32 may store a program executed by the processor 31a of the control unit 31.
  • the storage unit 32 may store measurement data supplied from the measurement terminal 2 and the sensor 3.
  • the storage unit 32 may also store display data to be displayed on the display unit.
  • the communication unit 33 is a communication interface for communicating with the server 12.
  • the communication unit 33 transmits data to the server 12 via the network and receives data from the server 12.
  • Communication by the communication unit 33 may be wireless communication or wired communication.
  • the description will be made on the assumption that the network is, for example, the Internet.
  • the present invention is not limited to this, and may be another type of network such as a LAN, and a pair using a communication cable such as a USB cable. 1 communication may be sufficient.
  • the display unit 34 includes a display screen (for example, an LCD or an EL display).
  • the display unit 34 controls display contents displayed on the display screen under the control of the control unit 31.
  • the operation unit 35 transmits an operation signal corresponding to an operation by a user (for example, a person to be measured) to the control unit 31.
  • the operation unit 35 is, for example, a touch panel provided on the display screen of the display unit 34.
  • the operation unit 35 is not limited to a touch panel, and may be an operation button, a keyboard, a mouse, or the like.
  • the operation unit 35 includes a voice recognition unit that recognizes an operation instruction by the user's voice, a biometric authentication unit that authenticates a part of the user's biological body, an image recognition unit that recognizes the user's facial expression and gesture, and the like. It may be.
  • the sensor I / F 36 is a communication interface for communicating with the measurement terminal 2 and the sensor 3.
  • the sensor I / F 36 receives data from the measurement terminal 2 and the sensor 3 and transmits an operation instruction to the measurement terminal 2 and the sensor 3.
  • the sensor I / F 36 may include an interface for the measurement terminal 2 and an interface for the sensor 3. Communication by the sensor I / F 36 may be wireless communication or wired communication.
  • the senor I / F 36 is described on the assumption that the sensor I / F 36 communicates with the measurement terminal 2 and the sensor 3 by short-range wireless communication.
  • the present invention is not limited to this, and the measurement terminal 2 or the sensor 3 uses a communication cable. It may include an interface for communication via the network. Further, the sensor I / F 36 may communicate serially via a communication cable, or may communicate via a network such as a LAN.
  • the sensor 3 may supply the detected signal to the sensor I / F 36 as measurement data associated with time information, or supply the detected signal to the sensor I / F 36 as measurement data. May be. In the latter case, the control unit 31 of the user terminal 11 may acquire measurement data in which time information is linked to data acquired from the sensor 3 by the sensor I / F 36.
  • the sensor 3 is a sensor that measures SPO2.
  • SPO2 is also used as an index indicating a human respiratory state, and is an index indicating the state of sleep apnea syndrome (SAS) of a human during sleep. Since SAS is considered as one of the elements that can cause blood pressure fluctuations, the measurement data of SPO2 measured by the sensor 3 can be output as measurement data of elements other than blood pressure.
  • FIG. 4 is a block diagram illustrating a configuration example of the server 12 illustrated in FIG.
  • the server 12 includes a control unit 41, a storage unit 42, and a communication unit 43.
  • the server 12 will be described assuming that a general-purpose computer apparatus is installed with a program (software) so as to perform processing described later.
  • the control unit 41 includes at least one processor 41a and a memory 41b.
  • the control unit 41 performs various types of operation control, data processing, and the like by the processor 41a executing a program using the memory 41b.
  • the processor 41a is, for example, a CPU or MPU including an arithmetic circuit.
  • the memory 41b includes a non-volatile memory that stores a program executed by the processor 41a and a volatile memory such as a RAM used as a work memory. Further, the control unit 41 has a clock (not shown) and has a clock function for measuring the current date and time.
  • the storage unit 42 is a data memory.
  • the storage unit 42 includes, for example, a magnetic disk (HD), a semiconductor memory (memory card, SSD), an optical disk, a magneto-optical disk, and the like.
  • the storage unit 42 stores various measurement data acquired from the user terminal 11.
  • the storage unit 42 may store a program executed by the processor 41a of the control unit 41.
  • the communication unit 43 is a communication interface for communicating with the user terminal 11 or the medical staff terminal 13.
  • the communication unit 43 transmits data to the user terminal 11 or the medical staff terminal 13 via the network, or receives data from the user terminal 11 or the medical staff terminal 13.
  • Communication by the communication unit 43 may be wireless communication or wired communication.
  • the communication unit 43 will be described assuming a configuration in which the communication unit 43 communicates with the user terminal 11 via a network such as the Internet and communicates with the medical staff terminal 13 via a LAN.
  • the communication by the communication unit 43 is not limited to a specific communication method.
  • FIG. 5 is a block diagram illustrating a configuration example of the medical staff terminal 13 illustrated in FIG. 1.
  • the medical staff terminal 13 includes a control unit 51, a storage unit 52, a communication unit 53, a display unit 54, an operation unit 55, and the like.
  • the medical staff terminal 13 is described assuming a PC in which application software (program) is installed so that the processing described later can be executed.
  • the medical staff terminal 13 is a communication terminal such as a tablet PC or a smartphone. There may be.
  • the control unit 51 includes at least one processor 51a and a memory 51b.
  • the control unit 51 performs various types of operation control, data processing, and the like by the processor 51a executing a program using the memory 51b.
  • the processor 51a is, for example, a CPU or MPU including an arithmetic circuit.
  • the memory 51b includes a non-volatile memory that stores a program executed by the processor 51a and a volatile memory such as a RAM used as a work memory. Further, the control unit 51 has a clock (not shown) and has a clock function for measuring the current date and time.
  • the storage unit 52 is a data memory.
  • the storage unit 52 includes, for example, a magnetic disk, a semiconductor memory (memory card, SSD), an optical disk, a magneto-optical disk, and the like.
  • the storage unit 52 may store a program executed by the processor 51a of the control unit 51.
  • the communication unit 53 is a communication interface for communicating with the server 12.
  • the communication unit 53 transmits data to the server 12 and receives data from the server 12.
  • Communication by the communication unit 53 may be wireless communication or wired communication.
  • the communication unit 53 is described assuming that it communicates with the server 12 via another type of network such as a LAN.
  • the communication unit 53 is not limited to this and communicates serially using a communication cable. You may include what you do.
  • the display unit 54 includes a display screen (for example, an LCD or an EL display).
  • the display unit 54 controls display contents displayed on the display screen under the control of the control unit 51.
  • the operation unit 55 transmits an operation signal corresponding to an operation by a user (for example, a person to be measured) to the control unit 51.
  • the operation unit 55 is, for example, a touch panel provided on the display screen of the display unit 54.
  • the operation unit 55 is not limited to a touch panel, and may be operation buttons, a keyboard, a mouse, and the like.
  • the operation unit 55 includes a voice recognition unit that recognizes an operation instruction by the user's voice, a biometric authentication unit that authenticates a part of the user's biological body, an image recognition unit that recognizes the user's facial expression and gesture, and the like. It may be.
  • FIG. 6 is a block diagram illustrating functions of the control unit 41 of the server 12.
  • the control unit 41 of the server 12 implements various processing functions by executing programs stored in the memory 41b by the processor 41a.
  • the control unit 41 of the server 12 has an information acquisition unit 61, an operation detection unit 62, a blood pressure fluctuation detection unit 63, a display control unit 64, a relevance determination unit 65, and a correlation as shown in FIG.
  • An information generation unit 66 and the like are included.
  • the information acquisition unit 61 has a function of acquiring measurement data measured by the measurement terminal 2 and the sensor 3.
  • the control unit 41 receives various measurement data from the user terminal 11 via the communication unit 43 and performs a process of storing the received measurement data in the storage unit 42.
  • the control unit 41 may acquire measurement data transferred to the server 12 by a user operation on the user terminal 11 or the measurement terminal 2.
  • the control unit 41 may request the user terminal 11 or the measurement terminal 2 to transfer measurement data and acquire the measurement data from the user terminal 11 or the measurement terminal 2.
  • the information acquisition unit 61 acquires continuously measured blood pressure data and measurement data of a plurality of elements other than blood pressure as measurement data.
  • the measurement data of the plurality of elements includes SPO2 measurement data measured by the sensor 3, acceleration data measured by the acceleration sensor 26 of the measurement terminal 2, temperature data measured by the temperature sensor 28a of the measurement terminal 2, and the like.
  • the information acquisition unit 61 may acquire biological data measured by a sensor as the biological sensor 27, environmental data measured by a sensor as the environmental sensor 28, and the like.
  • the operation detection unit 62 is a function that receives an operation instruction from the user terminal 11 or the medical staff terminal 13. As the operation detection unit 62, the control unit 41 receives information indicating an operation instruction from the user terminal 11 or the medical staff terminal 13 via the communication unit 43 and performs a process of receiving the received operation instruction.
  • the blood pressure fluctuation detection unit 63 has a function of detecting a blood pressure fluctuation equal to or higher than a reference value from continuously measured blood pressure data.
  • the control part 41 sets the reference value with respect to the blood pressure fluctuation
  • the reference value for blood pressure fluctuation may be set in a plurality of stages. In the present embodiment, for example, a blood pressure surge of three levels of risk is detected from blood pressure fluctuations using three levels of reference values.
  • a blood pressure surge at a plurality of levels of risk is detected as a blood pressure fluctuation equal to or greater than a reference value.
  • an adjustment ability for returning an increased blood pressure value to a normal value is detected as a blood pressure fluctuation.
  • the reference value for detecting the blood pressure surge is set, for example, for the magnitude of blood pressure fluctuation and the period required for the fluctuation. That is, it is assumed that the blood pressure surge is more dangerous when a large blood pressure fluctuation occurs in a short period.
  • the blood pressure surge reference value may be set as a value corresponding to the activity amount of the user. For example, if there is a large amount of activity such as during exercise, it is considered normal even if the blood pressure fluctuation is large, so if the blood pressure fluctuation is large when the activity amount is small, the blood pressure surge is more dangerous. You may make it detect.
  • the display control unit 64 is a function for controlling the contents displayed on the display unit of the medical staff terminal 13 or the user terminal 11 or the measurement terminal 2.
  • the control unit 41 performs a process of supplying display data or display data to the medical staff terminal 13 or the user terminal 11 that can communicate via the communication unit 43 as the display control unit 64.
  • the control unit 41 performs display control of blood pressure related information in which blood pressure data continuously measured for a specific user and measurement data of elements other than blood pressure are displayed in association with each other on the display unit of the medical staff terminal 13.
  • the contents displayed by the display control unit 64 will be described in detail later.
  • the relevance determination unit 65 is a function for determining relevance between blood pressure fluctuations and measurement data of elements other than blood pressure.
  • the control unit 41 performs, as the relevance determination unit 65, a process of determining relevance between the blood pressure fluctuation equal to or greater than the reference value and the measurement data of elements other than the blood pressure.
  • the control unit 41 determines the relevance between the blood pressure surge based on the fluctuation of the measurement data of each element in the period in which the blood pressure surge is generated as the blood pressure fluctuation equal to or greater than the reference value and the period before and after the period.
  • the control unit 41 determines that the relevance between the element and the blood pressure surge (sensitivity of the element) is higher as the linkage with the blood pressure surge is more remarkable.
  • the relevance is determined not only by the magnitude of the fluctuation of the measurement data of a certain element in the period corresponding to the blood pressure surge, but also by the fluctuation tendency immediately before the blood pressure surge occurs. For example, if a blood pressure surge occurs even with a slight change, the relevance determination unit 65 may determine that the sensitivity of the element is high. Further, the relevance determination unit 65 determines a tendency that a blood pressure surge is likely to occur when the change is more rapid than the magnitude of the fluctuation, and a tendency that a blood pressure surge is likely to occur when the change is gradual. You may do it.
  • the correlation information generation unit 66 has a function of generating correlation information (for example, a correlation graph) indicating a correlation between blood pressure fluctuations equal to or greater than a reference value and measurement data of other elements.
  • the control unit 41 performs, as the correlation information generation unit 66, processing for generating correlation information (for example, a correlation graph) indicating a correlation with measurement data of elements other than blood pressure with respect to blood pressure fluctuations greater than or equal to a reference value.
  • the control unit 41 creates a correlation graph as correlation information indicating the correlation between SPO2 and blood pressure surge in response to an instruction to display the correlation between SPO2 and blood pressure surge.
  • the control unit 41 causes the display control unit 64 to display the created correlation graph on the display unit 54 of the medical staff terminal 13.
  • a user operates the measurement terminal 2 to instruct measurement of various elements including continuous measurement of blood pressure values.
  • the measurement terminal 2 performs continuous measurement of various elements in accordance with a user operation, and transfers measurement data as a measurement result in the measurement period to the server 12 via the user terminal 11. Further, the user terminal 11 also acquires measurement data measured by the sensor 3 during a period including at least a part of the measurement period at the measurement terminal 2.
  • the sensor 3 may perform measurement in response to a measurement start instruction from the user terminal 11 or may perform measurement in response to a measurement start instruction from the measurement terminal 2 via the user terminal 11. good.
  • FIG. 7 is a diagram illustrating a transition example of the operation screen displayed on the display unit 25 when the measurement terminal 2 performs measurement.
  • the operation screen 71 shown in FIG. 7 is a display example when the operation mode (screening) of continuous measurement in the measurement period is started.
  • the control unit 21 displays the operation screen 72 on the display unit 25.
  • the operation screen 72 is a confirmation screen for allowing the user to confirm the start of measurement in the set measurement period.
  • the measurement period may be a period from when the user instructs the start of measurement until the end of measurement is instructed, or may be a period set in advance.
  • the measurement period is assumed to be sleeping, during a specific activity, 24 hours, or the like. For example, when the measurement period is during sleeping, the user instructs the start of measurement before going to bed and instructs the end of measurement after getting up.
  • the control unit 21 When instructing the start of measurement on the operation screen 72 (instructing “OK”), the control unit 21 starts the measurement.
  • the control unit 21 accumulates data measured by various sensors in the storage unit 23 during the measurement period. Note that the control unit 21 may transfer the measured data to the user terminal 11 at any time (in real time or in a short cycle), and the user terminal 11 may accumulate the measurement data.
  • the control unit 21 may be able to input measurement conditions and the like by the user. For example, the control unit 21 may set a measurement period instructed by the user before starting measurement, or may accept personal identification information instructed by the user.
  • the control unit 21 receives an instruction to end the measurement by the user.
  • the user ends the measurement (for example, after getting up)
  • the user causes the display unit 25 to display the operation screen 73 by a predetermined operation.
  • the control unit 21 may display the operation screen 73 on the display unit 25 when the acceleration sensor 26 detects a predetermined movement with respect to the measurement terminal 2 or may detect a predetermined operation on the operation unit 24. In such a case, the operation screen 73 may be displayed on the display unit 25.
  • the control unit 21 notifies the measurement period by an alarm or the like, and displays an operation screen 73 for accepting a measurement end instruction on the display unit 25. good.
  • a “YES” key and a “NO” key are displayed as measurement end instruction screens.
  • the control unit 21 determines that the measurement is to be ended. Further, when the “NO” key is instructed on the operation screen 73, the control unit 21 determines that the measurement is continued.
  • the control unit 21 displays an operation screen 74 for guiding the transfer of the measurement data on the display unit 25.
  • the operation screen 74 guides that measurement data as a result of measurement during the measurement period is transferred to the user terminal 11 or the server 12.
  • the control part 21 shall memorize
  • the control unit 21 displays the operation screen 74 and combines the measurement data accumulated in the storage unit 23 during the measurement period with the individual identification information of the person being measured (or the measurement terminal 2) via the user terminal 11 ( Alternatively, it is transferred to the server 12 (without going through the user terminal 11).
  • the server 12 can acquire the measurement data of each user from each measurement terminal 2 in the measurement data management system.
  • the server 12 can collect measurement data of various elements in the measurement period of the user by acquiring measurement data measured by the sensor 3 together with measurement data from the measurement terminal 2 via the user terminal 11.
  • the measurement data during the measurement period is transferred to the server 12 via the user terminal 11 after the measurement is completed.
  • the measurement terminal 2 transmits the measurement data in real time (or a predetermined cycle). You may make it transfer to the user terminal 11 or the server 12.
  • FIG. If the frequency of communication is reduced, the measurement terminal 2 can keep power consumption low.
  • the user terminal 11 or the server 12 can acquire measurement data in real time or in a short cycle, and the user in real time or in a short cycle. It becomes possible to analyze the state.
  • the display control unit 64 of the server 12 causes the display unit 54 to display information (blood pressure related information) including measurement data including continuously measured blood pressure data and an analysis result based on the measurement data.
  • the information displayed on the display unit 54 by the server 12 is information for supporting determination of the cause of blood pressure surge and treatment advice based on measurement data by a medical practitioner.
  • the display control unit 64 of the server 12 may display the blood pressure related information such as the measurement data and the analysis result based on the measurement data on the display unit 34 of the user terminal 11 or the display unit 25 of the measurement terminal 2.
  • FIGS. 8 and 9 are display examples of blood pressure related information that the display control unit 64 of the server 12 displays on the display unit 54 of the medical staff terminal 13.
  • FIG. 8 is a display example of blood pressure related information including measurement data in a specific measurement period of a certain user and an analysis result regarding a blood pressure surge based on the measurement data.
  • the display screen shown in FIG. 8 has a risk type display area 101, an advice display area 102, and a data detail display area 103. Further, the display screen shown in FIG. 8 displays physical personal information 104 regarding the user (measured person) and information 105 indicating a comprehensive determination result regarding the blood pressure surge that appears in the measurement result.
  • the risk type display area 101 is an area for displaying the cause of the cerebrocardiovascular event and the influence (sensitivity) on the cause as the risk type.
  • the risk type is a classification stratified according to the cause of the cerebrocardiovascular event and the influence on the cause. For example, blood pressure fluctuations (blood pressure surges) above the reference value that can cause cerebrocardiovascular events are caused by SAS (sleep apnea syndrome), temperature changes, sleep state changes, activity changes, stress, etc. sell.
  • the risk type for example, “a type in which sudden blood pressure surges frequently occur due to temperature changes” and “a type in which moderate blood pressure fluctuations easily occur due to temperature changes” are classified. Since the former is highly likely to cause a rapid blood pressure surge due to temperature change, the cause of blood pressure fluctuation is temperature change, and is determined as a risk type with high temperature sensitivity. The latter is determined as a risk type having a low temperature sensitivity although the cause of the blood pressure fluctuation is a temperature change because a gentle blood pressure fluctuation is easily caused by the temperature change.
  • the risk means the risk of developing a cerebral cardiovascular event (cerebral infarction, cerebral hemorrhage, myocardial infarction, heart failure, etc.).
  • the risk is described as being determined by comprehensively considering factors such as the magnitude of blood pressure fluctuation, fluctuation time, and change in fluctuation. For example, even if the fluctuation difference is the same, it is considered that the risk is different between when the blood pressure fluctuates in several seconds and when it fluctuates over a longer time.
  • the risk of developing a cerebrocardiovascular event is determined from various factors such as arteriosclerosis, gender, age, meal content, sleep, genetics, etc., in addition to the magnitude of blood pressure fluctuation, fluctuation time, and fluctuation change. Is.
  • the determination of risk is not limited to those exemplified in the present embodiment, but is determined in consideration of various factors such as arteriosclerosis, sex, age, meal content, sleep, genetics, etc. good.
  • the server 12 determines the relevance (sensitivity) between the blood pressure surge that can cause a cerebrocardiovascular event and various elements by the relevance determination unit 65, and determines the element that has been determined to have high relevance to the blood pressure surge.
  • Information to be displayed is displayed in the risk type display area 101. For example, when it is determined that the association between the blood pressure surge and the SAS is high (SAS sensitivity is strong), the server 12 displays that the risk type is the SAS sensitivity type.
  • information indicating the risk type (SAS in the example of FIG. 8)
  • information indicating the variation of the element determined to be highly sensitive (maximum SAS surge in the example of FIG. 8)
  • the element The risk type display area 101 displays information indicating the relationship between the fluctuation of the blood pressure and the blood pressure surge (in the example of FIG. 8, the number of SAS surges), and information indicating the ratio of the blood pressure surge for each risk level.
  • the advice display area 102 is an area for displaying treatment advice based on the occurrence state of the blood pressure surge and the relevance of each element to the blood pressure surge. For example, the advice display area 102 displays advice such as a treatment method according to measurement data of an element estimated as a factor of blood pressure surge.
  • the display example of the advice display area 102 is a display example when it is estimated that the cause of blood pressure surge is SAS, and there are a plurality of treatment methods for blood pressure surges (that is, SAS treatment methods). Options (“use of CPAP”, “life guidance”, “medicine”) are displayed, and information indicating one treatment method recommended from these options is displayed in the advice display area 102.
  • the recommended treatment method may be determined according to the risk of blood pressure surge estimated to be caused by SAS. For example, when there are many blood pressure surges caused by SAS, or when blood pressure fluctuations of blood pressure surges estimated to be caused by SAS are very large (that is, when the risk of blood pressure surges is very high), Suggestions for treatment for serious people may be presented as advice.
  • the data detail display area 103 is an area for displaying actual measurement data in detail.
  • a graph 111 of continuously measured blood pressure data a graph 112 that displays an enlarged portion of a portion of continuously measured blood pressure data, a measurement of elements other than blood pressure in the same period as the graph 112
  • a graph 113 displaying enlarged data a graph display selection column 114, and an analysis instruction button 115 (115a, 115b) are displayed in the data detail display area 103.
  • the graph 111 displays blood pressure value data continuously measured during the entire measurement period in which the continuous measurement is performed or in a predetermined period (12 hours, 24 hours, etc.).
  • an enlarged display band 111a indicating a period (enlarged period) of the enlarged display in the graphs 112 and 113 is displayed.
  • the graph 112 displays blood pressure data in the period indicated by the enlarged display band 111a of the graph 111.
  • periods T1, T2, T3, and T4 detected as blood pressure surges are displayed in different colors.
  • the graph 113 displays the measurement data of the selected element in the period indicated by the enlarged display band 111a of the graph 111.
  • the graph 113 is displayed in association with the graph 112.
  • the measurement data of SPO2 is displayed as a graph 113 in association with the blood pressure data of the graph 112.
  • the graph display selection column 114 indicates elements (indicators) to be displayed as the graphs 112 and 113.
  • the selection column 114 is also used as a column for designating elements to be displayed as the graph 112 or 113 by the medical staff or the user.
  • the measurement data of the element selected in the selection column 114 is displayed as a graph 112 and a graph 113.
  • continuous blood pressure and SPO2 are selected, blood pressure data is displayed as continuous blood pressure in the graph 112, and measurement data of SPO2 is displayed in the graph 113.
  • Items that can be simultaneously selected in the selection column 114 may be limited to items that can be displayed as the graphs 112 and 113.
  • the selection column 114 is assumed to select blood pressure data and measurement data of an element estimated as a factor of blood pressure surge.
  • the element that can be selected in the selection column 114 is information that can cause the blood pressure fluctuation of the user, and may be measurement data that can be acquired by the server 12.
  • elements such as SPO2, sleep, activity amount, and temperature can be selected in the selection column 114.
  • the SPO2 measurement data is measured by the sensor 3.
  • the sleep measurement data may be acceleration data (posture) measured by the acceleration sensor 26 of the measurement terminal 2 with respect to the measurement subject during sleep, or may be one of the biological sensors 27 of the measurement terminal 2. It may be brain wave data measured by the brain wave sensor.
  • the activity amount measurement data is acceleration data measured by the acceleration sensor 26 of the measurement terminal 2.
  • the temperature measurement data is measured by the temperature sensor 28a of the measurement terminal 2.
  • the analysis instruction button 115 is a button for instructing a specific analysis.
  • an analysis instruction button 115a for instructing an ODI analysis and an analysis instruction button 115b for indicating a correlation of a blood pressure surge with respect to SPO2 are displayed.
  • the analysis instruction button 115b is a button for instructing display of correlation information (correlation graph) indicating a correlation between SPO2 as a specific element other than blood pressure and a blood pressure surge.
  • FIG. 9 is a diagram showing a display example of a correlation graph indicating the correlation between SPO2 and blood pressure surge. That is, when the analysis instruction button 115b shown in FIG. 8 is instructed, the control unit 41 of the server 12 generates a correlation graph between the SPO2 and the blood pressure surge by the correlation information generation unit 66, and displays the generated correlation graph on the display unit 54. To display. In the display example shown in FIG. 9, a correlation graph between SPO2 and blood pressure surge is displayed as a pop-up screen 120 on the display screen shown in FIG. The correlation graph shown in FIG. 9 can be returned to the display state shown in FIG. 8 by the operation of the operator.
  • the server 12 is based on the data measured by the measurement terminal and the sensor, the occurrence state of the blood pressure surge, various measurement data associated with the blood pressure data, and the blood pressure surge estimated from the measurement data. Factors and treatment advice can be presented to a medical person or user.
  • processing for providing measurement data measured by the measurement terminal 2 and the sensor 3 will be described.
  • an operation example in which the server 12 collects measurement data measured by the measurement terminal 2 and the sensor 3 and displays the collected measurement data on the medical staff terminal 13 will be described.
  • part or all of the processing of the server 12 described later may be performed by the user terminal 11 or the measurement terminal 2.
  • the control unit 51 of the medical person terminal 13 requests the server 12 for display information of the blood pressure related information via the communication unit 53.
  • the medical person operates the operation unit 55 of the medical person terminal 13 to instruct the display of blood pressure related information together with information for identifying the user (for example, user identification information).
  • the control unit 51 of the medical staff terminal 13 transmits a signal requesting the server 12 for display information of the blood pressure related information together with the user identification information.
  • the date (measurement period) when the blood pressure related information to be displayed is measured may be designated, and the items to be displayed may be set in advance.
  • the control unit 41 of the server 12 acquires the measurement data from the measurement terminal 2 and the sensor 3 via the user terminal 11 by the information acquisition unit 61 and accumulates them in the storage unit 42 (S11).
  • the measurement data acquired by the information acquisition unit 61 includes continuously measured blood pressure data and measurement data of a plurality of elements other than blood pressure.
  • the control unit 41 receives user identification information together with the measurement data from the user terminal 11, and performs a process of storing the measurement data and the user identification information in the storage unit 42 in association with each other.
  • control unit 41 accepts a blood pressure related information display instruction from the medical staff terminal 13 while performing a process of storing the measurement data in the storage unit 42.
  • control unit 41 receives a signal requesting display of blood pressure related information from the medical staff terminal 13 via the communication unit 43 (S12, YES)
  • the blood pressure data continuously measured corresponding to the designated user (continuously measured) Blood pressure data continuously measured for a measurement period or a predetermined period) is read from the storage unit 42.
  • the display control unit 64 causes the display unit 54 to display the read blood pressure data on the display unit 54 (S13).
  • the control unit 41 displays the read continuously measured blood pressure data on the display unit 54 as the graph 111 on the display screen as shown in FIG.
  • the control unit 41 uses the blood pressure fluctuation detection unit 63 to detect a blood pressure fluctuation equal to or greater than a reference value in the read continuously measured blood pressure data (S14).
  • a blood pressure fluctuation equal to or greater than a reference value in the read continuously measured blood pressure data (S14).
  • the control unit 41 determines a time zone (enlargement period) for displaying the blood pressure data continuously measured based on the detection result of the blood pressure surge, and enlarges and displays the blood pressure data of the determined expansion period ( S15).
  • the control unit 41 causes the display unit 54 to display the blood pressure data of the expansion period as the graph 112 on the display screen as illustrated in FIG.
  • control unit 41 causes the display unit 54 to display the time zone of the blood pressure surge detected for each risk level by color for each risk level for the blood pressure data for the enlarged period displayed as the graph 112. Thereby, it is easy to visually recognize the fluctuation of the blood pressure value during the expansion period, and it is possible to easily recognize the detected blood pressure surge.
  • control unit 41 determines the relevance between the detected blood pressure surge and the measurement data of each element other than the blood pressure by the relevance determination unit 65 (S16). Furthermore, the control unit 41 determines an element having a high association with the blood pressure surge based on the determination result of the association between the blood pressure surge and the measurement data of each element (S17). When determining one element highly related to the blood pressure surge, the control unit 41 reads the measurement data of the expansion period of the element from the storage unit 42 and displays the read measurement data in association with the blood pressure data of the expansion period. (S18). For example, on the display screen as shown in FIG.
  • control unit 41 selects an element that is determined to be highly related to the blood pressure surge in the selection column 114 and determines that the relation to the blood pressure surge is high as the graph 113.
  • the measurement data of the expanded period of the selected element is displayed on the display unit 54.
  • the server 12 causes the display unit 54 of the medical staff terminal 13 to display a display screen as shown in FIG.
  • the server 12 detects the operation by the operation unit 55 of the medical staff terminal 13 by the operation detection unit 62 and updates the display content displayed by the display unit 54 according to the operation instruction. .
  • the control unit 41 of the server 12 receives an instruction of a time zone (enlargement period) to be enlarged and displayed as the graphs 112 and 113 (S19). For example, an instruction for an enlargement period is accepted according to the position indicated on the graph 111 of the display screen shown in FIG.
  • the control unit 41 of the server 12 updates the enlargement display band 111a and the graphs 112 and 113 according to the instructed enlargement period. (S20). That is, the control unit 41 displays an enlarged display band 111a indicating an enlargement period at an instructed position on the graph 111.
  • control unit 41 newly sets the period displayed by the enlarged display band 111a as the enlarged period, and the measurement data in the enlarged period (continuously measured blood pressure data and measurement data of elements other than the selected blood pressure) Are displayed as graphs 112 and 113.
  • control unit 41 receives an instruction for selecting an element to be displayed as the graph 113 (S21). For example, in the display screen shown in FIG. 8, an instruction to select an element to be displayed as the graph 113 is accepted in response to an instruction to the selection field 114.
  • the server 12 changes the element to be displayed as the graph 113 to the instructed element and measures the instructed element. Data is displayed (S22). Further, the control unit 41 of the server 12 changes the display in which the element designated in the selection column 114 is selected.
  • the control unit 41 receives an instruction to display correlation information indicating the correlation between the specific data and the blood pressure surge by the analysis display button 115 (S23).
  • an analysis display button 115b accepts an instruction to display a correlation graph indicating the correlation between the SPO2 measurement data and the blood pressure surge.
  • the control unit 41 of the server 12 uses the correlation information generation unit 66 to correlate the measurement data of SPO2 and the blood pressure surge. (Correlation graph) is created, and the created correlation graph is displayed on the display unit 54 (S24).
  • the control unit 41 causes the display unit 54 to display the correlation graph shown in FIG.
  • control unit 41 of the server 12 receives an operation for ending display on the medical staff terminal 13 (S25, YES), the display of information related to continuously measured blood pressure data is ended.
  • the control unit 41 returns to S11 and collects measurement data and accepts a display instruction.
  • the server 12 as the information processing apparatus expands the blood pressure data continuously measured by the measurement subject and a part of the blood pressure data into an expansion period. And the measurement data of at least one element other than the blood pressure is displayed on the display device in association with the blood pressure data in the expansion period. Thereby, a part of a huge amount of continuously measured blood pressure data can be enlarged and displayed as an enlarged period, and measurement data of one element selected from a plurality of elements other than blood pressure can be displayed in association with the enlarged blood pressure data.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.
  • Appendix 1 An information processing apparatus, Memory, And at least one processor cooperating with the memory;
  • the processor is Obtain blood pressure data continuously measured from a specific subject and measurement data of multiple elements other than blood pressure, Detecting blood pressure fluctuations greater than or equal to a reference value from the acquired continuously measured blood pressure data,
  • the blood pressure data in the expansion period including the time zone of blood pressure fluctuation equal to or greater than the detected reference value and the measurement data of at least one element other than the blood pressure in the expansion period are displayed on the display device in association with each other.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Artificial Intelligence (AREA)
  • Pulmonology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Vascular Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

連続測定された血圧値のデータを含む複数種類の情報の測定データによる被測定者の健康状態の把握を容易にする情報処理装置およびプログラムを提供する。 本発明の情報処理装置は、特定の被測定者から連続測定された血圧データと血圧以外の複数要素の測定データとを取得する情報取得部と、前記情報取得部により取得した連続測定された血圧データから基準値以上の血圧変動を検出する血圧変動検出部と、前記血圧変動検出部が検出する基準値以上の血圧変動の時間帯を含む拡大期間における血圧データと前記拡大期間における血圧以外の少なくとも1つの要素の測定データとを対応づけて表示装置に表示させる表示制御部と、を有する。

Description

情報処理装置および情報処理プログラム
 本発明は、情報処理装置および情報処理プログラムに関し、より詳しくは、被測定者の血圧に関する情報を表示画面に表示する情報処理装置および情報処理プログラムに関する。
 従来、被測定者の血圧に関連する情報を表示する装置としては、例えば特開2004-261452号公報に開示されているように、測定された血圧値と、測定時刻情報や測定条件を対応づけてメモリに格納し、特定の時間帯に複数回測定された血圧値を平均した平均値を算出し、その算出結果に基づいてリスク値を算出および表示する血圧計が提案されている。 
 また、近年では、携帯型の血圧計により、被測定者の血圧を連続的に長期間(例えば、夜間や24時間)測定し、測定結果に基づいて被測定者の健康管理を行うことが提案されている。
 しかしながら、ユーザは、長期間に亘る連続的な測定によって得られる膨大な血圧値のデータが単純に提示されても、健康状態を正しく把握する事が難しい。また、医師などの医療や健康についての専門的な知識を有する者(以下、医療者と称する)であっても、膨大な血圧値のデータから被測定者の健康状態を把握するのは大きな負担となる。
 また、脳心血管イベントとの関連が大きいとされる急激な血圧の上昇(サージ)の要因は様々なものが考えられる。このため、連続的に測定した血圧値のデータから検出されるサージの要因を判定するには、多数の指標(多くの種類の測定データ)を取集し、それぞれの指標についてサージとの関連を分析する必要がある。このようなサージの要因を分析することは、医療者であっても容易ではない。
 本発明は上記事情に着目してなされたもので、連続測定された血圧値のデータを含む複数種類の情報の測定データによる被測定者の健康状態の把握を容易にすることができる情報処理装置および情報処理プログラムを提供することを目的とする。
 上記課題を解決するため、本発明の第1の態様に係る情報処理装置は、特定の被測定者から連続測定された血圧データと血圧以外の複数要素の測定データとを取得する情報取得部と、前記情報取得部により取得した連続測定された血圧データから基準値以上の血圧変動を検出する血圧変動検出部と、前記血圧変動検出部が検出する基準値以上の血圧変動の時間帯を含む拡大期間における血圧データと前記拡大期間における血圧以外の少なくとも1つの要素の測定データとを対応づけて表示装置に表示させる表示制御部と、を有する。
 本発明の第2の態様に係る情報処理装置は、前記第1の態様において、さらに、前記情報取得部が取得する血圧以外の各要素の測定データと前記血圧変動検出部が検出する基準値以上の血圧変動との関連性を判定する関連性判定部を有し、前記表示制御部は、前記拡大期間における血圧データに対応づけて、前記関連性判定部により基準値以上の血圧変動との関連性が高いと判定された要素の測定データを表示装置に表示させるものである。
 本発明の第3の態様に係る情報処理装置は、前記第2の態様において、前記表示制御部は、操作者による拡大期間に表示する要素の指示に応じて、前記拡大期間における血圧データに対応づけて表示する要素を操作者が指定する要素に更新するものである。
 本発明の第4の態様に係る情報処理装置は、前記第1乃至第3の態様のいずれかにおいて、前記表示制御部は、操作者による拡大期間の指示に応じて、前記表示装置に表示させる拡大期間を操作者が指示する拡大期間に更新するものである。
 本発明の第5の態様に係る情報処理装置は、前記第1乃至第4の態様のいずれかにおいて、特定の要素と血圧サージとの相関関係を示す相関表示情報を生成する相関情報生成部をさらに有し、前記表示制御部は、操作者の表示指示に応じて前記相関情報生成部が生成する相関表示情報を前記表示装置に表示させるものである。
 本発明の第6の態様に係る情報処理装置は、前記第1乃至第5の態様のいずれかにおいて、前記情報取得部は、PTT方式、トノメトリ方式、光学方式、電波方式、または、超音波方式の何れかの方式の血圧センサによって連続測定された血圧データを取得するものである。
 本発明の第1の態様によれば、長時間で連続測定された膨大な量の血圧データに対する基準値以上の血圧変動の検出結果に基づく拡大期間の血圧データを拡大表示でき、さらに、拡大表示した血圧データに対応づけて血圧以外の複数要素から選択した1つの要素の測定データを表示できる。この結果、膨大な量の測定データから注視すべき血圧変動と他の要素の測定データとを人が見やすい状態で表示させることができ、被測定者の治療や健康管理などのための負担を軽減することができ、被測定者の健康状態を改善することを支援することができる。
 本発明の第2の態様によれば、基準値以上の血圧変動と血圧以外の各要素との関連性を判定することができ、血圧変動との関連性が高いと判定された要素の測定データを血圧データに対応づけて表示装置に表示させることができる。この結果、被測定者の治療や健康管理などのための負担を軽減することができ、被測定者の健康状態を改善することを支援することができる。
 本発明の第3の態様によれば、血圧データに対応づけて表示する要素を操作者が指定できるため、種々の要素の測定データと血圧データとの関連を容易に確認でき、医療者などによる診断の負担を軽減しつつ診断の精度と高めることができる。
 本発明の第4の態様によれば、拡大表示させる拡大期間を操作者が指示できるため、操作者が指定する時間帯における血圧データと血圧以外の要素の測定データとの関連を容易に目視で確認でき、医療者などによる診断の負担を軽減しつつ診断の精度と高めることができる。
 本発明の第5の態様によれば、特定の要素と血圧サージとの相関関係を示す相関情報を操作者の指示に応じて表示装置に表示させることができるため、医療者などによる診断の負担を軽減しつつ診断の精度と高めることができる。
 本発明の第6の態様によれば、連続測定された血圧データが特定の方式の血圧センサで測定してものに限定されることはなく、多様方式の測定装置で測定した血圧データに基づいて利用者の健康状態の把握するための情報を提供できる。
図1は、本発明の実施形態に係る情報処理装置としての情報処理システムを含む測定データの管理システムの構成例を概略的に示す図である。 図2は、図1に示す測定端末の構成例を示すブロック図である。 図3は、図1に示すユーザ端末の構成例を示すブロック図である。 図4は、図1に示すサーバの構成例を示すブロック図である。 図5は、図1に示す医療者端末の構成例を示すブロック図である。 図6は、図1に示すサーバが有する機能を説明するためのブロック図である。 図7は、図1に示す測定端末において測定を実行する場合に表示される操作画面の遷移例を示す図である。 図8は、情報処理システムが表示する測定データに基づく血圧関連情報の表示例を示す図である。 図9は、情報処理システムが表示する測定データに基づく血圧関連情報の表示例を示す図である。 図10は、情報処理システムとしてのサーバの動作例を説明するためのフローチャートである。 図11は、情報処理システムとしてのサーバの動作例を説明するためのフローチャートである。
 以下、図面を参照して本発明に係る実施形態を説明する。 
 図1は、実施形態に係る情報処理装置を含む情報処理システム1と測定端末2とセンサ3とを有する測定データの管理システムの構成例を概略的に示す図である。
 測定データの管理システムは、情報処理システム(情報処理装置)1、測定端末2、センサ3などを有するシステムである。情報処理システム1は、測定端末2およびセンサ3から種々の要素の測定データを取得し、取得した測定データを分析する。情報処理システム1は、ユーザ端末11、サーバ12、および、医療者端末13を有する。
 図1に示す構成例において、測定端末2とセンサ3とがユーザ端末11に接続され、ユーザ端末11がサーバ12とネットワークを介して通信可能に接続される。さらに、サーバ12は、無線通信あるいは有線通信により医療者端末13と通信可能に接続される。ただし、測定データの管理システムおよび情報処理システム1の構成は、図1に示す構成に限定されるものではない。
 例えば、測定端末2およびセンサ3は、ユーザ端末11を介さずにサーバ12に通信接続するようにしても良い。この場合、ユーザ端末11は省略可能となり、後述するユーザ端末11の動作は測定端末2またはサーバ12が実施するようにすれば良い。また、センサ3は、ユーザ端末11ではなく測定端末2に接続しても良い。この場合、センサ3は、測定端末2を介してユーザ端末11またはサーバ12と通信可能とすれば良い。また、センサ3は、測定端末2に設けても良い。
 また、後述するサーバ12が実現する機能(処理)の一部または全部は、ユーザ端末11あるいは医療者端末13が実施するようにしても良いし、ユーザ端末11あるいは医療者端末13とサーバ12とが共同して実施するようにしても良い。さらに、後述するユーザ端末11の機能、サーバ12の機能および医療者端末13の機能の一部または全部は、測定端末2が実施するようにしても良い。例えば、サーバ12が提供する情報は、ユーザ端末11の表示部が表示しても良いし、測定端末2の表示部が表示しても良い。
 測定端末2は、少なくとも被測定者(ユーザ)の血圧値を連続測定する機能を有する。測定端末2は、例えば、腕時計型などのウエアラブルな端末装置である。測定端末2は、ユーザの血圧値を連続測定するだけでなく、活動量、歩数および睡眠状態などの生体データや気温および湿度などの環境データなどを測定する機能を有するものである。
 測定端末2は、生体データおよび環境データを測定するための複数のセンサを有する。例えば、測定端末2は、被測定者の体の一部に接触または近接した状態で血圧などの各種の生体情報の値を示す信号を検知するためのセンサを含む生体センサ群(生体センサ)を具備する。測定端末2が具備する生体センサは、例えば、バンドなどにより被測定者における所定位置に接触または近接するように構成される。また、測定端末2は、気温や湿度などの被測定者が存在する環境を示す値を示す信号を検知するためのセンサを含む環境センサ(環境センサ群)も具備する。
 センサ3は、測定対象となる特定の要素の値を示す信号を検知するセンサである。センサ3は、例えば、睡眠時無呼吸症候群(SAS)の状態を示す動脈血酸素飽和度(SPO2)の値を検知するセンサであり、被特定者における所定の部位(例えば、指先)に装着される。センサ3は、ユーザ端末11との通信機能を有し、測定したデータをユーザ端末へ送信する。センサ3は、測定端末2と通信接続するものであっても良いし、サーバ12と通信接続する機能を有するものであっても良い。また、図1に示すシステム構成では、センサ3は1種類であるが、複数種類のセンサを有するものであっても良い。
 ユーザ端末11は、個々のユーザが利用する情報通信端末である。ユーザ端末11は、例えば、スマートフォン、携帯電話、タブレッドPC、ノートPCなどの携帯可能な情報通信端末である。ユーザ端末11は、少なくても測定端末2およびセンサ3が測定したデータをサーバ12へ転送できるものであれば良い。測定データの管理システムとしては、少なくともユーザごとにユーザ端末11が存在する。また、個々のユーザが複数のユーザ端末を有するものであっても良い。
 サーバ12は、ユーザ端末11との通信機能と医療者端末13との通信機能とを有する。図1に示す構成例では、サーバ12は、ユーザ端末11とは広域のネットワークを介して通信し、医療者端末13とはローカルエリアネットワークを介して通信するものを想定する。ただし、サーバ12は、ユーザ端末11と医療者端末13との両方と通信できるものであれば良く、通信方式や通信形態が特定のものに限定されるものではない。サーバ12は、測定端末2およびセンサ3が測定した測定データをユーザ端末11から取得し、取得した測定データを分析する。また、サーバ12は、測定データおよび測定データの分析結果などを医療者端末13に提供する。
 医療者端末13は、ユーザに対して治療方針を指示または生活改善などの提案を行う医療者が利用する情報通信装置である。ユーザ端末11は、例えば、デスクトップPC、ノートPC、タブレットPCなどの情報の表示機能を有する情報通信装置である。医療者端末13は、サーバ12から提供される情報を表示装置に表示する。また、医療者端末13は、医療者による操作に応じてサーバ12に種々の処理(情報表示)を要求する機能を有する。
 図2は、図1に示す測定端末2の構成例を示すブロック図である。 
 測定端末2は、制御部21、通信部22、記憶部23、操作部24、表示部25、加速度センサ26、生体センサ27、および、環境センサ28などを有する。 
 制御部21は、少なくとも1つのプロセッサ21aとメモリ21bとを有する。制御部21は、プロセッサ21aがメモリ21bを用いてプログラムを実行することにより、各種の動作制御およびデータ処理などを実現している。プロセッサ21aは、例えば、演算回路を含むCPU(Central Processing Unit)やMPU(Micro Processing Unit)などである。メモリ21bは、プロセッサ21aが実行するプログラムを記憶する不揮発性のメモリ、および、ワークメモリとして使用するRAMなどの揮発性メモリを含む。また、制御部21は、図示しないクロックを有し、現在の日時を計時する時計機能を有する。
 制御部21において、プロセッサ21aは、メモリ21bまたは記憶部23が記憶するプログラムを実行することにより各部の制御およびデータ処理が実行可能である。すなわち、プロセッサ21aは、操作部24からの操作信号に応じて各部の動作制御を行い、生体センサ27および環境センサ28が測定する測定データに対するデータ処理を行う。例えば、制御部21は、操作部24による指示に応じて、被測定者の血圧値を含む各種の情報を連続測定するモード(スクリーニングモード)での動作を実行する。
 通信部22は、ユーザ端末11と通信するための通信インターフェースである。通信部22は、ユーザ端末11へのデータを送信したり、ユーザ端末11からのデータを受信したりする。通信部22による通信は、無線通信あるいは有線通信のいずれであっても良い。本実施形態において、通信部22は、近距離無線通信によりユーザ端末11と通信するものを想定して説明するが、これに限定されず、通信ケーブルを用いて通信するものであっても良いし、LAN(Local Area Network)のようなネットワークを介して通信するものであっても良い。
 記憶部23は、測定端末2を制御するためのプログラムのデータ、測定端末2の各種機能を設定するための設定データ、加速度センサ26、生体センサ27および環境センサ28が測定した測定データなどを記憶する。また、記憶部23は、プログラムが実行されるときのワークメモリなどとして用いられるようにしても良い。
 操作部24は、タッチパネルおよび操作ボタン(操作キー)などの操作デバイスにより構成される。操作部24は、ユーザ(被測定者)による操作を検出し、操作内容を示す操作信号を制御部21へ出力する。また、操作部24は、タッチパネルや操作ボタンに限定されず、例えば、ユーザの音声による操作指示を認識する音声認識部、ユーザの生体の一部を認証する生体認証部、ユーザの顔や体を撮影した画像によりユーザの表情やジェスチャーを認識する画像認識部などを備えていても構わない。
 表示部25は、例えば表示画面(例えば、LCD(Liquid Crystal Display)またはEL(Electroluminescence)ディスプレイなど)やインジケータ等を含み、制御部21からの制御信号に従って情報を表示する。なお、本実施形態において、操作部24および表示部25は、タッチパネルを有する表示器により構成されるものとして説明する。
 加速度センサ26は、測定端末2の本体が受ける加速度を検出する。例えば、加速度センサは、3軸あるいは6軸の加速度データを得る。加速度データは、当該測定端末2を装着しているユーザの活動量(姿勢および/または動作)を推定するために用いることができる。制御部21は、加速度センサ26が測定する加速度データに時刻情報に基づく測定時刻を紐づけて測定データとして出力できる。
 例えば、ユーザが睡眠中であれば、加速度データから推定される被測定者の姿勢の変化は、被測定者の睡眠状態(眠りの深さ)を示すデータとなりうる。睡眠状態は、ユーザの血圧変動の要因となりうる情報である。制御部21は、ユーザが睡眠中に加速度センサ26が測定する加速度データに測定時刻を紐づけて睡眠状態の測定データ(血圧以外の1つの要素の測定データ)として出力する。
 また、ユーザが起床中であれば、加速度データから推定される動きの変化は、ユーザの活動量(例えば、ウォーキングやランニングなどの運動による活動量)を示すデータとなりうる。活動量は、ユーザの血圧変動の要因となりうる情報である。制御部21は、ユーザが起床中に加速度センサ26が測定する加速度データに測定時刻を紐づけて活動量の測定データ(血圧以外の1つの要素の測定データ)として出力する。
 なお、ユーザが睡眠中か起床中かは、加速度センサ26が検出するユーザの動きによって検出しても良いし、ユーザの操作に応じて睡眠中か起床中かを特定しても良い。後者の場合、例えば、ユーザが睡眠前に睡眠状態であることを操作部24によって指示したり起床時に起床したことを指示したりするようにしても良い。
 生体センサ27は、ユーザの生体情報を測定し、生体情報の測定データとしての生体データを出力する。制御部21は、生体センサ27が出力する各データに時刻情報に基づいて設定される測定時刻に紐づけた測定データ(生体データ)として出力する。生体センサ27には、少なくとも血圧センサ27aが含まれる。血圧センサ27aは、ユーザの血圧値を連続測定する。制御部21は、血圧センサ27aが測定する血圧値に測定時刻を紐づけた測定データ(血圧データ)として出力する。
 生体センサ27が取得する生体データとしては、血圧値の他に、脈波データ、脈拍データ、心電データ、心拍データ、体温データなどが想定され、これらの生体データを測定するためのセンサが生体センサ27として設けられうる。これらの生体データは、血圧以外の要素の測定データとして出力されるようにしても良い。
 例えば、脳波は人間の睡眠状態を示す指標であり、人間の睡眠状態が血圧変動を引き起こしうる要素の1つとして考えられる。生体センサ27が測定する脳波データは、ユーザの血圧変動の要因となりうる情報であり、血圧以外の要素の測定データとして出力されうる。また、脳波データ以外にも、脈拍データ、心電データ、心拍データ、体温データなどが血圧変動を引き起こしうる要素の1つとして考えられる場合には、それらの測定データが、血圧以外の要素の測定データとして出力されるようにして良い。
 血圧センサ27aは、連続測定型の血圧センサである。血圧センサ27aは、血圧(例えば収縮期血圧および拡張期血圧)の値を連続測定することができる血圧センサである。血圧センサ27aは、1拍ごとの血圧を連続測定することができる血圧センサを含み得るが、これに限定されるものではない。
 例えば、血圧センサ27aは、PTT方式、トノメトリ方式、光学方式、電波方式、または、超音波方式などを用いた連続測定型の血圧センサが適用できる。PTT方式は、脈波伝播時間(PTT;Pulse Transmit Time)を測定し、測定した脈波伝播時間から血圧値を推定する方式である。トノメトリ方式は、手首の橈骨動脈等の動脈が通る生体部位に圧力センサを直接接触させて、圧力センサが検出する情報を用いて血圧値を測定する方式である。光学方式、電波方式、および、超音波方式は、光、電波または超音波を血管にあててその反射波から血圧値を測定する方式である。
 なお、連続測定型の血圧センサは、ユーザの血圧波形を測定することができ、測定した血圧波形に基づいて血圧値を得ることができ、測定した血圧波形の周期に基づいて心拍数を算出することができる。心拍データは、例えば、心拍数を含み得るが、これに限定されない。心拍数は、連続測定型の血圧センサによって測定されるのに限定されず、心拍センサによって測定されてもよい。
 環境センサ28は、ユーザの周囲の環境情報を測定し、測定した環境データを取得するセンサを含む。図2に示す構成例において、環境センサ28は、気温センサ28aを含むものとする。ただし、環境センサ28は、気温以外にも、温度、湿度、音、光などを測定するセンサを含んでも良い。環境センサ28は、血圧値の変動に直接あるいは間接的に関連があることが想定される環境の情報(環境データ)を測定するセンサを含むものであっても良い。また、制御部21は、環境センサ28が測定する測定データを時刻情報に基づいて設定する測定時刻を紐づけて測定データ(環境データ)として取得する。
 例えば、気温(気温の変化)は、人間の血圧変動を引き起こしうる要素の1つとして考えられる。このため、環境センサ28が測定する気温データは、ユーザの血圧変動の要因となりうる情報であり、血圧以外の1つの要素の測定データとして出力されうる。また、気温以外にも湿度、音、光などが血圧変動を引き起こしうる要素の1つとして考えらえる場合には、それらの測定データが、血圧以外の要素の測定データとして出力されるようにして良い。
 次に、ユーザ端末11の構成について説明する。 
 図3は、図1に示すユーザ端末11の構成例を示すブロック図である。 
 図3に示す構成例において、ユーザ端末11は、制御部31、記憶部32、通信部33、表示部34、操作部35、および、センサインターフェース(I/F)36などを有する。本実施形態では、ユーザ端末11は、例えば、スマートフォンやタブレッドなどの携帯通信端末であって、後述の処理を実行可能となるようにアプリケーションソフトウエア(プログラム)をインストールしたものである。
 制御部31は、少なくとも1つのプロセッサ31aとメモリ31bとを有する。制御部31は、プロセッサ31aがメモリ31bを用いてプログラムを実行することにより、各種の動作制御およびデータ処理などを行う。プロセッサ31aは、例えば、演算回路を含むCPUやMPUなどである。メモリ31bは、プロセッサ31aが実行するプログラムを記憶する不揮発性のメモリ、および、ワークメモリとして使用するRAMなどの揮発性メモリを含む。また、制御部31は、図示しないクロックを有し、現在の日時を計時する時計機能を有する。
 記憶部32は、データメモリである。記憶部32は、例えば、半導体メモリ(メモリカード、SSD(Solid State Drive))、あるいは磁気ディスク(HD(Hard Disk))などで構成される。記憶部32は、制御部31のプロセッサ31aが実行するプログラムを記憶しても良い。また、記憶部32は、測定端末2およびセンサ3から供給される測定データなどを記憶するようにしても良い。また、記憶部32は、表示部に表示する表示データなども記憶するようにして良い。
 通信部33は、サーバ12と通信するための通信インターフェースである。通信部33は、ネットワークを介してデータをサーバ12へ送信したり、サーバ12からのデータを受信したりする。通信部33による通信は、無線通信であっても良いし、有線通信であっても良い。本実施形態において、ネットワークは例えばインターネットなどを想定して説明するが、これに限定されず、LANのような他の種類のネットワークであってもよく、USBケーブルなどの通信ケーブルを用いた1対1の通信であってもよい。
 表示部34は、表示画面(例えば、LCDまたはELディスプレイなど)を含む。表示部34は、制御部31の制御によって表示画面に表示する表示内容が制御される。 
 操作部35は、ユーザ(例えば被測定者)による操作に対応した操作信号を制御部31へ送信する。操作部35は、例えば、表示部34の表示画面上に設けたタッチパネルである。操作部35は、タッチパネルに限定されず、操作ボタン、キーボードおよびマウスなどであっても良い。また、操作部35は、ユーザの音声による操作指示を認識する音声認識部、ユーザの生体の一部を認証する生体認証部、あるいは、ユーザの表情やジェスチャーを認識する画像認識部などを備えるものであっても良い。
 センサI/F36は、測定端末2およびセンサ3と通信するための通信インターフェースである。センサI/F36は、測定端末2およびセンサ3からのデータを受信したり、測定端末2およびセンサ3へ動作指示を送信したりする。また、センサI/F36は、測定端末2用のインターフェースと、センサ3用のインターフェースとを含むものであっても良い。センサI/F36による通信は、無線通信であっても良いし、有線通信であっても良い。
 本実施形態において、センサI/F36は、近距離無線通信により測定端末2およびセンサ3と通信する形態を想定して説明するが、これに限定されず、測定端末2またはセンサ3は通信ケーブルを介して通信するためのインターフェースを含むものであっても良い。また、センサI/F36は、通信ケーブルを介してシリアルに通信するものであっても良いし、LANのようなネットワークを介して通信するものであっても良い。
 なお、センサ3は、検知した信号を時刻情報に対応づけた測定データとしてセンサI/F36へ供給するものであって良いし、検知した信号を測定データとしてセンサI/F36へ供給するものであっても良い。後者の場合、ユーザ端末11の制御部31は、センサI/F36によりセンサ3から取得するデータに時刻情報を紐づけた測定データとして取得するようにしても良い。
 本実施形態においては、センサ3がSPO2を測定するセンサであるものであることを想定して説明する。SPO2は、人間の呼吸状態を示す指標としても用いられ、睡眠中の人間の睡眠時無呼吸症候群(SAS)の状態を示す指標となる。SASは、血圧変動を引き起こしうる要素の1つとして考えられるため、センサ3が測定するSPO2の測定データは、血圧以外の要素の測定データとして出力されうる。
 次に、サーバ12の構成について説明する。 
 図4は、図1に示すサーバ12の構成例を示すブロック図である。 
 サーバ12は、制御部41、記憶部42および通信部43を有する。本実施形態において、サーバ12は、汎用のコンピュータ装置に、後述の処理を行わせるようにプログラム(ソフトウェア)をインストールしたものを想定して説明するものとする。
 制御部41は、少なくとも1つのプロセッサ41aとメモリ41bとを有する。制御部41は、プロセッサ41aがメモリ41bを用いてプログラムを実行することにより、各種の動作制御およびデータ処理などを行う。プロセッサ41aは、例えば、演算回路を含むCPUやMPUなどである。メモリ41bは、プロセッサ41aが実行するプログラムを記憶する不揮発性のメモリ、および、ワークメモリとして使用するRAMなどの揮発性メモリを含む。また、制御部41は、図示しないクロックを有し、現在の日時を計時する時計機能を有する。
 記憶部42は、データメモリである。記憶部42は、例えば、磁気ディスク(HD)、半導体メモリ(メモリカード、SSD)、光ディスク、光磁気ディスクなどで構成する。記憶部42は、ユーザ端末11から取得する各種の測定データを記憶する。また、記憶部42は、制御部41のプロセッサ41aが実行するプログラムを記憶しても良い。
 通信部43は、ユーザ端末11あるいは医療者端末13と通信するための通信インターフェースである。通信部43は、ネットワークを介してデータをユーザ端末11あるいは医療者端末13へ送信したり、ユーザ端末11あるいは医療者端末13からのデータを受信したりする。通信部43による通信は、無線通信であっても良いし、有線通信であっても良い。本実施形態において、通信部43は、インターネットなどのネットワークを介してユーザ端末11と通信し、LANを介して医療者端末13と通信する構成を想定して説明する。ただし、通信部43による通信は、特定の通信方式に限定されるものではない。
 次に、医療者端末13の構成について説明する。 
 図5は、図1に示す医療者端末13の構成例を示すブロック図である。 
 図5に示す構成例において、医療者端末13は、制御部51、記憶部52、通信部53、表示部54および操作部55などを有する。本実施形態では、医療者端末13は、後述の処理を実行可能となるようにアプリケーションソフトウエア(プログラム)をインストールしたPCを想定して説明するが、例えば、タブレットPCやスマートフォンなどの通信端末であっても良い。
 制御部51は、少なくとも1つのプロセッサ51aとメモリ51bとを有する。制御部51は、プロセッサ51aがメモリ51bを用いてプログラムを実行することにより、各種の動作制御およびデータ処理などを行う。プロセッサ51aは、例えば、演算回路を含むCPUやMPUなどである。メモリ51bは、プロセッサ51aが実行するプログラムを記憶する不揮発性のメモリ、および、ワークメモリとして使用するRAMなどの揮発性メモリを含む。また、制御部51は、図示しないクロックを有し、現在の日時を計時する時計機能を有する。
 記憶部52は、データメモリである。記憶部52は、例えば、磁気ディスク、半導体メモリ(メモリカード、SSD)、光ディスク、光磁気ディスクなどで構成する。記憶部52は、制御部51のプロセッサ51aが実行するプログラムを記憶しても良い。
 通信部53は、サーバ12と通信するための通信インターフェースである。通信部53は、データをサーバ12へ送信したり、サーバ12からのデータを受信したりする。通信部53による通信は、無線通信であっても良いし、有線通信であっても良い。本実施形態において、通信部53は、LANのような他の種類のネットワークを介してサーバ12と通信するものを想定して説明するが、これに限定されず、通信ケーブルを用いてシリアルに通信を行うものを含むでも良い。
 表示部54は、表示画面(例えば、LCDまたはELディスプレイなど)を含む。表示部54は、制御部51の制御によって表示画面に表示する表示内容が制御される。 
 操作部55は、ユーザ(例えば被測定者)による操作に対応した操作信号を制御部51へ送信する。操作部55は、例えば、表示部54の表示画面上に設けたタッチパネルである。操作部55は、タッチパネルに限定されず、操作ボタン、キーボードおよびマウスなどであっても良い。また、操作部55は、ユーザの音声による操作指示を認識する音声認識部、ユーザの生体の一部を認証する生体認証部、あるいは、ユーザの表情やジェスチャーを認識する画像認識部などを備えるものであっても良い。
 次に、サーバ12の制御部41が実現する機能について説明する。 
 図6は、サーバ12の制御部41が有する機能を示すブロック図である。
 サーバ12の制御部41は、プロセッサ41aがメモリ41bに記憶したプログラムを実行することにより種々の処理機能を実現する。サーバ12の制御部41は、主な機能として、図6に示すように、情報取得部61、操作検知部62、血圧変動検出部63、表示制御部64、関連性判定部65、および、相関情報生成部66などを有する。
 情報取得部61は、測定端末2およびセンサ3が測定した測定データを取得する機能である。制御部41は、情報取得部61として、通信部43を介してユーザ端末11から各種の測定データを受信し、受信した測定データを記憶部42に記憶する処理を行う。制御部41は、例えば、ユーザ端末11または測定端末2でのユーザの操作によってサーバ12へ転送されてくる測定データを取得するものであっても良い。また、制御部41は、ユーザ端末11または測定端末2へ測定データの転送を要求し、ユーザ端末11または測定端末2から測定データを取得するようにしても良い。
 情報取得部61は、測定データとして、連続測定した血圧データと血圧以外の複数の要素の測定データとを取得する。複数の要素の測定データとしては、上述したように、センサ3が測定するSPO2の測定データ、測定端末2の加速度センサ26が測定する加速度データ、測定端末2の気温センサ28aが測定する気温データなどを取得する。これら以外にも、情報取得部61は、生体センサ27としてのセンサが測定する生体データや環境センサ28としてのセンサが測定する環境データなどを取得するようにしても良い。
 操作検知部62は、ユーザ端末11または医療者端末13からの操作指示を受け付ける機能である。制御部41は、操作検知部62として、通信部43を介してユーザ端末11または医療者端末13からの操作指示を示す情報を受信し、受信した操作指示を受け付ける処理を行う。
 血圧変動検出部63は、連続的に測定された血圧データから基準値以上の血圧変動を検出する機能である。制御部41は、血圧変動検出部63として、検出すべき血圧変動に対する基準値を設定しておき、基準値以上の血圧変動を測定期間の連続測定された血圧データから検出する処理を行う。また、血圧変動の基準値は、複数段階に設定して良い。本実施形態においては、例えば、3段階の基準値で血圧変動を3段階の危険度の血圧サージを検出するものとする。
 なお、本実施形態においては、基準値以上の血圧変動として複数段階の危険度の血圧サージを検出するものとして説明するが、上昇した血圧値を正常値に戻す調整能力を血圧変動として検出するようにしても良い。
 また、血圧サージを検出するための基準値は、例えば、血圧変動の大きさとその変動に要する期間とに対して設定する。つまり、短い期間で大きな血圧変動が起きた場合により危険度が高い血圧サージであるものとする。また、血圧サージの基準値は、利用者の活動量に応じた値として設定しても良い。例えば、運動中などの活動量が多い場合には血圧変動が大きくても正常であると考えられるから、活動量が少ない状況で血圧変動が大きくなった場合により危険度が高い血圧サージであると検出するようにしても良い。
 表示制御部64は、医療者端末13あるいはユーザ端末11や測定端末2の表示部に表示させる内容を制御する機能である。制御部41は、表示制御部64として、通信部43を介して通信可能な医療者端末13あるいはユーザ端末11へ表示データあるいは表示のためのデータを供給する処理を行う。制御部41は、例えば、医療者端末13の表示部に特定のユーザに関する連続測定した血圧データと血圧以外の要素の測定データとを対応づけて表示する血圧関連情報の表示制御を行う。表示制御部64によって表示する内容については、後で詳細に説明するものとする。
 関連性判定部65は、血圧変動と血圧以外の要素の測定データとの関連性を判定する機能である。制御部41は、関連性判定部65として、基準値以上の血圧変動と血圧以外の要素の測定データとの関連性を判定する処理を行う。制御部41は、基準値以上の血圧変動としての血圧サージが発生した期間とその前後の期間における各要素の測定データの変動に基づいて血圧サージとの関連性を判定する。血圧サージとの連動が顕著であればあるほど、制御部41は、当該要素と血圧サージとの関連性(当該要素の感受性)が高いと判定する。
 ただし、関連性の判定においては、血圧サージと対応する期間におけるある要素の測定データの変動の大きさだけではなく、血圧サージが発生する直前の変動傾向により関連性を判定する。例えば、少しの変化であっても血圧サージが発生する場合、関連性判定部65は、当該要素の感受性が高いと判定するようにして良い。また、変動の大きさよりも急激な変化に対して血圧サージが発生しやすい傾向、緩やかな変化であっても大きな変動に対して血圧サージが発生しやすい傾向なども関連性判定部65が判定するようにしても良い。
 相関情報生成部66は、基準値以上の血圧変動と他の要素の測定データとの相関を示す相関情報(例えば、相関グラフ)を生成する機能である。制御部41は、相関情報生成部66として、基準値以上の血圧変動に対する血圧以外の要素の測定データとの相関関係を示す相関情報(例えば、相関グラフ)を生成する処理を行う。例えば、制御部41は、SPO2と血圧サージとの相関を表示する旨の指示に応じて、SPO2と血圧サージとの相関関係を示す相関情報としての相関グラフを作成する。制御部41は、作成した相関グラフを表示制御部64により医療者端末13の表示部54などに表示させる。
 次に、上記のように構成される測定データの管理システムの動作について説明する。 
 ユーザ(被測定者)は、測定端末2を操作することにより血圧値の連続測定を含む各種の要素の測定を指示する。測定端末2は、ユーザの操作に応じて各種の要素の連続的な測定を実行し、測定期間における測定結果としての測定データをユーザ端末11を介してサーバ12へ転送する。また、ユーザ端末11は、測定端末2での測定期間の少なくとも一部を含む期間においてセンサ3が測定した測定データも取得する。センサ3は、ユーザ端末11から測定開始の指示に応じて測定を実行しても良いし、ユーザ端末11を介して測定端末2からの測定開始の指示を受けて測定を実行するようにしても良い。
 図7は、測定端末2が測定を実行する場合に表示部25が表示する操作画面の遷移例を示す図である。 
 図7に示す操作画面71は、測定期間における連続測定の動作モード(スクリーニング)を開始する場合の表示例である。操作画面71を表示した状態において、ユーザが操作部24としてのタッチパネルによりスクリーニングをタッチすると、制御部21は、操作画面72を表示部25に表示する。操作画面72は、設定されている測定期間における測定開始をユーザに確認させるための確認画面である。ここで、測定期間は、ユーザが測定開始を指示してから測定終了を指示するまでの期間であっても良いし、予め設定される期間であっても良い。測定期間としては、就寝中、特定の活動中、24時間などが想定される。例えば、就寝中を測定期間とする場合、ユーザは、就寝前に測定開始を指示し、起床後に測定終了を指示する。
 操作画面72において測定開始を指示すると(「OK」を指示すると)、制御部21は、測定を開始する。測定を開始すると、制御部21は、測定期間において各種のセンサが測定するデータを記憶部23に蓄積する。なお、制御部21は、随時(リアルタイムまたは短い周期で)、測定したデータをユーザ端末11へ転送し、ユーザ端末11が測定データを蓄積するようにしても良い。また、測定開始の指示が入力される前に、制御部21は、ユーザによる測定条件などを入力可能としても良い。例えば、制御部21は、測定開始前にユーザが指示する測定期間を設定するようにしても良いし、ユーザが指示する個人の識別情報などを受け付けるようにしても良い。
 測定を実行中において、制御部21は、ユーザによる測定終了の指示を受け付ける。ユーザは、測定を終了する場合(例えば、起床した後)、所定の操作によって表示部25に操作画面73を表示させる。例えば、制御部21は、加速度センサ26により測定端末2に対する所定の動きを検出した場合に操作画面73を表示部25に表示するようにしても良いし、操作部24への所定の操作を検知した場合に操作画面73を表示部25に表示するようにしても良い。また、予め設定した測定期間が経過した後、制御部21は、アラーム等により測定期間が経過したことを報知し、測定終了の指示を受け付ける操作画面73を表示部25に表示するようにしても良い。
 操作画面73では、測定終了の指示画面として「YES」キーと「NO」キーとを表示する。操作画面73において「YES」キーが指示された場合、制御部21は、測定を終了するものと判断する。また、操作画面73において「NO」キーが指示された場合、制御部21は、測定を継続するものと判断する。
 測定を終了すると判断した場合、制御部21は、測定データの転送を案内する操作画面74を表示部25に表示する。操作画面74は、測定期間中に測定した結果としての測定データをユーザ端末11あるいはサーバ12へ転送していることを案内する。ここでは、制御部21は、測定期間中に測定した測定データ(各センサによる測定値と時刻情報とを対応づけた測定データ)を記憶部23に記憶しているものとする。
 制御部21は、操作画面74を表示するとともに、記憶部23に蓄積した測定期間中の測定データを被測定者(あるいは測定端末2)の個別の識別情報と合わせてユーザ端末11を介して(あるいはユーザ端末11を介すことなく)サーバ12へ転送する。これにより、サーバ12は、測定データの管理システムにおける各測定端末2から各ユーザの測定データを取得することができる。また、サーバ12は、ユーザ端末11を介して測定端末2からの測定データとともにセンサ3が測定する測定データを取得することにより、ユーザの測定期間における各種の要素の測定データを収集できる。
 なお、上述した例では、測定終了した後に測定期間中の測定データをユーザ端末11を介してサーバ12へ転送するものとしたが、測定端末2は、リアルタイム(または所定の周期)で測定データをユーザ端末11またはサーバ12へ転送するようにしても良い。通信の頻度を少なくすれば、測定端末2は、電力消費を低く抑えることができる。これに対して、リアルタイムまたは短い周期で測定データを測定端末2から転送するようにすれば、ユーザ端末11あるいはサーバ12は、リアルタイムまたは短い周期で測定データを取得でき、リアルタイムまたは短い周期でのユーザの状態を解析することが可能となる。
 次に、サーバ12が連続測定した血圧データを含む測定データに基づく血圧関連情報の表示例について説明する。 
 ここでは、サーバ12が医療者端末13の表示部54に測定端末2およびセンサ3が測定した測定データに基づく情報を表示させるものとする。サーバ12の表示制御部64は、連続測定した血圧データを含む測定データと測定データに基づく分析結果とを含む情報(血圧関連情報)を表示部54に表示させる。サーバ12が表示部54に表示させる情報は、医療者による測定データに基づく血圧サージの要因の判定と治療アドバイスとを支援するための情報である。ただし、サーバ12の表示制御部64は、測定データおよび測定データに基づく分析結果などの血圧関連情報をユーザ端末11の表示部34あるいは測定端末2の表示部25に表示させるようにしても良い。
 図8および図9は、サーバ12の表示制御部64が医療者端末13の表示部54に表示させる血圧関連情報の表示例である。 
 図8は、あるユーザの特定の測定期間における測定データと測定データに基づく血圧サージに関する分析結果とを含む血圧関連情報の表示例である。
 図8に示す表示画面は、リスクタイプ表示領域101、アドバイス表示領域102およびデータ詳細表示領域103を有する。また、図8に示す表示画面では、ユーザ(被測定者)に関する身体的な個人情報104と測定結果に表れた血圧サージに関する総合的な判定結果を示す情報105とを表示する。
 リスクタイプ表示領域101は、脳心血管イベントを引き起こす原因とその原因に対する影響具合(感受性)とをリスクタイプとして表示する領域である。ここで、リスクタイプは、脳心血管イベントを引き起こす原因とその原因に対する影響具合によって層別化された分類であるものとする。例えば、脳心血管イベントを発症する原因となりうる基準値以上の血圧変動(血圧サージ)は、SAS(睡眠時無呼吸症候群)、温度変化、睡眠状態の変化、活動量の変化、ストレスなどによって起こりうる。
 また、リスクタイプとしては、例えば、「気温変化によって急激な血圧サージが頻繁に起きすいタイプ」、「気温変化によって緩やかな血圧変動が起きすいタイプ」などが分類される。前者は、気温変化によって急激な血圧サージが起きる可能性が高いため、血圧変動の原因が気温変化であり、気温感受性が高いリスクタイプとして判定される。また、後者は、気温変化によって緩やかな血圧変動が起きすいため、血圧変動の原因が気温変化であるが、気温感受性が低いリスクタイプとして判定される。
 なお、リスクとは、脳心血管イベント(脳梗塞、脳出血、心筋梗塞、心不全など)を発症する危険性を意味するものとする。本実施形態において、リスクは、血圧変動の大きさ、変動時間、変動の変化などの要素を包括的に考慮することで判定されるものとして説明する。例えば、変動差が同じであっても、数秒で血圧変動をする場合とそれよりも長い時間をかけて変動する場合とではリスクが異なると考えられる。
 ただし、脳心血管イベントを発症するリスクは、血圧変動の大きさ、変動時間および変動の変化以外にも、動脈硬化、性別、年齢、食事内容、睡眠、遺伝などの様々な要素から判定されるものである。このため、リスクの判定は、本実施形態で例示するものに限定されるものではなく、動脈硬化、性別、年齢、食事内容、睡眠、遺伝などの様々な要素を考慮して判定されるものとして良い。
 サーバ12は、関連性判定部65により脳心血管イベントを発症する原因となりうる血圧サージと各種の要素との関連性(感受性)を判定し、血圧サージとの関連性が高いと判定した要素を示す情報をリスクタイプ表示領域101に表示する。例えば、血圧サージとSASとの関連性が高い(SAS感受性が強い)と判定した場合、サーバ12は、リスクタイプがSAS感受性タイプであることを表示する。
 図8に示す例では、リスクタイプを示す情報(図8の例では、SAS)と共に、感受性が高いと判定された要素の変動を示す情報(図8の例では、最大SASサージ)、当該要素の変動と血圧サージとの関連を示す情報(図8の例では、SASサージ回数)、および、危険度別の血圧サージの割合を示す情報がリスクタイプ表示領域101に表示される。
 アドバイス表示領域102は、血圧サージの発生状況および血圧サージに対する各要素の関連性に基づく治療のアドバイスを表示する領域である。例えば、アドバイス表示領域102には、血圧サージの要因として推定した要素の測定データに応じた治療法などのアドバイスを表示する。
 図8に示す例は、アドバイス表示領域102の表示例は、血圧サージの要因がSASであると推定した場合の表示例であり、血圧サージに対する治療方法(つまり、SASの治療法)として、複数の選択肢(「CPAPの使用」、「生活指導」、「投薬」)が表示され、それらの選択肢から推奨される1つの治療方法を示す情報がアドバイス表示領域102に表示される。
 例えば、推奨する治療方法は、SASが要因と推定される血圧サージの危険度に応じて決定されるようにしても良い。例えば、SASが要因となる血圧サージが多発している場合、あるいは、SASが要因と推定される血圧サージの血圧変動が非常に大きい場合(つまり、血圧サージの危険度が非常に高い場合)、重篤な人物に対する治療法をアドバイスとして提示するようにして良い。
 データ詳細表示領域103は、実際の測定データを詳細に表示する領域である。図8に示す例では、データ詳細として、連続測定した血圧データのグラフ111、連続測定した血圧データの一部の期間分を拡大表示したグラフ112、グラフ112と同じ期間における血圧以外の要素の測定データを拡大表示したグラフ113、グラフ表示の選択欄114、および、分析指示ボタン115(115a、115b)がデータ詳細表示領域103に表示される。
 グラフ111は、連続測定を実施した測定期間全体または所定の期間(12時間、24時間など)における連続測定された血圧値のデータを表示する。グラフ111には、グラフ112および113で拡大表示する期間(拡大期間)を示す拡大表示帯111aが表示される。
 グラフ112は、グラフ111の拡大表示帯111aが示す期間における血圧データを表示する。グラフ112には、血圧サージとして検出された期間T1,T2,T3,T4が色分けで表示される。 
 グラフ113は、グラフ111の拡大表示帯111aが示す期間における選択された要素の測定データを表示する。グラフ113は、グラフ112に対応づけて表示される。図8に示す例では、グラフ113として、SPO2の測定データがグラフ112の血圧データに対応づけて表示されている。
 グラフ表示の選択欄114は、グラフ112および113として表示する要素(指標)を示す。また、選択欄114は、医療者またはユーザがグラフ112または113として表示する要素を指定するための欄としても用いられる。選択欄114で選択状態となっている要素の測定データがグラフ112およびグラフ113として表示される。図8に示す例では、連続血圧とSPO2とが選択状態となっており、グラフ112には連続血圧として血圧データが表示され、グラフ113にはSPO2の測定データが表示されている。選択欄114で同時に選択可能な項目は、グラフ112および113として表示可能なものに限定されるようにして良い。なお、初期状態において、選択欄114は、血圧データと血圧サージの要因として推定される要素の測定データとが選択されるものとする。
 また、選択欄114において選択可能とする要素は、ユーザの血圧変動の要因となりうる情報であり、サーバ12が取得可能な測定データであれば良い。図8に示す例では、血圧の他に、SPO2、睡眠、活動量、気温などの要素が選択欄114において選択可能となっている。上述した構成例では、SPO2の測定データは、センサ3が測定するものである。睡眠の測定データは、測定端末2の加速度センサ26が睡眠中の被測定者に対して測定する加速度データ(姿勢)であっても良いし、測定端末2の生体センサ27の1つしての脳波センサが測定する脳波データであっても良い。また、活動量の測定データは、測定端末2の加速度センサ26が測定する加速度データである。また、気温の測定データは、測定端末2の気温センサ28aが測定するものである。
 分析指示ボタン115は、特定の分析を指示するボタンである。図8に示す例では、ODI分析を指示する分析指示ボタン115aとSPO2に対する血圧サージの相関を示す分析指示ボタン115bとが表示される。例えば、分析指示ボタン115bは、血圧以外の特定の要素としてのSPO2と血圧サージとの相関関係を示す相関情報(相関グラフ)の表示を指示するボタンである。
 図9は、SPO2と血圧サージとの相関関係を示す相関グラフの表示例を示す図である。つまり、図8に示す分析指示ボタン115bが指示された場合、サーバ12の制御部41は、相関情報生成部66によりSPO2と血圧サージとの相関グラフを生成し、生成した相関グラフを表示部54に表示させる。図9に示す表示例では、図8に示す表示画面上にポップアップ画面120としてSPO2と血圧サージとの相関グラフが表示されている。図9に示す相関グラフは、操作者の操作によって図8に示す表示状態に戻すことができるものとする。
 以上のような表示によれば、サーバ12は、測定端末およびセンサが測定するデータに基づいて、血圧サージの発生状況、血圧データに対応づけた各種の測定データ、測定データから推定される血圧サージの要因、および、治療のアドバイスなどを医療者またはユーザに提示することができる。
 次に、測定端末2およびセンサ3が測定した測定データを提供する処理について説明する。 
 ここでは、サーバ12が測定端末2およびセンサ3が測定した測定データを収集し、収集した測定データを医療者端末13に表示させる動作例について説明する。ただし、後述する医療者端末13が実行する処理をユーザ端末11が実行する処理に置き換えた運用を実施しても良い。また、後述のサーバ12の処理の一部または全部は、ユーザ端末11または測定端末2が実施するようにしても良い。
 図10および図11は、サーバ12の動作例を説明するためのフローチャートである。
 医療者端末13の表示部54に特定のユーザの血圧関連情報を表示する場合、医療者端末13の制御部51は、通信部53を介して血圧関連情報の表示情報をサーバ12に要求する信号を送信する。例えば、医療者は、医療者端末13の操作部55を操作してユーザを特定する情報(例えば、ユーザの識別情報)と共に血圧関連情報の表示を指示する。血圧関連情報の表示が指示されると、医療者端末13の制御部51は、ユーザの識別情報とともに血圧関連情報の表示情報をサーバ12に要求する信号を送信する。このとき、表示する血圧関連情報が測定された年月日(測定期間)を指定可能としても良いし、表示する項目を予め設定可能としてもよい。
 サーバ12の制御部41は、情報取得部61によって、ユーザ端末11を介して測定端末2およびセンサ3から測定データを取得し、記憶部42に蓄積する(S11)。情報取得部61が取得する測定データには、連続測定した血圧データと血圧以外の複数要素の測定データとが含まれる。また、制御部41は、ユーザ端末11から測定データと共にユーザの識別情報を受信し、測定データとユーザの識別情報とを対応づけて記憶部42に蓄積する処理を行う。
 また、制御部41は、測定データを記憶部42に記憶する処理を行いつつ、医療者端末13からの血圧関連情報の表示指示を受け付ける。制御部41は、通信部43を介して血圧関連情報の表示を要求する信号を医療者端末13から受信すると(S12、YES)、指定されたユーザに対応する連続測定した血圧データ(連続測定した測定期間、または所定期間分の連続測定した血圧データ)を記憶部42から読み出す。
 制御部41は、指定されたユーザの連続測定した血圧データを記憶部42から読み出すと、表示制御部64によって、読み出した血圧データを医療者端末13の表示部54に表示させる(S13)。例えば、制御部41は、図8に示すような表示画面におけるグラフ111として、読み出した連続測定した血圧データを表示部54に表示させる。
 また、制御部41は、血圧変動検出部63によって、読み出した連続測定した血圧データにおける基準値以上の血圧変動を検出する(S14)。ここでは、複数段階の基準値以上の血圧変動を連続測定した血圧データから危険別の血圧サージとして検出するものとする。血圧サージを検出すると、制御部41は、血圧サージの検出結果に基づいて連続測定した血圧データを拡大表示する時間帯(拡大期間)を決定し、決定した拡大期間の血圧データを拡大表示する(S15)。例えば、制御部41は、図8に示すような表示画面におけるグラフ112として拡大期間の血圧データを表示部54に表示させる。また、制御部41は、グラフ112として表示した拡大期間の血圧データに対して、危険度別で検出した血圧サージの時間帯を危険度別に色分けして表示部54に表示させる。これにより、拡大期間における血圧値の変動を視認し易くでき、検出された血圧サージを認識し易くできる。
 さらに、制御部41は、関連性判定部65によって、検出した血圧サージと血圧以外の各要素の測定データとの関連性を判定する(S16)。さらに、制御部41は、血圧サージと各要素の測定データとの関連性の判定結果に基づいて、血圧サージとの関連が高い要素を判定する(S17)。血圧サージとの関連が高い要素を1つ判定すると、制御部41は、当該要素の拡大期間の測定データを記憶部42から読み込み、読み込んだ測定データを拡大期間の血圧データに対応づけて表示する(S18)。例えば、制御部41は、図8に示すような表示画面において、血圧サージとの関連が高いと判定された要素を選択欄114で選択状態とし、グラフ113として血圧サージとの関連が高いと判定された要素の拡大期間の測定データを表示部54に表示させる。
 以上の処理によって、サーバ12は、図8に示すような表示画面を医療者端末13の表示部54にさせる。このような表示画面を表示した場合、サーバ12は、操作検知部62によって、医療者端末13の操作部55による操作を検知し、操作指示に応じて表示部54が表示する表示内容を更新する。
 例えば、サーバ12の制御部41は、グラフ112および113として拡大表示する時間帯(拡大期間)の指示を受け付ける(S19)。例えば、図8に示す表示画面のグラフ111上で指示される位置に応じて拡大期間の指示を受け付ける。医療者端末13の操作部55により拡大期間が指定された場合(S19、YES)、サーバ12の制御部41は、指示しれた拡大期間に応じて拡大表示帯111a、グラフ112および113を更新する(S20)。すなわち、制御部41は、拡大期間を示す拡大表示帯111aをグラフ111上の指示された位置に表示させる。また、制御部41は、拡大表示帯111aが表示する期間を拡大期間として新たに設定し、当該拡大期間における測定データ(連続測定された血圧データおよび選択されている血圧以外の要素の測定データ)をグラフ112および113として表示させる。
 また、制御部41は、グラフ113として表示する要素の選択指示を受け付ける(S21)。例えば、図8に示す表示画面において、選択欄114への指示に応じてグラフ113として表示する要素の選択指示を受け付ける。医療者端末13の操作部55により表示する要素の変更が指示された場合(S21、YES)、サーバ12は、グラフ113として表示する要素を指示された要素に変更し、指示された要素の測定データを表示させる(S22)。また、サーバ12の制御部41は、選択欄114において指示された要素を選択状態とする表示に変更する。
 また、制御部41は、分析表示ボタン115により特定のデータと血圧サージとの相関を示す相関情報の表示指示を受け付ける(S23)。例えば、図8に示す表示画面において、分析表示ボタン115bによってSPO2の測定データと血圧サージとの相関関係を示す相関グラフの表示指示を受け付ける。医療者端末13の操作部55により分析表示ボタン115bが指定された場合(S23、YES)、サーバ12の制御部41は、相関情報生成部66によって、SPO2の測定データと血圧サージとの相関関係を示すグラフ(相関グラフ)を作成し、作成した相関グラフを表示部54に表示させる(S24)。例えば、制御部41は、図8の分析表示ボタン115bが指示されると、図9に示す相関グラフを表示部54に表示させる。
 また、サーバ12の制御部41は、医療者端末13における表示終了の操作を受け付けると(S25、YES)、連続測定した血圧データに関連する情報の表示を終了する。表示を終了すると、制御部41は、S11へ戻り、測定データの収集および表示指示の受け付けを行う。
 上記のように、情報処理装置としてのサーバ12は、表示装置に表示させる血圧関連情報の表示によれば、被測定者の連続測定した血圧データと、当該血圧データの一部の期間を拡大期間として表示すると共に当該拡大期間の血圧データに対応づけて血圧以外の少なくとも1つの要素の測定データを表示装置に表示させる。これにより、膨大な量の連続測定した血圧データの一部を拡大期間として拡大表示でき、拡大表示した血圧データに対応づけて血圧以外の複数要素から選択した1つの要素の測定データを表示できる。この結果、人が見やすい状態で血圧データに対応づけて他の要素の測定データを視認し易くすることができ、被測定者の治療や健康管理などのための負担を軽減することができ、被測定者の健康状態を改善することを支援することができる。
 本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
 上記実施形態の一部または全部は、以下の付記のようにも記載され得るが、以下に限定されるものではない。 
 (付記1)
 情報処理装置であって、
 メモリと、
 前記メモリと協働する少なくとも1つのプロセッサと、を有し、
 前記プロセッサは、
 特定の被測定者から連続測定された血圧データと血圧以外の複数要素の測定データとを取得し、
 前記取得した連続測定された血圧データから基準値以上の血圧変動を検出し、
 前記検出する基準値以上の血圧変動の時間帯を含む拡大期間における血圧データと前記拡大期間における血圧以外の少なくとも1つの要素の測定データとを対応づけて表示装置に表示させる。

Claims (7)

  1.  特定の被測定者から連続測定された血圧データと血圧以外の複数要素の測定データとを取得する情報取得部と、
     前記情報取得部により取得した連続測定された血圧データから基準値以上の血圧変動を検出する血圧変動検出部と、
     前記血圧変動検出部が検出する基準値以上の血圧変動の時間帯を含む拡大期間における血圧データと前記拡大期間における血圧以外の少なくとも1つの要素の測定データとを対応づけて表示装置に表示させる表示制御部と、
     を有する情報処理装置。
  2.  さらに、前記情報取得部が取得する血圧以外の各要素の測定データと前記血圧変動検出部が検出する基準値以上の血圧変動との関連性を判定する関連性判定部を有し、
     前記表示制御部は、前記拡大期間における血圧データに対応づけて、前記関連性判定部によって基準値以上の血圧変動との関連性が高いと判定された要素の測定データを表示装置に表示させる、
     請求項1に記載の情報処理装置。
  3.  前記表示制御部は、操作者による拡大期間に表示する要素の指示に応じて、前記拡大期間における血圧データに対応づけて表示する要素を操作者が指定する要素に更新する、
     請求項2に記載の情報処理装置。
  4.  前記表示制御部は、操作者による拡大期間の指示に応じて、前記表示装置に表示させる拡大期間を操作者が指示する拡大期間に更新する、
     請求項1乃至3の何れか1項に記載の情報処理装置。
  5.  さらに、特定の要素と基準値以上の血圧変動との相関関係を示す相関情報を生成する相関情報生成部を有し、
     前記表示制御部は、操作者の表示指示に応じて前記相関情報生成部が生成する相関情報を前記表示装置に表示させる、
     請求項1乃至4のいずれか1項に記載の情報処理装置。
  6.  前記情報取得部は、PTT方式、トノメトリ方式、光学方式、電波方式、または、超音波方式の何れかの方式の血圧センサによって連続測定された血圧データを取得する、
     請求項1乃至5の何れか1項に記載の情報処理装置。
  7.  コンピュータに、
     特定の被測定者から連続測定された血圧データと血圧以外の複数要素の測定データとを取得する機能と、
     前記取得した連続測定された血圧データから基準値以上の血圧変動を検出する機能と、
     前記検出する基準値以上の血圧変動の時間帯を含む拡大期間における血圧データと前記拡大期間における血圧以外の少なくとも1つの要素の測定データとを対応づけて表示装置に表示させる機能と、
     を実行させるための情報処理プログラム。
PCT/JP2018/004914 2017-03-14 2018-02-13 情報処理装置および情報処理プログラム WO2018168300A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880018225.6A CN110446460B (zh) 2017-03-14 2018-02-13 信息处理装置和存储介质
DE112018001354.5T DE112018001354T5 (de) 2017-03-14 2018-02-13 Informationsverarbeitungsvorrichtung und informationsverarbeitungsprogramm
US16/549,010 US20190374170A1 (en) 2017-03-14 2019-08-23 Information processing apparatus and information processing program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-048725 2017-03-14
JP2017048725A JP6765998B2 (ja) 2017-03-14 2017-03-14 情報処理装置および情報処理プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/549,010 Continuation US20190374170A1 (en) 2017-03-14 2019-08-23 Information processing apparatus and information processing program

Publications (1)

Publication Number Publication Date
WO2018168300A1 true WO2018168300A1 (ja) 2018-09-20

Family

ID=63522991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004914 WO2018168300A1 (ja) 2017-03-14 2018-02-13 情報処理装置および情報処理プログラム

Country Status (5)

Country Link
US (1) US20190374170A1 (ja)
JP (1) JP6765998B2 (ja)
CN (1) CN110446460B (ja)
DE (1) DE112018001354T5 (ja)
WO (1) WO2018168300A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12002068B2 (en) * 2018-09-28 2024-06-04 Allstate Insurance Company Data processing system with machine learning engine to provide output generation functions
US20200196878A1 (en) * 2018-12-19 2020-06-25 Livemetric (Medical) S.A. System and method for blood pressure monitoring with subject awareness information

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156604U (ja) * 1987-03-31 1988-10-14
JP2003149007A (ja) * 2001-11-12 2003-05-21 Omron Corp 生体測定装置
JP2003310579A (ja) * 2002-04-24 2003-11-05 Nippon Colin Co Ltd 生体監視装置
JP2006510451A (ja) * 2002-12-18 2006-03-30 カーディアック・ペースメーカーズ・インコーポレーテッド データを相関させるための高度な患者管理
JP2010071742A (ja) * 2008-09-17 2010-04-02 Hitachi Software Eng Co Ltd 測定データ表示装置
US20130267861A1 (en) * 2012-04-05 2013-10-10 Welch Allyn, Inc. User Interface Enhancements for Physiological Parameter Monitoring Platform Devices
JP2015029565A (ja) * 2013-07-31 2015-02-16 フクダ電子株式会社 生体情報モニタ

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11318841A (ja) * 1998-03-09 1999-11-24 Nippon Colin Co Ltd 血圧監視装置
JP4025220B2 (ja) 2003-03-03 2007-12-19 ▲苅▼尾 七臣 血圧計および心血管系疾病リスク分析プログラム
JP4902153B2 (ja) * 2005-08-12 2012-03-21 オムロンヘルスケア株式会社 電子血圧計およびデータ処理装置
JP4595739B2 (ja) * 2005-08-15 2010-12-08 オムロンヘルスケア株式会社 電子血圧計、血圧測定データ処理装置、プログラムならびに記録媒体
JP2008043356A (ja) * 2006-08-10 2008-02-28 A & D Co Ltd 血圧監視装置
EP2047794B1 (en) * 2007-10-11 2012-02-29 LiDCO Group PLC Hemodynamic monitor
JP4978483B2 (ja) * 2008-01-23 2012-07-18 オムロンヘルスケア株式会社 血圧測定装置および血圧測定データの処理方法
JP2011147493A (ja) * 2010-01-19 2011-08-04 Omron Healthcare Co Ltd 生体情報監視装置、警報値設定方法および警報値設定プログラム
JP5705959B2 (ja) * 2011-02-25 2015-04-22 パイオニア株式会社 血圧低下予測装置
JP5738673B2 (ja) * 2011-05-24 2015-06-24 オムロンヘルスケア株式会社 血圧測定装置
CN102302362A (zh) * 2011-07-04 2012-01-04 长春工业大学 便携式人体多参数监护仪
JP5694139B2 (ja) * 2011-12-28 2015-04-01 日本光電工業株式会社 睡眠中における無呼吸低呼吸状態の検出装置
KR101288391B1 (ko) * 2012-03-08 2013-07-22 주식회사 유메딕스 혈압 측정 방법 및 그에 따른 혈압 측정 장치
JP6003487B2 (ja) * 2012-09-28 2016-10-05 オムロンヘルスケア株式会社 血圧測定装置、血圧測定方法、血圧測定プログラム
JP6111741B2 (ja) * 2013-03-04 2017-04-12 オムロンヘルスケア株式会社 電子血圧計
JP6189713B2 (ja) * 2013-10-29 2017-08-30 日本光電工業株式会社 生体情報モニタ装置及びセントラルモニタ
JP6132801B2 (ja) * 2014-03-31 2017-05-24 富士フイルム株式会社 データ出力装置、方法及びプログラム
JP6683367B2 (ja) * 2015-03-30 2020-04-22 国立大学法人東北大学 生体情報計測装置、生体情報計測方法及び生体情報計測プログラム
JP2016214563A (ja) * 2015-05-20 2016-12-22 オムロンヘルスケア株式会社 生体情報測定装置
CN105769150A (zh) * 2015-12-24 2016-07-20 广东小天才科技有限公司 一种提示高血压危险的方法和***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156604U (ja) * 1987-03-31 1988-10-14
JP2003149007A (ja) * 2001-11-12 2003-05-21 Omron Corp 生体測定装置
JP2003310579A (ja) * 2002-04-24 2003-11-05 Nippon Colin Co Ltd 生体監視装置
JP2006510451A (ja) * 2002-12-18 2006-03-30 カーディアック・ペースメーカーズ・インコーポレーテッド データを相関させるための高度な患者管理
JP2010071742A (ja) * 2008-09-17 2010-04-02 Hitachi Software Eng Co Ltd 測定データ表示装置
US20130267861A1 (en) * 2012-04-05 2013-10-10 Welch Allyn, Inc. User Interface Enhancements for Physiological Parameter Monitoring Platform Devices
JP2015029565A (ja) * 2013-07-31 2015-02-16 フクダ電子株式会社 生体情報モニタ

Also Published As

Publication number Publication date
JP6765998B2 (ja) 2020-10-07
JP2018149171A (ja) 2018-09-27
DE112018001354T5 (de) 2019-12-19
US20190374170A1 (en) 2019-12-12
CN110446460B (zh) 2022-06-14
CN110446460A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
EP3440995B1 (en) Biological information analysis device, system, and program
WO2018168301A1 (ja) 情報処理装置および情報処理プログラム
JP2015054002A (ja) 疲労・ストレス検診システム
JP5327458B2 (ja) 精神ストレス評価とそれを用いた装置とそのプログラム
JP6039449B2 (ja) 生体情報モニタおよび生体情報モニタシステム
US11191483B2 (en) Wearable blood pressure measurement systems
US11571535B2 (en) Wearable device and program
US20150157278A1 (en) Electronic device, method, and storage medium
US20190313983A1 (en) User terminal apparatus
WO2019131253A1 (ja) 情報処理装置、情報処理方法、及び情報処理プログラム
WO2018235652A1 (ja) 健康管理装置、健康管理方法、および健康管理プログラム
WO2018168300A1 (ja) 情報処理装置および情報処理プログラム
TW202123255A (zh) 利用非接觸影像式生理檢測技術之健康管理系統
CN109890276A (zh) 血压监测方法、装置和设备
KR20190061826A (ko) 외상 후 스트레스 장애 및 공황장애 치료를 위한 복합 생체 정보 검출 시스템 및 방법
JP6765999B2 (ja) 血圧関連情報表示装置および方法
CN105982656A (zh) 量测装置
US20240000375A1 (en) System and method for classifying and using chronotypes
WO2019131252A1 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
JP6932562B2 (ja) 健康管理装置、健康管理方法、および健康管理プログラム
JP6746508B2 (ja) ユーザ端末装置およびデータ送信方法
WO2023193711A1 (en) Contactless physiological measurement device and method
WO2018211963A1 (ja) 情報表示装置およびプログラム
JP7419904B2 (ja) 生体モニタ装置、生体モニタ方法及びプログラム
WO2018211961A1 (ja) 血圧関連情報管理装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767028

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18767028

Country of ref document: EP

Kind code of ref document: A1